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w 1. Introduction 

Let  us begin by  repeating (in a somewhat  more elaborate f o r m ) s o m e  definitions 

due to C. Bessaga [1]. A normed linear space E is universal for a class of norlned 

linear spaces provided every member  of the class is linearly isometric with some 

linear subspace of E. A finite-dimensional convex body  K is a-universal for a class 

~7~ of convex bodies provided each member  of ~ is affinely equivalent  to some pro- 

per section of K; and  K is centrally a-universal for ~ provided K is centered and 

every centered member  of ~ is affinely equivalent  to some central section of K.  

Replacing affine equivalence by  similarity leads to the notions of s-universality and  

central s-universality. (K  is centered at 10 provided K - p  = 2 0 -  K.  A section of K is 

the intersection of K with some flat. The section is proper provided it includes a 

relatively interior point  of K and central provided it includes the center of K.) 

I n  Problem 41 (1935) of The Scottish Book [17], S. Mazur asked whether there 

is a 3-dimensional Banach  space which is universal for all 2-dimensional Banaeh 

spaces, or, equivalently, whether  there is a 3-dimensional convex body  which is cen- 

tral ly a-universal for all 2-dimensional convex bodies. More generally, given an integer 

n>~2, is there a finite-dimensional convex b o d y  which is centrally a-universal for 

all n-dimensional convex bodies? (By convex body we mean here a bounded closed 

convex set.) These problems have been studied independent ly  by  B. Grtinbaum, 

C. Bessaga, and Z. Melzak. By  ve ry  simple reasoning, Grt inbaum [6] established a 

negative answer to Mazur 's  first question and  obtained some information on the 
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general problem. Bessaga's reasoning [1] was more complicated, but he solved (ne- 

gatively) the general problem, and showed in fact that  no n-dimensional Banach 

space is universal for all the 2-dimensional Banach spaces whose unit spheres are 

(2n+2)-gons .  Melzak [12] mentioned Mazur's problem but did not a t tack  it directly. 

Instead, he solved affirmatively a related problem in which sections are replaced by  

"l imit  sections". He stated Mazur's problem as follows: Is there a 3-dimensional con- 

vex body K such tha t  every 2-dimensional convex body is affinely equivalent to some 

plane section of K? 

In  the present paper, we s tudy some problems concerning universality of con- 

vex bodies by  a method similar to Bessaga's in that  Lipschitzian transformations 

play an important  role. Our machinery is more elaborate than his, but we are repaid 

by  sharper results. We obtain a negative solution of Melzak's version of Mazur's 

problem and are able to establish some other conjectures of Melzak [13]. We are 

interested especially in four functions ~a.,, ~a.r, ~s ,, and ~s.r connected with univer- 

sality of convex bodies, and two others ~a.v and ~a.1 connected with central univer- 

sality. These are defined as follows (for 2<~n<~r, and x = a  or x=s ) :  

~x., (n, r) respectively ~x.r (n, r) is the smallest integer k such tha t  some k-dimensional 

convex body is x-universal for all n-dimensional convex polyhedra having r + 1 vertices 

respectively maximal  faces; 

~a. ~ (n, r) respectively ~a.r (r, n) is the smallest integer k such that  some k-dimensional 

convex body is centrally a-universal for all n-dimensional (centered) convex polyhedra 

having 2r  vertices respectively maximal faces. 

We are able to prove tha t  

n 
> ~a'v(n, r)>~ ~ (r + 1) ~< ~a'r(n, r ) < r ,  

r >~a 'v  (n, r)>~a.r(n, r )=r ,  

and ~o >~s.V(n, r) >1 ~ - - - l ( r +  2)~<~.~(n, r ) <  oo. 

Sharper results are obtained for special values of n and r, but  many  unsolved pro- 

blems remain. 

In  w 2 below, we establish the Lipschitzian nature of certain transformations 

involving convex bodies, while w 3 studies the Hausdorff dimension of certain spaces 

of convex bodies. In  the concluding w 4, results from w167 2-3 are combined to yield 

our principal theorems, and some unsolved problems are mentioned. 
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w 2. Some Lipschitzian transformations 

A transformat ion ~ of a metric space (M, ~) into another  metric space (M', @') 

will be called Lipschitzian (with associated constant B) provided there exists B <  

such tha t  @' (q~x, ~vy)<B@ (x, y) for all x, y E M;  and ~ is locally Lipschitzian at  a 

point  z E M provided q is Lipschitzian on some neighborhood of z. 

2.1. PROPOSITION. Suppose (M, @) is a compact metric space and q~ is a trans- 

/ormation o/ M into a metric space (M', @'). Then cf is Lipschitzian i~ it is locally 

Lipschitzian at each point o~ M. 

Proo/. For  each point  z 6 M  there are a neighborhood Vz of z and  a number  

B ~ < c ~  such tha t  @'(qJx, cfy)<~Bz@(x,y) whenever x, y6Vz .  Since M is compact,  

there are points z 1 . . . .  ,z~ of M and a number  s > 0  such t h a t  for each z 6 M ,  the 

s-neighborhood of z lies in at  least one of the sets Vz~. Wi th  B ' = m a x ~ B ~ ,  we have 

@' (~vx, ~vy)~< B'@ (x, y) whenever @ (x, y ) <  e. Since ~v is continuous, the set ~v M mus t  

be compact  and hence of finite diameter (3; whenever @(x, y)>~s, we have @'(~x, 

cf y)<~ (6/s)@ (x, y). Then for B = max  (B', 6/e), it is clear tha t  q9 is Lipsehitzian with 

associated constant  B. 

For  two subsets X and Y of a metric space M, the Hausdor]/distance D (X, Y) 

is the greatest  lower bound of all numbers  e such tha t  X lies in the s-neighborhood 

of Y and Y in the s-neighborhood of X. I t  is evident t ha t  if ~v is a Lipschitzian 

t ransformat ion of M with associated constant  B, then D ( g X ,  ~v Y ) < B D ( X ,  Y) for 

all X, Y ~ M .  

2.2. L~MMA. Suppose C1 and C 2 are convex bodies in a normed linear space, having 

a common interior point p. Let ~ be the ]amily o] all fiats F through p, $~ the space o] all 

sections { Ct N F: F E ~ }, metrized by the Hausdor[/ metric. For each 2' E ~, set q~ (C 1 ~ .~)= 

= C 2 N F. Then q~ is a Lipschitzian trans/ormation o/ S1 onto $2. 

Proo/. We m a y  assume wi thout  loss of generali ty t h a t  p is the origin 0. Let  g 

denote the radial map  of C~ onto C~ - -  for each r ay  r emanat ing from 0, g maps  

the segment C x N r linearly onto the segment C~ fl r. I t  is proved in [9] t ha t  g is 

Lipschitzian. I t  is evident tha t  (with a slight abuse of notat ion) q~S=gS for each 

S E $I, so the desired conclusion follows from the remark  just  preceding the state- 

ment  of 2.2. 

L e m m a  2.3 below extends the fact  t ha t  a convex function is locally Lipschitzian 

at  each point  interior to its domain,  while Theorem 2.4 generalizes both  2.2 and 2.3. 
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2.3. L]~)i~A. Suppose C is a convex body in a normed linear space E, L o is a linear 

subspace o/ E,  and 12 is the set of all translates o / L  o wMch intersect the interior of C. For 

each L E 12, let q~ L = L N C. Then i/ 12 and cf 12 are both metrized by the Hausdor[[ metric, 

the trans/ormation ~v is locally Lipschitzian at each point o/12. 

Proo[. Let U denote the unit cell of E, and for each e > 0  let 12~ denote the 

set of all L E E  such that  x + e U ~ C  for some xEL .  Then 12= Ll~>012~; and if L~12~z, 

M E 12, and D (L, M) < e2 < el, then M E 12~1-~. Thus to show that ~ is locally Lip- 

schitzian at each point of 12 it suffices to prove that ~ is Lipschitzian on each set 

12~. To establish the latter fact (with associated constant 5/e where (~ is the diameter 

of C) we show that  if L, ME12~, d > D ( L , M ) ,  and x E L N C ,  then there exists 

y E M  N C with I I x - y l l  < (~/~)d. We may assume without loss of generality that  x = 0 ,  

whence L = L  o and M = L o + w  for some point w with IIw]I<d. Since Me12~, there 

exists peM with p+eU~C, and then, since I]wlI<d, we have p+(r  eC and 

II P + (e/d) w II < ~. Since C is convex and 0 = x e C, C must include the point (d/(d § ~)) 

(p + (e/d)w), whose norm is of course less than (~3/r But p = v + w  for some v E L 0 

and then 

d~-~ p + d = ~ v + w e i ,  

completing the proof of 2.3. 

