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1. In troduct ion  

t .1 .  Let  P ~  {p,~ :i, j =  0, 1, 2 . . . .  } be the matr ix  of one-step transition probabilities 

for a temporally homogeneous Markov chain with a countably infinite set of states 

(labelled as 0, 1, 2 . . . .  ). The probabil i ty p~j of a transition in n steps from state i to 

state j will then be the (i, j)th element of the matr ix  pn, so tha t  the specification 

of P (or equivalently of A = P - I )  completely determines the system. I t  is known 

(Kolmogorov [24]) tha t  the Cess limits 

Jtij ~ lim 1 ~ P~s (1) 
n--~oo n r - 1  

always exist. Let  II  denote the matr ix  whose (i, j)th element is 7~ ,  and consider 

P r o b l e m  A:  Determine II when P is 9iven. 

This problem has obvious importance for practical applications. A number  of 

special techniques are available for its solution in particular cases (see, e.g., Feller [12], 

Ch. 15, Foster [14], [15] and Jensen [18]); also Feller [12], pp. 332-4, has given a 

general i terative method of solution. We shall give another (non-i terat ive)general  

method in w 2: it will involve the non-negative solutions of 

xj = Y. x~ p~j 
r162 

such tha t  Z x a <  co, and the non-negative solutions of 

Y~= ~ P~Y~ 

such tha t  sup y~ < ~ .  
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1.2. Let  P,  ~ {p,j (t) : i, ] -  0, 1, 2 . . . .  }, for each t >_ 0, denote the matr ix  of transi- 

tion probabilities for a temporal ly homogeneous Markov process with a countably 

infinite set of states, such tha t  p~j(t)--~6ii as t ~ 0. We may  then define a one-para- 

meter  semigroup {Pt:t->O} of transition operators on the Banach space l by  setting 

(Pt x)j -~ ~ x~ p,j (t) (2) 
Ct-0 

for each element x=(Xo, x~, x 2 . . . .  ) of I. In  exceptionally simple cases we can write 

Pt = exp (~ t), where ~ is a bounded operator on l, but even for so simple an example 

as the bir th-and-death process (for this see, e.g., Feller [12], pp. 371-5) this is no 

longer possible. However a generating operator ~ (analogous to A in the chain case) 

can always be defined by writing 

~) x ~ strong lim (Pt x -  x)/ t  (3) 
t 4 0  

for x C ~  (~), where ~ (~) is by definition tha t  set of elements x E l for which the 

limit in (3) exists. In  general ~ will be an unbounded operator, but  its domain D (s 

is always dense in 1 and ~ determines the system uniquely (hence it is called the 

in]initesimal generator). 

I t  is also known (L6vy [27]) tha t  the ordinary limits 

~ j  ~ lim p~j (t) (4) 
t --~r162 

exist (no Cess averaging being needed now); thus if we again write II  for the 

matr ix  whose (i, j) th element is z~j, we are led to consider 

P r o b l e m  B:  Determine II when ~ is given. 

A solution to this problem will be given in w 3: it will involve the non-negative 

elements in the nullspaces of ~ and ~* (the operator adjoint to ~) .  

1.3. For any such Markov process, the limits 

t~O 

exist, and they are finite except 

Always 

(5) 

perhaps when i = j  (Doob [7], Kolmogorov [25]). 

and in many  cases of practical interest 

(a) all qtt are finite, and 

(b) ~qt~=O for each i. 
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Conversely, given a conservative q-matrix, i.e. a matrix Q-{q i j }  with non-negative 

elements off the main diagonal and satisfying both (a) and  (b), then there exists 
! 

at least one process for which p~j(+ 0)=  q~s, but  in general this process is not unique 

(Feller I l l ] ,  Doob [8]). When the process is unique the conservative q-matrix Q will 

be called regular and the associated process will be called the Feller process determined 

by Q. That this is the normal situation in practical problems is the sole justifica- 

tion for the common practice of specifying a Markov process merely by writing down 

a conservative q-matrix Q. Necessary and sufficient conditions for regularity have 

been given by Feller I l l ]  and (in a somewhat different form) by Kato [20]. 

I t  will now be clear that  for practical purposes the solution to Problem B will 

be insufficient, and that  one must also consider 

P r o b l e m  C: Determine [IF, the If-matrix associated with the Feller process, when 

a regular conservative q-matrix Q is given. 

A solution to this problem will be given in w 4: it will involve the non-negative 

solutions of 
x~ q~j - 0 

such that  E x~ < ~ ,  and the non-negative solutions of 

q~ ~ y~ = 0 

such that  sup ya < ~ .  

t .4.  Throughout this paper we shall confine ourselves to "honest" chains and 

processes, i.e. systems satisfying ~ p,a = 1. However, a "dishonest" chain or process 

can always be imbedded in an honest one (obtained by adjoining a single "absorbing" 

state) and by means of this device our methods can easily be adapted to the gen- 

eral case. 

We have also confined ourselves strictly to the problem of calculating the H-matrix 

and it will be recalled that  one cannot decide from an examination of the zts for a 

Markov chain whether or not a given dissipative state is recurrent. But this limita- 

tion also is only apparent; it has often been remarked that  the question of recurrence 

can be settled by calculating the H-matrix for a modified chain in which the given 

state is made absorbing. 

1.5. In  some respects this paper is a sequel to our paper [22] in which we 

considered the ergodie properties of one-parameter semigroups of operators on an ab- 
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stract  Banach space, and readers of the earlier paper  will find a discussion of the 

present problem from the standpoint  of the general theory in w 6. Others who are 

mainly interested in probabilistic applications m a y  prefer not to read beyond w 5, in 

which some examples are given to illustrate our methods. We have deliberately 

chosen the simplest examples which would serve this purpose, but  we believe tha t  

the methods of this paper  can usefully be applied to some more complicated systems 

which arise in practice. In  particular, we intend to t rea t  elsewhere the ergodic pro- 

perties of two Markov processes which describe (i) the competit ion between two 

species, and (ii) the development of a stochastic epidemic. 

2. Markov chains:  the solution to Problem A 

2. t .  We first recall some results with which the reader will doubtless be familiar 

(perhaps in a different terminology). 1 The limits re, j defined at  (1) always exist and 

will clearly satisfy 

z~j>-0, ~ g ~ _ <  1. 

The structure of the matr ix  H -- {~j  : i, j >_ 0} is most  conveniently described by  classi- 

fying the state j as positive when gss > 0 and as dissipative when r~jj = 0. The collec- 

t ion of positive states (if there are any) is then further divided into disjoint positive 
classes, the positive states ?" and ]c being in the same class if and only if gjk > 0. 

(This relation can be shown to be reflexive, symmetric  and transitive.) I f  we write 

gJ-=~sJ for each positive state ], then the g,j can be expressed in terms of the gj and 

a set of numbers ~ (i, C), defined for each state i and each positive class C, where 

0 ~ ( / , C ) _ < I .  In  fact  

(i) ~ j =  0 for all i, if ?" is dissipative. 

(ii) ~,s=~( i ,  C)rej for all i, if ~" belongs to the positive class C. 

Also ~j and ~ (i, C) have the following properties: 

(iii) ~ ~j = 1 for each positive class C. 

(iv) I f  / is a positive state and C a positive class, 

'~  (i, C) = if i ~ C .  

' For  expos i tory  accounts  of the  theory,  see C~UNG [4], FELLER ([12], Ch. 15), LO~.VE ([28], 

pp.  28-42). 
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(v) I f  i is dissipative and {C e : ~ =  1, 2 . . . .  } are the positive classes, then 

$ (i, C Q) _< 1. 

(vi) I f  C is a positive class, then 

{~i if jEC,  

c ~ p~j= 0 if j ~ C, 

and ~ p~ = ~ (~, C) = ~ (i, C) for all i. 

(vii) For all i and j, 

(6) 

(7) 

(8) 

(In (7) and (8) summations are over r162 1, 2 . . . .  ; we shall adhere to this conven- 

tion from now on.) 

The classification of states and the description of ntj have been given above in 

purely analytical terms:  however, they  have probabilistic meanings which (although 

they are not  needed for what  follows) the reader may  usefully keep in mind. Positive 

states are precisely those which are recurrent with finite mean recurrence t ime #j,  

given by  /zj = 1/7~j; dissipative states are either recurrent with infinite mean recurrence 

time, or non-recurrent (transient); finally ~ (i, C) is the probabil i ty tha t  the system, 

start ing at  state i, will ult imately enter (and thereafter  remain in) the positive class C. 

These interpretations depend on a detailed and deep analysis of the asymptot ic  pro- 

perties of p~- as n - ->~ ,  first made by  Kolmogorov [24]; the properties of I] which 

we have s ta ted lie less deep and have been proved more simply by u  & Kaku-  

tani  [32] and Doob [7]. 

2.2. The calculation of I] when P is given involves two steps: 

(a) the classification of states and determination of the reciprocal mean recur- 

rence t imes ~j, 

(b) the calculation of the absorption probabilities ~ (i, C). 

Step (b) will of course be superfluous (by (i) of 2.1) when there are no positive states, 

and will be trivial (by (iv)) when i is a positive state. 

To perform step (a) we introduce the Banach space 1 whose elements are real 

sequences x = (x0, xl, x~ . . . .  ) such tha t  
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Then  P and  [I  de t e rmine  b o u n d e d  l inear  opera to r s  on l as fol lows:  

W e  have  

Px>_O, Hx>_O, 

a n d  also (because of (8)) 

II nxll IIxll=lIPxl[, 

I I~= P II = II P =  II.  

whenever  x >_ 0, 

(9) 

F o r  each pos i t ive  class C ~ we define n ~ E l b y  

{~j  if ~ E C  ~ 

(~o)j= 0 if ~'~C~ 

thus  he>_0, ] [ :~ [ [=1  (by (iii) of 2.1), n ~ has  C ~ as i ts  suppor t /  and  from ( 6 ) w e  see 

t h a t  P : r ~  ~ so t h a t  :z ~ belongs to  t he  nul lspace  7 / (A)  of t he  ope ra to r  A - ~ P - I .  

The fol lowing t heo rem is well  known,  * b u t  we s t a t e  i t  in a form which differs  f rom 

the  usual  one a n d  therefore  ske tch  i ts  proof.  

T H E O R E M  1. A n  l.vector x lies in ~ ( A )  i/  and only i] there exist real numbers 

{ ~ e : e = l , 2  . . . .  } such that 5 ] ) t e [ < o o  and x = ~ , ~ e r d .  Also x ~ O  i/  and only i/  ~>_O 
Q Q 

/or each e" 

Proo/. F r o m  the  fac t  t h a t  A : r  ~  0 i t  easi ly  fol lows t h a t  A x =  0 whenever  x is 

of the  s t a t ed  form. On the  o the r  hand ,  if xE1  and  A x = 0 ,  t hen  

and  so on l e t t ing  n--> oo we ob t a in  

Z x~ ~aj = Xj. 
o~ 

F r o m  (i) of 2.1 i t  now follows t h a t  xs=O when ] is d i ss ipa t ive ,  so t h a t  

Q ~eC 0 

where  the  f i rs t  s u m m a t i o n  is over  a l l  pos i t ive  classes. The  f i rs t  asser t ion  of t h e  

t heo rem now follows on se t t ing  

~e C 0 

t h e  second asser t ion  follows f rom the  fac t  t h a t  t he  vec tors  n e are  posi t ive  a n d  have  

d i s jo in t  suppor t s .  

1 The support of an /-vector x is the set of states j such that x I * O. 
z See, e.g., CHu~IG ([4], Th. 9), or Lo~vE ([28], p. 41). 
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We can deduce two impor tan t  corollaries on using the fact  t ha t  for each ~, the  

support  of n ~ is precisely the corresponding positive class C ~ Let  us denote  by  ~+ (A) 

the set of positive vectors in ~ ( A ) .  Then  we have 

C o R o L L X R u  1.1. A state j is positive i / a n d  only i/  it lies in the support o / a t  

least one 1-vector x E ~+ (A ). Two positive states ~ and ]c lie in di//erent positive classes 

i /  and only i/  there exists an x C ~+ (A) whose support contains ] but not k. 

