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1. Introduction

The theory of analytic functions of a complex variable extends only with difficulty
and incompletely to functions of several variables. Because the Riemann Mapping
Theorem fails in several variables, the description of domains of holomorphy and their
analytic transformations has been a major concern. Nevertheless function theory in
the bicylinder hardly exists beside the elegant theory of functions in the unit circle.
This circumstance is related to the singular fact, never observed so far as we know,
that analytic function theory divides into two distinct disciplines in higher dimensions.
The theory of analytic functions in several variables has been concerned with functions
defined locally and consistently by power series in a domain, whereas much function
theory in the circle can be made to depend on group properties of the circle, and
generalizes in quite a different way. The study of multiple Fourier series from this
point of view is one objective of this paper. The discussion of analyticity in a
group-theoretic context was begun by Mackey [13], and recently has been continued
with great ingenuity by Arens and Singer [2, 3, 4]. While our work has points of con-
tact with that of Arens and Singer, the methods are different, and we have attained

a certain completeness at the expense of generality.

(1) The work of the second-named author was supported by contract Nonr-222 (37) with the
Office of Naval Research.
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In the work of Kolmogoroff [11] and Wiener [18] on the prediction of second-
order stationary stochastic processes, certain theorems about analytic functions in the
circle play an essential part. The analytic difficulty is exactly met by a theorem of
Szegd; and indeed Szegd’s Theorem can be used to prove the various function-theoretic
results which would otherwise be used in the proof of the prediction theorem. The
second section of this paper is devoted mainly to a generalization of Szegd’s Theorem
to two or more variables, and this furnishes the solution of a certain prediction problem
in several variables. This is not the multiple prediction problem mentioned by Doob
[8, p. 594] and treated recently by Wiener [19], of which we shall speak presently.

In the third section we exploit the methods and results of the second section
in order to prove a number of theorems in multiple Fourier series generalizing ele-
mentary properties of analytic functions of one variable. We obtain an inequality in
place of Jensen’s Formula, under hypotheses slightly different from those of Arens in
a paper not yet published. Then we extend the characterization of functions w(e')

defined on the unit circle having a representation
w=|f]? almost everywhere,

where f is analytic and of class H? inside the circle. A related theorem states that
every function analytic in the circle and of class H is the product of two functions
in H?. Finally we extend the theorem of Hardy and Littlewood about functions of

class H in the circle:
1f f@= 2> a,z",
o

then ilan|/(n+l)<oo.
0

For simplicity we treat functions of only two variables in this section. In each case
the class of functions to which our theorem applies is not the double power series,
but rather the functions defined on the torus whose Fourier coefficients a,, vanish
for all (m, n) belonging to a half-plane (in a sense which must be made precise). The
proofs depend on this division of the group of lattice points into disjoint semi-groups,
rather than on the local properties of functions defined on the torus. For functions
of one variable the theorems are generally proved by removing the zeros of an analytic
function in the circle. Of course this technique is not available for functions of several
variables, and instead our method depends on the fact that every closed convex set
in Hilbert space possesses a unique element of minimal norm.

In section four we discuss Bochner’s generalization of a well.-known theorem of
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F. and M. Riesz [15]. In the form of interest to us, the Riesz Theorem states: if

u(x) is a complex function of bounded variation on the circle such that
fe'"“’d,u(x)=0 for n=1,2, ...,

then p is absolutely continuous. The obvious analogue in several dimensions is trivially
false; nevertheless Bochner [6] has found a generalization for set functions x on the
torus. The Riesz Theorem is a convenient tool in proving Szegd’s Theorem [1, p. 263];
but some accounts of prediction theory (for example [8]) do not mention it. We have
tried to clarify the relation betwen these theorems by giving a new proof of Boch-
ner’s Theorem based on the results of preceding sections. It is of methodological
interest that our proof does not depend on theorems about analytic functions, as have
all the published proofs of the Riesz Theorem.

In section two we generalized Szegé’s Theorem to functions of several variables.
In section five we consider another kind of generalization: we study functions defined
on the unit circle whose values are matrices. Wiener [19] was led to the study of
matrix-valued functions by a prediction problem different from the one treated in
section two. After seeing Wiener’s paper we succeeded in extending our method to
this case. The fundamental result, as before, is a generalization of Szegd’s Theorem.
From it flow the solution of a prediction problem, and a number of theorems about
matrix-valued analytic functions defined in the circle. Recently Masani and Wiener
have completed a paper [14] carrying Wiener’'s work much further. It is likely that
there is a good deal of duplication in our results, although their version of Szegt’s
Theorem is different from ours. We are happy to accord Masani and Wiener the right
of precedence, and to acknowledge our debt to Wiener’s paper. We hope nevertheless
that the systematic development presented here, as well as our new results, will
justify the publication of this section.

In the last section we extend these theorems to their natural degree of generality.
We consider functions defined on a compact abelian group whose dual is linearly
ordered by a relation consistent with the group structure. The functions may take
matrices as values. Then Szegé’s Theorem and most of our other results can be ex-
tended to this setting, and the proofs are word for word the same as proofs of cor-
responding theorems in the body of the paper. The torus groups are the best examples
of groups to which the analysis applies, but there is no restriction in dimension. In
particular, the Bohr compactification of the line (whose.dual is the group of real
numbers in the discrete topology) is of the type considered.
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2. Doubly Stationary Series

Let =x,, be an element of a Hilbert space for each integer m and n. We say

that {z,,,} is doubly stationary if for all m, n, r, and s we have
(Tmar, ness Tma) = (Trss Tog)- (1)
In this case we define 0 (7, 8) = (Xrs, Tgo)- (2)

Then p is a positive definite function on the group of lattice points of the plane.

That is, for any complex numbers «, ..., a, and integers r, ..., 7, 8, ..., 8 we have

laf—fg(,r!”rj: 8{'—8/)20. (3)

M=

1
Indeed, using (1) this amounts to
Z ] &., (xnsp xrjs;) = 0:
or (Z O Tyysp Z 0y xrisg) =0.

The last inequality is obvious, and so (3) holds.
The theorem of Herglotz, Bochner, and Weil on positive definite functions states

that there is a non-negative measure u defined for Borel sets on the torus
O0<z<2n, 0<y<2m

such that o(r,s) = J‘e““'”‘”) du(x,y)

for all integers r and s.
Now let 8§ be any set of lattice points (m,») in the plane not containing (0, 0),
and let {a,,} be a set of numbers defined for (m,n) in S, vanishing except for a

finite set of indices. Taking (1) and (2) into account we find

o S il |
= (Zo0> Tgo) + Z Amn (Tops Tmn) + Z A (T ps :l'oo) + Z Z O Gp s (T s Zr)
=Q(O’ 0) + z dmné(m’ n)+ Z amn@('mﬁ n)+ Z Z amndrse(m"rs n-s)
=11+ 3 app e ™ P dp (s, y).

S

Thus the problem of approximating z, by a linear combination of elements x,,, with

{(m,n) in 8 is equivalent to minimizing the integral at the end of (4). An explicit
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evaluation of the infimum is given for the corresponding expression in one variable
by the following theorem of Szegé [16]: (%)

If u is a finite mon-negative measure defined on the Borel sets of the circle |z|=1

whose absolutely continuous part is w(e'*)dx/2n then we have

exp {é%flog wdx} =i111)f f |14 P (&) [*dp (=),

where P ranges over the trigonometric polynomials of the form
P(e*)=a,e* +a,e?' "+ -+ +a, e,
The left side is to be interpreted as zero if

flog w(e®)dr= — oo,

The solution of the prediction problem for any set 8 of lattice points requires
an appropriate generalization of Szegd’s Theorem. We shall find such a generalization
for a very special class of sets S. Before stating our theorem we make some ob-
servations which do not require hypotheses on 8.

