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Introduction

Let & be a separable locally compact group. Continuing the convention adopted in
our papers [11] and [12] we shall abbreviate the term “continuous unitary representation
of §” to “representation of &”. If X is a proper closed subgroup of & whose representations
are in a suitable sense “‘all known” one may pose the following two questions. (a) Which
representations of X are the restrictions to it of irreducible representations of &? (b) Given
such a representation of J how can one construct all irreducible representations of &
of which it is the restriction? When X is the identity subgroup question (a) has a trivial
answer (apart from questions of dimension) and question (b) is essentially the same as that
of determining all irreducible representations of &? However, for other choices of X,
questions (a) and (b) can furnish a useful breakdown of the problem of determining all
irreducible representations of & into two more accessible components. It is the primary
purpose of this paper to discuss questions (a) and (b) and their application to the deter-
mination of the representations of & in the special case in which )X is normal. Actually we
shall find it more convenient to deal with the slight variation in which we identify represent-
ations of ) which are quasi equivalent in the sense defined on page 195 of [12].

For the special case in which ) is not only normal but commutative and in which @ is a

semi direct product of X and &/ X this program has been carried out in outline in our paper

() In large part the material in this paper has been described in outline in each of the following:
(a) Two lectures given in Paris in October 1954 under the auspices of the ‘“‘Colloque Henri Poincaré”.
(b) A series of ten lectures on group representations given under the auspices of the Princeton University
physics department and supported by the Eugene Higgins fund. (¢) A course in group representations
given during the 1955 summer quarter at the University of Chicago. (d) A paper presented by title at
the 1955 summer meeting of the American Mathematical Society (Abstract 61-6-726 t). Mimeographed
lecture notes of the University of Chicago course have been issued by the University of Chicago mathe-
matics department and it is possible that the Centre Nationale des Recherches Scientifiques will publish
a volume containing the texts of the lectures presented at the “Colloque Henri Poincaré”,
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[10]. (See also [11] for a clarification and reformulation of parts of [10]). When the auto-
morphisms of the character group X of X defined by the inner automorphisms of & had
orbits in J which were “sufficiently smooth’ question (a) was given a complete answer and
question (b) was reduced to the problem of finding the irreducible representations of
certain subgroups of &/ X. It is natural to expect the same kind of reduction of question
(b) even when the commutativity and semi direct product hypotheses are dropped. As we
shall see, however, the abandonment of either hypothesis leads to a situation in which we
may have to study not the ordinary representations of subgroups of &/ XK but certain
“projective’’ representations; that is homomorphisms of these subgroups into the quotient
groups of the unitary group by the subgroup of constant operators.

At first sight this last circumstance would seem to be a serious obstacle in the way of
using our program inductively to determine the representations of complicated groups in
several stages. However, it turns out to be possible to carry out the whole discussion from
the beginning for projective representations themselves, and when this is done it is still
only projective representations which appear in answering question (b). We shall thus
concern ourselves throughout with projective representations; ordinary representations,
of course, being included as a special case.

The abandonment of the hypothesis that X is commutative leads to another difficulty
in that the rather complete duality theory for locally compact abelian groups is no longer
available. However, combining the von Neumann theory of direct integrals with a theory
of “Borel structure” in the set J of equivalence classes of irreducible representations of X
we obtain a partial substitute. This substitute, worked out in [13] expressly for the needs of
the present article, yields a decomposition theory for representations fully as complete as
in the abelian case whenever the group X has only type I representations and a “sufficiently
regular” Borel structure in x.

Using the material in [13] and working from the beginning with projective representa-
tions we obtain a generalization of the results of [10] in which the semi direct product hy-
pothesis is dropped altogether and J is allowed to be any closed normal subgroup of & to
which the decomposition theory of [13] applies. As in {10] we get a complete theory only
when certain “orbits” in K are “sufficiently smooth”. We hope to study the situation
for non smooth orbits in a later article.

We begin the paper with four sections on the general theory of projective representa-
tions. Section one contains the basic definitions. Section two contains an extension to the
infinite case of a classical device which enables one to deduce theorems about projective
representations from corresponding ones about ordinary representations. In sections three

and four certain known results about direct integral decompositions and about induced
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representations are generalized so as to apply to projective representations. Sections five
and six contain a detailed account of the material on systems of imprimitivity sketched in
[10]; somewhat generalized to fit the needs of the present paper and somewhat modified in
other respects. In sections seven and eight we apply the results of the earlier sections to the
study of our main problem. Our principal result is theorem 8.4. The final section nine
contains applications and examples. Here, amongst other things, we show how a problem
arising in quantum field theory can be formulated as the problem of finding certain projec-
tive representations of a certain discrete group, we find quite explicitly the irreducible rep-
resentations of the solvable group of all 3 X 3 unimodular real matrices with zeros above the
main diagonal, and we prove a theorem that can be used to show that many solvable groups
have only type I representations.

As far as purely algebraic aspects of our problem are concerned a large part of what
we do is contained in a well known paper of Clifford [3] dealing with finite dimensional
representations of discrete groups and in earlier work to which he refers. Infinite dimensional
projective representations of topological groups have been considered by Wigner in [17]
and more recently and systematically by Bargmann in [1]. Bargmann is chiefly concerned
with the problem of finding all possible multipliers (see section 1 for definition) for a given
group. Since we consider this problem only briefly in section nine, and then for a different
class of groups, there is very little overlap between this paper and Bargmann’s. Wigner’s
paper studies the possible projective representations of the inhomogeneous Lorentz group.
Given his determination of the possible multipliers for this group his results are deducible
from our theory just as his results on the ordinary representations of this group were
deduced from the theory in [10]. Mention should also be made of a very recent paper of

Takenouchi [15] which discusses briefly a special situation falling under our general theory.

1. Elementary facts about projective representations

Let & be a separable locally compact group. By a projective representation L of & we
shall mean a mapping z-+L, of @ into the group of all unitary transformations of some
separable Hilbert space § (L) onto itself such that (a) L, = I where e is the identity of &
and 7 is the identity operator, (b) For all x and y in &, L,, is a constant multiple o (z,y)
of L,L,, and (c) For each ¢ and y of § (L) the function — (L, (¢), y) is a Borel function on
&. The function o: z,y >0 (2,y) is uniquely determined by L and will be called the multi-
plier of L. By a o representation of & we shall mean a projective representation whose
multiplier is ¢. It is easy to see that the multiplier ¢ of the projective representation L
has the following properties: (a) o(e) =0 (e,2) = a(x,e) =1 and |o(z,y)| =1 for all z and y
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in @. (b) o(zy,2)0(x,y) =6 (x,yz)o(y,2) for all 2,y and z in &. (¢) o is a Borel function on
® x &. We call any function from & x @ to the complex numbers which has these three
properties a multiplier for . As we shall see later every multiplier for & is the multiplier of
some projective representation L of &.

For a fixed choice of ¢ one can develop a theory of o representations which in most
respects is completely analogous to the theory of ordinary representations—that is to
the theory of o representations with o(z,y)=1. If L and M are o representations we say
that they are equivalent if there exists a unitary transformation U from § (L) onto H (M)
such that UL, U1 = M, for all z€ . If §, is a closed subspace of § (L) such that L. (§,) < H,
for all z€® then the restriction of each L, to §), defines a new o representation L% of &
such that §(L9) = §, and which we may refer to as a sub ¢ representation of L. It is easy
to prove that the orthogonal complement of §), also defines a sub ¢ representation and it is
clear that in an obvious sense L is the “direct sum” of these two subrepresentations. When
there are no proper sub ¢ representations of L we say that L is irreducible; otherwise that it
is reducible. If L and M are o representations of & then we denote by R (L, M) the set of all
intertwining operators for L and M where by an intertwining operator we mean a bounded
linear operator T' from $(L) to H(M) such T'L, = M_T for all z€®. We call L a factor ¢
representation (or a primary o representation) if the center CR(L,L) of R(L,L) contains
only multiples of the identity; that is if R(L,L) is a factor in the sense of von Neumann and
Murray. The general theory largely reducing the study of general representations to that
of irreducible representations and factor representations extends without essential change
to ¢ representations.

When it comes to the formation of Kronecker products of projective representations
some of the parallelism with ordinary representations disappears. The Kronecker product of
two ¢ representations is not a ¢ representation in general but a o® representation. More
generally let L be a ¢, representation of &, and let M be a g, representation of §,. Then
z,y—L, x M} will be a 0, X 5, representation of @, X &, where 6, X 0, ((Z1,¥1)s (%2, ¥2)) =
01 (71, %,5) 03 (¥4, ¥2). We call this representation the outer Kronecker product L x M of L and
M and we call oy X o, the outer product of the two multipliers ¢, and ¢,. When @, =8, = &
then restriction of L x M to the diagonal & consisting of all z,y with z = y defines a projec-
tive representation of () whose multiplier is simply the product of the multipliers ¢, and
0,. We call this ¢, 0, representation of & the Kronecker product L& M of L and M.

Similarly if L is a ¢ representation of & then z— (L})~! (where A* denotes the adjoint
of 4 as an operator in the dual 5(—17) of $(L); the canonical anti linear mapping of M
on $(L) being ignored) is a 1/0 representation of & which we call the adjoint L of L. We
note that L® L is always an ordinary representation of .
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We remark that when ¢, and ¢, are distinct multipliers for & the theory of the o,
representations of & can be as different from the theory of the o, representations of & as
the ordinary representation theories of two different groups. As we shall see, for example,
we can choose & and ¢ so that while @ is commutative it has factor o representations which
are not of type I. We can also choose & and ¢ so that while @ is commutative it has (to
within equivalence) just one irreducible o representation and that one is infinite dimensional.

On the other hand there is a simple relation which may exist between pairs of multi-
pliers and which implies a complete parallelism between the corresponding ¢ representation
theories. Let ¢ be a Borel function from & to the complex numbers of modulus one such
that g (e) = 1. On setting o, (v,y) = o (xy)/o(x)e(y) we verify at once that ¢, is a multiplier
for &. Let 0, and o, be any two multipliers for & such that o, = g,0,. Then if L is a o,
representation of & we compute easily that L', where L; = o(x)L,, is a o, representation.
Moreover it is not difficult to see that L->L’ is a one-to-one correspondence between the g,
representations of & and the g, representations of & which preserves equivalence, irreduci-
bility etc. in such a manner that once the theory of the g, representations of @ has been
worked out that for the o, representations follows at once. Accordingly when ¢, = 0,0,
for some Borel function g such that g(¢) = 1 we shall say that o, and ¢, are similar multi-
pliers. Multipliers of the form g, we shall call #rivial multipliers. It is obvious that the multi-
pliers for & form an Abelian group under multiplication and that the trivial multipliers form
a subgroup. Let us denote these two groups by the symbols M and Jg. The group My | T
whose elements are the similarity classes of multipliers for & we shall call the multiplier
group of & and denote by M.

2. A relationship between ordinary and projective representations

In many cases generalizing a theorem about ordinary representations to a corresponding
theorem about ¢ representations presents no difficulties at all; the most obvious minor
modifications in the ordinary proof leading at once to a proof for ¢ representations. How-
ever this is not always so and even when it is it may be a tedious task to make sure. Fortu-
nately there is a simple device which often enables one to pass almost directly from the theo-
rem for trivial ¢ to the theorem for general . This device is as follows. If ¢ is any multiplier
for (8 we define a new group &° whose elements are pairs (4,z) with 1 a complex number of
modulus one and z€® and in which two pairs are multiplied according to the rule:
(4,2) (1, 9) = (Au/o (2,y), xy). There is no difficulty in verifying that &° thus defined is indeed
a group with identity (1, ¢) and with (o(z,2~1)/4, x~!) as the inverse of A,z. The obvious
topology, namely the direct product of the complex number topology with that in &,
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will not do for our purposes since with it G is not in general a topological group. Making
use however of Theorem 7.1 of [13] we can introduce a suitable topology. Let X denote the
compact group of all complex numbers of modulus one. X and & then, as separable locally
compact groups, have natural Borel structures which are “‘standard” in the sense described
in [13]. The direct product of these defines a standard Borel structure in (° with respect to
which z,y —2zy~1 is readily seen to be a Borel function. Thus ¢° is a standard Borel group
in the sense of section 5 of [13]. Moreover it is trivial to verify that the direct product of
Haar measure in X with a right invariant Haar measure in & is a right invariant measure
in &°. Thus Theorem 7.1 of [13] applies and tells us that &” admits a unique locally compact
topology under which it is a separable locally compact group whose associated Borel struc-
ture is that just described. We suppose & equipped with this topology. Now for each o

representation L of & let L , = AL, and designate by L° the mapping A,2—L} .. We have
then

THEOREM 2.1, For each o representation L of & the mapping L® is an ordinary represen-
tation of ©°. Moreover the correspondence L—>L° is one-to-one and has for its range the set of
all ordinary representations of &° which reduce on X to a multiple of the one dimensional

representation A,e—A.

Proof. The proof is straightforward and may be left to the reader. In subsequent sec-
tions we shall give a number of examples of the use of the correspondence described in
Theorem 2.1 in deducing theorems about ¢ representations from theorems about ordinary
representations.

Lest the reader suppose that this correspondence might be used to eliminate the con-
sideration of projective representations altogether we hasten to point out that in the main
problem of this paper its application leads around a circle. In fact &° is itself a group
extension of & by the group X of complex numbers of modulus one. Thus while the problem
of finding the ¢ representations of & can be reduced to that of finding certain ordinary
representations of G° the latter problem leads back to that of finding the o representations
of &/ =6.

As a further application of Theorem 2.1 we establish a connection between projective
representations (as defined in section 1) and the continuous homomorphisms of & into the
“projective group”. Let U (§) denote the group of all unitary transformations of the Hilbert
space onto itself and let U () denote its quotient group modulo the normal subgroup X
of scalar multiples of the identity I. Then for each ¢ and y in §, |(U ($),y)| depends only
upon the X coset to which U belongs and hence defines a function on Ue(H). Let us denote
this function by f,,. We shall say that the homomorphism z— M, from & into U°(H)
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is continuous if f4,(M,) is a continuous function of x for all ¢ and p in §. This definition

is easily seen to be equivalent to that given by Bargmann in [1].

THEOREM 2.2. Let o be a multiplier for the separable locally compact group & and let
k be the canonical mapping of U(H (L)) on U (D (L)). Then x—h(L,) is a continuous homo-
morphism of & into U(§(L)). Conversely every continuous homomorphism of & into U (D)
is of the form x—h (L) for some o representation L of &.

