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w 1. I n t r o d u c t i o n  

In this paper it will be shown that certain of the divergent asymptotic series 

which represent solutions of ordinary linear homogeneous differential equations in the 

neighborhood of an irregular singular point can be summed and replaced by con- 

vergent generalized factorial series. These results extend the earlier work of Horn [1] 2, 

W. J. Trjitzinsky [2], and R. L. Evans [3]. 

Irt Evans' paper [3], the existence of integral (8) on page 91 is questionable 

because the function ~F~(~ e) may increase more rapidly than any exponential func- 

1 The  a u t h o r  p repa red  a po r t i on  of th i s  pape r  while work ing  p a r t - t i m e  on a jo in t  pro jec t  of t he  

University of Minnesota a n d  t he  Minneapo l i s -Honeywel l  Regu l a to r  Co. u n d e r  U S A F  c o n t r a c t  No. 

A F  33(038)22893 admi n i s t e r ed  u n d e r  the  d i rec t ion  of the  F l igh t  R e s e a r c h  Lab .  U S A F  of W r i g h t  Field.  
2 All references  are  l i s ted a t  t h e  e n d  of th i s  paper. 
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tion e clot as ~-->~.  The appearance of functions of such rapid growth has blocked 

the t rea tment  of the most general case in the past and indeed has blocked the 

present author in his a t t empt  to sum all the divergent asymptot ic  series solutions. 

However, considerable progress has been made, as the reader may  see by glancing 

at the summary  at the end of this paper. 

The analysis begins in section w 2 with a detailed step-by-step procedure for 

calculating formal series solutions of a system of linear homogeneous differential 

equations. These solutions are analogous to those obtained by  E. Fabry  [4] for a single 

equation of the nth  order. The steps in the calculations parallel closely a procedure 

used by the author in his 1952 paper [2] relating to expansions of solutions of a 

differential equation in powers of a parameter.  The author wishes to take this oc- 

casion to direct the reader 's  attention to M. Hukuhara ' s  [6] solution of the same 

problem in 1937 by another method. 

When the procedure for computing the formal solution has been given in full 

detail, it becomes evident tha t  in t h e  neighborhood of an irregular singular point any 

given ordinary linear homogeneous differential equation can be reduced to a certain 

convenient canonical form. This canonical form, introduced in section w 3, is a re- 

finement of the forms previously obtained by M. Hukuhara  [7] and G. D. Birkhoff [13]. 

With the refined canonical form as a starting point, the analysis then proceeds 

in steps paralleling those used by W. J.  Trjitzinsky [2]; however the computations 

in the present paper are carried out in matrix form to abbreviate at least to some 

extent the unavoidable algebraic complications. Formal Laplace integral representations 

of the solutions are introduced. The rate of growth of analytic solutions of a related 

system of integral equations is established and the Laplace integral representation of 

solutions is thereby rigorously justified. Finally the convergence o: the factorial series 

representation of solutions is established by using certain theorems of N. E. N6rlund [S]. 

This means that  Borel exponential summabili ty,  if properly applied, will sum at least 

certain of the formal, i.e. asymptotic,  series solutions which are associated with an 

irregular singular point. 

Once the Laplace integral representation has been substantiated, one can estab- 

lish rigorously either a factorial series representation or an asymptot ic  series repre- 

sentation of solutions. I t  is believed tha t  the factorial series representation is to be 

preferred; for once a value of the independent variable is fixed, the accuracy tha t  

can be attained in computing the corresponding value of a solution is definitely 

limited when the asymptot ic  series representation is used, while any desired degree 

of accuracy can be attained by  using the convergent factorial series solution. 
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To be more precise we shall be concerned with solutions valid in the neighbor- 

hood of the origin 3 = 0  of the system of n linear differential equations of the form 

gdx~_ ~ ~ a~sk 3~, ( i = 1 ,  n), (1) 3 ~ -  xj . . . .  
i=1 k=0 

where the integer g >_ 0 and the complex constants atjk are known. By hypothesis the 

series 

~. atj ~ T ~ (i, j = 1, ~.., n) 
k=0  

all converge for I v[ < %. 

The matr ix  differential equation which corresponds to  system (1) takes the form 

d X  
(2) e' -gT = A X 

where the matr ix  

(3) A = ~ A~ z k 
k~0 

and the element in the i th row and j th column of matr ix  Ak is aij~. Both matrices 

A and X are square and of order n. 

A solution X(3) of equation (2) is said to be independent if the determinant  

IX (3)[ is not  zero in some domain 0 < [31 < 31 < 30- I f  X (3) is an independent solu- 

tion of equation (2), the elements in any  one column of X (3) form a set of solutions 

for system (1) and all the columns together provide a fundamental  set of solutions 

for (1) corresponding to the singular point 3 = 0 .  

A precise s ta tement  of our conclusions is found in Theorems I, I I ,  and I I I .  To 

introduce the necessary symbolism for the s ta tement  of these theorems, let us proceed 

to the detailed analysis and begin by  computing /ormal independent series solutions 

of equation (2) running in either full or fractional powers of ~. 

w 2. Formal Series Solutions 

Once a matr ix  differential equation of type (2) is given, formal series solutions 

can always be obtained by  carrying out the computa t ional  procedure which will now 

be outlined. Nine special eases a r e  considered in turn and the series solutions computed 

in each ease. I t  will then become clear how the formal solutions in the general case 

can be obtained. 
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Case I"  g = O  

If  g = 0 ,  equation (2) takes the special form 

dX=(Ao + AI ~: + ...) X. (4)  d e  

In this event a formal independent series solution of the type 

(5) X (3) = ~ H~ ~, 
k ~ 0  

can be found by substituting series (5) into equation (4). When this has been done 

and the coefficients of like powers of r equated, it is found that  

HI=AoHo=Ao; Hs=(AoHx + AIHo)/2; 
and in general tha t  

Hk=(AoH~_I+AxHk_2+...+Ak_IHo)/lc, ( k = l ,  2 . . . .  ), 

where Ho=l , the identity matrix. Thus all the coefficients in series (5 )can  be 

computed in succession. The solution (5) obtained in this fashion is a formally in- 

dependent solution, for the l e ad  term in the series is the identity matrix I .  

Case H : The scalar "ease, g > O, n = 1 

If  the matrices X and A in (2) are of order n= 1, both X and A are scalars. 

In this event set 

I Ao-~ Ao-s A0 } 
(6) X = e x p  Ao-i log z . . . . .  z 2 ~  ( g _ ~ o - ,  r 

and this substitution will reduce equation (2) to the form 

d Y ~+ ,  
--~T =(Aoz~ + Ao+i +...) r .  

If 9=  1, only the log term is to be used in (6). Divide the reduced equation b y j ~  

and it then takes on a form treated in case I. Therefore in case I I  a formal in- 

dependent ser ies  s o l u t i o n  c a n  a l s o  b e  f o u n d .  

If  neither n = 1 n o r  g = O ,  make the normalizing trans/ormation 

(7) X = P r 
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where P is a constant  non,singular  matrix.  This subst i tut ion will then  change (2) 

into the  equat ion 

: dY = B Bk z k) dT: Y=(,,=~o Y 

where B=P-1AP and in part icular  

Bo = p - 1 A o  p .  

I t  is presumed tha t  P has been so chosen tha t  B 0 takes on the  classical Jo rdan  

canonical fo rm;  or bet ter  yet,  wi thout  ,loss of generali ty,  assume a t  the outset  t ha t  

the lead coefficient A 0 in (3) is in this canonical fo rm;  i.e. assume tha t  

(s) 

where 
Jli  !11 l o = Ms 

�9 "" O 

I1 
@t 0 0 .-- 

3t O~ 0 

M,  ~ 0 fl* 0* i 

i 
0 ..- 0 fl~ 0t 

(i = 1 . . . . .  m) 

and fit is either zero or one. 

s  I I I :  m = 1 a n d  ~1 = r 

I f  in the  canonical form (8) there is bu t  a single M,  say M x, and no l ' s  appear  

on the subdiagonal,  A o has the  special form 

A0 = @1 I 

where I is the ident i ty  matrix.  I n  this event  make  the  following exponential trans- 
lormation 
(9) X =  Y exp {-Ox/ (g ' l ) z  ~-1} if g > l  

o r  

(10) X = Y exp {0x log v} if 9 = 1. 

Such a subst i tut ion reduces (2) to the  form 

l:od Y=(Ax z + A~z2 +...) Y. 
dv 
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Divide out a ~ and again obtain an equation of type (2) with the g lowered a unit. 

Repeat this process using once again a normalizing transformation of type ( 7 ) t o  

throw the new lead coefficient A 1 into canonical form and then, if possible, use an 

exponential transformation of type (9) or (10) to lower g. Once g is reduced to zero 

the procedure given in case I is applicable and formal independent series solutions 

can be computed as indicated. This process fails only if two or more distinct roots 

appear in some one of the successive Jordan canonical forms or, if l 's  appear on the 

first subdiagonal at some stage in the process. The situation when two or more 

distinct roots appear will be treated first. 

C a s e  IV:  Distinct c h a r a c t e r i s t i c  r o o t s  

Let A 0 oncc again have the canonical form (8) and assume that, if g > l ,  there 

are at least two distinct characteristic roots and assume that, if g =  1, there are at 

least two distinct characteristic roots not differing by an integer. If  this be true, a 

sequence of zero-inducing trans/ormations 

(11) X = ( I + ~  kQD Y 

is utilized to separate the distinct roots. More precisely use substitution (11) to reduce 

equation (2) to the form 

vgd Y 
d ~ - = ( A 0 +  .." ~-Ak I rk l~-c~k~-Ck+l~k+l~ "") Y (12) 

where 

C ~ = A k + A o Q k - Q k A  o if g > l  
and 

{ 1 3 )  C k = A k + A o Q k - Q ~ A o - k Q k  if g = l .  

Note that  transformation (11) does not affect the first k matrices A0, A 1 . . . . .  Ak-1. 

In  obtaining (12) the formal expansion 

�9 ( I  + v k Q ~ ) - I  = I - v ~ Qk + v 2k Q~ . . . .  

has been used. 