Trigonometric polynomials of the form

1_|_ ES: amne—i(mr+ny) (5)

form a convex subset of the Hilbert space of functions square-summable with respect
to u. The closure of this subset will be called §. If § contains the null function,
then 2z, lies in the manifold spanned by {z,,} for (m,n) in 8, and we say that
prediction is perfect. Otherwise (and this is the interesting case) any sequence of
elements @, of § such that

lim [|@,||=inf |G| (GES)

is a Cauchy sequence, and converges to the unique element 1+ H of § having mini-

mal norm. We have therefore

inf [ |14 5 gp, e ™" Pdp= [|1+H[Pdpu>0. (6)
S

(1) Szego stated the theorem for absolutely continuous measures. It was completed hy Kol-

mogoroff and Krein; references are given in [1]. We shall nevertheless refer to the full result as
Szegd’s Theorem. “

12 - 665064 Acta mathematica. 99. Imprimé le 10 juin 1958
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For any complex number A and (m, %) in S the function

1+H(e”, eiy)+le-i(mr+ny)
belongs to §, and therefore

“1 + H (e, ei¥) + e 1R G Yy
has a unique minimum at A=0. Hence for every (m,n) in § we have
[ 1+ H (¢, e)} e =" d = 0. (7)
If 8 is closed under group addition, so that
(m,n)€S and (m',n')€ES
imply (m+m',n+n)E€S,

then there is a second orthogonality relation. For each complex A and each (m,n)

in S the function
[1+ H (€%, e)] [1 4+ Ae M=)

belongs to §, and its norm is minimized at 4=0. The conclusion is now
fll-{—H(eiI, €'Y) |2 ei(mz+nu)d[u=0. (8)

By taking the complex conjugate of (8) we see the same is true if (—m, —n) isin S.
It is easy to prove that (7) characterizes the minimal element of §. Indeed, sup-
pose that (7) holds but 1+ @ is the minimal element. Then

JN+H+AG-M)Pdu= [[1+HPdu+|A |G- HPdp

for every complex A. This expression is obviously smallest for A=0; but it is at least
as small for A=1 if G is the minimal element. Since the minimal function is unique,
we conclude that G=H.

DErFINITION. S is a half-plane of lattice points if
1° (0, 0)¢ 8
2° (m,n)€S if and only if (—m, —n) ¢S unless m=n=0
3° (m,n)€S and (m',n')ES imply (m+m',n+n')€ES.
If 8 is a half-plane and (8) holds for all (m,n) in S, then by the second condi-
tion (8) holds for all m and n except m=n=0. That is, the Fourier-Stieltjes coeffi-
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cients of the measure |1+ H|*du all vanish except-the central one. Therefore this
measure is a multiple of Lebesgue measure. It follows that 1-+ H must vanish almost

everywhere with respect to the singular component of du, and (7) can be written
[+ H @ ™ ™ dp, =0  (m,m)€8) ()

where u, is the absolutely continuous part of u.

We can now state the first generalization of Szegs’s Theorem.

THEOREM 1. Let S be a half-plane of lattice points and let p be a finite non-

negative measure on the torus. Let u have Lebesgue decomposition
du(x, y)=w(e, e¥)do +du, (x, y),

where w is non-negative and summable for the measure do=dxdy/4n® and u, is
singular with respect to do. Then

exp {[ log wda}=i1}1)f“l+P|2d,u, 9)

where P ranges over finite sums of the fgrm
P (e V)= ; Ay, € IR, (10)
The left side of (9) s to be interpreted as zero if
[log wdo = — co. (11)
Proof. If the infimum in (9) is positive, we have seen that it is equal to
[l1+HPdp,

where 1+ H belongs to § and vanishes almost everywhere for u,. Hence (7°) holds.
Moreover 1+ H Dbelongs to the convex set § formed with the measure wdo instead

of dyu, and (7') implies that 1+ H is the minimal function relative to this measure:
inf {|1+PPwdo= [[1+HPwdo= [|1+H[Pdpu.
P

Therefore it will suffice to prove

exp U log wda] =i1}1)ff|1+P|2wda. (12)
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On the other hand, even if the infimum in (9) is zero it is enough to prove (12).
For in that case the infimum in (12) surely vanishes, and having proved (12), ob-
viously (9) .holds. So we shall prove (12) for an arbitrary non-negative summable

function w. It will be convenient to establish two lemmas.
Lemma 1. If w is a non-negative summable function,

exp {flogwda} =inffe“’wda, (13)

where p ranges over the real summable functions such that
fydo=o0. (14)
The geometric and arithmetic means of w are related by the well-known inequality
exp Ulog wda} <jwda.

The same remark applies to e¥w, where v is any summable function which satisfies
(14), and we find therefore

exp {f log wda} <inf fe"’wda. (15)
v
The opposite inequality will be established first assuming log w is summable. Define
/'L=flogwda; p=21—log w. (16)
Then vy satisfies (14), and we have
fe"’wdaz _]'eldcr:exp {flog wdo} .

Therefore the inequality in (15) must be equality, and the minimal function is given
by (16). We shall have to refer to the form of the minimal function again.

I log w is not summable this argument does not apply, and except in trivial
cases no minimal function exists. But log (w+¢) is summable for each >0, and by

what we have just proved
exp Ulog (w—l—e)da} =inf fe“’(w+£)d6>inf f wdo.
As ¢ tends to zero we obtain by the monotone limit theorem

exp Ulog wdo} =02>inf ‘I’e”’wd'a>0,

from which the statement of the lemma follows.
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Lemma 2. For any non-negative summable function w we have
exp {f log wdo‘} =inf fe"’wdo‘, (17)
y

where p ranges over the real trigonometric polynomials satisfying (14).
It suffices to prove the lemma assuming that log w is summable; for as in Lemma
1, the general case can be treated by a limit process. Divide w by a constant, if

necessary, so that
flog wdao=0. (18)

Now let » and v be the positive and negative parts of log w, respectively, so that

u,v=0; logw=u—v.
Choose a sequence u;, %,, ... of bounded non-negative functions increasing pointwise
to u, and a sequence v, v,, ... of bounded non-negative functions increasing to v.

By the monotone limit theorem,
lim fundaz fuda= fvda=lim fv,,da.
Consequently for each # there is an m such that
’I.undaé Jvmda.

In case the inequality is strict, multiply v, by a constant smaller than one so that

equality obtains, and rename the function v,. We have then
O0<u,<u; O0<v,<v; funda= fvnda.

Moreover the sequence u, increases monotonically to u, and it is easy to see that

v, tends pointwise to v. From the construction it follows that
0<e® ¥ @ ") Cmax (1, w).
Therefore the Lebesgue dominated convergence theorem applies to give
lim f e'n “rwdo =lim fe‘""""”(”’"")do'= 1.
Since the function y=wv,—u, satisfies (14), we have proved that

inffe"’wda<l, (19)
L2
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where now y ranges over bounded functions satisfying (14). Every bounded function
y is boundedly the limit of Fejér means of its Fourier séries (in one or several di-
mensions); each approximating function is a trigonometric polynomial which is real
if y is real, and satisfies (14) if o does. Therefore (19) continues to hold if p is
restricted to real trigonometric polynomials with vanishing integral. In view of (18)
and Lemma 1, the inequality of (19) must be equality, and the proof is complete.

We return now to the proof of (12) itself. The most general trigonometric poly-
nomial 4 satisfying (14) can be written, on account of the second property of half-

planes, in the form
~i(mr+ny = i(mz+ny) b
gamne ¢ )y ;amne . (21)

If P denotes the trigonometric polynomial (10), we have
y=P+P=2Re (P).

Therefore the result of Lemma 2 can be restated

exp [[log wda) =i2ff[e”|2wdo, (22)

where P ranges over trigonometric polynomials of the form (10).

