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§ 1. Introduction

Let us begin by repeating (in a somewhat more elaborate form) some definitions
due to C. Bessaga [1]. A normed linear space F is wniversal for a class of normed
linear spaces provided every member of the class is linearly isometric with some
linear subspace of E. A finite-dimensional convex body K is a-universal for a class
X of convex bodies provided each member of X is affinely equivalent to some pro-
per section of K; and K is centrally a-universal for X provided K is centered and
every centered member of X is affinely equivalent to some central section of K.
Replacing affine equivalence by similarity leads to the notions of s-universality and
central s-universality. (K is centered at p provided K—p=p—K. A section of K is
the intersection of K with some flat. The section is proper provided it includes a
relatively interior point of K and central provided it includes the center of K.)

In Problem 41 (1935) of The Scottish Book [17], S. Mazur asked whether there
is & 3-dimensional Banach space which is universal for all 2-dimensional Banach
spaces, or, equivalently, whether there is a 3-dimensional convex body which is cen-
trally a-universal for all 2-dimensional convex bodies. More generally, given an integer
n>>2, is there a finite-dimensional convex body which is centrally @-universal for
all n-dimensional convex bodies? (By convex body we mean here a bounded closed
convex set.) These problems have been studied independently by B. Griinbaum,
C. Bessaga, and Z. Melzak. By very simple reasoning, Griinbaum [6] established a

negative answer to Mazur’s first question and obtained some information on the
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general problem. Bessaga’s reasoning [1] was more complicated, but he solved (ne-
gatively) the general problem, and showed in fact that no n-dimensional Banach
space is universal for all the 2-dimensional Banach spaces whose unit spheres are
(27n + 2)-gons. Melzak [12] mentioned Mazur’s problem but did not attack it directly.
Instead, he solved affirmatively a related problem in which sections are replaced by
“limit sections’’. He stated Mazur’s problem as follows: Is there a 3-dimensional con-
vex body K such that every 2-dimensional convex body is affinely equivalent to some
plane section of K? '

In the present paper, we study some problems concerning universality of con-
vex bodies by a method similar to Bessaga’s in that Lipschitzian transformations
play an important role. Our machinery is more elaborate than his, but we are repaid
by sharper results. We obtain a negative solution of Melzak’s version of Mazur’s
problem and are able to establish some other conjectures of Melzak [13]. We are
interested especially in four functions &7, &%/, &% and &%/ connected with univer-
sality of convex bodies, and two others #*® and 5*’ connected with central univer-

sality. These are defined as follows (for 2<n <7, and z=a or x=s):

E5¥ (n,r) respectively £/ (n,r) is the smallest integer k such that some k-dimensional
convex body is z-universal for all n-dimensional convex polyhedra having »+1 vertices

respectively maximal faces;

7*" (n, r) respectively 5*/ (r,n) is the smallest integer k such that some k-dimensional
convex body is centrally a-universal for all n-dimensional (centered) convex polyhedra

having 2r vertices respectively maximal faces.

We are able to prove that

n
n+1

oo > E47 (n, 1) = (r+1D)<E (m, 1)<,

oo >q0%?(n, r)Z2n* (0, r)=r,

n

d >S,1) >
and oo >&%%(n, r) i

(r+2Y< & (n, r)< oo.

Sharper results are obtained for special values of #» and r, but many unsolved pro-
blems remain,

In § 2 below, we establish the Lipschitzian nature of certain transformations
involving convex bodies, while § 3 studies the Hausdorff dimension of certain spaces
of convex bodies. In the concluding § 4, results from §§ 2-3 are combined to yield

our principal theorems, and some unsolved problems are mentioned.
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§ 2. Some Lipschitzian transformations

A transformation ¢ of a metric space (M, p) into another metric space (M’, g')
will be called Lipschitzian (with associated constant B) provided there exists B < oo
such that o' (px, py)<Bpg(x, y) for all z, y€M; and ¢ is locally Lipschilzian at a
point z € M provided ¢ is Lipschitzian on some neighborhood of .

2.1. ProPosiTION. Suppose (M, o) 15 a compact metric spuace and ¢ is a trans-
formation of M info a metric space (M', o'). Then ¢ is Lipschitzian if i ts locally
Lipschitzian af each point of M.

Proof. For each point z€M there are a neighborhood ¥V, of z and a number
B,< oo such that o' (px, py)<B,o(x, y) whenever z, y€V, Since M is compact,
there are points z;, ..., z, of M and a number £>0 such that for each z€M, the
e-neighborhood of z lies in at least one of the sets V.. With B’ =max; B,,, we have
o (pz, py)<B'g(x, y) whenever g(x, y)<s. Since ¢ is continuous, the set ¢ M must
be compact and hence of finite diameter J; whenever g(x, y)>¢, we have ¢’ (p=,
py)<(4/e)o (®, ¥). Then for B=max (B’, §/¢), it is clear that ¢ is Lipschitzian with
associated constant B.

For two subsets X and Y of a metric space M, the Hausdorff distance D (X, Y)
is the greatest lower bound of all numbers ¢ such that X lies in the e-neighborhood
of ¥ and Y in the e-neighborhood of X. It is evident that if ¢ is a Lipschitzian
transformation of M with associated constant B, then D(pX, ¢ Y)<BD(X, Y) for
all X, YcM.

2.2. LEMMA. Suppose Cy and C, are convex bodies in o normed linear space, having
a common interior point p. Let F be the family of all flats F through p, S; the space of all
sections {Cy N F:F €F}, metrized by the Hausdorff metric. For each F €F, set ¢ (O N F)=

=Cy, N F. Then ¢ is a Lipschitzian transformation of §; onto S,.

Proof. We may assume without loss of generality that p is the origin 0. Let ¢
denote the radial map of €, onto C, — for each ray r emanating from 0, g maps
the segment C,Nr linearly onto the segment C,Nr. It is proved in [9] that g is
Lipschitzian. It is evident that (with a slight abuse of notation) ¢ §=¢8 for each
S€S;, so the desired conclusion follows from the remark just preceding the state-
ment of 2.2

Lemma 2.3 below extends the fact that a convex function is locally Lipschitzian

at each point interior to its domain, while Theorem 2.4 generalizes both 2.2 and 2.3.
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2.3. LemMmA. Suppose C is a convex body in a normed linear space E, Ly is a linear
subspace of E, and L is the set of all translates of Ly which intersect the interior of C. For
each LEL, let o L=LNC. Then if £ and @ £ are both metrized by the Hausdorff metric,
the transformation @ is locally Lipschitzian at each point of L.