2.4. THEOREM. Suppose C and K are convex bodies in a normed linear space E and 

:~ is the tamily o/ all fiats in E which intersect both the interior o / C  and the interior o / K .  

For each F E 5, let ~ F = F (1 C and ~ 1~' = F N K.  Then i/ ~ :~ and ~ :~ are both metrized by 

the Hausdor// metric, the trans/ormation ~ ~-1 (o /~  ~ onto ~] :~) is locally Lipschitzian at 

each point o /~  :~. 

Proo/. For each e > 0, let :~ be the set of all flats F which include points x 

and y such that  x + s U ~ C  and y + s U ~ K  (U being the unit cell of E). We shall 

prove that  the transformation ~ - 1  is Lipschitzian on ~:~, and from this the de- 

sired conclusion follows. Since ~ :~  is bounded, it suffices (as in the proof of 2 .1) to  

produce numbers B < ~ and d >  0 such that 

D(~IF, ~F')<<.BD(~F, ~F') whenever F, F'Eff~ and D(~F,  $ F ' ) < d .  

In proving 2.2 we appealed to a theorem on radial mappings, established in [9], 

which asserted the Lipschitzian nature of a transformation associated with a pair of 

convex bodies. Examination of [9] shows its reasoning to be of a "uniform" nature 
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in tha t  it actual ly  establishes the following: For  each pair  of positive numbers  r and 

s there is a number  Jr, s<  ~ such tha t  whenever V and  W are convex bodies in a 

normed linear space with uni t  cell U, and r U c V ( / W  c V U W c s U, then the radial  

t ransformations of V onto W and of W onto V are both  Lipschitzian with associated 

constant  Jr, s. This makes possible a uniformized version of 2.2. Similarly, in 2.3 the 

simple form of the associated constant  (for the restriction of ~ to E~) leads  to a 

stronger result of uniform nature.  Now let Z be a convex body  containing C U K, 

(~ the diameter of Z, J=J�89 and A = ~ / ( � 8 9  We shall show tha t  if F,  F ' E : ~  with 

D ( ~ F ,  S F ' ) < g < � 8 9  then D ( ~ F ,  ~ F ' ) < ( A §  

With  F '  E :~, there are points x and y of F '  such t h a t  x + s U ~ C and y + s U ~ K. 

And D (F, F ' )  ~< D (~ F,  ~ F ' )  < ~ < �89 e, so there are points  p E F N (x + ~ U) and q E F N 

( y + ~ U ) ;  we have p + �89 s U ~ C and q + �89 e U ~ K. Let  Fl  = F'  + (p - x ) and F ~ = F ' +  

+ ( q - x ) .  For  each G E:~, let ~ G =  G N Z. Then employing the triangle inequali ty for 

D and the uniform versions of 2.2 and 2.3 we see tha t  

D ( ~ F ,  ~F ' )  ~ D ( ~ F ,  ~ F : ) +  D ( ~ F  2, ~ F ' ) ,  

D(~Fz ,  ~F ' )<~AD(F2,  F ' ) < A ~ ,  

D ( ~ F ,  ~F~) <~JD(~F,  ~F2) , 

D(~F ,  ~F2) <~D(~F, $F~)+D(~F~,  ~F2), 

D(~Fx,  ~F2) <~AD(F~, F z ) < 2 A ~ ,  

D ( ~ F ,  ~F~) <~JD(~2', ~F1)<~JD(~F , ~ F ' ) + J D ( ~ F ' ,  ~_~), 

D(~F ,  ~F')  <~,  

and D(~F ' ,  ~F~)<~AD(F' ,  F1)<Acr  

I t  follows tha t  D (~ F,  ~] F ' )  ~< (A § 3 A J + je)  ~, and Theorem 2.4 has been proved. 

The next  two lemmas (which will be employed in proving Theorem 2.7) can be 

improved in quant i ta t ive  aspects, bu t  for our present purposes they  are adequate  as 

t hey  stand. (~) 

2.5. LEMMA. Suppose x~ . . . . .  x~ is an orthonormal basis/or E ~, 0 < s < 1/21c, y is a 

unit vector, and Ill Y - x~ II - V21< ~ for i = l,  2 . . . . .  I~ -- 1. Then either II Y - x~ II < ~ / ~  s or 

II +  ll< 
Proo/. Let  y = ~ b~ x~, so tha t  

~ b~ = 1. (1) 

(1) See the footnote on page 251. 
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For  1 ~< ] ~< k -  1, define r/j b y  the equat ion 

~j = [E,.jb~ + (bj - 1)~] �89 - Y2, (2) 
so t h a t  

]~,1<~. (3) 

For  l ~ < j ~ ] c - 1 ,  subst i tut ion of (1) in (2) shows t h a t  

( 2 - 2 b j ) � 8 9  or - b j = V 2 ~ , + � 8 9  

whence f rom (3) and  the  fact  t h a t  e <  �89 1 we have  

]b,I < V 2 e +  �89 ~= (V2 + � 8 9  (4) 

Now b y  (1) and  (4), 

1 >~ ]b~ I = [1 - ~ - l b ~ ] � 8 9  > B~ = [1 - ( k -  1) 4 e~]�89 (5) 

Assuming tha t  bk>~ 0 (for the  other  case is handled similarly), we see f rom (4) and  

(5) t ha t  
]ly-xkll2< ( k -  1)4e~ + (1 -B~)~ = 2 -  2B~. 

Now whenever  I ~ l <  1/(2 kV~-l) ,  define 

[ ~ = 2 k e ~ - 2 + 2 B ~ .  

To prove  the l emma  it  suffices to show tha t  / e  > 0 whenever  0 < e  < �89 :Now the 

funct ion / is differentiable on the  in terval  ] - l / ( 2 1 / k - 1 ) ,  1 / ( 2 ~ / ~ [ ~ [ - 1 / ( 2 / c ) ,  

1/(2k)] ,  and  of course / 0 = 0 .  Since for l e l <  �89 we have  

B~> [~_4(~_1)(~]~] �89  (k~-k+~)�89 (k~-2k+l )  �89 (k-~)  
~2k/ J k k k ' 

and since 

we conclude t h a t  

/'~ =4kE--  
4(k-1)8 

B~ ' 

/ ' e > O  for 0 < e < � 8 9  

and  the  desired conclusion is then  a consequence of the mean-va lue  theorem.  

2.6. L ] ~ A .  (1) For each positive integer k there is a number Ak which has the/ol. 

lowing property: 

(l) See the footnote on page 251. 
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whenever F and G are k-dimensioned subsp:t~es o / a  Eu",lidean space with unit cell C, 

F N C c G + e C, and x I . . . . .  x k is an orthonormal basis/or tfl then there is an orthonormal 

boris u~, ..., v~ /or ~ ~ueh that always II x~-V~ II < A ~ .  

Proo[. For  n = I ,  2 . . . . .  let a n = 4 ( l + V T ~ )  ~-1. We shall prove below tha t  if 

0 < s < l / ( 2 ] c % ) ,  then the subspace G admits  an or thonormal  basis Yl . . . .  ,Yk with 

always IIx~-y~ll<aks.  And of course if Yl . . . . .  y~ is an arb i t rary  0r thonormal  basis 

for G, then always I Ix , -Y~l ]~2 ,  and hence I I x , - Y i i l < 4 l c % e  provided e~>l / (2kak) .  

Thus it. will follow thut  the constant  A k =  4/cak has the s tated property.  

We suppose, then, tha t  x~, ..., xk is ~n or thonormal  basis for F and t h a t  

e < l / ( 2 k a k ) .  For  each i there is a point  y; '  of V such tha t  lix~-y;'li<<.s. Then, of 

course, 

l >~llv;'ll>~llx~ll-ll*~-v;'ll> l - ~ ,  

so with y; = Y/'/[I Y;" II we have 

Le t  Yl =Yl" Then 

and for 1 < ?" ~< k, 

and 

II v; ll = l, II x~ - u; ll <~ e ~. 

:Now suppose the or thonormal  set y~ . . . . .  ym has been constructed so tha t  

]] x, - y~ l] ~< (a, - 2) e for i = l  . . . . .  m, 

I l l y ; - y ,  lI-V21<~a,s for l < i ~ m < i < ~ k .  