On account of the third property of half-planes, it is clear that
fF=1+¢9,

where ¢ is a continuous function with vanishing integral and having Fourier series
of the form (10), although of course @ is not a trigonometric polynomial. Therefore

we have
exp {[log w do} >inf [|1+PPwdo, (23)
P

where P ranges over all continuous functions with Fourier series (10). The infimum
is not increased if P is restricted to the class of trigonometric polynomials of the
form (10), and so we have proved the first half of (12).

The opposite inequality can, paradoxically, be deduced from (23) itself. Replace
w in that formula by |1+ Q[?, where @ is any polynomial of the form (10):

exp ([log |1+ Q[P do} >inf [|1+P+Q+PQdo>1,
P

making use once more of the semi-group property of S. Hence log |1+ @Q/|* is sum-

mable and
[log [1+Q[tdo>0.
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Therefore we can write
[1+QP=ker; k>1, fwda=0. (24)

Now if w is an arbitrary non-negative summable function and @ is a polynomial of
the form (10} we have by (24)

[11+QPwdo=k[e’wdo>inf [e*wdo=exp [[log wda]. (25)
v

But this inequality is exactly the opposite of (23) if we pass to the infimum over @,
and so (12) has been proved. This completes the proof of the theorem.

Theorem 1 is a full generalization of Szegé’s Theorem. We have already pointed
out its connection with prediction theory; in the next section we shall apply it to

multiple Fourier series.

3. Multiple Fourier Series
The first application of Theorem 1 is a partial generalization of Jensen’s formula.

THEOREM 2. Let f be summable on the torus with Fourier series
f(e”, e“’)~b+ Z bmne—i(mz+_ny)’ (26)
S

where S is any half-plane. Then

. f10g|f|da>log|b|. (27)
Proof. By Theorem 1,

exp {[log |f|da] =i1;ff|1+P|2|f|d6,

where P ranges over the trigonometric polynomials of the form (10). If f is square-
summable, we can replace [f| in the last formula by [f|* and then take the square
root of both sides:

exp {[log |f|do} =inf [[|(1+P)f[*do]™ (28)

If we set in the Fourier series (26) for f we obtain in the product (14 P)f a con-
stant term b, since P has no constant term. By the Parseval equality, the right side
of (28) is at least |b|, so that (27) holds.

If f is not square-summable, let {f,} be the Fejér means of f. Each f, is a
trigonometric polynomial with constant term b, and the sequence converges to f in L.

For any ¢>0 and each n we have

[log {|f,| +elda> [log |f,|do>log |b].
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Passing to the limit in n with ¢ fixed,
flog [lf]+eldo>1og |b].

The result follows by letting & tend to zero.

For analytic functions of one variable the deficiency of the right side of (27)
cannot be evaluated without . some stronger hypothesis about the function. (Some
consequences of this fact are explored in [5].) It would be interesting to replace (27)
by an equation analogous to Jensen’s formula if, for example, f is a trigonometric

polynomial.

COROLLARY. If f s summable on the torus, has Fourier series of the form (26),
and has mean value different from zero, then log |f| is summable. (1)

The proof is immediate. In one dimension the corresponding theorem requires
no hypothesis on the mean value b, but here some such condition is indispensable.
To see that this is so, construct a sequence of functions of one variable, ¢,, ¢y, ...,

each vanishing on a fixed interval («, §) in (0, 27), with Fourier series
In(€V)= 2 anae™™; 3 |am,|<1/m.
n n

00

Define f(e“f, eill) — —i(mz+ny)-

7[\/18

Ay y €
1 n=-o

Then f has absolutely convergent Fourier series and so is summable; moreover its

coefficients are restricted to a half-plane. But f vanishes on the set
0<w<27m; a<y<p,

so that log |f| cannot be summable.

If the coefficients of f are restricted to a sector of opening smaller than m, then
the conclusion of the corollary holds without any restriction on the mean value of f,
provided f is not the null function. The proof is like that of Theorem 2, making
use of a construction used again in the proof of Bochner’s Theorem in section four.
In particular, the conclusion holds if f is an analytic function of two variables, as

one can also show easily using Jensen’s formula for analytic functions of one variable.

(*) A similar theorem has been proved by Arens, even without the hypothesis that f has mean
value different from zero. He assumes instead that f is defined on a compact group whose dual has
an Archimedean order, corresponding here to the case of a half-plane bounded by a line of irrational
slope. In the example which follows, the half-plane is bounded by a vertical line, so that the order
relation defined by taking S as the set of positive elements is not Archimedean.
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THEOREM 3. Let w be non-negative and summable on the torus, and let S be

any half-plane. A necessary and sufficient condition for w to have a representation

(e, &) =[b+ 3 by, e PP pr0, S b fi< oo =9
S
is that '
[log wdo> — 0. (%) (30)

Proof. If w has the form (29), then as in the proof of Theorem 2
exp ([log wde) =inf [|(1+P\[Pwdo>|b[*>0.
P

Thus (30) holds.

Conversely, suppose (30) is true. Then there is a unique function H such that
lim [|H-P,Pwdo=0 (31)
for a sequence of trigonometric polynomials P, of the form (10), and satisfying
exp {[log wdo) =¢'=|1+H [ w.

We shall prove that the obvious equality

el/2

1+H

(32)

is a representation for w in the form (29).

By (32), (1+H)™! is square-summable. Its Fourier coefficients are

J‘e‘i(”‘“"”)ri—ﬂ do= fe‘“’"”"”’ MiH| l_+H— do= e"fe‘“’"”""’ (1+H)wdoe.
According to (7) this integral vanishes for every (m, n) in S. Therefore the Fourier

series of (1+ H)™' has the form

bt S by e ),
If 5=0, so that °

[1+H)ywds=0,
we should have

[a+P)1+H)wde=0

for every trigonometric polynomial P of the form (10). From this fact and (31) would
follow

(*) For functions of one variable this was first proved by Szegé [17], using exactly the present
method.
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[N+HPwds=o0,

which contradicts (30); therefore b=0, and the proof is finished.
Let R be a set of lattice points containing the origin and closed under addition.
It is an interesting problem, suggested to the authors by Mr. G. Weiss and Professor

A. Zygmund, to determine whether every summable function f with Fourier series

1, €M)~ S apy e )
R

can be represented as a product g-k, where g and k are square-summable and, like
f, have coefficients restricted to R. Even if R is taken to be the set of lattice points
in the first quadrant, so that the problem concerns analytic functions of two variables,

the answer seems not to be known. Our next theorem treats the case of a half-plane.

THEOREM 4. Let 8 be a half-plane and f a summable function with Fourier series

a+ g Appe T g0,

There exist square-summable functions g and h with Fourier series of the same form
such that f=g-h.

Proof. Since the leading coefficient of f is not zero, the corollary of Theorem 2
states that log |f| is summable. By Theorem 3 and its proof,
|#1=1g /%

where

g ~b+ D by, et b e+,
S

¢
1+H
If we set A=g 'f, it is clear that g and k are square-summable, and g at least has

Fourier series of the required kind. But we can write
h=g'f=c'(1+H)f=c'lim (1+P,)f,

where each P, is a trigonometric polynomial of the form (10), and the limit is taken
in the norm of the space L. It follows that the Fourier coefficients of A are restricted
to 8 (aside from the constant term), and this completes the proof.

We can now derive an analogue for multiple Fourier series of the classical theo-
rem of Hardy and Littlewood which states [10; 20, p. 158]: if f is summable on the

circle with Fourier series

oo
1)~ 3 ane™,
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then for a certain absolute constant k
; |a,|/(n+ 1)<kf|f(e”)|dx.

This theorem follows from Hilbert’s inequality and a factorization theorem for analytic
functions. The same method of proof works in higher dimensions; first we shall quote
an extension of Hilbert’s inequality from work of Calderén and Zygmund, and then
Theorem 4 will furnish exactly the factorization theorem we need.

