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I .  Area was defined, [2], in 1936 by L. Cesari for the "surface" given by any 

equivalence class of measurable functions. Subsequently, we gave a somewhat diffe- 

rent, but equivalent, definition. We then showed, [5], that  this area agrees with the 

Lebesgue area for surfaces given by continuous functions, and that  the Tonelli theo- 

rems remain valid for this wider class of surfaces, provided only that  the notions of 

absolute continuity and bounded variation are suitably modified. 

On the other hand, for certain purposes, this class of non-parametric surfaces is 

too wide. For example, it has already been observed by us, [6], that  a theory of 

similar scope is impossible in the parametric case, since the elementary area of quasi- 

linear mappings from the square into euclidean 3 space is not lower semi-continuous 

with respect to almost everywhere convergence. Moreover, for continuous non-para- 

metric surfaces, it has been shown by Federer, [4], (also, see Mickle and Rado, [9]), 

using earlier work of Besicovitch, [1], for the case of a surface given by an ACT 

function, that  the Lebesgue area is equal to the Hausdorff 2 dimensional measure 

of the graph of the function. Since, in our general theory, a surface is an equivalence 

class of measurable functions, and since changing the values of a function on a set 

of measure 0 may change the Hausdorff 2 dimensional measure of its graph, it is 

evident that  Federer's theorem cannot remain fully valid. Moreover, we must contend 

with phenomena such as that  exhibited by the function ] defined on the closed unit 

square I given by ] (x, y ) =  O, x ~  ~ and f (x, y ) =  1, x >  �89 In  our theory, the area here 

is 2, since the step is included, but the Hausdorff 2 dimensional measure of the 

graph is 1. 
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All this indicates that  certain specialization is needed. In  the first place, we 

have been able to successfully define a parametric area for surfaces given by functions 

which we call linearly continuous. This theory is being developed in another paper. 

In  the second place, for non-parametric surfaces given by linearly continuous func- 

tions, we shall show that  the area as defined by us and by Cesari is equal to the 

Hausdorff 2 dimensional measure of an "essential" part of the graph. For these 

reasons, and for others which arise as the text develops, it appears that  the linearly 

continuous functions deserve special attention. 

We wish to thank the referee for his careful study of the paper and for his 

suggestions leading to its improvement. 

2. In 1942, I. Verchenko, [14], showed that  to every non-parametric surface of 

finite area, given by a continuous function ] on the unit square I ,  there corresponds 

a measure /~s such that  for every open rectangle R c I ,  #I(R) is the Lebesgue area 

of the surface given by / restricted to R. The main result of Verchenko was that  

for every Borel set E c I ,  if A (/)< ~ ,  A (g)< ~ ,  a n d / = g  on E, then/~1(E)=p~ (E). 

This result also follows from Federer's theorem, alluded to above, that  for every 

surface given by a continuous / the area of the surface is equal to the Hausdorff 

2 dimensional measure of the graph. 

For the linearly continuous case, we shall proceed as follows: We shall first 

extend Verchenko's work to surfaces given by linearly continuous functions. The 

resulting measure will then play the essential part in the extension of Federer's 

theorem to these surfaces. 

Indeed, we first consider any equivalence class of measurable functions. (We use 

the function symbol / to designate such a class, whenever there is no danger of confu- 

sion). We recall that  the area of the surface given by / is defined as follows: Let 

E (p) be the elementary area of a quasi-linear function p; i.e., p is continuous and 

its graph consists of a finite set of triangles, and E (p) is the sum of the areas of 

these triangles. Then 

A (/) = inf [lira inf E (p~)], 
n - > ~ r  

where the infimum is taken over the sequences (Pn} of quasi-linear functions defined 

on the closed unit square I which converge almost everywhere to /. 