C O R O L L A R Y  1.2. Let ~ be a positive state. Then amongst the elements x E  ~ + (A) 

such that x j = l  there is a least, x s, and xi / i ixJiI=Jz q where C a is the positive class con. 

raining ]. 

These corollaries show tha t  step (a) can be performed when the nullspace ~ (A) 

has been [ound. 

2.3. We now have to carry out  step (b) in so far as it is non-trivial ,  so tha t  

we must  give a method  for calculating ~ (k, C) when k is a dissipative state and C 

is a positive class. This will involve the nullspace ~ ( A * ) o f  the operator  A* ad- 

joint to A. 

Let  m be the Banach  space of real sequences y ~  (Y0, YI, Y2 . . . .  ) such t h a t  

Ilyll---sup ly l< 

Then m is the adjoint  space to l, and we shall write 

(y, x) ~ ~ y~ x~ when y E m and x E1. 

The operator  P* adjoint  to  P is given by  

(y P*)~ - ~ p ~  y:, (y E m), 

and (yP*,  x) = (y, P x )  

w q E m  by  

when y E m  and xE l .  For  each positive class C e, we define 

(~Q)~-~(!,C~) (i=0, 1,2 . . . .  ) .  

Propert ies (iii) and (iv) o f  2.1 show t h a t  

 0>0, I1 011=1, (Wq, ~o) = 1, 

and (wQ)~=O if iEC~'(a:v~) .  From (7) we have ~ Q P * = w Q ,  so t h a t  ~ q E ~ + ( A * ) ,  

the positive par t  of the nullspaee ~ (A*)  of the  operator  A * - - P * - / .  The nullspaee 

of A* is often much  bigger than  this result  suggests, 1 bu t  fo r tuna te ly  we can still 

1 The structuro of ~ (A*) has been studied by BLACKWELL [2] and FELLER [13]. 
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eharac ter i se  R e b y  a min ima l  p r o p e r t y  s imilar  to  t h a t  invo lved  in Corol lary  1.2. W e  

fo rmula te  th is  as  

T H E O R E M  2. Let C e be a positive class and let ne be the associated 1-vector. Then 

w e is the least element y o/ ~+ (A*) such that (y, ~ ) =  1. 

Proo/. W e  a l r eady  know t h a t  y - - - R  e satisfies the  th ree  condi t ions  

y _> 0, y A* = 0, (y, ~e) = 1. 

Le t  y be a n y  m-vec to r  d i s t inc t  f rom R e and  sa t i s fy ing  these  condi t ions .  Then  

n 

f rom which i t  follows (on using the  pos i t i v i t y  of y) t h a t  

~ y~ _< y~. (10) 

W e  can wr i te  (10) in the  form 

~ ( i , C  ~) ~ zr~y~<y~, 
a ~ E  C (~ 

where  the  a - s u m m a t i o n  is over  all  pos i t ive  classes, and  this  is equ iva len t  to  

~ (i, C ") (y, ~") § ~ (i, C ~ _< y~, 

f rom which i t  follows t h a t  R e < y as  required .  

We ought  to  men t ion  here t h a t  Fe l le r  ([12], p. 332, (8.2) and  (8.3)) has  given 

a set  of recurrence re la t ions  which un ique ly  de t e rmine  the  abso rp t ion  probab i l i t i e s  

(i, C). This  r ecur ren t  p rocedure  may ,  however ,  be as diff icul t  to  ca r ry  ou t  as the  

ca lcula t ion  of t he  ~ij d i rec t ly  f rom the i r  def in i t ion  (1). As Fel le r  remarks ,  one has  

t hen  to  resor t  to  his equa t ion  (8.4) and  the  so lu t ion  to  th is  equa t ion  is in genera l  

no t  unique.  The  non- t r iv ia l ,  p a r t  of our  Theorem 2 singles ou t  t he  r e l e v a n t  solut ion.  

2.4. W e  can now s ta t e  our  solution to Problem A as 

T H E O R E M  3. I /  the positive classes (Ce : ~ = 1, 2 . . . .  } and the associated l-vectors 

7e Q and m-vectors ~ are determined by Corollaries 1.1 and  1.2 and Theorem 2 above, 

then the matrix-elements o/ the "ergodic projection-operator" II will be given by 

7r~j=O (all i) 
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when ] is not a positive state, and by 

~ij = (~e)~ (~e)j (all i) 

when ] lies in the positive class C Q. 

111 

3. Markov processes: the solution to Problem B 

I f  {p~j (t) : i, j = 0, 1, 2 . . . .  ; t _> 0} is the array of transition probabilities for 3 . ~ [ ,  

a Markov process, and if (as we shall always assume) the continuity condition 

p ~ j ( t ) - ~ j  as t ~ 0 

holds, t~hen the limits xe~j-lim p~j(t) (11) 
t - - > ~  

exist. This result is due to L6vy [27], and can be proved by  considering the chain 

defined by  setting p~j ~ p~j (n~). This chain is aperiodic because p~ (n r) > 0, and there- 

fore lira pit(n~) exists for each fixed ~ > 0 .  From the uniform continuity of Pij(" ) 
n - - ~  

for fixed i and j, it follows tha t  this limit is independent of v and then tha t  the 

limit a t  (11) exists. 

Clearly we can calculate 7rij by applying the procedure of w 2 to the chain whose 

matr ix  of one-step transition probabilities is P~-= {p~j(~):i, ? '=0, 1, 2 . . . .  ), for any one 

> 0, because 
~ j  = lim p~j (n~) = lim (P~)ij. 

n~-~oo n-->oo 

To do this, we must  consider the nullspaees }/(A~) and 7/(A*), where 

A~--P~--I,  (P~x)j----~x~p~j(~) (x61). 
(x 

The dependence of this procedure on the choice of v is, of course, only apparent,  and 

this fact is exhibited most  conveniently by  introducing the one-parameter semigroup 

{Pt:t>-O) of operators on l associated with the process. This has the properties: 1 

(a) P 0 = I ,  P~P~=Pu+v (u_>0, v>_0). 

(b) Ptx>_O and IIP  ll=[l lt whenever O_<xCl. 

(c) as t r  for each 

I t s  infinitesimal generator s is def ined by  

s - strong lim (Pt x - x) / t  
t~0 

~ . o 1 For  the  special proper t ies  of such t ranmtlon semigroups"  on l, see KI~NDALL and  REUTER [23] 

or KENDALL [21]; for the general theory  of semigroups  of operators ,  see HILLE [17]. 
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whenever this limit exists, the domain ~ (s of ~/ is dense in l, and 

t t 

P t x = x  + ] Pu~lx  d u = x  + f a P u x  du  (12) 
0 0 

for x6  ~(~-/) and t_>0. The adjoint operator ~/* (on the adjoint space m of l) is 

defined by setting y ~ / * - z ,  where 

(z, x) = (y, ~ x) for all x 6 ~ (g/), 

whenever such an element z (necessarily unique) exists. 

We now have the crucial 

LEMMA. 7/ ( ~ ) = 7 /  (A~) /or each 3 > 0 ;  (13) 

7/(g/*) = N 7/(A*). (14) 
1~>0 

Proo/. If  x67/(~/) ,  then (12) at  once gives P~x=x ,  so tha t  x67/(A~).  Con- 

versely if x67/(A~) for one 3 > 0 ,  then P ~ x = x  and hence H x = x  (as i n t h e p r o o f  of 

Theorem 1). On using (9), we obtain tha t  P t x = P t I I x = I I x = x  for all t>O, and so 

finally tha t  glx=O. This proves (13). 

Next,  if y67/(g/*) ,  then (12) gives 

T 

(y, P~ x) = (y, x) + f (y, g/Pu x) d u (all x 6 ~ (~/)) 
0 

T 

= (y, x) + f (y gl*, P~ x) d u = (y, x). 
0 

p ~  Hence (y 3, x ) =  (y, x) for all x 6 O(g/), and because D(~/) is dense this implies tha t  
p* p* y ~ = y ,  i.e. tha t  y67 / (A*) .  Conversely if y , = y  for all 3 > 0 ,  then (y ,P~x)= 

(y, x) and 

( y , ~ x ) = l i m  y, = 0  for all x E ~ ( f ~ ) ,  
31,0 

so tha t  y 67/(f2*). This proves (14). 

3.2. We now classify the states and describe the  structure of IF[. Let  us say 

tha t  the state j is positive if ~jj > 0, dissipative if zjj = 0, and tha t  two positive states 

j and k are in the same positive class if ~jk > 0 (this is an equivalence relation between 

positive states). Clearly this classification coincides with tha t  of w 2 for each of the 

chains P~ derived from the process. Using (13), we can at  once transcribe Corol- 

laries 1.1 and 1.2 in terms of 7/+(g/), the positive par t  of 7/(~/), and obtain 
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T HEOREVt 4. A state is positive i/ and only i/ it lies in the support o/ some 

x E 7</+ (f2); two positive states lie in di[/erent positive classes i/ and only i/ there exists 

an x E ~+ (f~) whose support contains one o/ the states but not the other. 

I /  j is a positive state then amongst elements x E ~+ (~)  with xj = 1 there is a least, 

x j, and i/ ~q-xS/HxJll  then 7t ~ depends only on the class C e containing j, and has C ~ 

as its support. 

To find the analogue of Theorem 2, we observe that  the same /-vector ~ and 

m-vector ~e are associated with a positive class C ~ for each chain P~, and in each 

case w o is the least element y of 71 + (A*) such that  (y, ~ ) =  1. Hence ~ is also the 

least element y in 

n u+ (h:) 
v > 0  

or (by (14)) in )l + (f~*), such that  (y, ~ ) =  1. Thus we have 

T~EOREM 5. I[  C ~ is a positive class and 7t ~ is the associated l-vector o/ Theo- 

rem 4, then amongst the elements y o/ ~+ (~*) such that (y, 7t ~) = 1 there is a least, ~ .  

By combining Theorems 4 and 5 we obtain as a solution to Problem B :  

T~EOR~M 6. I /  the positive classes C Q and the corresponding l-vectors ,~ and 

m-vectors w e have been determined as in Theorems 4 and 5, then the matrix-elements o/ 

the ergodic projection-operator II will be given by 

~ij = 0 (all i) 

when ~ is not a positive state, and by 

~ i  = (we)~ (zte)j (all i) 

when j lies in the positive class C q. 

I t  should be pointed out that  whilst we have proved our results for processes 

by considering the chains P~ and using the results of w 2, this is only a matter of 

convenience. Direct proofs can be given, by  methods similar to those of w 2, based 

on the properties (analogous to (8)) 

(for each t >_0), (15) 

which where proved by Doob ([7], Theorems 6 and 7). 

8 - -  573804.  Acta mathematica. 97. Impr i rn6  le 12 av r l l  1957. 
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4. Feller processes: the solution to ProMem C 

4. t .  Suppose tha t  a matr ix  Q of finite real elements q*t is given, such tha t  

q~j>_0 when i - j ,  Z q i ~ - - 0  for all i. 

Suppose further  tha t  the conservative matr ix  Q is regular; i.e. tha t  the "minimal"  

process constructed by  Feller [11] is honest (satisfies ~ p ~ ( t ) =  1), or equivalently tha t  

there is exactly one Markov process such tha t  p[j ( + 0) = q~j. (See Doob [8], Reuter  [31]). 

We write x e D (Q) whenever 

(a) x El, 

(b) ~x~q:~i is absolutely convergent for each ?', 

(c) ZIZx q ;l< 
1 a 

and we define an operator Q with domain ~ (Q) by  setting 

(Qx)j~Zx~q~,j (xEO(Q)). (16) 
q. 

The set O 0 of "f ini te"  vectors (those with only finitely many  non-zero components) 

is contained in D(Q), and we define Q0 to be the restriction of Q to O ( Q 0 ) ~ ) 0 .  