The constant matrices C~, Ak, and Qk c a n  now be subdivided into smaller blocks 

in just the same way that  matrix A 0 is subdivided in (8). After this subdivision is 

made, denote the block in the rth row of blocks and the sth column of blocks 

respectively by Crs, ATs, Qrs, and also let the elements in the ith row and ~th column 

of these blocks be respectively ct], a~j, qtj with i = 1  . . . . .  u and ~= 1 . . . . .  v. 
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I /  g >  1, a jud ic ious  choice o/ the qtj can and wi l l  be made so that all the elements 

c~s in  Crs are zero (i = 1 . . . . .  u ;  j = 1 . . . . .  v) provided ~T 4= ~s. I /  g = 1, this s tatement  i s  

s t i l l  correct provided that in  addi t ion to 

A proof of this s ta tement  when g >  1 is to be found in reference [4], pp. 86-88. 

However  the details when g =  1 require at tention.  Assuming then tha t  g = 1, note  first 

t h a t  the main diagonal matr ix  MT in (8) can be wri t ten in the form 

MT = QT/~ 4- ET (r = 1 . . . . .  m) 

where Ir  is an ident i ty  matr ix  of the same order as Mr and ET is a square mat r ix  

made up of zero elements except for the fit running down the first subdiagonal.  

Likewise 
M,  = e~ I ,  + E,  (s -- 1 . . . . .  m). 

Then from (13) it is clear t ha t  

and therefore, if every element ct s in CTs is to be zero, we must  have 

(14) a~s + (Qr -- Q~) q~s + fit q i -  l,S - -  f l s  q t d + l  --  k q~j : 0 

for i = l  . . . . .  u ;  ? '=1  . . . . .  v where qoj=O for all j and q i . ,+ l=0  for all i. When  the 

simultaneous system of equations (14) is solved for the q~j it. is found that ,  if 

qlv = al~//(~s - er + k) 
and 

qt+i,v=(a~+i,v~,flTqt, v ) / (~ s - -Qr§  ( i = 1  . . . . .  u - - l ) .  

Thus  the elements q~j in the last column of Qrs can be calculated by  working from 

the top down. Likewise working from r ight  to  left the q~j's in successive columns 

can be evaluated beginning with the top element and working down the successive 

columns. 

Thus, the s ta tement  that ,  when g = 1 and ~T 4= ~8, a judicious choice of Qrs will make 

CT~ zero, is correct provided k # o T - Q s .  I t  is presumed then tha t  whenever  k # Q T - ~  

the appropria te  values of QTs are chosen to throw all zeros into the CTs matrices. 

To complete the evaluat ion of the QT~, if ~r =Q~ arbitrari ly set QT~ = 0;  also, if g =  l ,  

~r ~: ~ ,  and k = ~r - ~s set Qrs = O. 

3 - 543809. A c t a  M a t h e m a t i c a .  93. I m p r i m $  ]e 9 maj  1955. 
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By choosing the Qk in this fashion many  zeros are thrown into the Ck matr ix  

in (12). This is done first using transformation (11) with k = l ,  then k = 2 , 3  . . . .  and 

so on to infinity. 

Thus i/  A o is in the Jordan canonical form, a non-singular formal zero.inducing 

traus/ormation 

(15) X = [(I + v Qt) ( I  + v2 Qa) (I  + ~a Qa).. .]  Y 

has been found which reduces equation (2) to a new equation 

(16) ~0 d Y  =uY 

where 

(17) a=ll ,,u, ll ( i , i = l  . . . .  

Here and in subsequent formulas ~t  is the weU-knoum Kronecker delta. The elements 

G~ in matrix G are themselves submatrices. Each Gi represents an expansion 

Gi=G~o+G~lv+Gi~v2+ ... ( i = l  . . . . .  a), 

where each lead matrix Gio is itsel/ in a Jordan canonical /orm o/ type (8). 

I /  g> 1, the same root ~i appears in each of the diagonal blocks in G~o and further- 

more the ~'s corresponding to the various Gio in (17) w/// all be distinct. On the other 

hand, i/ g = 1, di/[erent ~'s may appear in the same Gto provided these q's all differ by 

integers. Indeed, if g= 1, all the characteristic roots differing one from the other by in- 

tegers appear in the same Gio and any two distinct characteristic roots which do not 

differ in value by an integer appear in different Gio's. 

More details will be given presently relating to the structure of the G~'s when g = 1. 

In  any case equation (16) splits into ~ separate equations 

(18) C - - '  = G~ Yl; (i = 1 . . . . .  a) 
dv 

where 
Y=ll ,, Y, II ( i , i=1 ..... .);  

and again ~i; is the Kronecker delta. Since by  hypothesis there are at  least two G~'s, 

the order of each matrix G~ is less than n the order of A. Usually the infinite pro- 

duct in (15) diverges. 

Case IV covers specifically the following two subcases: 

(a) I f  g >  1 and all the characteristic roots are distinct, equation ( 2 ) a t  this 

stage splits into n separate equations all of order one and each of the type  
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considered in case I I .  Therefore in this special situation a formal independent 

series solution of equation (2) can be found. 

(b) I f  g =  1 and all the characteristic roots are distinct and no two of them 

differ by  an integer, equation (2) splits into n separate equations each of 

order one and each of the type considered in case I I .  Therefore in this 

special situation formal independent series solutions can also be found. 

Case V:  A single characteristic root and g = 1 

I f  the procedure outlined up to this point ha s  failed to produce the formal inde- 

pendent solutions, return to the equations given in (18). Once again the entire procedure 

described in cases I - I V  is applied to each of these equations individually. Either the 

formal independent series solutions corresponding to each of these equations is even- 

tually obtained by  applying the prescribed procedure or the procedure is blocked 

temporari ly by  one of the following three contingencies: 

(1 ~ A single multiple characteristic root appears in a canonical lead matr ix :  

g =  1; and r s  are present. 

(2 ~ Two or more distinct characteristic roots differing by  integers appear in a 

canonical lead matr ix  and g = 1. 

(3 ~ A single multiple characteristic root appears in the canonical lead mat r ix ;  

l ' s  are present;  and g >  1. 

These three contingencies will be t reated in turn. 

As case V take contingency 1 ~ and thus consider an equation of the form 

(19) 

where 

dX 
, ~ = ( A 0 + A l v + - - . ) X  

Ao=OI+E; E =  [lOfj E,[[, ( i , i =  1 . . . . .  m), 

and again Et is a square matr ix  made up of fl~'s running down the secondary diago- 

nal with all other elements zeros. By hypothesis at  least one of these fl~'s is a 1. 

A formal solution of the form 

(20) X ( 3 ) = ( H  o + H  1 . + . . .  + H k v  k + ' ' ' )  exp { ( e I + E )  log 3} 

where Ho=I can now be found. To obtain it, note tha t  1 

1 Details relating to matrix manipulations are given in S, L~FSCHETZ'S text ,E93, 



36 H.L. TURRITTIN 

d X _  ~ [(lc + l) Hk+13~' + Hk 3~-1(~ I + E)] exp ((~ I + E) log 3} 
(21) d3 k-0 

and then substitute expansions (20) and (21) into (19) and equate coefficients of like 

powers of 3. When this is done it turns out tha t  

(22) H 1 + H 1E = E H 1 + A 1 

(23) 2 H ~ + H  e E = E H  e §  1H I + A  s 

]c Hk + Hk E =  E Hk + AI H~,_I + AzHk_2 + "'" + Ak_1H1 § Ak 

where k =  1, 2 . . . . .  Thus the elements in H 1 are uniquely determined by  solving 

equation (22). 

In  carrying out this computation the element in the upper right-hand corner of 

H I is computed first. The other elements running down the last column of H~ are then 

evaluated in turn. The next  to the last column of H 1 can then be evaluated working 

from the top down and so on across the matr ix  working with the successive column 

from right to left. Once H I is known equation (23) is solved for the elements in H 2 

and so on; thus HI,  He, H a . . . .  are all determined in succession. In  this way a formal 

series solution (20) for equation (19) can be computed. Note tha t  since H o = I  a 

formal independent series solution has again been found. 

Case V I :  Characterist ic  roots  differing by integers  ; g = 1 

Begin with an equation (19) with A 0 not only in the Jordan canonical form, 

but  also with all its characteristic roots differing by  integers. Then when the suc- 

cessive zero-inducing transformations (11) are applied to (19) zeros are thrown into 

the Crs m~tr ices  for all the various values of k except k = ~ r -  ~ .  Despite this ex- 

ception, (11) is applied first for k =  1, then k = 2 ,  and so on to infinity; i.e. the formal 

transformation (15) i s  again used and this t ime because of the exceptional values of 

k, (14) is formally reduced to a system of the form 

d Y  
(24) v ~ -  = (D 1 + 3 D~ + K) Y 

where 
Dx = II 0,j (~, I ,  + J,)II, (i, ~ = 1 . . . . .  m), 

and 
J ~ = l l a , , E ~ , , l l ,  ( k = l  . . . . .  m and i , i = l  ...... ak), 

where each diagonal square matr ix  Ek~j is made up oI zeros except for the flktj's 

which run down t h e  first sub-diagonal and equal zero or one. 
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Also since the ~ ' s  differ by  integers we can a r r a n g e  them without  loss of 

generali ty in such a way  tha t  

~ = Qm + km_~ ,  ( i  = 1 . . . . .  m - 1 ) ,  

where the integers km-i are ordered so tha t  

O < k l  < k ~ <  "-" <k~-1 .  

The matr ix  D~ is likewise in diagonal form with 

D~= ~j(i~=oD~kT~) l , ( i , j = l  . . . . .  m), 

where the Di~ are constant  matrices. 

The elements in matr ix  K in (24) as in D 1 and D~ are themselves blocks, i.e. 

submatrices. The number  of rows of blocks and the number  of columns of blocks in 

K is m, just as in D 1 and D 2. The main diagonal blocks in K are filled with zeros 

and all blocks below the main diagonal are likewise filled with zeros. The block above 

the diagonal in the r th  row and sth column (s > r) is a constant  matr ix  Krs multiplied 

by  the scalar ~(~m-~ km-~). 

