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1. Introduction. In a series of earlier papers® [1], ..., [7] both the (simple)
duality theory of rings, and later the general K-ality theory (not only of rings, but
of arbitrary operational disciplines), corresponding to a preassigned group K of
admissible “coordinate transformations” in the ring (or discipline) were introduced
and studied. Among the interesting concepts which were shown to evolve from
this general theory is the notion ‘“ring-logic”,—or “ring-algebra’” (mod K). In this
connection the class of “p-rings” was shown to possess an enveloping “p-ality
theory” which generalizes the familiar duality of Boolean rings (and algebras),—
which latter are simply 2-rings (p = 2). Furthermore for the special cases p = 2
and p = 3, it was explicitly shown in [1] and [4] that such p-rings are ring-logics
(mod N), where N is the “natural group” (see §2),—with the status of general
p-rings, i. e, p > 3, left undecided.

Here, for given p (= prime), a p-ring,—as first introduced by Mc Coy and
Montgomery [8], is a commutative ring with unit? in which for all elements a,

(11) (]/p = q
(1.2) pa = 0.

The concept p-ring is an evident generalization of that of Boolean ring (p = 2).
(In this Boolean case, p = 2, the condition (1.2) is a familiar consequence of (1.1);
however for p > 2 (1.2) is independent).

The following well known result of Stone [9]:

(1°) Each Boolean ring ts isomorphically representable as a ring of classes, or,

1 Square brackets refer to the appended bibliography.

2 For Mc Coy and Montgomery, [8], the notion “p-ring”’ does not demand the existence of a unit.
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what 1s equivalent, is isomorphic with a subring of some (finite or infinite) direct power
of Fy (= 2-element Boolean ring = field of residues mod 2),

was generalized by Mo Coy and Montgomery in [8] to:

(2°) Bach p-ring is isomorphic with a sub-ring of some direct power of F, (=field
of residues mod p).

In connection with this result they showed that
(3°) Each finite p-ring is isomorphic with a direct power of F,.

The present communication is concerned with a further study of p-rings,
within the framework of the ring-duality and K-ality theories. In I, for each
Boolean ring J and each integer » we define (§ 3) a certain vector ring “over” J,
the “J-partition-vector ring” or ‘“‘Boolean-vector ring” of degree n. Here the
definition of the vector sum as well as that of vector product, in terms of ground
concepts, is given by means of a symmetric kind of operation, as a consequence
of which these Boolean vector-rings are ‘“‘hypercomplex’ over J only in an extended
sense®. ,

Among other things it is shown that the Boolean-vector rings of degree p-prime
are p-rings ((1.1), (1.2)). Tt is then further established, in II, that each (abstract)
p-ring is (uniquely) isomorphically representable as a Boolean-vector ring, and hence
that these two classes of rings are identical, ﬁp to isomorphisms. This isomorphism,
in turn, leads to the complete classification of p-rings in terms of their “idempotent
Boolean sub-algebras” (Theorem 10). To mention but one consequence of this theory,

it is shown that each element of a p-ring may be expressed as a sum of @2:—1—)
idempotent elements. As another consequence the previously mentioned results
(2°) and (3°) of Mc Coy and Montgomery,—in fact a related stronger result
(Theorem 12) are derived.

A further application of the present theory leads to an affirmative answer
to the above mentioned previously unsolved problem; in fact it may be shown
that all p-rings are ring—logios {mod N). A demonstration of this result will not
however be given here, but will be presented in a subsequent communication in
connection with various applications of p-rings and their N-ality theory.

3 One may reasonably object to the retention of the ‘“‘vector” terminology in the face of the
non-traditional vector addition. It was however thought desirable to adhere to the familiar expressions
since, as will be shown (a) each ““vector’ is uniquely determined by certain components, and (b) under
certain simple conditions the “vector sum’ degenerates to the orthodox vector sum.
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I
BOOLEAN-VECTOR RINGS

2. Some notions and results from the ring-ddality and K-ality theories.
In this section we shall lightly touch on a few points of back-ground taken
from [1], ..., [7]. Let B = (R, -+, X) be a ring (here always understood to possess
‘a unit), and let
(2.1) K={..0 ...} ={&0,0", ...}

be a group of “coordinate transformations’ in (= 1—1 self mappings or permutations
of) R,
(2.2) z>ol@), (z,0@) €sR, gek),

where £ is the identity of K, &(x) = x, and where the inverse of p is written p-.
Each concept of the ring (R, +, X) may then be expressed in, that is, may be
cogrediently transformed with the various coordinate systems geK. In particular
a multitation? (= operation of one or more arguments) o(z, y, ...) of the class R

3

“hecomes’’, in the

(2.3) o, (@, Y, .. .) = o~ (olo(x), 0®), - ..)) -

Here the (isomorphic) multitations o and ¢, are the “same” operations, expressed

‘o coordinate system”, the multitation 0,4, Where

in different coordinates. In this sense the rings

(2.4) (B, +, X), (B, +', X"}, (B, +", xX"),

represent the “same” ring, expressed in the & ¢, 0", ... coordinate systems
respectively, where the set of “K-al” products

(2.5) X, X', X",

are the ‘“‘transforms” (2.3) of X by &, 0,0, ... respectively, and similarly for

the K-al sums, differences, etc.,

(2.6) A+ L+ —, =T, =", ... ete.
For instance

ax'b = o=(o(a) X o(b))

a-+'b = g~ (o(a)+0(b)) , ete. .

The “K-algebra’—also called the “K-logic” of the ring R is the (operationally-,

(2.7)

¢ Compare with ([5].
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i. e., compositionally-closed) algebra

(2.8) (B, X, X', X", ...; &¢e,0",...),
also briefly written
(2.9) (R, ., K) = (B, X', K) = (R, x"', K) = etc. ,

operating in the same class R as the ring, but whose operations are confined to
the set of K-al ring products x, X', X", ... together with the operations (per-
mutations) &, ¢, "', ... comprising the group K. Of the various categories of
“K-algebraic (= K-logical) definability”’,—see {4] and [1}, we here recall only one.
Each ring uniquely determines its K-algebra (K-logic), (2.8). If, conversely,
a ring (R, +, X)) is “fixed” by its K-algebra, i. e., if: (a) no other ring (B, +,, X)
exists (on the same class R and with the same x, but with -, = ) which has the
same K-algebra as (R, 4, X), and if (b) the ring sum, 4, of B is equationally
definable in terms of its K-algebra, that is, if an identity exists
(2.10) a+b ;:_b(p((l, b, (a,b €'s R),
in which (e, b) is some (compositional) combination of the K-logical operations
X, X'y X", ..., &0 0", ... we speak of R as a ‘ring-algebra (K)’,—or ‘ring-
logic (K)”.
We are here concerned with only two groups of coordinate transformations,
namely: (1°) the “simple” or ‘“‘complementation’ group, C,—of order 2, consisting of

z* = 1—x

(2.11) )
x*¥* = (x*)* = identity ,

and (2°) the “cyclic negation” or “natural” group, N, consisting of the group

generated by =,
(2.12) ™ = 14z.