Because O0 is dense in 1 we can define the adjoint Q~ of Q0, and this can be shown 

to be given by 
(yQ~),-~q,~ya (yeD(Q~)) (17) 

O~ 

the domain D(Q~) of Q~ consisting of those vectors y E m for which (17) defines an 

element y Q~ of m. 

Now let ~F generate the Feller semigroup associated with the given q's. Then 1 

Q0 - ~ r - ~ Q ,  (18) 

and hence Q*~ * *; ~ ~ Qo (19) 

further  for each ~ > 0 and x E l, the equation 

2 ~ - ~ ~ = z (20)  

has exactly one solution ~ ( I ) ~ x  in ~ ( ~ ) .  When x_>0, then (I)~x_>0 and ~ ( I ) ~ x  

is the least positive solution (in 0 (Q)) of the equation 

28-QS=x.  (21) 

1 The properties of ~F which we state here can be proved without undue difficulty by exam- 
~6 . . ) ining FELLER'S construction [11] of his rmmmal ' semigroup; see [31]. 
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We now make  use of our assumpt ion tha t  Q is regular,  i.e. t h a t  g2r generates a 

transition semigroup. This implies t h a t  2(I)~ is a t ransi t ion operator,  and  1 tha t  the  

nullspace TI(2I -Q~)  contains only the  zero vector ,  for each 2 > 0 .  Using these facts, 

we are able to  eliminate the explicit references to ~ in Theorems 4 and 5, and re- 

place them by  s ta tements  involving the  q's alone. To do this, we prove 

T H E O R E M  7. 
tion semigroup, then 

I /  Q is regular, and ~ generates the (unique) associated transi- 

Tl + ( ~ )  = Tl + (Q), (22) 

~+ ( ~ )  = ~+  (Q~). (23) 

Proo[. Clearly (18) implies t h a t  ~+  (~p)___~+ (Q), and (22) will follow if we can 

prove the  reverse inclusion. Suppose then  tha t  x ~> 0, x E ~ (Q), and Q x = 0, and choose 

some fixed 2 > 0 .  We shall then  have 2 x - Q x = 2 x ~ 0 ,  so tha t  ~ = x  is a positive 

solution of the  equat ion 
2~-Q~=2x>_O (~ e ~ ( Q ) ) .  (24) 

Bu t  (cf. (21)) the least positive solution of (24) is ~=(P~(2x) ,  so t h a t  x>_(I)~(2x)= 

2 (I)z x ; also we cannot  have x ~= 2 (I)~ x because this would now give [[ x [[ > [I 2 (I)x x [I, con- 

t radict ing the  fact  t h a t  2 (I)~ is a t ransi t ion operator .  I t  follows tha t  x = (I)~ (2x)E D (~r) ,  

so tha t  x E T/+ (~ r ) ;  this proves tha t  ~+ ( Q ) ~ +  (~F), and (22) follows. 

We shall deduce (23) f rom the  sharper s ta tement  t h a t  

$ $ 
~F  = Q0, (25) 

and  to prove this it will suffice, by  (19),. to  prove tha t  

O (D~) = ~ (Q~). (26) 

We shall need here one fur ther  fact  f rom semigroup theory,  namely  t h a t  when 2 > 0 

and x E D (~F), then  
(I)~ (21 -- ~F) x = x. 

F rom this it follows at  once t h a t  

and t h a t  w O~ ( 2 1 -  ~ )  = w 

for all w Em. 

1 The condition, ~ (Z I - Q~) = {0}, is given in KATe'S paper [20]. The condition can be proved 
to be equivalent to the regularity of Q; see [31]. 
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Now if (26) were false, we could find y u= 0 such t h a t  y E ~) (Q~) bu t  y ~ ~ ( ~ ) .  

F ix  2 > 0, and define 
z=-y ( ,~ I -Q~)Cp~.  

Then  z E ~ (g2~), so t h a t  z ~= y, bu t  also 

z ( 2 I  - Q~)) = z (21 - g]~) = y ( 2 I  - Q~) O~ (21 - F~*) 

= y ( 2 I - Q ~ ) ,  

so tha t  ( z - y )  would be a non-zero element of ~ ( ~ I - Q ~ ) ,  contradict ing the regular i ty  

of  Q. Thus (26) mus t  hold, and (23) follows. (For (26), see also [31], w 7.2.) 

4.2. To obtain  a solution to Problem C, we  have merely  to combine Theorem 7 

wi th  Theorems 4 to 6. This leads us to 

T H E O R E M  8. Let Q=- (q~j : i, j = 0 ,  1, 2 . . . .  } be a regular conservative q-matrix, and 

let (p~j (t) : t >_ O} be the unique process such that p[j ( + O) = q~j. Then: 

(i) A state is positive i/  and only i/  it lies in the support of some x E ~+(Q);  

two positive states lie in di//erent positive classes i / a n d  only i/  there exists an 

x E Tl + (Q) whose support contains one o/ the states but not the other. 

(ii) I /  ~ is a positive state, then the set o/ l-vectors x E  ~+ (Q) with x j =  1 has a 

least member x j, and i/  no`-xJ/[[xJH then ~o  ̀ depends only on the positive class 

C ~ containing ~ and has C ~ as its support. 

(iii) I]  Co  ̀ is a positive class, then the set o/ m-vectors y E ~+ (Q~) with (y, ~zo`)= 1 

has a least member v90`. 

(iv) The l imits z~j = lim p~j (t) 

are given by z~j= 0 (all i) 

when j is not a positive state, and by 

xe~j = (wq)~ (7~o )̀j (all i) 

when ] lies in the positive class Co`. 

In  order to  apply  Theorem 8, we have only to use the facts t h a t  ~+ (Q) consists 

of all positive vectors  x E l such t h a t  

~x~q~j=o ( ]=0 ,  1 ,2  . . . .  ), (27) 
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and  ~/+ (Q~) consists  of al l  pos i t ive  vec tors  y E m such t h a t  

q ~ y ~ = O  ( i = O ,  1, 2 . . . .  ). (28) 
c ~ = O  

The re levance  to  the  ergodic p rob lem of the  posi t ive  convergent  solut ions  to  (27) and  

of t he  pos i t ive  b o u n d e d  solut ions  to  (28) has,  of course, long been  recognised b y  

s ta t i s t i c ians ;  the  impor t ance  of Theorem 8 is t h a t  i t  al lows the  a p p r o p r i a t e  solut ions  

to  be iden t i f i ed  in cases of non-uniqueness .  

5. E x a m p l e s  

5.1. T h e  r a n d o m  w a l k .  W e  begin wi th  an  example  i l lus t ra t ing  the  solut ion to  

P rob l em A;  i t  is a fami l ia r  one and  here t he  ergodic behav iour  is well  unde r s tood  

(ef. F o s t e r  [14], Har r i s  [16], J ensen  [18], K a r l i n  & McGregor  [19]). W e  label  the  s ta tes  

of a M a r k o v  chain as . . . .  - 1 ,  0, 1 . . . .  and  t hen  p u t  

[ P:I if ? ' = i + l ,  

if i = i - 1 ,  

if j : ~ i •  

where  Pt > 0, q~ > O a n d  p~ + q~ = 1, for al l  i. To f ind  the  nul lspace  of A we m u s t  solve 

t he  difference equa t ions  

x] = P]-I  xj 1 -~ q]+l X]+l (all j),  

a n d  we wr i te  these  as 

u j  - p j  x j  - p j _  l x j _  l = qj  + l Xj + l - q j  x j  . 

Eviden t ly  1 u E l if x E l, so t h a t  we m u s t  have  

~} Xj = Uj -~ U]_l -~ Uj_2 + . . . ,  

qj xj = - (uj + uj+l + uj+2 + "" "), 
(29) 

a n d  we therefore  p u t  
J 

- r  - ocJ 

so t h a t  (29) becomes p~ x j  = v j  , qs x j  = v j -  l - a .  

Because  bo th  x and  u are  in l, we know t h a t  x.,. and  vj t e n d  to  zero when j - - > -  ~ ; 

t hus  a =  O. The las t  pa i r  of equa t ions  now gives v j =  (Ps/qJ)vj-1, and  hence 

' A typical /-vector now takes the form x - (  . . . .  x , ,  %, x, . . . .  ), with I Ix l l -  
- o o  
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Let  us set 

/PIP2 ... ~ v 
~ qx q2 ... qJ o (J >0), 

v j=  

|qJ+~qJ+~ "-': qJ v o ( j<O).  
( PJ+I Pj+2 ... P0 

-11 qj+l ... q o q _ l +  ~, 1 - -  ~ ,  V l " ' "  ~i9"/ 
(30) - - -  . 

R - = _ ~  PjPj+I  P0 Po 1 P j q 1 . - - q j  

I f  R =  o~, then  Vo=0 , the  nullspace of A contains the zero vector  only, and every 

state  is dissipative. I f  R < o~, then  the  nullspaee of A is spanned b y  a single posi- 

t ive vector,  every  state is positive, and the states form a single positive class. I n  

bo th  cases, we shall have  

i1 qJ+  ...qo 1 
Pj p j + l . . . P 0  R if j < 0 ,  

:z,j= ] 1 / (poR ) if j = 0 ,  (31) 

] l p l " ' ' p ' I  if j > O ,  
[ PJ ql ... qj R 

for all i (these expressions all being zero when R =  o~). 

The nullspace of A* can readily be found for the  present  example, bu t  (cf. 2.2) 

this is never  required when, as here, ~ (A) is either zero-dimensional or is one-dimen- 

sional with a s tr ict ly positive generat ing vector.  

5.2. The "/lash o/ /lashes". We next  give two examples il lustrating the solution 

to  problem B, and we have chosen for this purpose the  two mos t  pathological  pro- 

cesses which we know. The first of these has a conservat ive q-matr ix which is so 

highly non-regular  as to  be associated with a cont inuum of processes all satisfying 

the  same set of "backward"  and  " fo rward"  differential equations.  Problem C would 

here be quite meaningless and  the  process will be specified by  giving its infinitesimal 

generator  ~ .  

The space 1 will now be so labelled t h a t  a typical  l-vector becomes 

x=--(..., x -1, x ~ x 1, . . .) 

where xS---( . . . .  xS-1, x0,S xl,S .. .) 

and  the x s n are real numbers  such t h a t  

- o o  - o o  



T~E CALCULATIO~r OF THE ]~RGODIC rROJECTION FOR M~KOV C~AINS 119 

Now le t  a s (s, n =  . . . , - 1 , 0 ,  1 . . . .  ) be posi t ive  real  number s  such t h a t  ~ I / a S <  ~ ,  

a n d  define t he  conserva t ive  q -ma t r ix  Q b y  

rs [ -  as~ if n = m ,  

q m n = O ( r : ~ s ) ;  qmnS~ = i  +ares if n = m + l ,  

0 otherwise.  

The  ope ra to r  ~ is t hen  def ined  to  be the  res t r i c t ion  of t he  m a t r i x - o p e r a t o r  Q (defined 

as a t  (16)) to  t he  d o m a i n  of / -vectors  x such t h a t  

(i) Y Y lag-lxg-,-agxgl< ~ ,  

(ii) U ~ x = L S + Z x  ( s =  . . . ,  - 1 ,  0 , 1  . . . .  ), 

(iii) l im U " x =  l im U ' x ,  
o--~-t- oo a- -~ , -  oo 

where  U s x = l im a~ x ~ L ~ x-= l im a~ x~. n ~  

( I t  is shown in K e n d a l l  [21] t h a t  s genera tes  a t r a n s i t i on  semigroup. )  

W e  m u s t  now f ind  the  nul l space  of ~ .  I f  x fi 7/(C2), t hen  

s x s a s x s 
a n - 1  n - 1  - -  n n ~ 0 

for a l l  s and  n, a n d  so 

x s - cS/a ~ where c s = U s x = L ~ x. r t  - -  / rt  , 

Condi t ion  (ii) t hen  shows t h a t  c s is i n d e p e n d e n t  of s, and  the  o ther  condi t ions  are  

now sat isf ied au toma t i ca l l y .  Thus  ~ (~)  is one-d imens iona l  and  is spanned  b y  the  

vec tor  whose (~)th componen t  is 1/a~.  I t  follows t h a t  all  the  s ta tes  arc  posi t ive ,  

t h a t  t h e y  form a single pos i t ive  class, and  t h a t  

~ j  = ~ ,  = ~ - (32) 
a~ 

for all  va lues  of r, s, m a n d  n. As in 5.1 the re  is no need  to ca lcula te  T/(~*).  