A root-equalizing trans/ormation 

where the I~'s are ident i ty  matrices, is applied to equat ion (24). When  this is done 

(24) takes the new form 

d Z  
~ d ~  = (D~ + ~ D 2 ) Z  

.D 3 

J1, K12, Kla, "'" Klm 

0, J2, K~a, 

Ja 

J,,  l, Km-l,m 

0 ... O, Jm 

The impor tan t  feature in equat ion (25) is tha t  the roots of the characteristic equat ion 

1D~ - ~ I ] = 0 are all zero. Thus one more normalizing t ransformat ion Z = P W wilt 

reduce equat ion (25) to a new equat ion in W of precisely the type  considered under  

case V with Q = 0. Therefore in case VI  there will also be a formal independent  series 

solution. 
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The procedure outlined in cases I - V I  will always yield the desired formal in- 

dependent series solutions if at the outset g = 1. We are now ready to examine the 

situation when l ' s  appear on the subdiagonal and g > 1. 

Case VII:  Single characteristic root,  ones on  the subdiagonal ,  g > 1, tt > 1 

The details relating to this case are almost precisely those given in the author's 

1952 paper, pp. 89-97 and need not be repeated in full here. Only the main features 

will be pointed out. Remembering that  g >  1, reconsider an equation of type (2) 

where A 0 is in the Jordan classical canonical form (8). In  this particular case it is 

assumed however that  an the characteristic roots are equal; i.e. that  Oi=Ox for 

i =  1 . . . . .  m. In  this event an exponential substitution (9) will reduce all the char- 

acteristic roots to zero; so without loss of generality assume that  in (2) the A 0 has 

the special form 

Ao=II(~.E, II, ( i , i= l ,  ...,m~, 

where every element in E 1 is either zero or every element is zero except for l ' s  

running down the first subdiagonal. Each matrix E~ . . . . .  Em is made up of zeros 

except for the l ' s  which run down the first subdiagonal. By hypothesis at least one 

E matrix is present with l ' s  on its subdiagonal. There is no loss of generality in 

assuming, as we do, that  the El-matrices with l 's  in them are arranged in order of 

size, the  largest, if there is one, at the bottom. 

Again a zero-inducing transformation of type (15) is used to throw as large a 

number of zeros as possible into the matrix coefficients of the successive powers of T. 

For example, if g >  1, and 

Ao= 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

1 0 

0 0 

0 0 

0 0 

0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

1 0 0 0 

0 1 0 0 

0 0 1 0 

the corresponding zero-inducing transformation (15) reduces equation (2) to the form 
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(26) 

where C o = A  o and 

(27) C ~ = 

or \ 

T  )Y=llc,;llr 

x 0 x 

x 0 x 

x x ! 0  x 

X X 0 X 

X X X X 

X X X X 

X X X 

X X X X 

0 0 0 x 

0 0 0 x 

0 0 0 x 

0 0 0 x 

0 0 0 x 

0 0 0 x 

0 0 0 x 

0 0 0 x 

, ( k = l ,  2 . . . .  ). 

In  (27) the x indicates an element which may  not  have been reduced to zero. 

Let  the order of equat ion (26) be n. In  the illustration (27) the  n =  8 and m =  3. 

Equa t ion  (26) is now ready for the shearing trans/ormation 

(28) r = l l a ,  r "(~ ')][Z ( i , j = a  . . . . .  n), 

which converts (26) into the new equat ion 

(29) Tg d Z  i " m ) ~ = D Z = I I d ~ ; I [ Z =  Y. DA.T ~ Z 
\ k = 0  

where the element 
du = cu T ~'(~-j) -- (n -- i) ff (Su r g 1. 

The (~u in this equation is again the Kroneeker  delta. 

The main purpose  of the shearing t ransformat ion (28) is to induce above the 

m a i n  diagonal, when possible, non-zero elements into the lead matr ix  D o in (29). To 

select the appropria te  positive value for ff for this purpose, note first t ha t  any  c~j 

in (26) which is not  identically zero can be represented as a series 

Cij=T hU ~ Citk Tk 
k=O 

where cu~4=0 and each positive integer hu is at least one, except  for those special 

elements on the first subdiagonal  whose expansion begins with a 1. For  these 

special elements the hu = 0. B y  hypothesis  at  least one such special element is present.  

At  the outset,  i.e. when ff = 0 ,  the hu for the special elements are lower in value 

than  those pertaining to any  other  element which is not  identically zero;  bu t  af ter  
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t ransformat ion (28) has been made the respective expansions of the elements off the 

main  diagonal begin with the powers ~h,j+~(, j), excluding from consideration elements 

which are identically zero. I n  part icular  the expansions for the special elements begin 

with the power /z. For  sufficiently small positive /u, this power # of r will be less 

than  h i j + / z ( i - ~ ) ,  the power of v for an  off-diagonal ordinary e lement ;  but  as tt 

increases a stage will be reached when for the  first t ime # =  (i-~)tz+h,j  for some i 

and ], ] > i ,  for one or more elements if there exists at  least one such h,j. Note  this 

critical value /z 0 of ft. 

A special case arises if all elements cis above the main diagonal are identically 

zero and all the h i ~ > - g - 1 .  In  this case set i t = g - 1  and equat ion (26) is reduced 

at  once to  an equat ion of type  (2) with g =  1 with its corresponding independent  

formal solutions. 

I f  this special case does not  occur and /~0 is 1 or greater, set /z = 1 in (28) and 

as a consequence in (29) the expansion of each element d,j begins with at  least the 

first power of r, if not  a higher power. Therefore remove the common factor, say 3; 

and this in effect lowers the g by at least one uni t  in (29). We are then ready  to  

repeat  the entire process as described up to  this point. If, in fact, at  each repeti t ion 

one fails to get the desired formal independent  solutions by  the methods  described 

in cases I - V I  and each t ime reaches a stage as described where /t0>_ 1, g is lowered 

again and again, and in a /inite number o~ stages an equat ion w i t h  g = 0  or 1 mus t  

be reached. One final application of the procedure thus  far described therefore yields 

the formal independent  solutions desired. If  a t  any  stage be0 < l, a more complicated 

si tuat ion arises. 

Case VIII: O<yo<l; g > l  

I f  /~0 < 1, #0 is a fraction Et0 = q/p where q and p are positive integers, q < p ,  

and q is prime to p. I n  this event  set # = t t 0  in (28) and again our equat ion takes 

the form (29). Fract ional  powers of T have appeared of necessity for the first time. 

These fractional powers are removed by  introducing a new independent  variable 

(30) t = "r 1/p 

into equat ion (29). Before doing this note that ,  if # = q/p in (29), the matr ix  D 

when expanded in ascending powers of z 1/p will begin with the power v q!p. Therefore 

divide out  of (29) a factor  t q at  the same t ime tha t  t ransformat ion (30) is  made and 

(29) becomes 
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(31) 

where 

and 

tadZ=Fz=l l f ,  Jl[ Z= E Fk tk Z 
~ -  \ k = 0  / 

h = p q - p +  l - q ,  h > l ,  

/~j = p cij t q(~-~'- 1) - q dij (n - i) t p q-P- q 

Equa t ion  (31) is precisely of type  (2), but  this t ime the  power g has m general 

increased, say to h. The lead coefficient F 0 has zeros and ones on its first subdiagonal 

and all elements below this subdiagonal are zero. Also all elements on the main 

diagonal F 0 are zero and at  least one non-zero element appears  above the main 

diagonal. 

Despite the fact  tha t  we are now dealing with a number  h, usually larger than  

g, the entire procedure described up to  this 1;oint is reapplied. I /  on normalizing F o 

in (31) two or more distinct characteristic roots are /ound, the system is split by a zero- 

inducing trans/ormation into two or more distinct systems o/ tyTe (2), each o/ lower 

order than (31). The procedure is again applied to each of these new systems. Ei ther  

the desired formal solutions are found or new equations of t ype  (31) of still lower 

order are reached with usually another  increase in h. I f  the characteristic equations 

of the new. F0's always yield at  least two distinct roots, finally we shall reach systems 

of order 1 with possibly very  large h's. These are handled as in case I I  and the desired 

independent  formal series are thus procured. 

The only thing which could possibly block this process would be to  reach an 

equat ion of type  (3t) where all the characterist ic roots of F o are alike. This brings 

us to the last possible case. 

Case IX: Roots of Fo all alike 

If  the roots of F 0 are all alike, it is proved in reference [4], pp. 93-97 that ,  if 

the process outlined in cases I - V I I I  is repeatedly  carried out,  the  process mus t  ne- 

cessarily terminate  after a [inite number  of stages and yield the desired formal series 

solutions of equat ion (2). 

