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l .  In troduct ion  

The theory of analytic functions of a complex variable extends only with difficulty 

and incompletely to functions of several variables. Because the Riemann Mapp ing  

Theorem fails in several variables, the description of domains of holomorphy and their 

analytic transformations has been a major concern. Nevertheless function theory in 

the bicylinder hardly exists beside the elegant theory of functions in the unit circle. 

This circumstance is related to the singular fact, never observed so far as we know, 

that  analytic function theory divides into two distinct disciplines in higher dimensions. 

The theory of analytic functions in several variables has been concerned with functions 

defined locally and consistently by power series in a domain, whereas much function 

theory in the circle can be made to depend on group properties of the circle, and 

generalizes in quite a different way. The study of multiple Fourier series from this 

point of view is one objective of this paper. The discussion of analyticity in a 

group-theoretic context was begun by Mackey [13], and recently has been continued 

with great ingenuity by Arens and Singer [2, 3, 4]. While our work has points of con- 

tact  with that  of Arens and Singer, the methods are different, and we have attained 

a certain completeness at  the expense of generality. 

(1) The work of the second-named author was supported by contract Nonr-222 (37) with the 
Office of Naval Research. 
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In  the work of Kolmogoroff [11] and Wiener [18] on the prediction of second- 

order stationary stochastic processes, certain theorems about  analytic functions in the 

circle play an essential part.  The analytic difficulty is exact ly  met  by a theorem of 

SzegS; and indeed Szeg6's Theorem can be used to prove the various function-theoretic 

results which would otherwise be used in the proof of the prediction theorem. The 

second section of this paper is devoted mainly to a generalization of SzegS's Theorem 

to two or more variables, and this furnishes the solution of a certain prediction problem 

in several variables. This is not the multiple prediction problem mentioned by Doob 

[8, p. 594] and treated recently by Wiener [19], of which we shall speak presently. 

In  the third section we exploit the methods and results of the second section 

in order to prove a number of theorems in multiple Fourier series generalizing ele- 

mentary properties of analytic functions of one variable. We obtain an inequality in 

place of Jcnsen's Formula, under hypotheses slightly different from those of Arens in 

a paper not yet  published. Then we extend the characterization of functions w(e "~) 
defined on the unit circle having a representation 

w = I/12 almost everywhere, 

where / is analytic and of class H 2 inside the circle. A related theorem states tha t  

every function analytic in the circle and of class H is the product of two functions 

in H 2. Finally we extend the theorem of Hardy  and Littlewood about functions of 

class H in the circle: 

If  ] (z) = ~ an z n, 
0 

then ~ ]anl/(n-F 1)< co. 
0 

For simplicity we treat  functions of only two variables in this section. In  each case 

the class of functions to which our theorem applies is not the double power series, 

but  rather the functions defined on the. torus whose Fourier coefficients am n vanish 

for all (m, n) belonging to a hall-plane (in a sense which must  be made precise). The 

proofs depend on this division of the group of lattice points into disjoint semi-groups, 

rather than on the local properties of functions defined on the toms.  For functions 

of one variable the theorems are generally proved by  removing the zeros of an analytic 

function in the circle. Of course this technique is not available for functions of several 

variables, and instead our method depends on the fact tha t  every closed convex set 

in Hilbert  space possesses a unique element of minimal norm. 

In  section four we discuss Bochner's generalization of a well-known theorem of 
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F. and M. Riesz [15]. In  the form of interest to us, the Riesz Theorem states: i] 

/~ (x) is a complex /unction o/ bounded variation on the circle such that 

f e  -~nxd/~(x)=0 for n = l ,  2 . . . . .  

then la is absolutely continuous. The obvious analogue in several dimensions is trivially 

false; nevertheless Bochner [6] has found a generalization for set functions # on the 

torus. The Riesz Theorem is a convenient tool in proving SzegS's Theorem [1, p. 263] ; 

but some accounts of prediction theory (for example [8]) do not mention it. We have 

tried to clarify the relation betwen these theorems by giving a new proof of Boch- 

ner's Theorem based on the results of preceding sections. I t  is of methodological 

interest that  our proof does not depend on theorems about  analytic functions, as have 

all the published proofs of the Riesz Theorem. 

In  section two we generalized SzegS's Theorem to functions of several variables. 

In  section five we consider another kind of generalization: we study functions defined 

on the unit circle whose values are matrices. Wiener [19] was led to the study of 

matrix-valued functions by a prediction problem different from the one treated in 

section two. After seeing Wiener's paper we succeeded in extending our method to 

this case. The fundamental  result, as before, is a generalization of SzegS's Theorem. 

From it flow the solution of a prediction problem, and a number of theorems about  

matrix-valued analytic functions defined in the circle. Recently Masani and .Wiener 

have completed a paper [14] carrying Wiener's work much further. I t  is likely tha t  

there is a good deal of duplication in our results, although their version of SzegS's 

Theorem is different from ours. We are happy to accord Masani and Wiener the right 

of precedence, and to acknowledge our debt to Wiener's paper. We hope nevertheless 

tha t  the systematic development presented here, as well as our new results, will 

justify the publication of this section. 

In  the last section we extend these theorems to their natural degree of generality. 

We consider functions defined on a compact abelian group whose dual is linearly 

ordered by a relation consistent with the group structure. The functions may take 

matrices as values. Then SzegS's Theorem and most of our other results can be ex- 

tended to this setting, and the proofs are word for word the same as proofs of cor- 

responding theorems in the body of the paper. The torus groups are the best examples 

of groups to which the analysis applies, but  there is no restriction in dimension. In  

particular, the Bohr compactification of the line (whose.dual is the group of real 

numbers in the discrete topology) is of the type considered. 
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2. Doubly Stationary Series 

Let  xm, be an  element of a Hilbert  space for each integer m and n. We say 

tha t  {x~}  is doubly stationary if for all m, n, r, and s we have 

(Xm+r. ,+~, Xm,) = (xrs, Xoo). (1) 

I n  this case we define 9 (r, 8 )=  (xrs, x00). (2) 

Then r is a positive definite function on the group of lattice points of the plane. 

Tha t  is, for any  complex numbers  ~1 . . . . .  :ok and integers r 1 . . . . .  rk, s 1 . . . . .  s~ we have 

k 

E o~se(r ,-rJ,  8,-s~)>10. (3) 
t,i=1 

Indeed,  using (1) this amounts  to 

E 0~t aJ (Xrtst, Xrts t) >~ O, 

or (Z oq x~,8,, E oq x,,~,) >10. 

The last inequali ty is obvious, and so (3) holds. 

The theorem of Herglotz,  Bochner,  and Weil on positive definite functions states 

t ha t  there is a non-negative measure # defined for Borel sets on the torus 

0~<x~<2n, 0 < y ~ < 2 n  

e(r, 8)= f e-~('~+~U)d~(x, y) such tha t  

for all integers r and 8. 

Now let S be any  set of lattice points (m, n) in the plane no t  containing (0, 0), 

and let {amn} be a set of numbers  defined for (m, n) in S, vanishing except for a 

finite set of indices. Taking (1) and (2) into account  we find 

8 

= (xoo, xoo) + ~ dmn (xoo, xm n) + ~ am,~ (Xmn, Xoo) + ~ ~ am n ars (Xmn, xr s) 

= e ( 0 , 0 ) +  ~ a,~,~(m,n)+ ~. % , e ( m , n ) +  ~ ~ am, a , , e ( m - r , n - s )  

= f l I + Y a , . .  e-'( '~+'~')l~ d,u (x, Y). 
S 

(4) 

Thus  the problem of approximat ing x00 by a linear combinat ion of elements Xm~ with 

(m, n) in S is equivalent  to minimizing the integral at  the end of (4). An  explicit 
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evaluation of the infimum is given for the corresponding expression in one variable 

by the following theorem of Szeg5 [16]:(1) 

1/ bt is a /inite non-negative measure defined on the Borel sets o/ the circle l z l =  1 

whose absolutely continuous part is w ( e ~ ) d x / 2 ~  then we have 

e x p { l ~ f l o g w d x } = i n f  f l l+P(e"~)12dt t (x ) ,  

where P ranges over the trigonometric polynomials o/ the /orm 

p (e i x) = ale ~ x + a2 e2~ + ... + an e his. 

The left side is to be interpreted as zero i/  

f log w ( e ~ ) d x  = - oo. 

The solution of the prediction problem for any set S of lattice points requires 

an appropriate generalization of Szeg6's Theorem. We shall find such a generalization 

for a very special class of sets S. Before stating our theorem we make some ob- 

servations which do not require hypotheses on S. 

Trigonometric polynomials of the form 

e - i ( m x + n y )  1 + 5 amn (5) 
s 

form a convex subset of the Hilbert space of functions square-summable with respect 

to /z. The closure of this subset will be called S. If S contains the null function, 

then x00 lies in the manifold spanned by {Xmn}: for (m, n ) i n  S, and we say that  

prediction is perfect. Otherwise (and this is the interesting c a s e ) a n y  sequence of 

elements Qn of S such that  

lim IIQ ll=i fllGll (Ges) 

is a Cauchy sequence, and converges to the unique element 1 + H of S having mini- 

real norm. w e  have therefore 

inf f l l §  amne-'(m += 'lZdb = fll+H[2dt~>O. 
S 

(6) 

(1) Szeg6 s t a t e d  the  t h e o r e m  for abso lu t e ly  con t inuous  measures .  I t  was  c o m p l e t e d  h y  Kol-  

mogoroff  a n d  K r e i n ;  references are  g iven  in  [1]. We  s h a l l  neve r the l e s s  refer  to  t he  ful l  r e su l t  as  

Szeg6's  Theorem.  