Proof. To prove the first statement we need only show that [(L,($),y)| is continuous
in z for all ¢ and  in § (L). But 4,2 — L}, ; is an ordinary representation &°. Hence (L3 ; (¢), )
is continuous on &°. Hence |A(L, (¢),9)| =|(L:(¢),9)] is continuous on &°. Hence |(L, ($),y)|
is continuous on . To prove the converse let § be a Hilbert space and let x — M, be a
homomorphism of & into U (§) such that f4,(,) is continuous in x for all ¢ and y in .
We must choose a representative L, of each M in such a manner that (L,(¢),y) is a Borel
function of  for all ¢ and y in §. Let ¢, ¢,, ... be an orthonormal basis for §. For each
z€® the representatives V, of M, differ from one another by factors e'‘. Hence for each
i=1,2,...(V.(d),p) is zero for every representative or for none. Let j be the least integer
such that (V,(¢$,),¢;) = 0 for any representative V, and choose as L, the (obviously unique)
representative such that (L.(¢,),¢;) > 0. Now let 6,1,¢ be any three elements in § and let
O be the set of all « in & for which (L, (#),6) + 0. We show next that (L, (y),0)/(L.(¢),0) is
continuous on Q. Let o(x) =|(L,(¢),0)|/(L:(¢),6). Then g (2)(L,(¢),0) =|(L.(¢),0)| and
is continuous in x. Hence we need only show that (N, (y),0) is continuous where N, =g (x)L,.
Let (N, (y),0) = u(x) + iv(x) where u and v are real valued function and let (¥ (¢),6) = w(x).
Then w is real and continuous and different from zero in 0. Moreover |(N, (¢ +v),0)] is
continuous in z and so is | (N, (¢ + iy), 0|. Hence (w(x) + % (z))* + v(z)? and (w(zx) —v(®))* +
u(x)? are continuous. Hence w(x)? + v(x)? + u (x)? + 2w (r)u (x) and w(x)? + v (x)* + w(2?) —
2w(z)v(x) are continuous. Also u(x)® + v(x)? is continuous, so w(z)? + 2w(x)u(x) and
w(z)® — 2w(z)v(x) are continuous. Hence 2u () + 1 and 1-2v(x) are continuous on the set
O where w(x) = 0. Hence (N, (y),0) is continuous on O as was to be proved. It follows at
once that (L,(¢,),0) is continuous on the set O; where (L,(¢,),¢;)+ O and hence that
(L. (¢,),0) is a Borel function of z for all 6. Now let y be any element of § with ||p|| =1.
Then y is part of a basis and by the argument just given there exists an element L in each
M, so that (L, (y),0) is a Borel function of x for all 6. Let 6,,0,, ... be a countable dense

subset of § and let S, be the set of all z for which (L; (y),0,) (L. ($,),0,) = 0. Then & =jyl S;.

Let L; =0 (x)L,. Then on 8 ; 0(x) is the quotient of (L, (y),8,) by the product of (L,(y),0,)/
(L, (), 6,) with (L, (¢,),0,) and hence is a Borel function of « there. Hence g is a Borel function
of x. Hence (L,(y),0) is a Borel function of x for all  and 6 and the proof is complete.
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3. Decomposition theory for 6 representations

The global multiplicity theory for ordinary representations described in section one of
[12] extends almost word for word to ¢ representations. In fact inspection shows that this
theory is almost completely independent of the object being represented and can be formu-
lated without difficulty for quite general representations of quite general objects. At any
rate the lemmas and theorems formulated on pages 194 through 198 of [12] are all true for ¢
representation; the proofs being as given for ordinary representations. It follows in particu-
lar that the study of type I o representations may be reduced to the study of multiplicity
free ¢ representations. The correspondence between multiplicity free representations and
measure classes in the dual object developed in sections nine and ten of [13] also has a
complete analogue for ¢ representations. However the proofs in the ordinary case do not
apply in quite so immediate a fashion. We devote the rest of this section to the sup-
plementary considerations needed to show that the results are also valid for o repre-
sentations.

Let @ be a separable locally compact group and let ¢ be a multiplier for . We denote
the set of all equivalence classes of g-representations of & by @"° and the set of all equiva-
lence classes of irreducible o-representations of & by @°. We call & the o-dual of &. We
introduce a Borel structure [13, section 1]in &° just as we did for ordinary representations
in [13] by regarding G as a subspace of @™ and ™7 as a quotient space of &*°. Here
& is the space of all “concrete” ¢ representations of ; concrete o representation and
the Borel structure in &* being defined by obvious analogy with the corresponding ordi-
nary concepts. The Borel structure in &° was shown in [13] to be standard by mapping it
onto (U where (I is the group algebra of & and then applying a corresponding theorem
for representations of Banach algebras. Presumably a corresponding proof would work for
®“°. Rather than define and discuss o group algebras however we apply Theorem 2.1 of
this paper. This theorem gives a one-to-one mapping of &°° onto a certain subset of G
where &; = ®° and this mapping is obviously a Borel isomorphism. Moreover the range of
this mapping is obviously a Borel set. Since &5 is standard it follows that &>¢ is also stand-
ard. Hence the first statement of the corollary to theorem 9.1 of [13] is true when &°
and & are replaced by G and G° respectively; that is Theorems 8.1 through 8.6 of [13]
remain true when (° and (@ are replaced by &*° and &° respectively.

We turn now to section ten. The discussion preceding Theorem 10.1 applies equally well
to o representations except for the verification that the integrated representation z— M,
is indeed a o representation. A different argument is needed to show that (M, ($),p) is always

a Borel function since the (L,(¢),4) are not known to be continuous in 2. However one
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can apply Theorem 2.1 of the present paper to the L} ; and deduce that A,2—1 M is a repre-
sentation whence in follows that «— M, is a ¢ representation. Similar use of Theorem 2.1
allows us to deduce the truth of Theorems 10.1, 10.2 and 10.3 for o representations from
the fact that they are true for ordinary representations. The mappings C— £(C) and
L— C(L) defined in the two paragraphs preceding Theorem 10.4 may be defined in the
same manner for ¢ representations and it is obvious that £(C°) = £(C)® and C(L%) = C(L)°
where C'— C° is the mapping of measure classes in @ into measure classes in @1 induced by
the canonical map of @ into @1. (Here &, = &° of course.) Mautner’s theorem for ¢ repre-
sentation is of course an immediate consequence of Theorem 2.1 of the present paper and
Mautner’s theorem for ordinary representations. Theorems 10.4 through 10.7 may now
be generalized to o representations using the obvious facts that ® commutes with £ and C
and that 7' intertwines L and M if and only if it intertwines L° and M°. The proof of
Theorem 10.8 applies without change to ¢ representations.

The ¢ dual of a group may have of course quite different properties from the ordinary
dual. In particular the ordinary dual may be smooth and of type I without this being true
for the o dual for all o.

4. Induced ¢ representations

Let o be a multiplier for the separable locally compact group & and let G be a closed
subgroup of &. Then the restriction of o to § is a mulitplier for G and we may speak of
the o representations of G as well as of &. In particular the restriction to § of a o represent-
ation of & is a o representation of G. In [10], [11] and [12] we have discussed a process for
going from ordinary representations L of § to certain ordinary representations U’ of &
which we called induced representations. We show now that this process can be generalized
so as to work for ¢ representations as well. The definition can be given most rapidly by mak-
ing use of Theorem 2.1. Let § denote the identity mapping of G° into &°. The range of 0
is the inverse image of the closed subgroup G under the canonical homomorphism of &°
on &. Hence this range is a closed subgroup of &° and is accordingly locally compact.
Since 6 is obviously both an algebraic isomorphism and a Borel isomorphism it follows from
the argument in the last few lines of the proof of Theorem 7.1 of [13] that it is a homeo-
morphism as well. Now let L be an arbitrary o representation of G. Then L® is an ordinary
representation of j° which may be regarded as an ordinary representation of the closed
subgroup 0(G% of G°. We form U* as described in [11] and note that it follows from
Theorem 12.1 of {11] and Theorem 2.1 of the present paper that U’ is of the form V° for
some uniquely determined o representation V of &. Actually U is only defined up to an

equivalence. However L—L® preserves equivalences so V is well defined up to an equiva-
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lence. We call V the o representation of & induced by the o representation L of G and denote
it by U~

We show next that an equivalent definition of U* may be given which is analogous
to the definition given for ordinary representations in [11] and reduces to it when o = 1.
Let u be a quasi invariant measure in &/G and let us denote by “$* the set of all func-
tions f from & to §(L) such that:

(a) (f(z),$) is a Borel function of z for all ¢€$H (L),
(b) f(£x) = 0 (&%) Ly (f(x)) for all £€ G and all z€@,
(©) [ (F@).f @) du) <oo.

The meaning of the integral in (¢) is to be found in the fact that the integrand is con-
stant on the right § cosets and hence defines a function on &/G. For each f € “H* set ||f|| =

V f (f(x),f (x)}d u (2). Now let g be the Borel function on & which serves to define the Radon
Nikodym derivatives of the translates of u as described in section one of [11]. For each
f€"%" and each ye® let V,(f) =g where g(z) =Ve(zy)/e(@)f(@y)/o(z,y).

THEOREM 4.1. “HT is a veclor space with respect to the obvious definitions of addition and
scalar multiplication. It becomes a Hilbert space under || || when functions equal almost every-
where are identified. For each y€® and each f€*H", V,(f) s also in *$* and f—V,(f) defines
a unitary operator V in the Hilbert space associated with *§. y—V is a o representation of
& which is equivalent to the induced representation U™ defined above.

Proof. For each member f of “§” let f° be the function from @& to §) (L) such that f°(4,x) =
Af(z). It is routine to verify that f—f° is a one-to-one linear mapping of the set of all func-
tions from & to § (L) which satisfy (a) and (b) of the definition of “§* onto the set of all
function from @&° to §(L) which satisfy (a) and (b’) where (b’) is (b) with =1, G =6 (¢°),
L=1° and & = @°. Now let k& denote the natural one-to-one mapping of /G on &°/G°
where G° = 0(§). It is easy to see that k is a Borel isomorphism. We define a quasi invariant
measure 4’ in §°/G° by letting ' (E) = u(k~1(E)) and we verify without difficulty that
f (P°A2), f* (u,x))dp’ = f (f(®),f(x)) du. Thus f—{° is one-to-one and onto from “H* to “H-".
Since we know from [11] that ¥ is a Hilbert space it follows that “$” is also and that
f—f° is unitary from one onto the other. Now a straightforward calculation shows that
f—>f° takes the correspondence f— V,(f) over into the correspondence f°—(1/5) U’y (f°)
for all . All statements of the theorem now follow from this and known facts about ordinary
representations in a straightforward and obvious manner.

We devote the rest of this section to the deduction of theorems about induced o
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representations from the corresponding theorems about ordinary induced representations
by making use of the equivalence between U~' and (U%)°. In some cases a certain reformula-

tion of the theorems is necessary.

THEEOREM. 4.2. Let G, and G, be closed subgroups of the separable locally compact
group & such that G, < G,. Let o be a multiplier for & and let L be a o representation of G,.
Let M be the o representation of G, induced by L. Then U* and UM are equivalent o representa-
tions of ®.

Proof. Form &°, G{, and G5 and identify the latter two groups with their canonical
images in §° so that we have Gic G3 < &°. Let N be the representation of §, induced by
L°. Tt follows from Theorem 4.1 of [11] that U and U¥ are equivalent and it follows from
Theorem 4.1 of the present paper that N and M° are equivalent. Thus U" and U’ are
equivalent. Hence U’ and U’ are equivalent. Since (Theorem 4.1 of this paper) L—>L°
commutes with L—U* we conclude that (U¥)° and (U*)° are equivalent and hence that
U™ and U* are equivalent.

Let o be any multiplier for & and let E denote the identity subgroup of @&. Since o
reduces to one on E the one dimensional identity representation I is a ¢ representation of
E and hence induces a o representation of (. We call this o representation of & the regular
g representation since it reduces to the ordinary regular representation when ¢ =1. In
particular we see that there exist o representations for every multiplier ¢. It is an immediate
corollary of Theorem 4.2 that U” is the regular ¢ representation of & whenever L is the
regular ¢ representation of §.

THEOREM 4.3. Let ¢ be a multiplier for the separable locally compact group & and let
L be a o representation of the closed subgroup . Then the (1/0)=G representations of &,
UL and UE, are equivalent. '

Proof. Observe first that A, x—>1,« sets up an isomorphism between &° and ®&° which
preserves Borel sets and hence is a homeomorphism as well. Moreover this correspondence
is easily seen to take the representation I° of &° into the representation (L) of ®&°, L being
a ¢ representation of §. Arguments similar to those used in proving Theorem 3.2 now
enable us to deduce the truth of the present theorem from the corresponding theorem

about ordinary representation—Theorem 5.1 of [11].

THEEOREM 4.4. Let 0, and 6, be multipliers for the separable locally compact groups &,
and &,. Let L and M be o, and o, representations respectively of the closed subgroups G, and
G» of @, and &,. Then the o, X o, representations UL*Y and UL x UM of &, x &, are equiva-
lent.
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Proof. Observe first that the mapping (4,), (4,y) —>Apu, z,y is a homomorphism of G x
&% on (G, x @,)"*** whose kernel &, is the set of all (4,¢), (u,e) with u =1/4. (Here e denotes
the identity element of the appropriate group.) One can then verify without difficulty that
U® x V° reduces to the identity on &, and via the canonical mapping of (B x &%) /&y
on (§; x @,)" % goes over into (U x ¥)°. This remark having been made it is not difficult
to deduce the truth of the theorem from that of Theorem 5.2 of (11) along the lines indicated
in the proof of Theorem 4.2 above. In this deduction one has need of the following lemma

whose proof is quite straightforward and may also be left to the reader.

Lemma 4.1. Let G be a closed subgroup of the separable locally compact group & and let
H be a closed normal subgroup of & with H< G. Let L be a representation of G which is the
identity on # and let L’ be the corresponding representation of G/H. Then U* is the identity on
H and the corresponding representation of &/ W is equivalent to U™

CoroLLARY (of Theorem 4.4). If L is a o, representation of &, and we form U~, regarding
0, as the restriction to &, X e of o, X 0,, then U is equivalent to the Kronecker product of L
with the o, regular representation of ®,.

We consider next the question of generalizing the first main theorem (Theorem 12.1)
of (11). There is a difficulty in that the transform of a ¢ representation L by an inner auto-
morphism need not be a ¢ representation. Indeed if M, = L, ;-1 then M is a ¢’ representa-
tion where ¢’ (x,y) = o(szs1, sys~1) and ¢! will not in general be equal to ¢. This difficulty

is easily overcome by making use of the fact that o and ¢’ are similar multipliers.
LemMa 4.2, Let o be a multiplier for the group &, let s be an element of & and let o’ (x,y) =
o(sxs71, sys=1). Then the multipliers o and o’ are similar. Indeed o’ (z,y)/c(2,y) = g;(xy)/
(9s(x) g (y)) where g,(x) = (o(s2,57%)0(s,2))/0 (57, 8).
Proof. Using repeatedly the fundamental identity defining a multiplier we have the
following string of equalities:
o(sxs1, sys1)
= (o(sw,yst)a (s, syst))/o(sx,871)
= (c(szy,s7)o(s2,y)o(s71,8y871))/(0(y,87)o (57,57%))
= (0(szy,5 V)0 (57,5y87) 0 (5,29) 0 (2,9))/(0 (4,5 )0 (7,870 (3,))
=[o(=,9))l(o(sxy,s7Y) 0 (s,xy)) /(0 (s7,57)0 (5,2)]
‘lo(s7,8)a(e,y571)/(0(8,y87 ) o (y,57))]
=[o(xy)]llo(sxy,s7)o(s,2y))/(0(s2,87 )0 (s,2))]
lo(s7,8)0(e,ys7 )0 (y,57))/(0(sy,57 )0 (y, 57 ) a(s,9))].
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Since a(e,z) =1 for all z we get on regrouping and dividing by a(z,y)

o(szst, sys)/o(z,y)
=[(a(szy,s Vo (s,2y))/0(s7%,8)][0(s7%,8)/ (o (sx,5 V)0 (s,2))] [0 (s7L,8)/ (0 (sy57Y) (8, 9))]

and this completes the proof.