Unlike the group C the order of the group N will of course depend on the char-
acteristic of the ring B. For a ring of characteristic p,—in particular for p-rings,
N is of order p.

Corresponding to the group €' the concepts of R occur in (simple) dual pairs,
or “C-als”. In particular: 0 and 1 are dual elements; X, ®; +,P; —, O; * are
respective dual pairs of operations®,—the latter, *, being self dual, where, by ap-

5 For the simple group C we shall always use the circle notation ), @, ete. instead of the general
X’y ..., 47 ... etc. notation of (2.5), (2.6).
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plication of (2.7), these are given by
j a®b = at+b—axb
l axXb = a®DbOaRb
J a@b = at+b—1

+b = 0
(2.13) l ot “PbO
aSb = a—b+1
a—b = a®bd0
o j l—a
l 0Oa .

The relations (2.13) illustrate the

{(Simple) Duality Theory for Rings.

I PO+, @ %, ® — 0O %)

is a true proposition in a ring B = (B, 4, X), so also is its (ssmple) dual,
dlP = P(1,0; @, +; ®, X; ©, —; %
obtained by replacing edch argument in P by its dual,—with * left invariant (self-dual).
The C-algebra (= “simplé” algebra, = simple logie) of a ring (R, 4, X) is

the system (R, X, ®, *). In case R =J = (J, +, X) is a Boolean ring, that is
(Stone, [9]) if each element of J is idempotent,

(2.14) a¥(=aXa) =a, (aed),
—which then further implies characteristic 2,
(2.15) a+ta =0 (@aed),
then its C-algebra (J, X, ®, *) reduces to the Boolean algebra, with the dual pro-
ducts X, ® becoming Boolean intersection and union respectively, and * becoming
the Boolean complement; here the Boolean ring (J, -4, X) is interdefinably related
to its C-algebra by the familiar equations

a-t+b = ab*®Ra*b [= (a xb)*Q(a* xb)]
(2.16) l—a(= l1+a) = a*

a+b—ab(= a+b+ab) = a®b .

A Boolean ring is an example of a ring-algebra, mod C.
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It was further shown in [4] and [1] that a 3-ring (p = 3) is not a ring-algebra
mod C, but is a ring-algebra mod N. As already remarked in the introduction,
by use of results of the present paper it may now be shown that all p-rings are
ring-logics mod N. (Note that for p = 2, N = (). ‘

We shall extensively apply another result established in [2]. If B = (R, +, X)
is a commutative ring with unit, (B, x, ®, *) its C-algebra and J the set of all
idempotent elements of R, then (J, X, ®, *) is an operationally closed sub-algebra
of (R, X, ®,*),

(2.17) (T, X, ®,*) < (R, X, ®,%).

The following generalization of Stone’s Theorem (see [9]) was proved in [2]:

Theorem A. The sub-algebra (J, X, ®, *) of a ring R is a Boolean algebra with
X, ® and * as logical product, logical sum, and logical complement respectively. The
ring sum, -5 of the corresponding Boolean ring (J, 4,5, X) ts however not identical
with the ring sum, -+, of R, but is related to the latter by the equation

(2.18) . a+ ;b = (a—b)* = a—2ab+b (a,b s J).

Applied to p-rings the natural group &N, now of order p, leads to an extensive
“p-ality Theory’ along the lines of the simple, or C-duality theory, as shown in [4],
Even a broad sketch of this theory would be too lengthy for consideration here,
especially since we are more concerned with the simple group C. At such points
as touch on the p-ality theory an effort will be made to make such contacts in-
dependently readable.

3. Vector n-rings: partition vectors.

In this and the following two sections we exhibit a certain class of vector
rings “over’” a given Boolean ring.

Let J be a Boolean ring = Boolean algebra = Boolean ring-algebra (mod C),
—see § 2,

(3'1) J: "'7a’>b)-"}:(‘]7+7 X):(J5@7®):(Jy ><;®7*)3 ete. .
The equations which interdefinably connect ring (J, 4, x) and algebra (/, X, ®, *)

have already been recalled in (2.16). In addition, within the algebra itself, the logical
sum ® and logical product X are connected by the familiar De Morgan formulas

(3.2) a®b = (a* X b¥)*
axb = (a*Qb*)*
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Let » be an integer, n > 2. By a vector partition of J, of degree n,—also called
a J-vector, or Boolean-vector, we understand an ordered n-uple of pairwise disjoint
elements of J,
b=, b, b", ..., b
(3.3) b X b = p® (G,j=1,2,...,n).
POXVD =0 (i=j).

53

The b® are the “components” of b, and two vectors are “‘equal”, =, only if their

corresponding components are identical,
(3.4) b=c<b?=c? (t=1,2,...,n).

Notation: As already anticipated, bold face @, b etc. denote J vectors, and
lower case (non bold face) a, b, z, etc. refer to elements of the Boolean ring J,—

except the letters ¢, 4, k, I, m, n, p, r, s, t which throughout the paper are reserved

for integers. PR 4+ %
We shall throughout also employ the ' notation, 22 Y ete., even Y

rather than the more conventional product notation, [, to denote a succession of

“terms”, separated by (the associative operations) -, respectively by ®, etc.

If a vector partition (3.3) satisfies

(3.5) 200 = b 6 =1

we speak of a complete vector. We shall use square brackets, [, | rather than the
{, ) notation (3.3),

(3.6) b=[b,b", ... 5"

to designate that the vector b is complete.

Since ring sum, 4, and logical sum, ® (= union) are identical for disjoint
elements of J,

(3.7) ab = 0= a+b=0a®b,
the completeness condition (3.5) is equivalent to
| ®
(3‘5)1 2{71)(@) . bl®b//® . ®b(n) — 1.

Each component of a complete J-vector is determined from the remaining
components by equations of the form
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b — 1—*(b,/+b”/+' . _+b(n)) — l+b“—}—b’”—}—- . ~+b(")
(3.8) = (B DO = (B ® - @D
. b”*Xb’”*X L. Xb(ﬂ)* .

Hence we may establich a 1—1 correspondence
(3'9) [b05 bl) voeey bn~1:, <~ < b17 bZ’ o bn—l )

between J <"1, the class of all J vectors of degree n—1, and J™ the class of
all complete J-vectors of degree n. It is this 1—1 correspondence that we have in
mind when we write

(3.10) Jo = g or JP = g,

Here, by (3.8) and (3.9), we have

by = by+-by4-- -+, 1 = (by+byt - b, )*

(3.11) . _— X
= (b1®bz®' : ’®bn—1) = U b~z o 'bn—l-

For the case where J is finite we mention the easily proved

Theorem 1. If J = J, is the finite Boolean ring possessing exactly k atoms
(and hence 2% elements), then J™, (and therefore also J™**) consists of n* elements
(= vectors).