In the paper {7] of Calderén and Zygmund, Theorem 14 states: let K be a func-
tion defined on the lattice points, except the origin, and have the form

Q (e 0

5= - m+in=re’
’

K({m,n)=

Suppose that Q is continuous on the circle, satisfies a Lipschitz condition of positive

order, and also
2x

JQEdo=o.
0
Then there is a constant k depending only on K such that for any square-summable

sequences {x,,,} and {y,,} we have

|2 KE(m47, n+8) Znp Yps| SELD | Zmal® 2 |95 2175 (33)

(The summation on the left is extended over all indices for which the summand is
defined.)

Let 8§ be any half-plane. There is an angle «, uniquely determined up to mul-
tiples of 2z, such that every lattice point m-+in=re'® in S satisfies a <O <+ 7.
Define a function Q to be one for a <@<a+n; then extend Q to the rest of the
circle so as to be continuously differentiable and have mean value zero. The corre-
sponding function K is a kernel to which the theorem of Calderén and Zygmund
applies. Suppose that x,,=0 unless (m,n) is in S, or m=n=0, and the same for
the y,,. Then the only terms which contribute to the sum on the left side of (33)

are those for which
K (m, n)=1/(m?+n?).

We have therefore the following analogue of Hilbert’s inequality :

’ Tmn Yrs | Y, 34
z (m+7)2+(n+3)2|<k[zIx””‘lzzIyrslz]/‘ ( )
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THEOREM 5. Let f be summable on the torus and have Fourier series
f(e”, eiy)~a+ ; amne—i(mz+ny)'
There is an absolute constant k' such that

la|+ % |Gl /(m?+ 02+ 1) <E [|f (€7, )| do. (35)

Proof. By continuity it suffices to consider the case a+ 0. Theorem 4 states that

f can be written as the product of the square-summable functions

g=b+ z bm"e—i(m1+ny); b=+0
S

and h=c+ D cpe ™™, ¢=0.
S

Then we have Upn= 2, brr,n-sCrss

r,$S

|%ma | |Om-r.ns sl [Bmn s
th t < ! r,n—8%vrs — ? mnvrs .

so tha gm2+n2 2 m? + n? 2 (m+7)*+ (n + )
If we set xmnzlbmnl’

yrszlcrsli

then (34) applies to give
2 @mal/(m® %) SELZ bnal* 2 o7 [T

From the proof of Theorem 4 we know that |g|*=|k|*=|f|; by the Plancherel

Theorem therefore
S lamal/(m2 0t <k [ f (7, €¥)|do.
S

The statement of the theorem follows trivially from this formula, with %" =k+ 1.

There is no difficulty in proving an analogous theorem for tori of any finite
dimension (since both Theorem 4 and the theorem of Calderén and Zygmund are
true in general). We do not know whether there is a generalization to the class of
compact groups discussed in the last section.

Theorem 5 applies to a larger class of functions than the double power series.
However, as Bochner has remarked, a stronger result holds for the double power
series, and can be proved easily from the theorem of Hardy and Littlewood. The

theorem is as follows: if f is summable on the torus with Fourier series

00 .

mr+n
Z amne ¢ ”)l
n—
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then z |a’mn|/(mn+l)<kf'f|d0
m,n=0

The last theorem of this section generalizes a theorem of Beurling [5].

THEOREM 6. Let H be the linear subspace of L* conmsisting of the functions
whose Fourier series have the form

a-+ g @y @ HEERD),

For any f in H let C; be the smallest closed linear manifold containing

b+ P)f

for all constants b and trigonometric polynomials P of the form (10). We have C,=H
if and only if
flog [f|do=log |ffda|> — 0.

It is easy to see that C,=H if and only if there is a non-zero constant func-
tion in the closure of the convex set of functions (1+ P)f. The proof that this is
equivalent to the condition of the theorem is easy to carry out using Theorems 1
and 2 and the Parseval equality.

The problems discussed here for the case where § is a half-plane become much
more difficult when § is, for example, the set of lattice points contained in some
sector of opening smaller than n. There is no longer any analogy with analytic
functions of one variable. It seems to us that these new problems are difficult and

interesting.

4. Theorem of Riesz and Bochner

The theorem of F. and M. Riesz [15] (already referred to in the Introduction)
states: if u ts a bounded complex Borel measure on the circle whose Fourier-Stieltjes
coefficients wvanish for positive indices, then u is absolutely comtinuous with respect to
Lebesque measure. Bochner [6] observed that not every measure on the torus with
coefficients restricted to a half-plane is absolutely continuous with respect to the in-
variant measure on the torus; but Bochner proved that the conclusion holds if the
non-vanishing coefficients are all in a sector of opening less than z. The machinery
of Bochner’s proof is very elaborate. In this section we shall give a new proof of
Bochner’s Theorem which shows its close connection with prediction theory. On the

way we present an example and some lemmas of independent interest.
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A certain part of the Riesz Theorem survives in two dimensions, and gives the

following preliminary result.

Lemma 3. Let u be a complex measure on the torus without absolutely continuous

part. If the Fourier-Stieltjes coefficients
Cnn= [ €1 dp (x, y)

vanish for all (m,n) in a half-plane, then also cy,y=0.
Denote the total variation of u by ». Then » is also singular with respect to dg,

and so by Theorem 1
inff|1+P|2dv=0,
P

where P ranges over the trigonometric polynomials of the form (10).

Let P,, P,, ... be a sequence of such polynomials for which

lim [|1+P,Pdv=0.

Then clearly lim f 1+P,)du=0.
By hypothesis, for each » f P,du=0,
and so coo=fdp=0.

In the one-dimensional case, having shown in this way that ¢, is zero we can
translate the coefficient sequence and prove in turn that c_i, ¢ o, ... all vanish. In
two dimensions we cannot conclude anything more from the fact that cy=0; indeed
there exist singular measures p whose coefficients vanish in a half-plane but not
everywhere.

The trivial example, which is mentioned by Bochner, is given by the product
of a singular measure dy(z) on the interval with the measure ¢"*dy. The product
measure dy is clearly singular with respect to two-dimensional Lebesgue measure;

its coefficients are given by
Cmn = J‘e—imz d_y(x)_J'e—i(rwl)ydy,

and thus vanish for all n>0.
It is less obvious that there are singular measures whose coefficients vanish on
a half-plane bounded by a line L of #rrational slope, and the following construction

of such a measure may be of interest.
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Project each lattice point onto the real line in the direction parallel to C. Dis-
tinet lattice points have distinet projections, since £ has irrational slope. Moreover,
the vector sum of two lattice points is projected onto the ordinary sum of their
separate projections. So the lattice points are isomorphic as a group with a denumer-
able dense subgroup of the line, which we endow with the discrete topology and
call ¢. Now £ determines two half-planes; the points of one half-plane are projected
into the positive ray of the real line, and the points of the other half-plane into
the negative ray.

Now let f be the function on the line equal to one at the origin, and decreasing
linearly to zero at 1 and —1. It is well-known that f is positive definite. A fortiori,
f is positive definite as a function on G. By .the general theorem of Herglotz, Boch-
ner, and Weil on positive definite functions, f is the transform of a positive measure

on the dual group of G, which is the torus. If we set
gx)y=f(x+1) for z€G,

then ¢ is the transform of a complex measure u on the torus, and g vanishes for
x>0. Considered as a function on the group of lattice points, ¢ vanishes on a half-
plane bounded by L.

If u were absolutely continuous, by the general Riemann-Lebesgue Lemma its
transform ¢ would tend to zero outside compact sets of G. Since @ is discrete, this
would mean that |g(z)|>¢ only for a finite set of x, for any &£>0. Obviously this
is not the case, so u cannot be absolutely continuous. It will follow from the next
theorem that the singular part of u (in case yx iz not itself singular) has coefficients
vanishing on the same half-plane as the coefficients of u, and this is the example

we wanted to find.

