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§ 1. Introduction

In this paper it will be shown that certain of the divergent asymptotic series
which represent solutions of ordinary linear homogeneous differential equations in the
neighborhood of an irregular singular point can be summed and replaced by con-
vergent generalized factorial series. These results extend the earlier work of Horn [1]2,
W. J. Trjitzinsky [2], and R. L. Evans [3].

In Evans’ paper [3], the existence of integral (8) on page 91 is questionable

because the function ¥,(§) may increase more rapidly than any exponential func-

1 The author prepared a portion of this paper while working part-time on a joint project of the
University of Minnesota and the Minneapolis-Honeywell Regulator Co. under USAF contract No.
AF 33(038)22893 administered under the direction of the Flight Research Lab. USAF of Wright Field.

2 All references are listed at the end of this paper.
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tion €°'*! as £-—co. The appearance of functions of such rapid growth has blocked
the treatment of the most general case in the past and indeed has blocked the
present author in his attempt to sum all the divergent asymptotic series solutions.
However, considerable progress has been made, as the reader may see by glancing
at the summary at the end of this paper.

The analysis begins in section § 2 with a detailed step-by-step procedure for
calculating formal series solutions of a system of linear homogeneous differential
equations. These solutions are analogous to those obtained by E. Fabry [4] for a single
equation of the nth order. The steps in the calculations parallel closely a procedure
used by the author in his 1952 paper [2] relating to expansions of solutions of a
differential equation in powers of a parameter. The author wishes to take this oc-
casion to direct the reader’s attention to M. Hukuhara’s [6] solution of the same
problem in 1937 by another method.

When the procedure for computing the formal solution has been given in full
detail, it becomes evident that in the neighborhood of an irregular singular point any
given ordinary linear homogeneous differential equation can be reduced to a certain
convenient canonical form. This canonical form, introduced in section § 3, is a re-
finement of the forms previously obtained by M. Hukuhara [7] and G. D. Birkhoff [13].

With the refined canonical form as a starting point, the analysis then proceeds
in steps paralleling those used by W. J. Trjitzinsky [2]; however the computations
in the present paper are carried out in matrix form to abbreviate at least to some
extent the unavoidable algebraic complications. Formal Laplace integral representations
of the solutions are introduced. The rate of growth of analytic solutions of a related
system of integral equations is established and the Laplace integral representation of
solutions is thereby rigorously justified. Finally the convergence o the factorial series
representation of solutions is established by using certain theorems of N. E. Nérlund [8].
This means that Borel exponential summability, if properly applied, will sum at least
certain of the formal, i.e. asymptotic, series solutions which are associated with an
irregular singular point.

Once the Laplace integral representation has been substantiated, one can estah-
lish rigorously either a factorial series representation or an asymptotic series repre-
sentation of solutions. It is believed that the factorial series representation is to be
preferred; for once a value of the independent variable is fixed, the accuracy that
can be attained in computing the corresponding value of a solution is definitely
limited when the asymptotic series representation is used, while any desired degree

of accuracy can be attained by using the convergent factorial series solution.
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To be more precise we shall be concerned with solutions valid in the neighbor-
hood of the origin 7=0 of the system of » linear differential equations of the form
. d x n oo

1 —= kT =1,...,n),
(1) T dr ng kzoa’ukf X (¢ » n)

where the integer ¢ >0 and the complex constants a;;, are known. By hypothesis the

series
o%

z QAijx Tk (1:,7.21,._.., n)
k=0
all converge for |7|< 7,

The matrix differential equation which corresponds to system (1) takes the form

(2) 77 Q =AX
dt
where the matrix

3) A= A7
k=0

and the element in the éth row and jth column of matrix A4, is ai;;. Both matrices
A and X are square and of order .

A solution X (r) of equation (2) is said to be independent if the determinant
| X ()| is not zero in some domain 0<|z{<7,<7, If X(r) is an independent solu-
tion of equation (2), the elements in any one column of X (1) form a set of solutions
for system (1) and all the columns together provide a fundamental set of solutions
for (1) corresponding to the singular point v=0.

A precise statement of our conclusions is found in Theorems I, II, and III. To
introduce the necessary symbolism for the statement of these theorems, let us proceed
to the detailed analysis and begin by computing formal independent series solutions

of equation (2) running in either full or fractional powers of t.

§ 2. Formal Series Solutions

Once a matrix differential equation of type (2) is given, formal series solutions
can always be obtained by carrying out the »coinputa,tional procedure which will now
be outlined. Nine special cases are.considered in turn and the series solutions computed
in each case. It will then become clear how the formal solutions in the general case
can be obtained.
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Case I: g=0

If g=0, equation (2) takes the special form

axX
4) d—t=(Ao+A1‘r+"')X.

In this event a formal independent series solution of the type
0

(®) X(v)= 2 Hi 7",
k=0

can be found by substituting series (5) into equation (4). When this has been done

and the coefficients of like powers of 7 equated, it is found that

Hy=A,Hy,=4,; Hy=(4,H,+A4,H,)/2;
and in general that

Hk-_—(Aon_l"l‘AlHk_g'l" +Ak_1Ho)/k, (’C=l, 2, ...),

where H,=1, the identity matrix. Thus all the coefficients in series (5) can be
computed in succession. The solution (5) obtained in this fashion is a formally in-

dependent solution, for the lead term in the series is the identity matrix 1.

Case II: The scalar -case, g>0, n=1

If the matrices X and 4 in (2) are of order n=1, both X and A4 are scalars.

In this event set

(6) X =exp {A,_l log T_A:2_An_3 ) A }

e — 70
2¢ (g-17°1

and this substitution will reduce equation (2) to the form
r”%=(A,t’+A,+l‘z‘“+-~)Y.

If g=1, only the log term is to be used in (6). Divide the reduced equation by z°
and it then takes on a form treated in case I. Therefore in case II a formal in-
dependent series solution can also be found.

If neither n=1 nor ¢=0, make the normalizing transformation

(7) X=PY
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where P is a constant non-singular matrix. This substitution will then change (2)

into the equation
i gy (5 5y
dr B ®T

k=0
where B=P !4 P and in particular
B,=P'4,P.
It is presumed that P has been so chosen that B, takes on the classical Jordan

canonical form; or better yet, without loss of generality, assume at the outset that

the lead coefficient Ay in (3) is in this canonical form; i.e. assume that

12, o - o
(8) T :
: 0
0 0 M,
where
6 0 0 - 0
B o O Y
M=o B e N G=1,...,m)
: L0
0 - 0 B o

and f; is either zero or one.

Case III: m=1 and =0

If in the canonical form (8) there is but a single M, say M,, and no 1’s appear
on the subdiagonal, 4, has the special form

Aog=0,1
where I is the identity matrix. In this event make the following exponential trans-
formation
9) X=Yexp{-g/(g-17""} ifg>1
or
(10) X=Yexp{ologz} if g=1

Such a substitution reduces (2) to the form

Tﬂ‘fl_y=(A1'r+A2t2+~-) Y.
T
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Divide out a 7 and again obtain an equation of type (2) with the g lowered a unit.
Repeat this process using once again a normalizing transformation of type (7) to
throw the new lead coefficient A, into canonical form and then, if possible, use an
exponential transformation of type (9) or (10) to lower g. Once g is reduced to zero
the procedure given in case I is applicable and formal independent series solutions
can be computed as indicated. This process fails only if two or more distinet roots
appear in some one of the successive Jordan canonical forms or, if 1’s appear on the
first subdiagonal at some stage in the process. The situation when two or more

distinct roots appear will be treated first.

Case IV: Distinct characteristic roots

Let A4, once again have the canonical form (8) and assume that, if g> 1, there
are at least two distinct characteristic roots and assume that, if g=1, there are at
leagt two distinct characteristic roots not differing by an integer. If this be true, a

sequence of zero-inducing transformations
(11) X=(I+1"Q) Y

is utilized to separate the distinct roots. More precisely use substitution (11) to reduce
equation (2) to the form

d
(12) L Tf=(A0+ o +Ak711k71+0kfk+0k+11,’k+1+ "') Y
where
Cszk+AoQk_QkAo if g>1
and
(13) Ck:Ak+AoQk—QkAo—"ka if g=1'

Note that transformation (11) does not affect the first & matrices 4y, 4,,..., 4x-1.

In obtaining (12) the formal expansion

A+ Q) ' =I—7" Qe+ Qi — -
has been used.