3. We associate a measure with / in the following way. Observe that  for every 

open rectangle R c I, the area A (/JR), of / restricted to R, may be defined in the 



N O N - P ~ - ~ A M E T R I C  S U R F A C E S  271 

above way, and tha t  if R 1C R 2 then A (/I R1) ~< A (/I R2)- We use the notation S ~ for 

the interior of a set S. For I itself, it follows from the definition tha t  A ( / [ I ) = A  (/[io), 

so tha t  the resulting measure /~s will have the property tha t  /~s(I)-~/~r(I~ 

Analogous definitions to those of A (/I I )  and A (/I I~ may  be g ive ,  for A (/I R) 

and A (/[R ~ for any closed rectangle R c I .  As before, A ( / IR)=A (/IR~ However, 

~f(R)  may  be different from /~r(R ~ since ~uf(R)=inf A (/IS), for open rectangles S 

containing the closed rectangle R, may  be greater than  /~r(R~ 

A point (x, y) E I  ~ will be called singular if, for every open R c I  ~ with (x, y) ER, 
A (/] R ) =  ~ .  The set Sr of singular points of / is evidently closed. I ts  complement 

Gf= I ~  Sf will be called the set of regular points of /. 

We shall show that,  for every ~ > 0 and regular point (x, y), there is an open R 

such tha t  (x, y ) E R  and A (/]R)<~. Moreover, if (Rn) is a decreasing sequence of 

open rectangles, with R 1 c  Gs, where R1 is the closure of R1, such tha t  their inter- 

section is empty,  then lim A ( / [ R ~ ) - 0 .  These facts seem to be hard  to prove by 
n ---> ~r 

direct use of the definition. However, we have obtained elsewhere, [5], [7], expres- 

sions for A (/]R), in terms of variation functions, which may  be used for this purpose. 

4. We now give a brief recapitulation of these results in a somewhat improved 

form. For a Lebesgue measurable function /, of a single real variable, defined on an 

interval (a, b), we may  define the generalized variation as 

(] ; (a, b)] = inf (lim inf V [g~ ; (a, b)]), 
n - - > ~  

where the infimum is taken for all sequences (gn) of continuous functions converging 

almost everywhere to /, and V[g;  (a, b)] is the variation of g on (a, b). In  [5], for 

summable / using L 1 convergence, the function ~ was shown to be equal to the 

ordinary variation of /, restricted to its set of points of approximate continuity, or 

to the rain V [g; (a, b)], where g is any function equivalent to /. This holds as well 

in the present situation. 

We use the term oriented rectangle for one whose sides are parallel to the 

coordinate axes. Thus oriented refers to direction; the term is often used for s ense  

orientation in other works. For a function /, defined on an oriented rectangle 

R-(a ,b) •  for every x E(a, b), we designate by /~ the function / ( x , y ) o f  y 

defined for all yE(c ,d )  and, for every y E(c,d), we designate by /y the function 

] (x, y) of x defined for all x E (a, b). We then have the generalized variations. 

d b 

d)~(R)=fq~[/~;  (a,b)]dy and (I)2(R)= f q~[/~; (c,g)]dx. 
c 
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These variations were first defined by  Cesari, [2], in a different way, and have been 

used by  Kriekeberg,  [8], Paue,  [ l l ] ,  de Vito, [15], and others. We are 5nterested in 

the  var ia t ion tF (I) of the rectangle funct ion 

(I) (R) = [(I)2 (R) + (I)~ (R) + [R 12]~. 

T h a t  is to say, 

tangles consider 

for any  finite set R = {R 1 . . . . .  Rn} of non-overlapping oriented rec- 

(I) (R)= Z dp (R,), 
i = 1  

and let  ~F (f) = sup (I) (R) for all R. This is an example of a so-called lower, or G~oeze, 

area. In  previous work, we had used the notion of admissible subdivision in defining 

a lower area. There we used the functions 

d b 

(91(R)= f l t ( b , y ) - l ( a , y ) l d y  and (gz(R)=  f I I (x ,d)- / (x ,c) ldx .  
12 a 

and defined (9 (R) = [(9~ (R) + (9~ (R) + I R 12]~. 

We then called a rectangle admissible if I is approximate ly  continuous, separately in 

each variable,  almost  everywhere on the boundary  of R. We then  defined a G~ocze 

area as the Burkill  integral of (9 (R) restr icted to  admissible rectangles. We call 

this X (I). 