(Such a construction has already been effected for m =  1.) I n  determining ym+l, we 

first note  t ha t  since 

a ~ s < a m s ~ a k e <  �89 

there follows from 2.5 the existence of a uni t  vector ym+l~G such tha t  yrn+l is 

or thogonal  to y, ( l ~ i ~ m )  and 

IIVm+l- v,o+lll < V~am~. 
Then 

Ii*m+,--ym+lfI~<ffXm+,--y~+,ff+ffy:+l--y,n+If( < ~ +  V ~ a m ~ <  (~,~+l-- 2)~. 

And for m + l < ~ 4 k ,  
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IllY;--yrn+lll-- V21=[lly;-- rn+lll--]lXj--Xm+llll 
< lly'j - x~ll -~ l l x m + l -  ym+l ll ~ 2~-~- (a ,n+i -  2 )~=am +l  ~. 

Thus we proceed by mathematical induction to construct the orthonormal sequence 

Yl . . . .  , Yk with always 

IIx,-y,]] < 

and the proof of 2.6 is complete. 

We wish now to describe certain spaces of equivalence-classes of convex sets 

which will play a fundamental role in the sequel. For n~> 2, let B n denote the class 

of all n-dimensional convex bodies in E ~, A ~ the group of all nonsingular affine 

transformations of E n onto itself, and S ~ the group of all similarity transformations 

of E n onto itself. (Neither the members of A ~ nor those of S n need preserve orienta- 

tion.) Let G = A  n or G = S  n. Two members K and K' of B ~ are said to be G.equi- 

valent provided K = a K'  for some (~ E G; the set of equivalence-classes so obtained 

will be denoted by EG. Now for K, K 'E  B ~, let 

y~ (K, K')  = inf,,~a, oK~ ~" V (a K ) /  V (K'), 

where V is the n-dimensional volume function. Then 1 ~< y and ~0 is affine-invariant 

- -  that  is, ~p(aK, "~K')=yJ(K, K') for all (~, ~EG, K,  K ' ~ B  n. For ~ ,  :K'EEG choose 

K E :K, K '  e :K', and define 

A (~,  ~ ' )  = log ~ (K, K') § log ~ (K', K). 

The argument employed by Macbeath [11] for the case G = A  ~ shows that  5, is a 

metric for Ec. We shall henceforth regard Ea as a metric space with distance-func- 

tion A. 

The above definitions can be paraphrased for the class B~ of all members of 

Bn which are centered at the origin 0, and we denote by G ~ the resulting set of 

equivalence classes. Let G o denote the set of all linear members of G (those which 

map 0 into 0). Then two members K and K '  of B~ are G-equivalent if and only if 

they are G0-equivalent, and the number yJ(K, K')  defined above is equal to 

inf,,~G,.,,F:~K.V(aK)/V(K'). Thus the metric on G ~ induced by that  of ~a agrees 

with the metric on ~~ obtained by dealing only with B~ and G 0. This renders per- 

missible certain "identifications" which we shall employ without further comment. 
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2.7. T ~ E O ~ E ~ .  Suppose O<~k<~n, E '~ L is the space o/ all k-dimensional convex 

bodies in E n (metrized by the Hausdor]/ metric), .,4 k is th~ group o/ all nonsingular 

a/line trans/or~ations o/ E ~ onto E L, and S~ is the group o/ all similarity trans/orma- 

tions o/ E L onto E L. Let G=,-4 k or G=Sk  and let q9 denote the natural map el E~ 

onto the space Ea o/ all G-equivalence classes o/ It-dimensional convex bodies in E k 

(metrized by Macbeath's metric). Then q~ is locally Lipschitzian at each point el E~. 

Proo[. Consider an  a rb i t ra ry  K EE~ and  let 1~ denote the flat  determined by  

K.  We m a y  assume wi thout  loss of general i ty  t ha t  the origin is inter ior  to K re- 

lat ive to L. Then  if U is the un i t  cell of the subspace L, there exist posit ive num-  

bers m and  M such t h a t  m < � 8 9  and  5 m U ~ K ~ I M U .  We shall prove t ha t  ~ is 

Lipschi tzian on the m-neighborhood of K.  

Consider X, Y E E~ with D (X, K) < m > D ( Y, K) and  D (X, Y) = e. There exist 

p E Z  with I lp l l<m and  q E Y  with  I t p - q i l < e < 2 m .  Let  X ' = X - p  a nd  Y ' = Y - q .  

Then  

D(X ' ,  K)<~D(X',  X ) +  D ( X ,  K ) < I I P [ I + m < 2 m ,  

D ( Y ' ,  K ) < D ( Y ' ,  Y ) + D ( Y ,  K ) < l l q l l + m < 4 m ,  

and  D ( X ' , Y ' ) < ~ D ( X - p ,  Y - p ) + D ( Y - p ,  Y - q ) 4 D ( X ,  r)+llp qil<2  
Let a denote  the orthogonal  project ion of E n onto L; let  X "  = a X '  a nd  Y" = ~  Y'. 

Then  a K = K and  7~ is Lipschi tz ian with associated cons tan t  1, so 

D ( X " ,  K)<~D(X',  K ) < 4 m >  D ( Y ' ,  K)>~ D ( Y " ,  K). 

Since 5 m  U ~  K,  it  follows tha t  m U ~  X "  f~ Y". (For example, if there exists z E L ~  X "  

with I]z][~<m, then  by  the separat ion theorem for convex sets there exists u E L  

with  flu I/= 1 and  (u, z) >~ SUpx~x-. (u, x) where ( , )  denotes the inner  product .  Bu t  then  

of course sup~x,, (u, x ) ~ m  and  i t  follows tha t  the m i n i m u m  distance from the point  

5 m u  to the set X "  is a t  least 4m, contradic t ing the fact t ha t  D ( X " ,  K ) < 4 m  and  

5 m u E h m U ~ K . )  

Now let 2 '  and  G denote, respectively, the l inear  subspaces de termined by  X '  

and  by Y' in  E ~. F rom the fact t ha t  m U ~ X "  N Y "  it  can be deduced tha t  the  

project ion ~ is b iunique on both  /~ and  G, and  t h a t  X ' ~ F  N m C and  Y ' ~  G N mC,  

where C is the un i t  cell of E L  Now since F N m C c X '  and  D(X ' ,  Y')~<2e, i t  follows 

t h a t  F N C ~ G + (2 e/m) C, whence by  Lemma  2.6 (1) there are or thonormal  bases x 1 . . . . .  xL 

(1) Professor R. Kadison has remarked that if / and g are othogonal projections of E n onto 
linear subspaces Y and G of the same dimension, ]] ] -g  ]] < ~< l, v is the partial isometry determined 
by the polar decomposition of ig (]g=v (gig)�89 and • is the restriction to F of the adjoint of v, 
then T is a linear isometry of F onto G and I]~-]ll<($. This fact e~n be used to eliminate Lemma 
2.6 (and hence also 2.5) from the proof of Theorem 2.7; it leads also to a stronger form of 2.6. 

17 - 603808 Acta, mathematica. 103. Imprim@ le 29 juln 1960 
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and Yl .... , y2 for _~ and G respectively such that always II x~ - y~ II ~ Ak (2 e/m). Let 
w denote the linear isometry of F onto G for which always w xi = y~, and let X I = w X', 
YI= Y'. It is evident that ~X 1=q~X and ~YI=~ Y. It is easy to verify that 

[[x-Tx[[<<.A~('~e/m)IIz[[ for all xeF,  and hence tha t  

D(X1, Y1)<D(X1, X')+D(X',  Y')<~Ak 2 ~ M + 2 e ,  
77~ 

where the second inequality depends on the fact tha t  X ' c  M C. Thus with 

a = 2 + 2AkM/m, 

we have D (X1, Y1) ~< ae.  

We shall use also the fact tha t  if V denotes the unit cell of G, then 

m V C X l  l"l Y lcX1U Y l C M V .  