12 - 665064 Aeta mathematiea. 99. Imprim~ le 10 juin 1958 
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For  any  complex number  ;t and  (m, n) in S the function 

1 +H(e  ~x, e ~) +~e -~(mx+n~) 

belongs to $, and therefore 

has a unique min imum at  ; t=  0. Hence for every (m, n) in S we have 

f [1 + H (e fx, dr)] e t(~x+"~) d#  = 0. (7) 

I f  S is closed under  group addition, so tha t  

(m,n)  E S  and ( m ' , n ' ) E S  

imply (m + m', n + n') E S, 

then there is a second or thogonal i ty  relation. For  each complex ~ and each (m, n) 

in S the function 
[1 +H(e  ix, e'~)] [1 +~te -~(~x+~y)] 

belongs to $, and its norm is minimized at  2 = 0. The conclusion is now 

f ] 1 + H(e '~, r ~ ~,,~x+~y, d ~  = 0. (8) 

By taking the complex conjugate of (8) we see the same is t rue if ( - m ,  - n )  is in S. 

I t  is easy to prove tha t  (7) characterizes the minimal element of S. Indeed,  sup- 

pose tha t  (7) holds but  1 + G is the minimal element. Then 

f i l + H + a ( G - H ) ] 2 d l ~  = / [ I + H I ' d ~ + I ~ . ] ~ / I G - H I 2 d #  

for every complex xl. This expression is obviously smallest for ~ = 0;  bu t  it is a t  least 

as small for ~l = 1 if G is the minimal element. Since the minimal function is unique, 

we conclude tha t  G = H. 

D E F I N I T I O N .  S is a hal/-plane of lattice points if 

1 ~ (0, 0) r 

2 ~ (m,n)  E S  if and only if ( - m ,  - n ) r  unless m = n = 0  

3 ~ (m,n)  E S  and (m ' ,n ' )ES  imply ( m + m ' , n §  

If  S is a half-plane and (8) holds for all (m, n) in S, then by the second eondi. 

t ion (8) holds for all m and n except m = n = 0. Tha t  is, the Fourier-Stieltjes eoeffi- 



P R E D I C T I O N  T H E O R Y  AND F O U R I E R  SERIES  I N  SEVERAL V A R I A B L E S  1 7 1  

cients of the measure I I+HI2d/~ all vanish except ' the  central one. Therefore this 

measure is a multiple of Lebesgue measure. I t  follows that  1 + H must vanish almost 

everywhere with respect to the singular component of d/~, and (7) can be written 

f [ l + H ( e  ~x, e~Y)]et(mz+nY)d/~a=O ((m,n) ES) (7') 

where /~a is the absolutely continuous part of ju. 

We can now state the first generalization of SzegS's Theorem. 

THEOREM 1. Let S be a hal/-plane o/ lattice points and let # be a linite non- 

negative measure on the torus. Let # have Lebesgue decomposition 

d #  (x, y) = w (e tz, d y) d a + d l~s (x, y), 

where w is non-negative and summable /or the measure d a = d x d y / 4 g  ~, and i~s is 

singular with respect to d a. Then 

exp {f log wda} =inf  f l i  +PI2d/~, (9) 
P 

where P ranges over /inite sums o/ the /orm 

P(e fx, e~)= ~ atone -i(mx+ny). (10) 
s 

The le/t side o/ (9) is to be interpreted as zero i/ 

f log w d a =  - oo. (11) 

Proo/. If the infimum in (9) is positive, we have seen that  it is equal to 

fll+Hl d ,, 
where 1 + H belongs to S and vanishes almost everywhere for #s. Hence (7') holds. 

Moreover 1 + H belongs to the convex set $ formed with the measure w d a instead 

of d/~, and (7') implies that  1 + H  is the minimal function relative to this measure: 

inf f I1 + P]~wd,r= f I1 + Hl~wda= f I1 + Hl~d/~. 
P 

Therefore it will suffice to prove 

exp {flog wda} =inf  f [1  + Pl~wda. (12) 
P 
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On the other hand, even if the infimum in (9) is zero it is enough to prove (12). 

For in tha t  case the infimum in (12) surely vanishes, and having proved (12), ob- 

viously (9) .holds. So we shall prove (12) for an arbi trary non-negative summable 

function w. I t  will be convenient to establish two lemmas. 

L S M M A  1. I /  W i8 a non-negative summable /unction, 

exp If log wda} =inf  fe~wda, (13) 

where ~o ranges over the real summable /unctions such that 

f wda=O. (14) 

The geometric and arithmetic means of w are related by the well-known inequality 

exp {flog wda} ~ f wda. 

The same remark applies to eVw, where ~0 is any summable function which satisfies 

(14), and we find therefore 

exp [ f l~  wda} ~<inf f eVwda. (15) 

The opposite inequality will be established first assuming log w is summable. Define 

2r f logwda; ~0 = ~ -  log w. (16) 

Then y) satisfies (14), and we have 

f eVwda= f e a d a = e x p  [ f l o g w d a  I. 

Therefore the inequality in (15) must  be equality, and the minimal function is given 

by (16). We shall have to refer to the form of the minimal function again. 

If  log w is not summable this argument  does not apply, and except in trivial 

cases no minimal function exists. But  log (w + e) is summable for each e > 0, and by 

what  we have just proved 

exp {flog (w+e)  da} = in f  f e~(w+e)da>~inf f eVwda. 

As e tends to zero we obtain by the monotone limit theorem 

exp {flog wda] =O~>inf f evwda>>'O, 

from which the statement of the lemma follows. 
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L ~  M M A 2. For any non.negative summable /unction w we have 

exp {flog =inf f (17) 
y~ 

where ~? ranges over the real t r igonomet r ic  po lynomia l s  satis/ying (14). 

I t  suffices to  prove the  l emma  assuming t h a t  log w is s u m m a b l e ;  for as in L e m m a  

1, the  general  ease can be t r ea t ed  b y  a l imi t  process. Divide  w by  a cons tant ,  if 

necessary,  so t h a t  

f log w d a  = O. (18) 

Now let  u and  v be the  posi t ive and  nega t ive  pa r t s  of log w, respect ive ly ,  so t h a t  

u, v~>0; log w = u - v .  

Choose a sequence u 1, u2, ... of bounded  non-nega t ive  funct ions  increas ing pointwise  

to  u, and  a sequence vl, v 2 . . . .  of bounded  non-nega t ive  funct ions increasing to  v. 

By  the  monotone  l imi t  theorem,  

]im f u n d a =  f u d a =  f v d a = l i m  f v,d(~. 

Consequent ly  for each n there  is an  m such t h a t  

I n  case the  inequa l i ty  is s tr ict ,  mu l t ip ly  vm by  a cons tan t  smal ler  t h a n  one so t h a t  

equa l i ty  obtains ,  and  rename the  funct ion v n. We have  then  

O<.u,<.u;  O<~v,<v; f u ,  d a =  fv.da. 

Moreover  the  sequence u~ increases monoton ica l ly  to  u, and  i t  is easy  to  see t h a t  

vn tends  pointwise to  v. F r o m  the  cons t ruc t ion  i t  follows t h a t  

0 <~ e (u-un)-(v-~'n) <~ max  (1, w). 

Therefore the  Lebesgue domina ted  convergence theorem appl ies  to  give 

lim f e ~',-u,~ w d a = l i m  f e(U--U~)-(~'-~'n) da  = 1. 

Since the  funct ion ~ o = v n - u  n satisfies (14), we have  proved  t h a t  

inf feVwda<<. 1, (19) 
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where now y) ranges over bounded functions satisfying (14). Every bounded function 

y) is boundedly the limit, of Fejdr means of its Fourier series (in one or several di- 

mensions); each approximating function is a trigonometric polynomial which is real 

if ~ is real, and satisfies (14) if ~p does. Therefore (19) continues to hold if W is 

restricted to real trigonometric polynomials with vanishing integral. In view of (18) 

and Lemma l, the inequality of (19) must be equality, and the proof is complete. 

We return now to the proof of (12) itself. The most general trigonometric poly- 

nomial ~ satisfying (14) can be written, on account of the second property of half- 

planes, in the form 
e _ i ( m x + n y  ) amn + ~ dmrte '(mz+nv). (21) 

s s 

If P denotes the trigonometric polynomial (10), we have 

~ o = P + P = 2  Re (P). 

Therefore the result of Lemma 2 can be restated 

exp {flog wd~} =inf  f r 
P 

where P ranges over trigonometric polynomials of the form (10). 

On account of the third property of half-planes, it is clear that  

eP=I+Q, 

where Q is a continuous function with vanishing integral and having Fourier series 

of the form {10), although of course Q is not a trigonometric polynomial. Therefore 

we have 

exp {flog w da} >~inf f l l + P I  2wda,  (23) 
P 

where P ranges over all continuous functions with Fourier series (10). The infimum 

is not increased if P is restricted to the class of trigonometric polynomials of the 

form (10), and so we have proved the first half of (12). 