Proof. Let U denote the unit cell of E, and for each £>0 let £, denote the
set of all LEL such that x+eU<( for some 2€L. Then L= UJ),.oL; and if LEL,,
Mel, and D(L, My<ey<e,, then M €L, .. Thus to show that ¢ is locally Lip-
schitzian at each point of L it suffices to prove that ¢ is Lipschitzian on each set
L.. To establish the latter fact (with associated constant /& where § is the diameter
of C) we show that if L, MEL, d>D(L, M), and x€LNC, then there exists
yEM N C with [lx—y|/ < (0/e)d. We may assume without loss of generality that =0,
whence L=L, and M =L,+w for some point w with ||w| <d. Since M €L,, there
exists p€M with p+eUcC, and then, since ||w]|<d, we have p+(e/d)w€C and
|p+ (e/d)wl||< 6. Sinee C is convex and 0==x€(, C must include the point (d/(d - &))
(p+ (¢/d)w), whose norm is of course less than (§/e)d. But p=v+w for some v€L,
and then

d £ d
Zi:——e(p+ c—zw)~ mv-FwEM,

completing the proof of 2.3.

2.4. THEOREM. Suppose C and K are convex bodies in a normed linear space E and
F is the lamily of all flats in E which intersect both the interior of C and the interior of K.
For each Fe€F, let EF=FNCand nF=F N K. Then if £F and nF are both metrized by
the Hausdorff metric, the transformation n&"' (of & F onto nF) is locally Lipschitzian at
each point of £ F.

Proof. For each ¢>0, let F. be the set of all flats F which include points »
and y such that x+¢UcC and y+eUc< K (U being the unit cell of #). We shall
prove that the transformation 775‘1 is Lipschitzian on £F., and from this the de-
sired conclusion follows. Since 7 F. is bounded, it suffices (as in the proof of 2.1) to

produce numbers B < co and d>0 such that
DmF,nF'YS<BD(F, EF') whenever F, F'€J, and D F, £F')<d.

In proving 2.2 we appealed to a theorem on radial mappings, established in {9],

which asserted the Lipschitzian nature of a transformation associated with a pair of

3

convex bodies. Examination of [9] shows its reasoning to be of a ‘‘uniform” nature
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in that it actually establishes the following: For each pair of positive numbers r and
s there is a number J, ;< oo such that whenever V and W are convex bodies in a
normed linear space with unit cell U, and »+Uc VA W< Vy WcsU, then the radial
transformations of 7 onto W and of W onto V are both Lipschitzian with associated
constant J,, ;. This makes possible a uniformized version of 2.2. Similarly, in 2.3 the
simple form of the associated constant (for the restriction of ¢ to L) leads to a
stronger result of uniform nature. Now let Z be a convex body containing C'U K,
0 the diameter of Z, J=J,,s, and 4=75/(}e). We shall show that if ¥, F' € F, with
D(EF,EF)<a<i}e, then D(nF, nF)<(A+34J+J%a.

With F’€3F., there are points x and y of F’ such that x+e¢Uc( and y-+eUc K.
And D (F, F')SD(EF, EF')<ax<}e, so there are points p€EF N (x+oU) and g€ F N
(y+aU);, we have p+3eUcC and q+LteUcK, Let F,=F +(p—=x) and Fy=F +
+(q—=x). For each G€F, let {G=@ N Z. Then employing the triangle inequality for

D and the uniform versions of 2.2 and 2.3 we see that
D F,nF) <DnF,nF)+DnFy nF),
DnFy nF)<ADF,, F'y<Aa,
D F,qFy) <JD{CF,[F,),
D(CF,(F,) <D{F,{F)+D({F, Fy),
D(EF,(F)<AD(F, F,)<2Aua,
D({F,[F,) <JD(¢F,¢F)<JD(F,EF)+JD(EF, EF)),
DEF, EF) <a,
and D(EF', (F)<ADF, F))<Aa
It follows that D(nF, nF')<(A+3AJ+J%a and Theorem 2.4 has been proved.

The next two lemmas (which will be employed in proving Theorem 2.7) can be
improved in quantitative aspects, but for our present purposes they are adequate as
they stand. (1)

2.5. LEMMA. Suppose x, ..., @ 18 an orthonormal basis for B*, 0<e<1/2k, y is a
unit vector, and |||y —a;||—V2|<e for j=1,2, ..., k— 1. Then either ||y —u.|| <V2ke or
|y + || < V2ke.

Proof. Let y=>7b;x;, so that
i =1. (1)

(*) See the footnote on page 251.
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For 1<j<k—1, define 7; by the equation

7= [iasb2+ (0, — 12 - V2, (2)
so that
Insl <e. (3)

For 1<j<k—1, substitution of (1) in (2) shows that
2—2b) =V24uy, or —b;=V2y,+ 17
whence from (3) and the fact that e<}k<1 we have
|b)| <V2e+ie?=(V2+}e)e<2e. 4)
Now by (1) and (4),
12| =137} > B.=[1— (k—1)4 &%} (5)

Assuming that b,>0 (for the other case is handled similarly), we see from (4) and

(5) that
ly—zl*<(k—1)4e*+ (1 - B.)*=2—2B..

Now whenever |&|<1/(2Vk—1), define
fe=2ke®—2+2B,.

To prove the lemma it suffices to show that fe>0 whenever 0<g <}k Now the
function f is differentiable on the interval 1—1/(2Vk—1), 1/@2VEk—1[>[~1/(2k),
1/(2k)], and of course f0=0. Since for |&|<}% we have

1 )2]%=(/c2—k+ Nt _(F-2k+1F (k-1

B.> [1—4(1(:—1)(5% Ic > A A

and since
4(k—1
f’8=4k8_ '(—Bs—)s’

we conclude that
fe>0 for 0<e<}k,

and the desired conclusion is then a consequence of the mean-value theorem.

2.6. LEMMA. (1) For each positive integer k there is a number 4, which has the fol-

lowing property:

(1) See the footnote on page 251.
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whenever F and G are k-dimensional subspaces of a Euclidean space with unit cell C,

FnCcG+el, and z,, ..., z; is an orthonormal basis for F, then there is an orthonormal
basis y,, ..., Y for G such that always ||;— ;|| < Ae.
Proof. For n=1,2, ..., let a,=4(1+V2k)"*. We shall prove below that if

0<e<1/(2ka,), then the subspace G admits an orthonormal basis y,, ..., ¥, With
always ||@;—u:]| <ore. And of course if y,, ..., %, is an arbitrary orthonormal basis
for @, then always |[z;—y:||<2, and hence ||z, —y;||<4ka,e provided e>1/(2kay).
Thus it will follow that the constant 4,=4%q; has the stated property.

We suppose, then, that =, ..., z, is an orthonormal basis for F and that
e<1/(2ka,). For each i there is a point y;" of V such that ||z, —y: ||<e. Then, of
course,

12y = |l ey | =1 -,

so with y;=v/"/

[y:"]] we have

i ll=1, fla—yill<2e.
Let #, =y1. Then

o~ ll< (@ —2)e,
and for 1<j<k,

yi ~wall=V2l=[lly — vl =l ==, | <lly) ~a ]l + |2~ ]| <4e=age.
Now suppose the orthonormal set ¥, ..., ¥, has been constructed so that

|#—u:f| < (@, —2)e for i=1, ..., m,
and

oy —uill~V2|<ae for 1<i<m<j<k.