We point  out  t ha t  ~F (1) = X (1). Since, for every  R, @1 (R) ~> (91 (R) and (P2 (R) >7 

>~ (92 (R), i t  is obvious t ha t  ~F (1)1> X (1)- On the other  hand,  we showed in [5] t ha t  

@1 (R) and (I) 2 (R) are, respectively, the upper  Burkill  integrals of (91 (S) and (92 (S), 

where S is an a rb i t ra ry  admissible oriented rectangle in R. Using the inequal i ty  

[ ( a l  § . . .  +a,~)~+(b~+ § 2 4 7  2 �89 ~ 2j_ ~ �89 ( a ~ + b ~ §  . . . . . .  + ca) ] ~ (al + bl , cl) +- - -  + (*) 

it  follows by  a s t raightforward calculation t ha t  ~F (/)~< X (/). 

Since we know from [5] t ha t  X (1)=A (1), i t  follows tha t  tI~ (1)~ A (1). 

Moreover, it  easily follows from the definition tha t  the following inequal i ty  holds 

for every  R:  

(D 1 (R) + r  (R) § I R I >~ ~F (R) >~ max  [(I) 1 (R), (I) 2 (R), I R I]- 

5. Now, suppose (x ,y)  is a regular point.  There is then  an R = ( a ,  b ) •  

with (x, y) E R and ~F (R) < oo. Since (I) 1 (S) < tF (S), for every  S, and 
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d '  

(I)~ (S)= / ~  [fy; (a', b')]dy, 
c" 

for S=(a',  b')• there is a 6 ' > 0  such that  r b)•  y+6'))< 1r 

Similarly, there is a 8 " > 0  such that  ( I)2((x-6",  x + ~ " ) •  d) )<~e.  Let  

6 = rain [6', 5", Vr 

Then, using (*), it follows that  

~F ((x-5, x+5)• y+6))<s. 

Since A ( f iR)=~F (R), it  follows that  there is a decreasing sequence {Rn} of open 

rectangles containing (x, y) such that  lim A (fl Rn) = 0. 
n --~r162 

Suppose, next, that  {Rn} is a decreasing sequence of oriented rectangles, with 

R l c  GI, and [~ Rn empty. Then either the lengths or the widths of the Rn converge 

to 0. Suppose the widths, b n -  an, converge to 0. Then it is evident that  I Rn f and 

q)2 (Rn) converge to 0, provided (I) 2 (Rn) is finite for some n. To show that  (I)~ (Rn) 

converges to 0, we need a fact regarding the generalized variation of a function of 

a single variable. Let  ~ [f; (a, b)] < ~ ,  and let I n =  (a~, bn) be a decreasing sequence 

of open intervals in (a, b) whose intersection is empty. Since there is a g epuivalent 

to f such that  V(g; (~ ,~) )=~[ f ; (~ , /~ ) ] ,  for every (cz, fi)c(a,b), it follows that  

lira ~ [f; (an, bn)] = 0. Let  Rn = (an, bn) • (cn, dn). Then 

dn 

r (Rn) = f cf [fy; (an, bn) ] dy. 
cn 

The sequence of functions {T[f~; (an, bn)]} are summable, decreasing, and converge 

to 0 almost everywhere. Hence 

d n  

lim (Pl(Rn)= lira f ~[f~; (an, bn)]dy=O. 

I t  now follows that  lim A (fl Rn)= 0. 
n - - ~  

6. We now define the measure /~r for all Borel sets in G I. For every open 

oriented rectangle R c Gr, let # f ( R ) = A  (fiR). For every open oriented line segment L 

we define /~I(L)=lira #f (Rn), where {Rn} is a decreasing sequence of open rectangles 

whose intersection is L. Since, if {Sn} were another such sequence of open rectangles, 
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then for every n, there are m'  and m "  such tha t  Sm.c R,  and R m , , ~ S , ,  it is clear 

tha t  # f (L )  is uniquely defined. For every point P E GI, we define # I ( P ) = 0 .  The 

definition is justified by  the fact tha t  if P =  ~ R,, where {R,} is a decreasing 
. = 1  

sequence of rectangles, then lim A ( / IR , )  = O. 
n --> r 

Let S ~  G I be the union of a finite number  of pair-wise disjoint sets $1, S 2 . . . . .  Sn 

each of which is either an open oriented rectangle, an open oriented line segment, 

or a point. For every such S = [$1, S 2 . . . . .  S,], we let #I  (S)=  Z/~I  (S~). 
i = l  