THEOREM 7. Let u be a measure on the torus whose coefficients vanish on a half-

plane 8. Then the coefficients of its singular and absolutely continuous parts vanish
separately on 8.

Proof. Let » be the total variation of u. After adding to u a multiple of Le-
besgue measure if necessary, we may assume that

inf [ |1+ PPdy>0,
P

where P ranges over trigonometric polynomials of the form (10). Choose a sequence

of polynomials P,, P,, ... such that

lim [{1+P,[*dy=inf [|1+ P[*dy,
P
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and denote by 1+ H the limit of 14 P, in the space of functions square-summable
for the measure dv. Let P and @ be any trigonometric polynomials of the form (10);
using the hypothesis on the coefficients of x4 we have

[PU+Q (1+H)du=lim [P(1+Q)(1+P,)du=0.
Since 1+ H vanishes almost everywhere for the singular part of x4, we have also
[P1+@ (1+H)fda=0, (37)

where fdo is the absolutely continuous part of u.

The theorem will be proved if we can show that
[Pfdo=0 (38)

for arbitrary P of the form (10), for this means that the Fourier coefficients of f

vanish on 8. We shall need the following relations:

(14+ H)™! belongs to L?;
A+HY ' ~b+ S by, e ™™ with b+0;
S

(1+ H)-f belongs to L2

Choose a sequence of trigonometric polynomials {1+ @,}, with each @, of the form
(10), converging in L? to b '(1+ H)™'. By (37), for each n

[P(1+Q,)(1+H)fdo=0;

since (1-+ H)-f is square-summable we can pass to the limit in n and obtain (38).

This completes the proof.

BocHNER's THEOREM. Let T be a sector of the plane with opening greater than
7 radians. Suppose p is a measure on the torus whose coefficients vanish on T. Then

u is absolutely continuous with respect to Lebesque measure.

Proof. 1t suffices to consider a sector 7" with center at the origin, so that T
contains the union of different half-planes § and §'. Let u, be the singular part of
#; by Theorem 7, the coefficients of u, vanish on S and also on §'. If any coeffi-
cient of u, is different from zero, it is easy to see that the coefficient set can be
translated so as to bring a non-zero coefficient to the origin, still leaving a half-plane
free of non-zero coefficients. (Indeed, find a line £ through the origin with irrational

slope, lying between the lines bounding § and 8" in such a way that T contains
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one of the half-planes bounded by L. If we translate C we encounter a first lattice
point at which u; has non-zero coefficient, and the inverse translation is the required
one.) But the result of this construction is a coefficient set belonging to a singular
measure, vanishing on a half-plane, but not at the origin. This contradicts Lemma 3,

and so u, is the null measure. This completes the proof.

5. Matrix Valued Analytic Functions

For each point ¢* on the circle let A4 (¢¥) be an n by n matrix with entries

ay (€%) (4, k=1, ..., n). The normalized trace of A is the scalar function
iy _ L iz
tr A (€¥) == ay (€9).
o

The trace and determinant functions are related by the formula
det eA=¢"¥4,

where e* may be defined by its power series.
The normalized trace has the following properties (and, in fact, is determined
by them): for any matrices 4, B and scalars a, b
tr(@aA+bB)=atr A+btr B
tr (AB) = tr (B4), or equivalently
tr (U"' AU)=tr A if U is unitary . (39

tr A*4 >0, from which follows tr A* = tr

tr I=1, I the unit matrix.

If A4 is a positive definite matrix, there is a unique Hermitian matrix B satisfying
=4, (40)
and we define B=log A.

By a trigonometric polynomial, in the context of matrix functions, we shall mean
a finite sum of the form
Z Ak em:

where each A is a constant matrix. The trigonometric polynomial is analytic if 4,=0
for n<O.

If each component function a; of the matrix function 4 is summable, we shall
say that A is summable, or belongs to L. More generally, L? is to consist of the

13 ~ 665064 Acta mathematica. 99. Imprimé le 10 juin 1958
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matrix functions 4 whose scalar components a; all belong to the ordinary class LP.

A summable matrix function 4 has Fourier series
A(eF)~ 2 Aye™,
where each A, is the constant matrix defined by the n® scalar equations
Ap=[ A" e ™ do (2).

(In this section, do () is the measure dx/2x on the circle.) More generally, if M is
a completely additive matrix-valued function of Borel sets (in other words a matrix
whose enfries are complex measures), we shall write

dM ()~ 3 A et
with the A, defined as

A= [e ™ d M ().

It follows from definition that a measurable matrix function 4 is in L? if and
only if tr (4* A) is summable. We shall also need the fact that a measurable positive
semi-definite matrix function W is summable if and only if tr W is a summable
scalar function.

The ring of constant matrices possesses the natural inner product
(4, B)=tr (B* 4). (41)
We can extend this definition to the class of matrix functions in L* by setting

(4, B)= [tr (B*A)do= 3 [aybudo, (42)
i ik

where a; and b, are component functions of 4 and B. The Parseval equality holds

for square-summable functions 4 and B with Fourier coefficients A4, and B;:
(4, B)= > (4i, By); (43)

in this formula the inner product on the left is defined by (42), and those on the
right by (41).
The main theorem of this section is an extension of Szegd’s Theorem to matrix-

valued functions defined on the circle.

TueoREM 8. Let M be a matriz-valued measure defined on the circle such that
M(E) is Hermitian and positive semi-definite for every Borel set E. Let M have Le-

besgue decomposition
dM (5)=W (e¥)do+d M, (),
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where W 1is a summable matrixz function and M is singular with respect to do. Then

exp {f tr log Wda} = inf ftr ((Ay+P)* (Ay+P)d M}, (}) 44)
A, P ‘

where A, ranges over the matrices with determinant one, and P over trigonometric poly-

nomaals of the form
Py = 3 A,e*. (45)

k>0
The left side of (44) is to be interpreted as zero if
ftrlog Wdo= — oo. (46)

Proof. In outline we can follow the proof of Theorem 1, meeting each new

complication as it arises. Let L% be the set of functions 4 for which
| Aff3= [tr (4* AdM)< oo; 47)

the norm so defined is positive semi-definite. After identifying functions which differ

only on a null-set of d M, L} is a Hilbert space with inner product
(4, B)y = [ tr (B* Ad M). (48)

If the infimum on the right side of (44) is positive, choose and fix 4, with deter-
minant one, and let H be that element of L% which is the limit of polynomials P
of the form (45) and satisfies

[tr [(Ay+ H)* (4o + H)d M]=inf [ tr [(Ag+ P)* (4o+ P)d M).
P
The argument leading to (7) and (8) gives analogous orthogonality relations here.
If n>0 and G is any non-zero constant matrix, the expression
|4+ H+AGe™ ||y
has a unique minimum at 4=0. It follows that

(Adg+H, @™ )y=0 (n=1,2,..). (49)
And the expressions

| (Ao + H) (I +2AGe™)|[ar=|| (4o + H) + A (Ao + H) Ge'™ |,
I +26e™) (o + B =l (Ao + H) + A G (4o + H) ™|l

() The pedantic reader can easily write this symbolic integral literally in terms of the scalar
component measures of M.