The opposite inequality can, paradoxically, be deduced from (23) itself. Replace 

w in that  formula by I I + Q I  2, where Q is any polynomial of the form (10): 

exp {f log ll +Ql~d(r} >~inf f ll + e +Q+ PQl~d(r>~ l, 
P 

making use once more of the semi-group property of S. Hence log I1 + Q [ 2 is sum. 

mable and 

f l o g  I1 +Q['da>>-O. 



P R E D I C T I O N  T H E O R Y  A N D  F O U R I E R  S E R I E S  I N  S E V E R A L  V A R I A B L E S  1 7 5  

Therefore we can write 

II+Ql'=ke~; k~>l, f ~ d a = 0 .  (24) 

Now if w is an arbitrary non-negative summable function and Q is a polynomial of 

the form (10) we have by (24) 

f l l+Ql2wda=lc fe~wda>~in f  f e~wda=exp  { f logwda}.  (25) 

But this inequality is exactly the opposite of (23) if we pass to the infimum over Q, 

and so (12) has been proved. This completes the proof of the theorem. 

Theorem 1 is a full generalization of Szeg6's Theorem. We have already pointed 

out its connection with prediction theory;  in the next  section we shall apply it to 

multiple Fourier series. 

3. Multiple Fourier Series 

The first application of Theorem 1 is a partial generalization of Jensen's formula. 

T H E O R Er~ 2. Let / be summable on the torus with Fourier series 

](r e~U),.~b+ ~ b,~ne-t(~x+n~), (26) 
s 

where S is any hall-plane. Then 

f l o g  ]/[da>_.log Ib]. (27) 

Proo/. By Theorem 1, 

exp {flog It1~} =inf  f I1 + P l ' l I l ~ a ,  
P 

where P ranges over the trigonometric polynomials of the form (10). I f  ] is square- 

summable, we can replace I l l  in the last formula by I tl ~ and then take the square 

root of both sides: 

exp {flog I/Ida} =inf [f I(1 + P)/12do] '". (28) 

If we set in the Fourier series (26) for / we obtain in the product ( I + P ) /  a con- 

stant term b, since P has no constant term. By the Parseval equality, the right side 

of (28) is at least {b I, so that  (27) holds. 

If / is not square-summable, let {/n} be the Fejdr means of ]. Each / ,  is a 

trigonometric polynomial with constant term b, and the sequence converges to / in L. 

For any e > 0  and each n we have 

f log  [l/=[+e]da>~ f log  I f . Ida .> log  Ibl. 
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Pass ing to  the  l imi t  in n wi th  e f ixed,  

f l o g  [ l / l + e J d a > ~ l o g  Ibl. 

The resul t  follows b y  le t t ing  e t end  to  zero. 

F o r  ana ly t i c  funct ions  of one var iab le  the  deficiency of the  r igh t  side of (27) 

cannot  be eva lua t ed  w i t h o u t  some s t ronger  hypothes i s  a b o u t  the  funct ion.  (Some 

consequences of th is  fac t  are  explored  in [5].) I t  would  be in te res t ing  to  replace (27) 

b y  an  equa t ion  analogous  to  gensen ' s  fo rmula  if, for example ,  I is a t r igonomet r i c  

po lynomia l .  

COROLLARY.  I1 / is summable on the torus, has Fourier series o I the form (26), 

and has mean value different from zero, then log [/] is summable.(1) 

The proof is immedia te .  I n  one d imension  the  corresponding theo rem requires  

no hypothes is  on the  mean  value b, bu t  here some such condi t ion  is indispensable .  

To see t h a t  this  is so, cons t ruc t  a sequence of funct ions  of one var iable ,  gl, g2 . . . . .  

each vanish ing  on a f ixed  in te rva l  (~, fl) in (0, 2~t), wi th  Four i e r  ser ies  

gm(e'~) = ~ a,nne-'n~; ~ lamnl<l/m ~- 
n n 

Define l(e'X, etY)= ~ ~ atone -i(mx+nu). 
m = l  n = - c r  

Then  f has  abso lu te ly  convergent  Four i e r  series and  so is s u m m a b l e ;  moreover  i ts  

coefficients are  res t r ic ted  to  a half-plane.  Bu t  / vanishes  on the  set 

0~<x~<2~;  o~ <<. y <<. fl, 

so t h a t  log Ill canno t  be summable .  

I f  the  coeff ic ients  of f are r es t r i c t ed  to  a sector  of opening smaller than ~, t hen  

the  conclusion of the  corol lary  holds wi thou t  a n y  res t r i c t ion  on the  mean  va lue  o f / ,  

p rov ided  f is no t  the  null  funct ion.  The  proof  is l ike t h a t  of Theorem 2, mak ing  

use of a cons t ruc t ion  used aga in  in  the  proof of Bochner ' s  Theorem in sect ion four. 

I n  par t icu lar ,  the  conclusion holds if / is an  ana ly t i c  func t ion  of  two var iables ,  as 

one can also show easi ly  using Jensen ' s  fo rmula  for ana ly t i c  funct ions  of one var iab le .  

(1) A similar theorem has been proved by Arens, even without the hypothesis that / has mean 
value different from zero. He assumes instead that ] is defined on a compact group whose dual has 
an Archimedean order, corresponding here to the case of a half-plane bounded by a line of irrational 
slope. In the example which follows, the half-plane is bounded by a vertical line, so that the order 
relation defined by taking S as the set of positive elements is not Archimedean. 
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T H E O R E M  3. Let w be non-negative and summable on the torus, and let S be 

any hall.plane. A necessary and su//icient condition /or w to have a representation 

w(r x, cy)=lb+ bmn -"mx nY)l ; b.o,  Ib nl <  (29) 
S 

is that 
f log  w d a >  - oo. (1) (30) 

Proo/. If w has the form (29), then as in the proof of Theorem 2 

exp If log w d a } - i n f  f ](1 + P)]~wda~]b]2>O. 
P 

Thus (30) holds. 

Conversely, suppose (30) is true. Then there is a unique function H such that  

lim f ] H -  Pn]*wda=O (31) 

for a sequence of trigonometric polynomials Pn of the form (10), and satisfying 

exp (f log wda} =e~--~]l +H]~w. 

We shall prove that  the obvious equality 

I e~t/2 2 
w = I ~  (32) 

is a representation for w in the form (29). 

By (32), (1 ~-H) -1 is square-summable. Its Fourier coefficients are 

fe-'(m*+'u) 1 fe-*r247 l + g d a  = [ ~_~-~1~ 

According to (7) this integral vanishes for every (m, n) in S. Therefore the Fourier 

series of (1-t-H) -1 has the form 

b+ ~ bmne -i(mx+n~). 
S 

If  b=0 ,  so that  

f (l + H)wd,~=O, 
we should have 

f (1 + P )  (1 + H )  w d a = 0  

for every trigonometric polynomial P of the form (10). From this fact and (31)would 

follow 

(1) For functions of one variable this was first proved by Szeg6 [17], using exactly the presen t  
method. 
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fll+Hl'wda=O, 

which contradicts (30); therefore b *  0, and the proof is finished. 

Let  R be a set of lattice points containing the origin and closed under addition. 

I t  is an interesting problem, suggested to the authors by Mr. G. Weiss and Professor 

A. Zygmund, to determine whether every summable function / with Fourier series 

l (d  ~, d~)~ ~. atone -i(mz+ny) 
R 

can be represented as a product g. h, where g and h are square-summable and, like 

/, have coefficients restricted to R. Even if _R is taken to be the set of lattice points 

in the first quadrant, so tha t  the problem concerns analytic functions of two variables, 

the answer seems not to be known. Our next theorem treats the case of a half-plane. 

T H E 0 R • M 4. Let S be a hall-plane and / a summable/unction with Fourier series 

e - i ( m x + n y )  ; a +  ~ amn a*O.  
8 

There exist square-summable /unctions 9 and h with Fourier series o/ the same /orm 

such that / = g. h. 

Proo]. Since the leading coefficient of ] is not zero, the corollary of Theorem 2 

states tha t  log I/I is summable. By Theorem 3 and its proof, 

where 
I/l=lgl 

C 
g = l + H , . , b +  ~ b,,ne-t(m'~+'~); b, c*O. 

S 

I f  we set h=g-1 / ,  it is clear tha t  g and h are square-summable, and g at least has 

Fourier series of the required kind. But  we can write 

h = g - 1 / = c  - l ( l + H ) / = c  -1 lim (1 + P , ) / ,  

where each P~ is a trigonometric polynomial of the form (10), and the limit is taken 

in the norm of the space L. I t  follows tha t  the Fourier coefficients of h are restricted 

to S (aside from the constant term), and this completes the proof. 

We can now derive an analogue for multiple Fourier series of the classical theo- 

rem of Hardy  and Littlewood which states [10; 20, p. 158]: i/ / is summable on the 

circle with Fourier series 

/ (e'Z) .,~ ~ an ei nz, 
0 



P R E D I C T I O N  T H E O R Y  A N D  F O U R I E R  S E R I E S  I N  S E V E R A L  V A R I A B L E S  1 7 9  

then /or a certain absolute constant ]c 

lanl/(n+ 1) k f It( 'x)l 

This theorem follows from Hilbert's inequality and a factorization theorem for analytic 

functions. The same method of proof works in higher dimensions;first  we shall quote 

an extension of Hilbert's inequality from work of CalderSn and Zygmund, and then 

Theorem 4 will furnish exactly the factorization theorem we need. 

