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1. Introduction

1.1. Let P={p;;:4,7=0,1, 2, ...} be the matrix of one-step transition probabilities
for a temporally homogeneous Markov chain with a countably infinite set of states
(labelled as 0,1,2,...). The probability pl; of a transition in n steps from state 7 to
state § will then be the (7, j)th element of the matrix P", so that the specification
of P (or equivalently of A=P—1I) completely determines the system. It is known
(Kolmogorov [24]) that the Cesaro limits

7; = lim ! > pi; (1)

n—so0 M y_1

always exist. Let Il denote the matrix whose (z, j)th element is 7;;, and consider

Problem A: Determine II when P is given.

This problem has obvious importance for practical applications. A number of
special techniques are available for its solution in particular cases (see, e.g., Feller [12],
Ch. 15, Foster [14], [15] and Jensen [18]); also Feller [12], pp. 332-4, has given a
general iterative method of solution. We shall give another (non-iterative) general

method in § 2: it will involve the non-negative solutions of
= Z Lo Pas
[« 2
such that X x,< co, and the non-negative solutions of

%=2PiuYa
o«
such that sup y, < .
o
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1.2. Let Pi={p;(t):4,5=0,1,2,...}, for each £=0, denote the matrix of transi-
tion probabilities for a temporally homogeneous Markov process with a countably
infinite set of states, such that p;;(£)—>d;; as | 0. We may then define a one-para-

meter semigroup {P;:£{>0} of transition operators on the Banach space I by setting
(Py ) Eagox“ Pas (t) (2)

for each element z=(x,, z;, %,, ...) of I. In exceptionally simple cases we can write
P,=exp (Qt), where Q is a bounded operator on I, but even for so simple an example
as the Dbirth-and-death process (for this see, e.g., Feller [12], pp. 371-5) this is no
longer possible. However a generating operator () (analogous to A in the chain case)

can always be defined by writing

Qu = strong lim (P z — )/t (3)
t40

for x€D(Q), where D () is by definition that set of elements x €l for which the
limit in (3) exists. In general Q will be an unbounded operator, but its domain D Q)
is always dense in ! and () determines the system uniquely (hence it is called the
infinitesimal generator).

It is also known (Lévy [27]) that the ordinary limits
o = }im P15 (8) 4)
exist (no Cesiro averaging being needed now); thus if we again write II for the
matrix whose (7, j/)th element is 7z;;, we are led to consider

Problem B: Determine 11 when Q is given.

A solution to this problem will be given in § 3: it will involve the non-negative

elements in the nullspaces of Q and Q¥ (the operator adjoint to Q).

1.3. For any such Markov process, the limits
= ltiff)l (pis (1) = dip)/t (8)

exist, and they are finite except perhaps when =4 (Doob [7], Kolmogorov [25]).
Always

2 GaS Qs
aFt
and in many cases of practical interest

(a) all ¢, are finite, and

(b) 2 q,,=0 for each 1.
&
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Conversely, given a conservative g-matriz, ie. a matrix Q= {¢;;} with non-negative
elements off the main diagonal and satisfying both (a) and (b), then there exists
at least one process for which p;; (+0)=g;;, but in general this process is not unique
(Feller {11], Doob [8]). When the process is unique the conservative g-matrix ¢ will
be called regular and the associated process will be called the Feller process determined
by @. That this is the normal situation in practical problems is the sole justifica-
tion for the common practice of specifying a Markov process merely by writing down
a conservative g-matrix (). Necessary and sufficient conditions for regularity have
been given by Feller {11] and (in a somewhat different form) by Kato [20].

It will now be clear that for practical purposes the solution to Problem B will

be insufficient, and that one must also consider

Problem C: Determine Ilz, the Il-matrix associated with the Feller process, when

a regular conservative g-matriz Q is given.

A solution to this problem will be given in § 4: it will involve the non-negative

solutions of
Z Lo Qaj= 0
&

such that X z,< oo, and the non-negative solutions of

Z%ayazo
o

such that sup y,< o=.
@

1.4. Throughout this paper we shall confine ourselves to ‘“‘honest” chains and

processes, i.e. systems satisfying > pi,=1. However, a ‘‘dishonest” chain or process
[« 2

can always be imbedded in an honest one (obtained by adjoining a single ‘‘absorbing”
state) and by means of this device our methods can easily be adapted to the gen-
eral case.

We have also confined ourselves strictly to the problem of calculating the II-matrix
and it will be recalled that one cannot decide from an examination of the z;; for a
Markov chain whether or not a given dissipative state is recurrent. But this limita-
tion also is only apparent; it has often been remarked that the question of recurrence
can be settled by calculating the Il-matrix for a modified chain in which the given

state is made absorbing.

1.5. In some respects this paper is a sequel to our paper [22] in which we

considered the ergodic properties of one-parameter semigroups of operators on an ab-
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stract Banach space, and readers of the earlier paper will find a discussion of the
present problem from the standpoint of the general theory in § 6. Others who are
mainly interested in probabilistic applications may prefer not to read beyond § 5, in
which some examples are given to illustrate our methods. We have deliberately
chosen the simplest examples which would serve this purpose, but we believe that
the methods of this paper can usefully be applied to some more complicated systems
which arise in practice. In particular, we intend to treat elsewhere the ergodic pro-
perties of two Markov processes which describe (i) the competition between two

species, and (ii) the development of a stochastic epidemic.

2. Markov chains: the solution to Problem A

2.1. We first recall some results with which the reader will doubtless be familiar
(perhaps in a different terminology).! The limits s7;; defined at (1) always exist and

will clearly satisfy
73520, Sma<1.

The structure of the matrix Il = {mj,:1, j >0} is most conveniently described by classi-
fying the state j as positive when n;;>0 and as dissipative when m;;=0. The collec-
tion of positive states (if there are any) is then further divided into disjoint positive
classes, the positive states j and k being in the same class if and only if o, >0.
(This relation can be shown to be reflexive, symmetric and transitive.) If we write
a;=my; for each positive state §, then the m; can be expressed in terms of the z; and
a set of numbers @ (¢, ), defined for each state ¢ and each positive class C, where
0<w(1,0)<1. In fact

(i) m;=0 for all 4, if § is dissipative.

(if) m;=w @, C)n; for all ¢, if § belongs to the positive class C.
Also 7; and w (1, C) have the following properties:

(iii) jezcyt,= 1 for each positive class C.

(iv) If ¢ is a positive state and C a positive class,

1 if 1€0,

@ (. C)=<0 if i¢0.

1 For expository accounts of the theory, see Caune [4], FerLER ([12], Ch. 15), Lokve ([28],
pp- 28-42).



THE CALCULATION OF THE ERGODIC PROJECTION FOR MARKOV CHAINS 107

(v) If ¢ is dissipative and {C®:p=1,2, ...} are the positive classes, then

S @ (i, 00 <1.
e

(vi) If C is a positive class, then

; if €0,
ogcﬂapaf={ A ; c0. (6)
and gpia@’ (¢, O)=w (2, C) for all ¢. (7)
(vii) For all 4+ and j,
gﬂiocnai=§xiapaf=§piaﬂaf=-kﬁ' (8)

(In (7) and (8) summations are over a=0,1,2,...; we shall adhere to this conven-
tion from now on.)

The classification of states and the description of m;; have been given above in
purely analytical terms: however, they have probabilistic meanings which (although
they are not needed for what follows) the reader may usefully keep in mind. Positive
states are precisely those which are recurrent with finite mean recurrence time u;,
given by u;=1/n;; dissipative states are either recurrent with infinite mean recurrence
time, or non-recurrent (transient); finally @ (i, C) is the probability that the system,
starting at state ¢, will ultimately enter (and thereafter remain in) the positive class C.
These interpretations depend on a detailed and deep analysis of the asymptotic pro-
perties of pj; as n—>co, first made by Kolmogorov [24]; the properties of II which
we have stated lie less deep and have been proved more simply by Yosida & Kaku-
tani [32] and Doob [7].

2.2. The calculation of IT when P is given involves two steps:

(a) the classification of states and determination of the reciprocal mean recur-
rence times =;,

(b) the calculation of the absorption probabilities w (¢, C).

Step (b) will of course be superfluous (by (i) of 2.1) when there are no positive states,
and will be trivial (by (iv)) when ¢ is a positive state.
To perform step (a) we introduce the Banach space ! whose elements are real

sequences ¥ = (¥, &,, %, ...) such that

“x”zgjxa[< oo,
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Then P and II determine bounded linear operators on I as follows:

(Px)ifg%%n (Hx)fsgxana%
We have
Pz>0, [Mz=0, [Tlz| <|«||=]|P=|l, whenever x>0,

and also (because of (8))

Mm=prPHO=0P=II (9)
For each positive class C? we define n°€!l by
if jEC°,
o= {7
0 if j¢C

thus 7°>0, ||n¢]|=1 (by (iii) of 2.1), 2 has C? as its support,! and from (6) we see
that Pa?=n? so that m? belongs to the nullspace H(A) of the operator A=P—1.
The following theorem is well known,? but we state it in a form which differs from

the usual one and therefore sketch its proof.