We have shown [5, w 6] tha t  if R is a rectangle and R =  5 S~, where the S~ are 
i = l  

open rectangles, open lines, or points, and are pair-wise disjoint, then/~I (R) = ~/~f (S~). 
i = l  

I t  then follows tha t  for if S has two representations S = [ S  l, S 2 . . . . .  S,] and 

t �9 k ~ � 9  
S = [$1, $2 . . . . .  S~] then ~ F~I(S~)= /~I(~) so tha t  # (S) is well defined. 

i = 1  i = 1  

We note tha t  the family S =  [S] is a ring of sets, for it is easily seen to be 

closed with respect to finite unions and differences. Furthermore,  we show tha t  if 

{S.} is a decreasing sequence of sets in S, with #f  ($1)< oo and N S. empty,  then 

lira #I (S.) = 0. For this proof, we use auxiliary measures /~  and #7, which are defined 

in exactly the same way as /~f, except tha t  the functions qb I(R) and (I) 2(R) are 

used instead of A (/t R). The basic inequality 

then holds. 

In  order to show tha t  lira ~1(S . )=  O, we need only show tha t  
n - - > ~  

l i m / ~  ( S . )  = l i m  #7 ( S . )  = l i m  I S .  I = O. 
n -->oo n - - > ~  n - - ) ~  

I t  is only necessary to show tha t  lim #} = 0. For  this, for every Y0 E (0, 1), let S.,~~ 
n -->oo 

be the linear set of x for which (x, Yo)E S . .  I t  is apparent  tha t  

1 

(s.) = f s . .  d y. 
0 

But, by  the same argument as given before, the sequence of functions {~ [/y; S,,~]} 

are summable, decreasing, and converge almost everywhere to 0. Hence, 
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1 

lim #}(S~)= lim fop[/y; S,~,y]dy=O. 

I t  follows tha t  /~f is completely additive on S and may  be extended to the 

Borel sets in Gr. Moreover, if E ~ G I is compact, then # / ( E ) <  co, since every point 

P E E is contained in an open rectangle R such that  /~/(R)< ~ ,  and a finite number  

of these rectangles covers E. Since Gf is the union of countably many  compact sets, 

the measure is totally a finite for G/. We summarize the above results in 

T I~EOI~I~M 1. /~ / is an equivalence class o/ measurable /unctions de/fried on 

I -  (0, 1)• (0, 1), there corresponds to / a closed set Sf and its complement GI= I ~ S/, 

and a measure ttr such that # / (S )= ~ /or every non-empty S c  S/, #s is totally a /inite 

on G/, and t t / ( R ) = A  (/IR) /or every open rectangle R. 

We remark tha t  if S c G /  and S c Z 1 x Z o ,  where I Z l l = l z 2 I = 0 ,  then # I ( S ) = 0 .  

For, evidently, #} (S) = / ~  (S) = I St = 0, and #r (S) < #~ (S) + #~ (S) + I S l- 

7. We digress briefly to a discussion of the measure associated with a continuous, 

parametric surface. This theory has been developed by  Cesari, [3], for surfaces of 

finite area. Consider the closed square I = [0, 1] • [0, 1]. Let  [ be a continuous mapping 

from I into euclidean 3 space E 3. For every point P E E  s consider the set Fp of 

components of [-~ (P). Let  F -  [J Fp. The sets y e F  are pair-wise disjoint and their 
P e E  a 

union is I .  We topologize P as follows: A subset G c F  will be open if [Jr  is an 
~'eG 

open set in I .  I t  is known, [3], [12], tha t  I? is then a Peano space. In  particular, 

every open set is of type F~, and the space F is normal. I t  follows that,  for every 

open G ~  F, there are 

such tha t  G =  [~ G~, and 
n = l  

compact. 

G l c G l c  ... c G ~ c ~ c  ... 