The constant matrices Cy, A4,, and Q, can now be subdivided into smaller blocks
in just the same way that matrix 4, is subdivided in (8). After this subdivision is
made, denote the block in the rth row of blocks and the sth column of blocks
respectively by C,s, A4,,, @, and also let the elements in the ith row and jth column
of these blocks be respectively c¢;;, @i, ¢y with ¢=1,...,% and j=1, ...,
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If g>1, a judicious choice of the q;; can and will be made so that all the elements
ci; tn Crs are zero (i=1,...,u; j=1,...,v) provided p.+p;. If g=1, this statement is
still correct provided that in addition to

Qr#@s; k#@r’“@s-

A yproof of this statement when ¢g>1 is to be found in reference [4], pp. 86-88.
However the details when g=1 require attention. Assuming then that g=1, note first

that the main diagonal matrix M, in (8) can be written in the form
Mr=QrIr+Er (r=1,...,m)

where I, is an identity matrix of the same order as M, and E, is a square matrix
made up of zero elements except for the B, running down the first subdiagonal.

Likewise
Mi=p, I, +E; (s=1,...,m).

Then from (13) it is clear that
Ors = Ars-+ (Qr Ir + Er) Qrs - Qrs (Qs Is +Es) —k Qrs

and therefore, if every element ¢; in C,; is to be zero, we must have

(14) @i+ (0r—0s) Qi+ Brqir,s— Bs @1 — kg =0

for ¢+=1,...,u; j=1,...,v where ¢o;=0 for all j and ¢;,,,=0 for all ;. When the
simultaneous system of equations (14) is solved for the ¢; it is found that, if
(os —9- +k)+0,

G1v = alv/(@s —or+ k)
and

Qit1,v= (ai+1,v +13r q:,v)/(gs —Qr + k), t=1,...,u—-1)

Thus the elements ¢; in the last column of @,; can be calculated by working from
the top down. Likewise working from right to left the ¢;;’s in successive columns
can be evaluated beginning with the top element and working down the successive
columns.

Thus, the statement that, when g=1 and p, + g;, a judicious choice of @,, will make
C,s zero, is correct provided k=g, —p;. It is presumed then that whenever k=p, — g
the appropriate values of @, are chosen to throw all zeros into the C,; matrices.
To complete the evaluation of the @, if g, =p, arbitrarily set Q,,=0; also, if g=1,
or+0s, and k=g, — g, set @,;=0.

3 —643809. Acta Mathematica. 93. Imprimé lo 9 maj 1955.
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By choosing the @, in this fashion many zeros are thrown into the C, matrix
in (12). This is done first using transformation (11) with k=1, then k=2,3, ... and
so on to infinity.

Thus if A, is in the Jordan camonical form, a mon-singular formal zero-inducing
transformation

(15) X=[I+1Q)I+72Q)(I+7°Q;)...1Y
has been found which reduces equation (2) to a mew equation

,dY

1 - =

(16) T dr GY

where

(17) G=|6; G| G,5=1,...0<m).

Here and in subsequent formulas 8;; is the well-known Kronecker delta. The elements
G; in matrix G are themselves submatrices. Each @ represents an expansion

G5=G10+G(1_T+Gi21'2+“‘ (i=1,--->0)’

where each lead matrix Gy is itself in a Jordan canonical form of type (8).

If g>1, the same root g; appears in each of the diagonal blocks in Gio and further-
more the ;s corresponding to the various Gio in (17) will all be distinct. On the other
hand, if g=1, different 9’s may appear in the same Gio provided these ¢’s all differ by
integers. Indeed, if g=1, all the characteristic roots differing one from the other by in-
tegers appear in the same Gio and any two distinct characteristic roots which do not
differ in value by an integer appear in different Gig’s.

More details will be given presently relating to the structure of the Gi’s when g=1.

In any case equation (16) splits into o separate equations

(18) Y ey, =1,..0
dt

where
Y=||6,-j Y;” (’l:,?'=1,...,0');

and again §;; is the Kronecker delta. Since by hypothesis there are at least two G/’s,
the order of each matrix G, is less than n the order of 4. Usually the infinite pro-
duct in (15) diverges.

Case IV covers specifically the following two subcases:

(a) If g>1 and all the characteristic roots are distinct, equation (2) at this

stage splits into n separate equations all of order one and each of the type
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considered in case II. Therefore in this special situation a formal independent
series solution of equation (2) can be found.

(b) If g=1 and all the characteristic roots are distinct and no two of them
differ by an integer, equation (2) splits into n separate equations each of
order one and each of the type considered in case II. Therefore in this

special situation formal independent series solutions can also be found.

Case V: A single characteristic root and g=1

If the procedure outlined up to this point has failed to produce the formal inde-
pendent solutions, return to the equations given in (18). Once again the entire procedure
described in cases I-IV is applied to each of these equations individually. Either the
formal independent series solutions corresponding to each of these equations is even-
tually obtained by applying the prescribed procedure or the procedure is blocked
temporarily by one of the following three contingencies:

(1°) A single multiple characteristic root appears in a canonical lead matrix:
g=1; and 1’s are present.

(2°) Two or more distinct characteristic roots differing by integers appear in a
canonical lead matrix and g=1.

(3°) A single multiple characteristic root appears in the canonical lead matrix;

1’s are present; and ¢g>1.

These three contingencies will be treated in turn.
As case V take contingency 1° and thus consider an equation of the form
aX

—T:—"(A0+AIT+"')X

(19) T d

where
A0=9I+E; ‘E=”6”Ei”’ (’l:,j=1,...,m),

and again E; is a square matrix made up of s running down the secondary diago-
nal with all other elements zeros. By hypothesis at least one of these f’s is a 1.

A formal solution of the form
(20) X(t)=(Hy+Hyv+ - +H,t"+ ) exp {(oI + E) log 1}

where Hy=1 can now be found. To obtain it, note that®

1 Details relating to matrix manipulations are given in S, LEFSCHETZ's text [9].
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X -]
d Sk+1)He "+ He1t" (oI + E)] exp {(o I + E) log 7}

21 £
(21) i 2

and then substitute expansions (20) and (21) into (19) and equate coefficients of like

powers of 7. When this is done it turns out that

(22) H +HE=EH,+4,

(23) 2H,+H,E=EH,+ A, H + A4,
ka+HkE=EHk+A1Hk_1;A2H,,_2+~-+Ak,1H1+Ak

where k=1,2,.... Thus the elements in H, are uniquely determined by solving
equation (22).

In carrying out this computation the element in the upper right-hand corner of
H, is computed first. The other elements running down the last column of H, are then
evaluated in turn. The next to the last column of H, can then be evaluated working
from the top down and so on across the matrix working with the successive column
from right to left. Once H, is known equation (23) is solved for the elements in H,
and so on; thus H,, H,, H,,... are all determined in succession. In this way a formal
series solution (20) for equation (19) can be computed. Note that since Hy=1I a

formal independent series solution has again been found.

Case VI: Characteristic roots differing by integers; g=1

Begin with an equation (19) with 4, not only in the Jordan canonical form,
but also with all its characteristic roots differing by integers. Then when the suc-
cessive zero-inducing transformations (11) are applied to (19) zeros are thrown into
the C,; matrices' for all the various values of k except k=g, —gs;. Despite this ex-
ception, (11) is applied first for k=1, then k=2, and so on to infinity; i.e. the formal
transformation (15) is again used and this time because of the exceptional values of

k, (14) is formally reduced to a system of the form

(24) T‘%L(Dlﬂpz LK) Y
where

D1="6”(Qi1{+J§)”, (i,j=l,...,m),
and

Ji=16;Erisll,  (k=1,...,m and i,j=1,..., 6),

where each diagonal square matrix Ey;; is made up of zeros except for the fii;’s

which run down the first ‘sub-diagonal and equal zero or one.
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Also since the gs differ by integers we can arrange them without loss of
generality in such a way that
Qi:Qm+km—i9 (1‘:1, --'am—l)y
where the integers k,,_; are ordered so that

O<lky<ky< - <lkm-1.

The matrix D, is likewise in diagonal form with

D,=

6“‘ ( z Dik Tk)
k=0

I, (i,9=1,...,m),

where the D;, are constant matrices.

The elements in matrix K in (24) as in D, and D, are themselves blocks, i.e.
submatrices. The number of rows of blocks and the number of columns of blocks in
K is m, just as in Dy and D, The main diagonal blocks in K are filled with zeros
and all blocks below the main diagonal are likewise filled with zeros. The block above
the diagonal in the rth row and sth column (s>7) is a constant matrix K,; multiplied
by the scalar t*m-r *m-9,

A root-equalizing transformation
Y=||6;7%L]|Z  (i,j=1,...,m),

where the I’s are identity matrices, is applied to equation (24). When this is done
(24) takes the new form

dz
(25) v —=(Dy+1Dy) 7
where the constant matrix
Jl) Klz’ K137 Kl"‘
0, J,, K, :
D,= s
Jm—fla Km—l.m
0 0, I

The important feature in equation (25) is that the roots of the characteristic equation
|D;—pI|=0 are all zero. Thus one more normalizing transformation Z=PW will
reduce equation (25) to a new equation in W of precisely the type considered under
case V with p=0. Therefore in case VI there will also be a formal independent series

solution.
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The procedure outlined in cases I-VI will always yield the desired formal in-
dependent series solutions if at the outset g=1. We are now ready to examine the

situation when 1’s appear on the subdiagonal and g>1.