(Such a construction has already been effected for m=1.) In determining ym.1, we
first note that since

Me<anpe<aze<iyk,

there follows from 2.5 the existence of a unit vector y,.1€G such that y,,; is

orthogonal to y, (1<i<m) and

”y;n+1 —‘ym+1H < Vﬁamé‘.
Then

”xm+1 “Ym+1 ”< “ xm+1—y;n+l ”+ ”?/:n+1“‘7/m+1“ <Ze-+ [/2;}'00/;118g (am+l '_2) €.

And for m+1<j<k,
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g7 = gmeall= V2l =157 —ymarll = |2 = 2maa |l

<”?/I/_xf” +”xm+1“"ym+1”<28+(am+1_2)8:a/m+15-

Thus we proceed by mathematical induction to construct the orthonormal sequence

Y15 -.-» Y With always

lzi—wl| < (a;—2)e<aye,

and the proof of 2.6 is complete.

We wish now to describe certain spaces of equivalence-classes of convex sets
which will play a fundamental role in the sequel. For > 2, let B" denote the class
of all n-dimensional convex bodies in E", 4™ the group of all nonsingular affine
transformations of E™ onto itself, and §" the group of all similarity transformations
of E" onto itself. (Neither the members of 4" nor those of $" need preserve orienta-
tion.) Let G= A" or G=$". Two members K and K’ of B" are said to be G-equi-
valent provided K=gK’ for some g€G; the set of equivalence-classes so obtained
will be denoted by &g Now for K, K'€B", let

Yy (K; -K,) = infgeq, oK K’ V(GK)/V (K’);

where V is the n-dimensional volume function. Then 1<y and y is affine-invariant
— that is, (0 K, T K')=y (K, K') for all 0,7€0, K, K'€B". For X, X' €& choose
KeX), K'e X', and define

A(XK, X')=log y (K, K')+log y(K', K).

The argument employed by Macbeath [11] for the case G=A4" shows that A is a
metric for £;. We shall henceforth regard &; as a metric space with distance-func-
tion A.

The above definitions can be paraphrased for the class Bi of all members of
B" which are centered at the origin 0, and we denote by £} the resulting set of
equivalence classes. Let G, denote the set of all linear members of G (those which
map O into 0). Then two members K and K’ of Bj are G-equivalent if and only if
they are Gj-equivalent, and the number o (K, K') defined above is equal to
infyeq,oxox V(0 K)/V(K’'). Thus the metric on E% induced by that of £, agrees
with the metric on £% obtained by dealing only with B§ and G,. This renders per-

missible certain ‘“‘identifications’’ which we shall employ without further comment.
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27. TaurorREM. Suppose 0<k<n, Ei is the space of all k-dimensional convex
bodies in K" (metrized by the Hausdorff metric), A* is the group of all nonsingular
affine transformations of E* onto E*, and S* is the group of all similarity transforma-
tions of E* onto E*. Let G=A" or G=8" and let ¢ denote the natural map of Ej
onto the space E; of all G-equivalence classes of k-dimensional convex bodies in E*

(metrized by Macbeath’s metric). Then ¢ is locally Lipschitzian at each point of Ef.

Proof. Consider an arbitrary K€K, and let L denote the flat determined by
K. We may assume without loss of generality that the origin is interior to K re-
lative to L. Then if U is the unit cell of the subspace L, there exist positive num-
bers m and M such that m<} and 5mUc K<} MU. We shall prove that ¢ is
Lipschitzian on the m-neighborhood of K.

Consider X, Y€E; with D(X, K)y<m>D(Y, K) and D(X, Y)=¢. There exist
p€X with ||p|l<m and ¢€Y with |[p—qll<e<2m. Let X' =X —p and ¥’ =Y —q.
Then

DX, K)<sDX', X)+ DX, K)<||p||+m<2m,
DY, K)SD(Y', )+ D(Y, K)<||q]| + m<4m,
and DX, Y)<D(X—p, Y—p)+D(Y—p, Y—q)<D(X, Y)+|p—ql| <2e.

Let & denote the orthogonal projection of E" onto I; let X" =xnX' and Y"'=xY".
Then w K=K and mz is Lipschitzian with associated constant 1, so

D(X", K)<sDX', K)<dm>D(Y', K)>D(Y", K).
Since 5m U< K, it follows that mU< X" nY"”. (For example, if there exists z €L~ X"
with ||z][<m, then by the separation theorem for convex sets there exists u€L
with jlu||=1 and (u, 2) > suPsex- (4, #) where (,) denotes the inner product. But then
of course sup,c.x-(u, x)<m and it follows that the minimum distance from the point
5mu to the set X" is at least 4m, contradicting the fact that D (X", K)<4m and
S5mucbmUcK.) '

Now let F and @ denote, respectively, the linear subspaces determined by X'
and by Y’ in E". From the fact that mU< X' nY' it can be deduced that the
projection z is biunique on both F and @, and that X' > FnmC and Yo GNmC,
where C is the unit cell of E”. Now since F NmC< X’ and D (X', Y')< 2¢, it follows
that F N C < G+ (2e/m) O, whence by Lemma 2.6 (1) there are orthonormal bases z,, ..., @

(1) Professor R. Kadison has remarked that if f and g are othogonal projections of E" onto
linear subspaces F and G of the same dimension, lf-gll<d<1, v is the partial isometry determined
by the polar decomposition of fg {fg=v (gfg)%), and T is the restriction to F of the adjoint of v,
then 7 is a linear isometry of F onto G and |7~ #||<6. This fact can be used to eliminate Lemma
2.6 (and hence also 2.5) from the proof of Theorem 2.7; it leads also to a stronger form of 2.6.

17 — 603808 Acta mathematice. 103. Imprimé le 29 juin 1960
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and ¥y, ..., 4, for F and G respectively such that always ||z, — ;|| <A4,(2¢/m). Let
7 denote the linear isometry of F onto @ for which always 72, =y, and let X, =7 X',
Y, =Y. It is evident that ¢ X,=¢X and ¢Y,=¢Y. It is easy to verify that
||z —tz||<A4p(2e/m)||z|| for all z€F, and hence that

2
D(X,, Y,)<D (X, X')+D(X’, Y')< 4, 7fM+2£,

where the second inequality depends on the fact that X'< M C. Thus with
a=2+2A4, M/m,
we have D(X,, Y))<ae.
We shall use also the fact that if V7 denotes the unit cell of &, then
mV<cX nY,cX,u¥Y,cMV.