188 HENRY HELSON AND DAVID LOWDENSLAGER

have minima at A=0, uniquely unless

(4o +H)G=0 or G(4,+H)=0.
In any case we have
(Ao+ H), (Ag+H)Ge™)y=0 (50)
. (n=1,2,...).
and (4g+ H), G(dy+H)e™ )y =0 (51)

The definition (48) means that (51) can be written
[e7"% tr [(Ay+ H)* G* (4, + H)d M]=0. (52)
Taking the complex conjugate of (52) and making use of (39),
[ tr [(Ay+H)* G (4y+ H)d M]=0.
These formulas hold for all G, and for n=1,2, ...; it is easy to see then that (52)
is valid for negative as well as positive integers n. Hence
tr (G (4o+ H)d M (Ao + H)']

is a constant multiple of scalar Lebesgue measure for each (f, so that every com-

ponent of the matrix measure

(Adg+H)d M (Ay+ H)*
is a multiple of Lebesgue measure. This fact can be written

(Ag+ H)d M (Ay+ H)*=Cdg  (C constant).
Therefore we have
(Ag+ H)Yd M, (4y+H)* =0, (53)
(Ao + H)W (4,+ H)*=C. (54)

It follows from (53) that 4,+ H vanishes almost everywhere for d M;, so that (49)
takes the alternate form

(Ap+H, Ge™)y=0 (@ arbitrary; n=1,2, ...), 49)

where the inner product refers to the Hilbert space of matrix functions square-sum-
mable for Wdo.

As in the scalar case, we conclude from (49’) that A,+ H has the same minimal
property in L3 that it enjoys in L}, and so the infimum on the right side of (44)
is not reduced if we replace d M by Wds. Assuming, then, that this infimum is
positive, the theorem will be proved if we show

exp {f tr log Wdo} = inf ftr [(Ag+ P)* (Ag+P)W]do. (55)
P

4,
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On the other hand, if the infimum in (44) is zero, it still suffices to prove (55), by

the same argument as in the scalar case.

LeMMA 4. Let W be Hermitian, positive semi-definite and summable. Then

exp {[ tr log Wdo] =ir‘11rf ftr (Y W)da, (56)

where V' ranges over the Hermitian matrix functions with summable trace for which
[tr Fdo=o0. (67)

The trace of a Hermitian matrix is the average of its proper values; and the
determinant is the product of the same numbers. Using the inequality of the arith-

metic and geometric means twice we obtain
exp U tr log Wdo} =exp {}bflog det Wda} éf (det W)”"doéftr Wdo. (58)

In order to have continued equality it is necessary and sufficient that
tr W= (det W)"/" =constant,

which is to say that W is a constant multiple of the identity matrix.
Let ¥ be a Hermitian matrix function with summable trace satisfying (57);

whether or not the positive semi-definite matrix function

W' =et¥ Wet¥
is summable, we have as in (58)

exp Utr log W’da} <ftr Wdo< oo,

The properties of the trace and determinant functions give

n tr log W’ =log det W’ =log det (¢¥ W)=n tr ¥ +n tr log W,
tr W’ =tr (¥ W).
By (57) we have for every function ¥
exp U tr log Wd’a} <ftr (e¥Y W)do. (59)
If tr log W is summable, define .
Vo=AI—-logW; A= [trlog Wdo. (60)

Then W, is Hermitian and satisfies (57), and obviously reduces (59) to equality. This
completes the proof if tr log W is summable; otherwise a limiting process has to be

carried out as in the scalar case.
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LeMma 5. The statement (56) is still true if V' ranges only over the class of
trigonometric polynomials which are Hermitian and satisfy (57).

Let 4 and B be commuting Hermitian matrices. They have a common complete
set of proper vectors. Define max (A4, B) to be the Hermitian matrix with the same
proper vectors and with proper values the larger of the corresponding proper values
of A and B. For any Hermitian matrix A, the positive part of 4 can be defined
as max (4, 0). This construction makes it possible to carry through the proof of
Lemma 2 unchanged for the matrix case.

By analogy with the proof for scalar functions, we should like to factor each

function e¥ of Lemma 5 into a product
(Ag+ A, €5+ ) (Ag+ Ay 5+ -+,

and then show that it suffices to consider trigonometric polynomials in place of the
infinite series. The non-commutativity of matrices introduces a difficulty which must

presently be met.
LemMA 6. Let W be a summable positive semi-definite matriz function for which
the infimum of (55) is positive. Then W has a factorization
W=BB* (61)

where B is a matrix function in L® with analytic Fourier series:
B(e®)~ > B,e™  and det B,=0. (62)
0

In applying this lemma, we shall need a stronger result than (62) for a narrow
class of functions W, It will be convenient to refer later to the proof as well as the

statement of the lemma.

By hypothesis, the convex set of trigonometric polynomials of the form

I+ 3 Age*

k>0

is bounded from zero in L}. Let I+ H be the unique element of minimal norm in

the closure of this set. From (54) we have
I+HYWI+H*=C, (63)

where C is a constant matrix. We assert that C is non-singular. Indeed, otherwise

we could find matrices 4 with determinant one for which

tr (ACA*) = [tr (A+AH)W(A+AH)*|do
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is as close to zero as we please, whereas this quantity is bounded from zero by
hypothesis. Clearly then € is Hermitian and positive definite, and so has a non-
singular square root. The factorization (63) can be put in the form
(Ae+ AHYW (Ag+ A H)* =1 (Ay=C"}) (64)
or W=BB*; B=(44+A4,H) " (65)
From (65) it follows that B is square-summable. We shall prove the lemma by showing
that its Fourier series is of analytic type:
(Ag+ AgH) '~ By+ By e+ ---. (66)
It suffices to establish that

[tr [G(4o+ A H) M e™ do(x)=0 (n=1,2,...) (67)

for every constant matrix G, since then every component function of (4,+ AgH)™*
i1s analytic. Making use of (64), the left side of (67) is equal to

ftr [GW (4y+ Ao H)*] ™ do (x) = jtr [(Ag+ A H)* GW]e™  d o (x) =(A5G ™, I + H)y.

This inner product vanishes by (49') for n=1,2, ..., so that (67) holds.
Let W be a trigonometric polynomial satisfying (57). Then there exists a factori-

zation

eV =AA; A~ D 4,6, det 4y,=1. (68)
o

To prove this fact, we consider the positive definite weight function W=e¢ Y.
The eigenvalues of W are bounded from zero and from infinity; it follows that the

spaces L} and L? have equivalent norms. By a simple calculation we can show that
|4|P= [tr (4*A)do>1

for each analytic trigonometric polynomial A4 whose leading coefficient 4, has deter-
minant one. Therefore the infimum of (55) is positive for this function W, and by
Lemma 6

e Y=BB*; B()~ > B,e™. (69)
. 0

If the scalar components of B(e*) are denoted by by(e®) for i, j=1,2,...,n,

we have
ntre ¥ =3 b,
i7

from which it is clear that the functions b, are bounded. Now the determinant of

B is a sum of products of these functions, and since the b; are bounded, the Fourier
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series of det B can be computed formally from the Fourier series of the component

functions. Each b, is analytic, and we find
det B(e¥)~det By+c,e”+cye+ --- .
The one-dimensional version of Theorem 2 (or Jensen’s formula) gives
[log |det B|2do>1log |det B, (70)

The inverse of B is the function 4 =A,+ 4,H, obtained as the limit in L} of
a sequence of analytic trigonometric polynomials each having constant term 4, With
the present choice of W the sequence converges in L? as well, so that 4 is an analytic
element of L?:
A~Ag+A e+ -5 Ay=C1
From (69) we have : e¥=A%A, (71)

so the components of A, like those of B, are bounded functions; exactly as for B

then we have
J'log |det A|*do>1log |det 4,[% (72)

Now A and B are bounded functions with analytic Fourier series, so the Fourier
series of their product is obtained by formal multiplication of the series for 4 and B
and consequently A,B,=1I. It follows that the right side of (70) and of (72) is
finite. Adding these inequalities gives zero on both sides. Therefore (70) and (72) are
actually equalities.

By assumption W satisfies (57). Making use of (71) we have
0= [log det e‘Fda=flog |det 4|*do=1log [det 4%

The determinant of 4, is at any rate positive, and therefore is equal to one. Thus
(71) is a factorization of the kind we wanted.