~ is the closure of G~, for every n. Evidently,  G~ is 

A point y C F will be called singular if, for every open G c F ,  7 E G, we have 

A ( / I G ) =  ~ .  Otherwise, y is called regular. The set G I of regular points is open 

relative to F, and the set IJ ~ is open relative to I .  Furthermore,  GI= 5 G~, where 

G l c  G1 c "'" c G~c ( ~ c  .... For each G~, we consider the Cesari measure for the Borel 

sets in G~. This is defined since A ( / I G ~ ) <  co, the G~ being contained in compact 

sets composed of regular points. Moreover, every Gn is an admissible set & la Cesari, 
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[12]. I t  also follows t h a t ,  for every  n, A (l] G~) equals  the  Cesari measure  of G~ as 

a subset  of Gn+l ob ta ined  b y  considering the  funct ion  / r e s t r i c t ed  to  Gn+x. 

Thus we ob ta in  a un ique ly  def ined measure,  pe rhaps  having  infini te  values  for 

some sets, for the  Borel  subsets  of G~; recall  t h a t  these  are  subsets  of F no t  of I .  

I t  is a t o t a l l y  (r f inite measure .  I t  would  seem t h a t  an  imprope r  surface in tegra l  m a y  

also be def ined for such surfaces, and  we in tend  to  discuss these  ma t t e r s  elsewhere. 

8. I n  this  section, we po in t  ou t  t h a t  an  analog  of Verchenko ' s  theorem for non- 

pa rame t r i c  surfaces of f ini te  a rea  does no t  hold  for cont inuous  pa r a me t r i c  surfaces of 

f ini te  area,  even for the  case where the  map;pings involved  are  homeomorphisms .  

F o r  th is  purpose,  we cons t ruc t  a closed, zero d imensional  set in the  un i t  square  

as follows: Consider  a f ini te  set of pair -wise  dis joint ,  or iented,  closed squares ;  call 

these  squares of r ank  1. I n  each square  of rank  n ~> 1, consider  a f inite set  of pa i r -  

wise dis joint ,  or iented,  closed squares ;  call these squares of r ank  n + 1. F o r  eve ry  

n >  1, label  the  squares of r ank  n wi th  n subscr ip ts  R~,~ . . . .  ~ in such a w a y  t h a t  

Rll~ . . . .  ~__l~ncR~,~ . . . .  ~n-l" Le t  S n =  LJ Ri,~ . . . .  ~ be the  union of a l l  squares of r a n k  n, 

and  le t  S = 5 S~. Moreover,  choose the  squares so t h a t  eve ry  square  of r ank  n has  
n = l  

diagonal  of l ength  less t h a n  1/n, and  so t h a t  I S l = ~ .  I t  is clear t h a t  S is zero 

dimensional .  

D i rec t ly  above  the  center  of I ,  a t  he ight  2, p lace  a square  a, and  d i rec t ly  above  

the  center  of each R~,~ . . . .  ik, a t  he ight  l / k ,  p lace  a square a~,~ . . . .  tk. F r o m  each of 

these squares punch  as m a n y  holes as there  are squares Ri, ~, i . . .  kn and  join the  boundar ies  

of these holes b y  means  of the  boundar ies  of p ipes  to  the  boundar ies  of the  squares 

a~, ~ . . . .  ~kn. F o r  every  n, the  b o u n d a r y  of a and  i ts  interior ,  minus  the  punched  holes, 

toge the r  wi th  the  p ipes  lead ing  to  t he  boundar ies  of t he  a~,, the i r  in ter iors  minus  the  

punched  holes, and  so on, unt i l  f ina l ly  the  pipes leading to  the  boundar ies  of the  

a,, ~ . . . .  tn and  the  in ter iors  of the  a,,~ . . . .  *n, form a pa rame t r i c  cont inuous  surface Sn, given 

b y  an  / ,  which maps  each Ri, i . . . .  in onto  ai, i . . . .  in" Moreover,  t he  pipes  can be chosen 

so t h a t  there  are  no intersect ions  and the  mapp ing  ] ,  is a homeomorphism.  F u r t h e r -  

more,  the  squares  and  p ipes  can be chosen suff ic ient ly  smal l  t h a t  A ( S n ) < � 8 8  for 

eve ry  n. 