In  the paper [7] of Calderdn and Zygmund, Theorem 14 states: let K be a /unc -  

tion de/ined on the lattice points, except the origin, and have the /orm 

K (m, n) = ~ (eio) r 2 ; . m + i n = r e  ~o. 

Suppose that ~ is continuous on the circle, satis/ies a Lipschitz condition o/ positive 

order, and also 
2~ 

] ~ (e i~ d 0 = O. 
0 

Then there is a constant k depending only on K such that /or any square-summable 

sequences {Xmn} and {y,s} we have 

IZ' K(m+r, n+8)x,  y,I Ix,, P Z lY-P]'". (33) 

(The summation on the left is extended over all indices for which the summand is 

defined.) 

Let S be any half-plane. There is an angle g, uniquely determined up to mul- 

tiples of 2z ,  such that  every lattice point m - F i n = r e  ~ in S satisfies a ~ 0 ~ < ~ + ~ .  

Define a function ~ to be one for ~ < 0 ~ < a + ~ ;  then extend ~ to the rest of the 

circle so as to be continuously differentiable and have mean value zero. The corre- 

sponding function K is a kernel to which the theorem of CalderSn and Zygmund 

applies. Suppose that  x,,~=O unless (m,n) is in S, or m = n = 0 ,  and the same for 

the y,~. Then the only terms which contribute to the sum on the left side of (33) 

are those for which 
K (m, n) = 1 / (m 2 + n2). 

We have therefore the following analogue of Hilbert's inequality: 

I '  ~ (m + r) 2x'nn yr (n + s) ~ I < k [~ l x~" l~ ~ l y'` P]'/'" (34) 
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T H E 0 R E M 5. Let / be summable on the torus and have Fourier series 

�9 e_i(mx+ny). l(e% e'Y)~a+ ~ amn 
s 

There is an absolute constant k' such that 

lal+ ~ lam~l/(m~+n2+l)<<.k'fl/(e '~, e'")lda. (35) 
S 

Proo/. By con t inu i ty  i t  suffices to  consider  the  case a ~= 0. Theorem 4 s ta tes  t h a t  

/ can be wr i t t en  as the  p roduc t  of the  square - summable  funct ions  

g = b +  ~ bmne-i(mx+n~); b=vO 
s 

e-i(mx+ny) a n d  h = c +  ~. cm~ ; c~=O. 
s 

Then we have  amn= ~ b . . . . .  -sCr~, 
r,s 

so t h a t  
_la""l < y:' Ibm-r.,,-,cr,I 

s ~ m  2 + n 2 m 2 + n 2 

I bran Crs I 
(m + r) ~ + (n + s) ~ 

I f  we set Xm n = ]bm n I, 

Yr,=ler,I, 
then  (34) appl ies  to  give 

lamnl/(m2+n~)<<-k[~ Ibm~l ~ ~: le.12] '". 
s 

From the proof of Theorem 4 we know tha t  I g l 2 = l h l ~ = l f l ;  by the Plancherel 
Theorem therefore  

Y la,.~l/( ,n'+n')<kf l(e '', e'")l d,:,. 
S 

The s t a t emen t  of the  theorem follows t r iv ia l ly  f rom this  formula ,  wi th  k ' =  k +  1. 

There  is no di f f icul ty  in proving  an  analogous  theorem for to r i  of a n y  f in i te  

d imens ion  (since bo th  Theorem 4 and  the  theorem of Calder6n and  Z y g m u n d  are  

t rue  in general) .  W e  do no t  know whether  the re  is a genera l iza t ion  to  t he  class of 

compac t  groups discussed in the  las t  section. 

Theorem 5 applies  to  a larger  class of funct ions  t h a n  the  double  power  series. 

However ,  as Bochner  has  r emarked ,  a s t ronger  resul t  holds  for the  double  power  

series, and  can be p roved  easi ly  f rom the  theorem of H a r d y  and  Li t t lewood.  The  

theorem is as fol lows:  i /  / is summable on the torus with Fourier aeries 

amn et(mx+ny), 
mpn=O 
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then ~ lam. I/(mn + ])<k f JfJd(~. 
97t, n = O  

The las t  theorem of this  sect ion general izes a theorem of Beurl ing [5]. 

T H E O R E M  6. Let H be the linear subspace of L ~ consisting o/ the functions 

whose Fourier series have the form 

a+ Z amn e-i(mx+ny)* 
S 

For any / in H let C r be the smallest closed linear manifold containing 

(b+ P) /  

for all constants b and trigonometric polynomials P o/ the form (10). We have Cr=H 

i/ and only if 
f log l / ld~=log l f  /dcr > - ~ .  

I t  is easy to  see t h a t  C I =  H if and  only  if there  is a non-zero cons tan t  func-  

t ion  in the  closure of the  convex set of funct ions  (1 +P)/ .  The proof  t h a t  th is  is 

equ iva len t  to  the  condi t ion  of the  theorem is easy  to  ca r ry  out  using Theorems 1 

and  2 and  the Parseva l  equa l i ty .  

The problems  discussed here for the  case where S is a ha l f -p lane  become much 

more diff icult  when S is, for example ,  the  set of l a t t i ce  points  con ta ined  in some 

sector  of opening smaller  t h a n  ~. There  is no longer any  ana logy  with  ana ly t i c  

funct ions  of one var iable .  I t  seems to us t h a t  these new problems  are  diff icult  and  

interest ing.  

4. Theorem of Riesz and Bochner 

The theorem of F.  and  M. Riesz [15] (a l ready  referred to in the  In t roduc t ion )  

s t a t e s :  if u is a bounded complex Borel measure on the circle whose Fourier-Stielt~es 

coefficients vanish /or positive indices, then /~ is absolutely continuous with respect to 

Lebesgue measure. Bochner  [6] observed  t h a t  no t  every  measure  on the  torus  wi th  

coefficient~ res t r ic ted  to  a ha l f -p lane  is abso lu te ly  cont inuous  wi th  respect  to the  in- 

va r i an t  measure  on the  t o m s ;  bu t  Bochner  p roved  t h a t  the  conclusion holds if the  

non-vanish ing  coefficients are  all in a sector  of opening  less t h a n  ~. The mach ine ry  

of Bochner ' s  proof  is ve ry  e labora te .  I n  th is  sect ion we shall  give a new proof  of 

Bochner ' s  Theorem which shows i ts  close connect ion with  pred ic t ion  theory .  On the  

way  we presen t  an  example  a n d  some l emmas  of i ndependen t  in teres t .  
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A certain par t  of the Riesz Theorem survives in two dimensions, and gives the 

following prel iminary result. 

L EMMA 3. Let # be a complex measure on the torus without absolutely continuous 

part. I / t h e  Fourier-Stielt~es coe//icients 

cmn= f e-i('~x+n~) d/~ (x, y) 

vanish /or all (m, n) in a hall-plane, then also Coo = 0. 

Denote the total  variat ion of # by  v. Then ~ is also singular with respect to d a, 

and so by  Theorem 1 

inf f [1 + P ] ~ d v = O ,  
P 

where P ranges over the tr igonometric  polynomials of the form (10). 

Let  P1, P2 . . . .  be a sequence of such polynomials for which 

lim f [ l + P n ] 2 d v = O .  

Then c lear ly  lira f (1 + P~) d #  = O. 

By  hypothesis,  for each n f Pn d~u = 0, 

and  so Coo = f d/~ = 0. 

I n  the one-dimensional case, having shown in this way  t h a t  c o is zero we can 

translate the coefficient sequence and prove in tu rn  tha t  c_1, c 2 . . . .  all vanish. I n  

two dimensions we cannot  conclude any th ing  more from the fact  t ha t  Coo = 0;  indeed 

there exist singular measures # whose coefficients vanish in a half-plane but  not  

everywhere. 

The trivial example, which is ment ioned by Boehner, is given by  the product  

of a singular measure d~(x)  on the interval with the measure e-iYdy. The product  

measure d #  is clearly singular with respect to two-dimensional  Lebesgue measure ;  

its coefficients are given by  

and thus vanish for all n >~ 0. 

I t  is less obvious tha t  there are singular measures whose coefficients vanish on 

a half-plane bounded by  a line l: of irrational slope, and the following construct ion 

of such a measure m a y  be of interest. 
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Project each lattice point onto the real line in the direction parallel to /:. Dis- 

t inct lattice points have distinct projections, since /: has irrational slope. Moreover, 

the vector sum of two lattice points is projected onto the ordinary sum of their 

separate projections. So the lattice points arc isomorphic as a group with a denumer- 

able dense subgroup of the line, which we endow with the discrete topology and 

call G. Now • determines two half-planes; the points of one half-plane are projected 

into the positive ray of the real line, and the points of the other half.plane into 

the negative ray. 