THEOREM 1. An l-vector x lies in N(A) if and only if there exist real numbers
{A:0=1,2,...} such that 5 |2°|< oo and x=2 Aa® Also =0 if and only if 22=0
e
for each p. ¢

Proof. From the fact that An?=0 it easily follows that Ax=0 whenever z is
of the stated form. On the other hand, if €17 and Axz=0, then

Sa(t 5 g )=w
“ o n 5 af 7
and so on letting n—>oco we obtain
qunal=xi'
[+

From (i) of 2.1 it now follows that ;=0 when j is dissipative, so that

z z Lo, (ng)i =%,

e gect

where the first summation is over all positive classes. The first assertion of the

theorem now follows on setting
= 2 Ly s
xec?

the second assertion follows from the fact that the vectors n? are positive and have

disjoint supports.

! The support of an I-vector x is the set of states § such that z; 0.
¢ See, e.g., CaUNG ([4], Th. 9), or Lo&ve ([28], p. 41).
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We can deduce two important corollaries on using the fact that for each p, the
support of n? is precisely the corresponding positive class C° Let us denote by H™ (A)

the set of positive vectors in M (A). Then we have

CoROLLARY 1.1. 4 state j is positive if and only if it lies in the support of at
least one l-vector x € N* (A). Two positive states | and k lie in different positive classes

if and only if there exists an x € N+ (A) whose support contains § but not k.

CoRrROLLARY 1.2. Let j be a positive state. Then amongst the elements x € N™ (A)
such that z;=1 there is a least, 2/, and &' /||2’||=n® where C? is the positive class con-
taining 7.

These corollaries show that step (a) can be performed when the nullspace N(A)

has been found.

2.3. We now have to carry out step (b) in so far as it is non-trivial, so that
we must give a method for calculating @ (k, C) when k is a dissipative state and C
is a positive class. This will involve the nullspace ¥ (A*) of the operator A* ad-
joint to A.

Let m be the Banach space of real sequences y=(¥,, ¥;, ¥p, ...} such that

ly]|= sup [ya] < oo
Then m is the adjoint space to !, and we shall write

(y,2)=> yyx, Wwhen y€m and z €l
o

The opcrator P* adjoint to P is given by
WP)i=2Pays  (yEm),

and (yP*, z)=(y, Px) when y€m and z€l. For each positive class C? we define
w?€Em by
(@)=w (09  (i=0,1,2,...).

Properties (iii) and (iv) of 2.1 show that
w>0, |l=l=1, (@%a9)=1,

and (@9;=0 if {€C°(g+p). From (7) we have w®P*=w? so that w?€N* (A"Y),
the positive part of the nullspace M (A*) of the operator A*=P*— 1. The nullspace

of A* is often much bigger than this result suggests,! but fortunately we can still

1 The structure of 1 (A*) has been studied by BrackwerL [2] and FELLER [13].
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characterise @° by a minimal property similar to that involved in Corollary 1.2. We

formulate this as

THEOREM 2. Let (° be a positive class and let n° be the associated l-vector. Then

®° i3 the least element y of N (A*) such that (y,n?)=1.
Proof. We already know that y= w?® satisfies the three conditions

y=>0, yA*=0, (y, n%) =1.

Let y be any m-vector distinct from w@? and satisfying these conditions.

zpina?/a=yi>
o
1 n
and so > (f > /p?a) Ye=1Vi,
a« \Mr=1

from which it follows (on using the positivity of y) that

zniayczgyi-
We can write (10) in the form

;w(i: Ca) Z nayagyi’

aeCY

Then

where the ¢-summation is over all positive classes, and this is equivalent to

> @ (i, C°) (y, n°) + @ (1, C) < i,
£ ]

from which it follows that w®<y as required.

(10)

We ought to mention here that Feller ([12], p. 332, (8.2) and (8.3)) has given

a set of recurrence relations which uniquely determine the absorption probabilities

@ (¢, C). This recurrent procedure may, however, be as difficult to carry out as the

calculation of the m;; directly from their definition (1). As Feller remarks, one has

then to resort to his equation (8.4) and the solution to this equation is in general

not unique. The non-trivial: part of our Theorem 2 singles out the relevant solution.

2.4. We can now state our solution to Problem A as

TuEOREM 3. If the positive classes {C°:p=1, 2, ...} and the associated l-vectors

7 and m-vectors w° are determined by Corollaries 1.1 and 1.2 and Theorem 2 above,

then the matriz-elements of the ‘“‘ergodic projection-operator” II will be given by

Tij = 0 (all 'L)
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when j 18 not a positive state, and by
7= (@2 (7%);  (all %)

when § lies in the positive class C°.

3. Markov processes: the solution to Problem B
34. If {p;(t):4,7=0,1,2,...;t>0} is the array of transition probabilities for
a Markov process, and if (as we shall always assume) the continuity condition
P (t)—=d6; as t{0
holds, then the limits 717 = lim i (1) (11)

exist. This result is due to Lévy [27], and can be proved by considering the chain
defined by setting p5=p:;(nt). This chain is aperiodic because p;;(n7) >0, and there-
fore 7}111010 pij(nT) exists for each fixed v>0. From the uniform continuity of p;;(-)
for fixed ¢ and j, it follows that this limit is independent of 7 and then that the
limit at (11) exists.

Clearly we can calculate m;; by applying the procedure of § 2 to the chain whose
matrix of one-step transition probabilities is P, ={pi;(1):7,j=0,1, 2, ...}, for any one
7>0, because

75 =lim p;; (n7) = lim (P7);;.

n~>c0 N—»oQ

To do this, we must consider the nullspaces M (A,) and ¥ (A}), where
A,EP.,“I, (P-zx)jzzxapod(r) (ZEZ)

The dependence of this procedure on the choice of 7 is, of course, only apparent, and
this fact is exhibited most conveniently by introducing the one-parameter semigroup

{P;:¢>0} of operators on ! associated with the process. This has the properties:?
(a) Py=1, P,P,=Pyyy (u=0,v20).
(b) P;x>0 and | P;z|=|z|| whenever 0<z €l
(¢) ||Piz—2||>0 as ¢]0, for each z€L

Its infinitestimal generator Q) is defined by

Qua = strong lim (P;z—x)/t
t40

! For the special properties of such “‘transition semigroups’” on [, see KENDALL and REUTER [23]
or KENDALL [21]; for the general theory of semigroups of operators, see HiLLe [17].
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whenever this limit exists, the domain D () of Q is dense in [, and
¢ t
Ptx=x+fPuQxdu=x+fQPuxdu (12)
0 ]
for z€D(Q) and ¢=>0. The adjoint operator Q* (on the adjoint space m of 1) is
defined by setting y Q* =2z, where

(z, x)=(y, Q) for all z €D (Q),

whenever such an element z (necessarily unique) exists.

We now have the crucial

LeMMa. NQ)=N(A,) for each T>0; (13)
nQY)= Qon (A7). (14)

Proof. 1 x€ N(Q), then (12) at once gives P,x=uz, so that z € H(A,). Con-
versely if € M(A,) for one >0, then P,x=x and hence Ilz=z (as in the proof of
Theorem 1). On using (9), we obtain that Pix=P;[Tx=Ilx=2a for all t>0, and so
finally that Qax=0. This proves (13).

Next, if y € H(Q*), then (12) gives

(y, P, 2) 2)+ [ (y, QP x) (all z€D(Q))
0

=y, 2)+ [ Q" Pyx) du=(y, 2).
0

Hence (y P}, x)=(y, z) for all x€ D(Q), and because D(Q) is dense this implies that
yPf=y, ie. that y€MN(A¥). Conversely if yP;=y for all v>0, then (y, P.x)=
(¥, ) and

Px—x

):0 for all z€ D (Q),

(y, Qz)=lim (y,
40
so that y € N (Q*). This proves (14).

3.2. We now classify the states and describe the structure of II. Let us say
that the state § is positive if 7;; >0, dissipative if n;; =0, and that two positive states
j and k are in the same positive class if ;. >0 (this is an equivalence relation between
positive states). Clearly this classification coinecides with that of § 2 for each of the
chains P, derived from the process. Using (13), we can at once transcribe Corol-
laries 1.1 and 1.2 in terms of H* (), the positive part of ¥ (Q), and obtain
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THEOREM 4. A stale is positive if and only if it lies in the support of some
2 €N (Q); two positive states lie in different positive classes if and only if there exists
an x €N (Q) whose support contains one of the states but not the other.

If § is a positive state then amongst elements x € N* (Q) with x; =1 there is a least,
o', and if nt=a/||2’|| then n® depends only on the class C® containing §, and has C°

as its support.

To find the analogue of Theorem 2, we observe that the same [-vector n? and
m-vector ¢ are associated with a positive class C? for each chain P,, and in each
case @? is the least element y of M'(AY) such that (y, n%)=1. Hence m? is also the

least element ¥ in

N1 (A7)

>0

or (by (14)) in N (Q*), such that (y,n?%=1. Thus we have

TreEorREM 5. If (C° is a positive class and n® is the associated l-vector of Theo-

rem 4, then amongst the elements y of N (Q*) such that (y, n®) =1 there is a least, w°.