CoroLLARY. Let G be a closed subgroup of the separable locally compact group &, let ¢ be
a multiplier for & and let L be a o representation of G. Then for all s€& the mapping
v—>(0(s74,8) /o (s2,6 )0 (s,2)) Lsss-1 8 a o representation of the subgroup s~1(s.

We shall denote the ¢ representation defined in the corollary by L°. We leave it to
the reader to verify that (L°) = L** for all s and ¢ in &.

THEOREM 4.5, Let & be a separable locally compact group and let G, and G, be closed
subgroups of & which are regularly related (1) in the sense of ([11], p. 127). Let o be a multiplier
for & and let L be a o representation of G,. For each x €& consider the subgroup G, N (x71 G, x)
of & and the restriction to this subgroup of the representation L* of x~1 G x. Let *V denote the ¢
representation of G, induced by this restriction. Then to within equivalence *V depends only
upon the double coset G, x Gy = d(x) to which x belongs so that we may write ¢V =*V where
d = d(x). Moreover U* restricted to (G, is a direct integral over the set D of G, : G, double cosets,

with respect to any admissible measure in D, of the representations °V.

Proof. We form &°, (7, and G5 and as above identify G and G with the corresponding
subgroups of (3°. We compute easily that the canonical homomorphism of ¢ on & sets
up a one-to-one correspondence between the G7: G3 double cosets on the one hand and the
G1: Gs double cosets on the other. It follows that Gf and G3 are regularly related so that
we may apply Theorem 12.1 of [11] to the restriction to G, of the representation U™ of
°. Now let « be any element of & and consider the component of this restriction associated
with the double coset G7 (1,z) 5. By Theorem 12.1 it is the representation of j, induced
by the representation A,% L1 @a.pa,z + of the subgroup G0 ((1,4)~'Gi(1,x)). But

L?l,z)().,n)(l,l‘) 1= (Ac(x:xil)/(o-(xrn)a(x’/sx_l))LGz ' :}“Lf/

and (1,z)71G7(1,x) = (! G,x)°. Thus the component in question is the representation of
Gs induced by the representation (L*)° of the subgroup (G, N #~1G,)°. But U’ is just

(1) Making use of the notions of [13] this theorem and the next may be given a somewhat neater
formulation, as follows. If we regard & as a Borel group and I} as a quotient space of & the unique in-
variant measure elass in & defines a measure class C in . Saying that Ql and QZ are regularly related is
then the same thing as saying that C is a countably separated measure class. Moreover by Theorem 6.2
of [13] saying that Cis countably separated is the same as saying that C is standard. Finally the direct
integrals which appear in the conclusion of these theorems may be described simply as the integral of
the V% over D with respect to the standard measure class C.
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(UY*)°. Moreover as we have already observed passing from M to M° commutes with the
taking of direct integrals. The truth of the present theorem follows easily from these remarks
and Theorem 12.1 of [11].

We deduce the final theorem of this section from Theorem 4.5 just as we deduced
Theorem 12.2 from Theorem 12.1 in {11]. We leave details to the reader.

TurorREM 4.6. Let &, G,, G, be as in Theorem 4.5 and let o and v be multipliers for (5.
Let L and M be o and 1 representations of G, and G, respectively. For each x and y in &
consider the restrictions of L* and MY to (x72 G, x) N (y~ 1 Gay). Let =¥V denole the representation
of & induced by the Kronecker product of these two projective representations of (x~1 G, ) N
(Y2 Goy). Then (to within cquivalence ) *¥V depends only upon the double coset G, xy= G,.
d(xy-1) to which xy belongs so that we may write °V ==YV where d = d(xy~). Moreover
UL UM is equivalent to the direct integral of the °V with respect to any admissible measure in
the set D of G,: G, double cosets.

5. Systems of imprimitivity

The notion of “system of imprimitivity” for infinite dimensional group representations
introduced in [10] makes sense as it stands for o representations. In this section and the
next we shall study this notion for ¢ representations in considerably more detail than was
done in [10] for ordinary representations. In particular we shall give in section six an
independent proof of the ¢ generalization of the main theorem of [10]. One could presum-
ably deduce this generalization from the special case proved in [10] by applying Theorem
2.1. However in view of the central importance of the theorem for this paper and the fact
that [10] contains only the outline of a proof the former alternative seems more desirable.
We begin with a brief account of projection valued measures.

Let 8 be a metrically standard Borel space {13). By a projection valued mesaure on 8

we shall mean a mapping P, £ — Py, of the Borel subsets of 8 into the pgrojections on some

o0

separable Hilbert space $(P)such that Py =Py Pr=PpPp, Ps=1, Py=0and Py=73

j=1

Py, whenever E = U E, and the E; are disjoint. We say that P and @ are equivalent if
i=1

there exists a unitary map U of $(P) on H(Q) such that UP,U-1 =@ for all E. If P1,
P2, ... are projection valued measures we define their direct sum P = Pl®P2¢o ... to be
the projection valued measure such that §(P) =H(x)e H(P?)e ... and Pg(p,, ¢, ...) =
Pi(¢y), P%(¢y), ... As is well known [14] there exists for each P an element ¢ of §(P) such
that Pg(¢) =0 if and only if Py =0. Thus the Borel measure £ — (Pg(¢),¢) has as null

sets exactly the sets E for which P, =0. Thus every P has associated with it a unique
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measure class (section 6 of [13]) which we shall call the measure class of P and denote by C*.
The well known analysis of projection valued measures on the real line which yields the
unitary equivalence theory of self adjoint operators (see Halmos [7]) applies without
essential change to projection valued measures on 8. The results may be described as
follows. The algebra R(P) of all bounded linear operators 7' such that TPy =P;T for
all E is commutative if and only if there exists an element ¢ in $(P) such that the Pz(¢)
have $(P) as their closed linear span. Such a P is said to be uniformly one dimensional.
If p is any finite Borel measure in § and P% is defined as the bounded linear operator f —yy f
where f€L*(S,u) and y; is the characteristic function of E then P* is a uniformly one di-
mengsional projection valued measure whose associated measure class is that containing u.
P* and P’ are equivalent if and only if u and » lie in the same measure class and every
uniformly one dimensional P is equivalent to some P. Thus u— P sets up a one-to-one
correspondence between measure classes in § and equivalence classes of uniformly one
dimensional projection valued measures on 8. We say that P and @ are disjoint if their
associated measure classes are disjoint ([13] section 10) and that P is uniformly k dimensional
k=o0,1, 2, ... if Pis the direct sum of k replicas of some uniformly one dimensional .
Every projection valued measure is uniquely of the form P™® P™® ... where ny,n,, ...
is a subsequence of 0, 1, 2, ..., each P"/ is uniformly n; dimensional and the P"j are mutually
disjoint. As remarked in section 3 the multiplicity theory described in section 1 of [12] is
really very general. In particular it applies to projection valued measures and may be used
to obtain an alternative derivation of the reduction to the uniformly one dimensional case
just described.

Let L be a o representation of the separable locally compact group &. By a system of
imprimitivity for L we shall mean the pair consisting of a projection valued measure P with
HP) =9H(L) and an anti homomorphism % of @ into the group of all Borel automorphisms
of the domain § of P such that (a) If [x]y denotes the action of k(y) on x then y,z—[x] y
is a Borel function, and (b) L,PgL;* = Py, -1 for all y€@® and all Borel sets E< 8. We
shall call § the base of the system of imprimitivity. The measure class of P we shall refer
to as the measure class of the system. We note that if Py = 0 then Pz, = Ly 1 Pg L, i=0
for all y €®. Thus the measure class of the system is invariant under the action of & on 8.
We shall say that the system of imprimitivity P, k is ergodic if no measure class in 8 which
is invariant under @ is strictly “absolutely continuous” with respect to the measure class

of P in the sense of being associated with a properly larger family of null sets.

THEOREM 5.1. The system of imprimitivity P, h fails to be ergodic if and only if there
exists a Py, different from 0 and I such that Py, L, = L, Pg, for all y€®.
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Proof. 1f P fails to be ergodic let u be a member of the measure class of P and let »
be a member of an invariant measure class having more null sets than u. Let ¢ be a Borel
function which is a Radon Nikodym derivative of » with respect to u and let E, be the
set on which g is 0. Since the » null sets are invariant, E, and E,y differ by a g null set for
all y. Hence Py, = Pz, for all y. Hence Pz commutes with all L,. Py, is obviously not 0
or I. Conversely if E, exists then Py, = Py, for all y and E—pu(E N E,) defines an in-

variant measure class with a properly larger family of null sets.

THEOREM 5.2. Let P, h be an ergodic system of imprimitivity for the o representation L.

Then P is uniformly k dimensional for some k=00, 1, 2, ...

Proof. Let P=P"@P™@ ... be the canonical decomposition of P where P" is uni-
formly #; dimensional. Let @; be the projection on the subspace corresponding to the
summand P". It follows from the theory of the decomposition (loc. cit.) that the @; depend
only upon the range of P. Since P and its unitary transform by each L, have the same range
it follows that each L, commutes with each @;. Hence each pair P"/, k is a system of imprim-
itivity for a subrepresentation of L. Hence the measure class associated with each P"7 is
invariant under (. Since these measure classes are obviously absolutely continuous with
respect to the measure class of P it follows from the ergodicity hypothesis that they are
identical with the measure class of P. Since they are at the same time mutually disjoint we
have a contradiction unless there is only one term. This completes the proof.

Now let & be a separable locally compact group and let A be an anti homomorphism
of & into the group of Borel automorphisms of S such that x,y—[x]y = k(y)(x) is a Borel
function. Let C be any measure class in § invariant under & and let k=00, 1, 2, .... As
we have seen there is to within equivalence just one uniformly £ dimensional projection
valued measure on S whose measure class is C. Call it P. We devote the balance of this sec-
tion to a partial analysis of the family of all possible ¢ representations of & having P, k as
a system of imprimitivity. We begin by exhibiting a certain canonical ordinary representa-
tion with this property. Choose a finite member u of C and realize P as a projection valued
measure with § (P) the set of all square summable functions with respect to u from 8 to
some fixed t dimensional Hilbert space £, and P, multiplication by the characteristic
function of E. For each y €@ let g, be a u measurable function on § which is a Radon Niko-
dym derivative of the measure E-—u([E]y) with respect to u and let g (y,z) =, (x). For
each feH(P) = L2(S,u, D) and each ye® let W, (f) =g where g(z) = f([z]y)o(y,x).

THEOREM 5.3. For each y€®&, W, is a unitary operator. Moreover y— W, is a represent-

ation, of & having P as a system of imprimitivity.
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Proof. It follows easily from the definition of g, that for all y, and y, in & we have
0 (¥1Ys, %) = 0 (y1,2)0 (¥s: [x]y,) for p almost all z in 8. Moreover making use of this almost
everywhere identity there is no difficulty in verifying not only that each W, is unitary but
also that W, W, =W, for all y, and y, in &. Thus to show that W is a representation
we need only show that (W, (f), ¢) is 4 measurable as a function of y whenever f and g
are members of § (P). This will follow from the Fubini theorem once we know that the arbi-
trary choices in the g, may be made so that g is measurable on & x 8. That these choices
may be so made we prove by applying Lemma 3.1 of [9]. If E is any measurable subset
of 8 then f o (y,x)yg(x)du(x) = u((E)y) where yg is the characteristic function of E. Thus
Lemma 3.1 of [9] will apply once we know that for each E, u([E]y) is measurable in y.
There is also a boundedness restriction in the statement of the lemma but examination of
the proof shows that only the existence of the integrals is actually used. To prove the
measurability of u([Ely) choose a Borel set F differing from E by a x null set. Since
w([E]y) = pu([Fly) for all y it will suffice to prove that the latter function is measurable,
Let T be the mapping y, x—y,[x]y. T is then a one-to-one map of @ X § on & x § and
T-! takes y, x into y, [x]y . Thus 7" and 7! are both Borel functions so T is a Borel auto-
morphism. Thus 7(& x F) is a Borel set and hence so is 7(& X F) N (y X 8) =y X [Fly.
Let v be a finite measure in & having the same null sets as Haar measure. Applying the
Fubini theorem to the characteristic function of 7(® % F) and the measure » X u we see
that 4 ([F]y) is measurable in y and hence that W is a representation. To show that P is a
system of imprimitivity for W one needs only compute (W,P; W, (f))(x) and apply the
almost everywhere identity involving ¢ cited above.

It is easy to see that (to within equivalence) W is uniquely determined by 4, k and the
measure class of P and indeed that this is true for the pair P, W. We shall call it the
permutation representation of & defined by h, k and C*.

Now let Up denote the group of all unitary operators in § (P) which commute with all
P;. Tt follows from the identity W,Py W,' = Pz, ~1 that W, U W;' = Up. Thus eachy€®
defines an automorphism ¥V —y (V)= W,V W, of U, and the mapping of ¢ into the group

of automorphisms of Up so defined is a homomorphism.
THEOREM 5.4. Let ¢ be any multiplier for & and let @, y—Q, be any function from

& to Up which satisfies the following three conditions:

(@) Quiv. =0 (Y1, 92)Q0.Y1(@y.) for all y, and y, in &.
(b) Q.= 1.
(¢) (@,(f),9) s a Borel function of y for all f and g in H(P).

20 — 665064 Acta mathematica. 99. Imprimé le 25 juin 1958
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Then y—>Q,W, is a o representation of ®& having P, h as a system of imprimitivity.
Conversely if L is any o representation of & having P, b as a system of imprimitivity then
there exists a unique function Q,y—Q,, from & to Up satisfying (a), (b) and (c) and such that
L,=Q,W, for all y.

Proof. Let L, =@, W,, where each Q,€ Up. Then L,,,, =0c(yy,9,)L, L, if and only if

Quy. =0 W0Y2)Qu Wi Qu Wi = 0(41,92)Q,, 4:(Q,,); that is if and only if (a) is satisfied.
Moreover since L, =@, W, it follows that L, = I if and only if (b) is satisfied. Finally since

(Ly (D 9) = (@, W, (1), 9) = (W, (1), Q5 (9) =§1(Wy(f),/n)(Qy(fn),g)

and

@1, 9) =L, W3, 9) = (W3 (), Ly (9) =nZ:1(/, W (fa)) (Ly (£2),9)

where {f,} is a complete orthonormal set for §(P), it follows that y—L, is a o repre-

sentation if and only if y —@, satisfies conditions (a), (b) and (c). Since
LyPEL;1 =@, W, Pg WJ;IQEI = QyP[E]y‘lQ;l =Pgy -1

it follows that P, h is always a system of imprimitivity for L. Finally if L is any repre-

sentation of & with P, & as a system of imprimitivity then
W, L, P LW, =W, Py, -1 W, =Py
Thus @, = W, L, € Up. This completes the proof of the theorem.

THEOREM 5.5. Let Q and Q' satisfy (a), (b) and (c) of Theorem 5.4 and let L and L' be
the corresponding o representations of &. Then there exists a unitary transformation of 9 (P)
onto §)(P) which carries each L, into Ly and each Py into itself if and only if there exists V € Up
such that for all y @, = V@Q,(y(V))~'. Moreover there exists a proper closed subspace of H(P)
which is invariant under all Py and oll L, if and only if there exists a member V of Up not a
multiple of the identity such that Q,y (V) =V @, for all y€®.

Proof. The second statement follows from the first on taking @ =@’. To prove the
first we note that the unitary operators taking each Py into itself are just the members of
U and that VQ,W,V-1=@Q, W, if and only if Q, = VQ W, V1W;'=VQ,y(V).