4. J-vectors (continued), vector p-rings, etc.

For each given Boolean ring J and each integer n > 2 we shall now define a
unique sum, =+, and a unique product, X, which will convert (J™, 4, X), and
similarly (J<"*>, 4, X), into a vector ring. As already remarked, each such vector
ring will be “hypercomplex” over J only in an extended sense, inasmuch as the
vector sum, -+, is here not (in general) merely the traditional vector sum, i.e.,
not merely the sum of the corresponding components. (The relationship between
the general vector sum, 4, and the traditional vector sum, for which we write
4 ecr 18 given by Theorem 15 of § 9).

We augment the previous

Notation: All instances of bold face type,—elements @, b, etc. and operations
+, X ,etc.,—and later ®, ¥, etc., refer to the vector ring (J™, 4, X), or (J "1, 4, X),
which is to be defined presently, while ordinary type a, b, ..., 4, X, ®, *, etc.
continues to refer to the ‘‘ground” Boolean ring-algebra J. Furthermore when

necessary to avoid ambiguity we shall use the dot subscript notation 4, X and
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later also ®, X', ¥, 7, etc., to refer to operations in the modular ring (4.1) below;
however since certain letters r, s, etc. are reserved for integers (see notation fol-
lowing (3.4)), it is usually unambiguously possible to write simply r-+s, 7s instead
of r+s,7Xs etc.

Let

(¢.1) ((m)) = (((n)), +, x)
be the ring of residues, mod n. Each multitation ¢ (= self-mapping) of the set ((n)),
(4.2) @ =@(r,s, ..., 1), (r, s, ...,t, and @(r,s, ..., t) €5 ((n)))

may be projected to yield a corresponding multitation of the class (of vectors) J™;
we denote this projected multitation by bold face ¢. The components of the pro-
jection are defined by

(4.3) ¢ =gl = [p@b, ... d)]= Y ab,...d, (i=01...,n=1).

@, 8, ..., D=1
Here, on the right, the sum (ring+of J) stretches over all integers r,s, ...,¢,
(mod =), for which ¢(r, s, ..., ¢) = ¢ (mod n) (also written = ¢ (mod n)).

For example, for n = 4, if ¢ is taken as X mod 4,
@ = @(r, §) = rs (mod 4),
its projection ¢ = X on JM"! has the components

[aXbly = agbotaeb,+agh,+aghs+abytaby+a0,+ab, = ag®byRa,b,
[axXb], = a;b,+ab,
(4.4) [axXb), = a;b,+ab,+ab;+asb,
[axXb], = a;b;+ab, :

Similarly, for example, with n = 4 and ¢ taken as -+, mod 4, its projection
+ on J™ has the components

[a4bl, = abyta,bs+ab,+asb,
[a4-b], = ap,+a,by+asbs-+asb,
[a4b], = agh,+ab,+aby+azb,
[a4-b], = ad;-tab,+ab,+azb, .

(4.5)

3

In the definition of projection our reference to
the

‘components’ has anticipated
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Theorem 2. If ¢(r,s, ..., t) is a multitation of the class ((n)), its projection
gla,b, ..., d) on J",

(4.6) ¢ = [poa, b, ....d), gi(a, b, ....d), ..., ¢,5ab, ... d],

where the @; are defined by (4.3), is a complete J-vector.

Proof:

+ +
(4.7) g = (X ab,. . .d) (X aub,...dy) .

@r, s, ...,0)=1 @', 8, ... t)=]

For i=j at least one of the following must hold,

(4.8) re=r =8, ..., t=1,
and hence
(4.9) ;=0 (i=7) .

This follows from (4.8), the distributivity of the -- and x of J, and the fact that
(4.10) a=/[ayga, ...,0,,,0=7[bby, ...,50, ]

are complete J-vectors by hypothesis. A similar simple argument shows that

+
(4.11) Mg =1,

€=0,..., n-1)
and completes Theorem 2.

From Theorem 2 together with (3.7), it is seen that the definition (4.3) of
the projection of ¢ may be equivalently stated in terms of ® sums rather than -,

&
(4.3) v = [pl,= > ab,...d,.

@8, ..., 0)=1

Theorem 3. For a given Boolean ring J and a given inieger n(n > 2), (1°) the
system (J™, 4, X), with 4 and X defined by projection according to (4.3), i.e.,

+ ®
(4.12) [a+b), = X ab, (= Y ab,) (=0,1,2 ...,n—1),
r+s=i(modn) r+s=17(modn
+ ®
(4.13) [axb]; = Y ab, (= Y ab,)

rs=1(mod %) rs=1 (mod n)

18 a (commutative) ring (with unit), (2°) of characteristic n,
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(4.14) na = a+a+ - -4a = 0@ecJ™).
(3°) For m = p = prime,
(4.15) a’ =axXax---Xa=a (@ed™),

and hence (JP! 4=, X) is a p-ring.

Proof: The commutativity of 4+ and of X is immediate from (4.12) and (4.13).
We first show that (I): each of the operations 4 and X is associative. For 4 we

must show that

(4.16) [a+(b+c)], = [(a+b)+c]; , G=0,1,...,n—1).
By (4.12) this is equivalent to showing that
+ +
(4.17) 2,1 ar(bsct) = 2 (a’rbs)ct .
r+(s+)=1 (r+8)+t=1
mod » mod n

This however is immediate from the associativity of X in J and the éssociativity
of the + of the ring ((n)). The associativity of X given by (4.13) follows in a similar
direct manner.

We next show that (IT): 4 and X are distributive, that is,

(4.18) [a(b+c)]; = [ab+ac]; G=0,1,...,n—1).

(Notation: Here, as elsewhere where no ambigunity can arise, we write @b (simple
juxtaposition) in place of aXb).

Using (4.12) and (4.13) this is equivalent to showing that

+ +
(4.19) 2 albe) = D (ab)(ab,), (z=0,1,...,n—1).
I >‘<(s4.—t) =1 (mod n) (r>'<s)+.('r’>_<t)=i (rod n)

On the right of (4.19) all terms of the sum are 0 except where 7' = r, because of
the pairwise disjunction of the components. The truth of (4.19) is then obvious
from the idempotence a; = a,, together with the distributivity of the 4+ and x
of ((n)).

We next establish (III): In (JI™, 4),

(4.20) at+xr=>b

always has a solution @, given by (4.23), for given a and b. Here (4.20) is equivalent
to the following equations

16 — 642138 Acta mathematica. 84
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BoTot Oy &1y %y s taE, = by

@1To+  QgZy -ty 1 Tyt s ey, = by
(4.21) Ayt X FAeTy 0, Tyt Fagz, ) = b,

T S A e s, = b, ;.

Multiply these in turn by a,, a,, ..., a, ; and add; making use of (3.3) and (3.5)
we then get
(4.22) Ty = bo@o+b1ay+byay+ - - 40, 0,

Similarly, if the equations (4.21) are multiplied in turn by the coefficients of x;
and added, upon simplification by (3.3) and (3.5) we get

(4.23) &; = biag+b;.,0,-+b; a0+ - - +b, a, ;.