Now we can prove (55). Let W be a Hermitian positive semi-definite sum-
mable matrix function, and let ¥ be a Hermitian trigonometric polynomial satisfying

(67). From the result just proved,
[tr (e¥W)do=[tr (A*AW)do,
where A is a bounded analytic function and det 4o=1. Therefore by Lemma 5

exp [ tr log Wdo) >inf [tr (4*AW)do,
4

where A4 ranges over all bounded functions of analytic type such that det 4,=1.

Each component function a,; of 4 is boundedly the limit of Fejér means of its Fou-
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rier series, from which it follows that the last inequality remains true when A ranges
merely over trigonometric polynomials of the same kind. This is one half of (55).
The opposite inequality follows as in the scalar case, or can be deduced directly from

the one-dimensional version of Theorem 2.

THEOREM 9. Let W be a Hermitian positive semi-definite summable matriz func-
tion defined on the circle. A necessary and sufficient condition for W to have a factori-

zation

W = BB*, (73)

where B is in L* with Fourier series of the form

B(e*y~ > B,e™  (det B,+0)
0
s that
ftrlog Wdo> — oo. (74)

If this condition is satisfied we can choose B so that
[log |det B|do=1log |det By|. (75)

Proof. Suppose first that W has a factorization of the required kind.. For any

trigonometric polynomial of the form

A=Ay + A"+, det 4,=1
we have clearly
ftr (A*AW)dcr:ftr [(AB)* (A B)]da = tr [(4,B,)" (4, B,)] >
>|det 4,B,[%" =|det B,[*">0. (76)

Then (55) shows that tr log W is summable.

Conversely, suppose that (74) holds. Then (55) shows that the hypothesis of
Lemma 6 is satisfied, so there is a factorization (73). We shall show that the factori-
zation furnished by Lemma 6 has the property (75).

From (76) and (55) once more we see that for any factorization of the form (73)
we have
exp ([ tr log Wda} >|det B,[*",

which is equivalent to one inequality in (75). Now for any positive definite matrix

C, it is an elementary fact that

(det C)V'" =inf tr (4,C A4F),
Ay
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where. 4, ranges over matrices with determinant one. This observation, together

with (63) and Theorem 8, implies
exp ([ trlog W do| =inf [tr (AW A*)do<inf [tr [AI+H)W (I +H)*]do
4 4

—inf [tr (ACA*)do=inf tr (4,C A%) = (det C)'"™.
A Ao

(As usual A ranges over the analytic trigonometric polynomials whose constant term
A, has determinant one, and C is the constant matrix of (63).) Let D be the posi-
tive definite square root of C. The analytic function B was defined, in the proof of
Lemma 6, to be

B=(I+H)™'D, (77)
so that D=(I+H)B.

Let I+ P, be a sequence of trigonometric polynomials converging in L% to I+ H,
where each P, is analytic without constant term. It is easy to see that (I +P,) B
converges in L® to (I+ H)B. The leading coefficient of each function (I + P,) B is B,,
and therefore the constant term in the Fourier series for (I+ H) B is also B,. But
this function is constant and equal to D, so that B,=D. The last string of inequal-

ities can be continued then to give
exp U tr log Wda} < (det )™ = (det B,)*",

and this completes the proof of (75).

Theorem 9 is substantially the main result of Wiener’s paper [19]. One must
remark that the theorem is trivially false without the condition det B,+0. For if B
is any singular matrix, then W =BB" is positive semi-definite and has a factoriza-
tion (73), but (74) does not hold.

The interest of (75) lies in its function-theoretic meaning. If B= B (e¥) is square-
summable and of analytic type, then we can extend B to a matrix-valued analytic

function defined imside the circle:
B(z)=By+ Byz+ B2+ -+ (|z|<1).

Obviously det B(z) is an analytic scalar function. It is not true, as one might ex-
pect, that (75) holds whenever det B(z) is free of zeros in the circle; (75) merely
implies that det B(z) never vanishes. In the scalar case Beurling [5] has defined a
factorization for analytic functions into an inmer function, containing a Blaschke pro-
duct and perhaps another factor, and an oufer function, which has no zeros and satis-

fies the analogue of (75). Besides giving integral representations for these factors,
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Beurling . characterized them by extremal properties. The theorem we have just proved
extends Beurling’s factorization to matrix-valued functions. For let 4 =A4(z) be an
analytic square-summable function, perhaps with zeros. Then 4 A* can be written
on the boundary in the form BB*, where B satisfies (75). In particular, B(z) is
non-singular inside the circle. Then B™'4 is analytic inside the circle, and has exactly
the properties of an inner function, while B is an outer function.

In (73) the order of the factors can just as well be reversed. It is clear that a
symmetric development of Theorems 7 and 8 would give the other factorization; or

we can derive the result directly as follows. If we set

W (eiz) — W* (e—t:)’

then W (¢) = B(e~*) B* (7).
The function defined by B (z)= B* ()
is analytic, and we have W=B"B.

But W and W satisfy (74) at the same time, and so the two kinds of factorization exist
together.

THEOREM 10. Let F be a summable analytic matrixz function whose constant

term Fo is non-singular. Then F has a factorization
F=GH,
where G and H are square-summable analytic functions.

Let W be the positive semi-definite function (F F*)}. Using the proof of Theorem
2 as a model, and inequality (76), we can show that

[trlog Wdo>log |det Fy['" > — co.

By Theorem 9, W has a factorization
W = B B*,

where B is the analytic function given by (77). We are going to show that B™'F
is square-summable and analytic; then we only have to choose G=B and H=B"'F
to obtain the factorization desired.

B7'F is square-summable; for we have
(B'FY(B'F)*=B'FF*(B*)'=B'W*B*)'=B*W (B*)"'=B"B.
To see that B~'F is analytic we write from (77)

B'F=D'(I+H)F; I+H=lim({I+P,) inlLj.
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The Fourier coefficients of the components of B™'F are thus given for appropriate

choice of constant matrices G by
[tr (@D (I+H) Fle*do=tr (D (I+HW(F)]e*do=

=J'tr (WEFEYGD ' I+H)W]e ¥ dg. (78)
Now W (F~')* belongs to L3, since

FIWW(F)Y'W=F'FFF)yW-W

is summable. Therefore the last integral in (78) is equal to the limit of similar inte-
grals with I+ H replaced by I+ P,, so that the Fourier coefficients of the components
of B'F have the form

lim [ tr (D' (I+P,) Fle ™ do.

But F is an analytic function, so each such integral vanishes if k<0. This says
exactly that the coefficients of B™'F vanish for negative indices, and that is what
we had to prove.

In the proof we needed the hypothesis that F, is non-singular in order to show
that log W is summable, so that W can be factored. The argument is still valid if
Fy=0, provided the first non-vanishing coefficient is non-singular. On the other hand,
it may happen that F, is different from zero but singular; in the extreme case
det F may vanish everywhere. We do not know whether the theorem remains true
in this generality.

We hope to have demonstrated that a certain class of theorems from function
theory in the circle can be extended to matrix-valued functions by the method of
this paper. It is not our intention to pursue this theory further. We conclude this

section by stating the prediction theorem which follows from Theorem 8.

TuroreM 11. Let {x}}, {3}, ..., {z’} be N stationary processes in a Hilbert
space, which are moreover mutually stationarily correlated in the sense that the scalar
products '

(@h, xn)
depend only on j, k, and n—m. Denote by M the matriz-valued positive semi-definite

measure with components my whose Fourier-Stieltjes coefficients are
[e ™ dmy (@)= (ah, 25) (G, k=1, ..., N).