Case VII: Single characteristic root, ones on the subdiagonal, g>1, n=>1

The details relating to this case are almost precisely those given in the author’s
1952 paper, pp. 89-97 and need not be repeated in full here. Only the main features
will be pointed out. Remembering that g>1, reconsider an equation of type (2)
where A, is in the Jordan classical canonical form (8). In this particular case it is
assumed however that all the characteristic roots are equal; ie. that g;=p, for
t=1,...,m. In this event an exponential substitution (9) will reduce all the char-
acteristic rvots to zero; so without loss of generality assume that in (2) the A, has
the special form

Ay=||6i5 Ei], (t,7=1,....,m),

where every element in E, is either zero or every element is zero except for 1’s
running down the first subdiagonal. Each matrix E,, ..., E, is made up of zeros
except for the 1’s which run down the first subdiagonal. By hypothesis at least one
E matrix is present with 1’s on its subdiagonal. There is no loss of generality in
assuming, as we do, that the E;-matrices with 1’s in them are arranged in order of
size, the largest, if there is one, at the bottom.

Again a zero-inducing transformation of type (15) is used to throw as large a
number of zeros as possible into the matrix coefficients of the successive powers of 7.

For example, if g>1, and

0O 0|1 0jJ]0 0 0 O
4y=

0 0j0 0|0 O O O

0 0(O0 Of1 0 O O

0 0[O0 0O]J]O 1 0 O

0 0{0 0|0 O 1 O

the corresponding zero-inducing transformation (15) reduces equation (2) to the form
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ayY ad \
(26) za—=(zc”k)yz||c,.j||y
dv k=0
where (,=4, and
x 0 z|(0 0 0 =z
0 0 0 O
x 210 2,0 0 x
z z|0 2z{0 0 0 =«
(27) C* = , (=1,2,..))
xr x|z |0 0 0 =z
x zl|lxz 210 0 0 =z
x x2flx [0 0 0 =z
x z|lx |0 0 0 =x

In (27) the z indicates an element which may not have been reduced to zero.
Let the order of equation (26) be n. In the illustration (27) the n=8 and m=3.

Equation (26) is now ready for the shearing transformation
(28) Y=|é; " "2 (,=1,...,n),

which converts (26) into the new equation

(29) Tyigzpzzudij“z:( S Dor*) 2
dt k=0

where the element
1

dij = Cij T'u(i"j) - (n -‘Z) 22 61']‘ 7

The ¢;; in this equation is again the Kronecker delta.
The main purpose of the shearing transformation (28) is to induce above the
main diagonal, when possible, non-zero elements into the lead matrix Dy in (29). To
select the appropriate positive value for u for this purpose, note first that any c¢;

in (26) which is not identically zero can be represented as a series

€j=1" § Ciye T
k=0
where ¢;,=0 and each positive integer h;; is af least one, except for those special
elements on the first subdiagonal whose expansion begins with a 1. For these
special elements the k;=0. By hypothesis at least one such special element is present.
At the outset, i.e. when u=0, the hj; for the special elements are lower in value
than those pertaining to any other element which is not identically zero; but after
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transformation (28) has been made the respective expansions of the elements off tke
main diagonal begin with the powers 7"/"#% excluding from consideration elements
which are identically zero. In particular the expansions for the special elements begin
with the power u. For sufficiently small positive u, this power u of 7 will be less
than A;;+u(i—j), the power of 7 for an off-diagonal ordinary element; but as u
increases a stage will be reached when for the first time u= (¢ —j)u+hi; for some i
and §, >4, for one or more elements if there exists at least one such A;;. Note this
critical value o of u.

A special case arises if all elements ¢;; above the main diagonal are identically
zero and all the k;>g—1. In this case set u=g—1 and equation (26) is reduced
at once to an equation of type (2) with g=1 with its corresponding independent
formal solutions.

If this special case does not occur and pg is 1 or greater. set g =1 in (28) and
as a consequence in (29) the expansion of each element d;; begins with at least the
first power of r, if not a higher power. Therefore remove the common factor, say 7;
and this in effect lowers the ¢ by at least one unit in (29). We are then ready to
repeat the entire process as described up to this point. If, in fact, at each repetition
one fails to get the desired formal independent solutions by the methods described
in cases I-VI and each time reaches a stage as described where uy,>1, g is lowered
again and again, and in a finite number of stages an equation with ¢=0 or 1 must
be reached. One final application of the procedure thus far described therefore yields
the formal independent solutions desired. If at any stage u,<1, a more complicated

situation arises.

Case VIII: 0<po<1; g>1

If py<1, pe is a fraction uy=gq/p where ¢ and p are positive integers, ¢ <p,
and ¢ is prime to p. In this event set u=pu, in (28) and again our equation takes
the form (29). Fractional powers of v have appeared of necessity for the first time.

These fractional powers are removed by introducing a new independent variable
(30) t=1!?

into equation (29). Before doing this note that, if u=g/p in (29), the matrix D
when expanded in ascending powers of 77 will begin with the power 7%?. Therefore
divide out of (29) a factor ¢’ at the same time that transformation (30) is made and
(29) becomes



ORDINARY LINEAR HOMOGENEOQOUS DIFFERENTIAL EQUATIONS 41

(31) t"d—Z=FZ=”fi,-||Z=(ZF,Ct")Z
dt k-0
where
h=pgq—p+1—q, h>1,
and

fi=pest?¢ 0 —g 8 (n—i)tr P

Equation (31) is precisely of type (2), but this time the power g has in general
increased, say to h. The lead coefficient F, has zeros and ones on its first subdiagonal
and all elements below this subdiagonal are zero. Also all elements on the main
diagonal F, are zero and at least one non-zero element appears above the main
diagonal.

Despite the fact that we are now dealing with a number A, usually larger than
g, the entire procedure described up to this point is reapplied. If on normalizing F,
in (31) two or more distinct characteristic roots are found, the system s split by a zero-
inducing transformation into two or more distinct systems of type (2), each of lower
order than (31). The procedure is again applied to each of these new systems. Either
the desired formal solutions are found or new equations of type (31) of still lower
order are reached with usually another increase in h. If the characteristic equations
of the new, Fy’s always yield at least two distinet roots, finally we shall reach systems
of order 1 with possibly very large A’s. These are handled as in case II and the desired
independent formal series are thus procured.

The only thing which could possibly block this process would be to reach an
equation of type (31) where all the characteristic roots of F, are alike. This brings

us to the last possible case.

Case IX: Roots of Fy all alike

If the roots of F, are all alike, it is proved in reference [4], pp. 93-97 that, if
the process outlined in cases I-VIIT is repeatedly carried out, the process must ne-
cessarily terminate after a finite number of stages and yield the desired formal series
solutions of equation (2).

Thus in all cases the desired independent formal series solutions can be found. The
precise nature of these formal solutions can best be described by first introducing a

canonical form for a given differential equation, as described in the next section.



42 H. L. TURRITTIN

§ 3. A Canonical Form

In order eventually to proceed rigorously and not just formally it is convenient

to have

Theorem 1. Corresponding to a given differential equation of the form

(32) w2 XS ex
dt k=0

where the A,’s are constant square matrices, there exists « transformation
w

(33) X=P(1) Yz(szr“’) Y
k=0

which reduces egquation (32) to the canonical form

pdt léij(gi(t)li%-.],-t"“)v:h

dt

Mg

(34)

Bij,, tlH Y

v=h

where i,7=1,...,m. In (33) the P,’s are appropriate constant square matrices; p and
w are suitable positive integers; and the determinant |P(t)| is not zero in some region
0<|t|<ty<7s In (34) the independent variable t=1'"; h is a mon-negative integer;
0i; ts the Kronecker delta; the B;;’s are constant matrices; and the I’s are identity
matrices. If h=0, the matrices J; are all identically zero; if h>0, the J,’s are square
matrices with zeros, or 1’s, or a mixture of zeros and 1’s on the first subdiagonal while
all other elements in J; are zero. If h=0 the polynomials g;(t) are all identically zero;

and, if >0, the polynomials
(35) oi(ty=0i0+@irt+ - +poinat"

where the coefficients are constants and no two of these polynomials are identical. In
particular, if 1+74, and
oir=p0;x for k=0,1,...,h—2,

then the difference gin.y—0jn 1 18 not only not zero, bul it also is not an integer. If

o0
the infinite series > Ay 1° converges for all |t| <7, then the infinite series
£50
= - -
(36) th“,t" G,j=1,...,m)
v

also converge for sufficiently small |t|, say |t]|<¢,.
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Proof: We intend to show first of all that there exists a formal substitution

(37) X=P(7Y,

where

(38) P(zr)= 3 A R
k=0

which will reduce equation (32) to the form

r@Y ,
(39) t a1 =B(t) ¥
where
(40) By=l6:Bi @), ¢ j=1,...,m):
and
(4:1) %1(t)=gi(t) It + Ji th‘1+ E’LS-B” tv.