That the z; given by (4.23) actually satisfy the equations (4.21) is immediately
verified. This proves (I11I).

The properties (I)-(III) prove part (1°)—that is that (J™, 4-, X) is a ring.
Directly from (4.12) and (4.13) one finds the zero, 0, the unit, 1, and the “integers”,
141, ete. to be given by:

0=11,0,0,...,0]=(0,0,...,0)
1=1[0,1,0,0,...,0] =(1,0,0,...,0)

(4.24) 2(=141) = [0,0,1,0, ...,0] =(0,1,0,0,...,0)
n—1=1[0,0,...,0,1]=¢0,0,...,0,1)

n(= 14+14---41, nterms) = 0.
From the distributive property and (4.24)
(4.25) ata+---+a (nterms) = aX(1414---41) =0,

and hence (2°) of Theorem 3 is proved.
There remains to prove (4.15), for p = prime, that is, to show that

(4.26) @), = [a]; =a, (i=0,1,...,p—1).

By the definition of vector product, (4.13), this is equivalent to showing that

+

) 7
(4.27) 2 aa.a, .. Oy,
TXIRX: - grp:i (mod p)

= {,

)
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where the sum stretches over all indices whose product =i (mod p). From the
pairwise disjunction, and the idempotency of the components, terms in (4.27)
with different subscripts vanish, and we may write (4.27) as

+
(4.28) Sa. =a;.

rP=1

However in ((p)), the field of residues mod p = prime,

(4.29) w=r (re(®)).,
and hence (4.28) is verified, since the only term on the left of (4.28) which does
not vanish is that for which » = ¢. This proves part (3°) and with it the complete
Theorem 3.

We list several useful formulas, all ready consequences of (4.23), (4.24) and
(4.12), as

Theorem 4. In

™, 4+, X),
if a=[a, a, ...,a, ], then
(4.30) —a = [y, @ _1s Ay_gy By_s, « .5 A7)
(4.31) ar = 14a ={a, , ap 0y, Ay ..., Gy_,]
(4.32) a*=1—a =[a,,a,a, 1,8, 5 ..., ).

In the ring (J™, 4, X) we may, via (3.11), completely eliminate a, and b,
from each of the components [@a4b]; and from [@ X b];. In this way, again by means
of (3.11), we may write the ring (J", 4, X) in the ‘‘non-homogeneous” form
(J" ™, 4, %). It is convenient to speak of these (isomorphic) rings as different

representations of the ‘“‘same” ring,
(4_33) (J[n]’ +, X) = (J<n4>’ +, %).
In this non homogeneous form it is usually convenient to write all vectors, in
particular 0, 1, etc. (see (4.24)) in the (, ) form.
For the special case n = 2 we prove the
Theorem 4. Via the 1—1 correspondence
(4.34) a <~ [a*, a]l <> (a), (aed),

each Boolean ring J is isomorphic with its complete vector J-ring of degree 2,
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(4'35) (J’ +, ><) z ('][2]> +’ x) = (J<1)’ +’ x) ‘

Proof.: From (4.12), (4.13), (3.11) and familiar properties of a Boolean ring
(see (2.14)-(2.16)),

(a)+Cby) = (ahitaby ) = ((1—a)ba,(1—by) ) = {a;+b,)
(a3 X)) =(a,; xb,) .

From (4.36) the asserted isomorphism is immediate via the correspondence

(4.36)

(4.37) a; <= {ay) < [a,, a,4],

which is (4.34) in different notation.

5. On completeness. A ring is complete if (1°): the sum, and also the prdduct
of an arbitrary (not necessarily denumerable) subset of elements of the ring is
defined and is an element of the ring, and (2°): both associativity and distributivity
holds for these general sums and products. In a complete ring it is readily shown,
for an arbitrary group K of coordinate transformations in the ring (see § 2), that
(3°): the general property (1°) holds for any K-algebraic (= logical) operation in
the ring, and moreover that any formal K-algebraic property of the ring that holds
for arbitrary finite subsets of the ring continues to hold in the above general sense.

Applied to the foregoing vector rings we state without proof the

Theorem 5. If J is a complete Boolean® ring, then the vector ring (J™, 4, %)

over J is a complete ring. If

(5.1 A={...,a, ...} ={a,b,e, ...}

18 any set of (not necessarily distinct) J-veciors,
a=1{[aya,....,a,,,b=1[0,b,....0,.] ...

then the components of the sum of the vectors comprising A, and similarly of the product

18 given by
+ + &
4
(5.2) [Xa], =2 @bg...) = M (abe...)
ac A Py8 by, =0,1,2,...,0n-1 h%sfn-:i (mod »n)

r+8+t+... =1 (mod n)

¢ A complete Boolean ring is also definable as one isomorphic with the ring of all subsets of
some set.
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X + &
(5.3) [(Ya], =23 @be...) =3 (@bg...);
acA IXSXEX -+ =1 (mod n) rX§X o+ =1 (mod n)
(1=0,1,2,...,n—1).

Specialized to the simplest case n = 2, by use of Theorem 4 and the corres-
pondence (4.37), or (4.36), the formula (5.2), for instance, yields the familiar re-
presentation (either of a finite sum in any Boolean ring-algebra J, or of an arbitrary

(not necessarily denumerable) sum in any complete Boolean ring-algebra J),

(@a-+b+ct+d-tet---) = ab*c*d*e*. . . f-a*bc¥d*e*- - - 1. ..
(5.4) +-a*b*cd¥e* . . . La*b¥crde* . 4.
+abed*e*f*. .. Labc*de*f*. .. 4 ...

where each term has an odd number of non-complemented factors and the rest
complemented (= starred). (This insures that the sum of the subscripts is =1,
mod 2). The formula (5.4) may also be written with ® instead of + on the right.
A corresponding familiar Boolean formula for the product abcde. .. results from
(4.37) and (5.3) by taking n = 2, namely

(5.5) abede- -+ = a*b¥c*d¥e* - - - fabe*d¥et- .. - - +ab¥ed¥e* .. .-

where (to insure that the product of the subscripts is = 1, mod 2), each term con-
tains either no or an even number of non complemented factors, and the rest
complemented. We may again write ® instead of 4+ on the right of (5.5)

Again for n = 3, for example, (5.3) yields

(5.6) [axbxexdxex - ], = abic,die; - - +ab,cide -
Fasb Codyer- o - Fagbycodae A -

(where each term has no or an even number of ‘2" components appearing),

(5.7) [axbxexdXeX -1, — aherds- - +aboesdy- - - - -
+a2b262dlel. .. _+_ e

(where each term involves an odd number of “2”’ components). Here again we may
also write ® in place of + on the right of (5.6) or (5.7).