Let W be the absolutely continuous part of M. For any matrix A= (ay) of order N

consider the elements
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N
i k .
/e S =1

Denote the distance from y' to the manifold spanned by all the elements i with k ar-
bitrary and n <0 by y,. Then
N

1 .
inf — 2 _ tr log Wdal, 79
of % gly exp {f r log o (79)

where A ranges over all constant matrices of determinant one.

The prediction error is once again given in (79) by the exponential expression
from Szego’s Theorem, but the problem whose solution is thus given is complicated.
We minimize the average square of error in approximating ', ...,%" by elements
from the combined past of all the processes; and then we choose that set of elements
y', ...,y" out of the present (obtained from x, ..., zy by means of a transformation
with determinant one) for which this average error is as small as possible. It is not
obvious that the infimum in (79) is attained, since the matrices of determinant one
are not a compact set, but the proof of Theorem 8 shows that a minimal matrix
exists.

We proceed to the proof of Theorem 11. First we have to show that a matrix
measure M really exists with the properties ascribed to it. It is easy to see that
for fixed § and k the sequence )

(xh, a5)
is a linear combination of positive definite sequences, and so there exist complex-

valued measures my; on the circle for which
e domg, (2) = (ah, #6). (80)

Let M be the matrix with components my. In order to show that M is positive
semi-definite it suffices to prove for each set of complex continuous functions
oy (x), ..., ay(x) that

fizk o @ dmy, > 0. (81)

Clearly it is enough to prove this inequality when each «, is a trigonometric polynomial:

o(x)= > aj ™.
n

The left side of (81) is equal to
fz A et Ay (2) = D ab dn (@ om, 2k)= 3 al ak (), 5,)>0.

Thus (81) holds, and M is positive semi-definite.
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By Theorem 8, we have

exp {f tr log Wdo| =inf [ tr [4* Ad M),
4

where A ranges over analytic trigonometric polynomials whose leading coefficient 4,

has determinant one. Let 4 =(a,) and
ap (%)= 2 aje™. (82)
n>0

For fixed 4 we have

1
Jtr [4* 4 d M) =¥ i;ka,,,-d,-kdm,-k=

1 .
_ m =n —i(n-myz _
=N _Zkaii Aix | € "* dmy, (x) =
ik
m,n

) r (83)
E— mar Eoy—=
= Ni,;k,a” (22373 (x,-m, x—n)

1
=730 3 ateatal.

Set,
v=>akaxt (i=1,...,N)
%

and recall from (82) that » is summed over non-negative integers in (83). Then the
individual terms in the last expression of (83) have the form

o' ==, (84)
where z is a linear combination of elements z¥ for k=1, ...,N and n<0. The num-
bers af, are the components of the leading coefficient 4, of 4, and are subject to the
requirement that det 4,=1. The other coefficients entering into (83) are completely
arbitrary, since the other coefficients A4,, 4,, ... of A are arbitrary. Therefore the
elements x which can appear in (84) are arbitrary linear combinaﬁons of xk with n <0,
and it follows that the infimum over A of (83) is the left side of (79). This com-
pletes the proof of the theorem.

6. Extensions of the Theorems

The proof of the Szegé Theorem is valid for functions of more than two variables.
Indeed, its natural setung is a compact abelian group K whose dual K has a com-
plete linear order compatible with the group structure. (The theory of the Fourier
transform on locally compact abelian groups is' contained in [12], and this section
presupposes some acquaintance with the generalized Fourier transform.) To be precise,

R is to contain a distinguished subset P with the properties
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1° 0¢ P (where 0 is the identity in K)
20 2€P if and only if ——a’u’eﬁ, unless £ =0
3° 2€P and 32613 imply fi‘+37€13.
The elements of P are called positive. A total order is defined in K by saying
£>¢ justif &-gep.

Let do be the invariant measure in K, normalized so that K carries total mass one.
The value of a character £ at the point z of K is written (x, ). With these con-

ventions we have the following generalization of Theorems 1 and 8.

THEOREM 12. Let M be a positive semi-definite matriz-valued measure defined on
Borel subsets of K. Suppose that
dAM=Wdo+dM,

where W is summable for do and M, is singular with respect to do. Then

exp {[tr log Wdd) =Ain£jtr [(dy+ P)* (4,+ P)d M),

where A, ranges over the matrices with determinant one, and P over finite sums

P(z)= 3 A(#)(z, 2).

reP

The left side of (78) is to be interpreted as zero if

ftr log Wdag= — oo,

We also have analogues of most of the other theorems of the preceding sections.
Recall that the Fourier transform of a summable function f on K is the function
f on K defined by

f@= [ @ 2)f@)do.
We shall say that f is of analytic type if F(2)=0 for all £ such that —2€P.
THEOREM 13. Let f be a summable function of analytic type on K. Then
[log |fldo>Tog |{)[-

THEOREM 4. Let W be a summable positive semi-definite matrixz function on K.
A necessary and sufficient condition that W have a representation in the form

W =BB"*,
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where B is square-summable, of analytic type, and satisfies det 3(6):#0, s that
ftr log Wdo> — oo,
If this condition is satisfied, then we can choose B so that
[log |det B (x)|d o =log |det B(0)].

THEOREM 15. Let F be a summable matrix function of analytic type with
det F(0)+=0. Then F has a factorization GH, where Q@ and H are square-summable
matriz functions of analytic type.

THEOREM 16. Let u be a complex Borel measure on K whose Fourier-Stieltjes

coefficients satisfy
[(@, 2)dp(x)=0 for ZEP.

Then the coefficients of its singular and absolutely continuous parts separately have the
same property.

TEEOREM 17. Let | be a square-summable function of analytic type, and denote
by C, the closed subspace of L* spanned by linear combinations of f and functions of
the form

2-f (REP).
C; s identical with the set of all square-summable functions of analytic type if and only if
flog |f|do=1log [{(0)]> — .

The special properties of the circle and torus groups have been used very spar-
ingly in the proofs of the preceding sections. In order to prove the theorems just
enunciated, we have only to make notational changes on previous pages. It should
be observed that Theorem 8 depended on an analogous theorem for scalar functions,
so that a scalar version of Theorem 12 has to be given before considering matrix-
valued functions. Theorem 16 incorporates that part of the Bochner Theorem which
lends itself to elegant statement. The full theorem depends on the comparison of two
different order relations in K, and this is cumbersome to explain in general terms.

We should dwell on one technical point. The properties of the Fejér means of
a Fourier series were used in the proof of Lemma 2, Theorem 2, and the corre-
sponding theorems about matrices. On each compact group K there are approximate

identities in abundance, and they can even be chosen from the trigonometric poly-
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nomials. However, unless K is separable an approximate identity will have to be a
directed system of functions rather than a simple sequence. For any fixed function f
summable on K we can choose from any approximate identity (consisting of trigono-
metric polynomials) a sequence ey, e,, ... having the properties we need, even though
the sequence depends in general on f. For each n, e,%f is a trigonometric polynomial
with the same mean value as f, and the sequence converges to f in the norm of
summable functions (as required for Theorem 2); and if f is bounded, e,%f has at
worst the same bounds as f, and a subsequence converges almost everywhere to f
(which is enough to prove Lemma 2). The Fejér kernels have deeper properties than
these, but we have not used them.

The compact group with ordered dual seems to be the natural domain on which
to state theorems like those of this paper. It is not so obvious what the range of
the functions considered should be. Probably our main theorems hold for functions
taking values in an algebra of operators on Hilbert space possessing trace and deter:
minant functions of the appropriate kind. The existence and classification of trace
functions was a main object of the work of Murray and von Neumann, and more
recently Fuglede and Kadison [9] have given a theory of determinants. Unfortunately,
only positive definite operators seem to deserve a determinant. Reference to the deter-
minant of other matrices can be avoided in many parts of section five, but there are

other places (especially in the proof of (68)) where that is more difficult.
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