Now let / be the function on the line equal to one at  the origin, and decreasing 

linearly to zero a t  1 and - 1. I t  is well-known tha t  / is positive definite. A ]ortiori, 

] is positive definite as a function on G. By .the general theorem of Herglotz, Boeh- 

ner, and Weil on positive definite functions, / is the transform of a positive measure 

on the dual group of G, which is the torus. I f  we set 

g ( x ) = / ( x +  l) for xEG,  

then g is the transform of a complex measure # on the torus, and g vanishes for 

x >~ 0. Considered as a function on the group of lattice points, g vanishes on a half- 

plane bounded by s  

I f  be were absolutely continuous, by the general Riemann-Lebesgue Lemma its 

transform g would tend to zero outside compact sets of G. Since G is discrete, this 

would mean that  Ig(x) l>~e only for a finite set of x, for any  e > 0 .  Obviously this 

is not the case, so # cannot be absolutely continuous. I t  will follow from the next  

theorem tha t  the singular part  of be (in case be is not itself singular) has coefficients 

vanishing on the same half-plane as the coefficients of be, and this is the example 

we wanted to find. 

T rrEOREM 7. Let be be a measure on the torus whose coe/~icients vanish on a hall. 

plane S. Then the coe/]icients o/ its singular and absolutely continuous parts vanish 

separately on S. 

Proo]. Let v be the total  variation of be. After adding to be a multiple of Le- 

besgue measure if necessary, we m a y  assume tha t  

inf / l 1  + P I g g y >  O, 
P 

where P ranges over trigonometric polynomials of the form (10). Choose a sequence 

of polynomials /~ Pz . . . .  such tha t  

lira f l l + P , , 1 2 d v = i n f  f l l  + P l ' d v ,  
P 
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and denote by 1 + H the limit of 1 + Pn in the space of functions square-summable 

for the measure d~. Let  P and Q be any trigonometric polynomials of the form (10) ; 

using the hypothesis on the coefficients of /~ we have 

f P ( 1  +Q)(1  + H) d # = l i m  f P(1 + Q ) ( I  + P n ) d # = O .  

Since 1 + H vanishes almost everywhere for the singular part  of /~, we have also 

fp(l+ Q)(1 + H ) / d a = O ,  (37) 

where / d a  is the absolutely continuous part  of in. 

The theorem will be proved if we can show tha t  

f P / d a = O  (38) 

for arbi trary P of the form (10), for this means that  the Fourier coefficients of / 

vanish on S. We shall need the following relations: 

( I + H )  -1 belongs to L2; 

( l + H ) - l ~ b +  ~ bm~e -t(m~+n~) with b * 0 ;  
s 

(1 + H)" / belongs to L 2. 

Choose a sequence of trigonometric polynomials (1 + Q~), with each Q~ of the form 

(10), converging in L ~ to b -1 (1 §  -I.  By (37), for each n 

f P ( l  +Qn)(I  + H ) / d a = O ;  

since ( I + H ) . /  is square-summable we can pass to the limit in n and obtain (38). 

This completes the proof. 

B o c H N S ~'s T H ~ 0 R ~ M. Let T be a sector o/ the plane with opening greater than 

7~ radians. Suppose # is a measure on the torus whose coe//icients vanish on T. Then 

# is absolutely continuous with respect to Lebesgue measure. 

Proo/. I t  suffices to consider a sector T with center at  the origin, so tha t  T 

contains the union of different half-planes S and S'. Let /us be the singular par t  of 

# ;  by Theorem 7, the coefficients of #s vanish on S and also on S'. I f  any  coeffi- 

cient of /us is different from zero, it is easy to see tha t  the coefficient set can b e  

translated so as to bring a non-zero coefficient to the origin, still leaving a half-plane 

free of non-zero coefficients. (Indeed, find a line 1: through the origin with irrational 

slope, lying between the lines bounding S and  S' in such a way tha t  T contains 



P R E D I C T I O N  T H E O R Y  A N D  F O U R I E R  S E R I E S  I N  S E V E R A L  V A R I A B L E S  1 8 5  

one of the half-planes bounded by s  I f  we t ranslate  1: we encounter  a first lattice 

point  at  which /~ has non-zero coefficient, and the inverse t ranslat ion is the required 

one.) But  the result  of this construct ion is a coefficient set belonging to  a singular 

measure, vanishing on a half.plane, bu t  not  at  the origin. This contradicts  Lemma 3, 

and so /~s is the null measure. This completes the proof. 

5. Matrix Valued Analytic Functions 

For  each point  e ~ on the circle let A (e ~) be an n by  n matr ix  with entries 

ajk (e ~) 0", k =  l, . . . ,  n). The normalized trace of A is the scalar funct ion 

t r  A (e L) = 1 ~ a ~  (e~). 
n k  

The trace and determinant  functions are related by  the formula 

det  e ~ = e n tr 4, 

where e A m a y  be defined by  its power series. 

The normalized trace has the following properties (and, in fact, is determined 

by them): for any  matrices A, B and scalars a, b 

t r  ( a A + b B ) = a  t r  A + b  t r  B 

t r  (AB)= t r  (BA), or equivalently 

t r  (U-1AU)=tr  A if U is un i ta ry  (39) 

t r  A*A >1 O, f rom which follows t r  A * =  t r  A 

t r  I =  1, I the uni t  matr ix.  

I f  A is a positive definite matr ix,  there is a unique Hermit ian  mat r ix  B satisfying 

e ~ = A, (40) 

and we define B--- log A. 

By  a trigonometric polynomial, in the context  of matr ix  functions, we shall mean  

a finite sum of the form 
Ak e% 

where each A ,  is a constant  matr ix.  The t r igonometr ic  polynomial  is analytic if A ,  = 0 

for n < 0 .  

I f  each component  function aju of the mat r ix  funct ion A is summable,  we shall 

say  tha t  A is summable,  or  belongs to L. More generally, L v is to consist of the  

13 - 665064  Aeta  mathematica.  99. I m p r i m ~  le 10 j u i n  1958 
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matrix functions A whose scalar components ajk all belong to the ordinary class L p. 

A summable matrix function A has Fourier series 

A (e'X)'~ 7f Ak e ~ ,  

where each Ak is the constant matrix defined by the n 2 scalar equations 

A~= ( A (e ~) e-~kX da  (x). 

(In this section, da(x)  is the measure d x / 2 ~  on the circle.) More generally, if M is 

a completely additive matrix-valued function of Borel sets (in other words a matrix 

whose entries are complex measures), we shall write 

d M (e u) -~ ~ Ak e ~k~ 
with the Ak defined as 

Ak = f e -ikx d M (e~). 

I t  follows from definition that a measurable matrix function A is in L ~ if and 

only if tr  ( A ' A )  is summable. We shall also need the fact that  a measurable positive 

semi-definite matrix function W is summable if and only if tr W is a summable 

scalar function. 

The ring of constant matrices possesses the natural inner product 

(A, B ) = t r  (B 'A) .  (41) 

We can extend this definition to the class of matrix functions in L ~ by setting 

(A, B ) =  ( t r  (B* A ) d a =  ~ f ajk$j~d(~, (42) 
�9 j , k  

where ajk and bjk are component functions of A and B. The Parseval equality holds 

for square-summable functions A and B with Fourier coefficients A~ and Bk: 

(A, B) = ~ (A~, Bk); (43) 

in this formula the inner product on the left is defined by (42), and those on the 

right by (41). 

The main theorem of this section is an extension of SzegS's Theorem to matrix- 

valued functions defined on the circle. 
J 

THEOREM 8. Let M be a matrix-valued measure de/ined on the circle such that 

M (E) is Hermitian and positive semi-de/inite /or every Borel set E. Let M have Le- 

besgue decomposition 
d M (e ~) = W (e ~) d a + d M~ (d~), 
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where W is a summable matrix /unction and Ms is singular with respect to d(~. Then 

exp If t r  log W d o} = inf f t r  [(A 0 + P)* (A 0 + P) d M], (1) (44) 
Ao, P 

where A o ranges over the matrices with determinant one, and P over trigonometric poly- 

nomials o/ the /orm 
P (e ~) = ~ Ak e% (45) 

k>0 

The left side o/ (44) is to be interpreted as zero i/ 

f t r  log W d a = - oo. (46) 

Proo/. In  outline we can follow the proof of Theorem l,  meet ing each new 

complication as it arises. Let  L ~  be the set of functions A for which 

li A 1[2M = f t r  (A* A d M) < oo ; (47) 

the norm so defined is positive semi-definite. After  identifying functions which differ 

only on a null-set of d M, L~M is a Hi lber t  space with inner product  

(A, B)M = f tr (B* A d M) .  (48) 

If  the infimum on the right side of (44) is positive, choose and fix A 0 with deter-  

m i n a n t  one, and let H be tha t  element of L ~  which is the limit of polynomials P 

of the form (45) and satisfies 

f t r  [ (A0+H)*  (Ao+ H) d M ] = i n f  f t r  [ (A0+P)*  (Ao+ P) d M  ]. 
P 

The argument  leading to (7) and (8) gives analogous or thogonal i ty  relations hel~e. 

If  n > 0 and G is any non-zero constant  matr ix ,  the expression 

IJ'4o+ H + lIM 

has a unique min imum at  ~ = 0. I t  follows tha t  

(Ao+H,  Ge~nx)M=O ( n = l ,  2 . . . .  ). (49) 
And the expressions 

][ (A o + H) (I + ~ G e ~nx) JIM = [[ (A o + H) + ~ ( i  o + H) G e '"x JIM, 

[[ (I + 2 Ge 'nx) (A o + H)JIM = [[ (A0 + H) + 2 G (A 0 + H) e ~ JIM 

(1) The pedantic reader can easily write this symbolic integral literally in terms of the scalar 
component measures of ~/ .  
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have minima at  ~t = 0, uniquely unless 

(A 0 + H) G = 0 or G (A o + H) = 0. 
I n  any  case we have 

((A o + H), (A o + H) G e~nx)M = 0 (50) 
( n = l ,  2 . . . .  ). 

and ((A o + H), G (A o + H) e~nx)M = 0 (51) 

The definition (48) means tha t  (51) can be wri t ten 

f e -*~x t r  [(A o + H)* G* (A o + H) dM] = 0. (52) 

Taking the complex conjugate of (52) and making use of (39), 

f e ~ t r  [(A o + H)* G (A o + H) d M] = 0. 