The sequence {/n} converges un i fo rmly  to  a cont inuous  ma pp ing  / for which all  

po in ts  in S are  fixed. Le t  S be the  surface of th is  mapping .  Then,  since 

A (S)~< l im inf A ($~), A (S)~<�88 
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Accordingly ,  i t  necessar i ly  follows t h a t  #/ (S)~< 2- Consider the  i den t i t y  ma pp ing  g of 

the  un i t  square  onto itself. Clearly /~g (S )=~ .  

9. A real  funct ion /, on the  closed uni t  square I ,  will be called essentially 

linearly continuous if the re  are g and  h, equ iva len t  to /, such t h a t  gx is cont inuous  

in y for a lmos t  all  x, and  hy is cont inuous  in x for a lmos t  all  y. The funct ion / will 

be called linearly continuous if /x is cont inuous  in y for a lmos t  all x and  /y is conti-  

nuous in x for a lmos t  all  y. A l inear ly  cont inuous  funct ion can be inf ini te  on a subset  

of a set of the  form Z l •  where Z1, Z 2 are of l inear  Lebesgue measure  zero. 

A re la ted  p r o p e r t y  is one which we call  strong linear continuity. / has  this  pro-  

p e r t y  if, for every  line L, / is a cont inuous  funct ion  of one var iab le  on a lmos t  al l  

lines para l le l  to L.  

Certa in  special  k inds  of sets are  of in te res t  to  us. Le t  U =  [0, 1], V =  [0, 1], and  

I = U • V. A set Z c I will be cal led negligible if t he re  are A c U, B c V, wi th  Z = A z B, 

and  1.41= I B] = 0 .  A set E will be called elementary if 

E = (El  • V) U (U • E~), 

where Eic U and  E 2 c  V are  closed sets. 

W e  first  show t h a t  if / is l inear ly  continuous,  then  for every  ~ > 0, there  is an  

e l emen ta ry  set E such t h a t  ] E l >  1 - ~  and  / is cont inuous  on E. 

L E M~IA 1. I /  / is linearly" continuous on I, then /or every ~ > O, ~ > O, the subset 

E ~ U, /or which x E E and ] y -  Y'I < (5 implies ]/(x, y) - / (x, Y')I < ~, is measurable. 

Proo/. Let  x E En if and  only if /x is a cont inuous  funct ion of y, and  there  are  

y ,y '  with l y -y ' ]>(~  and  I / ( x , y ) - / ( x , y ' ) i > ~ - l / n .  Let  xoEE~, ] y - y ' ] < ~ ,  and  

] / ( x  0, y) - / (x 0, y')] > ~ 1/n .  Then there  are  y~, y~ such t h a t  /~, and/y~ are  cont inuous  

funct ions of x, lYe-Y21 < 5 ,  and  ]/(x0, y ~ ) - / ( x 0 ,  y2)] > ~ - l / n -  There  is an  open 

in te rva l  G~ U, xoEG, such t h a t  for every  xEG, ] / ( x , y ~ ) - / ( x ,  y2)]>~-  1/n.  Thus,  

En is measurable .  B u t  E differs from C(U En) b y  a set of measure  0, so t h a t  E is 
n--1  

measurable .  

L EMMA 2. I /  / is linearly continuous on I, then /or every s > 0 there is a closed 

set E c U, ]El> l - e ,  such that the saltus o/ ], relative to E• V, is less than ~ at every 

point o/ E• V. 

Proo/. There  is a ~ > 0 ,  such t h a t  if E is the  subset  of U for which x E E  and  

l Y l -  Y21 < ($ implies  I / (x ,  Yl) - / (x, Y2)] < s, t hen  the  exter ior  measure  of E exceeds 

1 - s .  But ,  b y  L e m m a  l ,  E is measurable ,  so t h a t  we m a y  assume i t  is closed. 
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Suppose xoEE, x, E E, n = l ,  2, .:., and tha t  {(x~, y~)} converges to (x o, Yo). 