Moreover it will become evident that transformation (37) is non-singular in the sense
that formally the determinant | (z)| is not identically zero when expanded in powers
of 7'?. The polynomials ;(f) in (41), (¢=1,...,m), will meet the specifications of
Theorem I and, if /=0, g;(t)=0 and J;=0.

These facts will be established by checking back through the details relating to
the nine special cases considered in section § 2. In cases I and II, for example,
equation (32) is in the desired canonical form (34) at the outset.

In case III a sequence of normalizing transformations of type (7) and exponential
transformations of type (9) and (10) reduce (2) to an equation of type (4) where
g=0. If the exponential transformations are all omitted and the successive normalizing
transformations are all used and incorporated into a single transformation, the resulting
transformation is of type (37). Moreover this single transformation is obviously non-
singular and reduces equation (2) to the desired form (39).

Next consider case IV-a where a sequence of normalizing and exponential trans-
formations combined with one zero-indueing transformation (15) reduces equation (2)
essentially to » distinct equations each of the first order. Observe that, if the ex-
ponential transformations are again omitted and all the other transformations used
and combined into a single transformation, this transformation will be of type (37)
and will reduce (2) to the desired form (39) with m=mn. Since it is assumed that at
some stage in the process, while g still exceeds one, n distinct characteristic roots

appear, the p;(¢)’s in (35) are sure to be distinet polynomials.
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In case IV-b the situation is the same as in case IV-a except that the character-
istic. roots become all distinct only at the stage when g=1 and then they are not
only distinct, but do not even differ one from the other by integers.

Note also in case IV that the determinant of the single combined transformation
which reduces (2) to (39) is the product of a certain finite number of constant non-

zero determinants multiplied by the determinant of a formal matrix

(L+7Q)(I+7* Q,) (I++ @) ...]-

The product of all these determinants is obviously of the form d,+d,7+dyt®+ -
where the lead coefficient d,+ 0 and hence the combined transformation is non-singular.

If the details given in cases I-IV fail to produce the desired formal series solu-
tion, one is driven to consider the solution of a set of equations of type (18). Up
to this stage a sequence of normalizing and exponential transformations combined
with one zero-inducing transformation has split equation (2) of order n into a,‘(0> 1),
separate equations, each of lower order than n. If the exponential transformations
are omitted and the other substitutions are all used and incorporated into a single

transformation

(42) X=%(v 2,

this transformation is of type (37) where p=1 and the determinant |, (7)| again is
not identically zero, for the expansion of this determinant in powers of v will begin
with a non-zero constant., Furthermore substitution (42) reduces equation (2) to a new
equation equivalent to o, (¢>1), separate systems of the form
(43) r"%—f—i=LiZi, (i=1,...,0),
where

Z=\|6;Z|, G,i=1,...,0);

i.e. despite the omission of the exponential terms splitting occurs. The matrix L; in
(43) has the same order as the corresponding matrix G; in (18), and each of these
orders is less than n.

If at this stage there exists a set of transformations
Zi=mi(t) Yi; (izl’--"o)’

where each M;(7) has the same structure as the L (z) in (38), which will reduce (43)
to a set of equations
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© %41'(’) Y, (=1,...,0),

where each §;(r) has the same structure as the B(f) in (40) with t=1, then the

non-singular transformation

X=B, o K@Y, G i=1,...,0),

has the structure of (37) with p=1 and it will reduce equation (2) to the desired
form (39). This means that, if Theorem I can be shown to be applicable to each of
the equations in (43), then Theorem I is likewise applicable to the original system (2).
Therefore attention is focused on the individual equations in (43).

If we then attempt to show that Theorem I is applicable to some particular
equation in (43), either we succeed by a repeated reapplication of the reasoning that
has just been applied in cases I-1V or we fail because one of the three contingencies
1°, 2°, or 3° mentioned in case V temporarily block the way.

If contingency 1° occurs this brings us back to case V, where it may be assumed,
without loss of generality, that the chosen equation in (43) is such that after an
exponential transformation, followed by a normalizing transformation, equation (43)
is reduced to form (19). But equation (19) is in the desired form (39) just as it
stands. If in making this reduction, the exponential transformation is omitted, and
the normalizing transformation alone is used, it is evident that we have found a
transformation of the appropriate form (37) which reduces (43) to the desired form
(39) and again Theorem I is applicable. We have spoken for brevity as though each
equation in (43) is treated directly, while actually one or more of these equations
may split under appropriate transformations of type (37) into equations of still lower
order. If this is the case we would actually deal with these lower ordered equations
instead of (43).

If contingency 2° occurs this brings us back to case VI, where it may be as-
sumed, without loss of generality, that the chosen equation in (43) is such that it
can be reduced to form (19) by the following sequences of five transformations: an
exponential, a normalizing, a zero-inducing, a root-equalizing transformation, and finally
another normalizing transformation. But (19) is of the desired form (39); hence, if
again the exponential transformation is omitted and the other four successive trans-
formations are combined into a single transformation, this transformation is of the
appropriate type (37) and reduces equation (43) again to the desired form (39) and
Theorem I is once again- applicable.
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If contingency 3° occurs, this brings us back to cases VII-IX, where it may be
assumed without loss of generality that a finite sequence of exponential, normalizing,
zero-inducing, shearing, and possibly a root-equalizing, transformations reduces equa-
tion (43) to either form (4) of case I or form (19) of case V, both forms being of
the desired type (39). Once again, if all the exponential transformations are omitted
and all the other transformations are combined into a single transformation, this
transformation is of the appropriate type (38) and reduces (43) to the desired form (39).

Thus the desired substitution (37) exists in all cases. Moreover formally the
determinant of this transformation can be expanded in a series running in powers of

1/p

77, namely

-]
[B@)|=" 3 a7
=0

where the lead constant ay#0 and the 7 18 a non-negative infeger.

Once substitution (37) has been found one has merely to use the first (w-+1}
terms in expansion (38) for matrix P (1) in Theorem I, see (33), provided w is suffi-
ciently large, say w>pg+2¢g+1. Theorem I has therefore been demonstrated.

It is evident from this proof that if the w were increased, more of the off-diagonal
blocks in (34) could be made identically zero, but there seems to be no point in
such a refinement, unless some large finite value of w by chance annuls enough off-
diagonal blocks that the system can be split into two or more distinct systems of
lower order. In general such a rigorous reduction of order does not occur.

If in the canonical form (34) all the lead coefficients g, ((=1,...,m), in the
polynomials are equal, an exponential transformation would remove the g, from the
canonical form and a division by ¢ would lower the h in (34) a unit. It will therefore
be assumed without loss of gemerality that if m>1 in (34) then ot least two of the pio's
have different values. Likewise, if m=1, it is assumed that an exponential transformation
has removed o, (v) I, +J,t*™ from (34) and a division by t" has reduced h to zero.

To proceed several new symbols are needed. If i+, let

oilt) — g () =rg,.4 this AL TR A R I NTL A
where 75 ;+0 and in particular, if Bi;=h—1, the corresponding 74 ;; is not an
integer. If i+, define the I';; matrices by the equations

(44) Tﬂi’.{;[‘g‘f‘Bg“’,:O lf ﬂ”Sh—2
and by
(45) (rg =D+ Ty =Ty Jj+ Bya=0 if fy=h~1;
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observing that when these equations are solved for the elements in the I'j;’s, these
elements are uniquely determined. Set I';;=0.

With this new notation in mind we can state

Theorem II. A differential equation in canonical form (34) possesses a formal
independent series solution of the form

(46) YO =U@®)||dsexp {f;(®) L+ T log t}||, (,j=1,...,m),
where
(Y e _@ihr=2 Qih-3 Qio ]
fl (t) Ql. h-1 log ¢ - 2t2 (h_ l)th—l’
and
(47) U=U(t)=||8i; (L + Uss) + (1 = 8i;) "85 (T; + Uyy) ||,

(¢,9=1,...,m). The U;; in (47) represent formal series
pd .
(48) Uy=Us®)= 3 Uts  (hj=1,.com)

where the U, are appropriale constant matrices.

Proof: The fact that such formal independent series solutions exist is fairly
evident from the procedure outlined in section § 2. However an independent proof
is given in section § 5 where essentially a method is given for computing the suc-
cessive Uj;, in (48) as k increases. The series in (48) usually diverge; nevertheless
it is to be expected that the formal solution exhibited in (46) is in fact an asymp-
totic series representation of a true solution of (34) if ¢is restricted to an appropriate
sector in the complex f-plane which has the origin =0 as a boundary point (see
for example Trjitzinsky [10]). The validity of this asymptotic representation will not
be proved here in full generality, for the chief objective of this paper is to sum as
many of the divergent series (48) as possible.