We observe next that the members of U, may be described in terms of functions from
8 to the group of all unitary maps of §, on §. Indeed let 4, z— A4 (x) be any such function
which is a Borel function in the sense that ((4 () ($),%)) is a complex valued Borel function
for all ¢ and y in §,. Then f—g where g(x) = 4 (z)(f(x)) is a unitary operator on HP)
which clearly belongs to Up. We denote this operator by 4. It is easy to verify that 4; = 43
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if and only if 4, (x) = 4, () for almost all z and that W, 4~ W' = B” where B(z) = A ([z]y).
Moreover it follows from the discussion given in section 4 of [9] that every member of
Up is of the form A", In particular every @, is of the form A”. Thus each of our functions @
can be replaced by a function R on & x § with values amongst the unitary operators

mapping §, on §, and we deduce the following variant of Theorem 5.4.

THEOREM 5.6. Let o be a multiplier for & and let R, y, x— R(y,x) be a function from
& x 8 to the group of all unitary maps of  on . Suppose that R satisfies the following three
conditions:
(8) For each y, and g, in 6 we have R(y,y5,) = 0(y1,2) B (42, %) R (ya, [£ys) for u almost
all z in 8.
(b) R(e,z) in the identity for almost all = in §.
(¢) For all ¢ and v in §, (R(y,z)(d),v) is measurable as a function on & x 8, and for

each y€® is measurable as a function on 8.

Then if we set Ry (x) = R (y,x) the function y—(R;)" satisfies (a), (b) and (c) of Theorem
5.4 and hence y— (R, ) W, is a o representations of & having P, h as a system of imprimitivity.
Conversely if L is any o representation of & having P, h as a system of tmprimitivity then
there exists R satisfying (a), (b) and (c) above such that L, = (R;)” W, for all y€@®. R, and
R, lead to the same L if and only if they are almost everywhere equal.

Proof. Except for certain measure theoretic points which we shall now discuss the
statements of the theorem are obvious consequences of the preceding remarks and Theorem
5.4. To show that (R;)  satisfies (c) of Theorem 5.4 we must show that f (R (y,z) (f(x)),
g(x))du(x) is a Borel function of y for each f and g in §(P). It is enough to consider the
case in which f(x) = a(x)¢ and g (x) = b(x)y where ¢ and b are complex valued functions and
¢ and y are members of §, since §(P) has a basis consisting of such functions. In this case
however the expression reduces to fa(x)@ (B (y,%)($),y)du(x) which is measurable. in
y by the Fubini theorem. But then the argument of Theorem 5.4 shows that y—(R; )W, =
L, is measurable in y and has the algebraic properties of a o representation. Define L as
in section 2. Then (L3, (f),g) is measurable on @&° for all f and ¢ in 9 (P). Since L° has the
algebraic properties of an ordinary representation it is an ordinary representation. Hence
L is a o representation of &. Hence ((R;)” (f),9) is a Borel function as was to be proved.
In proving the converse the measure theoretic point to be established is that the arbitrary
choices involved in putting the @, in the form (R, )" can be made in such a manner that (c)
of the present theorem holds. Let ¢,,¢,, ... be an orthonormal basis for §),. It will of course
suffice to choose the R; so that (c) holds when ¢ and y are chosen from amongst the ¢,.
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First of all let us put the @, in the form (R;) in an arbitrary manner. Let r;;(y,2) =
(R (y,%)($:),¢;). Let E be any u measurable subset of S and let g be its characteristic func-
tion. Then y.¢, and yz¢; are members of §)(P) so that (@, (wz¢,),yxé;) is a Borel function

of y. But this last expression is equal to ftpE(x)(R(y,x) ($.),d,)dp(x) -=fr,~, (y,2)yg (@) du{x).
It follows from Lemma 3.1 of [9] that for each i and j there is a measurable function 7;; on
® x 8 such that for each y€® we have r,;(y,2) =ri;(y,z) for almost all x. The matrix
|| 7ij(y,2)|| will then be that of a unitary operator R’(y,z) for almost all pairs y,z. Let
R (y,x) = R'(y,x) whenever R’'(y,x) exists as a unitary operator and let RB”(y,x) be the
identity operator otherwise. Then for all ¥ in R” (y,x) = R(y,x) for u almost all z and R”
satisfies (c) of the present theorem. This completes the proof.

6. Transitive systems of imprimitivity

Let P, b be a system of imprimitivity for the o representation L of the separable
locally compact group &. We shall say that the system is transitive if the range of % is
a transitive group of transformations of 8 onto 8; that is if given 2, and z, in S there exists
y €@ such that [z;]y = x,. Let P, h and P’, b’ be systems of imprimitivity for the same o
representation L. We shall say that P, k and P’, b’ are strongly equivalent if there exists a
Borel isomorphism ¢ of the base § of P onto the base S’ of P’ such that Py g, = Py for all
E and K {(y) =¢h(y)d! for all ye®. If there exists a Borel subset 8, of § such that §,
is invariant under the action of & and Ps, = I we shall call the system of imprimitivity
obtained by restricting P and the k(y) to 8, a trivial contraction of P, h. Each P has an
obvious unique extension to the Borel field generated by its domain and the subsets of
its P null sets. If P’ is a contraction of this extension to some Borel field which in-
cludes the domain of P and is such that P’, % is a system of imprimitivity we shall call
P’, b a partial completion of P, h. We shall say that the systems P, k and P’, &’ are equi-
valent if a partial completion of a trivial contraction of one is strongly equivalent to a
partial completion of a trivial contraction of the other. It is clear that ergodicity and di-

mensionality are preserved under passage to an equivalent system.

TueoREM 6.1. Let P, h be a transitive system of imprimitivity for a o representation L
of the separable locally compact group &. Let S be the base of P and let x, be a point of 8. Let G
be the subgroup of & consisting of all y such that [x,] y = x,. Then G is closed and the function
y—[,] y maps the coset space &/ G onto 8 in such a manner as to set up a strong equivalence
between a partial completion of P, h and a system of imprimitivity P', b’ where the base of P’ is
&/G and b’ defines the canonical action of & on &/G.
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Proof. Tt follows from the definition of system of imprimitivity that y—[x,]Jy is a
Borel mapping. Hence if 8/ G is equipped with the quotient Borel structure then y — [x,]y
defines a one-to-one Borel map 8 of /G onto 8. Let a be a finite member of the unique
invariant measure class in & and let &’ be the image of « in 8/§. Since § is metrically stand-
ard there exists a Borel subset E, of 8 such that E, as a subspace is standard, S — E,, is
a P null set and o ((8/G) —0-1(E,)) =0. Since E, is countably separated so is 0-1(E,).
Since -1 (E,) is a Borel image of a Borel subset of the standard Borel space &, 6-1(E,) is
analytic and hence metrically standard by Theorem 4.2 of [13]. Hence the hypotheses of
Theorem 7.2 of [13] are satisfied and we may conclude that § is closed and that @/G is a
standard Borel space. It follows now from Theorem 3.2 of [13] that 0 restricted to 6-1(E,)
is a Borel isomorphism. Hence the transforms by 6 of the Borel subsets of ¢/ G differ from
Borel subsets of S by null sets. The remaining statements of the theorem now follow trivi-

ally.

THEOREM 6.2. Every transitive system of imprimitivity is ergodic.

Proof. By Theorem 6.1 we need only consider the case in which the base of the system
is a coset space with respect to a closed subgroup G of & and on which & acts canonically.
If the system were not ergodic there would exist two distinct non trivial invariant measure
classes in (8/G. This is impossible by Theorem 1.1 of [11].

While the converse of Theorem 6.2 is very far from being true there in general is an

important special case in which it is true.

THEOREM 6.3 Let P, h be an ergodic system of imprimitivity with base 8. Let 8™ be the
space of all “orbits” of S under & where a subset of S is an orbit if it is the set of all [z,]y
for some fized x, in 8. If the quotient Borel structure in S~ is metrically countably separated

then P, h is equivalent to a transitive system.

Proof. It will clearly suffice to show that Pz =0 where E’ is a Borel set which is the
complement of some orbit. Since §” is metrically countably separated P, & is equivalent to
a system whose orbit space is countably separated. Hence we may suppose that 8 is
countably separated and hence that every orbit is a Borel set. Now if Q is an orbit such that
Py =+ 0 then Pg_ ¢ = 0 since otherwise we would be able to deduce an immediate contradiction
from the assumed ergodicity. Thus we need only show that there exists at least one orbit
which is not a P null set. Let 4 be a finite measure in the measure class of P and suppose
that 4 (0) =0 for every orbit 0. Let E,, E,, ... be the inverse images in 8 of a countable
separating family for 87. Then each orbit is an intersection of the members of a subsequence
of the E;. Because of the ergodicity hypothesis each u(E;) is either zero or 4 (8) and any

intersection of E;’s with measures equal to u(8) has itself this measure. Hence every orbit
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is contained in an E, with u(E,) = 0. Hence § is covered by a countable family of sets of
measure 0. Thus x(S) =0 and this contradiction completes the proof.

We devote the rest of this section to a detailed study of the situation analyzed in
Theorems 5.4 to 5.6 in the special case in which § is the space &/ G of right cosets defined
by some closed subgroup G of & and & acts canonically on &/@G. Given any function g on
&/ G there exists a unique function g, on & such that _q;o(:;E x) = go(x) and g (c(x)) = g, (x) for
all £€ G where c(x) denotes the right § coset to which z belongs. In particular we may
replace the function R of Theorem 5.6 by a function R, defined on & x . Conditions
(a), (b), and (c) of that theorem may evidently be expressed as follows in terms of R,
(a"). Foreach y, and y, in & we have R, (y,ys, %) = 0 (y4,y5) By (31, %) By (y,, 2y;) foralmost all 2
in ®. (b’) R, (e, ) is the identity for almost all z in &. (¢’) For all and p in §, (B, (v, ) (¢),%)
is ‘measurable on & x & and for each y is measurable on . In what follows it will
be convenient to adopt the convention that an operator valued function ¢—A4(g) is
measurable, Borel, continuous etc. if this is so in the usual sense for the complex valued
functions (4 (g)(¢),y) for all ¢ and v in the relevant Hilbert space.

We show next that the identity in (a’) may in a certain sense be “solved”.

LremMa 6.1. Let B be any measurable function from & to the unitary operators of £, and
let 0 be a multiplier for &. Let Ry(y,x) = (B-Y{(z) B(xy))/o(x,y). Then Ry satisfies (a'),
(b'), and (c') above. Conversely if R satisfies (a’), (b’) and (c’) there exists a Borel function B
such that R(y,x)= Rg(y,x) for almost all pairs y,x. Rp (y,x) = Rz, (y,x) for almost all pairs
if and only if there exists a unitary operator C such that B,(x) = C By (x) for almost all .

Proof. The proofs of the first and third statements are immediate and may be left to
the reader. To prove the second let S be a Borel function such that S(y,z) = R(y,x) for
almost all pairs y,z. Then S (y;, ¥s, %) =0 (#1,¥5) S (41, %) S (y2, ¢y, ) for almost all triples y,, y,, x.
Hence there exists z,€® such that S(y,y,,%,) = 0 (1Y) S Yy, %) S (¥2, 2y ;) for almost
all pairs y;, ¥, in & x &. But whenever this last equation holds we have

8 (Y2, %oy1) = (87 (41,20} S (4192, %0))/0 (Y1, ¥)
so that 8 (y2ys) = (1/0(20 " y3,92)) S~ (25" y3,%0) 8 (2" Y32 o)
where y; = z,y,. But

0 (20" Y3, Y2) = (%", YsY2) 0 (Y54 2)/0 (@5, ya)-
Thus for almost all pairs y,, y; we have

S (Yay3) = (S (5”61.7/35 xz)/o' (xal:?/a))_l S (xalysyz,xo)/o (xals YsY2)) (1/0' (Y3, 92)-
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Hence we need only take B(y) = S(x5'y,7,)/0(zo",y) in order to complete the proof of

the lemma.

LEmMMA 6.2, Let R satisfy (a'), (b’) and (¢') above and in addition let R(y,Ex) = R(y,x)
for all & in the closed subgroup G of & and all x and y in &. Then the B of Lemma 6.1 may be
chosen so that B(&x) = o (&,2)Le B(x) for all £€ G and all x€® where £ —L; is a o representa-
tion of G which to within equivalence ts uniquely determined by R.

Proof. First let B, be any unitary operator valued Borel function such that Ry (y,z) =
R (y,x) for almost all pairs y,x. Then for each £ € G we have Rp (y,£x) = R (y,%) for almost
all pairs y,2. Thus

(B’ (£2) By (Exy)) /o (E,y) = (Bi* (z) By (2y))/0 (z,y)
or equivalently
By (Exy) Bi* (wy)/o(&,xy) = (Bt (2) B, (£2))/0 (&,2)

again for almost all pairs y,z. In other words for each £ € § the unitary operator (B,(£x)-
Bi'(x))/o(&,7) is almost everywhere equal to an operator L¢ which is independent of =.
We verify at once that L, = I and that L, ., = 0(&,, &) L, , L, for all &, and &, in . To show
that L is a ¢ representation we need only show that it is a Borel function of £. But let o
be any finite member of the unique invariant measure class in &. Then if ¢ and y are in §,,
f(Bl(.Ex) (B! (x)($), w)/0(E,x))da(z) is a Borel function and is equal to o (@) (Le (4), ).
The next thing we show is that B, can be changed on a set of measure zero so that the
identity in question holds for all pairs £,z € G X &. We do this in two stages first constructing
B, in which the almost everywhere restriction applies only to = and not to £. Note first
that since both sides are Borel functions we may pass from the given almost everywhere
condition to the conclusion that for almost all x we have B,(£z)=o0(&,x)L, B, () for
almost all . Let § be a member of the unique invariant measure class in G such that
B(G) =1. For each ¢ and p in Oy let A(p,y,2) = (1/0(&,2))(L:' By (£x) (¢),9)dB (£). Then
for each ¢ and y, 4(¢,y,z) is a Borel function of x and for almost all x in & is equal to
(B, (2)(#),p). Moreover for all z we have ||4(¢,v,2)[|<||¢|||lw]l so that there exists a
unique bounded operator B,(x) such that A ($,y,x) = (B,y(x)(¢),y). z— B,(z) is clearly

a Borel function of x and furthermore
(B2 (£02) ($),) = A4 (¢,9,£,%)
=[(1/o(&,52) (L By (££02) ($),9)dB (&)
=[(1/0(£&5", &) (Lels B, (52) ($),9)dB’ (8)

where ' is another measure in G having the properties assumed for 8. Thus
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(Ba(£02) ($).)
=[(0(&.6"/(0(&,2)0 (Ea%, E42)0 (€, &) (L L B, (62) ($),9) A (@)

=[(0 (&850 (&0, 2)) /(0 (&6, Eo) 0 (£,2) (L B, (Ex) ($), LE () dB (&)
=0 (&, )| (L/0(&,2)) (L B, (£2)(¢),LE () dB (&)

Let N, be a Borel subset of & which is of measure zero and outside of which B, (£z) =
o(£,2) L B, (x) for almost all £€ (. Then for x€® — N, we have

(B3 (&%) (), 9) = 0 (&0, ) (By () (), L, ()

for all £,€ ¢ and all ¢ and y in §,. Thus for all ze® — N, we have B,(&x) = (éx) B, (2)
for all £€ ¢ and in particular (taking £ = ¢) we have B, (z) = B, (). Hence B,(£y) = o(£,x)-
Lg B, (x) for all z€® — N, and all £€ §G. Now let N be the Borel set outside of which B (x)
is unitary and B,(£x) = o (£,x)L¢ B, (x) for all £€ G. Then N < N, and hence is a null set.
Moreover if z€® — N and £,€G then

B,(£&gx) = 0(E€0, 2) Le Ly, 0 (£6,) By ()
=0(£,52)0 (40, %) L Lg, By ()
=0(&,Eyx) L By(Eyx) for all £€.