By combining Theorems 4 and 5 we obtain as a solution to Problem B:

TueorEM 6. If the positive classes C° and the corresponding l-vectors n? and
m-vectors w° have been determined as in Theorems 4 and 5, then the matriz-elements of

the ergodic projection-operator I1 will be given by
;=0  (all 7)
when § 18 not a positive state, and by
;= (@) (n%);  (all 1)
when j lies in the positive class C°,

It should be pointed out that whilst we have proved our results for processes
by considering the chains P, and using the results of § 2, this is only a matter of
convenience. Direct proofs can be given, by methods similar to those of § 2, based

on the properties (analogous to (8))

%maﬂw:zﬂmpaf t)=2 Pia(t) ay=m; (for each £=0), (15)
o o

which where proved by Doob ([7], Theorems 6 and 7).
8 — 573804. Acta mathematica. 97. Imprimé le 12 avril 1957.
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4. Feller processes: the solution to Problem C
4.1. Suppose that a matrix @ of finite real elements g;; is given, such that
¢;=0 when 1+7, 2 qi.=0 for all ¢
Suppose further that the conservative matrix @ is regular; i.e. that the “minimal”
process constructed by Feller [11] is honest (satisfies D p;q (t) = 1), or equivalently that

there is exactly one Markov process such that p;; (+0)=gqi;. (See Doob [8], Reuter [31]).
We write z € D(Q) whenever

(a) =€l
(b) > x,q,; is absolutely convergent for each j,
(c) ,;lgzqul<°°;

and we define an operator @ with domain D (Q) by setting

(Qx)ngxa % (€D(Q)). (16)

The set D, of ‘“finite’’ vectors (those with only finitely many non-zero components)
is contained in D(Q), and we define @, to be the restriction of @ to D (Qy)=D,.
Because D, is dense in I we can define the adjoint @5 of @, and this can be shown

to be given by
W)=2q.y« (YEDR) (17)

the domain D (Q3) of QF consisting of those vectors y €m for which (17) defines an
element y @y of m.

Now let Qf generate the Feller semigroup associated with the given ¢’s. Then!

QEQrsQ, (18)

and hence Q*SQI=Qr; (19)
further for each A>0 and z€l, the equation

AE—Qré=x (20)

has exactly one solution £=®;z in D(Qr). When >0, then ®;2>0 and {=0;2
is the least positive solution (in D (Q)) of the equation

AE—Qé=x. 21

1 The properties of )y which we state here can be proved without undue difficulty by exam-
ining FELLER’s construction [11] of his “minimal” semigroup; see [31].
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We now make use of our assumption that € is regular, i.e. that Qy generates a
transition semigroup. This implies that A®; is a transition operator, and! that the
nullspace (A - QF) contains only the zero vector, for each 1>0. Using these facts,
we are able to eliminate the explicit references to ( in Theorems 4 and 5, and re-

place them by statements involving the ¢’s alone. To do this, we prove

THEOREM 7. If Q is regular, and Qr generates the (unigque) associated transi-

tion semigroup, then

N (Qr)=N"(Q), (22)

N (QF) =N (Q0) (23)

Proof. Clearly (18) implies that 0" (Qz)SHN* (Q), and (22) will follow if we can
prove the reverse inclusion. Suppose then that =0, z€D (Q), and @z =0, and choose

some fixed A>0. We shall then have Az—Qz=A12>0, so that £§=x is a positive

solution of the equation

AE—QE=Az=0 (£€D(Q). (24)

But (cf. (21)) the least positive solution of (24) is &= ®;(1x), so that x> d;{1x)=
A®,z; also we cannot have z + A ®;x because this would now give ||z || >||1®;z||, con-
tradicting the fact that A ®; is a transition operator. It follows that z=®;(1z)€ D (Qr),
so that € H' (QF); this proves that ¥ (Q)SN* (Qr), and (22) follows.

We shall deduce (23) from the sharper statement that

=0, (25)
and to prove this it will suffice, by (19), to prove that
D (QF) =D (o). (26)

We shall need here one further fact from semigroup theory, namely that when >0

and x €D (QF), then
O, (Al -Qp)x==x.

From this it follows at once that
w®} €D (QF)
and that w®F (AI—QF)=w

for all weEm.

! The condition, 1 (AI- Q?;)= {0}, is given in Karo’s paper [20]. The condition can be proved
to be equivalent to the regularity of @; see [31].
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Now if (26) were false, we could find y=+0 such that ¥ € D(Qg) but y ¢ D (Q}).

Fix A>0, and define
e=y (AL~ Q) Of.

Then z €D (QF), so that z+y, but also
2(AI—-Q0)=z(A1 - QF) =y (A1 - Q) @ (Al - QF)

80 that (z—v) would be a non-zero element of 1 (11— @F), contradicting the regularity
of Q. Thus (26) must hold, and (23) follows. (For (26), see also [31], § 7.2.)

4.2, To obtain a solution to Problem C, we have merely to combine Theorem 7

with Theorems 4 to 6. This leads us to
THEOREM 8. Let Q={g;;:1,7=0,1,2, ...} be a regular conservative g-matriz, and
let {p;;(t):t=>0} be the unique process such that p;;(+0)=gq;;. Then:

(i) A state is positive if and only if it lies in the support of some x€N'(Q);
two positive states lie in different positive classes if and only if there exists an

x € N (Q) whose support contains one of the states but not the other.

(i) If § is a positive state, then the set of l-vectors x € N* (Q) with x;=1 has a
least member o, and if a®=2'/||2’|| then n° depends only on the positive class

C? containing § and has C° as its support.

(iii) If C% is a positive class, then the set of m-vectors y € N* (Qy) with (y, n) =1

has a least member ©°.
(iv) The limits Ty = }Lrg P15 (t)
are given by ;=0  (all 7)
when § is not a positive state, and by
= (@ (7% (all %)
when § lies in the positive class C°.

In order to apply Theorem 8, we have only to use the facts that ™ (Q) consists

of all positive vectors x €7 such that

Zoza qaj =0 (j=0: ]-3 2) ---)7 (27)
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and M (Qp) consists of all positive vectors y € m such that
ozoqmya=0 (2=0,1,2,...). (28)

The relevance to the ergodic problem of the positive convergent solutions to (27) and
of the positive bounded solutions to (28) has, of course, long been recognised by
statisticians; the importance of Theorem 8 is that it allows the appropriate solutions

to be identified in cases of non-uniqueness.

5. Examples

5.1. The random walk. We begin with an example illustrating the solution to
Problem A; it is a familiar one and here the ergodic behaviour is well understood
(cf. Foster [14], Harris [16], Jensen [18], Karlin & McGregor [19]). We label the states
of a Markov chain as ..., —1,0,1, ... and then put

py=9yq if j=i—1,
0 if j=i+1,
where p;>0, ¢;>0 and p;+¢; =1, for all ¢. To find the nullspace of A we must solve
the difference equations
L=pi1% 1t Gz (all g),
and we write these as

UED Y Pi-1%-1= G111 %41 ¢ % .
Evidently! w €1 if x€l, so that we must have

p,xj=uj+u,~_1+u;_2+ ey,

(29)
q;X= — (u]+ Uj+1 + uj+2+ "'),
7 0
and we therefore put EX O=D Uy,
- 00 — o0
so that (29) becomes DX =0y, Qi %, =V;_1~ 0.

Because both z and « are in I, we know that z; and »; tend to zero when j— — oo;

thus ¢=0. The last pair of equations now gives v;=(p;/q;) ¥;-1, and hence

o
! A typical l-vector now takes the form z=(..., z_,, #,, %, ...), With H x” = z l Ty | < oo,
-0
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P1DPso - s .
= " (7>0),
G- U !

v =
9+19i+2 --- Qo .
Gs1divz - Qo (i),
Pi+1Dj+2 .- Do ¢ !

Let us set
4 1 p, ...
R=> l.u_,_l_*_z_.u. (30)

~oPiPi+1---Po Po 1P D

If R=co, then v,=0, the nullspace of A contains the zero vector only, and every
state is dissipative. If R < oo, then the nullspace of A is spanned by a single posi-
tive vector, every state is positive, and the states form a single positive class. In

both cases, we shall have

1_%'+1 Qo_l

if 5<0,
D Pisr... Py B !
T = 1/(1’0R) it §=0, (31)
LI RN T Y
Piq .-y R

for all 7 (these expressions all being zero when R= oo).
The nullspace of A* can readily be found for the present example, but (cf. 2.2)
this is never required when, as here, M (A) is either zero-dimensional or is one-dimen-

sional with a strictly positive generating vector.

5.2. The “flash of flashes”. We next give two examples illustrating the solution
to problem B, and we have chosen for this purpose the two most pathological pro-
cesses which we know. The first of these has a conservative g-matrix which is so
highly non-regular as to be associated with a continuum of processes all satisfying
the same set of ‘“‘backward” and ‘‘forward” differential equations. Problem C would
here be quite meaningless and the process will be specified by giving its infinitesimal
generator Q.