5.3. A sequence o] ]lashes communica t ing  via an instantaneous state. I n  th is  

example  (also t a k e n  f rom K e n d a l l  [21]) the  Markov  process  has  a h igh ly  non-con-  

se rva t ive  q -ma t r ix ;  one of s ta tes ,  labe l led  0, is " i n s t a n t a n e o u s "  (has % 0 = - c ~ )  and  

the  cor responding  row of the  q -ma t r ix  can be w r i t t e n  as  

( -  o ~ , 0 , 0 , 0  . . . .  ). 

As in 5.2 t he  process will  be specif ied b y  giving i ts  in f in i tes imal  gene ra to r  ~ .  This  

t ime  1 is so labe l led  t h a t  a t y p i c a l  l -vec tor  becomes  
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z - -  ( x ~ x 1, x ~ . . . .  ) 

where x ~ is a real number  and  x s is a real vector  

X S ~ (  . . . .  X__I,S X ~ , X ~  . . . .  )* 

The norm is defined by  

I1 11 1 ~ § 5: Izgl< . 
(*=1 c~- - oo 

Now choose positive numbers  a~ ( s = l ,  2, 3 . . . .  ; n = . . . ,  - 1 ,  0, 1 . . . .  ) such tha t  

~ . ~  1 / a ~ <  c<, and define ~ ( ~ )  to  be the  set of vectors x which satisfy 

(i) E E l  a a - l a  Xa:_a I - -  a~,xr 
* = x  ~ (all s~> l )  and (ii) L* x =- lira a= xn 

n---> - oo 

(such vectors necessarily belong to l). Final ly define ~Qx for  x e D ( ~ )  by  

oo 

(f~ x )  ~ - E ( U "  x - x~  

s s s s ( s > l ,  all n), (~x)~ ---an-1 X n - l - - a n  z~ 

where U s x ~- lim a~ x~ 
~/.--~ -I- OO 

(this last  l imit necessarily exists and the  series equated  to  (f2x) ~ is necessarily ab- 

solutely convergent).  Ev iden t ly  s  0 if and only i f  a s xS~ = c ~ x  ~ and so ~/(~)  is 

one-dimensional and is spanned by  the  vector  whose components  are 

x ~ = 1, xn-* - 1 / a ~ .  

Thus all the states are positive and form a single positive class, and 

re ~176 = A ,  7~.~~ = A / a ~ ,  

YO r s  __ J :7"~m.  = A ,  ~mn - A/aS~,  ( 3 3 )  

where 1 / A  ~ 1 § ~ ~ ]//a~. Once again there is no need to find ~/(~2"). 

5.4. A genera l  M a r k o v i a n  q u e u i n g  process .  We now turn  to Problem C: the  cal- 

culation of the  ergodic projection for Feller processes. As a first example we consider 

the  Markov process having the q-matrix 

- b  o b o 0 0 ... 

a 1 - ( a l + b z )  b 1 0 . . .  

0 a 2 - ( a ~ §  b 2 . . .  

0 0 a 3 - ( a a + b  3) . . .  

. ~  ~ . . . . . . . . . .  �9 

(34) 
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where b0, a 1 bl, a 2 . . . .  a re  g iven positive real  numbers .  1 I n  the  classical  queuing  process 

of E r l ang  we have  a 1 = %  . . . . .  a and  b 0 = b l = b  2 . . . . .  b; the  s ta te - labe l  r is equal  

to  the  number  of persons wai t ing  or  being served  and  so a can be ident i f ied  as t he  

reciprocal  of the  mean  service t ime  and  b as  t he  rec iprocal  of the  mean  t ime  be tween  

arr ivals ,  each of these  t imes  hav ing  a nega t ive -exponen t i a l  d i s t r ibu t ion .  I n  the  more  

genera l  sys tem considered here  each of a and  b is a l lowed to depend  on the  number  

r of persons  p resen t  in the  queue. A s imilar  ex tens ion  of t he  classical  queuing s i tua-  

t ion  has  been considered p rev ious ly  b y  Jensen  [18]. 

The  q-mat r ix  a t  (34) is conse rva t ive :  i t  will be regu la r  and  so def ine a un ique  

Markov  process  if a n d  only  if the  set  of equa t ions  

(~ + b0) Yo = b0 Yi, 

( ~ + a r + b r )  y r = a r y r - l §  (r_> 1), 

has  no bounded  so lu t ion  o the r  t h a n  Yo = Yl = Y2 . . . . .  0 for a n y  one (and then  for all) 

~ >  0. I n  looking for a non-nul l  so lut ion we m a y  c lear ly  assume t h a t  Y0 = 1 and  theI l  

the  re la t ions  
yl  = 1 § ~/bo, 

b r ( y r + ~ - y , ) = 2 y ~ + a ~ ( y ~ - y r - 1 ) ,  ( r>_l)  t (35) 

show induc t ive ly  t h a t  1 = Y0 < Yl < Y, < "" ". W e  therefore  p u t  Y-= l im y, _< ~ .  F r o m  (35) 

we f ind  t h a t  

ly ,  a~ yr-1 a . . . .  a l  Y0/ 
Y r + l - Y r = ~  ~- + ~ 4 " ' + b ~  b lbo] ~ (36) 

for  al l  r_>0. Now if 

t hen  (36) gives 

1 ar ar . . .  a 1 
= - -  -~- §  (r >_ O), 

c~-- br ' b~br_l b . . . .  bib o 

~Cr<_yr+l--yr<_~Cryr ( r ~ 0 ) ,  

Oo 

a n d  so l + 2 ~ c r _ <  Y_< I ~ I ( l + 2 c r ) .  
0 0 

W e  conclude t h a t  the q .matr ix  (34) is regular i /  and only i /  

r-0 +b,  (37/ 

This resul t  is due to  Dobru~in [6], who deduced  i t  f rom Fe l le r ' s  r egu l a r i t y  cr i te r ion;  

t he  a d v a n t a g e s  of t he  a l t e rna t ive  ana ly t i ca l  c r i te r ion  for r e gu l a r i t y  a r e  ve ry  well shown 

b y  this  example .  

1 We now revert to 0, 1, 2, . . .  as  t h e  s ta t e - l abe l s .  
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W e  now suppose  t h a t  (37) is sat isf ied,  so t h a t  (34) is assoc ia ted  wi th  a unique 

Markov  process.  The  solut ion to  P rob lem C requires  t h a t  we f ind all  p o s i t i v e / - v e c t o r s  

x such t h a t  

- b o x  o + a l x  1 = 0 ,  ( 38 )  

br_lxr_l-(ar+br) xr+ar+lXr+l~O (r>_ 1). (39) 

These  equat ions  have  a one-d imens iona l  se t  of solut ions  gene ra t ed  b y  

b 0 b 0 b I b 0 . . .  br 1 
x 0 ~ l ~  X l ~ - -  , X 2 -  ~ . . . ,  X r :  - -  ~ . . . ,  

a 1 a 1 a 2 a 1 . . .  a r  

so t h a t  we m u s t  d is t inguish  be tween  two cases, depend ing  on the  n a t u r e  of 

or 
S----l+ ~ b~ "'" b~-i (40) 

r = 1 a l  a 2  �9 �9 �9 a r  

I f  S =  o~, t hen  eve ry  s t a t e  is d iss ipa t ive ,  whils t  if S <  0o t hen  all  the  s ta tes  are  

posi t ive  and  form a single pos i t ive  class. I n  b o t h  cases 

1 b 0 . . .  bi-1 1 
: r i 0 = ~ ,  ~r~i=a 1 . . . a j  S (]_>1), (41) 

for all  i. 

I t  should  be no ted  t h a t  S = ~ and  S < ~ are  each consis tent  wi th  t he  r egu la r i t y  

condi t ion  (37). I f  a~=a a n d  b~ = b  for all  va lues  of r then  (37)wi l l  hold  and  we f ind 

t h a t  S <  ~ if and  on ly  if b < a  (a wel l -known result) .  The  impor t a nc e  of the  series 

(40) in queuing prob lems  has  been p rev ious ly  n o t e d  b y  Jensen  [18]. 

5.5. The general birth-and-death process. W e  now consider  the  Markov  process  

associa ted  wi th  t he  conserva t ive  q -ma t r ix  (34) when b 0 = 0 and  a~ > 0, br > 0, for  r _> 1. 

N a t u r a l l y  we m u s t  aga in  requi re  the  q-mat r ix  to  be regular ,  and  the  r egu la r i t y  condi-  

t ion  will be de r ived  in a mome n t .  The  s t a t e - l abe l  r will now be ident i f ied  w i th  the  

n u m b e r  of ind iv idua ls  in a popu la t i on  for which the  chances  of a b i r t h  or  d e a t h  

occurr ing in the  shor t  t ime  in t e rva l  5 t a re  

b~ t+o(S t )  and a~t+o(~ t ) ,  

respect ive ly .  The condi t ion  b 0 = 0  ensures t h a t  the  popu la t ion  canno t  recover  if i t  

once becomes ext inc t .  The  fami l ia r  " s imple"  b i r t h - a n d - d e a t h  process  corresponds  to  

t he  choice 

a f t r a ,  br--rb 
for the  pa ramete rs .  
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The q-mat r ix  will be regu la r  if and  only  if, for some one (and then  for all) 

> 0, the  set  of equa t ions  
2y0 = 0, 

(,~ + a~ + br ) y~ = a~ y r -  l + b~ yr + ~ ( r >  1), 

has  no non-nul l  bounded  solution.  W i t h o u t  loss of gene ra l i ty  we m a y  p u t  Y0 = 0 and  

Yl = 1, and  t hen  we shal l  have  

Y2 = 1 + (~ + al)/bi, 

b ~ ( y r + l - y ~ ) = 2 y ~ + a r ( y ~ - y ~ - ~ )  (r_> 2), 

so t h a t  1 =Yl  <Yz < "" .  Again  i t  is  convenien t  to  pu t  Y ~  lira y~, and  ve ry  much as  
r - - ~  

before  we f ind  t h a t  

2d~ + e~ -<y~+x - Yr -< (2dr + er) y~ 

] ar ar . . .  a s 
where  dr ~ ~ + ~ - ]  4 " -  + b~ b 2 b I ' 

(r_> 1), 

ar . . .  a 2 al  
b~ .. .  b~ b I ' 

oo oo 

a n d  so 1 + ~ (er § ~ dr) <_ :Y ~ I-[ (1 + er + 2 dr). 
1 1 

I t  follows t h a t  the q - m a t r i x  (34), w i t h  b o =  0, i s  r e g u l a r  i /  a n d  o n l y  i /  

t l  ar a . . . .  a2 I =  (42) 

This  r esu l t  also is to  be a t t r i b u t e d  to  Dobru~in [6].  1 Note  t h a t  (37) is in effect  a 

condi t ion  on bl, a2, b 2 . . . .  o n l y ,  a n d  t h a t  i t  is equ iva l en t  to  (42), so t h a t  the  r egu la r i t y  

of the  sys tem does n o t  depend  on whe the r  t he  s t a t e  r =  0 is or is no t  absorbing.  