Thus in all cases the desired independent [ormal series solutions can be/ound. The 

precise nature  of these formal solutions can best be described by  first introducing a 

canonical form for a given differential equation, as described in the next  section. 
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w 3. A Canonical Form 

In  order eventually to proceed rigorously and not  just formally it is convenient  

to have 

Theorem I. Corresponding to a given differential equation o/ the form 

(32) Tg d X :r 
k=O 

where the Ak's  are constant square matrices, there exists a transformation, 

w 

(33) X = P ( 3 )  Y = ( Z  P ~ 3 ~ " ) Y  
\ k = O  / 

which reduces equatio~ (32) to the canonical form 

6~s ' ,,;h B,j ,, 
(34) th d Y =  tn-1)_~_ x" �9 t" d t (oi (t) Ii + J~ Y 

where i, ]= 1 . . . . .  m. I~  (33) the Pk's  are appropriate constant square matrices; p and 

w are suitable positive integers; and the determinant I P(~)I is not zero in some region 

0 < 13[ < 32< 3 o. I n  (34) the independent wtriable t = 3~"; h is a non-negative integer; 

6~j is the Kronecker delta; the Bij,,'s are constant matrices; and the I~'s are identity 

matrices. I /  h = O, the matrices J~ are all identically zero; i/ h > O, the J~'s are square 

matrices with zeros, or l 's,  or a mixture of zeros and l 's  on the first subdiagonal while 

all other elements in Ji are zero. I /  h = 0 the polynomials ~ (t) are all identically zero; 

and, i/ h > 0, the polynomials 

(35) ~ (t) = ~o + ~il t + ..- + r t h l, 

where the coefficients are co~vstants and no two of these polynomials are identical. I n  

particular, i/ i ~: ~, and 

O.~k=~jk for k = 0 ,  1 . . . . .  h - 2 ,  

then the difference ~i,h-l--~].h-i i8 not only not zero, but it also is not an integer. I /  

the infinite series ~_. A~ v ~ converges for all l 3 [ < v  o, then the infinite series 
k = 0  

(36) ~ Btj ~ t" (i, ] = 1 . . . .  , m) 

also converge /or sufficiently small [t I, say ]t I < t o. 
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Proof :  We intend to show first of all tha t  there exists a formal substitution 

(37) X = ~ (3) Y, 

where 

(38)  ~ (3) = ~ Pk  3 ~/p ; t = ~l/p ; 
k=O 

which will reduce equation (32) to the form 

(39) 

where 

(40) 

and 

(41) 

th d Y ~ / =  ~(t) Y 

(t) = II ~; !~, (t)H, (i, i = 1 . . . . .  m):  

~t(t)=~(t)I~+ J~th-a § ~ ~ . t  ~. 
v ~ h  

Moreover it  will become evident that  transformation (37) is non-singular in the sense 

tha t  formally the determinant I ~ (T) I is not identically zero when expanded in powers 

of 3 I/p. The polynomials Qi(t) in (41), (i=l ..... m), will meet the specifications of 

Theorem I and, if h = 0 ,  Q~(t)~0 and J~=0.  

These facts will be established by  checking back through the details relating to 

the nine special cases considered in section w 2. In  cases I and I I ,  for example, 

equation (32) is in the desired canonical form (34) at  the outset. 

In  case I I I a  sequence of normalizing transformations of type (7 )and  exponential 

t ransformations of type (9) and (10) reduce (2) to an equation of type (4) where 

g = 0. I f  the exponential transformations are all omitted and the successive normalizing 

transformations are all use4l and incorporated into a single transformation, the resulting 

transformation is of type (37). Moreover this single transformation is obviously non- 

singular and reduces equation (2) to the desired form (39). 

Next  consider case IV-a where a sequence of normalizing and exponential trans- 

formations combined with one zero-inducing transformation (15) reduces equation (2) 

essentially to n distinct equations each of the first order. Observe that ,  if the ex- 

ponential transformations are again omit ted and all the other transformations used 

and combined into a single transformation, this t ransformation will be of type (37) 

and will reduce (2) to the desired form (39) with m =  n. Since it is assumed tha t  a t  

some stage in the process, while g still exceeds one, n distinct characteristic roots 

appear,  the ~)i (t)'s in (35) are sure to be distinct polynomials. 
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In  case IV-b the situation is the same as in case IV-a except that  the character- 

istic roots become all distinct only at the stage when g= 1 and then they are not 

only distinct, but do not even differ one from the other by integers. 

Note also in case IV that  the determinant of the single combined transformation 

which reduces (2) to (39) is the product of a certain finite number of constant non- 

zero determinants multiplied by the determinant of a formal matrix 

[(I + ~ Q1) (I  + ~2 Q2) (1 + ~.a Q3).-"]" 

The product of all these determinants is obviously of the form d 0 + d  l x + d ~ x 2 +  -.- 

where the lead coefficient d o 4= 0 and hence the combined transformation is non-singular. 

If  the details given in cases I - I V  fail to produce the desired formal series solu- 

tion, one is driven to consider the solution of a set of equations of type (18). Up 

to this stage a sequence of normalizing and exponential transformations combined 

with one zero-inducing transformation has split equation (2) of order n into a, ( a>  1), 

separate equations, each of lower order than n. If the exponential transformations 

are omitted and the other substitutions are all used and incorporated into a single 

transformation 

(42) X = ~o (r) Z, 

this transformation is of type (37) where p =  1 and the determinant I~o(~)l again is 

not identically zero, for the expansion of this determinant in powers of ~ will begin 

with a non-zero constant. Furthermore substitution (42) reduces equation (2) to a new 

equation equivalent to a, ( a>  1), separate systems of the form 

(43) T g - - '  = L~ Zi, (i = 1 . . . . .  a), 
d r  

where 

z = II z ,  II, J = . . . . .  o ) ;  

i.e. despite the omission of the exponential terms splitting occurs. The matrix L~ in 

(43) has the same order as the corresponding matr ix  Gi in (18), and each of these 

orders is less than n. 

If  at this stage there exists a set of transformations 

Zi = ~ ,  (T) Y~, (i  = 1 . . . . .  a ) ,  

where each ~ (T) has the same structure as the ~ (v) in (38), which will reduce (43) 

to a set of equations 
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~o d Y, 
= ~ (3) Y , ,  ( i  = 1 . . . . .  a ) ,  

45 

where each ~i(v) has the same structure as the ~ ( t )  fn (40) with t = v ,  then the 

non-singular transformation 

x =  Y, ( i , / :  1 . . . . .  a), 

has the structure of (37) with p =  1 and it will reduce equation (2) to the desired 

form (39). This means that,  if Theorem I can be shown to be apphcable to each of 

the equations in (43), then Theorem I is likewise applicable to the original system (2). 

Therefore at tention is focused on the individual equations in (43). 

If  we then a t tempt  to show tha t  Theorem I is applicable to some particular 

equation in (43), either we succeed by  a repeated reapplication of the reasoning that  

has just been apphed in cases I - I V  or we fail because one of the three contingencies 

1 ~ 2 ~ or 3 ~ mentioned in case V temporari ly block the way. 

If  contingency 1 ~ occurs this brings us back to case V, where it may  be assumed, 

without loss o f  generality, tha t  the chosen equation in (43) is such tha t  after an 

exponential transformation, followed by  a normahzing transformation, equation (43) 

is reduced to fo rm (19). But  equation (19) is in the desired form (39) just as it 

stands. I f  in making this reduction, the exponential t ransformation is omitted, and 

the normalizing transformation alone is used, it is evident tha t  we have found a 

transformation of the appropriate  form (37) which reduces (43) to the desired form 

(39) and again Theorem I is apphcable, We have spoken for brevi ty  as though each 

equation in (43) is t reated directly, while actually one or more of these equations 

may  spht under appropriate transformations of type (37) into equations of still lower 

order. If  this is the case we would actually deal with these lower ordered equations 

instead of (43). 

I f  contingency 2 ~ occurs this brings us back to case VI, where it may  be as- 

sumed, without loss of generality, that  the chosen equation in (43) is such tha t  it 

can be reduced to form (19) by  the following sequences of five transformations:  an 

exponential, a normalizing, a zero-inducing, a root-equalizing transformation, and finally 

another normalizing transformation. But  (19) is of the desired form (39); hence, if 

again t h e  exponential transformation is omitted and the other four successive trans- 

formations are combined into a single transformation, this transformation is of the 

appropriate type (37) and reduces equation (43) again to the desired form (39) and 

Theorem I is once again apphcable. 
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I f  contingency 3 ~ occurs, this brings us back to cases V I I - I X ,  where it may  be 

assumed without loss of generality tha t  a finite sequence of exponential, normalizing, 

zero-inducing, shearing, and possibly a root-equalizing, transformations reduces equa- 

tion (43) to either form (4) of ease I or form (19) of case V, both forms being of 

the desired type (39). Once again, if all the exponential transformations are omit ted 

and all the other transformations are combined into a single transformation, this 

t ransformation is of the appropriate type (38) and reduces (43) to the desired form (39). 

Thus the des i red  substitution (37) exists in all eases. Moreover formally the 

determinant  of this transformation can be expanded in a series running in powers of 

~l/v, namely 

where the lead constant ~o # 0 and the ~1 is a ~on-neqative integer. 

Once substitution (37) has been found one has merely to use the first (w+ 1) 

terms in expansion (38) for matr ix  P(v)  in Theorem I,  see (33), provided w is suffi- 

ciently large, say w > p q + 2 q + 1. Theorem I has therefore been demonstrated.  

I t  is evident from this proof tha t  if the w were increased, more of the off-diagonal 

blocks in (34) couM be made identically zero, but  there seems to be no point in 

such a refinement, unless some large /inite value of w by  chance annuls enough off- 

diagonal blocks tha t  the system can be split into two or more distinct systems of 

lower order. In  general such a rigorous reduction of order does not occur. 

I f  in the canonical form (34) all the lead coefficients ~t0, ( i = 1  . . . . .  m), in the 

polynomials are equal, an exponential t ransformation would remove the ~0 from the 

canonical form and a division by  t would lower the h in (34) a unit. I t  will therefore 

be assumed without loss o/ generality that i /  m >  1 in  (34) then at least two of the Q~o's 

have di//erent values. Likewise, i /  m = 1, it is assumed that an exponential trans/ormatlon 

has removed Ox (v) I x +'11 th-I / tom (34) and a division by t ~ has reduced h to zero. 

To proceed several new symbols are needed. I f  i # j, let 

~t(t) r ~P~J tPi~+t + "" + r~,-l.tj - ~ j ( t ) =  a~.tJ~ +rp~j+L~j t n-l,  

where r~ j ,~ j#0  and in particular, i f  fl, j = h - 1 ,  the corresponding r~,j.~j is not an 

integer. 

and by  

(45)  

I f  i # ] ,  define the I~,j matrices by  the equations 

r~ i t . t j r~ j+B~j~=0 if /~l j_<h-2 

(r~j.  ,j - 1) Ft~ § J ,  r~j  - r , j  Jj  + B~jh = 0 i f  /;~t = h - 1 ; 
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observing tha t  when these equations are solved for the elements in the Ftj's, these 

elements are uniquely determined. Set F ,  = 0. 