The space I will now be so labelled that a typical I-vector becomes

where =, 2, x5, 21, ...)

and the ), are real numbers such that

oc o0
lzll=2 > |a8] < co.
~00 —00
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Now let a5 (s,n=..., —1,0,1,...) be positive real numbers such that > > 1/ag < oo,
and define the conservative ¢-matrix @ by
[ —ad, if n=m,
gmn =0 (r=3); g, =1 +a, if n=m+1,
l 0 otherwise.
The operator ) is then defined to be the restriction of the matrix-operator ¢ (defined
as at (16)) to the domain of l-vectors x such that
@) 22|a§_1x§_1—a§x§|< oo,
(i) Uz=L*"'z (s=...,—1,0,1,...),

(iii) lim U°z= lim L’x,

G—>+o0 OC->—00
where Ulz= lim aj x5, Lx= lim a}, 5.
n—>+00 —>—00

(It is shown in Kendall [21] that Q generates a transition semigroup.)
We must now find the nullspace of Q. If 2 € H(Q), then
An_1 %5 1— A T =0
for all s and %, and so

xy=c*/ay, where ¢’=U’z=L"x.

Condition (ii) then shows that ¢’ is independent of s, and the other conditions are
now satisfied automatically. Thus H () is one-dimensional and is spanned by the
vector whose (3)th component is 1/a}. It follows that all the states are positive,

that they form a single positive class, and that
. 1/ 1
ijﬂnfn=£/ZZ&§ (32)
for all values of 7, s, m and n. As in 5.1 there is no need to calculate H(Q*).

5.3. A sequence of flashes communicating via an instantaneous state. In this
example (also taken from Kendall [21]) the Markov process has a highly non-con-
servative g¢-matrix; one of states, labelled 0, is “instantaneous” (has g, = — o) and

the corresponding row of the ¢-matrix can be written as
(—00,0,0,0,...).

As in 5.2 the process will be specified by giving its infinitesimal generator (. This

time ! is so labelled that a typical I-vector becomes
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a0 a1 2
z= (2" o', 2%, ...)
where a° is a real number and z° is a real vector

d=(..., 20, x5, 25, ...).

The norm is defined by
leli=lel+ 5 3 Jatl<ce.

Now choose positive numbers ¢} (s=1,2,3, ...; n=..., —1, 0,1, ...) such that
> > 1/ai< oo and define D(Q) to be the set of vectors x which satisfy

() >>lag-1ai1—adad|<eo

and (i) Lz= limalay=2" (all s=1)

n——o

(such vectors necessarily belong to ). Finally define Qz for €D (Q) by

8

Q2= 3 (U7 —a),

Q) =al 125 y—ayal (s=1, all n),

where Usz= lim a} 25,
n-s+ 0

(this last limit necessarily exists and the series equated to (Qz)° is necessarily ab-
solutely convergent). Evidently Qz=0 if and only if a} 2, =c=2° and so H(Q) is
one-dimensional and is spanned by the vector whose components are
=1, z, =1/a.
Thus all the states are positive and form a single positive class, and
A® =4, % ~d/al, } 3
wp=A4,  wnn=A4/e,

where 1/4=1+2 > 1/aj. Once again there is no need to find ¥ (Q%).

5.4. A general Markovian gqueuing process. We now turn to Problem C: the cal-
culation of the ergodic projection for Feller processes. As a first example we consider

the Markov process having the g¢-matrix

—b, b, 0
a; —(a,+by) b,
0 ay — (a5 + by) b, - (34)

0 a, —(az+b3) ...




THE CALCULATION OF THE ERGODIC PROJECTION FOR MARKOV CHAINS 121

where by, a; by, a,, ... are given positive real numbers.! In the classical queuing process
of Erlang we have a,=a,=-.-=a and by=b;,=b,=-.-=b; the state-label r is equal
to the number of persons waiting or being served and so a can be identified as the
reciprocal of the mean service time and b as the reciprocal of the mean time between
arrivals, each of these times having a negative-exponential distribution. In the more
general system considered here each of @ and b is allowed to depend on the number
r of persons present in the queue. A similar extension of the classical queuing situa-
tion has been considered previously by Jensen [18].

The g¢-matrix at (34) is conservative: it will be regular and so define a unique

Markov process if and only if the set of equations

(A+by) Yo = by 1
(Z.“}“(lr'lrb,) ?/rzaryr—1+bryr+1 (7'21)>

has no bounded solution other than y,=y,=y,=---=0 for any one (and then for all)
A>0. In looking for a non-null solution we may clearly assume that y,=1 and then

the relations

?/1=1+)*/b0’

} (35)
by (Yri1—Yr)=Apr+ 0 (Y — 1), (r=1)

show inductively that 1=y, <y, <y, <:--. We therefore put ¥ = lim y, < co. From (35)
we find that

ym—y,:A{Z—:+Z:z::i+.--+2—:—%'z—i%ﬁ} (36)
for all r>0. Now if

c,Eblr-,Lbr—Z:—‘—lan—l—%%%?o (r=0),
then (36) gives A <Y1 —yr<Acryr (r=0),
and so 1+A§C,SY§I§[(1+ZC,).

We conclude that the g-matrixz (34) is regular if and only if

21
a, Ay ... Q&
4t 1

PR S b,...blb;}=°°' (37)

This result is due to Dobrusin [6]. who deduced it from Feller’s regularity criterion;

the advantages of the alternative analytical criterion for regularity are very well shown

by this example.

1 We now revert to 0, 1, 2, ... as the state-labels.



122 DAVID G. KENDALL AND G. E. H. REUTER

We now suppose that (37) is satisfied, so that (34) is associated with a unique
Markov process. The solution to Problem C requires that we find all positive I-vectors

z such that
—byzy+a;2,=0, (38)

br—lxr—l_(ar"'br) Tr+ @121 =0 (r=1). (39)
These equations have a one-dimensional set of solutions generated by

b, by by By b

Xy = s e
a]_ alaz al...ar

so that we must distinguish between two cases, depending on the nature of

So1s 5 Dobibra,

F210,Qy... Q

(40)

If §=oco, then every state is dissipative, whilst if S< oo then all the states are
positive and form a single positive class. In both cases
by ... b1 1

1
= gy =0 Im i>1), 41
s’ Yoag...a S (i=1) (41)

o=

for all 3.
It should be noted that S=occ and §< oo are each consistent with the regularity
condition (37). If a,=a and b,=b for all values of r then (37) will hold and we find
that S< oo if and only if b<a (a well.known result). The importance of the series

(40) in queuing problems has been previously noted by Jensen [18].

5.8. The general birth-and-death process. We now consider the Markov process
associated with the conservative ¢-matrix (34) when b,=0 and a,>0, b,>0, for r = 1.
Naturally we must again require the g-matrix to be regular, and the regularity condi-
tion will be derived in a moment. The state-label r will now be identified with the
number of individuals in a population for which the chances of a birth or death

occurring in the short time interval 8¢ are

b.6t+o(0t) and a,6t+0(d8),

respectively. The condition b,=0 ensures that the population cannot recover if it
once becomes extinct. The familiar “‘simple” birth-and-death process corresponds to

the choice
a=ra, b,=rb
for the parameters.
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The g-matrix will be regular if and only if, for some one (and then for all)
A>0, the set of equations
Ayy=0,
(}"{‘ar’*”br) ?/r:ar?/rvl+br?/r+1 (7'21),

has no non-null bounded solution. Without loss of generality we may put y,=0 and
y,=1, and then we shall have
Ys=1+(A+ay)/by,

br (Yra1—Yr)=Ayr + @ (¥r — Yr-1) (r=2),

so that 1=y, <y,<---. Again it is convenient to put Y= lim %,, and very much as
T
before we find that

Adrt+e<yrp—y,<(Ad;+e)y, (r=1),

1 a a a a asa
h dy=-— LS Tl b e S p=_r 21
where T ST S WALy S 3
and so 14+ 2 (e, +Ad, )< Y <[I(1+e +Ad,).
1 i

It follows that the g-matriz (34), with by=0, is regular if and only if

§l+ a“ . ... ay |

1o 42
EA Y by ... bby) (42)

This result also is to be attributed to Dobrusin [6].1 Note that (37) is in effect a
condition on by, @y, b,, ... only, and that it is equivalent to (42), so that the regularity
of the system does not depend on whether the state r=0 is or is not absorbing.

We now assume that (42) holds and find the solution to Problem C. First we
must find all positive I-vectors z such that

a,z,=0,
~{ay;+b))x; +asz,=0,
b1 %1~ (A + b)) X+ 0r 11211 =0 (r=2),

and we see at once that the general solution is an arbitrary non-negative multiple

of the vector
«’=[1,0,0,0, ...].