Formulas (5.2), (5.3) and the Completeness Theorem 5 will take on additional
significance in § 8 after it is shown that any (abstract) p-ring (see (1.1) and (1.2)
of § 1) may be isomorphically represented as a vector p-ring.
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6. Direct projection. In the vector ring (J™, 4, X) = (J* ™, 4, X), the
4 and X of the ring are the direct projections (4.3) of 4+ and X from the ring of
residues (((n)), +, ><), as defined in §4, whereas all .further.ring concepts, in
particular K-algebraic (= K-logical) concepts are, as in any ring, “internally”
determined, i. e. defined in terms of 4 and X. For instance for the generators of
the simple and of the natural groups, ¢ and N, a* = 1—a and a* = 14-a were
found to be given by (4.32) and (4.31).

On the other hand it is easily verified that the direct projections onto J™
of the corresponding C- and N-logical concepts ¥, * of the ring (((n)), +, X ), —
let us denote these projections by *#, A7 leads to precisely the same formulas;

thus, by

[a*zﬂ‘]‘ = a,’!‘
(6.1) T (¢G=0,1,2, ...,n—1)
Apr Y
[a??], = a;

v

(where 7 is the inverse of *, i.e., 47 = i¢—1), which is seen to agree with (4.32)

and (4.31). Hence we have

*

a* = a*r

6.2

( ) aA — aApr

Since all C- (respectively all N-) algebraic concepts of J™ are generated by X
and ¥ (respectively by X and #), we have demonstrated the

Theorem 6. FKach C- (respectively each N-) logical concept of (J™, 4, X) is
the same whether determined “internally”, from 4 and X, or by directly projecting
onto J" the corresponding C- (respectively N-) logical concept of the ring (((n))), +, X).
Briefly stated: the (C-, respectively N-) algebra of the projection is the projection of
the (C-respectively N-) algebra.

Actually only a trivial addition to the foregoing argument yields the stronger

Theorem 7. If y=y(a, b, .. .)is a multitation of J™ which is some compositional
combination &(4, X, ¥, 2) of (any or all of) the operations 4=, X, *, A, then the
components [y, of p are the same whether computed “internally’ (in the previous
sense) or by direct projection of the same composition &(+, X, ¥, 7) of the corresponding
operations -+, X, ete. of (((n)), +, X ).

Tlustrations.
(6.3) a®b = (a* xb*)* (internally) .
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In this form the components [@X b]; are tedious to compute. By direct projection,

however,
+ +
(6.4) [a®b), = 3 ab, = 3 ab, G=0,1,...,n—1).
rQs=1 r—j-sTr>‘<5'zi
Again
(6.5) a@b = (a*4b*)* (by internal definition) .
+ +
[a@b], = D'ab, = 3 ab, (by direct projection) .
r® s=1%¢ (mod n)  7r+s—1=% (mod n)
Similarly
(6.6) ax’'b = (a* xbr)Y (internal definition)
+ +
[ax'b], = Y ab, = 3ab, (by direct projection) .
r>f’s:i (mod n) r+s+rs=1 (mod n)
& +

In any of the above we may also take D) instead of 2 .
Theorem 7 shows that, while the projection process
(((n))’ +’ X) ;;J) (J[n]5 +. x)
does not define a ring homorphism in the strict traditional sense, it does define
a kind of operational homorphism.

I
ABSTRACT p-RINGS AND THEIR BOOLEAN-VECTOR REPRESENTATION

7. Canonical “linear” decomposition in abstract p-rings.
We turn now from the class of vector p-rings, just considered, to arbitrary
p-rings (see § 1), which we also refer to as abstract p-rings. Let

S=S, 4+, %X)=(S, 4+, X, ®, *) = etc.

be any abstract p-ring, To facilitate later contact with vector p-rings we shall
parallel the previous

Notation: Bold face =4, X, ®, ¥, A,V etc. denote the familiar ring oper-
ations (see §2), and bold face a, b, etc. denote general elements of the abstract
p-ring 8; in addition small (non bold face) Roman letters a, b, etc. (except those
reserved for integers,—see notation following (3.4)), always denote idempotent
elements of S,
(7.1) a’=aXa=a.
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The C-logic (or simple logic) of the ring S is the algebra (S, X, ®, *),~—see
§ 2, where
a* = 1—a(= 000)

(7.2) . a®b = a+b—axb
axXb =aPbs(a®b) .

The set I, consisting of the p “integers” of S,

(7.3) I1=1{0,1,2,...}
where
(7.4) 2=141,3 =142, ...

forms a subring (= sub field) of §,
(7.5) (I, +, X) = (S, +, X) ,

which is obviously isomorphic with ((p)), the field of residues mod p,
(7.6) L+, )= (((P), +, X) = (F,, +, ).

As recalled in § 2, the set J of all idempotent elements of S, while not in general

(i.e., for p= 2) a subring of 8, is a (simple) sub-algebra
(7.7) W, X, ® "= x,® %,

and this sub-algebra is a Boolean algebra (with 0 and 1 as null and universe, and
with X, ®, * as logical product, logical sum and logical complement respectively);
the (simple, i. e. C-) algebraic notions of J are identical with those of 8. To further
facilitate subsequent contact between abstract and vector p-rings we agree to the
convention or

Notation: When applied to the idempotent Boolean algebra J of § the (simple)
logical operations X, ®, ¥ etc. are also denoted by ordinary (non bold face) type,

aXb=axb=ab

(7.8) a®b =a®b : (J, %X, @ %) =, x,®,%,
a* = a*

and similarly for the idempotent elements
0 - 0, 1=1 s

(but not for the (in general) non-idempotent 2, 3, ...). Furthermore, parallel to
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the abbreviation for vector product (following (4.18)) it is frequently convenient

and non-ambiguous even in the case of X in S, to write simply

(7. 9) axXb = ab
and similarly
(7.10) a=axax...xXa (¢ factors) ,

However the ring sum, + (non-bold face!)} of the Boolean ring (J, 4+, x)
which corresponds to the Boolean sub-algebra (J, X, ®, *) is not identical with
the ring sum, 4, of 8, but is related thereto by

(7.11) a+b = a—2ab+4b(= a—ab—ab+4b),  (a,b €s J),

as reviewed in § 2. Thus, in particular, for disjoint elements of J the two degenerate

to the same operation,

(7.12) ab = 0= a+b = a<4b (a,b €s J).

Theorem 8. Normal Representation Theorem.
In an abstract p-ring S = (S, 4, X), each a € 8 may be decomposed in one and

only one way in the “normal idempotent form”

(1.13) @ = a,42a,+3a,+ - -+ (p~—Dya,
(= arta,tata,4a+az4a4- - -)

in which the “‘normal components” a; = (a); of the element @ are idempotent elements

of § and pairwise disjoint,

(7.14) a; =a;.
(7.15) aa; =0 (€= j) .

The normal components a,, of @ may be determined from @ by the equations,
(7.16) @, = (p—1) (kP a4k"*a’+iP'a* 4 - - - Fk'aP™), (k=1,2,...,p—1).

Here the coefficients in (7.16) are to be taken mod p.