W e  now assume t h a t  (42) holds  and  f ind the  solut ion to  P rob lem C. F i r s t  we 

m u s t  f ind  all  posi t ive  / -vectors  x such t h a t  

a 1 x 1 = 0~ 

- ( a  I § bl) x 1 § a s x 2 = 0 ,  

b~ - l X~- l - ( ar + br ) x~ + ar + l X~ + l = O (r_> 2), 

a n d  we see a t  once t h a t  the  genera l  solut ion is an  a r b i t r a r y  non-nega t ive  mul t ip le  

of  the  vec to r  
u ~  0, 0, 0 . . . .  ]. 

T h u s  the  zero-s ta te  is pos i t ive  a n d  forms b y  i tself  the  only  pos i t ive  class C; all  o the r  

s t a t e s  are  d i ss ipa t ive .  Accord ing ly  we shall  have  

1 See also KARLIN & MCGREGOR [19]. 
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~,j = 0 (j_> 1, all i) 

and  7~i0 = ~5~ (i, C) (all i), 

so t h a t  the  missing column of the  H - m a t r i x  consists of the  ext inct ion-probabi l i t ies  

(i, C) ~ lira p~ 0 (t) (i = 0, 1, 2 . . . .  ) ; 
t--~+ ~ 

it is clear t h a t  this l imit  is a t ta ined  monotonica l ly ,  and  t h a t  i t  could be in te rpre ted  

as the  chance t h a t  the  populat ion,  init ial ly of size i, will u l t ima te ly  become ext inct .  

Our solution to P rob lem C shows t h a t  the  vec tor  ~ whose i th  componen t  is 

(i, C) is the  least  non-negat ive  bounded  solution y to  the  equat ions  

aryr 1 - ( a r + b r )  y~+b~y~+l=O ( r =  1, 2, 3 . . . .  ), (43) 

subject  to the  requ i rement  t h a t  
(y, u ~  = 1. 

The general solution to the  difference equa t ion  (43) is 

( r ~  al  .. .  as) 
y o = A ,  y ~ = A + B  1 +  ( r > l ) ,  

where A and B are a rb i t r a ry  constants ,  and  the  na tu re  of its bounded  solutions will 

depend on 
a l  . . .  a s  T ~  1 + (44) 

s=l bl bs" 

I f  T =  ~ ,  we mus t  have  ~ [ 1 ,  1, 1 . . . .  ] 

and ext inct ion is a lmos t  certain wha teve r  the  initial s tate.  I f  however  T <  ~ ,  then  

~(Q~)  will be two-dimensional  and the  min ima l i ty  condit ion comes into p l ay ;  we f ind 

then  t h a t  the  vec tor  ~ and  the  individual  ext inct ion probabil i t ies  are given b y  

~0  = 7~00 = 1, / 

1 ~ a 1. . .  a~ / (45) 
~ = zti o = ~' s=~'-" b 1 .. . bs (i >~ 1). 

As in 5.4 it  should be no ted  t h a t  T =  ~ and  T < ~ are bo th  consistent  wi th  the  

regular i ty  condit ion (42): for  ins tance if a ~ = r a  and b ~ = r b  (the " s imple"  b i r th-and-  

dea th  process) then  (42) a lways holds, whilst  T <  ~ if and  on ly  if a < b. I t  is also 

wor th  observing t h a t  the  condit ions S =  ~ (in 5.4) and  T = ~ (in 5.5) are ent i re ly  

different  in character .  Rough ly  speaking a queuing process will be comple te ly  dissi- 

pa t ive  (S = ~ )  when the  rat ios b~/a~ are too large, whilst  the  corresponding bir th-  

and-dea th  process will have  the  universa l  ext inct ion p r o p e r t y  ( T =  ~ ) w h e n  these  
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ratios are too small. This is of course quite reasonable from the intuitive standpoint.  

Finally it should also be mentioned tha t  the H-matr ix  for the examples in 5.4 and 

5.5 has been previously found by  Ledermann and Reuter  [26] assuming the q-matrix 

to be regular (the regularity conditions (37) and (42) were not known to them);  the 

present method is however much simpler. 

6. The calculation of R(II)  and ~'/(FI) 

6.t. A di//erent approach to Problem B. In  [22] we treated a generalisation of 

Problem B: to determine the subspace F of "ergodic" vectors x E X and the associated 

"ergodic projection operator" [I (defined on F), for a one-parameter semigroup 

(Pt : t_>0} of operators on a Banach space X. A vector x was there called ergodic 

whenever [I x ~  lim Ptx  existed as some kind of generalised ]imit and with regard 
t-->co 

to some suitable topology for X. This work formed a natural  continuation of earlier 

investigations in general ergodic theory by Dunford [10], Hille ([17], Ch. XIV) and 

Phillips [30], but  for us it was also prompted by  a desire to solve Problem B of the 

present paper. I f  we set X ~ l  in [22], the resulting theorems are not always ap- 

plicable to Problem B, but  the methods of [22] can be adapted to yield a partial 

solution. This has an entirely different character from the solution given in w 3, 

where the lattice properties of 1 were exploited: we shall now have to s tudy the 

interplay of a var iety of weak topologies. I t  should be emphasised tha t  the solution 

of w 3 is superior in tha t  it is always availabJe; the methods to be described now 

may  sometimes fail altogether but  have their own merits whenever they can be applied. 

Problem A can also be treated by similar methods;  the analysis is then simpler and 

we leave the details to the reader. 

As in w 3, we consider a Markov process whose array of transition probabilities 

is {p~j(t):i, ] = 0 ,  l ,  2 . . . .  }. Let  ~ be the infinitesimal generator of the associated 

transition semigroup (Pt : t ~ 0 }  on l; also, with z i j - - l i m  pij(t) as before, define the 

ergodic projection operator II by  

(H x)j--= ~ x~,zt~s (xel) .  
r 

We recall (el. (9) and (15)) tha t  

I I 2 = P t I I = I I P t = H  for all t_>0. (46) 

I t  is important  to note tha t  the operator II  is in general not the same as the 

operator 1] of [22]. 
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Because II is idempotent we can write any x E l uniquely in the form x = x ~  + x2, 

where x 1E ~( [ I )  and x 2 E ~ (II), and x 1 -  I x. Thus we have the direct decomposition 

1 = ~ (I]) Q ~/(II). (47) 

If  we can find the summands ~(1-I) and ~/(H) in (47), then we can find Hx,  for 

any x E1, by taking the component of x in ~( [ I ) .  I t  will now be seen that  we may 

rephrase Problem B as follows. 

P r o b l e m  BI :  Determine ~ ( I I )  and ~ ( I I )  when ~ is given. 

We shall see that  ~ ( I I )  is easy to identify, and coincides with ~/(~). The deter- 

mination of ~/(II) is more troublesome ; it turns out that  ~ (g2) _c ~/(1]), and we shall 

t ry  to reach T/(II) by closing ~ ( ~ )  with regard to several weak topologies for l. 

6.2. WeaIc topologies. I t  will be convenient for future reference to state some 

results which we shall need concerning weak topologies for a Banach space X. (Cf. 

[5] and [3], Ch. IV.) 

Let G be a linear set of funetionals gEX* which is " total"  for X, i.e. such 

that  the vanishing of (g, x) for all g E G implies x = 0. Then the G-weak topology for 

X is the (Hausdorff) topology generated by the sub-basic open sets 

{x:xeX,~<(g,x)<~} (~<~), 

where ~, fl range over the real numbers and g ranges over G. If  E _ X  then we 

shall write E for the strong and [E]G for the G-weak closures of E. Also if A G X  

and B c _ X  * we shall write A • and B T for the annihilators of A in X* and B in X :  

A •  * and ( y , x ) = O  for all x E A ) ,  (48) 

B T - ( x : x E X  and ( y , x ) = 0  for all yEB}.  (49) 

The following fact (Dieudonn~ [5], Th. 5) will often be used: 

when L is a linear subset o/ X ,  then 

[L]~ = (L~ n G) T. (50) 

In  particular, strongly closed linear subsets of X being also weakly closed (i.e. closed 

in the weak topology obtained by taking G ~ X * ) :  

when L is a linear subset o/ X ,  then 

L = (L• T. (51) 
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The preceding considerations apply equally well, of course, to the Banach space 

X*. We shall need only the "weak*" topology (cf. Loomis [29], w 9): this is the 

weak topology induced on X* by X (regarded as a subspace of X**). The statement  

at  (50) then becomes: 

when M is a linear subset o/ X*, then 

the weak* closure o] M is (MT) • 

Finally we shall need the fact that  every/inite-dimensional linear subset o /X*  is weak* 

closed (see Bourbaki [3], Ch. I, w 2, No. 3). 

The preceding results will be applied chiefly to the space X - - l  and its adjoint 

X * ~ m ,  but  at one point it will be useful to note tha t  they apply equally to the 

space X ~ e  o and its adjoint X*=--l; some care will then be necessary in manipulating 

the symbols ( )l and ( )T. (We assume tha t  the reader is familiar with the ele- 

mentary  properties of the spaces Co, l and m;  these can be found in Banach [1]. 

As usual we write c o for tha t  subspaee of m which consists of sequences z~(zo, z i . . . .  ) 

such tha t  z~-->0 when ~ - ~ . )  

In  what  follows we shall often require the G-weak closure of the linear subset 

~ ( ~ )  of X ~ l  for various total  linear subsets G of X * ~ m .  I t  is readily seen ([22], 

p. 167, eq. (42/) tha t  ( ~ ( ~ ) ) l =  ~ ( ~ * ) ;  this shows incidentally tha t  7/(fl*), being of 

the form E • (where E E l ) ,  

from (51) and (50) tha t  

and 

is always a weak* closed subset of m = l * .  I t  follows 

R (~)  = ( ~  (n*))  T (52) 

[~ (~)]G = (7/(~*) N G) T. (53) 

6.3. A partial solution to Problem B r We shall write u ~ and v j for the i th and 

j th unit vectors in l and m, so tha t  (u*)j = (vS),=(~ij and p,j(t)= (v j, Ptu*). Then, for 

each i and j, (v j, ( P t - H ) u * ) - ~ 0  as t - ->~.  But  I I P t - I I H < 2  so tha t  a double ap- 

plication of the Banach-Steinhaus theorem, z together with the facts tha t  the linear sets 

spanned by  the u ~ and the v j are dense in l and in co, yields the important  relation 

lim (z, Pt  x) = (z, I I  x) (x E l, z E co). (54) 

We now introduce the transition operator 2Ja  defined for all ;t > 0 by  

2J~x- -  f t e - ~ t P t x d t  (xEl)  (55) 
0 

I See HILLE [17], T h .  2 .12 .1 .  
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and  en joying  the  proper t ies  

J ~ x E  D ( ~ ) ,  ( , ~ I - g 2 ) J ~ x = x  (xEl),  (56) 

J ~ ( ~ I - ~ ) x = x  (x E ~ ( ~ ) ) .  (57) 

F r o m  (54) a n d  (55) we easi ly  f ind t h a t  

l im (z, ~J~x)=(z ,  [Ix) (xE1, zEco). (58) 
~o 

This makes  i t  p la in  t h a t  we are  here concerned wi th  "c0-weak e rgod ic i ty"  in the  

t e rmino logy  of [22]; the  resul ts  of [22], however ,  cannot  be app l i ed  because c o m a y  

fail  to be i n v a r i a n t  under  t he  ope ra to r s  ~ J ~  ac t ing  on m. The  me thods  of [22] will 

now be a d a p t e d  to  prove  the  following t h e o r e m :  this  is as close as we can ge t  to  

a genera l  so lu t ion  of P rob l em B 1 wi thou t  resor t ing  to  the  me thods  of w 3. 

THEOREM 9. 

(i) The range ~([I )  and nullspaee ~ ( [ I )  o/ the ergodie projection operator [[ al- 

ways satis/y the relations 
([[)  = ~ (~)  (59) 

and ~ (~)  _~ ~ / ( I I )  _ [~  (~2)]c,. (60) 

(ii) There is an example in which 

(~) c ?~ (1]) c [~  (~)]c0. 