Thus the zero-state is positive and forms by itself the only positive class C; all other

states are dissipative. Accordingly we shall have

1 See also Karruin & McGrecor [19].
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;=0 (=1, all 7)
and o= (n} (7;, 0) (all 7:),
so that the missing column of the Il-matrix consists of the extinction-probabilities

@ (1, )= lim pio(t) (1=0,1,2,...);

t—>+o0

it is clear that this limit is attained monotonically, and that it could be interpreted
as the chance that the population, initially of size ¢, will ultimately become extinct.
Our solution to Problem C shows that the vector @ whose ith component is

@ (3, C) is the least non-negative bounded solution y to the equations
& yr1— (@ + b)Y Fbryr =0  (r=1,2,3,..), (43)

subject to the requirement that
(¥, u)=y, = L.

The general solution to the difference equation (43) is

/ -1
Yo—4, %=A+B(L+Z“P”%

>
Flm.“m) (r=1),

where 4 and B are arbitrary constants, and the nature of its bounded solutions will

depend on
Za a
T=1 10078, 44
Y2 (44)
If T=c, we must have w=[1,1,1,...]

and extinction is almost certain whatever the initial state. If however 7' < oo, then
N(Q3) will be two-dimensional and the minimality condition comes into play; we find

then that the vector ' and the individual extinction probabilities are given by

[

Wy = Ty =

>

*® 45
5 cbzl...Zs i=1). (45)
s=i U1 ... Os

Wi =Tio=

M| -

As in 5.4 it should be noted that T'=co and 7T'< co are both consistent with the
regularity condition (42): for instance if a,=ra and b,=rb (the “simple” birth-and-
death process) then (42) always holds, whilst T'< oo if and only if a<b. It is also
worth observing that the conditions 8=co (in 5.4) and 7= o (in 5.5) are entirely
different in character. Roughly speaking a queuing process will be completely dissi-
pative (S=oco) when the ratios b,/a, are too large, whilst the corresponding birth-

and-death process will have the universal extinction property (I'= oo) when these
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ratios are too small. This is of course quite reasonable from the intuitive standpoint.
Finally it should also be mentioned that the II-matrix for the examples in 5.4 and
5.5 has been previously found by Ledermann and Reuter [26] assuming the g-matrix
to be regular (the regularity conditions (37) and (42) were not known to them); the

present method is however much simpler.

6. The calculation of R(II) and 1 (I1)

6.1. A different approach to Problem B. In [22] we treated a generalisation of
Problem B: to determine the subspace I' of “ergodic” vectors x € X and the associated
“ergodic projection operator” II (defined on I'), for a one-parameter semigroup
{P;:t=0} of operators on a Banach space X. A vector x was there called ergodic

whenever Il x= lim P;x existed as some kind of generalised limit and with regard

t->00

to some suitable topology for X. This work formed a natural continuation of earlier
investigations in general ergodic theory by Dunford [10], Hille ([17], Ch. XIV) and
Phillips [30], but for us it was also prompted by a desire to solve Problem B of the
present paper. If we set X=I in [22], the resulting theorems are not always ap-
plicable to Problem B, but the methods of [22] can be adapted to yield a partial
solution. This has an entirely different character from the solution given in § 3,
where the lattice properties of | were exploited: we shall now have to study the
interplay of a variety of weak topologies. It should be emphasised that the solution
of § 3 is superior in that it is always available; the methods to be described now
may sometimes fail altogether but have their own merits whenever they can be applied.
Problem A can also be treated by similar methods; the analysis is then simpler and
we leave the details to the reader.

As in § 3, we consider a Markov process whose array of transition probabilities
is {pi;(®):4,5=0,1,2,...}. Let Q be the infinitesimal generator of the associated
transition semigroup {P;:¢>0} on [; also, with m; ,-Etlim pi;(t) as before, define the

ergodic projection operator I1 by
(1 z);= g Ty ey (EID).
We recall (cf. (9) and (15)) that
I2=P,II=I1P,=1I for all t=0. (46)

It is important to note that the operator Il is in general not the same as the
operator II of [22].
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Because Il is idempotent we can write any « €[ uniquely in the form x =2, + x,,

where z;, € R(IT) and x,€ N (I1), and 2, = Il x. Thus we have the direct decomposition
I=R(II) ® NI). (47)

If we can find the summands R(Il) and H(II) in (47), then we can find [Tz, for
any x €1, by taking the component of x in R(IT). It will now be seen that we may
rephrase Problem B as follows.

Problem B,: Determine R(I1) and N(II) when Q is given.

We shall see that R(II) is easy to identify, and coincides with ¥ (Q). The deter-
mination of Y (IT) is more troublesome; it turns out that R(Q)< M (I1), and we shall
try to reach M (II) by closing R{Q) with regard to several weak topologies for .

6.2. Weak topologies. It will be convenient for future reference to state some
results which we shall need concerning weak topologies for a Banach space X. (Cf.
[6] and [3], Ch. IV.)

Let G be a linear set of functionals g € X* which is “total” for X, i.e. such
that the vanishing of (g, x) for all ¢ € G implies z=0. Then the G-weak topology for
X is the (Hausdorff) topology generated by the sub-basic open sets

{x:2x€X, a<(g,2)<B} (a<p),

where «, § range over the real numbers and ¢ ranges over G. If <X then we
shall write E for the strong and [E]q for the G-weak closures of E. Also if ASX
and BS X™* we shall write AL and B" for the annihilators of 4 in X* and Bin X:

At={y:y€X* and (y,x)=0 f{for all z€ 4}, (48)

B'={x:2€X and (y,z)=0 for all y€ B}. (49)
The following fact (Dieudonné [5], Th. 5) will often be used:
when L is a linear subset of X, then

[Lle=(L*nG)T. (50)

In particular, strongly closed linear subsets of X being also weakly closed (i.e. closed

in the weak topology obtained by taking G=X"):

when L is a linear subset of X, then

L= (I (51)
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The preceding considerations apply equally well, of course, to the Banach space
X*. We shall need only the ‘“weak*’ topology (cf. Loomis [29], § 9): this is the
weak topology induced on X* by X (regarded as a subspace of X**). The statement
at (50) then becomes:

when M is a linear subset of X*, then
the weak® closure of M is (M™)L.

Finally we shall need the fact that every finite-dimensional linear subset of X* is weak”®
closed (see Bourbaki [3], Ch. I, § 2, No. 3).

The preceding results will be applied chiefly to the space X=1 and its adjoint
X*=m, but at one point it will be useful to note that they apply equally to the
space X=¢, and its adjoint X*=I[; some care will then be necessary in manipulating
the symbols { )* and ( ). (We assume that the reader is familiar with the ele-
mentary properties of the spaces ¢, ! and m; these can be found in Banach [1].
As usual we write ¢, for that subspace of m which consists of sequences z=(zy, z,, ...)
such that z,—0 when a-—>co.)

In what follows we shall often require the G-weak closure of the linear subset
R(Q) of X=I for various total linear subsets @ of X*=m. It is readily seen ([22],
p- 167, eq. (42)) that (R(Q))*=MN(Q*); this shows incidentally that ¥ (Q*), being of
the form E* (where E<Sl), is always a weak* closed subset of m=1*. It follows
from (561) and (50) that

R(Q)=(N@Q")T (52)
and [R(Q)]e=(H(Q*) nG). (63)

6.3. A partial solution to Problem B,. We shall write 4’ and ¢’ for the sth and
jth unit vectors in ! and m, so that (u');=(v);=4;; and p;;(t)= (v, P;u'). Then, for
each ¢ and 4, (v, (Pi—1II)u')—0 as t—>oo. But ||P,~IT}|<2 so that a double ap-
plication of the Banach-Steinhaus theorem,! together with the facts that the linear sets

spanned by the u’ and the ¢’ are dense in ! and in ¢,, yields the important relation

tlim (2, Prx)=(z, II2) (x€l, z€c,). (54)

We now introduce the transition operator i.J; defined for all A1>0 by

Aiz= [Ae™Pzdt (z€l) (85)
0

1 See HrLre [17], Th. 2.12.1.
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and enjoying the properties
Jrx €D (Q), AL—-Q)J,x=x (x€1), (56)
Ji(AI-Qyz=z (€D Q). (57)
From (54) and (55) we easily find that

lim (z, AJ;2)=(z, )  (x€1l, z€c,). (58)
240
This makes it plain that we are here concerned with “cj-weak ergodicity” in the
terminology of [22]; the results of [22], however, cannot be applied because ¢, may
fail to be invariant under the operators 1.J; acting on m. The methods of [22] will
now be adapted to prove the following theorem : this is as close as we can get to

a general solution of Problem B, without resorting to the methods of § 3.

THEOREM 9.
(i) The range R(I1) and nullspace N(I1) of the ergodic projection operator T1 al-

ways satisfy the relations

RII)=N(Q) (59)

and R(Q) NI S [R (D)., (60)
(ii) There s an example in which
R(Q) NI <[R(Q)].,

Proof. The Lemma in § 3.1 shows that when z€ N (Q), then Piz=x for all >0
and so, from (54), x=11z€R(II). On the other hand if x€ R(I) then x=Ilz=
=P, lz=P;x and so Qz=lim t ' (P,z—2)=0. Thus R(II)=HN(Q).