Evidently cy(l+ae/m)Xl=cfX1--cfX. Since XIDmV and D(X1, Y1)<-..ae, it 

follows tha t  

~ (1 + a e / m )  X 1 
and thus ~0 (X, Y) ~< r It1 ' 

where v denotes the k-dimensional volume. Since X l c 2 g V  and D(X1, Y1)<~ae, we 

have 

where the constant b = l + a M / m  is independent of X and Y (subject, of course, to 

the condition tha t  D(X, K ) < m > D ( Y ,  K)). Now by the basic theorem on mixed 

volumes (or more special results on parallel bodies), it is true tha t  

v( Y~ + be V ) = ~  Y~ + flbe + y(be) 2, 

where the non-negative coefficients fl and y are dependent on Y1 but, since Y l c  M V 

are bounded above by  the number 2"r  (M V). (For proof of the necessary inequality 

see, for example, pp. 84-85 of [4].) Now recalling tha t  e < 2 m < l  and Y l ~ m V ,  we 

see tha t  

~,(Y~ +be V)<.v Y ~ + 2 " v ( M  V)(b+b2)e 
and hence 

y~(X~, Y1)<.-.v(Y~ +be V)/~, Y l ~ l §  
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where the constant  ~ =  (2M/m) n (b + b 2) is independent  of X and Y. The same argu- 

ment  shows t h a t  ~v(Yl, X1)~< 1 +zcs, and we conclude t h a t  

A ((vX, ~v Y)~<2 log (I§ Y), 

completing the proof of 2.7. 

Observe tha t  the lemmas 2.5 and 2:6 are unnecessary for t r ea tment  of the case 

G = A  n, for then q X " = c f X  and ~ Y"=qJY. (1) 

We conclude the section with 

2.8. PROPOSITION.  Suppose E is a normed linear space and ~ (resp. ~*) is 

the space o/ all convex bodies in E (resp. E*) whose interior includes the ori]in, me- 

trized by the Hausdor]/ metric. For each K 6 ~ ,  let ~ K denote the polar body K ~  

={/6E*: sup /K<~l}6~* .  Then ~ is a locally Lipschitzian homeomorphism o/ 

into ~*. 

Proo/. I t  is evident t ha t  r is a biunique map  of ~ into ~ * .  We shall prove 

tha t  r is locally Lipschitzian and hence continuous. Essentially the same argument  

shows t h a t  r is also locally Lipschitzian, whence r is a homeomorphism. 

For  each r > 0 1  let ~ r  denote the set of all K 6 ~  for which r U c K ,  where U 

is the uni t  cell of E. We will show tha t  r is Lipschitzian on ~ r  (with associated 

constant  l/r2), whence the desired conclusion follows. Consider a rb i t ra ry  C, K E r r ,  

(~ < D (C ~ K0), and s > D (C, K). We wish to prove t h a t  e > r 2 (~. Since D (C ~ K ~ > (~, 

one of the sets C O and K ~ mus t  include a point  at  distance > ~  f rom the other - -  

say there exists / "6C ~ with i n f g ~ . ] [ / - g I ] > ( ~ .  Then the sets g ~  and {gEE*:  

I]g[] ~<~} are disjoint, convex, and w*-compaet,  so by  a known separation theorem 

they  can be separated by  a w*-closed hyperplane  - -  t h a t  is, there exists x 6 E  such 

tha t  [ [ x I l = l  and (~<infg~go(/"--g)x. B y  w*-compaetness of e ~ there exists f ' 6 C  ~ 

such tha t  /'x=sups~co/X. With  a=supsec~ and  b=supg~gogx, we have 

a - b >~/" x - supg~K, g x = inf~K, (/" - g) x > 8. 

Now C=(C~ ~ and K =  (K~ ~ under  the usual dual i ty  between E and E*, so from 

the definitions of a and b it follows tha t  t x~C for t> l /a ,  and tha t  (1/b)xEK. 

Since e>D(C, K) and (1 /b)xeg ,  there exist sE]0,  s[ and  u e E  with I i u i ] = l  such 

t h a t  (1/b)x+suEC. A n d - r u E C  since C ~ .  Then with t=r/(r+s),  we see by  

convexi ty  of C tha t  

( r + s ) b X = ( 1 - t ) ( - - r u ) + t  ~ x + s u  EC. 

(1) See the footnote on page 251. 
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I t  follows that r/(r + s) b ~ 1/a, whence r ( a -  b) <~ s b and we have 

s > s > ~ r ( a - b )  r - - V -  >~ ~ 

But since K E r r  it is true that  1/b>~r, whence e>r2d and the proof of 2.8 is 

complete. 

w 3. The Hausdorff dimension of certain sets 

Consider a metric space M. For each rE[O, ~ [ ,  X c M ,  and s > 0 ,  let m~X 

denote the greatest lower bound of all numbers of the form ~_I(~A~) ~, where A~ 

is a sequence of sets covering X and each set A~ is of diameter (3A~<e. Then set 

mr X =sup~>om~X. The function m r is the Hausdor// r-measure [7] for M and is a 

Caratheodory outer measure for the class of all subsets of M, giving rise to a regular 

Borel measure. If mr X < ~ ,  then ms X = 0 for all s > r. The Hausdor/] dimension of 

X is the least upper bound of all numbers rE[0, ~ [  for which mr X>O.  If  hdim 

denotes the Kausdorff dimension and tdim the topological dimension (i.e., the Menger- 

Urysohn dimension [8]), then from a theorem of Szpilrajn [16, 8] it is known that  

for each nonempty separable metric space M, hdim M>~tdim M and M admits a 

metric homeomorph M' for which hdim M ' =  tdim M' .  I t  is evident that  if a metric 

space M be subjected to a Lipschitzian transformation ~ with associated constant 

B, then mr ~v X ~< B r mr X for all X c M and r E [0, ~ [. We shall use these facts freely 

without further reference, as welt as the fact tha t  a subset of E ~ (with its usual 

metric) has finite Lebesgue outer measure if and only if its Hausdorff n-measure 

is finite. 

In  solving Mazur's problem - -  proving that  no finite-dimensional convex body 

is centrally a-universal for all j-dimensional convex bodies - -  it is enough to know 

that  if C is the unit cell in E ~ and S~ is the space of all central y-sections of C, 

metrized by the ttausdorff metric, then the Hausdorff r-measure of S~ is finite for 

some r. But that  is a very crude result, and for sharper conclusions we should like 

to determine the exact ttausdorff dimension of S~. I t  is weU-known that  S~ is in 

fact a manifold of topological dimension ] ( n - y )  (a "Grassman manifold"), so the 

"best" we could hope for is that  0<mj(~_j)(S~, D ) <  ~ .  We shall establish this ine- 

quality by using a known homeomorphism between S~ and a quotient space of the 

orthogonal group. (I am indebted to Professor W. Fenchel for suggesting this approach, 

and to Professor R. Kadison for a helpful suggestion concerning group representations.) 
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3.1. PROPOSITIOn. Suppose YJ is the group of all linear isometrics of E n, metri- 

zed by means of the uniform norm [[T]l=supll~ll<l]tTx]]. Suppose g ,is a j-dimensional 

linear subspace of E ~ and ~ is the subgroup of Y consisting of all T E Y  for which 

T J =J .  Then (with respect to the metric induced in :Y/O, the space of left cosets, by 

the uniform metric in J) the Hausdorff ] ( n - ] )  measure of Y/O is positive and [inite. 

Proof. Let x 1 . . . . .  xn be an orthonormal basis for E ~ such that x 1 . . . .  , x jEJ.  

Let ~ be the vector space of all n x n real matrices, 1: n the set of all nonsingutar 

members of ~ , ,  On the set of all orthogoual members of ~n ,  and O~,j the set of 

all orthogonal matrices a = ( ~ )  such that  ~rs = 0 = (r~ whenever r < ] < s. Then em- 

ploying (with respect to the orthonormaI basis x 1 . . . . .  xn) the usual identification of 

matrices with linear transformations, we have On=Y, On, j - ~ ,  and for each ( ~ E ~ ,  

n n t 2} II II=sup ~ t7<1 

For each e > 0, let U~ denote the compact neighborhood of the origin in ~ ,  

defined as follows: 

For each a E~n ,  let exp a be defined as usual: 

exp ~ = ~ + ~ + 2 !  + " "  + a n + ' " '  

where 8 is the unit matrix (Sr~ = 1 when r= s, 8rs = 0  when r=Ws). We shall employ 

the following well-known properties of the mapping exp, which can be found, for 

example, on pp. 5-9 of [2] and pp. 72-73, 76-77 of [14]: 

(i) exp is an analytic transformation of ~/n into l:n; 

(ii) for a sufficiently small e > 0 it is true that  

a) U~ is mapped topologically by the transformation exp onto a neighborhood 

V 0 of the unit matrix ~ in s 

b) if fin is the subspaee consisting of all skew-symmetric members of ~ n ,  then 

exp (U~ N 9"~) c On; 

c) for each decomposition of ~/n into supplementary linear subspaces L '  and 

L" ,  each element of s near enough to ~ admits a unique expression as a product 

(exp G') (exp ~") for ~' E U~ N L' and ~" e U, N L".  