Proo/. The L e m m a  in w 3.1 shows t h a t  when x E ~ ( ~ ) ,  t hen  P t x = x f o r a l l  t~O 

and  so, f rom (54), x=IIxE~(II). On the  o ther  h a n d  if x E ~ ( [ I )  t hen  x = I I x =  

= P t l ] x = P t x  and  so ~ 2 x = l i m  t - l ( P t x - x ) = O .  Thus  ~ ( [ I ) = ~ ( ~ ) .  

Nex t ,  if x E ~ (~)  t hen  x = g2 y = l im t -~ (Pt  Y - Y) and  so ]] x = lira t -1 (1] P t  Y - I I  y) = 

= lira t -1 ( I I  y -  I I  y) = 0. This  shows t h a t  ~ (~)  _~ ~ (II)  and  because  ~ (II)  is s t rong ly  

closed i t  follows t h a t  ~ (~)  _ ~ / ( I I ) .  

F ina l l y  the  re la t ion  (56) gives 

(z, x )= (z, ~ J~ x) - (z, g2 J~ x) 

for all  2 > 0 ,  al l  x E1 and  all  z E%;  f rom this  and  f rom (58) i t  follows t h a t  

(z, x )= l im (z, ~ ( - J ~ x ) )  
~o 

whenever  II  x =  O. This shows t h a t  eve ry  x E ~ ([I)  is t he  c0-weak l imi t  of a sequence 
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of elements of ~(g2), so tha t  T/(II)_~[~(f2)]c~ and the proof of (i) is now complete.  

The example referred to at  (ii) will be given in w 6.7. 

The facts set out  in Theorem 9 at  once suggest the following questions. 

(1 ~ How, using a knowledge of f2 alone, can one recognise the class of pro- 

cesses for which 

N ([D = ~ (~), 

and the  class of processes for which 

N ( ~ )  = [R (~)]c0, 

and how can one describe each class of processes in probabilistic te rms?  

(2 ~ ) Can we find a weak topology for 1 with regard to which the closure of 

}~(g2) is always equal to ~/ ( [ I )?  

We shall answer bo th  questions, bu t  our  answer to (2 ~ will be somewhat  un- 

sat isfactory since the specification of the topology will involve prior knowledge of the 

ergodic behaviour  of the system. 

6.4. Marlcov processes /or which ? q ( l ] ) = ~ ( ~ ) .  We know tha t  l = ~ ( I I ) ( ~ 9 / q ( I I ) ,  

t ha t  ~ ( Y I ) = ~  (f~), and tha t  ~/(FI)_D ~(f2).  The last inclusion can sometimes be re- 

placed by  equa l i ty :  

(II)  = R (~), (61) 

and we shall now find various conditions which ensure the t ru th  of (61). 

First  there is a simple necessary and sufficient condit ion which can be s ta ted  

in terms of f~ alone. I t  is clear t h a t  ~ ( ~ )  and ~ ( ~ )  have only the element 0 in 

common,  so tha t  it is meaningful  to consider the direct sum ~ ( f ~ ) @  R([s ( I t  is 

shown in [22] t ha t  this direct sum is always s t rongly closed, bu t  we shall not  need 

to  use this fact.) We now assert t h a t  (61) holds i/  and only i /  

1 = ~ (f~) @ R (f2). (62) 

I t  is obvious tha t  (61) implies (62). Conversely if (62) holds, let x E N( I I ) .  We can 

write x = u + v ,  where u E ~ ( f 2 ) = R ( Y [ )  and v E R ( ~ ) _ ~ ( I I ) ;  thus  x - v = u  lies in 

~/(H) and ~ (H) and hence x -  v = 0, so t h a t  x = v E ~ (~). I t  follows tha t  ~ (II) _c ~ (~),  

which implies (61). Recalling equat ion (52), we obtain  the following part ial  solution 1 

to Problem BI :  

1 Like the solution of w 3.2, it demands only a knowledge of ~ (g2) and ~ (~*). 

9 -  573804. Acta mathematica. 97. Imprirn6 le 13 avril 1957. 
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Calculate ~ (g2) and R (~) = 0~ (~,))v. Then if (62) holds, resolve x E l into 

two components corresponding to the direct decomposition (62); the compo- 

nent in ~ (~) will be [i x. 

Processes for which (61), or equivalently (62), holds will be called strongly ergodic, 

for a reason which will shortly become apparent. 

We saw during the proof of Theorem 9 that  when x E~/(~),  then P t x = x  and 

hence 2Jax=x  for all 2 > 0 .  Also, when x E R ( ~ )  so that  x = ~ y  (say), then 

]~Jzx=2Jzg2y=2(2J~y-y)  and so 112J~xll<_2),llyll--->o as ~ 0 .  Now N)~J~I]=I 

for all 2 > 0 ,  and so we deduce by using the Banach-Steinhaus theorem that  ]]2J~xi]-+0 

as 2 ~ 0 whenever xE ~(~2). Now assume that  the process is strongly ergodic; then 

for each x E l  we can write x = I I x + ( x - [ I x )  where IIxE~/(~2) and x - H x E ~ ( ~ i .  

We can then conclude from the preceding remarks that  2Jxx--~Hx strongly as 2 ~ O. 

Conversely, suppose that  2J~x, for each x E l, converges strongly as 2 ~ 0 to an 

element which from (58) must coincide with Hx. Then if x E 7/(II), 2J~x=x+ ~2J;.x 

tends strongly to I I x = 0 ,  so that  ~ ( - J ~ x )  tends strongly to x and x E ~ (~ ) .  Thus 

~/(H) is contained in, and therefore equal to, R([2); the process is strongly ergodic. 

We have now shown that  strong ergodicity of the process is equivalent to the 

strong convergence of 2Jax as 2 ~ 0 for all x. A similar result holds for general 

semigroups of operators acting on an arbitrary Banach space (see Hille [17], Th. 14.7.1, 

Kendall & Reuter [22], Th. 8), but in the present special ease of a transition semi- 

group acting on 1 much more is t rue:  we shall now show that  strong ergodicity is 

also equivalent to the strong convergence of Ptx as t-->~. 

To prove this, suppose first that  2Jax--+Hx (strongly)as 2 ~ 0 for all x. Writing 

e for the element of m given by ( e ) ~ l  ( i=0 ,  1,2 . . . .  ), we have 

(e, [ I x ) =  lim (e, 2Jxx)=(e, x), 
).~,0 

because 2J~ is a transition operator and so (e, 2J~x)=ilXg~xii=Hxil= (e, x) when- 

ever x > 0, whence (e, 2J~ x )=  (e, x) for all x. On setting x= u i we obtain 

>~ ~r~ = 1 (i = 0, 1, 2 . . . .  ). (63) 

Next, suppose merely that  (63) holds and put 

~, ( t ) -  5 I p,~ (t) - ~,~ I. 

Choose any J_> 0 ; then 

a, (t) _< E Iv- ,  (t) - =,~, 1+ E p. ,  (t) + ~ :~., 
ate3" at>J r 

= 5 Ip,,, ( t ) -  =,.,1 + 1 - E v . ,  (t) + y ~,~. 
r r J at>J 
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On letting t-->~ we find that 

o ~< lim sup ~ (t) _< I - ~ ~ + ~ =~ = 2 ~..~, 
t--> oo C~<] ~ > I  ~ > J  

and for each fixed i the r ight -hand side m a y  be made  as small as we please by  

suitable choice of J .  Thus (63) implies t ha t  

a,(t)~HPtu~-IIu~ll-->o as  t - + ~ ,  (64) 

for each i. Now IIPt-IIlI<2 for all t and the  u ~ span a linear set dense in /, so 

t h a t  the Banach-Ste inhaus  theorem gives 

] [P~x-Hx l l~o  as t ~  (all xCl). (65) 

Finally (65) implies, by  a s tandard  Abelian argument ,  t h a t  .~J;,x-->]]x strongly 

as ~ ~ 0, and this completes the proof t h a t  (65) is equivalent  to the strong ergodicity 

of the process. 

I n  the course of the  above proof we have shown t h a t  (63) is also equivalent  to 

strong ergodicity. I f  we use the  description of the ] ] -matr ix  given in w 3.2, we f ind 

tha t  (63) is equivalent  to 

~ (i, C e) = 1 (i = 0,  1, 2 . . . .  ), (66) 

where the summat ion  is over the positive classes. 

Our last characterisation of s t rongly ergodic processes will involve the relation 

between ~/(]])  and the m-vectors w e. Clearly 

II  x = ~ (w ~, x) 7d (67) 
q 

where the  summat ion  is over the positive classes; the series in (67) is absolutely 

convergent  because 

il(~ ~, x)~ll  = I(~ 0, x)l_< 5 Iz~l ~(~, o.) 

and so ~ II(~ ~, x)~ll-< ~ ~ Ix~l~(~, O~)_< ~ Ix~l< ~ 

Accordingly x E ~/(YI) if and only if (wq, x ) = 0  for all ~; i.e. ~ ( I I ) =  V T, where V is 

the linear set in m spanned by  (we : ~ = 1, 2 . . . .  }. I f  the process is s t rongly ergodic then 

v Tl = (?~ (rI)) l = (R (~))~ = (R (~))~ = ~ (~*).  

Conversely if V TM = ~ (~*) then 
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(71 ( H ) ) '  = V Tl  = 71 (D*) - ( R  (~))" 

and so (71 (II)) IT = (R ( ~ ) ) ' L  

But  71(II) and R ( ~ )  are s trongly closed linear subsets of l, and so it follows (using 

(51)) t ha t  71 ( I I ) =  R(f~), i.e. t h a t  the process is s trongly ergodie. 

F rom the remarks  in w 6.2 it will be seen tha t  V Tl is the weak* elo~ure of V, 

and so we have shown t h a t  s trong ergodieity is equivalent  to the requirement  t ha t  

71(E~*) be the weak* closure of the  linear set spanned by  the  vectors  ~a ~ in m. 

(Note tha t  71 (f~*) is weak* closed and contains the vectors  w e, so tha t  in any  ease 

71 (~*) _~ V,l.)  

I /  the number o/ positive classes is /inite then  V will have finite dimension and 

so will be weak* closed. The necessary and sufficient condition for strong ergodicity 

then  becomes:  7 1 ( f 2 " ) - V ,  i.e. 71(~-2") is spanned by  the vectors  w e. I f  we write d 

and d* for the dimensions of 71 (f2) and 71(f2") (so tha t  d is the number  of positive 

classes) then the last result  can be expressed as follows: if d <  oo then  the process 

is s trongly ergodic if and only if d*= d. The condition (66) also simplifies when d is 

f inite:  it then  becomes e =  ~ w -~ 
o 

We now collect all the preceding results. 

T H E O n E M  10. The process will be strongly ergodie, i.e. will have the property 

that 7 1 ( I I ) = ~ ( ~ ) ,  i/ and only i/ any one o/ the /ollowing equivalent conditions is 

saris/fed. 

(1 ~ For each xE l ,  P t x  converges strongly to a limit (necessarily equal to H x )  

as t---->~. 

(2 ~ For each x E l, ,~J~x converges strongly to a limit (necessarily equal to II x) 

as ~{0.  
(3 ~ ) For each i = 0 , 1 , 2  . . . . .  

Z I p , = ( t ) - ~ , = l + o  a s  t - . ~ .  

(4 ~ ) For each i=O, 1,2 . . . . .  ~ = 1 .  
o~ 

(5 ~ For each initial state i = 0 ,  1, 2 . . . . .  

Z ~r (i, C o) = L 
Q 

(6 ~ ) The vectors { w ~  = 1, 2 . . . .  } span a linear set V in m whose weak* closure 

is  71 (YF). 
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COROLLARY. Let d ~ - d i m ~ ( ~ )  be the number o/ positive classes and let 

d * ~ d i m  ~/(~*). Then, in the special case when d is /inite, either o/ the /ollowing 
3 

equivalent conditions is necessary and su//icient /or strong ergodicity. 

(7 ~ ) d * = d .  