Next, if 1€ R(Q)then z=Qy=1lim ¢t (P,y—y)and so [lz=lim¢ Y(II P,y —Ily)=
=lim ¢t ' (I y— M%) =0. This shows that R(Q)S ¥ (II) and because M (11) is strongly

closed it follows that R (Q)< M (I1).
Finally the relation (56) gives

(2, 2)= (2, AJ ) — (2, QJ )
for all 2>0, all x€] and all z€¢,; from this and from (58) it follows that

(z, )= lim (2, Q(—J, %))
240

whenever ITx=0. This shows that every x € H(II) is the c,-weak limit of a sequence
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of elements of R(Q), so that N(II)<S [R(Q)]., and the proof of (i) is now complete.
The example referred to at (ii) will be given in § 6.7.

The facts set out in Theorem 9 at once suggest the following questions.

(1°) How, using a knowledge of () alone, can one recognise the class of pro-

cesses for which

n(In =R (),

and the class of processes for which
nan=[rR k.
and how can one desecribe each class of processes in probabilistic terms?

(2°) Can we find a weak topology for ! with regard to which the closure of
R(Q) is always equal to W (II)?

We shall answer both questions, but our answer to (2°) will be somewhat un-
satisfactory since the specification of the topology will involve prior knowledge of the

ergodic behaviour of the system.

6.4. Markov processes for which N(I1)=R(Q). We know that I=R (II) @ HI),

that R(I1)=MN(Q), and that N(I1)>R(Q). The last inclusion can sometimes be re-
placed by equality:
n(I) =R (Q), (61)

and we shall now find various conditions which ensure the truth of (61).

First there is a simple necessary and sufficient condition which can be stated

in terms of Q alone. It is clear that N (Q) and R(Q) have only the element 0 in

common, so that it is meaningful to consider the direct sum N(Q) @ R(Q). (It is
shown in [22] that this direct sum is always strongly closed, but we shall not need
to use this fact.) We now assert that (61) holds if and only if

I=N(Q) D RQ). (62)

It is obvious that (61) implies (62). Conversely if (62) holds, let € H(II). We can

write x=wu+v, where w€HN(Q)=R(II) and »€RQ)=HNI); thus z—v=u lies in
N (I1) and R(IT) and hence x—v =0, so that x=»€ R(Q). It follows that ¥ (I[)< R(Q),

which implies (61). Recalling equation (52), we obtain the following partial solution?
to Problem B, :

! Like the solution of § 3.2, it demands only a knowledge of M (Q) and H (Q*).
9 — 573804. Acta mathematica. 97. Imprimé le 13 avril 1957.
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Calculate M (Q) and R(Q)=(N(Q*))". Then if (62) holds, resolve z €1l into
two components corresponding to the direct decomposition (62); the compo-
nent in N(Q) will be M.
Processes for which (61), or equivalently (62), holds will be called strongly ergodic,
for a reason which will shortly become apparent.

We saw during the proof of Theorem 9 that when x € ¥ (Q), then P,x== and
hence AJyz==z for all 1>0. Also, when z€R(Q) so that z=Qy (say), then
A=A, Qu=24(AJ,y—y) and so ||Adsz||<2A||yll>0 as A} 0. Now [JAd,]l=1
for all 2>0, and so we deduce by using the Banach-Steinhaus theorem that ||1J;2||]—0
as A} 0 whenever x€ R(Q). Now assume that the process is strongly ergodic; then
for each z€l we can write c=I1z+ (x—II2) where [Iz€ N (Q) and z— Iz € R (Q).
We can then conclude from the preceding remarks that AJ,z—>IIx strongly as 1 0.

Conversely, suppose that 1J,x, for each z €1, converges strongly as 4| 0 to an
element which from (58) must coincide with IIx. Then if x € (1), AJzz=2+QJ,x

tends strongly to Ilx=0, so that Q(-J;x) tends strongly to z and z€ R(Q). Thus
N (I) is contained in, and therefore equal to, m; the process is strongly ergodic.

We have now shown that strong ergodicity of the process is equivalent to the
strong convergence of AJ,x as A} 0 for all x. A similar result holds for general
semigroups of operators acting on an arbitrary Banach space (see Hille [17], Th. 14.7.1,
Kendall & Reuter [22], Th. 8), but in the present special case of a transition semi-
group acting on ! much more is true: we shall now show that strong ergodicity is
also equivalent to the strong convergence of Pz as t—co.

To prove this, suppose first that AJyx—Ilx (strongly) as A | O for all . Writing

e for the element of m given by (e)i=1 (:=0,1,2,...), we have
(e, Lxy= lim (e, AJ12) = (e, ),
230
because AJ, is a transition operator and so (e, AJ,x)=||AJsx||=]|=||= (e, ) When-
ever x>0, whence (e, AJ,x)= (e, ) for all . On setting x=u' we obtain

Sme=1 (i=0,1,2,...). (63)

Next, suppose merely that (63) holds and put

o:(t)= g | Pra (8) — 72ia |-
Choose any J >0; then

O (t) = aZJ l Pia (t) — Tl l + ag]pio: (t) + azjﬂio:

= Z |pia(t)—ﬂia|+1 - z Pie {£) + z Mg
a<<t a<J oa>J
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On letting {—oo we find that

0=<lim sup o; () <1— D> Mig+ 2 7ia=2 2 Tins
t—>o0 o<t a>J oa>J

and for each fixed 4 the right-hand side may be made as small as we please by
suitable choice of J. Thus (63) implies that

Gi(t)E”Ptui‘“Hui”—>O as t—o0, (64)

for each i. Now ||P,—TII||<2 for all ¢ and the «' span a linear set dense in I, so

that the Banach-Steinhaus theorem gives
| Pea—Tlaz]| >0 as t—oo  (all z€I). (65)

Finally (65) implies, by a standard Abelian argument, that AJ;x—Ilz strongly
as A 0, and this completes the proof that (65) is equivalent to the strong ergodicity
of the process.

In the course of the above proof we have shown that (63) is also equivalent to
strong ergodicity. If we use the description of the I[I-matrix given in § 3.2, we find

that (63) is equivalent to
Sw(, =1 (=0,1,2,..)), (66)

where the summation is over the positive classes.
Our last characterisation of strongly ergodic processes will involve the relation

between ¥ (II) and the m-vectors w° Clearly

Mz= > (w% x)n® (67)

e

where the summation is over the positive classes; the series in (67) is absolutely

convergent because
| (@°, ) 72| =|(w®, )| < g | %o | @ (o, C°)

and so 2@ 2yt | < 2 D |z w (@, C)< 3 |wy| < o0
e e o o
Accordingly z € H(II) if and only if (®% x)=0 for all p; i.e. H(II)=V", where V is

the linear set in m spanned by {w?:9=1,2,...}. If the process is strongly ergodic then

VT = (M) = (R()* = (R Q) =N Q).

Conversely if VTt=H(Q*) then



132 DAVID G. KENDALL AND G. E. H. REUTER

(M) = VT =N Q") = (R(Q))*
and so (MAT)*T = (R(Q))*.

But M (IT) and R(Q) are strongly closed linear subsets of I, and so it follows (using
(51)) that n(H):ﬁiﬁ), i.e. that the process is strongly ergodic.

From the remarks in § 6.2 it will be seen that V™% is the weak* closure of V,
and so we have shown that strong ergodicity is equivalent to the requirement that
N(Q*) be the weak* closure of the linear set spanned by the vectors @¢ in m.
(Note that M (Q*) is weak* closed and contains the vectors w¢ so that in any case
nQH=2vTL)

1f the number of positive classes is finite then V will have finite dimension and
so will be weak* closed. The necessary and sufficient condition for strong ergodicity
then becomes: M(Q*)=7V, ie. H(Q¥) is spanned by the vectors @w® If we write d
and d* for the dimensions of M (Q) and M (Q*) (so that d is the number of positive
classes) then the last result can be expressed as follows: if d< oo then the process
is strongly ergodic if and only if d*=d. The condition (66) also simplifies when d is

finite: it then becomes e= > w2,

2

We now collect all the preceding results.

TuarorREM 10. The process will be strongly ergodic, i.e. will have the property

that N(I1)=R(Q), if and only if any one of the following equivalent conditions is
satisfied.
(1°) For each x€l, P,x converges strongly to a limit (necessariy equal to Ilx)

as t—>,

(2°) For each x€l, AJ,x converges strongly to a limit (necessarily equal to 11x)
as A 0.

(3°) For each i=0,1,2, ...,

2 | Pia (t) = ia| >0 as t—co.
(4°) For each i=0,1,2, ..., > me=1.
(6°) For each initial state 1=0,1,2, ...,
S @i, 09)=1.
[4

(6°) The vectors {w®:p=1,2,...} span a linear set V in m whose weak™ closure

is N(Q¥).
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CoROLLARY. Let d=dim H(Q) be the number of positive classes and let
d*=dim N(Q¥). Then, in the special case when d is finite, either of the following

equivalent conditions is necessary and sufficient 4for strong ergodicity.
(7°) d*=d.