Evidently ¢(1+ae/m)X, =@ X,=¢X. Since X;>mV and D(X,, Y,)<ae, it
follows that ‘

(1 +%§)X13X1+as VoY,

v(1+aeg/m)X,

and thus (X, ¥)< y Y, ,

where » denotes the k-dimensional volume. Since X, M V and D(X,, ¥,)<as, we
have

aeM
m

M
(1+a—7:)X1cX1+ V(Y tel)+5=eV =T, +be?,
where the constant b=1+4+a M /m is independent of X and Y (subject, of course, to
the condition that D (X, K)<m>D(Y, K)). Now by the basic theorem on mixed

volumes (or more special results on parallel bodies), it is true that
v(Y,+beV)=pY +Bbe+y(be),

where the non-negative coefficients 8 and v are dependent on Y, but, since Y, =M V
are bounded above by the number 2"y (M V). (For proof of the necessary inequality
see, for example, pp. 84-85 of [4].) Now recalling that e<2m<1 and Y,>mV, we
see that

(Y, +beV)<v Y, +2"v (M V)(b+b%e
and hence

(X, Y)<v(Y,+beV)/v Y, <1+ae,
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where the constant o= (2M/m)" (b+5b%) is independent of X and Y. The same argu-
ment shows that ¢ (Y, X;)<1+«e, and we conclude that

AlpX, pY)<2log (1+ae)<2ae<2aD (X, Y),
completing the proof of 2.7.

Observe that the lemmas 2.5 and 2.6 are unnecessary for treatment of the case
G=A" for then p X" =¢X and ¢ Y"'=¢ Y. ()

We conclude the section with

2.8. ProprosiTIiON. Suppose E is a normed linear space and K (resp. X*) is
the space of all convex bodies tn E (resp. BE*) whose interior includes the origin, me-
trized by the Hausdorff metric. For each KE€X, let ¢ K denote the polar body K°=
={f€E*: sup fK<1}€X*. Then [ is a locally Lipschitzian homeomorphism of X
wnto K*.

Proof. It is evident that { is a biunique map of X into JX*. We shall prove
that { is locally Lipschitzian and hence continuous. Essentially the same argument
shows that ™! is also locally Lipschitzian, whence ¢ is a homeomorphism.

For each >0, let X, denote the set of all K €X for which r U< K, where U
is the unit cell of . We will show that { is Lipschitzian on X, (with associated
constant 1 / r?), whence the desired conclusion follows. Consider arbitrary C, K€ X,,
d<D(C° K°), and &>D(C, K). We wish to prove that &> #24. Since D (00, K% >,
one of the sets C° and K° must include a point at distance >J from the other —
f—gl|>0. Then the sets K°—jf’ and {g€E*:

llg|l| <8} are disjoint, convex, and w*-compact, so by a known separation theorem

say there exists f’'€C® with infyez|

they can be separated by a w*.closed hyperplane — that is, there exists x€E such
that ||z||=1 and d<inf,w(f’ —g)x. By w*-compactness of (° there exists f' €C°

such that f' @ =supecif2. With @ =supsecefo and b=supyexgx, we have
a—b=f"x—supgerga=infop (f' —g) x> 0.

Now C=(C") and K=(K"® under the usual duality between E and E*, so from
the definitions of @ and b it follows that tx¢C for t>1/a, and that (1/b)2€K.
Since ¢>D(C, K) and (1/b)z€K, there exist s€]0, ¢[ and w€E with ||| =1 such
that (1/b)z+su€C. And —ru€C since C€X,. Then with t=r/(r+s), we see by
convexity of C' that

1
(r_l_s)bx:(l—t)(——ru)—l—t(zx—l—su)GC’.

(}) See the footnote on page 251.
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Tt follows that r/(r+s)b<1/a, whence r(a—b)<sb and we have

e>8> r(a—;b) > Zé.

o

But since K€X, it is true that 1/b>r, whence e>7"90 and the proof of 2.8 is

complete.

§ 3. The Hausdorff dimension of certain sets

Consider a metric space M. For each 7€[0, o[, X< M, and £>0, let m X
denote the greatest lower bound of all numbers of the form >{2;(64;)", where 4,
is a sequence of sets covering X and each set 4; is of diameter 0 4;<e. Then set
m, X =sup..om; X. The function m, is the Hausdorff r-measure [7] for M and is a
Caratheodory outer measure for the class of all subsets of M, giving rise fo a regular
Borel measure. If m,X < oo, then m;X =0 for all s>r. The Hausdorff dimension of
X is the least upper bound of all numbers r€[0, co[ for which m,X>0. If hdim
denotes the Hausdorff dimension and t{dim the topological dimension {i.e., the Menger-
Urysohn dimension {8]), then from a theorem of Szpilrajn [16, 8] it is known that
for each nonempty separable metric space M, hdim M >tdim M and M admits a
metric homeomorph M’ for which hdim M’ =tdim M’. It is evident that if a metric
space M be subjected to a Lipschitzian transformation ¢ with associated constant
B, then m,p X<B'm,X for all X< M and r€f0, co[. We shall use these facts freely
without further reference, as well as the fact that a subset of E™ (with its usual

metric) has finite Lebesgue outer measure if and only if its Hausdorff n-measure

is finite.
In solving Mazur’s problem — proving that no finite-dimensional convex body
is centrally a-universal for all j-dimensional convex bodies — it is enough to know

that if C is the unit cell in E™ and §} is the space of all central j-sections of O,
metrized by the Hausdorff metric, then the Hausdorff r-measure of §7 is finite for
some r. But that is a very crude result, and for sharper conclusions we should like
to determine the exact Hausdorff dimension of §7. It is wellknown that S} is in
fact a manifold of topological dimension j(rn—7) (a ‘“Grassman manifold”), so the
“best” we could hope for is that 0<my,_j (87, D)< co. We shall establish this ine-
quality by using a known homeomorphism between §; and a quotient space of the
orthogonal group. (I am indebted to Professor W. Fenchel for suggesting this approach,

and to Professor R. Kadison for a helpful suggestion concerning group representations.)
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3.1. ProPoSITION. Suppose J is the group of all linear isomelries of E™, metri-
zed by means of the uniform norm ||T||=sup) . < || Tx|l. Suppose J is a j-dimensional
linear subspace of E™ and § is the subgroup of J consisting of all T€J for which
TJ=J. Then (with respect to the metric induced in J/G, the space of left cosets, by
the uniform metric in J) the Hausdorff j(n—j) measure of J/G is positive and finite.

Proof. Let w, ..., z, be an orthonormal basis for E” such that z,, ..., z;€J.
Let M, be the vector space of all nxn real matrices, £, the set of all nonsingular
members of M,, O, the set of all orthogonal members of M,, and O, ; the set of
all orthogonal matrices o= (o) such that ¢,,=0=0, whenever r<j<s. Then em-
ploying (with respect to the orthonormal basis z,, ..., #,) the usual identification of
matrices with linear transformations, we have O,=J, O, ,;=(, and for each ¢€M,,

” G“ = SuPEft‘%l 27 Claaut:)]E.
For each £>0, let U, denote the compact neighborhood of the origin in M,

defined as follows:
U,={c€M,: always |o,|<e}.