These formulas hold for all G, and for n= l, 2 . . . .  ; it is easy to  see then  t h a t  (52) 

is valid for negative as well as positive integers n. Hence 

tr  [G (A o + H) d M (A 0 + H)*] 

is a constant  multiple of scalar Lebesgue measure for each G, so tha t  every com- 

ponent  of the matr ix  measure 
(A o + H) d M (A o + H)* 

is a multiple of Lebesgue measure. This fact  can be wri t ten 

( A o + H ) d M ( A o + H ) * = C d a  (C constant).  

Therefore we have 
(A o + H) d Ms (Ao + H)* = 0, (53) 

(A o + H) W (A o + H)* = C. (54) 

I t  follows from (53) t ha t  Ao+H vanishes almost  everywhere for dMs, so t h a t  (49) 

takes the al ternate form 

(Ao+H , Ge~nX)w=O (G arb i t ra ry ;  n = l , 2  . . . .  ), (49') 

where the inner product  refers to the Hilbert  space of matr ix  functions square-sum- 

mable for W d a. 

As in the scalar case, we conclude from (49') t ha t  A o + H  has the same minimal  

proper ty  in L2w tha t  it enjoys in L~,  and so the inf imum on the r ight  side of (44) 

is not  reduced if we replace d M by  W da. Assuming, then,  t ha t  this inf imum is 

positive, the theorem will be proved if we show 

exp {ftr log Wda} = inf f t r  [(Ao+P)* (ao+P) WJda. (55) 
Ao, P - 
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On the other hand, if the infimum in (44) is zero, i t  still suffices to prove (55), by 

the same argument as in the scalar case. 

L EMMA 4. Let W be Hermitian, positive semi-de/inite and summable. Then 

exp {f tr  log W d a} = inf f t r  (e ~" W)d a, (56) 

where ~1 r ranges over the Hermitian matrix ]unctions with summable trace /or which 

f t r  Ut~da=O. (57) 

The trace of a Hermitian matrix is the average of its proper values; and the 

determinant is the product of the same numbers. Using the inequality of the arith- 

metic and geometric means twice we obtain 

e x p { f t r l o g W d a } = e x p { l f l o g d e t W d a } < ~ f ( d e t W ) i l ~ d a < ~ f t r W d a .  (58) 

In  order to have continued equality it is necessary and sufficient that  

t r  W----(det W ) l / ~ c o n s t a n t ,  

which is to say that  W is a constant multiple of the identi ty matrix.  

Let  uF be a Hermit ian matrix function with summable trace satisfying (57); 

whether or not the positive semi-definite matrix function 

W' = e ~ W e ~" 
is summable,  we have as in (58) 

exp { f t r l o g W ' d a } < ~ f t r W ' d a < , < ~ .  

The properties of the trace and determinant  functions give 

n tr  log W' = log det W' = log det (e ~ W) = n t r  LF + n tr  log W, 

tr  W' = t r  (e ~" W). 

By (57) we have for every function LF 

exp l f t r  log Wda} ~<ftr  (e r W)da.  (59) 

I f  t r  log W is summable, define 

~ F 0 = 2 I - l o g  W; 2 =  f t r  log W d a .  (60) 

Then ~F 0 is Hermit ian and satisfies (57), and obviously reduces (59) to  equality. This 

completes the proof if t r  log W is summable;  otherwise a limiting process has to be 

carried out as in the scalar case. 
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L E ~ M A  5. The statement (56) is still true i/ ~ ranges only over the class o/ 

trigonometric polynomials which are Hermitian and satis/y (57). 

Let A and B be commuting Hermitian matrices. They have a common complete 

set of proper vectors. Define max (A, B) to be the Hermitian matrix with the same 

proper vectors and with proper values the larger of the corresponding proper values 

of A and B. For any Hermitian matrix A, the positive part of A can be defined 

as max (A, 0). This construction makes it possible to carry through the proof of 

Lemma 2 unchanged for the matrix case. 

By analogy with the proof for scalar functions, we should like to factor each 

function e ~r of Lemma 5 into a product 

(Ao + Al  e~ § ...)* (Ao § A l  e~ + -..), 

and then show that  it suffices to consider trigonometric polynomials in place of the 

infinite series. The non-commutativity of matrices introduces a difficulty which must 

presently be met. 

LEMMA 6. Let W be a summable positive semi-definite matrix /unction /or which 

the infimum o/ (55) is positive. Then W has a /actorization 

W =  B B* (61) 

where B is a matrix /unction in L 2 with analytic Fourier series: 

B (e ~) ~ ~ Bn e in~ and det B 0 * 0, (62) 
0 

In  applying this lemma, we shall need a stronger result than (62) for a narrow 

class of functions W. I t  will be convenient to refer later to the proof as well as the 

statement of the lemma. 

By hypothesis, the convex set of trigonometric polynomials of the form 

I +  ~ Ak e ~x 
k>0 

is bounded from zero in L2w. Let I § H be the unique element of minimal norm in 

the closure of this set. From (54) we have 

(I + H) W (I + H)* = C, (63) 

where C is a constant matrix. We assert that  C is non-singular. Indeed, otherwise 

we could find matrices A with determinant one for which 

tr ( A C A * ) =  f t r [ ( A + A H )  W ( A + A H ) * ] d a  
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is as close to zero as we please, whereas this quan t i ty  is bounded from zero by  

hypothesis. Clearly then C is Hermit ian  and positive definite, and so has a non- 

singular square root. The factorizat ion (63) can be pu t  in the form 

(Ao+AoH)  W ( A o + A o H ) * = I  (A0= C - t )  (64) 

or W = BB* ; B = (A o + AoH) -1. (65) 

F rom (65) it follows tha t  B is square-summable.  We shall prove the lemma by  showing 

tha t  its Fourier  series is of analyt ic  t y p e :  

(Ao + AoH)-I,,~ Bo + BierS+ .... (66) 

I t  suffices to establish tha t  

f t r  [G(Ao+AoH)-X]ei 'Xda(x)=O ( n =  1, 2 . . . .  ) (67) 

for every constant  matr ix  G, since then every component  funct ion of (Ao+AoH)  -1 

is analytic.  Making use of (64), the left side of (67) is equal to 

f t r  [O W (A 0 + A 0 H)*] e *n~ d a (x) = f t r  [(A 0 + A o H)* O W] e *n~ d a (x) = (A~ O e *n~, I + H)w. 

This inner product  vanishes by  (49') for n = 1, 2 . . . . .  so t ha t  (67) holds. 

Let  ~I ~ be a t r igonometric  polynomial  satisfying (57). Then there exists a factori- 

zation 

e ~ = A* A ; A (e ~) N ~ An e *n~, det  A o = 1. (68) 
0 

To prove this fact, we consider the positive definite weight funct ion W = e  -~e. 

The eigenvalues of W are bounded f rom zero and from inf ini ty;  i t  follows tha t  the 

spaces L ~  and L 2 have equivalent  norms. By  a simple calculation we can show t h a t  

[[A[[a= f t r  ( A * A ) d a ~ l  

for each analyt ic  t r igonometr ic  polynomial  A whose leading coefficient A 0 has deter- 

minan t  one. Therefore the inf imum of (55) is positive for this funct ion W, and by  

L e m m a  6 

e - ' r = B B *  ; B(et~),~ ~ Bn e~nx. (69) 
0 

I f  the scalar components  of B(e ~z) are denoted by  b~j(e t~) for i, j =  1, 2 . . . . .  n, 

we have 
n tr e - ~ ' =  ~ lb.[ 2, 

i , t  

from which it is clear tha t  the functions b~j are bounded.  Now the de terminant  of 

B is a sum of products  of these functions, and since the b~i are bounded,  the Fourier  
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series Of det B can be computed formally from the Fourier series of the component 

functions. Each bit is analytic, and we find 

det B (e ~) ~ det B 0 + c 1 e u + c 2 e 2ix + . . . .  

The one-dimensional version of Theorem 2 (or Jensen 's  formula) gives 

f log I det B Is d a/> log I det B 01 s. (70) 

The inverse of B is the function A=Ao+AoH, obtained as the limit in L~w of 

a sequence of analytic trigonometric polynomials each having constant term A 0. With 

the present choice of W the sequence converges in L s as well, so that  A is an analytic 

element of L2: 
A,~Ao+Ale~X+ ... ; Ao=C -�89 

From (69) we have e~'=A*A, (71) 

so the components of A, like those of B, are bounded functions; exactly as for B 

then we have 

f l o g  [det A I 'da>~log Idet Aol s. (72) 

Now A and B are bounded functions with analytic Fourier series, so the Fourier 

series of their product is obtained by  formal multiplication of the series for A and B 

and consequently AoBo=I. I t  follows tha t  the right side of ( 7 0 ) a n d  of (72) i s  

finite. Adding these inequalities gives zero on both sides. Therefore (70) and (72) are 

actually equalities. 