With this new notation in mind we can state 

Theorem II.  A diHerential equation in. canonical /orm (34) possesses a /ormal 

independent series solution o/ the /orm 

(46) 

where 

and 

(47) 

Y(t)=u(t)llj,j exp {l,  (t) I, + J,  log t}ll, ( ~ , j = l  . . . . .  m), 

] i ( t )=Qi ,  h-1 log  t Qi, h:~ t~i.h-3 t~lo 
t . 2t s ( h -  I) t h-1 '  

u = v ( t )  = [l ~,J (I, + v . )  + (I - ~,j) t'-~,J (r,j + u,j)II. 

(i, j= l, .... m). The Uij in (47) represent /ormal series 

(48) Uis=Uij(t) = ~ U~jkt k, (i, j =  1, . . . ,m)  
kffil 

where the U~j~ are appropriate constant matrices. 

P r o o f :  The fact tha t  such formal independent series solutions exist is fairly 

evident from the procedure outlined in section w 2. However an independent proof 

is given in section w 5 where essentially a method is given for computing the suc- 

cessive U~j~ in (48) as k increases. The series in (48) usually diverge; nevertheless 

it is to be expected tha t  the formal solution exhibited in (46) is in fact an asymp- 

totic series representation of a true solution of (34) if t is restricted to an appropriate 

sector in the complex t-plane which has the origin t =  0 as a boundary point (see 

for example Trjitzinsky [10]). The validi ty of this asymptot ic  representation will not 

be proved here in full generality, for the chief objective of this paper is to sum as 

many  of the divergent series (48) as possible. 

I f  h=O in (34), the origin is a regular point and, if h= 1, the origin is a regular 

singular point. In  either of these two cases it is well known (see G. Ehlers [11] or 

H. Kneser [12]) tha t  when the series (36) converge for I t]<to, the series in (48)also 

converge for the same values of t and (46) is a true convergent independent matr ix  

solution of (34). Thus there is no need to sum series (48) in these cases ;hence from 

this point forward it is assumed that  h >  2 and m >  2 in (34). 
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w 4. A Related Non-homogeneous System of Differential Equations 

I t  is evident  f rom Theorem I I  tha t ,  if one is eventua l ly  to find solutions of the  

canonical sys tem (34) in a rigorous fashion of the  t ype  indicated in (46) and (47), i t  

will be necessary to obta in  and solve the sys tem of differential  equat ions satisfied 

b y  the  unknown functions Uij = U,s (t), (i = 1 . . . . .  m). I n  order to  do this subs t i tu te  

(46) into (34); utilize (47); cancel a few te rms  by  v i r tue  of the  relat ions (44) and  

(45); and then  af ter  dividing through by  the appropr ia te  power of t i t  will be found 

t h a t  the  functions U~j(t) satisfy the  following non-homogeneous  sys tem (49-51) of 

differential  equat ions : 

dUjj 
(49) t-d-~=J,U,,-V,,J,+ ~ ~ tl+'-&'Bjk,(Fk,+Uk,)+ 

k~l  v=h 
k*j  

+ ~ t ~§ hBijv + ~ t'+l-hBiivUi,; 
v=h v=h 

also 

(50) th_fl, j d V i j =  ( / ~ i / - h )  t h- l- f l~j  ( F , )  + Ui)) + 

+ (rflij. ij + rflij+l,~j ~ + "'" + r h - l d j  th 1-f l i~)  Uit  + 

+ t h 1 a.s (j~ [F~s + Uis] - [Pis + UJs] Ji) + 

~=1 v = h  v=h+l 
k * j  

+ ~ t" h Bijv 5~j + (r~,j~ 1, ijt  + .-- + rh 1. i j t  n-1-/~'~j) F~j 
v = h 

if i4=j  and 0 _ < f l i j _ < h - 2  ; and  

d U~j 
(51) t ~ -~-  = ( rh - l ,~ j -  1) Uij+Ji U~j- U~sJ j + 

+ ~. ~t"-~k'B~k~(Fk,+Ukj)+ 
k = l  v=h k#j  

v = h + l  ~ h  

if fl~j = h - 1 ; where i, ?" = 1 . . . . .  m. 

Since the  no ta t ion  is becoming cumbersome,  it is desirable to m a k e  a few simpli- 

f ications in the symbol ism,  par t icular ly  in (49-51), and  ye t  preserve the  essential  

f e a t u r e s . . N o t e  first  of all t ha t  sys tem (49-51) is actual ly  not  a single system,  bu t  m 
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distinct systems, one system corresponding to each choice of ], ( j=  1 . . . . .  m). Atten- 

tion can therefore be focused on one of these particular, yet  representative, systems 

and the second subscript j omitted. Remembering then tha t  U~=U~j; ~=fi~;  

r~i=r~s.~jg=O ; and ra_l.i=rh-~.ij; system (49-51) can be rewritten in the more con- 

venient form 

.dUj 
i=l v=2 v = l  

d U~ h-fli- 1 h-1 
(53) th-Pl dt =r~iUi+ ~ B~.t'U,+ ~ Bi.t'U~+ 

~ = I  ~=0 

k = l  v = h  u = l  

where i :~ ~ and fit -< h - 2 ; and 

d Ui 
( 5 4 )  t ~ :  (r h 1 , , -  1 )  U,+ J, Us- U, Jj 

+ ~ iBk,t 'Uk+ iC~t" 
k ~ l  u = l  u = l  

+ Bjo Uj + 

where i :~ j  and fli = h -  1. In  these three equations and in subsequent equations the 

B's and C's with one or more subscripts are known constant matrices. There is no 

need here to give the precise interrelationship between these matr ix  coefficients and 

those in (49-51). The one essential fact to bear in mind is tha t  here, and throughout 

the remainder of the paper, all the B and C series running in powers o/ t, such as 

Bi~t ~ and ~ C~t ~ converge /or [ t [ < t  0. However no two such series are necessarily 
v=2 ~ = I  

the same series in (52-54) or in any of the succeeding formulas. 

System (52-54) is the desired related non-homogeneous system o/di/ferential equations. 

w 5. The Decomposed System of Differential Equations 

Theorem I I  states essentially tha t  system (49-51) is formally satisfied by  the 

series (48). Dropping the second subscript j, this means tha t  system (52-54) possesses 

a formal series solution of the form 

(55) U, = ~ U,, t" (i = 1 . . . . .  m), 

4 -  543809.  Acta Mathem2tica. 93. I m p r i m 6  le 9 m a i  1955. 
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where  Us = U~j and l l f ,=  U~j~. The successive values of the ll~ as v increases can be 

readily computed by  substituting the series (55) into (52-54) and equating coefficients 

of like powers of t. For  example when the coefficients of t are equated, one obtains 

from (52) the equation 

(56) lIjo = Jj l l ,  o -  l~so Jj + Co; 

from (53) the equation 

(57) r~iUto+BjoUso+Co=O, ( i # i ,  f i t < h - 2 ) ,  

and from (54) the equation 

(58) [ I ,o=(rh_l . , -1 )U,o+J,U,o- l~oJ j+BjoUjo+Co,  (i#-], f l , = h -  1). 

The numerical value of each element in l:[j0 is readily computed from (56) a n d  

then using (57) and (58) the elements ill the 11~0, i # j ,  are computed;  each element 

in these matrices being uniquely determined. In  a similar fashion the coefficients of 

t 2 arc equated and the elements in 1~1, ( i = 1  . . . . .  m), evaluated;  then the coefficients 

of t 3 are equated and the [I~e are evaluated, and so on. Thus all the matrices [|i~ 

in (55) are determined in succession as v increases and Theorem I I  is demonstrated.  

From this point forward therefore the matrices U~, and Uij,. are to be treated as 

known quantities. More details about  the values of the elements in 1I~, are given in 

section w 6. 

An estimate as to the rate of growth of the elements in the matrices Htv is 

needed as v-+  ~ .  To obtain such an estimate it is expedient to first split the re- 

lated non-homogeneous system of differential equations into a new decomposed non- 

homogeneous system of equations consisting in general of a larger number  of differ- 

ential equations of simpler, but  equivalent, structure. I t  is the object of this section 

to obtain such a decomposed system. However difficulties appear  later on when 

estimating rates of growth of solutions of certain related integral equations. To avoid 

these future difficulties the following assumption is made:  

(59) Restrictive Hypothesis: In the canonical /orm (34) either h = 2 ,  or, i /  h > 2 ,  

then /or the chosen value o[ j under consideration all the corresponding f l i = f l i j = 0  

(i = 1 . . . . .  m), in system (52-54). 

This hypothesis dominates the remainder of this paper  and because of it certain 

simplifications occur which would not be valid in the general case. Note tha t  if h >  2, 

and m > 3 ,  there may  not always be a value of ~ on the range 1 to m which will 

satisfy hypothesis (59). 
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With this restrictive hypothesis in mind let us return to the problem of 

splitting the related non-homogeneous system of differential equations and begin by 

breaking up the functions 

U~ (t) = ~ l~i ~ t ~ (i = 1 . . . . .  m) 
U=I 

into the sum of 

distinct new functions 

by writing 

(60) 

r = h - 1  

Tik = T, ~ (t) 

k=l 

where the ll~k are known constant matrices and formally 

(61) T,k( t )=  ~ lt~,,r+kt "', ( k = l  . . . . .  r). 

To obtain the differential system satisfied by the new functions T~ (t), begin by 

substituting the expression for U~ given in (60) into {52). Since the llik have been chosen 

so as to satisfy equations (56-57), as well as all similar equations which arise when 

coefficients of higher powers of t are equated, it is evident the coefficients of 

t, t ~ . . . . .  and t r all cancel out and (52) is reducel] to the form 

t r (62) k=l~ ]~tkY'ik-~tk+ldT'tk~g'ik~l~kyJk----~-J ~ k=l ~ ~ky'ikgt-~ 

"~B]l~$k+lT]k-t  - ~ ~ ~Bivgv+kTik ~- ~ Cv~ ~'. 
k~l i=l k=l v=2 v=r+l 

The next  step is to split (62) into r separate equations by retaining in any 

particular one of these equations only those terms which involve powers of t tha t  

are equal modulo r, treating all the T,k's as though they were constant matrices 

d T~k, 
and all the products t ~ - ~ - s  as though they too were constant matrices. When this 

is done (62) is  decomposed into r separate equations, namely 

(63) t.,§ 
~=1 

m oJ -2+~r 
+Bjlt'~+~rTt, o~-l+~r + ~- 2 2 Bik,~to~+'TrTi~ + 

t=l k=l ~=(~ 
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where co = 1 . . . . .  r. The new symbol 

1 if r and 

8 =  0 if co>0 

in (63) and in subsequent formulas. 