If =0 in (34), the origin is a regular point and, if =1, the origin is a regular
singular point. In either of these two cases it is well known (see G. Ehlers [11] or
H. Kneser [12]) that when the series (36) converge for |t|<t,, the series in (48) also
converge for the same values of ¢ and (46) is a true convergent independent matrix
solution of (34). Thus there is no need to sum series (48) in these cases; hence from

this point forward it is assumed that A>2 and m=2 in (34).
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§ 4. A Related Non-homogeneous System of Differential Equations

It is evident from Theorem II that, if one is eventually to find solutions of the
canonical system (34) in a rigorous fashion of the type indicated in (46) and (47}, it
will be necessary to obtain and solve the system of differential equations satisfied
by the unknown functions U;;=U;;(t), (¢=1,...,m). In order to do this substitute
(46) into (34); utilize (47); cancel a few terms by virtue of the relations (44) and
(45); and then after dividing through by the appropriate power of ¢ it will be found
that the functions Uj;(f) satisfy the following non-homogeneous system (49-51) of

differential equations:

(49) tAdT“:Jf Ujs~ U di+ 2 2 047 By, (Tay + Uiy) +
biv . .
+ 2 By, + 2 U By, Uy
v=h v="h
also
aU,;
(50) thPis -%=(ﬁ”“h) t" 1P (T + Uiy) +

+ (g0 F g en a5 b oo oy 8P UG+

-+ thil?ﬁ"i (J, [F,‘,‘"r i}]" [Fi} + Uii] J;) =+

o0
P By, Chs+ U+ > ¢ " By, +

+
M3
M8

k=1 y=h v=h+1l
ki
oo
—h h-1-8;;
+ 2By, Upy (gt o g 80P T
v="h

if 17 and 0<8;;<h—2; and

(51) t—mﬂ:(rh_l‘ii“l) Uij’{"Ji Uij_Uiij +
m oo
+ 3 2P By (Des + Un) +
k=1 v=nh
k+j
+ 3 "B+ S¢"B;, Uy
v=h+1 v=h

if fi;=h—1; where 1,7=1,..., m.
Since the notation is becoming cumbersome, it is desirable to make a few simpli-
fications in the symbolism, particularly in (49-51), and yet preserve the essential

features. Note first of all that system (49-51) is actually not a single system, but m
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distinct systems, one system corresponding to each choice of j, (j=1,...,m). Atten-
tion can therefore be focused on one of these particular, yet representative, systems
and the second subscript j omitted. Remembering then that U;=Uy; Bi=pis;
g =181+ 0; and Th-1,i=7h-1,ij; System (49-51) can be rewritten in the more con-

venient form

dU. m oo o0
(52) tﬁ=JjU]‘—U1J1+Bj1tUi+ z ZBi,,tvUi'l' ZO,,t”;
i=1 y=2 p=1
(53) g WU HEC. S'ep
i di —rﬁiUi-f— Zl Bg,,t U;"f‘ zij,.t U7+

o0 o0
+ S B, P U+ > O, 8,

1 v=08 v=1

M=

k

L]

where 7+7 and $;<h—2; and

dU; ,
(54) t—ﬁ=(rh,1,,~~l) Ui—f-Ji Uf—[/iJj+Bjo Uj’i'
m oo oo
+ > 2 B, U+ 2 O,
k=1 »=1 v=1

where 1'=!=y" and f;=h—1. In these three equations and in subsequent equations the
B’s and (’s with one or more subscripts are known constant matrices. There is no
need here to give the precise interrelationship between these matrix coefficients and
those in (49-51). The one essential fact to bear in mind is that here, and throughout

the remainder of the paper, all the B and C series running in powers of t, such as
o0 oo

> Bi,t' and > C,t comverge for |t|<t,. However no two such series are necessarily
y=2 v=1

the same series in (52-54) or in any of the succeeding formulas.

System (52-54) is the desired related non-homogeneous system of differential equations.

§ 5. The Decomposed System of Differential Equations

Theorem IT states essentially that system (49-51) is formally satisfied by the
series (48). Dropping the second subscript §, this means that system (52-54) possesses

a formal series solution of the form

(55) U= Slu,,t” (i=1,...,m),

4 — 543809. Acta Mathematica. 93. Imprimé le 9 mai 1955.
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where. U;=U;; and W;,=U,,,. The successive values of the 1l;, as » increases can be
readily computed by substituting the series (55) into (52-54) and equating coefficients
of like powers of t. For example when the coefficients of ¢ are equated, one obtains

from (52) the equation

(56) Wio=J;Uso— Ujo J;+ Co;

from (53) the equation

(57) r5; Lo+ Bjo W+ Co=0, (14, fi<h—2),

and from (54) the equation

(58) Wo=(rn-n,i— 1) Wig+ J; Wyo— Wio J; + Bio Us0 +Cy,  (EF7, fi=h~—1).

The numerical value of each element in 1l;o is readily computed from (56) and
then using (57) and (58) the elements in the ll;o, ¢4 j, are computed; each element
in these matrices being uniquely determined. In a similar fashion the coefficients of
£* are equated and the elements in U, (i=1,..., m), evaluated; then the coefficients
of £ are equated and the 1, are evaluated, and so on. Thus all the matrices 1;,
in (55) are determined in succession as » increases and Theorem II is demonstrated.
From this point forward therefore the matrices 1;, and U;;, are to be treated as
known quantities. More details about the values of the elements in 11, are given in
section § 6.

An estimate as to the rate of growth of the elements in the matrices u,, is
needed as v — co. To obtain such an estimate it is expedient to first split the re-
lated non-homogeneous system of differential equations into a new decomposed non-
homogeneous system of equations consisting in general of a larger number of differ-
ential equations of simpler, but equivalent, structure. It is the object of this section
to obtain such a decomposed system. However difficulties appear later on when
estimating rates of growth of solutions of certain related integral equations. To avoid

these future difficulties the following assumption is made:

(59) Restrictive Hypothesis: In the canonical form (34) either h=2, or, if h>2,
then for the chosen value of § wunder consideration all the corresponding f;= ;=0
(i=1,...,m), in system (52-54).

This hypothesis dominates the remainder of this paper and because of it certain
simplifications occur which would not be valid in the general case. Note that if 2> 2,
and m>3, there may not always be a value of j on the range 1 to m which will

satisfy hypothesis (59).
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With this restrictive hypothesis in mind let us return to the problem of
splitting the related non-homogeneous system of differential equations and begin by
breaking up the functions

U ()= iolu,-ﬂt" (t=1,...,m)
"

into the sum of

r=h—1
distinet new functions
T ik = Ti k (t)
by writing
(60) Ui(t)= kEI {8 Wi+ ¢ Tin}

where the l;, are known constant matrices and formally
(61) T,k(t)= leli,n,urktnr, (k:].,...,f).
=

To obtain the differential system satisfied by the new functions T’ (?), begin by
substituting the expression for U; given in (60) into (52). Since the 11;x have been chosen
so as to satisfy equations (56-57), as well as all similar equations which arise when
coefficients of higher powers of ¢t are equated, it is evident the coefficients of

¢ %, ..., and " all cancel out and (52) is reduced to the form

dek

(62) s {k t Typ + 154!
k=1 dt

}=J,- 2 Tye— 2t TinJi+
k=1 k=1

r
+Bj1kzltk‘+l T]k‘i‘

2]
Bt T+ > C, 0.

2 v=r+1

IR\ R}
i [\18

r
2 2
i=1 k=1 v

The next step is to split (62) into r separate equations by retaining in any
particular one of these equations only those terms which involve powers of f that
are equal modulo 7, treating all the Ty,’s as though they were constant matrices

arT : .
and all the products t—d%’s as though they too were constant matrices. When this

is done (62) is decomposed into r separate equations, namely

aT; i
(63) @+t ——dt’“’+ Wt Ty = Jit° Tjpy — t° Th J; + 2 Cp 2+
n=1

] ér

M3

g

S
+ Bt Ty e D
-1 k41

Bijot® ™" Ty +
s

B3
I

[

m r
+2 2 2 Bugt'" Ty

i=1 k=w-14+6r =144
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where w=1,...,r. The new symbol

6—-{1 if =1 and
o ifw>0

in (63) and in subsequent formulas.