Now let ~r j denote the subspace of ~ consisting of all ~E~n such that  

a ,~=0=as~ whenever r<~<s.  Let Q' be a subspace supplementary to ~n,j in ~ ,  
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and let Q=Q'N ~ .  The dimension of ~'n is � 8 9  and tha t  of ~/n,J is 1 ] ( ] - 1 ) +  

+ � 8 9  whence it follows tha t  the dimension of Q is ] (n - i ) .  I t  can be 

verified that  exp (U~ N ff,,~)= V 0 N O,,j, which by condition (ii a) is a neigborhood of 

(~ in O,,j. By (ii c) there is a compact neighborhood Z of ~ in I: ,  such tha t  each 

z s  admits a unique expression in the form z = ( e x p  ~)  (exp ~]z)for ~zE~,~ and 

~1~ ~ Q; from (ii b) it follows tha t  ~z E Q whenever z E Z N O~. 

Since exp is analytic, it is easily seen to be Lipschitzian on compact subsets 

of ~/~ - -  in particular, on the sets S Z and ~7Z, say with associated constants B e 

and B n. Denoting by  ~ the uniform metric in Y, we see tha t  ~ is two-sided in- 

variant  and hence tha t  for all z, z' E Z it is true tha t  

(z, z ' ) = e  (exp ~ exp ~ ,  exp ~, exp ~/z') 

~< p (exp ~ exp ~z, exp ~, exp ~z) + e (exp $~, exp ~ ,  exp $~, exp ~]~,) 

= ~ (exp ~z, exp ~z') + e (exp ~/z, exp ~]z') 

Now consider arbi trary u, v E~Z, and apply the inequality just established, with 

z = ~ - l u  and z'=~7-1v. Since ~ , - 1 ~ = 0 = ~ - 1 v ,  it follows tha t  on ~]Z, the transforma- 

tion ~=U-1 is Lipschitzian with associated constant B=B, .  

Now one verifies easily tha t  ~/Z is a compact neighborhood of the origin in Q 

and hence has finite Hausdorff ] ( n - / ) -m easu re .  For each v E~Z, let 

ffv= (~ v)O~.e O~/O~,j. 

Then / t ~ Z  is a neighborhood of the "origin" (i.e., of O~, j ) in  the quotient space 

O~/O~,j, and the space is covered by a finite number  of isometric images of this 

neighborhood. Denoting by  s the natural  metric in the quotient space, we have 

e' (~vO,,j, ~v' O,,j)=inf .... On,j~((~v)a, (~v')~)~<e(~v ,~v ' )<~BP(v ,v ' ) ,  

so the transformation # is Lipschitzian. Thus the ] ( n -  ])-measure of # (~Z) is finite 

and the desired conclusion follows. The proof of 3.1 is complete. 

3.2. COROLLARY. Suppose C is an n-dimensional convex body, p is an interior 

point o/ C, 0 <~ ] <~n, and :lO is the space o/ all ]-sections o] C through p, under the 

Hausdor// metric. Then the Hausdor// ] (n-])-measure o/ :[0 is positive and /inite. 

Proo/. In  view of 2.2 and the behavior of Hausdorff measure under Lipschitzian 

transformations, we m a y  (and shall) assume without loss of generali ty tha t  C is the 
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unit cell of E ~ and p is the origin. Let  J be a ]-dimensional linear subspace of E ~ 

and let Y and 6 be as in 3.1. For each coset ~ 6 Y / 6 ,  let g( (~)=(aJ)NCE' l~ .  

(Observe that if a 6 = T 6 ,  then o -~ ~c E ~, whence a -1T J = J and T J = a J .  Thus g is 

well-defined.) I t  is easy to verify tha t  g maps the quotient space Y / 6  biuniquely 

onto the space 7/9 of ]-sections, and we wish to show tha t  g is Lipschitzian (relative 

to the natural  metric r in Y / 6  and the Hausdorff metric D in ~ ) .  Now consider 

a 6, ~ 6 6 Y/6 .  Then 

But  for arbi trary ~, f i 6 6  we have e 6  = 6 = f l 0 ,  so 

D ( g a 6 ,  g r 6 )  ~< inf~.~oD ((a~J) (1 C, (rflJ) N C) ~inf~.~o SUpx~enJ H ao~x- rflxl[. 

I t  follows tha t  g is Lipschitzian with associated constant equal to 1, and thus from 

3.1 tha t  the Hausdorff ] ( n - ] ) - m e a s u r e  of ~ is finite. But  of course g is a homeo- 

morphism, so the topological dimension of W is equal to tha t  of Y /0 ,  whence the 

j(n-])-measure of 7/9 must  be positive. This completes the proof of 3.2. 

3.3. COrOLLArY. Suppose C is an n-dimensional convex body, O<~]~n, and 

is the space o/ all proper ]-sections o/ C, under the Hansdor// metric. Then the Haus- 

dor]/ dimension o/ ~. is equal to (]+ l ) (n-] ) .  

Pro@ We may  regard C as lying in a hyperplane H in E~+I~{0}.  Let  r =  

= s u p  {llxll:x6C} and let g be the spherical cell of radius 2r  about  0. Let  S de- 

note the set of all ( ]+l ) -subspaces  of E ~+1 which intersect the relative interior of 

C. Set 9: = {S (1K: $ 6 $}, ~ = { S N K N H : S 6 S } ,  and ~ /=  {S (/ C: $ 6 $}. The natural  

map of 6 onto ~/ is everywhere locally Lipschitzian by  2.4. Since the natural  map 

of 9: onto 6 is Lipschitzian (easily verified), we conclude tha t  the natural  map /~ 

of 9: onto ~ is everywhere locally Lipschitzian and hence by  2.1 /~ is Lipschitzian 

on every compact set. Now :~ is the union of a countable number of compact sets, 

and by 3.2 the Hausdorff dimension of 9: is a t  most  ( ] + 1 ) ( ( n + l ) - ( ] + l ) ) .  The 

desired conclusion follows easily, and the proof of 3.3 is complete. 

Since 3.1 is one of our basic tools, i t  seemed worthwhile to give the above 

fairly elementary proof. We now diverge from our main a t tack to establish a deeper 

result which subsumes 3.1 but which will not be used in the sequel. In  preparat ion 

for 3.4, we review the definition of Lie group in a form which, though not quite 

"s tandard" ,  is equivalent to the usual formulations and is especially well suited to 

our present purpose. 
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A (real n-dimensional) analytic structure for a topological space X is a family 

which satisfies the following three conditions: i) each member hE74 is a homeo- 

morphism of a nonempty open subset Da of X onto an open subset of En; ii) X is 

covered by the sets Dh, h E ~;  iii) whenever h, k E ://, the open set h (Dh N Dk) ~ E n 

is mapped analytically onto the set /c(Dh 3Dk) by the transformation kh -~. A Lie 

group is a topological group G which admits an analytic structure ~/ relative to 

which the transformation xy-ll(x,  y) is everywhere analytic. (That is, whenever U 

and V are open subsets of Dr and Dg respectively such that  U V-I~Dh,  then the 

natural map/~ of /U•  V into h(UV ~1) is analytic, where 

/~(p, q)=h((/-lp)(g lq) 1).) 

Such an ~4 will be called an admissible structure for the Lie group G. 

A left invariant metric ~ for a Lie group G will be called Lipschitzian provided 

there is an admissible structure ~4 for G such that  for some h E ~,  the transforma- 

tion h 1 is Lipschitzian as a map into (G, Q) of the set hDh~EL  I t  can be veri- 

fied that  a Lipschitzian metric must be compatible with the topology of G, and 

that  h as described may be taken so that e E Dh (where e will denote the identity 

element of G). Results of Goetz [5] imply that  every Lie group admits an analytic 

structure ~ and a left invariant metric ~) such that  for each h E~4, both h and h -1 

are Lipschitzian. (Let ~ be a ]eft invariant Riemannian metric for G.) I t  is evident 

that  if a separable Lie group is metrized by a Lipschitzian metric, then its Kaus- 

dorff dimension is equal to its topological dimension. From this it is easy to con- 

struct non-Lipschitzian left-invariant metrics. In  fact, suppose G is a Lie group of 

dimension u~> 1, 9 is a left invariant (compatible) metric for G, and rE]0, 1[. Then 

~r is a left invariant metric for G and mn/r (G, ~r)= m~ (G, ~)> 0, so the ttausdorff 

dimension of (G, ~r) is equal to n/r and ~ is not Lipschitzian. For another example, 

consider an arbitrary infinite compact metrizable group G and let ~ be a continuous 

map of G onto the Hilbert parallelotope P (such a ~ nmst exist). Assign to the pro- 

duct space G• any metric a which produces the usual product topology and has 

always a ((x, p), (y, q)) >~ dist. (p, q). For all x, y E G, define 

9(x, y)=supa~Ga((ax, ~ax), (ay, $ay)). 