In these sums, as well as in succeeding sums in subsequent formulas, it may be 

found that  the upper limit for the range of summation is less than that  for the 

lower limit in a particular sum; in all such ca~s the particular sum concerned is to 

be omitted in the formula under consideration. For example, if in the first triple 

sum in (63) the eo =2 ,  the entire sum 

m o~ - 2 + ~ r  

Z Z Z B,k,t~§ 

is to be omitted from formula (63). 

Divide each aide of equation (63) by  t ~ and change the independent variable to 

(64 )  s = t - r  

throwing the irregular singular point at  the origin of the complex t-plane out to 

infinity in the complex s-plane. When these steps have been taken (63) takes the form 

d T ,  w 
( 6 5 )  o~Tjo - rs~T-a = gj T,~ - T, o J , +  ~ C , s - "  + 

~7=1 

m oJ - 2 + ~ r  

+Bjls-~'TJ..~-I+~,+ ~, 2 2 B , k , s - ' T , k +  
t=1 k = l  ~ 

5-1 k = ( a - l + r t i  s l= l§  

where co = 1 . . . . .  r. In (65) and subsequent formulas it is to be emphasized that  all 

the B and C series running in powers of 1/s converge for Is] sufficiently large, say 

l sl > s 0. Equation (65) is the first of the three equations which make up the desired 

decomposed system. 

To get the 2nd equation in the decomposed system, keep the restrictive hypo- 

thesis (59) in mind and spht equation (53) into r separate equations similar to (65). 

To do this the first step is to substitute the right-hand member of (60) into (53) 

in place of each Ut. Again the coefficients of t, t 2 . . . . .  t T all cancel out. Then the 

:resulting equation is split into r separate equations by retaining in any particular 

one of these equations only those terms which involve powers of t that  are equal 
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modulo r, t reat ing all the T~k's as though they  were constants  and all the t 's 

as though they  also were constants.  Then divide t ~ out  of each equat ion resulting 

from the split and again change the independent  variable to s = t -r with the result tha t  

(66) 
d ~  

k = l  

W - 1  r 

+ By, o,~r k 
k=co k = l  k=r 

+ ~ ~ ~Bk.~s-~T~.+ ~C~s .... 
k = l  p = I  v = l  v = l  

where co = 1 . . . . .  r ; i # ?"; and fl~ = O. 

Under  the  restrictive hypothesis  (59), equations of type  (54) are present only if 

h = 2 ,  and in this event  r=l;  co equals only 1; t = s  1; and, in terms of the new 

independent  variable s, equat ion (54) becomes 

dT~l 
(67) T~I - s d s -  = (rh-a,~- 1) T~a + J~ T~I - Til ']i + Bjo Tjl ~- 

-4- ~ ~ Bk,,s--"Tkl+ ~. C~S -~ 
k = l  v = l  r = l  

where i + ?" and fl~ = 1. 

Equa t ions  (65), (66), a n d  (67) make  up the decomposed system o/ di//erential 
equations. These equations are in a suitable form for est imating the  growth  of the 

coefficients T~k, in the formal expansions 

(68) T~k = ~ Tikns-" 
t /= l  

where 

T i k r l  ~ Ut ,~ l r+k ,  ( i = 1  . . . . .  m;  k = l  . . . . .  r ;  ~ ] = 1 , 2  . . . .  ); 

see equat ion (61). 

w 6. Rate of  Growth of  the Coefficients Ti~  as ~ - ~  

Subst i tute  the series (68) into (65-67) and equate coefficients of successively 

higher powers of 1/s. When  this has been done, it is found from (65) t ha t  for all 

sufficiently large n, 
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(69) (rn  + o)) Tj ojn = J j  Tj o~n - Tt ~n J) -i- Cn W Bt l  Tj,~-l+r o.n-o § 

rn r  n - 6  

t - 1  k = l  vffil  

n - t  

i f f i l  k = o ) - l + r O  vffi l  

where  ~o = 1, . . . ,  r. 

S imi la r ly  from (66) for all  suff ic ient ly  large n, 

(70) r~i T~,~ = wT~ . . . .  1 + r ( n -  1) Ti . . . .  1 - ~ Bj,~ -k T j ~  - 
k - I  

- -  B / , + + r _ k T f k ,  n _ l -  ~ B i , , o - k T i k .  - 
kffito k= l 

- -  ~ B l ,  m + r - k  T i k , n - 1 -  
k-oJ 

n - 1  

k = l  pff i l  v = l  

where eo = 1 . . . . .  r ; i 4= j ;  and  fli = 0. 

Likewise  from (67) for all suff ic ient ly  large n 

(71) ( n §  2 -  rh_a,~) T ~ = J ,  T ~ a ~ -  T~x~ J i +  B s o T s ~  + 

m n - 1  

+ ~. ~ Bk, n - n T k l ~ + C n  
k=l  ~ 1  

where  f l i = h - 1 ,  r = l ,  and  all  o9=1 .  

I f  all  the  T j~k  and  T i c k  are  known  for k = l  . . . . .  n - 1  and  n is suff icient ly 

large,  i t  is clear f rom sys tem (69-71) t h a t  one can f irst  ca lcula te  T i l ~ ;  nex t  ca lcula te  

al l  t he  T~in; a f te r  t h a t  Ti2~ , t hen  all  the  T~e,,  and  so on in succession up  to  a n d  

inc luding  Ti r ~. 

TO es t ima te  the  r a t e  of g rowth  of the  e lements  of the  T~ ~n mat r i ces  as n - - > ~  

we shall  in t roduce  a sys t em of equa t ions  s imi la r  to  (67-71) which de te rmines  the  suc- 

cessive values  of cer ta in  dominating mat r i ces  W~ ~n as n - ~ o o .  The  new sys tem is so 

se lected t h a t  the  ra te  of g rowth  of the  e lements  in the  Wi ~ - m a t r i c e s  is r e l a t ive ly  

ea sy  to  e s t ima te  and  y e t  the  WI ~ ,  grow fas t  enough so t h a t  eve ry  e lement  in eve ry  

m a t r i x  W~ ~n will be posi t ive  and  a t  leas t  as large or  larger  t h a n  the  abso lu te  va lue  

of the  corresponding e lement  in m a t r i x  Ti ~ , .  



O R D I N A R Y  L I N E A l {  H O M O G E N E O U S  D I F F E R E I ~ I T I A L  EQUATIO.N=S 55 

Since all the B and C series in (65 -67)have  the typical power series forms 

Bv s -~ and ~ C~s -~ with possibly more subscripts at tached to the B's and C's 
v=0 )toO 

and since these series all simultaneously converge for I s l > s  o it follows that  timre 

exist two sufficiently large positive constants 0 and ~ such tha t  any coefficient B~ 

or C~ is dominated by ~6)  where 6) is respectively either a matr ix  with the same 

number of rows and columns as B~ or a vector with the same number of elements, 

i.e. components, as vector C~ and each element in 6) is the constant 0. By "domin- 

ated" we mean that  every element in all the various B / s  and C~'s is less in absolute 

value than the corresponding element 0~ ~' in ~6).  I f  a particular matrix, say B~k,,, 

carries several subscripts the corresponding dominating 6)-matrix, say 6)~k, will carry 

one less subscript. 

With this notation in mind the desired dominant system can now be written. 

Equation (69) is to be compared with 

(72) ( rn+w)  W j o n = J j W j  ~ , +  l ~ o , , J j + ~ O +  ~Oj W i, co-l~r6, n-6+ 
m o)-2+r(~ n - 8  

i=1 k = l  v = l  

" n - l - 6  

i=1 k = o ) - l + r 6  v = l  

where eo = 1, .. . ,  r. 

(73) 

Similarly (70) is to be compared with 

Ir  lw, . . . .  l + r ( n - l l W i  . . . .  1 + ~ Cq~ 
k = l  

+ ~co+r k(~iWik,  n_l + ~. ~co-k(~iWfkn+ 
k f t o  k = l  

+ ~+~-~O~W~k,._~+ ~ ~ ~" vO~/*Wk,,~+ 
k=r k=l /*=1 v = l  

+~"O 

where w = l  . . . . .  r;  i # j ;  and fl~=0. 

Likewise (71) is to be compared with 

(74) ( n + 2 - r h  -a,~) W, in= Ji Wiln + W~I~ J j+ Oj Wjln + 

m n - 1  

k = l  ~=1 

where f l , = h - 1 ;  i # j ;  r = l ,  and all e o = l .  
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The dominate system (72-74) determines the rate of growth of the matrices 

W ~  as n - ~ ,  but  to estimate this rate of growth it is helpful to replace system 

(72-74) by  an equivalent homogeneous recurrent system. To get the first of these 

recurrent relations, replace n by (n + 1) in (72) and from the new resulting equation 

subtract  ~ times (72) without stepping up the n a unit. The result of such a sub- 

traction is tha t  

(75) ( n r + r + o ) ) W j  . . . .  l = ~ , ( n r + a ~ ) W j , , . + J s ( W  i . . . .  r.l-~Wfojn)..~- 

" Wj, ~o-l+,e,,,-,~) + +(Wj . . . .  1 - ~ W j ~ , . ) J j + ~ ) i ( I V j , . ,  1,,O,n+l-(~-- ~ 

m oJ - 2 - r 6  

i = 1  k = l  

rn r 

i = l  k ,  r  

where r = 1 , . . . ,  r. 