(8%) e= > @l
[

Condition (7°) of the Corollary is very useful in practice; like the earlier condition
(62), it allows us to detect strong ergodicity and thence to calculate II, by inspecting
N(Q) and N(Q*). (Condition (7°) has an analogue for general semigroups; see Theo-
rem 9 of [22].) The remaining conditions, (1°)—(6°) and (8°) cannot by their very
nature assist us in calculating II, but they do indicate to what extent the ergodic
theory of general semigroups can be applied to the present special case. For instance
(3°) and (4°) both imply that processes with finitely many states are always stroﬂgly
ergodic; also (5°) shows that processes without dissipative states are strongly ergodic,
whereas processes in which all states are dissipative are not strongly ergodic. In
§ 6.5 we shall give a probabilistic formulation of (5°) which will show how strong
ergodicity is controlled by the behaviour of the system in relation to the dissipative
states.

Theorem 10 will now be illustrated by “the random walk in continuous time

with an absorbing barrier at the origin”, This is the process of § 5.5 with

and with b,=0 as before. The process is regular ((42) holds) and the operator @ is
bounded ; because @, SQr< @ and Qy is a closed operator, it follows that Q=Qr =@
and Q*=Q*. The calculations in § 5.5 show that M (Q) is one-dimensional and is

spanned by the vector
u’=[1, 0, 0,...];
there is just one positive class, consisting of the zero-state alone. As for M (Q),

there are two possibilities:
Case 1. a>b (so that T'= o). Then d*=1 and 1 (Q") is spanned by e=[1,1,1,...].
Case 2. a<b (so that T=b/(b—a)< o). Then d*=2 and N (Q*) is spanned by

e and
w=[l,r,7%...],
where r=a/b.
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From (7°) of the Corollary we see that there is strong ergodicity in Case 1 but
not in Case 2. In Case 1, R(II) consists of all multiples of %»° and H(II) is

(MEOQNT={w:x€l and D x,=0};
hence II is given by

Mx=(D z,) %’

The reader will find it instructive to verify the various assertions of Theorem 10 for

this example.

6.5. The probabilistic significance of strong ergodicity. The condition

SwE =1 (i=0,1,2,...) (66)

for strong ergodicity will now be expressed in probabilistic terms.

If (Q, F, pr) is a probability space, i.e. if O is a non-empty set of points e, if
F is a Borel field of subsets of Q and if pr is a countably additive non-negative
measure on F such that (F, pr) is complete! and pr (Q) =1, then a family {X{”:¢>0}
of random variables (F-measurable w-functions) taking values in the compactified
set {0,1,2,...; oo} will be called a represenfation of the Markov process with
t{(=0,1,2,...) as initial state when

(i) XP(w)=1 for all w€Q

and A .
(i) pr {X& =7y ... Xgl,i =fn} = Pu, () Pis (b= ) ... Py 1 (= tn1)

for all n>1, 0<t, <ty<-- <t

and 7, fp -v., Gn=0,1,2,....

The representation is called separable (relative to the class of closed sets) when
there exist a countable dense subset S of (0, o0) and an w-set A € F with pr(A)=0,
with the following property:

(i) if wé¢ A, if J is any open subinterval of (0, co) and if € is any compact
subset of {0, 1,2,...; o} (i.e. any finite set of integers or any infinite set
of integers with the compactification point oo adjoined) then X{(w) € C for
all t€J if and only if X (w)€C for all s€J NS.

1 (F, pr) is said to be “complete” when 4 S Z € F and pr (Z) =0 together imply that 4 € F.
There is no loss of generality in assuming this. It will be recalled that the symbol Q has also been
used to denote the infinitesimal generator, but this should cause no confusion.
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It is known (Doob [9], Ch. II, Th. 2.4) that a separable representation can
always be found, and it is even possible’ to choose § in such a way that A can be
taken to be the empty set. In practice, however, it is often desirable to identify S
with some particular countable dense set such as the set of positive rationals, and
to justify this step we need the further result (a consequence of the continuity-in-
probability of the process;* see Doob [7], Th. 8, and Doob [9], Ch. 11, Th. 2.2)
that if {X{®:¢>0} satisfies (i), (i) and (iii) in relation to a particular pair (S, A,)
and if 8 is any countable dense subset of (0, co) then a null set A=A (S) can al-
ways be found so that {X{:¢>0} satisfies (i), (ii) and (iii) in relation to (S, A).

The advantage of using a separable representation depends on the facts that (a)
only the joint distributions of finite sets {X{’, X{?,..., X{’} of random variables are
of practical importance, and (b) for theoretical purposes we often want to assign
probabilities to events (w-sets) whose specification imposes restrictions on an un-
countable collection of the X{". Thus all the representations satisfying (i) and (ii) are
equally acceptable for practical purposes, while it will be mathematically convenient
to select one of these which also satisfies (iii). Let us suppose that this has been
done for some given initial state ¢ (there will then be no ambiguity in dropping the
index ¢ from X{”). We shall prove that

w (t, 0% =pr {X,€C¢ for all sufficiently large t}

where o — (0 when (¢ is finite,
C?U {0} when (? is infinite,
and 9=1,2,3,....

We start from the fact (see § 3.1) that if 7>0 is fixed then the classes € and
the quantities @ (¢, (9 are the same for the process {p;.(t):t>=0} as for the chain
{pi(nt):n=0,1,2,...}, and {X,,:n=0,1,2,...} is a representation of this chain
with ¢ as initial state. It is known (see Chung [4], p. 26) that for this chain
w (i, C®) is an ‘“‘absorption probability”’: it is the probability that the system will

ultimately enter (and thereafter remain in) the positive class C?. Thus
@ (1, C?) =pr {w: X,,(w) €C? for all sufficiently large n}.

Now, having already fixed the initial state ¢ and chosen 7>0, choose S to consist

of all positive rational multiples of v and then consider the w-set

! This is clear from Doos’s proof.
2 This in turn is a consequence of the fact that pj; (¢) —1 as ¢ | 0 for each 4.
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E,={w:X,(w)€C% for all {=some T (w)}.

We must show that E,€F and that pr(&,)= (7, C?).
Clearly E, can also be defined by

E,= U {0w:X,(w)€CS for all t>Nz}= U E,(N),
N>1 N>1
say, and E,(N) is a subset of and differs from
Ey(N)={w:X,(w)€CS for all s€S (N, o)}

by a subset of A. Also, as a consequence of > pi, (£)=1, we have pr {w: X;(w)= o0} =0

for each fixed ¢, and so

E, (N)={w:X,(w) € C? for all sESN (N7, o)}

is a subset of and differs from E,(N) by a set of zero probability. Finally E, (N)

is a subset of
E) (N)={w:X,,(w)€C® for all integers n> N},

and Uz, (Ny- U E/ (Nys U U Fn,
N>1 N>1 n>2 ss>e7§t
where F, . ={w: X, (0)€C, X;(w)¢C} (nr<s€RSY).
But now pI'(Fns)= Z Z pioc(n'[) paﬁ(s—nr)=0
xeC? p¢Ce

because f¢(C? is inaccessible from o€ (C? in the Markov chain associated with the

time-interval v'=s—n1>0. It follows that E,€F and that
pr (Ep)=pr (U By (N))=pr (U B, ()

=pr {w: X,.(w) €C? for all sufficiently large n}

= (i, (?),
as required.

The above proof also shows that
pr(U E)=pr (U U E,(N))=pr (U U B, (N))
¢ e N e N
=2 pr(Y B (N)=Z @i, )
)

(because the positive classes are disjoint), and so on combining this with (5°) of

Theorem 10 we obtain
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THEOREM 11. Let {X{P:t>0} be a separable representation of the Markov pro-
cess with state-space {0,1,2,...; o} and initial state ¢ (=0,1,2,...) associated with

the array {p(t):7,k=0,1,2,...; t=0} of transition probabilities satisfying the conditions
2 pu(t)=1,
z Pia (u) Pok (?)) = Pik (u + U),
o

ltiﬁ)l i () = pixc (0) = .
Then
(1°) @ (i, C°) is the probability that the system will wlttmately enter and thereafter
remain in the positive class C° (augmented, if not finite, by the adjunction

of the state o).
(2° > @, C)=1 if and only if the system, with probability one, ultimately

enters and remains in some one of the augmented positive classes.

COROLLARY. The array {pj(t)} of transition probabilities will have the property
of strong ergodicity defined in § 6.4 if and only if, for every initial state i and for
some one (and then for every) associated separable process {X\?:t>0}, the system with
probability one ultimately enters and remains in some one of the augmented positive

classes.

It will have been noticed that the augmentation of the infinite positive classes
was forced upon us by the use of the separability theory: one cannot guarantee to
find a separable representation unless the state-space is first compactified. We shall
now show that this apparent blemish in Theorem 11 is not due to a defect in method
and that it can be associated with an essential feature of the stochastic motion.
This can be seen, for instance, in the example analysed in § 5.2 (the “‘flash of
flashes”). Here all states form a single positive class; the m;; satisfy (4°) of Theorem
10, so that the system is strongly ergodic and the Corollary to Theorem 11 applies.
Because the whole (uncompactified) state-space forms a single positive class it might
be thought that the assertion of the Corollary without the word ‘‘augmented” would
be a truism: in fact it would be false. An examination of the matrix-elements in
the representation of the resolvent operator J; (for this, see Kendall [21]) reveals
that the stochastic motion cannot be described for all ¢ >0 without the introduction

of a countable infinity of fictitious states® each of which will be visited infinitely

I For the definition of ““fictitious state”, see LEvy 1271, p. 348.
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often whatever the initial state may be. The separability theory correctly anticipates
this possibility, the fictitious states being lumped together to form a single compacti-

fication point oo.