Then ~ is a leer invariant metric for G and ~ is a Lipschitzian transformation of 

(G, ~) onto the infinite-dimensional space P. Thus the Hausdorff dimension of (G, ~) 

is infinite, and 9 cannot be Lipschitzian if G is a Lie group. 
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The following resul t  should  be compared  wi th  the  examples  of the  preceding  

pa rag raph ,  and  wi th  the  more  q u a n t i t a t i v e  resul ts  of Goetz  [5] and  Loomis  [10]. 

3.4. TUEO~E~'~. Suppose S is an m-dimensional closed subgroup o/ the n-dimen- 

sional separable Lie group G, and ~ is a Lipschitzian metric /or G. Then with respect 

to the metrics induced by ~, the Hausdor// dimension o/ S is equal to m and the Haus- 

dorff dimension o/ G/S is equal to n -  m. 

Proo/. Le t  M be the  subspace  of E = consis t ing of all  po in t s  x = (x 1 . . . . .  x ~) E E ~ 

such t h a t  x ~= 0 for m § 1 ~ i  ~< n; le t  L be the  or thogonal  supp lemen t  of M.  F o r  each 

a > 0, l e t  V, be the  cube in  E ~ consis t ing d al l  x e E ~ such t h a t  I xi 1 ~ a for  1 ~< i 4 n. 

According  to  the  hypo theses  of 3.4, there  are ~n admiss ib le  s t ruc ture  ~ for G 

and  a member  k of ~ wi th  e E D~ such t h a t  /c 1 is Lipschi tz ian .  B y  the  reasoning 

(and in  the  te rminology)  of Cheval ley  [2] (pp. 107-109, especia l ly  t he  l~emark  on 

p. 109), there  is an  ana ly t i c  involu t ive  d i s t r ibu t ion  ~ /  of d imension  m on G whose 

m a x i m a l  in tegra l  mani fo lds  are  exac t ly  the  lef t  cosets of S in G. B y  add i t iona l  rea- 

soning of Cheval ley  (pp. 89-91, especia l ly  the  s t a t e m e n t  of Theorem 1 on p. 89) 

there  are  an admiss ible  s t ruc ture  ~4 for G, h E~4, and  a >  0 such t h a t  the  fol lowing 

condi t ions  are  satisfied: 

(i) he=OE V~chDh and  eED~cDk; 

(ii) on the  domain  hDh, the  t r ans fo rma t ion  kh-*  is ana ly t ic ;  

(iii) for each p E L  N V~, the  "s l ice"  h q ( ( p + L )  N Va) lies in some lef t  coset C~ of S.  

Cheval ley  shows fur ther  (p. 110) t h a t  for suff ic ient ly  smal l  bE]O, a[, the  fol- 

lowing add i t iona l  condi t ion  is satisfied: 

(iv) when p, q E L  N Vb and  p =4= q, t hen  Cp = Cq. 

Now an ana ly t i c  t r ans fo rma t ion  mus t  be Lipschitzia~l on every  compac t  set  in ter ior  

to  i t s  domain ,  so /oh -1 is L ipseh i tz ian  on V~. A n d  /~-1 is L ipsch i t z ian  b y  hypothes is ,  

so i t  follows t h a t  the  t r ans fo rma t ion  h - l ~ / c  1(/Oh-I), ma pp ing  V b c E  n in to  (G, Q), 

is L ipschi tz ian .  Since h- lO=eES,  i t  follows f rom condi t ions  (iii) and  (iv) t h a t  

h q (Vb (1 M)  = (h -~ Vb) N S; t hus  the  set h -~ ( V~ N M) is a ne ighborhood  of e in S.  This 

set  m u s t  have  pos i t ive  m-measure  for h -1 is a homeomorph i sm and  Vb N M is m- 

dimensional ;  i t  m u s t  have  f ini te  m-measure  for h -1 is L ipsch i tz ian  and  V~ N M has  

f ini te  m-measure.  F r o m  sepa rab i l i t y  of S we now conclude t h a t  the  Hausdor f f  m- 

measure  is a- f in i te  on S, whence m~S= 0 for each r > m  and  the  Hausdor f f  d imen-  

sion of S is equal  to  m. 
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Now the function C (defined by (iii)) maps L N V~ into G/S, and, as remarked 

by Chevalley (p. 110), it is in fact a homeomorphism under which the set L N V~ is 

carried onto a neighborhood of S in G/S. For arbitrary p and q in L N V~, we have 

#' (C~, Cq) = inf/~%, y~cq ~ (x, y) ~< q (h -1 p, h -1 q), 

and since h -1 is Lipschitzian so is the transformation C. As in the case of S above, 

this yields the desired conclusion about G/S and completes the proof of 3.4. 

We return now to our principal line of reasoning, to obtain one more result on 

Hausdorff dimension which will be used in the study of polyhedral sections. For 

integers n<r,  let us denote by P~'~(n, r) (resp. Pa'I(n, r)) the subset of EA~ corre- 

sponding to the class of all n-dimensional polyhedra which have r + 1 vertices (resp. 

r + l  maximal faces). And we denote by Qa"(n,r) (resp. Qa'1(n, r)) the subset of 

E~ corresponding to the class of all n-dimensional centered polyhedra which have 

2r  vertices (resp. 2r  maximal faces). We define similarly the subsets P~' ~ (n, r) and 

PS'r(n, r) of Es~ and the subsets Q~'V(n, r) and Q~'/(n, r) of E%. 

3.5. PROPOSITION. Under Macbeath's metric, each o/the sets Pa"(n, r), Pa'1(n, r), 

Qa'V(n, r), and Q~'I(n, r) has Hausdor/]- and topological dimension equal to ( r -n )n ;  

while ( r - n + l ) n  is the Hausdor//- and topological dimension o/ each o/ the sets 
P~'V(n, r), PS'r(n, r), QS'V(n, r), and Q~'f(n, r). 

Proo/. We discuss only the cases p~,v, pa, f ps, v, since from these it will be 

clear how to proceed in the other cases. 

Let 20, 21, ..., 2, be the vertices of an n-simplex in E ~. Let X be the set of 

all ( r -n) - tup les  x =  (x~+l . . . . .  xr) of points of E n such that  the set 

{20 . . . . .  2~, xn+ l  . . . . .  xr} 

is convexly independent. For each x E X, let 

~ x = c o n v  {~o, .. 2~, x~+l, x r}e  ~, 

the space of all n-dimensional convex bodies in E n. Let U be the natural map of 

E~ into EA~, so that  u ~ x = p a " ( n ,  r). Now X may be regarded as an open subset 

of E (r-~)~. With respect to the usual Euclidean metric for E (r-n)n, the Hausdorff 

metric for E~, and Macbeath's metric for EA~, we see directly that  ~ is Lipschitzian 

and from 2.7 that  U is locally Lipschitzian. I t  follows that the Hausdorff dimension 

of Pa ' ' ( n ,  r) is at most (r -n)n;  to show that  it and the topological dimension are 



P O L Y H E D R A L  SECTIONS OE C O ~ V E X  B O D I E S  261 

both  equal to  ( r -  n) n, it suffices to prove tha t  td im pa.v (n, r) >~ (r-- n) n. For  this 

we m a y  produce directly an  open subset of X which maps  topologically under  ~ ~. 

Alternatively,  we m a y  observe t h a t  since X is a -compact  and ~ is finite-to-one, it 

follows f rom dimension theory  (pp. 91-92, 30 of [8]) t ha t  td im ~ X = t d i m  X. (To 

establish the finite-to-oneness of ~ ~, consider an arb i t rary  x E X and observe tha t  to 

each x 'E  X with ~ t x' = ~  t x there corresponds an affine t ransformat ion T of E n onto 

E ~ taking the set {20 . . . .  , ~ ,  x~+: . . . . .  Xr} onto the set {x0 . . . . .  2~, x~+: . . . . .  x~}. Bu t  

then ~ mus t  be one of the r ! / ( n + l ) !  affine t ransformations which take some n + l  

of the points  20, ..., ~ ,  x~+l, ..., x~ onto  the point.s x0, -.., x,~). Thus we have disposed 

of P~" ~(n, r). 