Similarly, if n is replaced by (n+  1) in (73) and from the new resulting equation 

" times (73) is subtracted, the result is that  

(76) Ir ,l . . . .  1 : ~ [PiSil ['Vi o~n-2-(~o - F ) ( W  i m n  - ~" Wi . . . .  1 )  + 

= r ( n - 1 ) W i , ~ , - ; r n t V i o , . ,  1+ ~" ~" k ( ~ J ( ~ { r j k ,  n + l - - ~ W j k n ) ' ~  
k = l  

r w . - 1  

+ ~. ~~ ~O~(wj~ -~wj~ , . _ , )+  ~ ~- -~O,(w~.n+~-~w,k . )+ 
k=o) k = l  

k :[,.) k - 1  I t : l  

where o~=1 . . . . .  r- i .+ i ;  and f l ,=0.  

In  a like fashion (74) is replaced by 

(77) ( n + 3 - r h _ l . i )  W~l.n l = ~ ( n + 2 - - r h  1,~)W~1~+ 

+ J (W*1,n:I-- ~ W~I.) + (W*I,n+I-- ~ W*~.) Js + 

m 
7 

- 0  ( ~ ) l , n + l  -- ~Tjln)A:_ \"  Ok ~Vkl ,v n 
k = l  

where /3~=17 i + j :  r = l ;  and all c o = l .  

The recurrence relations (75-77) ~re a system of simultaneous homogeneous 

linear difference equations satisfied by  the W ~ , .  The presence of the factor ( n + l )  

in the third term of the right member  of equation (76) suggests the substitution 
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I W i ~ n = ( n - 1 ) ! ~ , ~  if i - l "  and f l , =0 ;  

/ W j ~  ( n - 2 ) ! ~ j ~ n ;  and 

Wi~n ( n - 3 ) ! ~ t ) i ~ n  if i~:~ and f l , = l .  

After this substitution has been made in (75-77), divide the first two equations 

by  n! and the third by  ( n - 1 ) !  and it will be found tha t  the 

~ . ,  ( i = 1  . . . . .  m;  o J = l  . . . . .  n), 

satisfy a system of linear homogeneous difference equations similar in structure to 

(75-77) with the special feature that ,  although in general the Coefficients vary  with 

n, nevertheless as n-+ co all the coefficients uni]ormly approach constant values. More 

specifically the system of difference equations for the ~ w n is equivalent to a certain 

matr ix  difference equation of the form 

(78) ( n §  1 ) = A  (n) ~(n)  

where A(n) uniformly approaches a constant matr ix  A(oo)  as n ~ c r  For  large n, 

difference equation (78) is approximated by the matr ix  equation 

(79) ![91 (n + 1 ) = A  (oo) ~ 1  (n) 

with constani; coefficients. Any solution of such a difference equation as (79) cannot 

grow, as is well known, with more than  exponential rapidity as n-+ ~ .  The same 

restriction on the rate of growth of solutions applies with equal force to system (78) 

and to the system for the ~i~t ~n. This means there exist two positive constants c 

and q such tha t  every element in matr ix  ~i~i ~ n is less in absolute value than  c e q n 

for i = 1  . . . . .  m;  o )=1  . . . . .  r;  and n = l , 2  . . . . .  This in turn implies tha t  the absolute 

values of all the elements in T~ ~n are less than  

(n -1 ) !ce  qn for i = 1  . . . . .  m; c o = l  . . . .  r ;  and n = l , 2  . . . . .  

w 7. A Related System of Integral Equations 

A simultaneous system of related integral equations will be introduced in this 

section. The system will be so constructed that ,  if its /ormal Laplace transform is 

taken, one obtains the decomposed system of differential equations (65-67). F o r t h i s  

purpose let the new functions Vt ~ (t) (i = 1 . . . . .  m ; co = 1 . . . . .  r) formally satisfy the 

equation 
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oo 

(80) Ti o, (t) = T~ o, (s- 1,,) = f e-S t Vi o, (t) d t. 
0 

Then the particular integral equation which has a formal Laplace transform equal 

to (65) must necessarily be of the form 

(81) 

where the integral 

Aj  ~ (t) = 

r t V i o , ( t ) = A j o , ( t ) +  ~ C ,V/ r !  

t 

f [Jj Vj ,,, (r)  - Vj ~ (r)  J j  - w Vj w (r)  + 
0 

+ B j l  (t - T) '~r Vi, oJ - l+sr  ( r ) / ( d i r )  ! + 

+ Z Z y B,,.~(t-~)"V,,~(-r)/,l!+ 
i = l  k = l  ~=5 

5=1 k ~ t o  1 r b T / = l + 5  

and ~o = 1 . . . . .  r. 

Similarly the integral equation corresponding to (66) is 

(82) ( r t - r~ i )  V,,o(t)= A,,o(t) + ~ C v t V - 1 / ( v  - 1) !+  
v = l  

+ Bj.~_k Vjk(0+ ~ B~,,o-k V~(t)  
k = l  k = l  

where the integral 

A~ ~(t)  = 

+ 

+ 

t 

0 

r 

Bi, ,o~ r -  k r i  k (75) ~- 
k = c o  

k = l  /~=1 v = l  

and o ) = 1  . . . . .  r; and f l i=0 .  

Likewise the integral equation corresponding to (67) is 

( 8 3 )  t V i i  ( t )  = A~ (t) + ~ Cv t"/v ! 
V=I 

where the integral 
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t 

A~ (t) = f [ ( rh -a , i  - -  2)  V i i  (v) + J~ V~I (T) - -  V~I (T) Jj -Jr- B.io Vjl (7~) q- 
o 

-}- ~ ~ Bk~,(t--T) v Vkl(T)/v]]dT 
k-1  ~=1 

and i ~: 7" and fl~ = 1. 

Equations (81-83) make up the desired system of related integral equations. 

Since the absolute values of the elements in the B matrices and C vectors are 

bounded as described in section w 6 all the infinite series appearing in this system 

of related integral equations represent entire functions convergent for all values of t 

and T because of the presence of the factorials in the denominators. 

This system of integral equations may  then be considered in its own right, 

regardless of the particular way it has been derived. Formally this system is satisfied 

by  the series 

(84) V~ ~(t)= ~ T~ ,,~tn-x/(~l - 1)! 
~=1 

see (61), (64), and (80). But  the absolute value of each of the elements in the matr ix  

T~ ~, is less than ( n -  1)! ce qn, and therefore the series in (84) converge i/  I t [<e  -q 

]or i = 1 . . . . .  m and co = 1 . . . . .  r and thus define in a rigorous /ashion /unctions Vi o~ (t) 

which are solutions o/ the system o/ related integral equations. 

I t  is clear tha t  by successive substitutions the system (81-83) can be rewritten 

in the more convenient form 

(s5) t vs,~ (t) ~ (t) + ~ G t / , , .  

t ( r t - r & )  ~ Vio,(t)= ~ t~3, ,~,( t)+ ~ C; t ' / v !  
v=O u~l 

(86) 

where i 4 ~" and fl~ = 0 ; and 

(87) t v,~ (t) = 3,~ (t) + ~ c .  t"/~ ! 

where i u: 7" and /3~ = 1. Here each of the ~ ~ (t), (i = 1 . . . . .  m), and ~ ~ ' s  are integrals 

of the form 
t 

k=l.  9=1 u=0 
0 

where each series 
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v=O 

is convergent and dominated by  the series 

(s8) ~2 ~" 0,,,, I t -  elY,' != O,,,e r " - " -  

Likewise each series ~ Cp tv/v! is convergent and dominated by the series 
~ 0  

(s9) ~ $'o Itl'/,,!= Oe:"' 

Admittedly the positive constants $ and 0 used here may  be larger than the ~ and 

0 used in section w 6. 

w 8. Rate of  Growth of  the V, ~ ( t )  as t-~ 

In  order to estimate the rate of growth of the elements of the matr ix  Vt ~ (t) 

as t - ->~ begin by  marking the points t=rpi /r  for i=  1 . . . . .  m in the complex t-plane 

and then draw the rays which radiate from the origin t = 0 and pass through these 

marked points. Cover each of the distinct rays by  a sector of very small angular 

opening. Between any two of these successive covering sectors there will be a rela- 

t ively larger sector, say 6 .  Each of these Q-sectors is to be considered closed in 

the sense tha t  points falling on the two rays which form the edges of ~ are to be 

counted as par t  of 6 .  

Let  the variable t be restricted temporari ly to some particular one of these sec- 

tors, say to 6 ;  and let it be understood tha t  the pa th  of integration for each of 

the integrals in (85-87) runs out radially from the origin to the point t in 6 .  The 

various Vt ~(t) can then be analytically continued indefinitely out along the rays in 

as is evident from the structure of the integral equations. Let  the norm [[V,~(t)][  

of the matr ix  V~ o,(t) be the largest of the absolute values of the various elements 

in the matr ix  for the given value of t. 

Lemma 1. The matrices Y~ ,o (t) satis]ying the integral equations (85-87) and de/ined 

in the neighborhood of the origin by She series (84) satisfy the inequalities 

IIV, o(oIl<ce ~', (i=~ . . . . .  ~ ;  . , = 1  . . . . .  r), 

along every ray in each Q-sector i] the positive constants c and p are chosen sufficiently 

large. 
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To show the  exis tence of two such cons tan ts  c and  p, select  a posi t ive  cons tan t  

t o < e  -q and  then  there  will obv ious ly  exis t  a cons tan t  c such t h a t  

IIV,~( t ) l l<e  and IIv, o ( t ) l l < c e  o ~ ,  ( i=l  . . . . .  ~ ;  e o = l  . . . . .  r), 

for all  [ t l_<t o and  all  q_>0. 

Suppose  t h a t  the  l emma  is false'. Then there  will  exis t  a posi t ive  cons tan t  

t I = t l (p )  > t o such t h a t  

(90) H V i ~ ( t ) H < c e  p l t i ,  ( i = 1  . . . . .  m;  e o = l  . . . . .  r), 

for al l  I ti < t 1 along every  r a y  in ~ ,  while for some po in t  t ' =  t 1 e ~q' in 

l l vso( t ' ) l l=ce ~ ( l t ' l = t , ) ,  

for a t  leas t  one choice of values  for i and  w,  say  i = i ' ,  eo =co ' .  Le t  the  in teg ra t ion  

be along the  r a y  runn ing  from the  or igin out  to  and  t h rough  t'. 