In these sums, as well as in succeeding sums in subsequent formulas, it may be
found that the upper limit for the range of summation is less than that for the
lower limit in a particular sum; in all such cases the particular sum concerned is to
be omitted in the formula under consideration. For example, if in the first triple

sum in (63) the w=2, the entire sum
m o-2+487 oo
2. 2 2 Bugt®t" Ty

=1 k=1 n=9o

is to be omitted from formula (63).
Divide each side of equation (63) by t® and change the independent variable to

(64) s=t"

throwing the irregular singular point at the origin of the complex t-plane out to
infinity in the complex s-plane. When these steps have been taken (63) takes the form

aT;,
ds

(65) (DTI(,,‘TS =JjTim—Tij]+ ZC,,S_"+
n=1

m wo-2+8r oo

+ B3 87 Ty orhsr+ 2 2 2 Buygs "Tu+
i=1

k=1 n=4

m r

+ 2 2 > Bixns " Ty
i=1 k—w 1478 n=-146

where w=1,...,r. In (65) and subsequent formulas it is to be emphasized that all
the B and C series running in powers of 1/s converge for |s| sufficiently large, say
|s|>s,- Equation (65) is the first of the three equations which make up the desired
decomposed system.

To get the 2nd equation in the decomposed system, keep the restrictive hypo-
thesis (59) in mind and split equation (53) into r separate equations similar to (65).
To do this the first step is to substitute the right-hand member of (60) into (53)

" all cancel out. Then the

in place of each U;. Again the coefficients of ¢, £%,...,1¢
resulting equation is split into r separate equations by retaining in any particular

one of these equations only those terms which involve powers of ¢ that are equal
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aT,
modulo r, treating all the 7',’s as though they were constants and all the tT—k’s

as though they also were constants. Then divide ¢ out of each equation resulting

from the split and again change the independent variable to s =t~ with the result that

dTim
ds

(66) 6()8——1 Tiw~r :rﬂiTiw+ ZBj,w—k T;k+
k=1

7 w-1 T

+ > B, I P SBiowxTin+ D B oir ks ' Tix+
P P kK=o

M3

>

1 pu=1v»

+

M s

o0
Bk,“,zS'_ka'u+ 2 0,,8“ !
=1

1 ¥

l

where w=1,...,7; i%4; and §;=0.
Under the restrictive hypothesis (59), equations of type (54) are present only if
h=2, and in this event r=1; w equals only 1; t=s"1: and, in terms of the new

3

independent variable s, equation (54) becomes

aT;
(67) Tii—s —d;l=(7'h-1,i—1)Ti1+JiTi1“Ti1 Ji+ Bjo Tjy +
-+ Z Z Bk,,s”"Tkl+ Z O‘,)S‘v
k=1 »=1 y=1

where t=75 and f;=1.
Equations {65), (66), and (67) make up the decomposed system of differential

equations. These equations are in a suitable form for estimating the growth of the

coefficients 7,;, in the formal expansions

(68) Tix= 2 Tirys™"”
n=1

where
Tirg=Wiprin =1,...,m; k=1,...,r; y=1,2,...);

see equation (61).

§ 6. Rate of Growth of the Coefficients T);, as 13—

Substitute the series (68) into (65-67) and equate coefficients of successively

higher powers of 1/s. When this has been done, it is found from (65) that for all
sufficiently large =,
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(69) (rn+w) Tiwn=Jj Timn*Tf wnJi+0n+BilTi,w—l+r6.n—d+
m o-2+ré n-9
+ z z z Bl'k,n~vTikv+
=1 k=1 v=1

n-1-46

+ Z > > BiknyTixy

i=1 k=w—-1476 v»=1
where w=1,...,r.

Similarly from (66) for all sufficiently large =,

(70) 78 Tion=0Tigona+7r(a—=D)Tinn1— 2 Biw -« Tjxn—
ka1
T w-1
— 2 By wir-kTikn-1— 2 Biw-1Tikn—
k=w k=1

T

- Z Bi.w +r—k Tik.n-l -

k=w

m T n-1

- z Z szy,n—ka,uv+0n

k=1 pu=1 »=1

where w=1,...,7; i+4: and ;=0.

Likewise from (67) for all sufficiently large n

(71) m+2=ry 1) Tixn=Ji Tirn—TirnJi+ Bjo Tiant+
m n-1
+ Z Z Bk,ﬂ—qulq+On
k=1 n=1

where fi=h—1, r=1, and all w=1.

If all the 7;,, and T;,, are known for k=1,...,n—1 and = is sufficiently
large, it is clear from system (69-71) that one can first calculate T}, ,; next calculate
all the 7y,; after that T;,,, then all the 73,, and so on in succession up to and
including T, .

To estimate the rate of growth of the elements of the 7),, matrices as n—~oo
we shall introduce a system of equations similar to (67-71) which determines the suc-
cessive values of certain dominating matrices W;,, as n—co. The new system is so
selected that the rate of growth of the elements in the W;,,-matrices is relatively
easy to estimate and vet the W,,, grow fast enough so that every element in every
matrix W;,, will be positive and at least as large or larger than the absolute value

of the corresponding element in matrix T, ..
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Since all the B and € series in (65-67) have the typical power series forms

> B,s" and > C,s”" with possibly more subscripts attached to the B’s and (s

v=0 yea()
and since these series all simultaneously converge for |s|>s, it follows that there

exist two sufficiently large positive constants 6 and { such that any coefficient B,
or O, is dominated by ('O where @ is respectively either a matrix with the same
number of rows and columns as B, or a vector with the same number of elements,
i.e. components, as vector C, and each element in ® is the constant §. By “domin-
ated” we mean that every element in all the various B,’s and C,’s is less in absolute
value than the corresponding element 6" in 7. If a particular matrix, say B,
carries several subscripts the corresponding dominating ®-matrix, say ©;, will carry
one less subscript.

With this notation in mind the desired dominant system can now be written.

Equation (69) is to be compared with

(72) (ret+o)Wion=diWiuon+ Wiun;+"O+10; Wip 14r8n-5+
m w-2+rd n-6

+ 2 2 2O Wi+
i=1 k=1 wv=1

m= n-1-6

+ Z z é-?lﬂl' G)ik Wikv

i=1 k=w~1+rd w»=1
where w=1,...,7r.

Similarly (70) is to be compared with
(73) |"‘,3i| Winn=0Wipna+tr(n—1)Wipna1+ 20 Wi+
k=1

r w-1
+ DO Wikt 2 TFO Wiknt
ko k=1

r n-1

+k§ Cw+r_k ®i Wik,n—1+ Z Z Z Cniv(')k,uWk,uv’{"

E=1 p=1 y=1

+{"0O

where W= 1, e Ty i#i; and ﬂizo‘
Likewise (71) is to be compared with

(74) +2—rh g, ) Wira=Ji Wita+ Wirn Jj+ O, Wiin +

n—

m 1
+ > T Wi, +L" 0
k=1 1

n=

where gi=h—1; ¢=j; r=1, and all w=1.
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The dominate system (72-74) determines the rate of growth of the matrices
Wiwn as m—>oco, but to estimate this rate of growth it is helpful to replace system
(72-74) by an equivalent homogeneous recurrent system. To get the first of these
recurrent relations, replace » by (n+1) in (72) and from the new resulting equation

subtract { times (72) without stepping up the » a unit. The result of such a sub-
traction is that

(75) mr+r+o)Wipna=nr+o)Wipn+d; (Winniai—LWiwa)+

F(Wiwna=CW;un) i +860; (W) yrorsnii-6— 5 Wi woters,n_s)+

m w-2-r8

=2 2 POuWiknas
i1 k=1
m T

T2 2 S0 Wikas

where w=1,...,r.

Similarly, if »n is replaced by (n+1) in (73) and from the new resulting equation
Z times (73) is subtracted, the result is that

(76) r,?;‘ IVi o, n 1:: r,’}[l I’Viwn_.‘— ((’)_).)(Wiwn—-CWI w,n~1)+
=D Wion=SrnWip o1+ 25 0 (Wik a1 —EWikn) +
K=1
r w1
S 2T RO Wikn— W n)F 2 5 O (Wiknir = Wikn) +
k=w k=1
- E :m.r’k@i(IVikn*:Wik,nul)“" Z Z Cgku Wk/tﬂ

k= k=1 p=1

where w=1,...,r; i=%7; and §,=0.

In a like fashion (74) is replaced by

(77) +3 =71y Witnaa=(m+2—rp_1) Wirn+
T i (Wit noa = EWirtn)+ (Wit near =S Wirn) Iy +

O (Wit Winn)+ 2 50k Wi
k=1
where ,=1; i=4: r=1; and all w=1,
The recurrence relations (75-77) are a system of simultaneous homogeneous
linear difference equations satisfied by the W;,,. The presence of the factor (n-+1)
in the third term of the right member of equation (76) suggests the substitution
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Wiwn=n—-1)1W,,, if i=j and §,=0;
W?'wﬂ.:(n_2)!%iwn; and
lW,—wnz(n—3)!%3iwn if i+j and fi=1.