Continuing the nota t ion  of the preceding paragralJh , we m a y  assume fur ther  

t h a t  the origin is interior to the simplex cony {x0 . . . . .  2n}. Let  ~ denote the set of 

all convex bodies in E ~ whose interior includes the  origin, and for each K E ~  let 

K denote the polar body  K ~ E ~ .  I t  is easily verified tha t  ~] ~ ~ X = pr. v (n, r), and 

since ~ is locally Lipsehitzian by  2.8, the desired conclusion follows as in the pre- 

ceding paragraph.  This takes care of P~'v (n, r). 

To handle the case of P~'~(n, r), we let Y0 . . . .  , ~ _ :  be the vertices of an ( n - 1 ) -  

simplex in E ~ and let Y denote the set of all ( r - n  + 1)-tuples y =  (y . . . . . .  y~) in E ~ 

such t h a t  the set {?/0 . . . .  , ?]~-1, y . . . . . .  y~} is convexly independent .  For  each y E Y, 

let # y = c o n v { ~  0 . . . . .  yn- : ,  y . . . . . .  y r}eE~.  Then Y m a y  be regarded as an open 

subset of E (r-n+:)n and  the reasoning proceeds much  as in the  first paragraph.  

w 4. Principal theorems and unsolved problems 

We tu rn  finally to the functions $"" and  ~"" defined in w 1. The results of w167 

2-3 will be applied to  establish lower bounds. For  upper  bounds on ~ ' ~  and $~'~ 

we rely on the following result due to C. Davis  [3]: 

4.1. PROPOSITIOI~ (Davis). I /  S is an r-dimensional simplex, then every convex 

polyhedron having at most r+  1 maximal  /aces is a//inely equivalent to some proper 

section o/ S.  

I n  particular,  every convex plane quadrilateral  is affinely equivalent  to some 

proper  plane section of the te trahedron.  This validates a conjecture of Melzak [13]. 

Our first principal result  is 

4.2. T ~ E o ~ .  For 2 < ~ n ~ r ,  it is true that 

n 
r > ~ ' S ( n ,  r)>1 ~ - l  (r § l )<~a 'v (n ,  r ) < 2  r+l. 
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Proo/. That $a'S(n, r ) ~ r  follows at once from 4.1. And if an n-dimensionM con- 

vex polyhedron has r +  1 vertices, then its number of maximal faces is certainly no 

than ~:=~ ( r ~ l ) < 2 r + i - - 1 ;  from this crude bound(:) and theresul t  for ~a'fwe more 

conclude that  ~a'~ (n, r ) < 2  r+:. To establish the stated lower bound for ~,v (or simi- 

larly for ~a.~), let us consider a k-dimensional convex body C which is a-universal 

for all n-dimensional convex polyhedra having r +  1 vertices. Let ~ denote the space 

of all proper n-sections of C and (p the natural map of ~ into ~An. Then ~ ~ ~ P~" v 

(n, r), and ~0 is locally Lipschitzian by 2.7. We see from 3.3 and 3.5 that  the Haus- 

dorff dimensions of 1~ and of p~.v(n, r) are respectively equal to ( n+  1 ) ( k - n )  and 

( r - n ) n ,  and consequently ( r - n ) n <  (n+ 1) ( /c-n) .  I t  follows that  k>~n(r+ 1) / (n§  1), 

and the proof of 4.2 is complete. 

In particular, ~a. v (2, 4) > 3, whence there is no 3-dimensional convex body which 

is a-universal for all plane convex pentagons. And of course a 3-dimensional convex 

body has at most countably many 2-dimensional sections which are not proper, so 

we conclude that  no 3-dimensional convex body includes (affinely) all plane convex 

pentagons among its (proper or boundary) sections. This validates another conjecture 

of Mclzak [13]. When r < 2n + 1, the above inequality for ~ . I  implies that  ~a'r(n, r) = 

= r ,  but I do not know whether ~ ' r (2 ,  5) is equal to 4 or to 5. Presumably the 

upper bound for ~a.v can be much improved. (:) 

Turning to s-universality, we employ a theorem of H. Naumann [15]: 

4.3. PnOPOSlTION (Naumann). Each n-dimensional convex polyhedron which has 

m maximal /aces is a proper section o/ some cube o/ dimension 2 ~ (n+  1)m. 

4.4. THEOI~EM. For 2<~n<~r, it is true that 

n 
2 ~ ( n + l ) ( r + l ) > ~ s ' I ( n ,  r)~> n~-1 ( r + 2 ) < ~ ' V ( n '  r) ~<2"(n+ 1)2r+:" 

Proo/. The proof is entirely analogous to that  of 4.2, using 2.7, 3.3, and 3.5 

- -  and 4.3 in place of 4.1. 

In  particular, ~s.v (2, 3)> 3, whence it follows that  no 3-dimensional convex body 

includes (up to similarities) all plane convex quadrilaterals among its (proper or 

boundary) sections. This also validates a conjecture of Melzak [13]. From 4.4 we see 

that  3~<$s'f(2, 2)~<36, but Melzak shows that  in fact ~s'I(2, 2 ) = 3  - -  that  is, there 

(:) Added in proof: A significant improvement may be achieved by applying a result stated 
by W. W. Jaeobs and E. D. Sehell, The number of vertices of a convex polyhedron, Amer. Math. 
Monthly, 66, (1959), 643. 
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is a 3-dimensional convex body C which is s-universal for all triangles. Melzak's set 

C is what  he calls a "pseudopo]yhedron" tha t  is, ' t he  convex hull of a convergent 

sequence together with its limit point. He conjectures tha t  there is no 3-dimensional 

polyhedron which is s-universal for all triangles, and this is easy to verify, for if a 

triangle is a section of a 3-dimensional polyhedron then its angles are all plane sec- 

tions of the (finitely many) dihedral angles determined by pairs of maximal faces of 

the polyhedron. Thus no triangular section can have an angle larger than the maxi- 

mum of these dihedral angles and consequently not all triangles can be obtained (up 

~v , etc., de- to similarity) as sections. This example suggests the s tudy of functions ~,I 

fined as were ~.I ,  etc., but  with the additional condition tha t  the universal body 

should be polyhedral. Although ~ ' I (2 ,  2 )=3 ,  we know only that  3 < ~ ' f ( 2 ,  2)~<36. 

I t  would be interesting to remove the restriction to proper faces in 4.2, 4.4, 

and some of the earlier results. More generally, the following problem is of interest: 

Whenever C is an n-dimensional convex b o d y  and ] and k are integers with 

O~]<~k~n,  

let us denote by  ~Jj, kC the space of all ]-dimensional sections S of C such tha t  the 

facet of C determined by S is of dimension k. Let hj, kC denote the Hausdorff di- 

mension of ~Jj, k C (metrized by  the Hausdorff metric). Then what possibilities subsist 

for the number-array (h~,~C)0<s<k<n? Note tha t  ~J0,nC is isometric with the interior 

of C and U n-1 k=o~o, kC with the boundary of C. The space of all ]-sections is U~=j 

~j, kC, while ~J~,~ C is the space of all proper ]-sections. In  using our results 4.2 and 

4.4 to validate two conjectures of Melzak, we employed the fact tha t  ~J~-t ~ - IC  is 

countable and hence the Hausdorff  dimension of ~J~ 1, . - i  C U ~Jn l, n C is equal to 

that of ~J,~-t n C. 

In  dealing with central a-universality we employ 

4.5. PROPOSiTIOn. I] Q is an r-dimensional cube, then every centered convex 

polyhedron having at most 2r maximal /aces is a/finely equivalent to some central sec- 

tion of Q. 