Proof: We first show that if an element @ of S has a normal idempotent de-
composition, i. e., is expressible in the form (7.13) with the a, satisfying (7.14)
and (7.15), then these components a; are unique and are given by (7.16). We
have
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a = a,+2a,43a;+4e,+- - -+ (p—1a,_,
&= a,+ 2,43 a;+4%a,+ - - - +(p—1)a,_,
(7.17) *= a,42a,4+3a+ 4,4 - - +(p—1)

3
ap_l

aP! = a, 42 a3 a4 - +(p_1)p_l%—1 :

We borrow the following identity from number theory: Let p be a prime
integer, and m, n any integers where m = 0, n == 0(p). Then

(B) mP P n+mP 7 n 4-mP P+ - - - fmnP
—0(modp), i n=mp)
=p—1(modp), if n=m(p).

If we now add the equations (7.17), apply the identity B with m = 1 and simplify
by use of the identity

(7.18) (p—1)2 =1 (mod p),

we find

(7.19) a, = (p—1) (a4 @+a3+- - - +a?™?) .

Again, if we multiply the equations (7.17) in turn by 2773 2P~ | . 2° add and

again use (B) and (7.18), we get

(7.20) a, = (p—1) (2P %a4-2Pa’ 427 '@’ - . . 4-2%P7") .
Similarly, by multiplying the equations (7.17) in turn by 3772 373 371 .  3°
and adding, respectively by 4777 477 ... 4" and adding, etc., each time applying

(B) and (7.18), we get

a, = (p—1)(37%a437%a*4 - . - +3%aP)

(7 21) ay = (p—l)(4p_2a+4p_3a2+ . +40ap—1)

a, , = (p—1((p—1)"*a+(p—1)""*a’+ - - - +(p—1)'a")

These formulas (7.19)-(7.21) are precisely those condensed by (7.16).

To complete the proof of the theorem we must show that for given @ € S, the
a,, defined by (7.16) actually satisfy the conditions (7.13), (7.14) and (7.15). Let us
first take (7.13). Upon substituting the a, given by (7.16), the right side of (7.13)
may be written
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(P—D{(1+2"' 437+ F(p— 1P (1427437 - (p—1)P )@
(7.22) (1427743774 +(p—17")a’+- - -+ (142434 - - +(p—1)a" "} .

Using B in (7.22), the coefficient of @ is = (p-—1), while all other coefficients are
== 0, mod p. Further simplification of (7.22) by (7.18) then shows that (7.13) is
satisfied.

We next verify that the a, defined by (7.16) satisfy (7.14) and (7.15). In place
of the arithmetic identity (B) we need the following variant: Let p be a prime

and let k, [, ¢ be integers where

(7.23) k=0,130,t=p—1 (modyp).
Then
(©) A R ol A PNy 1/ T A A

{_:"O if k=1 (mod p)
=p—1 if k=1(modp).
Here, in view of (7.18),

(7.24) I? =1 (mod p),

and, since all exponents are of course reduced, we have
(7.25) I =1" (mod p) = s = s (mod ((p—1)) .

Thus, for instance, for p = 7,¢ = 3 (C) reads

(7.26) BRI P+ Rl kol { =0 RE
=6 if k=1(7).
From the definition of p-ring S,
(7.27) a’ =a (aef)
and hence, similarly to (7.25), we have
(7.28) @ = a" = s =s'(mod (p—1)) .

If we compute a;, ¢; by means of (7.16) and reduce the exponents by means
of (7.25) and (7.28), we get

(7.29) ay = Agiat Ay @’ Ay, 077

where
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Ay = (p— VYRV 4R BP0
Ay = (p— 1) (EDP* kP~ KP4 RP P70
(7.30) Ay = (p— 12 (0P kPP LI P

Ay = (=1 E VRBP4 kP70

By (C), if k =1 (mod p), it is seen that each 4,;; = 0, and hence by (7.29), (7.15)
of Theorem 8 is verified. Again, if k£ = I(p), then by (C), (7.29) and (7.30) we readily
compute,

(7.31)

Akk(pvl) = (p_1)2(p_1) = (p—1i".
Hence from (7.29), (7.31) and (7.18) we have
a0 = a, (k=1,2,...,p—1),
which proves (7.14). This completes Theorem 8.
8. p-Vector representation.
A vector p-ring, as follows from Theorem 3, may of course be conceived as an
abstract p-ring. We shall now prove the converse. For this purpose the non-

homogeneous vector form (J’"P’ 4, %) is more convenient than the homo-
geneous form (J71 4, ).

Theorem 9. Let (S, 4, X) be an abstract p-ring, and let J be its idempotent
Boolean sub-algebra,
(81) J:(J’ X’ ®7 *);

with corresponding Boolean ring (J, X, +),—(see (7.7)—(7.11)). If
(8.2) a = a+2a,4+3a;4 - - +(p"“1)ap—1

s the (unique) normal idempotent decomposition (Theorem 8) of an element @ of S,
then the 1—1 correspondence
(8.3) @ <> ay, Ay, .., Ay )

represents an isomorphism between the abstract p-ring (S, 4, X) and the vector p-ring
(JP P, 4, %) “over” the Boolean idempotent ring J of S; that is,
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(8.4) axXb «— (a,a, ...,0, 1 yX(by, by, ..., 0, )
(8.4) a+b «— (a, a5, ., a,  )Fby by, o by )

Proof.: The correspondence of the products is fairly immediate. From (8.1)
and (7.6), by direct multiplication of the elements @, b of §,

axXb = (@b, 4 )1+ (abytah,+-- )24

8.5
(8:5) = ¢ 14,2434 - - Fc, ,(p—1),
where
<+
(86) C; = ar’bs'+ar”bs”+ T 2 a’rbs
) rs=1 (med p).
Now since the terms a,b,, a,.b,., ... in (8.6) are pairwise disjoint elements of .J,

by (2.18) the ring sum < (belonging to ) which occurs may be replaced by the
Boolean ring sum, 4(= 4 ;) of J,7—see (7.7)-(7.10),

+
(8-7) €, = ar’bs’+ar”bs”+ = 2: a’rbs (+ = +J) .

rs=1 (mod p)

These ¢, are thus idempotent and obviously pairwise disjoint,

(8.8) cep=0 (=),

consequently the c; given by (8.7),—or by (8.6) are the actual normal components
of the product @aX b (Theorem 8). On the other hand, according to (4.13), the right
side of (8.7) is seen to be identical with the #th component of the vector product.

(8.9) @y, ay, ooy,  )XCDy by b, )

Hence, via the correspondence (8.3), (abstract) products correspond to (vector)
products, and (8.4) is established.
We turn to the proof of (8.4)'. For @, b of S, by direct addition

(8.10) a+b = (a;40,)+2(a,+b,)+3(as+bs)+ - - - +(p—1) (a,,+b,,) .

However (8.10) does not in general represent the normal idempotent decomposition
of a+4b, (Theorem 8). Let the normal components of a+b be ¢;; then by Theorem 8
the elements ¢; of § are uniquely determined by the three conditions

7 In fact, for disjoint idempotent elements a, b of any commutative ring R,

a+pb=a+;b=aQzb=0aQ,;>b.
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(8.11) ¢} = ¢
(8.12) ce; =0 (i=7)
(8.13) (a0} 4 2(a,+b,)+ - - -+ (p—1)(a,_+b, ;) =

c142¢,43c,4 - - '+(p—1)cp—l .