(s ~ e=  ~ ~ .  
@ 

Condition (7 ~ of the Corollary is very useful in practice; like the earlier condition 

(62), it allows us to detect strong ergodicity and thence to calculate II,  by  inspecting 

~/(~) and ~/(s (Condition (7 ~ has an analogue for general semigroups; see Theo- 

rem 9 of [22].) The remaining conditions, (l~ ~ and (8 ~ cannot by  their ve ry  

nature assist us in calculating [I, but  they do indicate to what  extent  the ergodic 

theory of general semigroups can be applied to the present special case. For instance 

(3 ~ and (4 ~ both imply tha t  processes with finitely many  states are always strol~gly 

ergodic; also (5 ~ shows tha t  processes without dissipative states are strongly ergodic, 

whereas processes in which all states are dissipative are not strongly ergodic. In  

w 6.5 we shall give a probabilistic formulation of (5 ~ which will show how strong 

ergodicity is controlled by the behaviour of the system in relation to the dissipative 

states. 

Theorem 10 will now be illustrated by  " the  random walk in continuous t ime 

with an absorbing barrier at the origin". This is the process of w 5.5 with 

a l : a 2 ~ a 3  . . . . .  a > 0 ,  

b 1 : b 2 = b 3 . . . . .  b > 0, 

~nd with b 0 : 0  as before. The process is regular ((42) holds) and the operator Q is 

bounded; because Q0_~g2~_ ~ Q and g2r is a closed operator, i t  follows tha t  ~ ) ~ F  : Q 

and g2*:  Q*. The calculations in w 5.5 show tha t  T/(~) is one-dimensional and is 

spanned by  the vector 

there is just one positive 

there are two possibilities: 

u~ 0, 0 . . . .  ] ;  

class, consisting of the zero-state alone. As for ~ ( ~ * ) ,  

Case 1. a >_ b (so tha t  T = co). Then d* = 1 and ~/(g2*) is spanned by  e ~  [1, 1, 1 . . . .  ]. 

Case 2. a < b  (so tha t  T = b / ( b - a ) <  ~ ) .  Then d * = 2  and ~(~*~  is spanned by  

e and 
~ [ 1 ,  r, r 2 . . . .  ], 

where r = a/b.  
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F r o m  (7 ~ of the  Corol la ry  we see t h a t  there  is s t rong e rgod ic i ty  in  Case 1 b u t  

no t  in Case 2. I n  Case 1, ~ ( [ I )  consists of all  mul t ip les  of u ~ and  ~ ( I I )  is 

hence II  is given b y  

( ~ ( ~ * ) ) T = { x : x E 1  and  E x ~ = 0 } ;  

l ] x = ( ~  xa) u ~ 

The reader  will f ind i t  ins t ruc t ive  to  ver i fy  the  var ious  asser t ions of Theorem l0  for 

th is  example .  

6.5. The  probabilistic s igni / icance o/ strong ergodicity. The condi t ion  

~ ( i ,  C ~~ = 1 (i = 0 ,  1, 2 . . . .  ) (66) 
0 

for s t rong e rgod ic i ty  will now be expressed in probabi l i s t i c  terms.  

I f  (~ ,  :~, pr) is a p r o b a b i l i t y  space, i.e. if ~ is a n o n - e m p t y  set of po in ts  w, if 

:~ is a Borel  f ield of subsets  of ~ and  if p r  is a coun t ab ly  add i t i ve  non-nega t ive  

measure  on ~ such t h a t  (9:, pr) is comple te  I and  p r  (~)  = 1, t hen  a f ami ly  {X~~ 

of r a n d o m  var iab les  (~ -measurab le  (o-functions) t a k i n g  values  in the  compac t i f i ed  

set  {0, t ,  2 . . . .  ; ~ }  will be  cal led a representat ion of t he  Markov  process wi th  

i ( = 0 ,  1, 2 . . . .  ) as in i t ia l  s t a t e  when 

(i) X(o O ( m ) = i  for  all  coE 
and  

�9 l r ( i )=]n}=pih( t l )p] , ] , ( t2__ t l  ) . . .  p1 n lYn( tn-- tn-1)  (ii) p r  {Xi l )=?l  . . . . . . .  tn 

for all  n_> l ,  O < t ~ < t 2 < . . . < t  , 

and  ]1, ]2 . . . . .  j ,  = 0 ,  1, 2 . . . . .  

The rep resen ta t ion  is cal led separable ( re la t ive to the  class of closed sets) when 

there  exis t  a countab le  dense subse t  S of (0, ~ )  and  an  ~o-set A E :/with p r  ( A ) = 0 ,  

wi th  the  following p r o p e r t y :  

(iii) if ~o EA,  if J is a n y  open sub in te rva l  of (0, c~) and  if C is a n y  compac t  

subse t  of {0, 1, 2 . . . .  ; ~ }  (i.e. a n y  f ini te  set  of in tegers  or any  inf in i te  set  

of in tegers  wi th  the  compac t i f i ca t ion  po in t  ~ adjo ined)  then  X~ i) (w)~. C for 

al l  t E J if and  only  if X(s ~ E C for all  s E J N S. 

I (~, pr) is said to be "complete" when A ~ Z E ~ and pr (Z) = 0 together imply that A E :~. 
There is no loss of generality in assuming this. I t  will be recalled that the symbol ~ has also been 
used to denote the infinitesimal generator, but this should cause no confusion. 



T H E  C A L C U L A T I O N  O F  T H E  E R G O D I C  P R O J E C T I O N  F O R  M A R K O V  C H A I N S  135 

I t  is known (Doob [9], Ch. I I ,  Th. 2 . 4 ) t h a t  a separable representat ion can 

always be found, and it is even possible i to choose S in such a way  t h a t  A can be 

taken  to be the e m p t y  set. I n  practice, however, it is of ten desirable to identify S 

with some part icular  countable dense set such as the  set of positive rationals, and 

to justify this step we need the  fur ther  result  (a consequence of the continuity-in- 

probabi l i ty  of the process;  2 see Doob [7], Th. 8, and  Doob [9], Ch. I I ,  Th. 2.2) 

t h a t  if {X~>:t_>0} satisfies (i), (if) and (iii) in relation to a particular pair (So, A0) 

and if S is any countable dense subset of (0, oo) then a null set A = A ( S )  can al- 

ways be found so t h a t  {X~~ t k 0 }  satisfies (i), (if) and (iii) in relation to (S, A). 

The advantage  of using a separable representat ion depends on the  facts tha t  (a) 

SX(~> Y"> X~il} of r andom variables are only the joint distributions of [inite sets t t,, ~ t  . . . . .  , 

of practical  importance,  and (b) for theoretical  purposes we often want  to assign 

probabilities to events (o-sets) whose specification imposes restrictions on an un- 

countable collection of the X~ ~. Thus  all the representations satisfying (i) and (ii) are 

equally acceptable for practical purposes, while it will be mathematically convenient  

to select one of these which also satisfies (iii). Let  us suppose tha t  this has been 

done for some given initial state i (there will then be no ambigui ty  in dropping the 

index i f rom X~~ We shall prove tha t  

~r (i, C -~ = pr  {Xt E CQ+ for all sufficiently large t} 

C ~ when C -~ is finite, 

where C ~  C ~ { ~ }  when C o is infinite, 

and ~ = 1 , 2 , 3  . . . . .  

We star t  f rom the fact  (see w 3.1) t ha t  if T > 0  is fixed then the classes C o and 

the quantit ies ~ (i, C o ) are the  same for the process {Pjk(t) : t>_0} as for the chain 

{pjk(nT):n~0,1,2  . . . .  }, and { X ~ , : n = 0 , 1 , 2  . . . .  } is a representat ion of this chain 

with i as initial state. I t  is known (see Chung [4], p. 26) tha t  for this chain 

(i, C ~ is an "absorp t ion  p robab i l i ty" :  it is the probabi l i ty  t ha t  the sys tem will 

u l t imately  enter (and thereaf ter  remain in) the positive class C -~ Thus 

~r(i, C ~ = p r  {co : X ~ ( e o ) E  C -~ for all sufficiently large n}. 

Now, having already fixed the initial state i and chosen ~ > 0, choose S to consist 

of all positive rat ional  multiples of v and then  consider the m-set 

1 This is clear from DooB's proof. 
2 This in turn is a consequence of the fact that pjj (t) -+ 1 as t $ 0 for each ]. 
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Ee~ {w : Xt (co) E Ce+ for all t _> some T (co)}. 

We must  show tha t  Ee E :~ and tha t  pr  (EQ)= ~ ( i ,  Ce). 

Clearly E 0 can also be defined by  

EQ~ U {~o:Xt(eo) EC~+ for all t>N~}~ N[J>IEo(N), 
Nkl 

say, and Ee(N) is a subset of and differs from 

Es (;V) ~ {co : X~ (co) C C~+ for all ~ e S n (N ~, ~ ) }  

by  a subset of A. Also, as a consequence of ~ p~, ( t)= 1, we have pr {co : Xt (~o)= ~ ) =  0 
cc 

for each fixed t, and so 

E "  "N" C -~ o ( )~{~o:X~(co)E for all s E S N ( N T ,  ~ ) }  

i t  
is a subset of and differs from E~ (N) by a set of zero probability. Finally Ee (N) 

is a subset of 
E'e" (N) ~ {co: X ~  (o~) E C o for all integers n > N}, 

and U E'+"(N)- U E'o'(N)~ U U Fn, s 
N > I  N>I n > 2  s > n r  

s E S  

where 

B u t  n o w  p r ( F n . s ) =  ~ ~ io~,(n'c)p~,r 
~e  C -~ fl~ CQ 

because /3 q C o is inaccessible from ~ E C "~ in the Markov chain associated with the 

t ime-interval  . c ' ~ s - n T > O .  I t  follows tha t  EoE:~ and that, 

pr (Ee) = pr ( g U Eq (N)) = pr ( U E'q" (N)) 

= pr {co : Xn~ (co) E C -~ for all sufficiently large n} 

= ~ r ( i ,  co-), 

as required. 

The above proof also shows that, 

pr ( U Er = pr ( U U Ee (N)) = pr ( U U E'~" (N)) 
(~ Q N Q N 

= ~ p r ( O  E'Q"(N))= E ~ ( i ,  C ~ 
N Q 

(because the positive classes are disjoint), and so on combining this with (5 ~ ) of 

Theorem 10 we obtain 
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T ~ ~o R ]~ M 11. Let {X~ i) : t >~ 0} be a separable representation o/ the Markov pro- 

cess with state-space {0, 1, 2 . . . .  ; o o )  and initial state i ( = 0 ,  l ,  2 . . . .  ) associated with 

the array {p~ (t) : j, k = O, 1, 2 . . . .  ; t ~ 0} o/ transition probabilities satis/ying the conditions 

Then 

o: 

~; pj~ (u) p ~  (v) = p ~  (u + v), 
O; 

lim pj~ (t) = Pjk (0) = ~jk. 
tr 

(1 ~ f~(i ,  C (-~) is the probability that the system will ultimately enter and therea/ter 

remain in the positive class C -~ (augmented, i/ not /inite, by the adjunction 

o[ the state ~ ) .  

(2 ~ ~ ~ ( i ,  Ce)--1 i /  and only i/ the system, with probability one, ultimately 

enters and remains in some one o/ the augmented positive classes. 

C o RO L L A g Y .  The array {pjk (t)} o/ transition probabilities will have the property 

o[ strong ergodieity de/ined in w 6.4 i /  and only i/, /or every initial state i and /or 

some one (and then /or every) associated separable process {X~~ >_01, the system with 

probability one ulti~nately enters and remains in some one o/ the augmented positive 

c l a 8 8 e s .  

I t  will have been noticed t h a t  the  augmenta t ion  of the infinite positive classes 

was forced upon us by  the use of the separabil i ty theory :  one cannot  guarantee to 

find a separable representat ion unless the state-space is first colnpactified. We shall 

now show tha t  this apparen t  blemish in Theorem l l  is not  due to a defect in method  

and t h a t  it can be associated with all essential feature of the stochastic motion.  