Proof. We assume without loss of generality that  Q is centered at  the origin 

in E r. We regard E r as self-dual under the usual inner product, so tha t  the polar 

body Q0 is a subset of E r. The body Q0 has vertices zi, ..., zr such tha t  
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In  proving 4.5, it suffices to consider a polyhedron P which is centered a t  the 

origin, has exact ly  2 r  vertices, ' a n d  whose affine extension is an  m-dimensional linear 

subspace m of E r. Let  P' denote the polyhedron {yEM:supxEp(y, x)~<l}, the polar 

of P relative to M;  and  let L denote the orthogonal  supplement  M ~ of M.  "There 

are vertices x~ . . . . .  x~ of P '  such t h a t  p'={~lt~X~:~lit~I<~l)and such tha t  x~ . . . . .  xm 

are linearly independent.  I t  is easy to produce points  Ym+~, ..., Y~ of L such tha t  

wx, ..., w~ are linearly independent,  where w~=x~ for l<~i<~m and w~=x~+y~ for 

m+l<~i<~r. Let  W={~t~w~:~l i t~]<l}  and let g be the orthogonal  project ion of 

E ~ onto M, so tha t  always ztw~ =xi  and ~ W=P' .  We wish to prove tha t  P ' =  W ~ N M, 

or equivalent ly tha t  P ' = ( W  ~ N M)' ;  since both  sets lie in M,  it suffices to show 

tha t  P' + L =  (WON M) '  + L .  Now using well-known properties of the polar operat ion 

0, the fact t ha t  L is the kernel of ~ and is supplementary to M, one can verify tha t  

P' + L=zt  W + L=c l  cony (WU L)+ L 

and 

(W ~ N M ) ' = M  N (W ~ NM)  ~  N cl conv (W oo U M ~  N cl cony (WU L). 

whence 

(W ~ N M ) ' + L = M  N cl conv (WU L ) + L = c l  conv (WU L ) + L = P ' + L .  

I t  follows t h a t  P = W ~ N M.  

Now let :r be the linear t ransformat ion of E r onto E r which takes always z~ 

onto w~. Then a Q 0 =  W. I f  fi denotes the adjoint  of ~ - l f l = t z r  then it can be 

verified tha t  

/~ Q = ~ - 1  (QO)O = (~ QO)O = W o. 

With  P = WON M and /~ Q = W ~ we have P=f lQ N M and consequently 

fl-i p = Q  N fl-I M, 

whence P is affinely equivalent  to a central section of Q and  the proof  of 4.5 is 

complete. 

4.6. THEOREM. For 2<<.n<~r, it is true that 

r = ~a. s (n, r) ~< ?~a, v (n, r)  -~< 2 2r. 

Proo/. Tha t  ~a, I (n, r) < r is an immediate  consequence of 4.5, and the upper  bound 

on ~a,, follows from t h a t  on ~a.s. To establish the lower bound for ~ . I  (or similarly 
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for ~a.~), let us consider a k-dimensional convex body C which is centrally a-uni- 

versal for all n-dimensional centered convex polyhedra having 2r  vertices. Let  

denote the space of all central n-sections of C and ~ the natural  map of ~ into 

E~ Then ~ Q ~ ' r ( n ,  r), and ~ is locally Lipsehitzian by  2.7. We see from 3.2 

and 3.5 tha t  the Hausdorff dimensions of ~ and of Q~'/(n, r) are equal respectively 

to n ( k - n )  and (r-n)  n, whence ( r - n )  n • n ( k - n ) .  Thus k~>r and the proof of 4.6 

is complete. 

Here again, the upper bound for ~ ' ~  is very crude and subject to much im- 

provement.  Of course ~a'v(2, r)=ua'f(2, r ) = r ,  but  I do not know the value of ~a.~ 

(3, 4). Bessaga's result [1] was tha t  ~]~'v(2, n + l ) > n .  

Now consider a family ~ of centered polyhedra and suppose there exists a k- 

dimensional centered convex body C which is centrally s-universal for ~ .  This is a 

rather restrictive assumption. For example, if rp and Rp denote respectively (for each 

P E ~ )  the radii of the inscribed and circumscribed spheres of P,  then the existence 

of C implies tha t  supp~Rp/r~< c~. Information about  the possible values of k can 

be ob ta ined  from our present techniques in conjunction with the following theorem 

of Naumann  [5]: Suppose P is an n-dimensional centered convex polyhedron which 

has 2 m  faces, tha t  P contains the polyhedron {x=  (x 1 . . . . .  x n) e E ~ : ~ l x * l  ~<r} (a 

generalized oetahedron), and tha t  P is contained in the polyhedron {x: max~ I x~ 14 R} 

(a cube). Let  zr be such that  a~> R/r and m c~ ~ is an integer. Then P can be realized 

as a central section of a cube of dimension m+m~2(n- l ) .  
There remain many  interesting infinite-dimensional problems concerning universal 

Banach spaces. I f  {B~ :8 ~S} is the set of all separable reflexive Banach spaces, then 

the /2-product E of the spaces B~ is a reflexive Banach space which is universal for 

all separable reflexive Banach spaces, but  of course E itself is not  separable. The 

separable Banach space C [0, 1] is universal for all separable Banach spaces, but it 

is not reflexive. Mazur has asked (Problem 49 (1935) of The Scottish Book [17]) 

whether there exists a separable reflexive Banach space which is universal for all 

separable reflexive Banach spaces. The problem remains open, and in fact we do not 

know whether there is a separable reflexive Banach space which is universal for all 

finite-dimensional Banach spaces. Let  us call a Banach space polyhedral provided 

every finite-dimensional central section of its unit cell is polyhedral - -  tha t  is, pro- 

vided each of its finite-dimensional linear subspaces has a polyhedral unit  cell. For 

each n, let J~ be an n-dimensional Banach space whose unit cell is a cube. Then 

the /a-product F of the spaces J~ is a separable reflexive Banaeh space which is 

universal for all finite-dimensional polyhedral Banach spaces, but  F itself is not 
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po lyhedra l .  W e  shall  p rove  below t h a t  the  space (%) is po lyhedra l  and  is un iversa l  

for M1 f in i te -d imensional  po lyhedra l  Banach  spaces,  b u t  do no t  know whether  there  

exis ts  a ref lexive Banach  space wi th  bo th  these  proper t ies  or even whe ther  there  

exists  an  inf in i te -d imensional  Banach  space which is bo th  po lyhedra l  and  reflexive.  

4.7. P ~ o ~ o s I T I o ~ .  I ] E  is a subspace o/ (co) whose unit cell U has an extreme 

point, then E is ]inite-di,mensional and U is polyhedral. Thus a ]inite-dimensional 

Banach space F is isometric with a linear subspace o/ (co) i /and only i] F is polyhedral. 

Pro@ The proof  is based  on 

(*) Suppose  p is an  ex t reme  po in t  of U, I =  {i :lp~l= l}, and  x e E  with  x ~ = 0  

for all  i E I .  Then  x = 0. 

To p rove  (*), suppose  x=~0 a n d  le t  ~ = s u p j ~ l p J l < l ,  s=(1 -d ) / ] l x l l>o .  Then  

[ p -  s x, p + s x] ~ U, con t rad ic t ing  the  fac t  t h a t  p is an  ex t reme  po in t  of U. 

Now wi th  p and  I as in (*), for each yE E  le t  T y = ( y l I ) E R  I (R denot ing  the  

rea l  number  space).  Then T is a l inear  t r ans fo rma t ion  of E into  the  f in i te-d imen-  

s ional  l inear  space R (  I t  follows f rom (*) t h a t  t he  kerne l  of T is {0}, a n d  hence E 

m u s t  be f in i te -d imensional .  Le t  ql . . . . .  q~ be a basis  for E a n d  V = cony[J[=1 [ - qi, q~]. 

Then  V is a convex body  in E,  0 is in ter ior  to  V (re la t ive  to  E),  and  U is com- 

pact ,  so we have  U ~  m V for a suff ic ient ly  large  m <  oo. Now there  exists  N < oo 

such t h a t  Iq~l<l/m whenever  1Ki<~r and  ] > N ,  and  i t  follows t h a t  I v ' l < l / m  

whenever  v E V  and  ] > N ,  whence luJI < 1  for a l l  u E U  a n d  ]>_h r . Thus  for each 

ex t reme  po in t  z of U there  mus t  be subsets  Az and  Bz of {1 . . . . .  h r} such t h a t  

Az = {i : z' = 1} and  B~ = {i : z * = - 1}. I f  A ,  = A~, and  B~ = B~,, t hen  b y  app l i ca t ion  of 

(*) wi th  p ~ z  and  x = z - z '  we see t h a t  z=z' .  I t  follows t h a t  U has  on ly  f in i te ly  

m a n y  ex t reme  po in t s  a n d  hence is po lyhedra l .  

We  have  es tab l i shed  the  " o n l y  i f"  p a r t  of t he  second asser t ion  of 4.7. F o r  the  

" i f "  pa r t ,  if suffices to  refer  to  4.5. The  proof  of 4.7 is complete .  

I t  would  be in te res t ing  to  de te rmine  all  the  f in i te -d imens ional  subspaees  of o ther  

wel l -known Banach  spaces ( the solut ion being ev iden t  for l ~ and  for C[0, 1]). 
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