6.6. Markov processes for which W(II)=[R ()], The examples at the end of

§ 6.4 show that N (II) can be larger than R(Q). However, Theorem 9 provides an
upper as well as a lower bound to M (II), and we shall now study those processes
for which the upper bound is attained. In accordance with the main theme of this
paper our first task must be to find a necessary and sufficient condition for the

validity of
NI = [R(D)]e, (68)

the condition being of such a form that it can be checked using only a knowledge of 2.

Now I=HN(Q)P NU(I) and HII)ES[R(Q)].,, so that each element of I can be
expressed as the sum of an element of M (Q) and an element of [R(Q)],,, in general
in more than one way. The decomposition will be unique if and only if (68) holds,

and alternatively if and only if

Q) n[R(Y)]. = {0}. (69)
This last condition, which can also be written as
M) n (NEQ%) ney)"=1{0}, (70)

is of the required form, and we have obtained another partial solution to Problem B, :

Calculate () and (M(Q*)Necy)". Then if (70) kolds we shall have
I=N(Q) D MNQ") ne)T,

and I1z will be the component of z in M (Q).

Note that once again the procedure requires only a knowledge of to nullspaces
N(Q) and H(Q*).

Now consider the following tableau:

Space : Co 4 m

nQne [REQ)IL,
‘n (H) VT.L
RQ) nQ*)
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Note that the Banach spaces in the first row obey the relations c;=I, I*=m, and
that each space contains the strongly closed linear sets listed in the same column.

Also in each of the three situations of the form
X Xx¢
E F)
E is the annihilator in X of F and F is the annihilator in X* of E. Notice lastly
that because ¢, can be imbedded in m, M (Q*) N¢, can also be considered as a sub-
space of m. We omit the proofs of the preceding assertions; they follow at once
from the facts about weak topologies stated in § 6.2 and from the equality M (II)= V'~
derived in § 6.4, V being the linear set in m spanned by the vectors w®(p=1, 2,3, ...).
Next, observe that the annihilator in ¢, of [R(Q)],, will be contained in the

annihilator in the larger space m of the smaller set W (II); that is,
NEQH Ne, S VL. (715

Let the weak™ closure of M (Q*) ¢, considered as a subset of m, be denoted by W,
so that

W={y:y€m and (y,2)=0 for all z€[R(Q)],}- (72)
Because V7L is a weak™ closed subset of m, (71) gives

WeyTL (73)
If (68) holds, then
W={y:y€m and (y,x)=0 for all x€ N II)}
=(N{I)+t=7VTL,

Conversely if W=7V then H(II) (=V") and [R(Q)], have the same annihilator in
m; it follows from (51) that they are identical. Thus we have shown that (68) holds
if and only if W=V7L Now this last condition is equivalent to the requirement
that each of the wectors w? should lie tn W. For if W= VT then

wWEVSVTi=W;

conversely if each ° lies in W then VS W and so, taking weak® closures in m,
VTileWe VT

As before the criterion simplifies when the number of positive classes is finite,
for then V has finite dimension and so coincides with V7; (71) then shows that
N(Q*) ne, is also finite-dimensional and so coincides with its own weak® closure as

subset of m. Thus (68) will now hold if and only if every vector w® lies in c,.
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These results are summarised in

THEOREM 12. A necessary and sufficient condition for
N() = [R(Q),= (N (Q*) Ney)’ (68)

to hold is that each wvector w¢ (p=1,2,3,...) should lie in the weak®™ closure of
N(Q*) Ny, when this is considered as a subspace of m.

In particular (68) will hold if each vector w° lies in c,.

When the number, dim N (Q), of positive classes is finile, then (68) will hold if

and only if each w° lLies in c,.

The condition, w@?€c,, can be rephrased thus: for each >0 there exists a finite
set A%(g) of states such that

@ (i, C?) <& unless 1 € 4%(¢).

Thus ¢ cannot lie in ¢, if the class C? is infinite (because @ (¢, C?)=1 whenever
i €?), and therefore we shall have H(II) € [R(Q)],, whenever there is only a finite
number of positive classes and one at least contains an infinity of states.

As an illustration of the preceding theory let us examine again the example at
the end of § 6.4. It will be recalled that there W (Q) consists of all multiples of
#°=[1,0,0,...] and that

in Case 1 (a=b), M(Q*) ne,={0};

in Case 2 (u<b), MN(Q*)Nec, consists of all multiples of the vector w=[1, r, %0

where r=a/b.
Accordingly H(Q) and (M (Q*) Ne,)" interszct in
{0} in Case 2,
{A4": 2 real} in Case 1;

thus (68) holds in Case 2 but not in Case 1. In Casz 2 it follows at once that the
ergodic projection operator is given by

Ma= (3 x,r*) u’.

6.7. A Markov process for which R(Q)<NII)<[R(Q)l,- In the example dis-
cussed at the end of §§ 6.4, 6.6 we saw that
R(Q)=N(T)<[R(Q),, when a=b,
NAD =[R(Q))., when a<b;
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and the ergodic projection operator could be found in all cases by using one or other
of the two partial solutions to Problem B; which were given in §§ 6.4 and 6.6. We

now give an example which shows that one can have

R(Q) = () <[R(D)]e, ; (74)

whenever this happens the methods of § 6 break down and the general method of
§ 3 must be used.

It will be convenient in the example to label the states as (..., —2, —1;0;1,2,...),
components of vectors in [ or m being labelled aceordingly. We specify a conservative

g-matrix as follows:

(7=0)

-1 0 o]0 0O 0 o0

1 -1 o0]o0 0

0 1 -11{0 0 0 0
(i =0) 0 0 o01}o0 0 0 o0

0 o{1| -1 0 o0

0 0 1 -1 0

0 0 0 1 -1

Regularity is easily checked and the boundedness of @ ensures as before that
Q=0Q;=¢ and Q*=@* Simple calculations show that M (Q) is spanned by the

vector w’==[...,0,0;1;0,0,...] and that N(Q") is spanned by the two vectors
v=[...,1,1; 0; 0,0,...]
w=[...,0,0; 1; 1,1,...].

Evidently d=1=+2=d* and the process is not strongly ergodic. There is just one
positive class consisting of the absorbing state labelled 0, and «° is the associated
m-vector. The general element of N(Q*) has the form Av+ uw; the condition
(Av+pw, u®)=1 requires that y=1 and positivity requires that A>0. The minimal
element « is therefore given by u=1, 1=0, i.e. w=w. Now the number of positive
classes is finite and w ¢ ¢, so that (68) cannot hold. This completes the proof of (74).

It is instructive to identify the three sets occurring in the inequalities (74);

they are
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o

R(Q)={x:2z€l and :jxa=0: D Tyt

0

NIH={zx:x€l and 2 z,=0},
0
[R (Q)]Ca:l'
If we had used the c-weak (stronger than the c,-weak) topology to close R(Q), the

subspace so obtained would have been

[R(Q)).—{z:2€] and ﬁ 2, =0},

which is not even comparable with W (IT). (As usual ¢ denotes the subspace of m

spanned by ¢, and the vector e all of whose components equal 1.)

6.8. G-weak topologies for which N(I1)=[R{Q)]s. Our final task will be to answer
the question (2°) at the end of § 6.3. We will show that one can find linear subsets

# of m, total for I and such that
NI =[R()]e- (75)

Unfortunately our specifications of G will not be given in terms of () alone, so that
our result will not provide a solution to Problem B,.

We define the linear subsets 4 and B of m by
A={g:g€m and (g, AJ,x)—>(g, [Iz) as 1] 0, all z€l},
B={g:g€m and (g9, Pix)—>(g, llz) as t—>oo, all x€1}.

From (54) and (55) it follows that
A2B=c¢,, (76)

s0 that A and B are both total for [.
We next observe that the three statements
() gen@Qm,
(ii) gPi=g for all t=0,
(iiiy gAJy=g for all i>0,
are cquivalent. The equivalence of (i) and (ii) is asserted by the second part of the

lemma in § 3.1; the equivalence of (ii) and (iii) follows from (55) and Lerch’s theorem.
It can now he inferred that both HM(Q*)n A4 and H(Q*) n B coincide with the set

{g:g€m and (g, z)=(g, Iz) for all z€1}, {77)

on using (46) and the similar relations involving AJ; in place of P,.
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But the set in (77) is (R (I —1I))t= (N (I1))*, and hence when G is either 4 or B

we have

[R(Q)]e=(N(Q") n &)= NI =N(ID),

which establishes (75) for these two choices of G.
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