For each 0 €M, let exp ¢ be defined as wvsual:

— 1 2 1 n
exp 6=0+o+ 519 + et 1° +-
where 6 is the unit matrix (6,,=1 when r=s, §,,=0 when r+s). We shall employ
the following well-known properties of the mapping exp, which can be found, for
example, on pp. 5-9 of [2] and pp. 72-73, 76-77 of [14]:

(i) exp is an analytic transformation of M, into LC,;

(ii) for a sufficiently small >0 it is true that

a) U. is mapped topologically by the transformation exp onto a neighborhood
Vo of the unit matrix & in L,;

b) if J, is the subspace consisting of all skew-symmetric members of M,, then
exp (U: N J,)<=Ox

c¢) for each decomposition of M, into supplementary linear subspaces L’ and
L”, each element of C, near enough to ¢ admits a unique expression as a product
(exp a’) (exp ¢"’) for ¢’ €U, NL and ¢’ €U, nL".

Now let T, ; denote the subspace of M, consisting of all ¢€J, such that

ors=0=0, whenever r<j<s. Let ¢’ be a subspace supplementary to 7, ; in M,,
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and let @=@Q N J,. The dimension of J, is }n(n—1) and that of J,;is }j(F—1)+
+3(n—9)(n—gj—1), whence it follows that the dimension of @ is j(n—7). It can be
verified that exp (U,N J,;)= 7V, N0, ;, which by condition (ii a) is a neigborhood of
6 in O,,;. By (ii ¢) there is a compact neighborhood Z of é in £, such that each
2€Z admits a unique expression in the form z=(exp &) (exp #.) for £, €7, ; and
7.€@; from (ii b) it follows that 7,€Q whenever z€Z N 0,.

Since exp is analytic, it is easily seen to be Lipschitzian on compact subsets
of M, — in particular, on the sets £¢Z and 7 Z, say with associated constants B
and B,. Denoting by g the uniform metric in J, we see that g is two-sided in-

variant and hence that for all z, 2’ €Z it is true that

0(z, 2')=0(exp &, exp 7., exp &, exp 7,)
<p(exp &, exp 7., exp &, exp 7,) + o (exp &, exp 7., eXp &, exp 7.)
=o(exp &, exp &) +o(exp ., exp 7)
< Beo (82 £2) + Byo (12 M)

Now consider arbitrary u, v€nZ, and apply the inequality just established, with
z=7n"'u and # =7 'v. Since &,-1,=0=¢,-1,, it follows that on % Z, the transforma-
tion {=%"' is Lipschitzian with associated constant B= B,

Now one verifies easily that #Z is a compact neighborhood of the origin in @

and hence has finite Hausdorff j(n —j)-measure. For each v€nZ, let
unov= (CU) On.j eon/on.]

Then unZ is a neighborhood of the ‘“origin” (i.e., of O, ;) in the quotient space
0./0,.;, and the space is covered by a finite number of isometric images of this

neighborhood. Denoting by p’ the natural metric in the quotient space, we have
@' (v 0n,s {0 Oy ) =infs w0, ;0 ((E0) 0, (CV)T) <@ (L0, {V)<Bg (v, v),

so the transformation u is Lipschitzian. Thus the j(n—j)-measure of u(nZ) is finite

and the desired conclusion follows. The proof of 3.1 is complete.

3.2. COROLLARY. Suppose C 1is an n-dimensional convex body, p is an tnterior
point of C, 0<j<n, and U is the space of all j-sections of O through p, under the
Hausdorff metric. Then the Hausdorff §(n—j)-measure of W is positive and finite.

Proof. In view of 2.2 and the behavior of Hausdorff measure under Lipschitzian

transformations, we inay (and shall) assume without loss of generality that C is the
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unit cell of ™ and p is the origin. Let J be a j-dimensional linear subspace of H"
and let J and G be as in 3.1. For each coset dGEJ/G, let g(cG)=(cJ) N CEW.
(Observe that if cG=1G, then 67 7€, whence 67'7J=J and vJ=0¢J. Thus g is
well-defined.) It is easy to verify that g maps the quotient space J/G biuniquely
onto the space U of j-sections, and we wish to show that ¢ is Lipschitzian (relative
to the natural metric o’ in J/G and the Hausdorff metric D in W). Now consider
¢G, tG€J/G. Then

0 (0§G, TG)=inf, pe;0 (0, Tf) =inf, peg SUPsec||oaz—7B2]|.
But for arbitrary «, f€G we have aG=G=8(, so
D{go G, gt G)<inf, psD ((cad)nC, (zJ) N C)<inf, g SUPsecns|| o xx — 7 Bz

It follows that g is Lipschitzian with associated constant equal to 1, and thus from
3.1 that the Hausdorff j(n—j)-measure of U¢ is finite. But of course g is a homeo-
morphism, so the topological dimension of U is equal to that of J/§, whence the
j(n—j)-measure of W must be positive. This completes the proof of 3.2.

3.3. CoROLLARY. Suppose C is an n-dimensional convex body, 0<j<n, and X
is the space of all proper j-sections of C, under the Hausdorff metric. Then the Haus-
dorff dimension of X is equal to (j+1)(n— 7).

Proof. We may regard C as lying in a hyperplane H in E""'~{0}. Let r=
=sup {||z||;2€C} and let K be the spherical cell of radius 2r about 0. Let S de-
note the set of all (j+ 1)-subspaces of E"*! which intersect the relative interior of
C. Set F={SNK:8€S}, G={SNKNH:SeS}, and H={SnC: S€S§}. The natural
map of G onto W is everywhere locally Lipschitzian by 2.4. Since the natural map
of F onto § is Lipschitzian (easily verified), we conclude that the mnatural map u
of F onto H is everywhere locally Lipschitzian and hence by 2.1 g is Lipschitzian
on every compact set. Now F is the union of a countable number of compact sets,
and by 3.2 the Hausdorff dimension of F is at most (j+1) ((n+1)—(j+1)). The
desired conclusion follows easily, and the proof of 3.3 is complete.

Since 3.1 is one of our basic tools, it seemed worthwhile to give the above
fairly elementary proof. We now diverge from our main attack to establish a deeper
result which subsumes 3.1 but which will not be used in the sequel. In preparation
for 34, we review the definition of Lie group in a form which, though not guite
“standard”, is equivalent to the usual formulations and is especially well suited to

our present purpose.
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A (real n-dimensional) analytic structure for a topological space X is a family
H which satisfies the following three conditions: i) each member A €H is a homeo-
morphism of a nonempty open subset D, of X onto an open subset of E"; i) X is
covered by the sets D,, h€; iii) whenever %, k€N, the open set h(D,n D)< E”
is mapped analytically onto the set k(D,n D,) by the transformation kA ™'. A Lie
group is a topological group G which admits an analytic structure 3 relative to
which the transformation xy~'|(x, y) is everywhere analytic. (That is, whenever U
and V are open subsets of D; and D, respectively such that U V™'< D,, then the
natural map u of fUxgV into A(U V") is analytic, where .

@ )=h({(f*p)g 9

Such an H will be called an admissible structure for the Lie group G.