This can be seen, for instance, in the example analysed in w 5.2 (the "f lash of 

flashes"). Here all states form a single positive class; the ~ij satisfy (4 ~ of Theorem 

10, so tha t  the system is s trongly ergodic and the Corol lary to Theorem l l  applies. 

Because the whole (uncompactified) state-space forms a single positive class it might  

be though t  t ha t  the assertion of the Corollary without the word " augmen ted"  would 

be a t ru i sm:  in fact  it would be /alse. An examinat ion of the matr ix-elements  in 

the representat ion of the resolvent operator  J~ (for this, see Kendall  [21] ) revea l s  

t ha t  the stochastic mot ion cannot  be described for all t ~ 0  wi thout  the introduct ion 

of a countable infinity of fictitious states ~ each of which will be visited infinitely 

For the definition of "fictitious st(~te", see Ll~vY 127], p. 348. 
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often whatever the initial state may be. The separability theory correctly anticipates 

this possibility, the fictitious states being lumped together to form a single compacti- 

fication point oo. 

6.6. Markov processes /or which T/(H)= [~(~)]c.. The examples at the end of 

w 6.4 show that  T/(H) can be larger than ~(~) .  However, Theorem 9 provides an 

upper as well as a lower bound to T/(H), and we shall now study those processes 

for which the upper bound is attained. In  accordance with the main theme of this 

paper our first task must be to find a necessary and sufficient condition for the 

validity of 
~/(H) = [~ (~)]c., (68) 

the condition being of such a form that  it can be checked using only a knowledge of ~ .  

Now I = T / ( ~ ) G ~ / ( H )  and ~/(H)_~[~(~2)]c., so that  each element of 1 can be 

expressed as the sum of an element of T/(~) and an clement of [R(~)]c~ in genera[ 

in more than one way. The decomposition will be unique if and only if (68) holds, 

and alternatively if and only if 

~/(a)  n [~ (~)]c = {0}. (69) 

This last condition, which can also be written as 

~/(~)  n (71 (~2") n co) T = {0}, (70) 

is of the required form, and we have obtained another partial solution to Problem :B 1 : 

Calculate T/(~) and (~/(~*)fi c0) T. Then if (70) holds we shall have 

l = ~/(~)  | (~/(~*) n c0) T, 

and H x will be the component of x in ~/(~). 

Note that  once again the procedure requires only a knowledge of to nullspaces 

~/(g2) and ~/(~*). 

Now consider the following tableau: 

Space : c o l m 

~/(~2") n Co 

~I (H) V T~" 
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Note  t h a t  the Banach spaces in the  first row obey the  relations c ~ l ,  l*~--m, and 

tha t  each space contains the s t rongly closed linear sets listed in the same column. 

Also in each of the  three situations of the form 

E is the annihilator in X of F and F is the annihilator  in X* of E.  Notice last ly 

t ha t  because c o can be imbedded in m, ~ ( ~ * ) n  c o can also be considered as a sub- 

space of m. We omit  the proofs of the preceding assertions;  t hey  follow at once 

from the facts about  weak topologies s ta ted in w 6.2 and from the equal i ty  ~ ( I I ) =  V v 

derived in w 6.4, V being the  linear set in m spanned by  the vectors ~ ( ~ ) =  1, 2, 3 . . . .  ). 

Next,  observe tha t  the annihilator  in c o of [R(f~)]c, will be contained in the  

annihilator  in the larger space m of the smaller set N ( I I ) ;  t h a t  is, 

~(f2*) N Co~-- V -r• (71) 

Let  the weak* closure of ~ (~*) N c 0, considered as a subset of m, be denoted by W, 

so tha t  
W ~ ( y  : y E m and  (y, x) = 0 for all x E [~(~)]~0). (72) 

Because V v• is a weak* closed subset of m, (71) gives 

If  (68) holds, then 
W - V v• (73) 

W = { y : y E m  and ( y , x ) = 0  for all x E ~ ( l ] ) }  

= ( ~ t  ( I I ) )  ' = V TM. 

Conversely if W =  V T• then  ~ ( I I )  ( =  V T) and [~(~)]c .  have the  same annihilator  in 

m;  it follows from (51) t ha t  t hey  are identical. Thus we have shown tha t  (68) holds 

if  and only i/  W =  F T• Now this last condit ion is equivalent  to the  requirement  

t h a t  each of the vectors w Q should lie in W. For  if W = V  T• then  

~QE V -  ~ V T~= W; 

conversely if each ~e  lies in W then V - W  and so, taking weak* closures in m, 

V T• W _~ V T• 

As before the  criterion simplifies when the number  of positive classes is finite, 

for then  V has finite dimension and so coincides with VV• (71) then shows t h a t  

T/(~)*) N c o is also finite-dimensional and so coincides with its own weak* closure as 

subset of m. Thus  (68) will now hold if and  only  if every vector  ~ lies in c 0. 
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These results are summarised in 

T H E O R E M  12. A necessary and su/ficient condition /or 

([I) = [R (~2)]c.~ (~  (~*) N Co) T (68) 

to hold is that each vector w e (o~-1, 2, 3 . . . .  ) should lie in the weak* closure o/ 

(~*) N e o, when this is considered as a subspaee o/ m. 

I n  particular (68) will hold i/ each vector ~ e  lies in c o. 

When the number, dim ~ (~), o/ positive classes is finite, then (68) will hold i/ 

and only i/ each w ~ lies in c o . 

The condition, w e E Co, can be rephrased t hus :  for each e > 0 there exists a finite 

set AQ(e) of states such t h a t  

(i, C ~ ) < e  unless l E A  e(e). 

Thus w e cannot  lie in c o if the class C -~ is infinite (because ~ ( i ,  C Q)= 1 whenever  

iE  CO-), and  therefore we shall have ~ ( I I ) c [ R ( ~ ) ] ~ , ,  whenever  there is only a finite 

number  of positive classes and one at  least contains an  infinity of states. 

As an il lustration of the preceding theory  let us examine again the example a t  

the end of w 6.4. I t  will be recalled tha t  there ~(g2) consists of all multiples of 

u ~  0, 0 . . . .  ] and tha t  

in Case 1 (a_>b), ~ ( ~ * ) ( l c  0 = { 0 } ;  

in Case 2 ( a<b ) ,  ~ ( ~ * ) f l c o c o n s i s t s o f a l l m u l t i p l e s o f t h e v e c t o r v J ~ [ 1 ,  r , r  2 .... ], 

where r ~ a / b .  

Accordingly ~(g2) and (~  (g2*)N Co) T intersect in 

{0} in Case 2, 

{~u~  real} in Cas~ 1;  

thus  (68) holds in Case 2 bu t  not  in Case 1. I n  Cas~ 2 it follows a t  once t h a t  the  

ergodic projection operator  is given by  

IIx= (~ x~ r~) u ~ 

6.7. A Mar]cov process /or which R (s c T/(II) c [R (~)]co. 

cussed at  the  end of w167 6.4, 6.6 we saw t h a t  

~ ( ~ ) = ~ ( H ) c [ } ~ ( ~ ) ] c ,  when a>~b, 

~ ( ~ i c ~ ( H ) = [ ~ ( ~ ) ] c .  when a < b ;  

I n  the example dis- 
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and the ergodic project ion operator  could be found in all cases by  using one or other  

of the two partial  solutions to Problem B 1 which were given in w167 6.4 and 6.6. We 

now give an example which shows tha t  one can have 

R (~)  c ~ (H) c [R (~)]c0 ; (74) 

whenever this happens the methods  of w 6 break down and  the general method  of 

w 3 mus t  be used. 

I t  will be convenient  in the example to label the  states as ( . . . .  - 2, - 1 ; 0 ; 1, 2, ...), 

components  of vectors in l or m being labelled aceordingly. We specify a conservative 

q-matr ix as follows: 

" " - 1  0 

1 - -1  0 

0 1 - -1  

( j  ~ o)  

0 0 

0 

0 

0 O O 0 O O 0 (i  = o)  

0 0 0""  

0 0 O 

0 0 0 

0 0 0 

O 0 0 

...O O O 

1 - 1  

0 1 

0 0 

0 O 

- 1  0 

1 - 1 . . .  

Regular i ty  is easily checked and  the boundedness of Q ensures as before tha t  

~ 2 F = Q  and ~ * = Q * .  Simple calculations show t h a t  ~/(~)  is spanned by  the 

vector  u ~  .... 0 , 0 ;  1; 0 , 0  . . . .  ] and t h a t  ~/(~*) is spanned by  the  two vectors  

v ~ [  .... 1 , 1 ;  0 ;  0 , 0  . . . .  ] 

w ~ [  .... 0 , 0 ;  1;  1 ,1 . . . .  ]. 

Ev iden t ly  d =  1 * 2 = d* and the process is not  s t rongly ergodie. There is just  one 

positive class consisting of the absorbing state labelled 0, and  u ~ is the associated 

~-vector.  The general element of ~/(~*) has the form ,~v+lzw; the condition 

(Xv +few,  u ~ = 1 requires t ha t  # = 1 and  posi t ivi ty requires t ha t  X >_ 0. The minimal 

element ~" is therefore given by  # =  1, X = 0 ,  i.e. ~=w.  Now the number  of positive 

classes is finite and ~" ~ Co, so t h a t  (68) cannot  hold. This completes the proof of (74). 

I t  is instructive to  identify the three sets occurring in the inequalities (74); 

t hey  are 
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- 1  

~((~)={x:xEl and ~ x ~ = 0 =  ~ xa}, 
--or 0 

~(H)={x:xE1 and ~ x ~ = O } ,  
0 

[R ( ~ 1 ] .  = i. 

I f  we had used the c-weak (stronger than  the c0-weak ) topology to close R(~) ,  the 

subspace so obtained would have been 

[ R ( ~ ) ] c = { x : x e l  and ~ x ~ = 0 } ,  

which is not even comparable with ~ (]]). (As usual c denotes the subspace of m 

spanned by c o and the vector e all of whose components equal 1.) 

6 .8 .  G-weak topologies /or which ~ ( I I ) =  [~(g2)]a. Our final task will be to answer 

the question (2 ~ at  the end of w 6.3. We will show tha t  one can find linear subsets 

G of m, total  for l and such tha t  

?~ ( I ] )=  [~ (~)]~. (75) 

Unfortunately our specifications of G will not be given in terms of ~ alone, so tha t  

our r~sult will not provide a solution to Problem B 1. 

We define the linear subsets A and B of m by  

A~{g:gEm and (g, ~J~x)---->(g, I Ix )  as ~ 0 ,  all xE1}, 

B--{g:gEm and (g, Ptx)->(g, I Ix )  as t - ~ ,  all xEl}. 

From (54) and (55) it follows tha t  
A ___ B _~ c 0, (76) 

so that  A and B are both total  for 1. 

We next observe tha t  the three s tatements  

(i) g E ~ ( ~ * ) ,  

(ii) gP~=g for all t>_0, 

(iii) g,~J~=g for all 2 > 0 ,  

The equivalence of (i) and (ii) is asserted by  the second par t  of the arc cquivalc'nt. 

]emma in w 3.l ; the equivalence of (ii) and (iii) follows from (55) and Lerch's theorem. 

I t  can now be inferred tha t  both ~ ( ~ * ) N  A and ~(g2*)N B coincide with the set 

{ g : g E m  and ( g , x ) = ( g ,  I Ix )  for all xEl},  (77) 

on using (46) and the similar relations involving X Jx in place of Pt. 
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:But t h e  set  in  (77) is ( ~  ( I -  II))  • = (7/(1]))  z , a n d  h e n c e  w h e n  G is e i t he r  A or  B 

we h a v e  

[R (n) ]~  = (7~ (~*) n G) +=  (7~ (H)) '+ = 7~ (H), 

which  e s t ab l i shes  (75) for  t he se  t w o  choices  of G. 
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