Consider the subsequence of {(x~, y~)} for which x, >~xo, Y~>~Yo; call this subsequence 

also {(x~, y~)}. There is a y' such tha t  0 < y ' - Y o  < ($ and ]y, is a continuous funct ion 

of x. There is then a 5 ' > 0  such tha t  0 < x ' - X o < ~  ~ implies I/(x0, y ' ) - / ( x ' ,  y ' ) l<e .  

Now, if n is large enough, (x~, y~) is in the rectangle [Xo, x 0 + 5 ' ] x [ y  0, y']. Then 

]/(x~, y~) - / (xo ,  yo)l<~l/(x~, y~) - / (x~ ,  y ' ) l+l / (x~,  y ' ) - / ( x  o, y ' ) l+l / (xo ,  y ' ) - / ( x  o, yo)l. 

But  the first and third terms on the r ight hand side are each less than  ~ since 

Xo, X~EE and ]y~-y']<(~, ]Yo-Y' I  <(~, and the second term is less than  ~ since 

] Y~ - Y0 ] < 5'. The subsequences of {(x~, y~)} for which x~ >~ xo, y~ ~ Yo ; x~ ~< Xo, y~ >~ Yo; 

and  x~<~xo, Y~<~Yo m a y  be t reated similarly. Pu t t ing  all together,  we obtain  the  

lemma. 

L EMMA 3. I /  / is linearly continuous on I, then /or every s>O there are closed 

sets E c U ,  F c V ,  with IEI > 1 - ~ ,  ] F i > l - s ,  such that i/ E = ( E x V )  U ( U x F ) ,  then 

the saltus o/ ], relative to E, is less than s at every point O/ E. 

Proo/. By Lemma 2, there are closed sets E c U, F c V, such tha t  ] E l >  l - e ,  

I F I > I - e ,  and the saltus of /, relative to E x V ,  is less than  e at  every point  of 

E x V, and the saltus of /, relative to U xF,  is less than  s at  every point  of U x F .  

Clearly, the saltus of / is less than  s, relative to E, at  every point  of E ~ ( ( U x F ) N  

(1 (VxE) ) .  Let  (x, y ) E ( U x F ) N  (E x  V). There is a circle K1, center (x, y), such tha t  

the saltus of [ is less than  s on the set K 1 N ( U x F ) ,  and a circle K2, center (x, y), 

such tha t  the saltus of / is less than  s on the set K 2 ( l ( E x  V). Hence the saltus 

of /, relative to ~, is less than  ~ at (x, y). 

L E M~iA 4. I] / is linearly continuous on I, then for every s > O, there are closed 

sets E c U ,  F c V ,  with ] E ] > I - ~ ,  I F ] > ] - ~ ,  such that / is continuous on 

~ = ( E x V ~  U ( U x F ) ,  
relative to ~. 

Proo]. Let  {z~} be a sequence of positive numbers  with i E~ = ~. For  every n, 

let E~ ,F~  be such tha t  I EnI > 1 - ~ ,  I F~I>l -# ,~ ,  and such tha t  the saltus of / is 

less than e~ at  every point  of En = (En x V)U (UxFn) ,  relative to En. Let  E = N E , ,  
n = l  

F = ~  F~. Then I E i > l - e .  IF I  > l - e ,  and / is continuous on ~ = ( E x V )  u ( U x F )  
n = : [  

relative to ~. 
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In  other  words, for every s > 0 ,  there is an elementary set of "size" 1 - s  on 

which / is uniformly continuous. 

i 0 .  A measurable function / on I has finite area if and only if it is of bounded 

variat ion in the sense of Cesari (BVC). This means tha t  

1 1 

fcf(/~)dx<~ and fq~(/~)gy<~; 
0 o 

or, tha t  there, are functions g and h, equivalent to /, such tha t  

1 1 

f V(g~)dx<~ and f Y(hy)dy<~. 
0 o 

We prove the existence of g with this property.  We first note t ha t  if S is a 

planar  measurable set then the linear densi ty  in the y direction of S exists and 

equals 1 almost  everywhere on S. I t  then follows tha t  / is approximate ly  continuous 

in y almost  everywhere. Thus if for every x, we let gz be the upper  measurable 

boundary  of /x then gx is an m function. We then define g (x, y)=gx (Y). The function 
1 1 

g is measurable and such tha t  f V (gx)dx=f ~ (A)dx. 
0 0 

Before going any  further, we first observe tha t  if / is BVC then it is summable.  