A left invariant metric p for a Lie group G will be called Lipschitzian provided
there is an admissible structure ¥ for G such that for some A€ H, the transforma-
tion ™' is Lipschitzian as a map into (G, p) of the set hD,<E" It can be veri-
fied that a Lipschitzian metric must be compatible with the topology of G, and
that % as described may be taken so that e¢€D, (where e will denote the identity
element of (). Results of Goetz [5] imply that every Lie group admits an analytic
structure H# and a left invariant metric ¢ such that for each REH, both h and A*
are Lipschitzian. (Let p be a left invariant Riemannian metric for G.) It is evident
that if a separable Lie group is metrized by a Lipschitzian metric, then its Haus-
dorff dimension is equal to its topological dimension. From this it is easy to con-
struct non-Lipschitzian left-invariant metrics. In fact, suppose G is a Lie group of
dimension n>1, ¢ is a left invariant (compatible} metric for ¢, and »€]0, 1[. Then
¢ is a left invariant metric for G and m,, (G, p")=m, (G, p)>0, so the Hausdorff
dimension of (G, ¢") is equal to n/r and @" is not Lipschitzian, For another example,
consider an arbitrary infinite compact metrizable group G' and let & be a continuous
map of G onto the Hilbert parallelotope P (such a & must exist). Assign to the pro-
duct space G'XP any metric ¢ which produces the usual product topology and has
always o ({(z, p), (y, q))=dist. {p, q). For all z, y€G, define

0 (%, y)=SupPscc o ((ac, Eax), (ay, £ay)).

Then ¢ is a left invariant metric for @ and £ is a Lipschitzian transformation of
(G, p) onto the infinite-dimensional space P. Thus the Hausdorff dimension of (@, p)

is infinite, and o cannot be Lipschitzian if ¢ is a Lie group.
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The following result should be compared with the examples of the preceding
paragraph, and with the more quantitative results of Goetz [5] and Loomis [10].

34. THEOREM. Suppose S is an m-dimensional closed subgroup of the n-dimen-
stonal separable Lie group G, and ¢ is a Lipschitzian metric for G. Then with respect
to the metrics induced by o, the Hoausdorff dimension of 8 is equal to m and the Hous-

dorff dimension of G/S is equal to n—m.

Proof. Let M be the subspace of E" consisting of all points z=(z', ..., a") EE"
such that &'=0 for m+1<i<n; let L be the orthogonal supplement of M. For each
>0, let V, be the cube in E® consisting of all x€E™ such that lxi}<wfor I<i<n.

According to the hypotheses of 3.4, there are an admissible structure J for @
and a member k of K with e€D, such that k! is Lipschitzian. By the reasoning
(and in the terminology) of Chevalley [2] (pp. 107-109, especially the Remark on
p- 109), there is an analytic involutive distribution 1 of dimension m on G whose
maximal integral manifolds are exactly the left cosets of § in G. By additional rea-
soning of Chevalley (pp. 89-91, especially the statement of Theorem 1 on p. 89)
there are an admissible structure # for G, h€H, and a>0 such that the following

conditions are satisfied:

(i) he=0€V,chD, and e€D,< Dy
(ii) on the domain kD, the transformation kh~' is analytic;

(iii) for each p€L N V,, the “slice” A~ ((p+ L) N V,) lies in some left coset C, of S.

Chevalley shows further (p. 110) that for sufficiently small €10, a[, the fol-

lowing additional condition is satisfied:
(iv) when p, €L NV, and p=+gq, then C,=0C,.

Now an analytic transformation must be Lipschitzian on every compact set interior
to its domain, so kA~ is Lipschitzian on ¥V, And k™' is Lipschitzian by hypothesis,
so it follows that the transformation A '=k '(kh™'), mapping V,< E" into (G, o),
is Lipschitzian. Since h*0=e€S, it follows from conditions (iii) and (iv) that
PY(VenMy=(h""V,)NS; thus the set A~'(V, N M) is a neighborhood of ¢ in S. This
set must have positive m-measure for A~! is a homeomorphism and V,nM is m-
dimensional; it must have finite m-measure for %! is Lipschitzian and V, N M has
finite m-measure. From separability of S we now conclude that the Hausdorff m-
measure is o-finite on §, whence m,S8=0 for each r>m and the Hausdorff dimen-

sion of § is equal to m.
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Now the function ¢ (defined by (iii)) maps LN V, into G/8, and, as remarked
by Chevalley (p. 110), it is in fact a homeomorphism under which the set LN 7, is
carried onto a neighborhood of S in G/S. For arbitrary p and ¢ in L0 V,, we have

Q, (Opa Oa) = infzecp, yeCy 0 (x> Z/) < e (h_1 D, hAIQ)’

and since A7 is Lipschitzian so is the transformation €. As in the case of § above,
this yields the desired conclusion about G/S and completes the proof of 3.4.

We return now to our principal line of reasoning, to obtain one more result on
Hausdorff dimension which will be used in the study of polyhedral sections. For
integers n<r, let us denote by P**(n, r) (resp. P*/(n, r)) the subset of £, corre-
sponding to the class of all n-dimensional polyhedra which have r+1 vertices (resp.
r+1 maximal faces). And we denote by @*°(n,r) (resp. @*7(n, r)) the subset of

% corresponding to the class of all n-dimensional centered polyhedra which have
2r vertices (resp. 2r maximal faces). We define similarly the subsets P>%(n, r) and

P>'(n, r) of En and the subsets Q%?(n, r) and @/ (n, r) of E.

3.5. ProPoSITION. Under Macheath’s meiric, each of the sets P*®(n, v), P*/(n, r),
Q»%(n, r), and Q%' (n, r) has Hausdorff- and topological dimension equal to (r—n)n;
while (r—n+1)n is the Hausdorff- and topological dimension of each of the sets
P> (n, r), P¥'(n, 1), Q°°(n, 1), and @ (n, r).

Proof. We discuss only the cases P*? P*’ P®% since from these it will be
clear how to proceed in the other cases.
Let Z,, &, ..., &, be the vertices of an n-simplex in E" Let X be the set of

all (r—n)-tuples *= (Z44y, ..., 2} of points of E” such that the set
{Zgs w5 Ty Tny1s oes To}
is convexly independent. ¥For each z€ X, let
Ex=conv {Z,, ..., Tn, Tni1, ..., X, EE7,

the space of all n-dimensional convex bodies in E”. Let 5 be the natural map of v
E% into &€, so that n&X =P*?(n, r). Now X may be regarded as an open subset
of E""™". With respect to the usual Euclidean metric for E“ ™", the Hausdorff
metric for E;, and Macbeath’s metric for €, we see directly that & is Lipschitzian
and from 2.7 that % is locally Lipschitzian. It follows that the Hausdorff dimension

of P*»?(n, r) is at most (r—n)n; to show that it and the topological dimension are
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both equal to (r—n)n, it suffices to prove that tdim P*?(n, r)> (r —n)n. For this
we may produce directly an open subset of X which maps topologically under #é&.
Alternatively, we may observe that since X is o-compact and #& is finite-to-one, it
follows from dimension theory (pp. 91-92, 30 of [8]) that tdim #& X =tdim X. (To
establish the finite-to-oneness of 7 &, consider an arbitrary x€X and observe that to
each o' €X with &2’ =9&z there corresponds an affine transformation t of E” onto
E™ taking the set {Z, ..., #,, Tas1, ..., %,} onto the set {F, ..., Fn, Tns1, ..., Tr}. Bub
then 7 must be one of the 7!/(n+1)! affine transformations which take some n+1
of the points &), ..., &, Tn41, ..., &, onto the points &, ..., & ). Thus we have disposed
of P*?(n, r).