After this substitution has been made in (75-77), divide the first two equations
by n! and the third by (n—1)! and it will be found that the

%iwn, (i=1,-.-,m; a)=1,...,n),

satisfy a system of linear homogeneous difference equations similar in structure to
(75-77) with the special feature that, although in general the coefficients vary with
n, nevertheless as n—oo all the coefficients uniformly approach constant values. More
specifically the system of difference equations for the W, , is equivalent to a certain

matrix difference equation of the form
(78) W(n+1)=A4n)Wn)

where A (n) uniformly approaches a constant matrix A (c0) as n->oo. For large =,

difference equation (78) is approximated by the matrix equation
(79) B, (n+1) =4 (o) B, (n)

with constant coefficients. Any solution of such a difference equation as (79) cannot
grow, as is well known, with more than exponential rapidity as m—>co. The same
restriction on the rate of growth of solutions applies with equal force to system (78)
and to the system for the ¥, ,,. This means there exist two positive constants ¢
and ¢ such that every element in matrix %;,, is less in absolute value than ce’”
for i=1,...,m; w=1,...,7; and »=1,2,.... This in turn implies that the absolute

values of all the elements in T;,, are less than

(n—1)'ce?™ fori=1,...,m; w=1,...r; and n=1,2,....

§ 7. A Related System of Integral Equations

A simultaneous system of related integral equations will be introduced in this
section. The system will be so constructed that, if its formal Laplace transform is
taken, one obtains the decomposed system of differential equations (65-67). For ‘this
purpose let the new functions V() (i=1,...,m; w=1,...,7) formally satisfy the
equation
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(80) Tio®)=Tiuls™) = [ Vig()dt.
0

Then the particular integral equation which has a formal Laplace transform equal
to (65) must necessarily be of the form

(81) rtVi,(t)=A;,(t) + E:C,t”/v!
y=1

where the integral
[2
Ao®= [T Vu®=V0@®I—0Vu()+
¢

+ B (t— 1) Viw-1:6r (T)/(07) ! =
w~-2+§r o0

Bik,,l(t_'[)rl Vlk('[)/"}"lf
é

i=1 k=1 n=

1.
Mz

Z § Bikr)(t""f)nVik(T)/ﬂ!]dT

i=1 k=m-1:16 n=1+6

and w=1,...,r.

Similarly the integral equation corresponding to (66) is

(82) (rt—rﬁi) Vi(o(t):Aiw(t)+ E:Cvtv‘l/(v_l)!+
v=1
w-1

Z Bi.wdk .Vik (t)

k=1

+ 2 Bjo-r Vi) +
k=1

where the integral
t

Aim(t) ZJ\ [k‘g B]',w+r—k Vik (T)—w I/iw(r)_l‘-

0

-+

2 Bioir-iVie(t)+
k=

= w

+ g é E:Bkﬂr(t#r)wl Vk/t(T)/("’—l)!] dr

k=1 p=1 »=1

and w=1,...,r; and §;=0.

Likewise the integral equation corresponding to (67) is

(83) tVi ()= As(t) + E C,t/v!
v=1

where the integral
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t

Ai()= [[(rn-1,= 2 Vir (@) + T Vir (v) = Vir (©) Jy+ By Vi (v) +
]

M8

s 3

k=1 v

By, (t—7) Vir (7)/%1]d v

I

1

and ¢=+j and f§;=1.

Equations (81-83) make up the desired system of relafed integral equations.

Since the absolute values of the elements in the B matrices and € vectors are
bounded as described in section § 6 all the infinite series appearing in this system
of related integral equations represent entire functions convergent for all values of ¢
and 7 because of the presence of the factorials in the denominators.

This system of integral equations may then be considered in its own right,
regardless of the particular way it has been derived. Formally this system is satisfied
by the series

(84) Vio(t)= ; Ti ont"™/(n—1)!

see (61), (64), and (80). But the absolute value of each of the elements in the matrix
Tiwyn is less than (n—1)!ce’™, and therefore the series in (84) comverge if |t|<e™*
for i=1,...,m and w=1,...,r and thus define in a rigorous fashion functions V;,(t)
which are solutions of the system of related integral equations.

It is clear that by successive substitutions the system (81-83) can be rewritten

in the more convenient form

(85) Vo) =S u)+ S C0)/!
r=1
(86) (b 15)° Vi (t) = 3 con(() S O/
ye vel

where i#+4 and £;=0; and
o0

(87) tVia ) =Ju®)+ 2 C,t/v!
v=1

where ¢=+j and f;=1. Here each of the J;,(t), (¢=1,...,m), and J;.,’s are integrals
of the form

t
JO=1 3 3 3 Bey Vig() [¢=7)/v!]d7
J ¥

where each series
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vi::oBknv(t—r)’/v!
is convergent and dominated by the series
(88) 205' Ouy|t—[/p! = Oy, 1.
Likewise each series ’2) C,t'/v! is convergent and dominated by the series
(89) §0C’®|t|'/v!=®e“”.

Admittedly the positive constants { and 0 used here may be larger than the ¢ and
0 used in section § 6.

§ 8. Rate of Growth of the ¥V, (t) as t—~

In order to estimate the rate of growth of the elements of the matrix V;,(f)
as t—oco begin by marking the points ¢=rg/r for i=1,...,m in the complex ¢-plane
and then draw the rays which radiate from the origin =0 and pass through these
marked points. Cover each of the distinct rays by a sector of very small angular
opening. Between any two of these successive covering sectors there will be a rela-
tively larger sector, say &. Each of these S.sectors is to be considered closed in
the sense that points falling on the two rays which form the edges of © are to be
counted as part of &.

Let the variable ¢ be restricted temporarily to some particular one of these sec-
tors, say to &; and let it be understood that the path of integration for each of
the integrals in (85-87) runs out radially from the origin to the point ¢ in &. The
various V;,(f) can then be analytically continued indefinitely out along the rays in
© as is evident from the structure of the integral equations. Let the norm ||V, . ()]l
of the matrix V;,(¢) be the largest of the absolute values of the various elements

in the matrix for the given value of t.

Lemma 1. The matrices Vi, (t) satisfying the integral equations (85-87) and defined
in the neighborhood of the origin by the series (84) satisfy the inequalities

HVi.Oll<ce®’, (=1,...m; 0=1,...,7),

along every ray in each €-sector if the positive constanis ¢ and p are chosen sufficiently
large.
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To show the existence of two such constants ¢ and p, select a positive constant

to<e 7 and then there will obviously exist a constant ¢ such that
NVie@®l<c and |Vio@Ol<ce?'t, @=1,...,m; w=1,...,7),

for all |[¢|<¢, and all ¢=0.
Suppose that the lemma is falset Then there will exist a positive constant
t, =1t (p) >, such that

(90) NVi.till<ce?!,  (@G=1,....,m; o=1,...,7),
for all |t|<¢, along every ray in &, while for some point ¢ =t,¢'® in &
Il Viw(t,)ll=ceptli (ltllztl):

for at least one choice of values for 1 and w, say i=14', w=w’. Let the integration
be along the ray running from the origin out to and through ¢'.

If by chance ¢ is equal to a value of 7 such that ¢#j and $;=0, then from
(86), (90), and (89)

(91) tlrt —rg | Ve o OV =tr|rt — 1| ce” <610+

t,

+ ti, Z Z ‘\AI ZBVkﬂl‘(t_T)”/lu!||CepIrldl‘[l
= =1 u=0
0

where 2 is the maximum number of elements to be found in the columns of the
various matrices V;,(t) under consideration.
But the

iy
(92) > 2 1"2Bu;cw(t—r)”/y!"ce”"'d]rl<mrlace”t°
u=0

k%I n=1 e
where ¢ is the maximum value of all the norms
| Zokan#(t_f)”//‘!"
P

in the region |t—7|<¢f, for v=1,...,0"; k=1,...,m; n=1,...,r. Hence dividing

(91) by t,|rt'—rg|* ce?™ and utilizing (88) and inequalities similar to (92)
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B mrigert
1< S 2

v—0 tllu’lr—'rﬂi/tllwl I

-ty

t
A0 J‘le(t.—lrl)(:—mdl.[l
w’ m h
+ 2873 2 +

v=0 k=1 n=1 ti’)' | r— Tﬂg/tl Iw’

felt!C-»

ety r—rg/t'|” '

Taking p>{ and observing that

t, ti—ty
J‘e(t.—lrlﬂz—p)dlrl - J’ &P Jp < j’cez(c—p)dx: 1/(p—¢),
t 0 0

it follows that

(93) 1< % t‘l’“mrlae”""t"+ % i 1A0mr N

»=0 tllu IT'—‘Tﬁi/t; lw v=0 tlln |r_rﬁi/t; |w (p_ C)
BeI‘xI(C—P)

' ety r—rg/t |“".

Noting that all the |r—rg/t'| for ¢,>¢, are uniformly bounded away from zero in a

©-sector, it is clear from (93) that if p is chosen large enough the inequality is an
absurdity for the right member will be less than 1.

Similarly, if either "=, or if simultaneously i'+j, f;=1, and A=2, then an
absurdity can again be reached by a chain of inequalities quite like those just given.
Thus in every case it is evident Lemma 1 must be correct in order to avoid these
absurdities.