Thus N is a union of right § cosets. Suppose that there exists a Borel function B, such
that By(£x) = ¢ (&,x)Le B;(x) for all £€ G and all z€ G. Then if we set B(x) = By(z) for all
z€N and B(x) = By(x) for all z€® — N we will have a B with the desired properties. We
may construct such a B; as follows. By Lemma 1.1 of [11] there exists a Borel set § in &
which intersects each right § coset in just one point. Each z €@ is uniquely representable
in the form £s where £€ G and s€S. We set B,(x) = 0(&,s) L, and verify at once that B,
satisfies the required identity. If ¢ is the canonical mapping of & on (/G and c, is the restric-
tion of ¢ to S then ¢i! is a Borel function. Moreover ¢; ! (c(£s)) = s. Thus £ and s are Borel
functions of x. It follows that B, is a Borel function of z. We complete the proof of the
lemma by showing that the equivalence class of the representation L is uniquely deter-
mined by R. If Rp (y,2) = Rp, (y,x) for almost all pairs y,x then by Lemma 6.1 there
exists a unitary operator C' such that B,(z) =C B,(x) for almost all x. Let B,(£fx) =
o(&,2)Lg B, (x) and B,(£x) =0 (£,2) M, B,(x) for all £,z in G X ®. Then for all £€§

L = (B, (§2) Bt () /0 (§,2) = (O By(é2) By ' () CY) /o (&,3) = O MO

for almost all x. Thus L and M are equivalent as was to be proved.
Now let u be a fixed member of the unique invariant measure class in § = ¢/ G and let
P and W be as in section 5. Let k define the canonical action of & on ¢/ G. Let B be any
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Borel function from & to the unitary operators in §, such that B(Ex) =0 (&,x)Le B(x)
for all £, x€ G x & where L is some o representation of §. Clearly L is uniquely determined
by B. Accordingly we shall write L? for L. Functions B having the above described prop-
erties so that L® is defined we shall call ¢ — § functions. Let B any ¢ — G function and
form Rj as indicated in Lerama 6.1. Let R’ be the function on & x § such that R (y,¢(x)) =
Rs(y,x) for all y and x in & x @. R} then satisfies (a), (b) and (c) of Theorem 5.6 so that
the function y—(R3,,)” satisfies (a), (b) and (c) of Theorem 5.4 and hence defines a rep-
resentation of & having P as a system of imprimitivity. This representation of & depends
only upon B and will be denoted by V2. Now let B, and B, be any two ¢ — § funetions
and let 7' be any member of the vector space R(L®, L?) of all intertwining operators
for L? and L*:. Then for each x€® and each &€ G we have

B;'(£2) T B, (§x) = Bz (§x) T LY By (x)o (£,7)
=o(&x) Bs (Ex) L T B, ()
= By () T B, ().

Thus setting Cr(c(x))= B:;'(x) T, B, (x) defines C'; unambiguously as an operator valued
function on &/ G. We let T~ be the bounded linear transformation of §)(P) into itself such
that T (f) (1) = Cr(8)f(t) for all teS. We may now state:

TuEOREM 6.4. Every ¢ representation of & having P, h as a system of imprimitivity 1s
of the form Vg for some ¢ — G function B. Moreover if By and B, are two ¢ — (G functions then
T —T" is an isomorphism of the vector space R(L®, L) onto the vector space of all members of
R(V 2, V) which commute with all Py. If B, = B, then T— T~ is a ring tsomorphism as well.

Proof. The first statement is an immediate consequence of Theorems 5.4 and 5.6 and
Lemmas 6.1 and 6.2. That 7—7T" is a vector space isomorphism in general and a ring
isomorphism when B, = B, is evident. Thus to complete the proof of the theorem we have
only to establish that the range of 7— 7' is as asserted. Now it follows from the discussion
on page 320 of [9] that the bounded linear transformations S of § (P) into itself which com-
mute with all Py are just those such that S (f) (f) = C () (¢) for all f € § (P) where C'is a bounded
Borel function from § to the bounded linear transformations of §, onto §,. Thus what
remains to be shown is that C' defines a member of R(V?,V?) if and only if C is of the
form (' for some T € R (L%, L%). Now an obvious calculation shows that § is in R(VZ,V?) -
if and only if for each y€® we have C(t) R3, (y,t) = R3,(y,t)C([t]y) for almost all ¢ in 8.
Now let Cy(x)=C(c(x)) where ¢ is the canonical mapping of & on &/§. Our condition
then becomes: Oy (z) Rz, (y,%) = R, (y,x)Cy(xy) for almost allzin @ or Cy(x) By (z) B, (xy) =
B; Y (x) B,y(xy)Cy(xy) for almost all zin & or B, (x) Oy (x) Bi* (x) = Ba(zy) Cy(xy) Bi!(xy) for
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almost all z in &. Applying the Fubini theorem we say that the last form of our condition is
equivalent to the assertion that B,(x)C,(x)Bi'(x) is almost everywhere equal to some
constant operator 7; in other words that there exists a bounded operator T such that
C,(x)=B:;'(x)- T B, (x) for almost all . Since C, is constant on the right § cosets it follows
from the condition that for almost all # we have Bz (éx) T B, (éx) = B;'(x) T B, (x); that is
B;'(x)(L{)*TLf B, (x) = Bs'(x) T By (x) and hence that TLS=L2T for all £€(.

The truth of the theorem now follows at once.

CoROLLARY 1. There exists a unitary operator which sets up an equivalence between
the pair P, V" and the pair P, V* if and only if L and L™ are equivalent.

CoROLLARY 2. L% is irreducible if and only if no proper closed subspace of §(P) is
invariant under all V% and all P,.

In the course of the proof of Lemma 6.2 it was shown that every ¢ representation L of
G is of the form L” for some - (G function B. It follows moreover from Corollary 1 to Theorem
6.4 that the equivalence class of the pair P, V2 does not depend upon the particular B
chosen and in addition does not change when L is replaced by an equivalent ¢ represent-
ation of (. Thus the problem of finding the most general ¢ representation of & having
P, h as a system of imprimitivity is equivalent (equivalent o representations being identi-
fied) to the problem of finding the most general o representation of the subgroup . In
particular we have a natural correspondence which assigns to each equivalence class of
o representations of § a well defined equivalence class of o representations of 4. It is natural
to compare this correspondence with the correspondence L— U” set up in section 4 and

not surprising to find them identical.

THEOREM 6.5. Let &, P eic. be as in Theorem 6.4 and the immediately preceding discus-
sion. Let B be any o-G function. Then the pair P, VE is equivalent to the pair P, U® where
UL® denotes as usual the representation of & induced by the o representation L of G.

Proof. Let f be any Borel function from § to £, and let f° be the Borel function foc
where ¢ is the canonical map of & on 8 =®/G. Let f°F be the function z— B () (f*(x)).

Then f°# is a Borel function and
*?(£x) = B(Ea)f* (Ex) = 0(&,2) L (B(2)(f° (2))) = 0 (§,2) L¢ (f°® (x))

for all £, z€eG x &. Conversely it follows at once on multiplication by B-1(x) that
every Borel function g from @& to g such that g(£z) = o (&,2)L{ (g (x)) for all &, z€ Gx @
is uniquely of the form f°Z, Now

(F°2 (2),°% () = (B(@)(f* (x)), B(2) (f* (x)) = (f* (@), ()
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since each B(z) is unitary. It follows at once that f is in L2(S,u, §)) if and only if /°Zis in
“$* and that f—/°Z sets up a unitary map V, of the first Hilbert space on the second. An
obvious calculation which we leave to the reader shows that V, Py =P;V, for all £ and
that Vol UL® Vo= V2 for all ze€@®. This completes the proof of the theorem. »

It is easy to see directly that an induced representation U always has associated with
it a canonical system of imprimitivity based on &/G. It is P, h where Py is the operation
of multiplying by the characteristic function of E and 4 is the canonical action of & on
&/§. Clearly the canonical unitary transformation setting up an equivalence between
gt and *“U" where u, and u, are different quasi invariant measures in &/ also sets up
an equivalence between the corresponding P’s. Thus the pair P, U is defined to within
equivalence by L. We may now formulate the main theorem of this section. Its proof is an

immediate consequence of the foregoing considerations and will be left to the reader.

THEOREM 6.6. Let & be a separable locally compact group, let G be a closed subgroup
of & and let ¢ be @ multiplier for &. Let V be any ¢ representation of & and let P’ be any pro-
jection valued measure based on &/ G such that P’, h is a system of tmprimitivity for V. Then
there exists a o representation L of G such that the pair P' V is equivalent to the pair P, U*
where P, h is the canonical system of imprimitivity for U based on &/ G. If L, and L, are‘two
o representations of (G and Py, h and Py, h are the corresponding canonical systems of imprimi-
tivity then the pairs Py, U™ and P,, U™ are equivalent if and only if L, and L, are equivalent
o representations of §G. Finally the commuting algebra of L is isomorphic to the intersection of

the commuting algebras of P and UL

7. The restriction of a ¢ representation te a normal subgroup

Let & be a separable locally compact group and let X be a closed normal subgroup of
&. Let o be a multiplier for &. For each s€® the mapping L — L’ defined in the corollary
to Lemma 4.2 takes o representations of J into ¢ representations of J. We shall call a
o representation L of X such that L and I? are equivalent an invariant o representation
(with respect to the given imbedding of X in ®). If L is an irreducible ¢ representation of
X we shall denote the set of all L* {or rather the set of their equivalence classes) by 0, and
call it the orbit of L. Of course every member of 0 is irreducible and given irreducible ¢
representations L and M we have either 0, = 0, or 0, N 0, = 0. When X is compact every
o representation of J{ is a direct sum of irreducible ¢ representations and is determined to
within equivalence by the muitiplicities with which the irreducible o representations occur.
It is easy to see in this case that the invariant representations of X are just those for which

these multiplicities are constant on the orbits. It is natural to call an invariant ¢ represent-
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ation transitive (we are still assuming X compact) if all multiplicities are zero outside of
a single orbit. Every invariant o representation is then uniquely a direct sum of transitive
o representations no two of which have any irreducible sub ¢ representation in common.
Guided by these considerations in the compact case we make the following definition in the
general case. The invariant ¢ representation L of the normal subgroup X is ergodic if it
cannot be written as the direct sum of two invariant o representations which are disjoint
in the sense of section 1 of [12]. As explained in section 3 of the present paper the discussion
of section 1 of [12] applies without change to ¢ representations. Following a suggestion of
M. Krasner however we shall make one change in terminology and refer to factor represent-

ations as primary representations.

THEOREM 7.1. Let M be a o representation of the separable locally compact group &
and let M™® denote the restriction of M to the closed normal subgroup X of . Then M™ is

tnvariant. If in addition M is primary then M is ergodic.
Proof. For all £,seX x & we have

(MP): = (0(s7%,8) /0 (sE,57Y) 0 (8,)) ME

= (0(s7%,8)/ (0(5&,571)5(8,£)) M o5

=(o(s71,8)/0(8,E)) M e M ;...

=o(s L, s\ M, M: M.

=M MM'=MMPM*.
Thus M, sets up an equivalence between M™® and (M™)°. Now let E be any projection in
R(M, M) such that “M™® and 1-M™ are disjoint and invariant. If we can show
that Ee€R (M, M) then any intertwining operator for *M and - will be such, a fortiori,
for EM™® and -FM® and hence will be zero. Thus it will follow that M and ~*M are
disjoint and this contradiction to the primariness of M will prove the second statement of
the theorem. Thus it will suffice to show that M E = E M for all s€®. But since M
and -FM™ are invariant there exists for each sa unitary operator U in § (M) = H( M)
which commutes with E and is such that U (M®);U;'= M for all £€X. Thus

UMMPM U’ = U (MP)RU = ME®
for all £,seX x &. Thus U, M eR(M, M) for all s€@. Thus for all s U, M commutes
with & and since U does so does M. This completes the proof.

THEOREM 7.2. Let X be as in the preceding theorem and let L be an invariant o represent-
ation of K. Then the type L, type 11 and type 111 components of L are all invariant and if L
s of type 1 then for all j =oc, 1, 2, ... the untformly of multiplicity j component of L is in-

variant.
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Proof. First let L be invariant and of type X where X =1, II or III. Then L; =
(o(s7L,8)/0 (58,8 1)0(8,&)) Lsgss. Thus R(LF, L°) =R(L,L). Hence L* is also of type X.
Let L =L'® L"® L™ where L* is of type X and not every term need be present. Then
L =L"e L™ o [™*. But since L and L* are equivalent and the decomposition is unique
it follows that (L*)* and L* are equivalent as was to be proved. The proof of the second
statement is analogous.

CoroLLARY 1. If L is ergodic and invariant then L is either of type 1, type 11 or type 111
and tf L is of type 1 it is untformly of multiplicity k for some k=00, 1, 2, ...

CoROLLARY 2. If M is a primary representation of & then M is of type 1, type 11
or type II1 and if it is of type 1 it is uniformly of multiplicity k for some k=c0,1, 2, ...

At this point we need to consider the decomposibility of the representations of the
normal subgrdup X into irreducible parts. To this end we apply the theory developed in
section 10 of [13] and adapted to ¢ representations in section 3 of the present paper. We
recall that the set ﬁ" of all equivalence classes of irreducible o representations of X equipped
with a certain natural Borel structure is called the ¢ dual of X. It turns out that if ch is
as much as metrically countably separated as a Borel space then it is actually metrically
standard. We say then that X is metrically smooth. If every ¢ representation of X is
of type I we say that ¥e is of type I. We have mappings L— C(L) and C— £°(C) where L
is an equivalence class of multiplicity free o representations of X, C(L) is a measure class in
j(, C is a standard measure class in 5(" and £°(C) is an equivalence class of g representations
of . When X is metrically smooth and of type I then the mappings C and £° invert one
another and set up a one-to-one correspondence between the measure classes in xe

and the equivalence classes of multiplicity free ¢ representations of X.

THEOREM 7.3. Let ) be a closed normal subgroup of the separable locally compact
group &. Then for each multiplier o the mapping L, s—L° is a Borel function from ¥ < ©
to Je.

Proof. Let R denote the set of all irreducible ¢ representations of X in some fixed
Hilbert space ), where we do not identify equivalent ¢ representations. In view of the
definition of the Borel structure in 5{" it will suffice to show that L, s (L (¢), ) is a Borel
function on B x & for each fixed z in & and each ¢ and y in §,. But

(Lz(#),9) = (0(s7",8) /o (s2,57") 0 (8, %)) (Lyys—1)$), )

Moreover for each z, sxs~! is a continuous function of s. Thus we need only show that
(Ls ($), ) is a Borel function on R x &. But (L,(),9) = (1/4) (L3,s($),) where L’ is the ordi-

nary representation of the group extension &° defined in section 2. Moreover since (L3, (¢), %)
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is continuous as a function of ®° for each fixed L, ¢ and y it follows from the proof of Lemma
9.2 of [11] that for each fixed ¢ and v (L3(¢),v) is a Borel function on R x &. Hence (L,
{#),9) is a Borel function on j(" x & and the truth of the theorem follows at once.