Continuing the notation of the preceding paragraph, we may assume further
that the origin is interior to the simplex conv {%, ..., ,}. Let X denote the set of
all convex bodies in E" whose interior includes the origin, and for each K€JX let
{K denote the polar body KleX. It is easily verified that #{ EX=P'%(n,r), and
since { is locally Lipschitzian by 2.8, the desired conclusion follows as in the pre-
ceding paragraph. This takes care of P"?(n, 7).

To handle the case of P*”(n, r), we let @, ..., #n-1 be the vertices of an (n—1)-
simplex in E* and let Y denote the set of all (r —n+ 1)-tuples y= (¥, ..., y,) in E*
such that the set {#,, ..., #n-1, Yn, ..., ¥,; is convexly independent. For each y€7,
let uy=-conv {g,, ..., Gn-1, Yn, ---» Yo} €EE5. Then Y may be regarded as an open

subset of E“""*P" and the reasoning proceeds much as in the first paragraph.

§ 4. Principal theorems and unsolved problems

We turn finally to the functions £ and % defined in § 1. The results of §§
2-3 will be applied to establish lower bounds. For upper bounds on &7 and &7
we rely on the following result due to C. Davis [3]:

4.1. ProrosiTioN (Davis). If S is an r-dimensional simplex, then every convex
polyhedron having at most r-+1 maximal faces is affinely equivalent to some proper
section of S.

In particular, every convex plane quadrilateral is affinely equivalent to some
proper plane section of the tetrahedron. This validates a conjecture of Melzak [13].

Our first principal result is

4.2. THEOREM. For 2<n<r, it is true that

r=&(n, r) =

T TD<E (o r)<2r,
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Proof. That &%/ (n, r)<r follows at once from 4.1. And if an n-dimensional con-

vex polyhedron has r+1 vertices, then its number of maximal faces is certainly no
+1 .

more than Y., (T . )<2”1— 1; from this crude bound(?) and the result for &7 we
)

conclude that &% (n, r)<2"*!, To establish the stated lower bound for &*° (or simi-
larly for £%7), let us consider a k-dimensional convex body C which is a-universal
for all n-dimensional convex polyhedra having r+1 vertices. Let X denote the space
of all proper n-sections of ¢ and ¢ the natural map of X into €. Then ¢ X P*?
(n, r), and ¢ is locally Lipschitzfan by 2.7. We see from 3.3 and 3.5 that the Haus-
dorff dimensions of X and of P*?(n, r) are respectively equal to (n+1)(k—=) and
(r—m)n, and consequently (r —n)n<(n+1)(k—n). It follows that k>n(r+1)/(n +1),
and the proof of 4.2 is complete.

In particular, £*7(2, 4)>3, whence there is no 3-dimensional convex body which
is a-universal for all plane convex pentagons. And of course a 3-dimensional convex
body has at most countably many 2-dimensional sections which are not proper, so
we conclude that no 3-dimensional convex body includes (affinely) all plane convex
pentagons among its (proper or boundary) sections. This validates another conjecture
of Melzak [13]. When r<2n -1, the above inequality for £/ implies that &%/ (n, r) =
=7, but I do not know whether £*/(2, 5) is equal to 4 or to 5. Presumably the
upper bound for £*? can be much improved. (})

Turning to s-universality, we employ a theorem of H. Naumann [15]:

4.3. ProrositioN (Naumann). Each n-dimensional convex polyhedron which has

m maximal faces is a proper section of some cube of dimension 2" (n+1)m.

44. TororEM. For 2<n<r, it is true that
2"+ 1) (r+1)= 7 (n, r)> ﬁi (r+2) <& (n, 1) <2 (n+1)27+

Proof. The proof is entirely analogous to that of 4.2, using 2.7, 3.3, and 3.5
— and 4.3 in place of 4.1. ,

In particular, &?(2, 3)>3, whence it follows that no 3-dimensional convex body
includes (up to similarities) all plane convex quadrilaterals among its (proper or
boundary) sections. This also validates a conjecture of Melzak {13]. From 4.4 we see
that 3<£%7(2, 2)<36, but Melzak shows that in fact £/(2, 2)=3 — that is, there

() Added in proof: A significant improvement may be achieved by applying a result stated
by W. W. Jacobs and E. D. Schell, The number of vertices of & convex polyhedron, Amer. Math.
Monthly, 66, (1959), 643.
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is a 3-dimensional convex body (' which is s-universal for all triangles. Melzak’s set
C is what he calls a “pseudopolyhedron” —— that is, the convex hull of a convergent
sequence together with its limit point. He conjectures that there is no 3-dimensional
polyhedron which is s-universal for all triangles, and this is eéasy to verify, for if a
triangle is a section of a 3-dimensional polyhedron then its angles are all plane sec-
tions of the (finitely many) dihedral angles determined by pairs of maximal faces of
the polyhedron. Thus no triangular section can have an angle larger than the maxi-
mum of these dihedral angles and consequently not all triangles can be obtained (up
to similarity) as sections. This example suggests the study of functions &7, ete., de-
fined as were &7/, etc., but with the additional condition that the universal body
should be polyhedral. Although £-/(2, 2)=3, we know only that 3<&57(2, 2)<36.

It would be interesting to remove the restriction to proper faces in 4.2, 4.4,
and some of the earlier results. More generally, the following problem is of interest:

Whenever € is an n-dimensional convex body and j and %k are integers with
0<j<k<n,

let us denote by Y, ,C the space of all j-dimensional sections S of C such that the
facet of € determined by § is of dimension k. Let kb, ,C denote the Hausdorff di-
mension of Y, .C (metrized by the Hausdorff metric). Then what possibilities subsist
for the number-array (h;,,(o<j<k<n? Note that Y, ,C is isometric with the interior
of C and UxloUY,,C with the boundary of C. The space of all j-sections is U7;
Y, C, while Y,,,C is the space of all proper j-sections. In using our results 4.2 and
4.4 to validate two conjectures of Melzak, we employed the fact that Yn 1, ,1C is
countable and hence the Hausdorff dimension of Y, 1 n1CU Yn 1.,C is equal to

that of yn_l,nO.

In dealing with central a-universality we employ

4.5. PrROPOSITION. If @ is an r-dimensional cube, then every centered convex

polyhedron having at most 2r maximal faces is affinely equivalent to some central sec-
tion of Q.