The analysis at this stage is paralleling Trjitzinsky’s work [2] so closely that
the details from this point forward can be omitted and the results of the analysis
merely stated.

The formal Laplace operator indicated in (80) can now be put on a rigorous
basis. Select some ray in sector © where the arg t=® and then in evaluating all

Laplace integrals, such as

T(s)= [e*t V(t)dt
0

integrate from t=0 to t=oco along this ®-ray. Limit the complex variable s=|s]{e!®
to the half-plane H(®) defined by the inequality
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R(®s)=|s| cos (®+a)>p

where p’=p+e, €>0 and arbitrary. With this agreement the integrals

o3

e Viu(t)dt
all converge absolutely in H(®) and there define analytic functions

(94) Ty o="Tio(s")= [V, (t) dt.
0
Moreover in H(®)

dTim_

—st . -
fe tV:nl{t)dt is
[]

fe"” S[ee/yidet= 3 0,/8
v=1 v=1
0

and for all of our B series

0 t

fefst 2B, E—1)Vin(v)/vldvdt= > B, T;,/s"!
=0 v=0
0 0

L] 14

where both the integration J. and f are taken along the ®-ray.
0 0

In short the analytic function Ty, of s, defined by the Laplace integrals (94) satisfy
the decomposed related non-homogeneous system (65-67). Moreover a few obvious trans-
formations make it evident Norlund’s theory applies and it follows that the analytic
functions which are solutions of (65-67). can be represented in the half-plane H(®)
by the convergent factorial series
s Ki 0y (D, y)

. —ry - ; i
T,w(é‘ ) ,,2:08(84"}’6—.1@) (s+2,ye—l¢)___(s+’l}'ye_l(1))

(¢=1,...,m; w=1,...,7), where the positive constant y is sufficiently large and the
constant matrices K;,,, as indicated, depend upon the choice of @ and y. Any con-
stant p>1 is suitable provided it is large enough so that, when the interior W' of

the circle [§—1]|=1 is mapped into the complex ¢-plane by the transformation

t=[e'® log £/,
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the map of W is contained completely within a region which is the union of the
sector © under consideration and the circle lt| <e . The function T: (s77) also

possesses an asymptotic expansion

oo
Ti m(s_llr) ~ Z ui,qr+ (zz)/s,7
n=1
in the sector

—g—(l)+s§ arg ssg—d)—e,

where £>0 and arbitrary, for all sufficiently large |s|, see Theorem 1 in Doetsch’s
text [14], p. 231.
Transforming these results back to the t¢-plane by the transformation f=s'/"

we summarize our conclusions in

Theorem II. Let a differential equation of canonical form (34) be given where Y

i8 a vector and consider the j-lh column of blocks
t"~Pii (T + Uy (2))

th*ﬂj—l,.i (T 1, + U 1,;(8)
(95) Y,(0)=| L+ Uy exp {f;(t) I+ J; log ¢}
th=Biv1,i (Tjer,;+ Usin,5(8)

" Pmi (D j+ Unj (8))

tn the formal series solution (46). If either h=2 with no restriction on the nature of
the characteristic roots, or if h>2 and the characteristic root g;o differs from all the
other characteristic roots g;o, t=74, then the U;;(t), (i=1, ..., m) in (95) can be considered

as known analytic functions which can be represented in the form

(96) Ut}(t)z Z {tk Uijk+tkziik(t)}y (i=l,...,m),
k=1
where all the
(ij(t)z § Kijro (D, »)

ot T Ay e ) (T 2y e ) L (T Hyy e ®)

are convergent factorial series provided

(i) angle ®+arg (pi0—pj0) for i=1,...,5—1, §+1,...,m;

(ii) positive constant y is sufficiently large; and

(iit) the point t is located inside any of the r loop-shaped regions which map into
the half-plane H(®) under the transformation s=1"".
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Furthermore each column of matriz Y;(t) is an independent analytic vector solution
of equation (34) when Y is treated as a vector. The unalytic functions U;;(t) can also

be represented asymptotically by the formal series
Uit)~ 2 Uit
k-1

provided the |t| is sufficiently small and t is located in ome of the sectors
2O—n+2e+4nk)/2r<arg t<(2Q®+nx—2e+4nk)/2r

where >0 and s arbitrary and k=0, 1,...,r—1. The U;;, in (96) and the

K., (©,y) are appropriate known constant matrices.

§ 9. Summary and Critique

When this paper was first undertaken it was hoped that all the formal series
solutions of a vector equation of type (34) could be summed in every case. This
objective has not been attained. We have succeeded completely only when A=2 or
when m=2. If A>2 and m=3 the method presented in this paper will be applicable
and provide av least one analytic vector solution expressed in terms of convergent
factorial series, even though a full independent set of such convergent vector solutions
may not have been obtained.

The simplest case which can not be fully treated is a certain equation of the
third order, but not the equation
(97) %4-3%+%§’:0, a+0, b+0,
given by Trjitzinsky [2] to show that his work was of the greatest possible com-
pleteness. Curiously enough what this example does show is that Trjitzinsky has
not really pointed out the full power of his method, for the substitution x=s* wiil
transform (97) into the equation

dsy_§d2_y+( S)dy 8by

4y da+2)2Y 22U
ds® s ds “te ds s

which has three distinct characteristic roots and either Trjitzinsky’s analysis [2] or
that of the present paper will give a full independent set of solutions expressed in
terms of convergent generalized factorial series. It is believed that the analysis pres-

ented here brings out more completely the scope and power of Trjitzinsky’s method.
5 — 543809. Acta Mathematica. 93. Imprimé le 10 mai 1955.
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To summarize the progress made:

(1) A step-by-step procedure for computing formal solutions is given.
(2) The canonical form has been refined.

(3) No distinction need be made between normal and anormal solutions.

(4) At least one formal solution, although not a fundamental set, has been

summed if A>2 and m=3.

(6) If in the canonical form of an equation k=2 or m=2, a fundamental set

of convergent solutions has been obtained regardless of whether or not the formal

solutions are normal or anormal or whether or not there is in the sense of Trjitzinsky,

one or more logarithmic groups associated with each characteristic root.

[1].

[21.
(3]-
[4].
[5].

(6]

[7].
[81.
[9].
[10].
(11].
[12].

[13].

[14)].

University of Minnesota

References

J. Horx, Integration linearer Differentialgleichungen durch Laplacesche Integrale und
Fakultdtenreihen, Jahresbericht der Deutschen Math. Vereinigung, 24 (1915), 309-329;
and also, Laplacesche Integrale, Binomialkoefficientenreihen und Gammaquotienten-
reihen in der Theorie der linearen Differentialgleichungen, Math. Zeitschrift, 21 (1924),
85-95.

W. J. Trirrzinsky, Laplace integrals and factorial series in the theory of linear differ-
ential and linear difference equations, Trans. Amer. Math. Soc., 37 (1935), 80-146.

R. L. Evans, Asymptotic and convergent factorial series in the solution of linear
ordinary differential equations, Proc. Amer. Math. Soc. 5 (1954), 89-92,

E. FaBry, Sur les intégrales des équations différentielles linéaires & coefficients rationnels,
Thése, 1885, Paris.

H. L. TurrIiTTIN, Asymptotic expansions of solutions of systems of ordinary linear
differential equations containing a parameter, Contributions to the theory of non-
linear oscillation, Annals of Math. Studies No. 29, Princeton Univ. Press, 81-116.

M. HukuHARA, Sur les propriétés asymptotiques des solutions d’un systéme d’équations
différentielles linéaires contenant un parametre, Mem. Fac. Eng., Kyushu Imp. Univ.,
Fukuoka, 8 (1937), 249-280.

M. HuxkuHARA, Sur les points singuliers des équations différentielles linéaires II, Jour.
of the Fac. of Sci., Hokkaido Imp. Univ., Ser. 1., 5 (1937), 123-166.

N. E. NOorLuND, Legons sur les séries d’interpolation, Gauthiers-Villars, Paris, 1926, chap. vi.

S. LEFscHETZ, Lectures on Differential Equations, Princeton Univ. Press, 1948,

W. J. TrirrziNsky, Analytic theory of linear differential equations, Adcta Math. 62 (1934),
167-227.

G. EnLgrs, Uber schwach singulire Stellen linearer Differentialgleichungssysteme, Archiv
der Math., 3 (1952), 266-275.

H. K~ESER, Die Reihenentwicklungen bei schwachsinguléren Stellen linearer Differential-
gleichungen, Archiv der Math. 2 (1949/50), 413-419.

G. D. BIrkHOFF, Singular points of ordinary linear differential equations, Trans. Amer.
Math. Soc., 10 (1909) 436-470, and Equivalent singular points of ordinary linear
differential equations, Math. Annalen, 74 (1913), 252-257.

G. DoetrscH, Theorie und Anwendung der Laplace-Transformation, Dover 1943, p. 231.