Tt follows in particular from Theorem 7.3 that L —L* is a Borel automorphism of x°
for each s€®. Let us denote this automorphism of X by k(s). Then s—h (s) is an anti
homomorphism of & into the group of Borel automorphisms of X°. We shall refer to it as
defining the canonical action of & on xe. According to Theorem 7.3 it satisfies condition
(a) in the discussion preccding Theorem 5.1 and thus is capable of being the second term
in a system of imprimitivity baséd on Jz" whenever the latter is a metrically standard
Borel space. The definition of ergodicity for a system of imprimitivity given in that same
discussion actually involved only the measure class of the projection valued measure and
not the representation. Hence we may speak unambiguously of ergodic invariant measure

classes in J° (with respect to the canonical action of & on ﬁ“).

THEOREM 7.4. Let X be a closed normal subgroup of the separable locally compact group
& and let o be & multiplier for &. Suppose that xe s metrically smooth and of type 1. Let C
be a measure class in X°. Then L£°(C) is an invariant o representation of X if and only if C
is an invariant measure class under the canonical action of & on X. Moreover if C andC° (C)

are inwariant then L£°(C) s ergodic if and only if C is ergodic.

Proof. Tt is easy to see that (L°(C))® is equivalent to L£°(C*) where C° is the transform
of C by s. Hence £°(C) is invariant if and only if £°(C) and L£’(C*) are equivalent for all s:
that is if and only if C = C° for all s. Now let C and L£°(C) be invariant. If £7(C) is not
ergodic then £°(C) = L, ® L, where L, and L, are disjoint and invariant. Hence L, = £°(C})
and L, = £°(C,) where C, and C, are disjoint invariant measure classes. Since C; and C,
have properly more null sets than C, C cannot be ergodic. Conversely if C' is invariant
and not ergodic there exists an invariant measure class C; with properly more null sets
than C. Let E, be the set on which a Borel Radon Nikodym derivative of some member
of C, with respect to some member of C is different from zero. Then 4 is a C; null set if
and only if 4 N E, is a C null set. Since C, is invariant every (Z,)* differs from E, by a C
null set. Let u be a member of C and let C, be the measure class of E—u((X — E,) N E).
Then O, is invariant and £°(C) is equivalent to the direct sum of £*(C;) and L£°(C,). Hence
L£°(C) is not ergodic.

When J° is countable, as for instance when X is compact, then every ergodic invariant
measure class in X is ‘‘concentrated” in an orbit of j{” under &; that is there exists such
an orbit whose complement is a null set with respect to the measure class. This orbit deter-

mines the measure class uniquely and the correspondence thus set up between ergodic
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invariant measure classes and orbits is one-to-one and onto. When X’ is less special there
may be ergodic invariant measure classes which are not concentrated in orbits. These
considerations lead us to call an ergodic invariant measure class a quasi orbit. A quasi orbit

which is concentrated in an orbit we call a transitive quasi orbit.

TureoRrREM 7.5. Let X and o be as in Theorem 1.4, Then there exists one and only one
quasi orbit concentrated vn each orbit of X under &. Moreover for each Loeﬁ" the set G, of
all se€® such that Ly =L, is a closed subgroup of & containing X.

Proof. With evident tiny modifications the first part of the proof of Theorem 6.1 may
be read as a proof of the closure of G,,. If seX then L} = L,L,L;" for all ¢ representations
L of X. Hence L, and L are equivalent. Hence X < G,. The one-to-one map 0 of the coset
space &/, on the orbit 0, defined by s— Lg carries the unique invariant measure class
in /@, into an invariant measure class in J which is concentrated in 0,,. It follows
from the argument of Theorem 6.2 that this measure class is ergodic. Now let C' be any
invariant measure class in 0,,. ! carries the Borel structure in Q,, into a Borel structure
in (§/G,, which is perhaps weaker than the given one and carries C' into a measure class
(" defined on these special Borel sets. Since X is metrically standard there exists a Borel
subset N of 5{" of measure zero with respect to ' such that J‘i" — N is standard and hence
countably separated. Thus by Theorem 5.1 of [13] 8 is a Borel isomorphism when restricted
to 61 (‘72" — N) Hence every Borel subset of &/, differs by a null set from a Borel set on
which the members of €' are defined. Hence ¢’ may be canonically extended so that its
members are defined on ali Borel subsets of ¢/, and this extended C’ is still invariant.
Since there is one and only one invariant measure class in &/§,, the measure class ¢’ is
uniquely determined and hence so is C.

If J is as above and M is any o representation of } then M is quasi equivalent ([12]
section 1) to a multiplicity free representation L of )X whose equivalence class L* is uniquely
determined. Let C = C(L?) so that L = £°(C). For each Borel set E in ﬁ” let C denote the
measure class whose members are the measures F—u(F N E) where u varies over the
members of €. £°(Cg) is then the equivalence class of a sub ¢ representation Lf of L.
Let P be the unique projection in the center of R(M, M) such that the sub ¢ representa-
tion defined by Pj is quasi equivalent to the members of £°(Cg). E Py is evidently a

projection valued measure. We call it the projection valued measure belonging to M.

THEOREM 7.6. Let M be a o representation of the separable locally compact group &
and let K be a closed normal subgroup of & such that J‘Z" 18 smooth and of type 1. Let P be the

projection valued measure belonging to the restriction M'® of M to XK. Let b denote the canonical
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action of & on He. Then P, b is a system of imprimitivity for M based on He. This system s
ergodic whenever M is primary. ;

Proof. In view of Theorem 7.3 we have only to show that M, Py M, = Pz, . for all
Borel sets £ < j(" and all ye®. Now

M, MEP M, = (M9 (6 (), (0 (g g0 (1, 6)) Mz« for all &y} < .

Hence for each fixed y the set of all M, M M," on the one hand and the set of all M
on the other have the same commuting algebra R. Hence M,RM,"' = R. Since the Py are
just exactly the projections in the center of R it follows that each M, Py M," is of the form
P for some Borel set F < JA(". Now P and P define subrepresentations of M and M -
MP M, restricted to the range of Py is evidently equivalent to M restricted to the range
of Pg. Thus (M™Y restricted to the range of Py is equivalent to M™ restricted to the range
of Py. Let (' be the measure class of P. Then £°(C;) is the equivalence class of the multipli-
city free representations quasi equivalent to the restriction of M™® to the range of Py and
L°(([C]y)p) is the equivalence class of the multiplicity free representations quasi equivalent
to the restriction of (M™)? to the range of Pr. Hence ('; = ([Cly)s. Hence E and [ F]y differ
by a (' null set. Hence M, Py M,' = Py = Pegy, « as was to be proved. When M is primary
then M™ is ergodie by Theorem 7.1 and is of the form »nL for some multiplicity free o
representation L by Corollary 2 to Theorem 7.2. Since »nL is invariant and ergodic so is L.
Now it follows from the definition of P that the measure class of P is C(L*). Since C(L*)
is ergodic by Theorem 7.4 it follows that P, & is ergodic.

Let M be any primary ¢ representation of (§. As we have already remarked the measure
class C of the projection valued measure belonging to M is the unique measure class such
that M™ is a multiple of the members of £°(C). This measure class, as we have just seen,
is ergodic and invariant and hence is what we have called a quasi orbit. We shall call it

the quasi orbit associated with M.

8. The ¢ representations associated with transitive quasi orbits

We are now in a position to discuss problems (a) and (b) of the introduction in the
special case in which the closed normal subgroup X is such that xe is metrically smooth
and of type I. It follows from the results of the last section that a ¢ representation of X
can be the restriction to ) of a primary representation of (% only if it is of the form nL
where L is multiplicity free ergodic and invariant. ¢'— £°(C) sets up a one-to-one corre-
spondence between the equivalence classes of such L’s and the quasi orbits in ,72". To say

that for every multiplicity free ergodic invariant L there exists n =oo, 1, 2, ... such that
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nL is the restriction to X of some primary o representation of & is to say that every quasi
orbit is associated with some primary ¢ representation of ®. To find all primary o represent-
ations of & having a given restriction to X (different multiples of the same representation
being identified) is to find all primary o representations of & associated with a fixed quasi
orbit. In this section we shall discuss these questions in the particular case in which the
quasi orbit is transitive. The more difficult intransitive case we hope to treat (less com-

pletely) in a subsequent article.

THEOREM 8.1. Let ¢ be a multiplier for the separable locally compact group & and let K
be a closed normal subgroup of & such that J‘i" is metrically smooth and of type L. Let Ly be
any member of ﬁ", let G denote the closed subgroup of all s€® such that (L,y° = L, and let
O denote the orbit of L, in _72". Then for each primary ¢ representation L of G such that
L™ is equivalent to a multiple of L, the induced ¢ representation U™ of & is a primary o
representation whose quast orbit is concentrated in 0. Every such primary representation of
& may be so obtained and L and U™ determine one another to within equivalence. For each
X =1, 11, or III U* is of type X if and only if L is of type X and U* is irreducible if and
only if L is irreducible.

Proof. Let L be a primary o representation of § whose restriction L™ to X is a multiple
n of L° and apply Theorem 4.5 to (UX)®. The correspondence Gz K—> Gz is clearly
one-to-one and Borel set preserving between the space of §G:X double cosets and the
space of right G cosets. Thus G and X are regularly related. Moreover the correspondence
clearly takes the projection valued measure associated with the direct integral decomposi-
tion of Theorem 4.5 into the projection valued measure P defined on &/ which is the
first term in the canonical system of imprimitivity associated with U~. By Theorem 4.5 the
¢ representation associated with the right coset containing x is just the restriction of
L? to X. But (L*)® = (L™)*. Moreover L™ is a multiple of L, and L} and L} are inequivalent
whenever z and y are in distinct G cosets. Thus (U*)™® is a multiple of the multiplicity
free ¢ representation whose measure class is the image in X of the measure class of P
under the one-to-one mapping ¢ of /G on K defined by x—Lj. It follows in particular
that the quasi orbit of U* is concentrated in 0 and that ¢ composed with P is the projection
valued measure belonging to (U‘®)*®, Since the P, g, all lie in the center of the commuting
algebra of (U%)® we conclude that every member of the commuting algebra of U* com-
mutes with all P; and hence by Theorem 6.6 that U and L have isomorphic commuting
algebras. In particular U” is primary and the statements about the type and reducibility
of L and U* all follow. Suppose now that U™ and U™ are equivalent where L, and L,
satisfy the conditions laid upon L above. Let V set up the equivalence. Then ¥ also sets

19 - 665064 Acta mathematica. 99. Imprimé le 25 juin 1958
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up an equivalence between (U™)®) and (U*)* and hence sets up an equivalence between
the projection valued measures belonging to these two ¢ representations. Because of the
above described connection between these projection valued measures and the first terms
P! and P? of the canonical systems of imprimitivity associated with U™ and U™ respect-
ively we conclude that V sets up an equivalence between the pair P!, U™ and the pair
P2, UL, Thus L, and L, are equivalent by Theorem 6.6. Finally let M be any primary
¢ representation of & whose quasi orbit is 0. By Theorem 6.1 the mapping ¢ defined above
gets up a strong equivalence between a partial completion of the system of imprimitivity
for M described in Theorem 7.6 and a system of imprimitivity P’, &’ for M® based
on &/G. By Theorem 6.6 there exists a o representation L of § such that the pair P', M
is equivalent to the pair P, UL where P, &' is the canonical system of imprimitivity for U~
Thus M is of the form UL. We complete the proof by showing that L™ is a multiple of L.
By Theorem 4.5 and the connection already described between § cosets and §:X double
cosets (UL)™® is a direct integral over 8/ G of the (L™)* and the corresponding projection
valued measure is P. Because of the relationship already described between P and the
projection valued measure belonging to M™ it follows that (L™)® must be a multiple
of L§ for almost all z. But this relationship for a single « implies that L is a multiple

of L, as was to be proved.

TurorREM 8.1 reduces the study of the primary ¢ representations of & associated
with a fixed orbit to the study of certain primary ¢ representations of a certain closed
subgroup G of & which includes ). We show now that this latter study may be reduced
to the study of the primary w representations of G/J where w is a certain multiplier for
G/ X which may be non trivial even when o is trivial. As a first step we show that an irred-
ucible o representation of J{ may always be extended to an irreducible 7 representation
of the corresponding G where 7 is a multiplier for G which agrees with ¢ on X but not

necessarily elsewhere.

TusoreM 8.2. Let X be a closed normal subgroup of the separable locally compact
group G. Let o be a multiplier for G. Let L be an irreducible o representation of K such that L*
ts equivalent to L for all x € . Then there exists a multiplier T for G and a T representation M
of G such that Le = M; for all £€J{. v may be chosen so as to be the product with ¢ of a mul-
tiplier of the form 1/(w O f) where f is the canonical homomorphism of G x G on G/XK x G/XK
and o ts a multiplier for G/K. When t is so chosen @ is uniguely determined by o and L

up to multiplication by a trivial multipier.

Proof. Since L* is equivalent to L for all x there exists for each x a unitary operator
M, such that for all € X, M, L, M,;" = L. Since L is irreducible each M is uniquely deter-
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mined up to a multiplicative constant. We shall show that these constants may be chosen
so that x— M, has the properties stated in the theorem. It will be convenient to do this
in stages. Let U(H (L)) denote the unitary group of the Hilbert space §(L). As shown in the
proof of Theorem 8.5 of [13] this group is a standard Borel group in the Borel structure it
inherits from the weak operator topology. Moreover as shown in the proof of Theorem 10.8
of [13] there exists a Borel subset S of U ($) (L)) which intersects each one parameter family
0 (exp(10)) V once and only once. Let us choose such an § and then define 4, as the unique
member of § such that A,L; A;* = L for all £€X. We show first that z—(4,(¢),y) is a
Borel function of x for all ¢ and y in §H(L): that is that — A is a Borel function from §G
to U(DH(L)). Let E denote the set of all pairs x, Ve G x U(H (L)) such that VL, V-1 =L
for all £e€X. Then for each Borel subset E of U($ (L)) the set E' of all z€G with 4, € E
is the projection on G of EN (G x 8). If we can show that E is a Borel set it will follow that
E’ is the image of a standard Borel space by a one-to-one Borel function and hence is a
Borel set by Theorem 3.2 of [13]. Hence it will suffice to prove that E is a Borel subset of
G x U(H(L)). Let X° be the auxiliary group introduced in section 2 of this paper and let
L° be the ordinary representation of X° defined by L. Now it is trivial that VL, V-1 =L}
if and only if VAL, V-1 = AL for all complex A with || =1; thatisif and only if VL] V-1 =
(V*)5.¢ for all such A. Let 4, &;; 5, &,; ... be dense in X and let &1, s, ... be dense in H(L).
Then z, V €E if and only if (Vng,Ej V() ) = ((L’)gj,gj(qu),qu) forallj, k,m=1,2,..,;
that is if and only if (V.Lg, V-1 (¢i),bn) = (L, ($s),bm) for all j, k, m =1, 2, .... But for each
fixed triple j, k, m the left hand member of the last equation is clearly a Borel function on
U(H (L)) and the right hand side, which is equal to (L,, .-1($), ) multiplied by (o (x71,2)/
(o(x&,x 1)o (x,£)), is clearly a Borel function of z. The fact that E is a Borel set follows at
once.