B y  assumption ~F satisfies {57). Making use of (71) we have 

0 = f log d a t e  ~ d a = f log ]det A I s d a = log I det A,  I s, 

The determinant of A 0 is at any rate positive, and therefore is equal to one. Thus 

(71) is a factorization of the kind we wanted. 

Now we can prove (55). Let  W be a Hermit ian positive semi-definite sum- 

mable matr ix  function, and let ~F be a Hermit ian trigonometric polynomiM satisfying 

(57). From the result just proved, 

ftr (e~W)da=f tr (A*AW)da, 

where A is a bounded analytic function and det A 0 = 1. Therefore by Lemma 5 

exp { f t r l o g W d a } > ~ i ~  a f t r (A*AW)da ,  

where A ranges over all bounded functions of analytic type such tha t  det A0= 1. 

Each component function ats of A is boundedly t h e  limit of Fej~r means of its Fou- 
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rier series, f rom which it follows tha t  the  last  inequal i ty  remains  t rue  when .4 ranges 

merely  over  trigonometric polynomials of the same kind. This is one half of (55). 

The opposite inequal i ty  follows as in the scalar case, or can be deduced direct ly f rom 

the one-dimensional  version of Theorem 2. 

T H E o R E M 9. Let W be a Hermitian positive semi-de[inite summable mat r i x /unc .  

tion defined on the circle. A necessary and su//icient condition /or W to have a /actori- 

zation 
W = B B * ,  (73) 

where B is in L 2 with Fourier series o/ the /orm 

B (e ~x) ~ ~ B n e ~nx (det B o * 0) 
o 

is that 

f t r l o g  W d a > - ~ .  (74) 

I /  this condition is saris/led we can choose B so that 

f l o g  ]det  B I d a = l o g  Idet  Bol. (75) 

Proo/. Suppose first  t h a t  W has a factor izat ion of the required kind.. F.or a n y  

t r igonometr ic  po lynomia l  of the  fo rm 

A (e ~x) = A o + A I e i~ + . . . ,  det  A o = I 
we have  clearly 

f t r  (A* A W) d a = f t r  [(A B)* (A B)] d a ~> t r  [(A o Bo)* (A o Bo) ] ~> 

~>ldetAoB0121n=ldetB0121n>0.  (76) 

Then (55) shows tha t  t r  log W is summable .  

Conversely, suppose t h a t  (74) holds. Then  (55) shows t h a t  the  hypothesis  of 

L e m m a  6 is satisfied, so there is a factor izat ion (73). We shall show t h a t  the factori-  

za t ion furnished by  L e m m a  6 has the p rope r ty  (75). 

F r o m  (76) and  (55) once more  we see t ha t  for a n y  factor izat ion of the fo rm (73) 

we have  

exp {ftr log Wd(r}>~ldetBol 2"~, 

which is equivalent  to one inequal i ty  in (75). Now for any  posit ive definite ma t r i x  

C, it is an  e lementa ry  fact  t h a t  

(det C) 1/n = i n f  t r  (A o CA~),  
A, 
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where A o ranges over matrices with determinant  one. This observation, together 

with (63) and Theorem 8, implies 

exp {f tr  log W d a} = inf f t r  (A Y A*) d a ~< inf f t r  [A (I  + H) W (I + H)*] d a 
A A 

= inf f t r  (A CA*) d a = inf t r  (A 0 CA~) = (det C) 1In. 
A A, 

(As usual A ranges over the analytic trigonometric polynomials whose constant term 

A 0 has determinant one, and C is the constant matrix of (63).) Let  D be the posi- 

t ive definite square root of C. The analytic function B was defined, in the proof of 

Lemma 6, to be 
B= (I+ H)-I D, (77) 

so tha t  D = (I  + H) B. 

Let  I +  Pn be a sequence of trigonometric polynomials converging in L2w to I + H, 

where each Pn is analytic without constant term. I t  is easy to see tha t  ( I +  Pn)B 

converges in L 2 to ( I  + H) B. The leading coefficient of each function ( I  + P~) B is B0, 

and therefore the constant term in the Fourier series for ( I +  H)B  is also B 0. But  

this function is constant and equal to D, so that  Bo= D. The last string of inequal- 

ities can be continued then to give 

exp { f t r  log W d a} ~< (det C) 1/" = (det Bo) ~/n, 

and this completes the proof of (75). 

Theorem 9 is substantially the main result of Wiener's paper [19]. One must  

remark that  the theorem is trivially false without the condition det B 0*  0. For if B 

is any singular matrix,  then W = B B *  is positive semi-definite and has a factoriza- 

tion (73), but  (74) does not hold. 

The interest of (75) lies in its function-theoretic meaning. I f  B = B ( d  x) is square- 

summable and of analytic type, then we can extend B to a matrix-valued analytic 

function defined inside the circle: 

B(z)=Bo4-Bxz+B~z2+ ... ([z[< 1). 

Obviously det B(z) is an analytic scalar function. I t  is not true, as one might ex- 

pect, tha t  (75) holds whenever det B(z) is free of zeros in the circle; (75) merely 

implies tha t  det B(z) never vanishes. In  the scalar case Beurling [5] has defined a 

factorization for analytic functions into an inner /unction, containing a Blaschke pro- 

duct and perhaps another factor, and an outer [unction, which has no zeros and satis- 

fies the analogue of (75). Besides giving integral representations for these factors, 
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Beurling characterized them by extremal properties. The theorem we have just proved 

extends Beurling's factorization to matrix-valued functions. For let A = A (z) be an 

analytic square-summable function, perhaps with zeros. Then A A* can be written 

on the boundary in the form BB*, where B satisfies (75). In particular, B ( z ) i s  

non-singular inside the circle. Then B-1A is analytic inside the circle, and has exactly 

the properties of an inner function, while B is an outer function. 

In (73) the order of the factors can just as well be reversed. I t  is clear that  a 

symmetric development of Theorems 7 and 8 would give the other factorization; or 

we can derive the result directly as follows. If  we set 

(e ~x) = W* ( e - %  

then 

The function defined by 

is analytic, and we have 

(e 'x) = B (e -~x) B* ( e - %  

h (z) = B* (~) 

V ( = b * k  

But W and I~ satisfy (74) at the same time, and so the two kinds of factorization exist 

together. 

T H E O R E ~  10. Let F be a summable analytic matrix /unction whose constant 

term F o is non-singular. Then F has a /actorization 

F = G H ,  

where G and H are square-summable analytic /unctions. 

Let W be the positive semi-definite function (FF*)�89 Using the proof of Theorem 

2 as a model, and inequality (76), we can show that 

f t r  log W d a ~ l o g  [det Fol'/n > - oo. 

By Theorem 9, W has a factorization 

W= BB*, 

where B is the analytic function given by (77). We are going to show that  B-1F  

is square-summable and analytic; then we only have to choose G = B  and H=B-1 .F  

to obtain the factorization desired. 

B - i F  is square-summable; for we have 

(B 1 F) (B-1 F)* = B -1 F F* (B*) -1 == B- 1 W* (B*)-' = B* W (B*) -1 = B* B. 

To see that  B-1F  is analytic we write from (77) 

B - 1 F = D - X ( I + H ) F ;  I + H = l i m ( I + P , )  i n L ~ .  
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The Fourier coefficients of the components of B - 1 F  are thus given for appropriate 

choice of constant matrices G by 

f t r  [G D -1 (I  + H) F] e -'kx d a = f t r  [G D i (I + H)W z (F 1),] e-~kx d a = 

= f t r  [W(F-1 )*GD-I ( I+H)W]e-~kXda .  (78) 

Now W(F-1) * belongs to L~, since 

F - 1 W W  (F:I)*W = F - 1 F  F * (F-1)*W = W 

is summable. Therefore the last integral in (78) is equal to the limit of similar inte- 

grals with I + H replaced by I + Pn, so that  the Fourier coefficients of the components 

of B - 1 F  have the form 

lira f t r  [G D -1 ( I  + Pn) F ] e  -ikx d a. 

But  F is an analyt ic  function, so each such integral vanishes if k < 0. This says 

exactly that  the coefficients of B - 1 F  vanish for negative indices, and tha t  is what 

we had to prove. 

In  the proof we needed the hypothesis tha t  F o is non-singular in order to show 

tha t  log W is summable, so tha t  W can be factored. The argument  is still valid if 

Fo= O, provided the first non-vanishing coefficient is non-singular. On the other hand, 

it may  happen that  F 0 is different from zero but singular; in the extreme case 

det F may  vanish everywhere. We do not know whether the theorem remains true 

in this generality. 

We hope to have demonstrated that  a certain class of theorems from function 

theory in the circle can be extended to matrix-valued functions by the method of 

this paper. I t  is not our intention to pursue this theory further. We conclude this 

section by stating the prediction theorem which follows from Theorem 8. 

THEOREM 11. Let {x~}, {x~} . . . . .  {x~} be N stationary processes in a Hilbert 

space, which are moreover mutually stationarily correlated in the sense that the scalar 

products 
(xs x~) 

depend only on ], k, and n -  m. Denote by M the matrix-valued positive semi-de/inite 

measure with components mj~ whose Fourier-Stieltjes coe//ieients are 

f e-'~*dmj~(x)=(x~, x~) (j, k = l  . . . . .  N). 