I f  b y  chance i '  is equal  to  a va lue  of i such t h a t  i + j  and  f l~=0,  t hen  f rom 

(86), (90), and  (89) 

(91) tl I r~' --r~i[ ~ II V~, o' (t')ll= ~ I~t'-- r,,l ~" ~ ~t .  < 0 ~ ~ + 

tl 

0 

where 2 is the  m a x i m u m  n u m b e r  of e lements  to  be found in t he  columns of the  

var ious  mat r ices  V~ ~(t) under  considera t ion.  

B u t  the  
to 

where a is the  m a x i m u m  value  of all  the  norms  

in the  region It-v[<<_to for r = l  . . . . .  ~o'; k = l  . . . . .  m ;  ~]=1 . . . . .  r. Hence  d iv id ing  

{91) b y  t 1 [r$' - r~i I ~" c e ~q and  ut i l iz ing  (88) and  inequal i t ies  s imi lar  to  (92) 
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o," t ~ - l m r X a e V ( t ,  t , )  
l < E  ,~. + 

v=0 tt ] r - r a i / t ' ]  ~" 

o J" 

v=O k = l  7 = 1  

t t  

2 0  f e(t'-I~l'(:-V) d 
to 

tT'l r -  ra,/t '  1"" 
+ 

0 e It 'l  (C-v) 
+ 

e t~"  + 1  [ r - -  rfl i / t '  1~" 

Taking p >  ~ and observing tha t  

it follows tha t  

(93) 

t, t , - t .  

f 
to 0 0 

~, t ~ - l m r 2 a e V ( t ,  t,) ~ t ~ -X2Omr  
1 <  , , 

,~o t~ I r -  rai/t  ` I ~'" + " ,=0 I t -  ra,/t'l I ( p -  r 

0 e Ittl(~-p) 
+ 

c t'~" +'l r -- rai//t' I ~'" 

-4- 

Noting tha t  all the l r - r t j i / t '  [ for t 1 > t o are uniformly bounded away from zero in a 

Q-sector, it is clear from (93) tha t  if p is chosen large enough the inequality is an 

absurdity for the right member  will be less than  1. 

Similarly, if either i ' =  j, or if simultaneously i ' # ] ,  fl~ = 1, and h = 2, then an 

absurdi ty can again be reached by  a chain of inequalities quite like those just given�9 

Thus in every case it is evident Lemma 1 must  be correct in order to avoid these 

absurdities. 

The analysis at  this stage is paralleling Trjitzinsky's work [2] so closely tha t  

the details from this point forward can be Omitted and the results of the analysis 

merely stated. 

The formal Laplace operator indicated in (80) can now be put  on a rigorous 

basis�9 Select some ray in sector ~ where the arg t = (P and then in evaluating all 

Laplace integrals, such as 
oo 

T ( s ) =  f e -st  V ( t ) d t  
o 

integrate from t =  0 to t = co along this (P-ray. Limit the complex variable s = Is] e~ ~ 

to the half-plane H((P) defined by  the inequality 
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R(e'a 's)=lsl  cos ((I)+~)>p' 

where p ' = p + e ,  e > 0  and arbitrary. With this agreement the integrals 

f e ~tVi~(t) dt 
0 

all converge absolutely in H((I)) and there define analytic functions 

(94) 

Moreover in H((I)) 

Ti ~ = Ti o~ (s 11r) = f e -s t Vi 0, (t) dt. 
0 

f e s t t V ~ ( t ) d t =  dT t~ .  
ds  ' 

0 

f e--Stv~=l[C 1, tv /y  '] a t  = v=l ~ cv/su+l*~ 
o 

and for all of our B series 

0 0 

t 
where both the integration and f are taken along the (I)-ray. 

0 0 

In  short the analytic /unction T~ w o/ s, de/ined by the Laplace integrals (94) satisfy 

the decomposed related non-homogeneous system (65-67). Moreover a few obvious trans- 

formations make it evident NSrlund's theory applies and it follows that  the analytic 

functions which are solutions of (65-67). can be represented in the half-plane H((I)) 

by  the convergent factorial series 

Ks ov ((I), ~) 
T~o(s l / r )= ,=0 ~ s ( s + v e  -*~ ( s + 2 y e  - i ~  ... ( s + v y e  :*~ 

( i=  1 . . . . .  m; c o = l  . . . . .  r), where the positive constant ~ is sufficiently large and the 

constant matrices Ki ~v, as indicated, depend upon the choice of (I) and ~. Any con- 

stant ~ > 1 is suitable provided it is large enough so that ,  when the inter ior  ~F of 

the circle [~ ~ 11= 1 is mapped into t h e  complex t-plane by the transformation 

t =  [e - i r  log ~]/~, 



6 4  H . L .  T ~ m ~ I T T ~  

the map of qP is contained completely within a region which is the union of the 

sector ~ under consideration and the circle I t l < e  -q. The function Tio~(s -1t~) also 

possesses an asymptotic expansion 

Ti e~(8 -l/r) ~ ~ ~l.~r§ r$ 

in the sector 
7~ 

- ~ - ( I ) + e < 2  arg s < ~ - ( I ) - e ,  

where e > 0 and arbitrary, for all sufficiently large Is I, see Theorem 1 in Doetsch's 

text  [14], p. 231. 

Transforming these results back to the t-plane by the transformation t = 8  -l/r 

we summarize our conclusions in 

Theorem III. Let a di//erential equation o/ canonical /orm (34) be given where Y 

i8 a vector and consider the j-lh column o/ blocks 

th-fliJ ( P l / +  U1i (t)) 

th ~; I"J(FJ 1,i + UJ-l,y(t)) 

(95) Yj(t)= I j §  exp ( / j ( t ) I i + J  j log t} 

th-flJ+l,J (Fj+I, ]- ~- Uj+l,j(t)) 

th-~"s (F,,j + U,,j(t)) 

in the /ormal series solution (46). I[ either h= 2 with no restriction on the nature o/ 

the characteristic roots, or i[ h > 2 and the characteristic root ~s0 di//ers [rom all the 

other characteristic roots Qi0, i ~ j ,  then the Uts(t), ( i=1  . . . . .  m) in (95) can be considered 

as known analytic /unctions which can be represented in the /orm 

(96) Uis (t) = ~ {t k Uis k + t ~ ~is~ (t)}, 
k=l 

where all the 

(i = 1 . . . . .  m), 

Kii k v (~, y) ~.~( t )=  
/. t-r(t  ~ + e-ir + 2 y e  -~r  +r~ ,e  -ir v~O 

are convergent [actorial series provided 

(i) angle (I)+arg (~o-Qj0) /or i = 1  . . . . .  j - l ,  j + l  . . . . .  m; 

(ii) positive constant y is su//iciently large; and 

(iii) the point t is located inside any o/ the r loop-shaped regions which map into 

the halt-plane H (@) under the trans/ormation s = t -r. 
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Furthermore each column o/ matrix Yi(t) is an independent analytic vector solution 

o/ equation (34) when Y is treated as a vector. The analytic /unctions Uij(t) can also 

be represented asymptotically by the /ormal series 

Ui~(t) ~ ~ Ui~k t ~ 
k=l 

provided the [tl is su//iciently small and t is located in one o/ the sectors 

( 2 ( I ) - ~ +  2e+47ek) /2 r<_arg  t< ( 2 ( P + ~ -  2 e + 4 ~ k ) / 2 r  

where e > 0  and is arbitrary and k = 0 ,  1 . . . . .  r - 1 .  The U~jk in (96) and the 

K~jk~ ((I), ~) are appropriate known constant matrices. 

w 9. Summary and Critique 

When this paper was first undertaken it was hoped tha t  all the formal series 

solutions of a vector equation of type (3.4) could be summed in every case. This 

objective has not been a t t a i n e d .  We have succeeded completely only when h = 2 or 

when m =  2. I f  h > 2 and m= 3 the method presented in this paper will be applicable 

ana  provide at  least one analytic vector solution expressed in terms of convergent 

factorial series, even though a full independent set of such convergent vector solutions 

may  not have been obtained. 

The simplest case which can not be fully t reated is a certain equation of the 

third order, but  not the equation 

d 3 y a du bu 
(97) ~ + x ~ x x + ~ = 0 ,  a~-0, b~:0, 

given by  Trjitzinsky [2] to show tha t  his work was of the greatest possible com- 

pleteness. Curiously enough what this example does show is tha t  Trjitzinsky has 

not really pointed out the full power of his method, for the substitution x = s  2 wi|l 

t ransform (97) into the equation 

d3y_  3_ ( 3 ) d y + 8 b y _  d~Y + 4a+ 7 ~ ~ - - 0  
d 8  ~ 8 d82 

which has three distinct characteristic roots and either Trjitzinsky's analysis [2] or 

tha t  of the present paper will give a full independent set of solutions expressed in 

terms of convergent generalized factorial series. I t  is believed tha t  the analysis pres- 

ented here brings out more completely the scope and power of Trjitzinsky's method. 

5 - -  543809.  Acta Mathematica. 93. I m p r i m ~  [e l 0  m a i  1955. 
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To summar ize  the  progress  m a d e :  

(1) A s t ep -by - s t ep  procedure  for compu t ing  formal  solut ions  is given.  

(2) The canonical  form has  been refined.  

(3) No d i s t inc t ion  need be made  be tween  norma l  and  ano rma l  solutions.  

(4) A t  least  one formal  solut ion,  a l though  not  a f u n d a m e n t a l  set,  has  been 

s u m m e d  if h > 2  and  m = 3 .  

(5) I f  in the  canonical  form of an equa t ion  h = 2  or m = 2 ,  a f u n d a m e n t a l  set  

of convergent  solut ions  has  been ob ta ined  regardless  of whether  or  not  the  formal  

solut ions  are  normal  or anormal  or whe ther  or  no t  there  is in the  sense of Tr j i t z insky ,  

one or  more  logar i thmic  groups  associa ted  wi th  each charac te r i s t ic  root .  

University o] Minnesota 
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