As the second stage in our definition of M, we define B, for each z as follows. f ze X
we set B, =L, If x ¢ X we set B, = A,. Since X is a Borel set it follows from the fact that
x— A, is a Borel function and that £ — L} is a Borel function that z— B, is a Borel function.
Moreover since L = L,LEL;I for all x and & € X we see that B, L, B; = Liforall £,zeXx@G.
Now for all &,z,ye X x G x G we have B, L B;; = Li* = (L*){ =(B,LB;"){ = B,L{ B;' =
B,B,L; B, B;'. Thus for each z and y in G the operator B, B, B;; commutes with L,
for all £ € X. Since L is irreducible it follows that there exists a complex number of modulus
one, 7’ (z,y) such that B,, =7’ (x,y) B, B,. Thus x— B, is a 7’ representation of § for the
multiplier 7. Let v(z,y) =0 (z,y)/7"(%,y). Then v is a multiplier for ¢ which reduces to
the identity on JX. However » need not be of the form wOf. As the third and final stage
in the construction of M we show that we may change B so that the corresponding » is

of the desired form. Let I denote the one dimensional identity representation of X. Since
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v is the identity on X it follows that [ is a » representation. Hence we may form the induced
» representation U’ of (. Call this v representation W. Now for all £,ze€X x § we have
We = WeW,v(£,x). Moreover (I%); is multiplication by »(x~1,z)/(» (& 2 1)v(x,£)). But

Ly = Bygen =7 (@€,07Y) B¢ B, = 7' (v, )7 (%,€) /7' (v ',2) B,L; B; !
and B,L:B;' = L{ =o(xLz)/(0(x&,x )0 (2,E) Lygy .

Combining these two equations we deduce at once that v(x1,x)/(v (@&, Y)v(x,£) =1 for
all &, xeX x G. Thus I” is the one dimensional identity for all x € . Hence by Theorem 4.5
W is the identity for all £ € X. Hence W, = (£,x) W, for all &, € X * G. Let C be a regular
Borel section ([11] page 103) of G with respect to J{ which meets X in the identity. For
each z € § let ¢ (x) denote the unique member of C such that c(x)zteX. Now &, y—~&-lyis
a one-to-one Borel mapping of X xC on § and hence, since X xC and § are standard,
has a Borel inverse. Since (c(x)a—1)"'c(x) =« we see that x—c(x) is the projection on C
of the inverse of this mapping and hence is a Borel function. Let W, = Weq, for allze §.
Then W, = W,uy—zr =v(c(@)zL,2) W, =g(x) W, where x—g(x) =v(c(x)z1,) is a Borel
function from @ to the complex numbers of unit modulus and z— W is constant on the X
cosets in (. Since W is a v representation of G it follows that W, is a »’ representation of §
where v (z,y) = v (,%) g (z,y)/g(x)g (y). We now define M, for all z€ G as (1/¢(x)) B,. Since
B is a g/v representation of § it follows that M is a ¢/»" representation of §. But since W'
is constant on the X cosets of G and W' is a »’ representation of G it follows at once that
v' is of the form wof. That w is a Borel function follows from Lemma 1.2 of [11]. That
M. = L for all £eX follows from the fact that W is the identity. To complete the proof
of the theorem we have now only to establish the essential uniqueness of w. Let N be a o/e’Of
representation of (G which agrees on X with L. We compute at once that N,L: N;' = M, L,-
M =L for all &, xe X x (G and hence that N, =p(z) M, for all z where g (z) is a complex
number of unit modulus. Hence N., =g (£x) M,, for all £, xeX x §G. Since (w'of)(£,2) =
(wof)(&,2) =1 we conclude that o(,2)LeN,=p(Ex)o(&,2) L. M, Hence g(x)=p(x).
Hence ¢ is constant on the X cosets. Since (wof) (x,y) = (w'of) (z,y) (e (xy)/e(%)o (¥)) the
desired result follows at once. That g defines a Borel function on G/X follows from Lemma
1.2 of [11].

TurorEM 8.3. Let X, G, o, L, M, 7, f, and w be as in the statement of Theorem 8.2.
For each w representation N of G/X let N' denote the wof representation of G defined by com-
posing N with the canonical homomorphism of G on G/XK. Then the mapping N—~M g N’
sets up a one-to-one correspondence (equivalent representations being identified) between, the set

.of all primary w representations of G/XK and the set of all primary o representations of G
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which reduce on J to a multiple of L. For each X =1, 11, or 111, M ® N’ 1s of type X if
and only if N s of type X and M ® N' is irreducible if and only if N is irreducible.

Proof. Let W be a primary ¢ representation of § which reduces on J to a multiple of
L. Replacing W by an equivalent representation if necessary we may suppose that (W) =
H(M) ® D, where , is a suitable Hilbert space and that W, =L, x I, =M, x I, for all
£eX. Now for all & zeX X G we have

Wegrs = Moge ¥ Iy = (M M, M;" < I)v(x&,x V) (2,8),7(x L, 7))

and we have Weeer =W, W W o (xé, 270 (x,8)/0(x1,2)).

We have seen however that I” regarded as an wof representation is equivalent to I for
all x. Thus the expressions involving ¢ and T must be equal and we may conclude that
W W Wt =M, M M;" x I, Thus (M, x I)(Le x I)(M, x I,)'=W (L x I,)W;'. Thus
for each x€ G, W, (M, x I,) commutes with L x I, for all £eX. Since L is irreducible,
WY (M, x I,) must be of the form I x ¥, where V, is a uniquely determined unitary
operator in §),. (If T'€H, ® H, and hence is an operator from 53—0 to §, then (4 x BY(T) =
AT B*, (See [11] section 5 for further details.) Thus W, = (M, x V,). Now for all z and y
in GW,, =o(x,y) W, W,. Hence

Moy % Voy =0 (@,y) (M, X V) (M, X V) =o(x,y) (M. M, x V.V,

=0 (& y) (/7 (z,y) M, X V. V) = (M, X (0(x,y)/t(®y)) V. V,).
Therefore M., % Vyy=M,, > (o(@,y)/t@y) V.V,
80 Vg =(o(@,9)/t(@y) V.V, = (@of)(xy) V.V,

The fact that (V,(¢$),) is a Borel function of « for all ¢ and y in §) follows at once from
the corresponding facts about W and M. Thus V is an wOf representation of G and W =
M ® V. But V;is the identity for all £ ¢ X. Hence (applying Lemma 1.2 of [11] to establish
the Borelness of N we see at once that V is of the form N’ where N is an w representation
of G/X. We have thus proved that W is of the form M ® N’. We shall see below that ¥
must be primary. Now let N, and N, be any two o representations of G/X. Let T be any
intertwining operator for M ® Nj and M ® N;. Then T also intertwines the restriction of
these ¢ represeatations to J; that is L ® I and L ® I. Since L is irreducible 7' must be of
the form I x 8. Since I x § intertwines M @ N; and M ® N5, 8 must intertwine N; and
N; and hence must intertwine N, and N,. Conversely if S intertwines N, and N, then it
is obvious that I x § intertwines M ® N; and M ® N;. It now follows at once that M @ N;
and M @ N} are equivalent if and only if N, and N, are equivalent and that the commuting
rings R(N,N) and R(M @ N';, M ® N') are isomorphic. From these commuting ring
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isomorphisms it follows at once that N is primary if and only if M ® N’ is primary that if
both are primary they have the same type and that one is irreducible if and only if the
other is also. This completes the proof of the theorem.

Combining Theorems 8.1, 8.2 and 8.3 we may state as our final result.

THEOREM 8.4. Let &, K and o satisfy the hypotheses of Theorem 8.1 and let Ly, 0 and
G be defined as in that theorem. Then there exists a multiplier  for G/X (unique up to multi-
plication by trivial multipliers) a multiplier T for G and a T representation M of G such that
M restricted to X coincides with Lyand such that N — UM O sets up a one-to-one correspondence
(equivalent representations being identified) between the primary w representations of G/X
and the primary o representations of & having O as orbit. N and UM®Y have the same von
Neumann-Murray type and N is srreducible if and only if UM®Y is irreducible.

9. Applications and examples

Suppose that &, X and ¢ are as described in the first sentence of Theorem 8.1 and
suppose that the only quasi orbits of 3¢ under @ are transitive ones. Then the primary o
representations of @ described in Theorem 8.4 include all primary o representations of &
and we reduce the problem of finding the primary representations of & to that of finding the
orbits of X° under & and for each such orbit to finding the primary w representations of
a certain subgroup of &/X. Moreover it is easy to find useful sufficient conditions for the
absence of non transitive quasi orbits and hence for the possibility of the indicated complete
analysis. Let us say that X is o regularly imbedded in & whenever for each finite Borel

measure & in ¢ the measure 4 in the orbit space (JC") is countably separated. This says
slightly less than that (J(") is metrically countably separated since we do not know that

every finite Borel measure in (JC") is of the form u. Now the hypothesis of metric countable
separatedness for S made in the statement of Theorem 6.3 is not used in the proof in its
full force. All that is actually used is that measures in S of the form jare countably separ-
ated. Thus we may apply Theorems 6.3 and 7.6 and conclude the truth of

THEOREM 9.1. If &, X and o are as described in the first sentence of Theorem 8.1 and X
is o regularly imbedded in & then every quasi orbit of 5 under & is transitive. Hence, in partic-
ular, every primary o representation of & is one of those described in Theorem 8.4.

We have also

THEOREM 9.2. Let &, X and o be as described in the first sentence of Theorem 8.1 and

in addition let Xe be not only metrically standard but actually standard. Let there exist o Borel
set S in Kwhich meets each orbit of 9 under ® exactly once. Then JC 1s o regularly imbedded

m .
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Proof. Apply Theorems 5.2 and 7.3.
It would be interesting to know whether or not it is possible to strengthen Theorem

9.2 along the lines suggested by Theorem 8.6 of [13].

THEOREM 9.3. Let &, X and ¢ be as described in the first sentence of Theorem 8.1 and

let K be g regularly imbedded in &. Suppose that for each LeXe the subgroup § consisting of

N
all x with L* ~ L is such that (G./XK)” is of type | where w is the essentially unique multiplier
in Gi/XK defined by Theorem 8.2. Then G 4s of type 1.
Proof. Apply Theorems 8.4 and 9.1.

THEOREM 9.3 provides an inductive mechanism for establishing the type-I-ness of
complicated groups (cf. Dixmier in [4] and {5]). Less directly Theorem 8.4 provides such a
mechanism for establishing smoothness and metric smoothness. We are not prepared to
formulate a precise theorem but content ourselves with the remark that, generally speaking,
when one has an “explicit” enumeration of the irreducible o representations of a group
one can make use of it to show that the group has a smooth ¢ dual.

For the special case in which X is commutative, 0= 1 and & is a semi direct product of
X with &/X applications of Theorems 8.4, 9.1, 9.2, and 9.3 to concrete groups have been
described in [10] and [11]. In this section we shall discuss some examples to which the
results of [10] and [11] do not apply. We begin with a few elementary facts about the exist-

ence of non trivial multipliers.

THEOREM 9.4. Let X and H be closed subgroups of the separable locally compact group
& such that J is normal, } N H = and KH = &. Then every multiplier v’ for & is similar

to a multiplier v for & which may be uniquely represented in the form:

(@) ¥ (191, %2Ys) = 0 (21,41 (%2))0 (41, Y2) 9 (X3, ;) where 2, and x, are in K, y, and y, are
in H, yy(x,) =y 2,91 Y, 0 is a multiplier for K, o is a multiplier for H, g is a Borel function
from K x U to the complex numbers of unit modulus, g is one on K x e and o and g satisfy

the two following identities:

(b) 6 (y (%), y (%a)) = 0 (%1, T2} 9 (€1 25,9))/ (9 (%1, 9) 9 (%2, 9)),

(©) 9(,y192) = 9 (y2(%),¥1)9 (2, y2)-
Moreover for every choice of o, w and g satisfying (b) and (c) the funciion v defined by (a)
is a multiplier for .

Proof. Let v be a multiplier for & and let V' be any »' representation. ThenV,,=
v (z,y) V. Vy for all z in X and all y in Y. Let V,y=(1/¥ (2,4))Vzy. Then Visa v
representation for a multiplier ¥ which is similar to »’. Since v (z,e)=9"(e,y) =1 for all
x,y€ KX x W it follows that V,,=V,Vy=V,V,=A, B, where A and B denote the restric-
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tions of V to X and H respectively. Moreover 4 is a ¢ representation of X and B is an
w representation of } where o and w denote the restrictions of » to X and U respecti-
vely. Now

Vewawe = Vevaworvwe = Ven@ong = Az gz By
Thus V(X191 %2 ¥2) A, By, A, By, = 02,4 (%2))0 (Y1,¥2) A2, A0 By, By,

and hence A4,.,B, 4, B, is identically v(x,yy,%,¥s)/(0(%yy, (X)) (¥1,,)) times the
identity. Hence this last expression depends only on z, and y,. Denoting it by g(x,,¥;)
we obtain (a) and g (x;,¢)= 1. Now let 6 and w be arbitrary multipliers for X and } respect-
ively and let g be a Borel function from J x H to the complex numbers of modulus one such
that g(x,e)=1. Define » by (a). A straightforward calculation shows that v is a multiplier
for & if and only if g and ¢ satisfy the following identity:

(d) (3,41 ¥2) 9 (X2, ¥1) 0 (21 Y1 (T2), Y1 Y2 (%)) 0 (%1, Y1 (22))
= (%Y (%), 1) 9 (X3, Y2) 0 (21, Y1 (€2) Y1 Y5 (T3)) 0 (T2, Y2 (25)).
Setting y, = e and using the fact that ¢ is a multiplier (d) reduces to (b). Moreover using
(b) to simplify (d) we get (c). Thus (d) is equivalent to (b) and (c) together and the proof
1s complete.
We note that when o=1 (b) reduces to the statement that for all y in H, x—g¢ (x,y) is
a homomorphism of X into the complex numbers of modulus one; that is a member of the

group X of all one dimensional unitary representations of . Thus we have the

CoroLLARY. The multipliers v for & which reduce to one on J and on H are just the
functions on & x & such that v (x,y,, 22y,) = ¥, (%) where y—>x, is a function from W to K such
that y,(x) is a Borel function of x and y and y,.,. =[x, Y2, for all y, and y, in H. (Here
Xy (@) = x(y(2)).)

THEOREM 9.5. Let y—y, be as described in the preceding corollary. Then the correspond-
ing multiplier is trivial if and only if there exists a member ¥° of X such that 7o =[2"1y/2°
for all yeN.

Proof. Let %° be any member of XK. Let g(xy) =y (2) for all z,y in K x Y. Let » be the
trivial multiplier on & defined by g. We verify at once that

V(21Y1:%2Ys) = 9 (21 Y1%2Y3)/9 (X1 91) 9 (X2 e) = 1° (41 (22)) /2" (x2).

Conversely let y —y, define a trivial multiplier. Then there exists a Borel function g from

& to the complex numbers of modulus one such that

{21y (X Y1Y2) = 9(X151) G (2292) Xy, (%2)

for all 2, and z, in ) and all y; and y, in H. If we set y, = e this becomes g(z,a,¥,) =
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g(x,)g(2¥5). Thus g restricted to X defines a member y° of X and our original identity

becomes
Zo (xl)lo {w1{zN g (Y192 = Zo (“71)750 (T2} (Y139 (¥2) 20, (22)-

But since v reduces to one on H it follows that g(y,vy,) =g¢(¥,)9(y.) and we obtain

A (@) = 1" (Y1 (22)) /2 (22)
as was to be proved.