We shall show that the solution of these equations (8.11)-(8.13) is given by

+
¢ = aghyFapot- - =23 a,b,
. +s8=1 (mod p)
(8.14) N T+8 mod p

+
C; = a’obi+a'1bi-1+’ = 2 a’rbs t=12"..,p=-1).

r+p=4 (mod p)

Here again, sinee the terms in ¢; are pairwise disjoint idempotent elements, these
¢; may also be written with the 4 (of 8) replaced by the Boolean ring + (=4 of J),
i. e.,

-+
(8.15) ¢; = agd;+ab,_+-- =3 ab,

r+s=1 (mod p)

(+=-+y=ringsumof J;1=1,2,...,p—1).

From (8.15) the ¢; are seen to be idempotent and pairwise disjoint elements of S,
that is, (8.11) and (8.12) are satisfied. We procede to show that (8.13) is also satis-

fied.
Substituting the c¢; given by (8.14) into the right side of (8.13), the result may

be arranged in the form:
agh; +2ah, +3ab;+--- +(p'—1)“obp—1
+aby +2ab, +3ab,+--- +(p—1lab,_,
(8.16) +“2bp-1+2a2b0 +3a.0,4 - +(p—1)ash,_,
+a3bp—2+2a’3bp—l+3a3b0+ o (p—1ash,_,

+ap—1b2+2ap—lb3+3ap—1b4+ cA(p—1Da, b, .
Since a, and b, are defined by

(8.17) agFa a4 - - '+ap-1 = 1; by+b,4- - - +bp—1 =1,
that is
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ay = 14(p—1)(a,4a,4+- - +a, )
bO = 1+(p_1)(b1+b2+ e +bp—l) )
we may eliminate a, and b, from the sum (8.16), after which (¢): the collected terms

in a,b, (for fixed s=1, 2, ..., p—1) have the coefficient {s(p—1)+(p—1)+(s-+1)},
which is = 0(p). (Here s(p—1)a,b, comes from the first row of (8.16) and

(8.18)

(p—Nab,4(s+1)a,b, from the second row); (i7): the collected terms in b,a, = 0(p),
by symmetry from (¢); (é¢7): the collected terms in ab (r,s = 2,3, ..., p—1) have
the coefficient s(p—1)-+(r+s)+r(p—1), = 0(p). (Here s(p—1)a,b, comes from the
first row of (8.16), (r+8)a,b,4r(p—1)a,b, from the (r-1)* row, and no terms from
other rows).

From (i) —(4i¢) and (8.18), the right side of (8.13), that is, (8.16), immediately
reduces to

(8.19) (b1+2b,43b5+ - - - +(p— l)bp_1)+(a1+2a2+ o Pp—1Na, ) .

This is however seen to be identical with the left side of (8.13) and hence we have
shown that the ¢; given by (8.14), also by (8.15), are the normal idempotent com-
ponents of a-b. But these normal components (in the + (of J) form, (8.15), are
precisely those of the vector sum

@y Qg+ ooy @ )y, by, o0,

as defined in (4.12). We have thus shown that, under the correspondence (8.3),
(abstract) sums correspond to (vector) sums, proving (8.4)" and with it Theorem 9.

Since for given p and J the vector p-ring (J), 4, X) is uniquely defined,
Theorem 9 has the corollary

Theorem 10. The @*ime p together with the structure of the idempotent sub-algebra
J constitute a complete set of invariants (up to isomorphisms) of a p-ring S.

Thus, a p-ring § with idempotent sub-algebra .J and a p’-ring 8’ with idempotent
sub-algebra J' are isomorphic if and only if p = p’ and J and J’ are isomorphic
Boolean algebras. We may accordingly speak of the p-ring whose idempotent sub-
algebra is (or is isomorphic with) J. Furthermore it is only a matter of convenience
whether we conceive a p-ring abstractly or vectorially. We may also transfer clas-
sifications of Boolean rings to p-rings; thus, for instance, a complete-—(respectively
an atomistic—, respectively an atomless,—etc.) p-ring, 8, is one whose idempotent
Boolean sub-algebra J is complete (respectively atomistic, ete.).

In § 5 a different definition of completeness was given. The equivalence of this
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earlier with the above definition of completeness for p-rings follows at once from
Theorems 5 and 9. We have the

Theorem 11. A necessary and sufficient condition for a p-ring S to be complete
in the sense of §5 (i. e., to permit sums and products of arbitrary subsets of elements
of S) is that S be complete in the above sense (i. e., that its idempotent sub-algebra J

be a complete Boolean algebra).

Theorem 12. A4 direct power of F, (field of residues mod p) is a complete p-ring.
Conversely, a complete p-ring is isomorphic with a direct power of F,. '
That a direct power of F, (in fact of any p-ring) is again a p-ring is evident.

We first establish a simple

Lemma. Let p be a prime, Z any (finite or infinite) cardinal number Z > 1,
and FP and FP the Z™ direct power of F, and F, respectively. Then (J, X, ®, ¥)
and (Fy, X o), Qg *@), the idempotent Boolean sub-algebra of FP and FP are
1somorphic,

(8.20 J

il

F,.

Proof. The idempotent elements of a direct power are those elements all of
whose direct factors are idempotent. Hence only those a € F? are idempotent
each of whose Z direct factors is either = 0 or = 1 (mod p), a €.J equivalent:

a={(...,a; ...), each a;,= 0 or = 1 (mod p). Let
(821) a <~ a’

be the 1—1 correspondence between J and F,, in which corresponding direct factors
of a and a’ are “the same” (i. e., a, = 0(p) <=a, = 0(2), and a; = 1(p) <a, = 1(2),
for all factors, @,). This correspondence is seen to be such that (8.21) and b <— b’
imply:

(8.22) axXb <> a’' X b’

a¥ «—> a'*®

Since the idempotent sub-algebra of a ring is generable by X and *, the Lemma
is established. From the Lemma it then follows that the corresponding Boolean

rings are also isomorphic, via the correspondence (8.21),

(823) (J’ +J: X); (an +(2)7 ><(2)) .

Theorem 12 may now readily be proved. Since FZ is a complete Boolean ring
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it follows from (8.20) and the definition of completeness that FEUZ) is a complete
p-ring. As for the converse part of Theorem 12, if S is a complete p-ring, its idem-
potent Boolean sub-algebra is isomorphic with a direct power of F,, say F&0.
However the idempotent sub-algebra of the p-ring F#v is isomorphic with FZo,
by the Lemma. Hence § and F;Z") are two p-rings with isomorphic Boolean sub-
algebras, from which it follows that they are themselves isomorphic, by Theorem 10,

(8.24) S=FP .
This completes Theorem 12.

Since the idempotent Boolean sub-algebra of a finite p-ring is necessarily finite,
and since a finite Boolean algebra is always complete, Theorem 12 has the

Corollary 1. A finite p-ring S s always isomorphic with a direct power of F,

(8.25) S~F,XF,X—XF,.