Proof. We assume without loss of generality that @ is centered at the origin
in B". We regard E' as self-dual under the usual inner product, so that the polar
body @° is a subset of E'. The body @Q° has vertices z, ..., 2, such that

Q' ={Ditz: 25|t <1}).
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In proving 4.5, it suffices to consider a polyhedron P which is centered at the
origin, has exactly 27 vertices, and whose affine extension is an m-dimensional linear
subspace m of E". Let P’ denote the polyhedron {y€ M :sup,cr(y, ) <1}, the polar
of P relative to M; and let L denote the orthogonal supplement M°® of M. There
are vertices x,, ..., x, of P’ such that P'={>1t,x;: >1|t;| <1} and such that z,, ..., z,
are linearly independent. It is easy to produce points ¥m.1, ..., ¥» of L such that
wy, ..., w, are linearly independent, where w;=z; for 1<i<m and w;,=z;+y; for
m+1<i<r. Let W={31t,w;:21|t;|<1} and let = be the orthogonal projection of
E" onto M, so that always mw;, =z, and x W=P’. We wish to prove that P'=W°n M,
or equivalently that P'=(W°n M); since both sets lie in M, it suffices to show
that P'+L=(W°n M) + L. Now using well-known properties of the polar operation
%, the fact that L is the kernel of # and is supplementary to M, one can verify that

P +L=aW+L=cl conv (WUL)+L
and
(WonM)y=Mn(W°nM*=Mnel conv (WU M =Mnel conv (WU L).
whence

(WnMY+L=Mnel conv(WUL)+L=cl conv (WU L)+ L=P +L.

It follows that P=W°n M.

Now let o be the linear transformation of E" onto E" which takes always z
onto w;. Then «@Q®=W. If 8 denotes the adjoint of & '——f="!a"?, then it can be
verified that

/3 Q — t“—l (QO)O — (OC QO)O - WO.
With P=W°NM and BQ=W° we have P=8Q N M and consequently
BrP=Qnp M,

whence P is affinely equivalent to a central section of ¢ and the proof of 4.5 is

complete.
4.6. THEOREM. For 2<n<r, it 1s true that
r=n%7(n, r)<y*°(n, r)<2%.

Proof. That #*7(n, r) <7 is an immediate consequence of 4.5, and the upper bound

on 7*” follows from that on #*’/. To establish the lower bound for #*/ (or similarly



POLYHEDRAL SECTIONS OF CONVEX BODIES 265

for #*°), let us consider a k-dimensional convex body C which is centrally a-uni-
versal for all n-dimensional centered convex polyhedra having 27 vertices. Let W
denote the space of all central n-sections of ¢ and ¢ the natural map of W into
E%. Then W% (n,r), and ¢ is locally Lipschitzian by 2.7. We see from 3.2
and 3.5 that the Hausdorff dimensions of W and of Q*/(n, r) are equal respectively
to n{k—mn) and (r—~n)n, whence (r—n)n<n(k—n). Thus k>r and the proof of 4.6
is complete.

Here again, the upper bound for #*? is very crude and subject to much im-
provement. Of course 5*?(2, r)=%*’(2, r)=r, but I do not know the value of [*?
(3, 4). Bessaga’s result [1] was that #*"(2, n+1)>mn.

Now consider a family D of centered polyhedra and suppose there exists a k-
dimensional centered convex body C which is centrally s-universal for P. This is a
rather restrictive assumption. For example, if 7, and Rp denote respectively (for each
PeP) the radii of the inscribed and circumscribed spheres of P, then the existence
of C implies that suppe, Rp/rp< co. Information about the possible values of % can
be obtained from our present techniques in conjunction with the following theorem
of Naumann [5]: Suppose P is an n-dimensional centered convex polyhedron which
has 2m faces, that P contains the polyhedron {x= (2, ..., 2")€E": 27 |2*|<r} (a
generalized octahedron), and that P is contained in the polyhedron {z: max;|z;|< R}
(a cube). Let a be such that «> R/r and ma® is an integer. Then P can be realized
as a central section of a cube of dimension m +mo®(n—1).

There remain many interesting infinite-dimensional problems concerning universal
Banach spaces. If {B,:s€8} is the set of all separable reflexive Banach spaces, then
the I*-product F of the spaces B, is a reflexive Banach space which is universal for
all separable reflexive Banach spaces, but of course E itself is not separable. The
separable Banach space ([0, 1] is universal for all separable Banach spaces, but it
is not reflexive. Mazur has asked (Problem 49 (1935) of The Scottish Book [17])
whether there exists a separable reflexive Banach space which is universal for all
separable reflexive Banach spaces. The problem remains open, and in fact we do not
know whether there is a separable reflexive Banach space which is universal for all
finite-dimensional Banach spaces. Let us call a Banach space polyhedral provided
every finite-dimensional central section of its unit cell is polyhedral — that is, pro-
vided each of its finite-dimensional linear subspaces has a polyhedral unit cell. For
each n, let J, be an n-dimensional Banach space whose unit cell is a cube. Then
the *-product F of the spaces J, is a separable reflexive Banach space which is

universal for all finite-dimensional polyhedral Banach spaces, but F itself is not
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polyhedral. We shall prove below that the space {c,) is polyhedral and is universal
for all finite-dimensional polyhedral Banach spaces, but do not know whether there
exists a reflexive Banach space with both these properties or even whether there

exists an infinite-dimensional Banach space which is both polyhedral and reflexive.

4.7. ProrositTioN. If B is a subspace of (c,) whose unit cell U has an extreme
point, then E is finite-dimensional and U is polykedral. Thus a finite-dimensional

Banach space F is isometric with o linear subspace of (c,) if and only if F is polyhedral.

Proof. The proot is based on

(*) Suppose p is an extreme point of U, I={i:|p'|=1}, and z€E with &'=0
for all 1€1. Then z=0.

To prove (*), suppose =0 and let d=sups;|p’|<1, e=(1—-40)/||z||>0. Then
[p—ex, p+ex]< U, contradicting the fact that p is an extreme point of U.

Now with p and 7 as in (*), for each y€E let Ty=(y|I)€R’ (R denoting the
real number space). Then 7T is a linear transformation of E into the finite-dimen-
sional linear space R’. It follows from (*) that the kernel of 7' is {0}, and hence E
must be finite-dimensional. Let ¢, ..., g, be a basis for £ and V=convUi.:[— ¢, ).
Then V is a convex body in X, 0 is interior to ¥V (relative to E), and U is com-
pact, so we have UcmV for a sufficiently large m < oo. Now there exists N < oo
such that |g/|<1/m whenever 1<i<r and j>N, and it follows that [v’|<1/m
whenever v€V and j>N, whence |u’|<1 for all w€U and j>N. Thus for each
extreme point z of U there must be subsets 4, and B, of {1, ..., N} such that
A,={1:2'=1} and B,={i:7'= —1}. If 4,=A4, and B,=B,, then by application of
(*) with p=2 and z=2z—2" we see that z=z'. It follows that U has only finitely
many extreme points and hence is polyhedral.

We have established the “only if”’ part of the second assertion of 4.7. For the
“if”" part, if suffices to refer to 4.5. The proof of 4.7 is complete.

It would be interesting to determine all the finite-dimensional subspaces of other

well-known Banach spaces (the solution being evident for I* and for C[0, 1)).
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