Let W be the absolutely continuous part o/ M. For any matrix A =(am) o/ order N 

consider the elements 



PREDICTION THEORY AND FOURIER SERIES IN SEVERAL VARIABLES 

N 
y~= ~ aik x~ (i = 1 . . . . .  N). 

k = ]  
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Denote 

bitrary and n < 0 by y~. Then 

i~ f  i~  1 y~ = exp {f t r  log W d a} ,' 

where A ranges over all constant matrices o/ determinant one. 

the distance /rom yi to the mani[old spanned by all the elements x~ with k at- 

(79) 

The prediction error is once again given in (79) by the exponential expression 

from SzegS's Theorem, but the problem whose solution is thus given is complicated. 

We minimize the average square of error in approximating yl . . . . .  yN by elements 

from the combined past of all the processes; and then we choose that  set of elements 

f . . . . .  yN out of the present (obtained from x~ . . . . .  x~ v by means of a transformation 

with determinant one) for which this average error is as small as possible. I t  is not 

obvious that the infimum in (79) is attained, since the matrices of determinant one 

are not a compact set, but the proof of Theorem 8 shows that a minimal matrix 

exists. 

We proceed to the proof of Theorem 11. First we have to show that  a matrix 

measure M really exists with the properties ascribed to it. I t  is easy to see that  

for fixed j and k the sequence 
(x~, x0 ~) 

is a linear combination of positive definite sequences, and so there exist complex- 

valued measures mjk on the circle for which 

f e -'nx dmjk (x) = (x~, x~). (80) 

Let M be the matrix with components mjk. In order to show that  M is positive 

semi-definite it suffices to prove for each set of complex continuous functions 

a x (x) . . . . .  ~N(x) that  

f dm,  O. (81) 

Clearly it is enough to prove this inequality when each ~j is a trigonometric polynomial: 

~j(x) = Y a'n e 'nx. 
n 

The left side of (81) is equal to 

f ~. . j  .r,k.-t(n-m)z,d~ (XJn_m, X~) ~ a~ -g (XJ_m, k ~m ~n . . . . .  1~ (X) Z aim -k = an = an X-n)>~O. 

Thus (81) holds, and M is positive semi-definite. 
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By Theorem 8, we have 

exp {/tr log Wd }=inf ftr EA*AdM , 
A 

where A ranges over analyt ic  t r igonometr ic  polynomials whose leading coefficient A 0 

has determinant  one. Let  A = (ajk) and 

aj~ (e ~x) = Y aT~ e ~nx. (82) 
n>0 

For  fixed A we have 

1 / 

=N ~ a~Srk f e -'(" ")Xdm, k(x)= 
rn,. (83) 

1 
= -  ~ a~ a ~  (•_ m, X~_.) = Ni,j,k, 

m, n, 

I v  a n  X k 12 

k, n ] 

Set 
y i = y  o k a,k x0 (i = 1 . . . . .  N) 

k 

and recall f rom (82) tha t  n is summed over non-negat ive integers in (83). Then the 

individual terms in the last expression of (83) have the form 

I ly ' -x l l  ~, (84) 
k for k =  1, N and n < 0 .  The num- where x is a linear combinat ion of elements x . . . . .  

bers a~ are the components  of the leading coefficient A 0 of A, and are subject  to the 

requirement  t ha t  det  A 0 =  1. The other  coefficients entering into (83) are completely 

arbi trary,  since the other coefficients A1, A,  . . . .  of A are arbi trary.  Therefore the 

elements x which can appear  in (84) are arbitrary linear combinat ions  of x~ with n < 0, 

and it follows tha t  the inf imum over A of (83) is the left side of (79). This com- 

pletes the proof of the theorem. 

6. Extensions of  the Theorems 

The proof of the Szeg6 Theorem is valid for functions of more than  two variables. 

Indeed,  its na tura l  set,  r ig  is a compact, abelian group K whose dual  /~ has a com- 

plete linear order compatible with the group structure.  (The theory  of the Fourier 

t ransform on locally compact  abelian groups is" contained in [12], and this section 

presupposes some acquaintance with the generalized Fourier  transform.) To be precise, 

/~ is to contain a distinguished subset /3 with the properties 
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1 ~ 0 ~ P  (where 0 is the identi ty in ~ )  

2 ~ ~ E P  if and only if - ~ i P ,  unless ~ =  

3 ~ ~e/3 and ~eP imply~§ ~. 

The elements of P are called positive. A total order is defined in /~ by saying 

~ > #  just if ~ - # E P .  

Le t  d a be the invariant measure in K, normalized so that  K carries total mass one. 

The value of a character ~ at the point x of K is written (x, ~). With these con- 

ventions we have the following generalization of Theorems 1 and 8. 

T ~ . O R E M  12. Let 21I be a positive semi-de/inite matrix-valued measure de/ined on 

Borel subsets o/ K .  Suppose that 

d M  = W d a  +dM~,  

where W is summable /or d a and Ms  is singular with respect to dR. Then 

exp {ftr log Wda} =inf  f t r  [(Ao+P)* ( A o + P ) d M ] ,  
Ao, P 

where A o ranges over the matrices with determinant one, and P over /inite sums 

P (x) = ^~^A (~) (x, ~). 
x t P  

The le/t side o/ (78) is to be interpreted as zero i/  

f t r  log W d a =  - oo. 

We also have analogues of most of the other theorems of the preceding sections. 

Recall that  the Fourier transform of a summable function / on K is the function 

] on /~ defined by  

fV, 
We shall say that  / is o/ analytic type if ] ( ~ ) = 0  for all ~ such that  - ~ E ]  3. 

T ~ E O R E ~  13. Let / be a summable /unction o/ analytic type on K.  Then 

flog I/lda~>log II(6)I. 
T H E O it E M 14. Let W be a summable positive semi.de/inite matr ix /unc t ion  on K .  

A necessary and su//icient condition that W have a representation in the /orm 

W = B B * ,  
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where B is square-summable, of analytic type, and satisfies det/}((~) ~= 0, is that 

f t r  log W d a > - c~ . 

I /  this condition is satisfied, then we can choose B so that 

/ log ] det B (x) l d ~ = log I det B ((~) ]. 

THEOREM 15. Let F be a summable matrix /unction of analytic type with 

det F(0)~=0. Then F has a /actorization GH, where G and H are square-summable 

matrix /unctions of analytic type. 

THEOREM 16. 

coefficients satisfy 

Let # be a complex Borel measure on .K whose Fourier-Stielt]es 

f (x, ~) d#  (x) = 0 for ~ ~,5. 

Then the coefficients of its singular and absolutely continuous parts separately have the 

same property. 

THEOREM 17. Let / be a square-summable /unction of analytic type, and denote 

by C I the closed subspace of L 2 spanned by linear combinations of / and /unctions of 

the form 

CI is identical with the set of all square-summable /unctions of analytic type i / a n d  only i/ 

flog I/id,7--log ll( )I> -oo. 

The special properties of the circle and torus groups have been used very spar- 

ingly in the proofs of the preceding sections. In  order to prove the theorems just 

enunciated, we have only to make notational changes on previous pages. I t  should 

be observed that  Theorem 8 depended on an analogous theorem for scalar functions, 

so that  a scalar version of Theorem 12 has to be given before considering matrix- 

valued functions. Theorem 16 incorporates that  part of the Bochner Theorem which 

lends itself to elegant statement. The full theorem depends on the comparison of two 

different order relations in _~, and this is cumbersome to explain in general terms. 

We should dwell on one technical point. The properties of the Fejdr means of 

a Fourier series were used in the proof of Lemma 2, Theorem 2, and the torte- 

spending theorems about matrices. On each compact group K there are approximate 

identities in abundance, and they can even be chosen from the trigonometric poly- 
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nomials. However,  unless K is separable an approximate  ident i ty  will have  to  be a 

directed system of functions ra ther  t han  a simple sequence. For  a n y  fixed funct ion / 

summable on K we can choose f rom any  approximate  ident i ty  (consisting of trigono- 

metric polynomials) a sequence el, e2 . . . .  having the properties we need, even though  

the sequence depends in general on /. Fo r  each n, e,-x-/is a t r igonometr ic  polynomial  

with the same mean value as /, and the sequence converges to  / in the  norm of 

summable functions (as required for Theorem 2); and if / is bounded,  e,-)(-/has a t  

worst the same bounds  as ], and a subsequence converges a lmost  everywhere  to  / 

(which is enough to  prove L e m m a  2). The Fej6r kernels have deeper properties t han  

these, bu t  we have not  used them. 

The compact  group with ordered dual seems to be the natura l  domain  on which 

to state theorems like those of this paper. I t  is not  so obvious wha t  the  range of 

the functions considered should be. P robab ly  our main  theorems hold for funct ions 

taking values in an algebra of operators on Hilbert  space possessing t race and deter:  

minan t  functions of the appropriate  kind. The existence and classification of t race 

functions was a main object of the work of Murray and yon  Neumann ,  and  more 

recently Fuglede and  Kadison [9] have given a theory  of determinants .  Unfor tunate ly ,  

only positive definite operators seem to deserve a determinant .  Reference to  the deter- 

minant  of other matrices can be avoided in m a n y  parts  of section five, bu t  there are 

other  places (especially in the proof of (68)) where tha t  is more difficult. 
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