We shall be chiefly interested in the case in which y(x)= z; that is in the case in which
& is the ordinary direct product of J{ and . Our results yield

THEOREM 9.6. Let & be the direct product of the separable locally compact groups X
and H. Then (up to similarity) the multipliers v for & are just the functions on & x ® such
that v(2,Y,, To¥s) = 0 (X1, 22)0 (§1,Yo) Xy, (X2) where o is an arbitrary multiplier for K, w is an
arbitrary multiplier for H and y—y, is a homomorphism of H into X such that y, (x) is a Borel
function on J x . The multiplier defined by o, w and y—>y, is trivial if and only if o and

o are trivial and y, (x)=1.

Example 1. Let & =} x 3 where X is a separable locally compact abelian group and
Jz is its dual. Let v (2, y,;%5,y5) = ;1 (2,) for all z; and =, in X and all ¥, and y, in X. By
Theorem 9.6 v is a non trivial multiplier for the abelian group ®&. Let us determine the
» representations of & by applying Theorem 8.4. Since » reduces to one on X, 3 coincides
with X and is certainly smooth and of type I. Let “"L demnote the irreducible » representa-
tion of X defined by yoeﬁ. Since the inner automorphisms of & are all trivial (*L);'** is
simply “L, multiplied -by v (41 5520, 5:)/v (m 2y 21,90 v (@, y55 7, €) 91 (@) /s () -
1 (@) = y1 ' (x); that is »*7'L,. Thus there is just one orbit—the whole of . Moreover
the subgroup leaving any one of its elements fixed is just X. Since X /X is the identity there
is just one irreducible v representation of & associated with this orbit. In other words &
has to within equivalence just one irreducible v representation. It is infinite dimensional
and is the » representation induced by the identity representation of X.

It is interesting to compare example 1 with Theorem 1 of [9] which presents exactly
the same result from a rather different point of view.

Example 1 points up three ways in which the theory of projective representations
differs sharply from the theory of ordinary representations. An abelian group can have
infinite dimensional irreducible projective representations and for a given multiplier »
can have a unique irreducible v representation. The » representations of a direct product
need not be related in a simple way to the » representations of the factors even when the
factors have type I » duals. Of course if » is a direct product of multipliers for the factor
groups; that is if the y —y, of Theorem 9.6 is identically one then it is not difficult to prove

an analogue of the corollary to Theorem 1.8 of [12].



306 GEORGE W, MACKEY

Example 2. Let ) be as in example 1 but let X be replaced by H# where } is a countable,
discretely topologized, dense subgroup of X. Let » now denote the restriction to X x }
of the » of example 1. Just as before we have (*L)7"¥ =¥¥"L_ but now ¥, can no longer be
an arbitrary element of f( but is restricted to lie in . Thus there are many orbits—one
for each 3 coset in . Just as before there is exactly one irreducible » representation of
& for each of these orbits; namely, the one induced by any member of the orbit. However
in this case the irreducible » representations described in Theorem 8.4 do not exhaust the
irreducible » representations of . In addition to the orbits in J there is at least one proper
quasi orbit. Haar measure in JX is ergodic under the group of translations by members
of H and hence defines an ergodic invariant measure class not concentrated in any orbit.
The existence of this quasi orbit can be used to show that & has primary » representations
which are not of type I in addition to many irreducible » representations other than those
described in Theorem 8.4. Thus a commutative (& can have non type I projective represent-
ations. We shall defer details to our projected paper on the intransitive case.

When X is a vector group, Theorem 1 of [9] reduces to the theorem of Stone and von
Neumann on the uniqueness of sets of operators satisfying the Heisenberg commutation
relations. Hence Example 1 above contains this theorem. We shall now indicate a similar
connection between Example 2 and the problem of finding all sets of operators satisfying
the “anti commutation relations” of quantum field theory. The problem is that of finding
all sequences A;, A,, ... of bounded operators on a Hilbert space § such that 4,4, +
ApA;=0 and 4,45+ A5 A4,=6, for all §, k=1, 2, .... Following H. Weyl ([16], page
252) we let A;=1(P,,_, +iP,;) where i2= — 1 and the P, are self adjoint. We note that the
anti commutation relations expressed in terms of the P;’s are P,2=1 and P,P, + P, P;=0
for all j= k. For operators 7' with 7'2 =1, unitariness is equivalent to self adjointness.
Thus our problem is that of finding all sequences P;, P,, ... of unitary operators such that
P?=1 and P,P,+P,P,;=0 for j + k. Given such a sequence let S, =P, and let 8, =
1P,_; P;forj=2,3,.... Then the 8, form a sequence of unitary operators such that 8,8, ; =
—8;18;and 8,8, =8;,,8,forallj=1,2,...andallk =2, 3,.... Moreover P; = ( —1)’~1-
(8:8; ... 8)) for § =2, 3, .... Conversely if S, 8,, ... is a sequence of unitary operators
satisfying the conditions just enunciated and we let P, = ( — i)~ (S, Sp...8)forj=2,3, ...
and P, = 8, then P} =1 and P,P, + PP, =0 for j = k. In other words our problem is also
equivalent to that of finding all sequences S,, S,, ... of unitary operators such that 87 =1,
8,118, = —8;8;,; and 8,8;,, =8,.4,8,forall j=1, 2, ... and k=2, 3, .... Let X be the
direct product of countably many groups of order two and let z,,,, denote the generator
of the jth group. For each j=1, 2, ... let y,, denote the unique element of X such that
Yo;(Xay1) = 1 whenever [2j — 2k + 1] = 1 and y,,(¥y4,) = — 1 whenever |2j —2k +1| =1.
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Let H denote the subgroup of X generated by the y,,. Let » be the multiplier on J x H
described above. A v representation L of X X Y is uniquely determined by its values on the
29,1 and the y,;. Let S;, 8, ... be a sequence of unitary operators. It is easy to see that
o1 = Szpq1 a0d Ly, = 8y, for all

7=1,2, ... if and only if the §; form a solution of the second reformulation of our problem.

there exists a v representation L of X} X H such that L

Thus the problem of finding all sets of operators satisfying the “anti commutation relations”
is equivalent to the problem of finding all » representations of the discrete group X x H.

Since this representation problem is a special case of that considered in example 2
it involves the consideration of non transitive quasi orbits and hence is only partly solved
by the theory of the preceding sections. A partial solution going beyond that provided by
our theory has been sketched in a recent note of Girding and Wightman [6]. We hope
that our projected investigation of the non transitive case will yield general results whose
application to the case at hand will include the results of [6]. We remark that example 2
was suggested to us by our study of [6].

Example 3. Let & be the group of all 3 x3 unimodular real matrices which are zero
above the main diagonal. Let ) be the normal subgroup of & consisting of all members
which are one on the main diagonal. Let D be the subgroup of & consisting of all
members which are zero off the main diagonal. We shall determine the (ordinary) irreducible

representations of J{ and then those of &. & is clearly a semi direct product of X and D. Let

100 A00
{a, b, ¢> denote the matrix (b 1 O) and let (4, u, v) denote the matrix (0 U O). Then
acO 00w

every member of & is uniquely of the form {a, b, ¢) (4, u, ¥) where a, b, ¢, 4, p, and »
are real numbers such that Auy =1. We compute that

{a1,b1,¢1> @y, by,05) = @y + @y + € by, by + by, € + Co),

that (Aot v1) (lz,ﬂzﬂ’z) = (}»112,#1,‘12,1’11’2)
and that Asp,v) {a,b,c> (A, u,v)? =/za,l£b, 1,0\ ’
(A,1,v)<a,b,¢) (A, u,7) \i% 2%,

To determine the irreducible representations of X we note that the center Z of X is the set
of all {a,0,0> and take this normal subgroup of X as the X of Theorem 8.4. The quotient
group H/Z acts trivially on Z and hence on Z. Thus the orbits in Z are the points of 4
and the groups holding the points of Z fixed all coincide with . Now the points of Z are
in one-to-one correspondence with the real numbers in such a fashion that the real number
r corresponds to the representation (a,0,0>-—>exp (tar). Let f,(a,b,c) = exp (ir (a-bc)).
We compute that f,(<ay,by,¢,) (8s,by,¢5)) = exp(—irbyca) f; ({a1,b1,€1)) f; ({82, by, ¢5)). Thus
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f, defines a one dimensional projective representation of X, with multiplier exp(—irb;c,),
which reduces on Z to the representation defined by r. Hence the most general irreducible
representation of J{ is obtained by choosing an r and an irreducible projective representation
V of X/Z whose multiplier is exp (érb,¢,) and then forming f, V. When r = 0 we get simply
the one dimensional representations of X defined by the one dimensional representations
of the two dimensional vector group X /Z; that is the representations W** where Wi s, c5
is multiplication by exp (isb + itc). When r = 0 the multiplier exp (irb,c,) of K/Z is of the
form discussed under Example 1. Thus there is a unique irreducible projective representa-
tion V" of X/Z with the multiplier in question and hence a unique irreducible representa-
tion W' = f, V" of X associated with the orbit of {a,0,0> —exp (iar). In all then, we have one
two parameter family s, W*? of one dimensional representations of J and one discon-
nected one parameter family r— W’ (r =+ 0) of infinite dimensional irreducible representa-
tions of ). It follows easily that ) has a smooth type I dual.

To determine the irreducible representations of & we shall first determine the orbits

t \
in X under the action of D. W, ca b.c.5 24+ is multiplication by exp (z (%’ub + —;’)

and hence is equal to Wi-‘;{’lgfc"ﬁ". Thus the one dimensional representations fall into four
orbits as follows. 0, contains all W** with s==0 and ¢ = 0. 0, contains all W"®with s =0, 0,
contains all W*! with ¢==0, 0, contains W only. Now W, ,.)¢a.0.05hmn+= Wiramo0.05
which is multiplication by exp (i (v/A) ar). Hence W, 1y ca.v,c.5 b ury— = W44's,c5. Thus all in-
finite dimensional irreducible representations of X lie in a single orbit 0. The subgroup
of D leaving W"! invariant is the set of all (4,4,7) with 4 = u = and 43 = 1; that is it con-
sists of the identity alone. There is then a single irreducible representation associated with
0,. It is infinite dimensional and is the representation of @ induced by any one dimensional
representation W** of J{ with s= 0 and ¢ = 0. The subgroup D, of D leaving W"° invariant
is the set of all (4,u,») with g =21 and Auv = 1; that is, the set of all (4,2,1/42) and is iso-
morphic to the multiplicative group of all non zero real numbers. The possible extensions
of W>! to XD, are in an obvious one-to-one correspondence with the one dimensional
representations of D, and hence with the non zero real numbers. The irreducible representa-
tions of & associated with 0, are the irreducible representations induced by these exten-
sions. They form a family of infinite dimensional representations parameterized by the non
zero real numbers. The .-reducible representations of M associated with 0 are constructed
analogously; the only difference being that D, is replaced by the group D? of all (1/2%,4,2).
Again we get a family of infinite dimensional representations parameterized by the non zero
real numbers. The irreducible representations of & associated with 0, are in an obvious one-

to-one correspondence with the irreducible representations of the abelian group D. They are
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all one dimensional and may be parameterized by the pairs of non zero real numbers. The

subgroup D, of D leaving W1 invariant is the set of all (4, 1/42, 4). It is not hard to show

that this group has no non trivial multipliers and hence that W! may be extended to be a rep-
resentation of XD.,. The possible extensions correspond to the irreducible representations of
Dw- As with 0, and 0; we get a family of infinite dimensional irreducible representations
parameterized by the non zero real numbers. This time however the inducing representa-
tions are themselves infinite dimensional. In all we have one isolated infinite dimensional
representation, three families of infinite dimensional representations, each parameterized
by the non zero real numbers and one family of one dimensional representations para-
meterized by the pairs of non zero real numbers.

Example 4. Let H be a finite group and let 4 be group of automorphisms of H. Let
X be the group of all functions f from the integers to H. Equipped with the direct product
topology X becomes a compact group. For each integer n, and each x €4 let «, n, denote
the automorphism f—f where f'(n) = x(f(n + n,)). The set of all of these automorphisms
is a group ( isomorphic to the direct product of 4 with the additive group of all integers.
Let & denote that semi direct product of the compact group X with the discrete group
in which the homomorphism from @ into the group of automorphisms of J is the natural
one. If n, and n, are integers with 7, < n, then the set of all f in X with f(rn) =eforn, < n<n,
is a normal subgroup whose quotient is naturally isomorphic to the direct product of a
finite number of replicas of H. The representations of this quotient group define representa-
tions of X and it follows easily from the theory of compact groups that every irreducible
representation of J{ may be so obtained (with varying », and n, of course). Thus the irredu-
cible representations of X may be put in a natural one-to-one correspondence with those
functions M, n— M™ from the integers to the irreducible representations of H such that
M™ is the one dimensional identity for all but finitely many values of n. It is clear that the
orbits of X under (@ are all infinite except for the one containing the one dimensional iden-
tity representation. Thus all irreducible representations of &, except those trivially derived
from representations of &/X ~ @, are infinite dimensional. The subgroup of (I taking the
representation defined by n->M™" into one equivalent to itself is the set of all «, 0 such
that o takes M™ into a representation equivalent to itself for all n. Hence to determine
the irreducible representations of & it sutfices to determine the irreducible representations
of the finite group U, study the way in which the automorphisms in A4 act on subsets of
these representations and determine the o representations of certain subgroups of the
finite group A for certain values of ¢. If we take H to be A4, the alternating group on six
elements, and A to be the group of all automorphisms of H it is easy to see that all of these

things may be done quite explicitly and that non trivial ¢’s arise. We shall content ourselves
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here with an indication of the proof that non trivial ¢’s arise. Let §; denote the symmetric
group on six elements so that A, is a normal subgroup of index two of §;. As shown on
page 209 of [2] the automorphisms of 4, induced by the inner automorphisms of §; form a
normal subgroup A, of index two in the group A of all automorphisms. Now it follows
from the character table on page 266 of [8] that amongst the irreducible representations
of §; there are (to within equivalence) just two of dimension ten and it is easy to see that
these remain irreducible and become equivalent when restricted to A;. Let W denote
the representation of X defined by the function n— M" where M° is the ten dimensional
irreducible representation just described and for j+ 0, M’ is the one dimensional identity
representation. The subgroup of @ taking W into a representation equivalent to itself is
the group of all «, 0 and « is restricted to the subgroup of 4 taking M° into something equi-
valent to itself. Moreover inspection of the character table of A (easily derived from that
of ;) shows that this later subgroup is the whole of 4. The representations of & associated
with the orbit of W are thus in a natural one-to-one correspondence with the ¢ representa-
tions of 4 for some o. If this o were trivial there would exist an ordinary representation
of ) A extending W. Hence there would exist an ordinary representation of 4,4 extending
M°. Let L be any such representation of 4;4. By the character table for §; and the defini-
tion of M® we know that L has exactly two inequivalent extensions to the normal subgroup
of 4 defined by the inner automorphism of §;. Moreover from the proof given in [2] that
there exist automorphisms of A4, other than those in A4, it is easy to see that these auto-
morphisms interchange the two extensions of L to A, It follows at once from the general
theory that there can be no extension of L to 4 and hence no extension of W to XA.
Thus o cannot be trivial. Thus when J is non commutative non trivial multipliers can occur
even if (§ is a semi direct product of X and &/X.
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