Again, for an arbitrary p-ring, its idempotent Boolean algebra may be im-

bedded in a complete Boolean algebra, say F{”. Applying Theorem 12 to F(,
an obvious construction yields the further

Corollary 2. Each p-ring is isomorphic with a sub-ring of a direct power of F,.

These two Corollaries are precisely the results of Mc Coy and Montgomery
in [8], (see introduction).

By direct use of Theorem 8, formula (7.16), the normal components (a+4b),,
(a+b),, ... of the sum a+b in a p-ring are given as a polynomial in a+4b,

(8.26)  (a+b), = (p—1)(k"*(a+b)+,* D (a4b)+- - - +k%a+b)" ) .

By combining (8.26) with Theorem 9, and using both (8.14) and (8.15), we have the

Theorem 13. If a and b are elements of a p-ring S, and if {a;: a,, a,, . .., @, 1}
{by: bg, by, ..., by, 1} are the normal idempotent components of @ and of b, then for
k: 152’ ---:p_la

(p—1) () *(a+b)+1"(@+by+ - - -+ (a+b)™)
(8.27)

+ +(=+p
=2Xab = 2apb,
rfs:k (mod p) ﬁfs=k (mod p) .
Note 1. The idempotent elements of a p-ring S are those for which @ = q,
(i.e. for which the normal components a, =a; = --- = a, ; = 0). From the
17 — 642138 Acta mathematica. 84
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isomorphism established in Theorem 9 (or else from an easily given independent
argument), in a vector p-ring the idempodent vectors are those and only those of
the form

(8.28) (a,0,0,0,...,0) = [a* a,0,0,0, ..., 0].

Also capable of ready direct proof (independent of Theorem 9) is the unique normal

decomposition theorem in (J77"’ 4, X):

@y, @gy « v o3y 1) =4a,0,0,...,0)%(1,0,0,...,0)
(8.29) +{a,, 0,0,...,0y%<0,1,0, ...,0)4<a;,0,0,...,0)
%<0,0,1,0,0, ...,034---4(a,,,0,0,...,0)%X(0,0,...,0,1),

which is the formula (7.13) applied to vector p-rings. In this way, by use of (8.28),
(8.29) and (4.24), as a kind of converse to Theorem 8, the normal decomposition
(7.13) in an abstract p-ring S could be made to follow from an (independent) know-
ledge of the equivalence (= isomorphism) of the concepts of abstract and vector
p-rings. ,

Note 2. It is further observed that the vector formula (8.29) continues to be
true in a general vector ring (J’, 4, X) = (J™, 4, X), even when 7 is
composite. In this case, however, the idempotent vectors given by (8.28) will not,
in general, be the only idempotent vectors of the ring, and, as a consequence,
a vector (a,, a,, ..., a, ;> may have more than one normal decomposition, (8.29).

If in the normal decomposition (7.13) we write

(8.30) a = a;F(a,4a,)+(a;+as+as)+ . ..

and if we sum the arithmetic progression 14+2+43+4---4(p—1), we have as an
interesting corollary the

Theorem 14. In a p-ring (S, 4, X), each element @ of S may be expressed as the
sum, =4, of f(_p;i) idempotent elements of S.

For 2-rings (p = 2), which are coextensive with ordinary Boolean rings,
Theorem 14 degenerates to a simple restatement of the familiar definition of Boolean
ring (Stone [9]).

9. Relation to ordinary vector addition.
In a p-ring (S, 4, X), it may happen that the sum of special elements a, b
reduces to the traditional vector sum 4, or 4,
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(9.1) a+b = a+,b,

that is, that the normal components of the sum reduce to the sums of the respective

normal components,
(9.2) [a+b]; = a;+b; .

In this connection we prove the

Theorem 15. In a p-ring (S, 4+, X), a necessary and sufficient condition for the
sum of two elements to reduce to the ordinary vector sum,

(9.3) a+b = a+.,b = (a,+by, ay+b,, ... 0, b, )
is that the elements a, b be “disjoint”,

(9.4) axb =0.
This in turn is equivalent to the pairwise disjunction of all normal components
(9.5) ab, = 0 (,i"=1,2, ...,p—1),

As a consequence of (9.5) we note that the 4 in {, ) in (9.3) could be replaced
by 4+ = 4, of the idempotent sub-algebra J of S, {a;+by, ay+0b,, ... ).

Proof of Theorem 15. (9.5) implies (9.4) since each component (other than
the 0t2) of @ x b, namely
(9.6) [axb], = > ab, (i=1,2,...,p—1)
rs =1 (mod p)
is patently = 0 if (9.5) holds.
Conversely (9.4) implies (9.5). For, if (9.4) holds we have

+
(9.7) 2ab, =0 (G=1,2,...,p—1).
7s =14 (mod p)

Each of the (p—1)2 quantities a,b,(1, ¢ = 1,2, ..., p—1) occurs in (exactly) one
of the (p—1) equations (9.7), and moreover its coefficient is 1. Hence if the equation
containing ab,,, is multiplied by a;b,, one has the desired result (9.5), as follows
from the pairwise disjunction of the a; and the same for the b,. We have therefore
shown that (9.4) and (9.5) are equivalent. The Theorem will be complete if we
establish that (9.3) and (9.5) are equivalent.

For the 1,2, ..., (p—1)5t normal components of a4-b we have respectively,
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abbl+a1bo+asz_1 +ab, o+
(9.8) absta b dasb, +a3bp—1+ te
agbstab,+ab, +aby +---

If (9.5) holds, the i component of a4b thus becomes simply
(9.9) ad;+ab, = (1—a—a,—-- '_ap—1)b¢+“i(1_b1_bz"" ’ '—bp—1) = a;+b; .

Hence (9.5) implies (9.3).
Conversely, if (9.3) holds, we have equations

abitabotab, Hab, o+ = a,+b,
(9.10) agbytabitasb, 4 --- = a,+b,

abstabytah;, +aby +--- = a;+b;.

By multiplying the it row in (9.10) by a;b;, (where i’ =< 0, ¢’ = ¢), we get

(9.11) ab, =0  (i'=1).

That one also has

is seen upon multiplying the (2i)» row of (9.10) by ab,. Here (9.11) and (9.12)
correspond to (9.5), and therefore (9.3) implies (9.5). This completes Theorem 15.

The Theorem may easily be extended to more than two elements.

Note. For the special case p = 3 one may directly verify the formula: for

any elements @, b of a 3-ring,
(9.13) (a4b); = (a+,b)+ab  (i=1,2).

From (9.13) the equivalence of (9.3) and {9.4), only of course for the case p = 3,
follows as an evident corollary.

The results of this paper, in combination with earlier work on the K-ality
theory, etc., lend themselves to various interesting applications, particularly to
logic, (see [4] and [1] for the tri-ality theory in 3-valued logic), probability theory
and geometry. It is expected that these extensions will be presented in the near

future.
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