For  this, we note that ,  for almost  all x, the saltus, ~o (gx), of gx is less than  or equal 

to V (gx). Moreover, there is a Yo (indeed, almost  every y has this property)  such 

tha t  g~. has bounded variat ion relative to a subset E of [0, 1] of measure 1. There 

is thus an M such tha t  l g (x, y0) l <  M for every x E E.  I t  follows that ,  for almost  

all x, I / (x,  Y) I ~< ~o (g~) + M ,  for every y. Thus, 

1 1 1 1 

f fl/(x,y)ldydx<~f(~o(g~)+M)dx<~f(V(g~)+M)gx<~Ol(/) +M. 
0 0 0 0 

Hence, ] is summable. 

Since we shall first consider the finite area case, we shall, for the t ime being, 

deal only with summable functions. 

Suppose / is essentially linearly continuous. We shall show tha t  i f / i s  also BVC, 

then it is equivalent  to a linearly continuous g; indeed, to a s trongly linearly 

continuous one. I n  the process of proving this, we shall also obtain  the fact  t ha t  

for a linearly continuous /, of finite area, the integral means converge to /, in a 

quite strong sense, which we call linear convergence. 

We need the known 

19 - 603808 A c t a  m a t h e m a t i c a .  103.  I m p r i m 6  le  21 j u i n  1 9 6 0  
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L EMMA 5. I /  / is a continuous, monotonically non-decreasing, real /unction on 

[0, 1], i~ (/~) is a sequence o/ continuous, monotonically non.decreasing /unctions con- 

verging to / almost everywhere, then (/n) converges to / everywhere, and the convergence 

is uni/orm. 

l i .  B y  the integral means /h, h > 0, of a summable /, we mean  the functions 

h h  

(z, y + v l d u  dv. 
0 0 

Observe tha t  if / is defined on I, then /h is defined on [0, 1 -  h] • [0, 1 -  h]. 

The first goal is to  prove the summabi l i ty  of /. 

Let  / be essentially linearly continuous and BVC, and  let g be equivalent  to / 

and such tha t  gx is continuous for almost  all x. Now, V (gx)< ~ almost  everywhere, 

so that ,  for almost  all x, gx has a canonical representat ion 

as a difference of monotonical ly  non-decreasing functions of y. For  every y E [0, 1], 

and  every real c, this representat ion m a y  be defined so t h a t  + - gx ( y ) -  e. Now, choose 

Y0 so tha t  there is an M such t h a t  [g(x, y0) l~  < M  for almost  all x, let E be the set 

of these x, and choose the  representat ion functions g+ and g~ so tha t  g~+ (Y0) = g (x, Y0) 

and g ;  (Y0)=0, for all x E E. Finally, define the functions g+, g-  by g+ (x, y)=g~+ (y), 

g-  (x, y) = g ;  (y), for x E E,  and g+ (x, y) = g-  (x, y) = 0, everywhere else. 

The functions g+ and  g-  are Lebesgue measurable functions with respect to 2 

dimensional Lebesgue measure. We give the proof for g+. g~, is measurable, as is gy 

for almost  all y. Fix n and consider y -k  < "'" < Y0 < Yl < "'" Ys where y-k  < 1/n, y~ > 1 - 1In 

and so t h a t  y~+l-Yt < l / n  and gy~ is measurable, for every i. For  every i, let E~ be 

the set of x for which g (x, yt+l) >~g (x, y~), and gx is continuous. Then E~ is measurable. 

Define the funct ion kn as follows: If  gx is no t  continuous, let kn (x, y ) =  0, for 

every y. I f  gx is continuous, define kn (x, y) as the quasi-linear function of y which 

a) is constant  on [y~, yi+l] if x ~ E~, 

b) is such tha t  kn (x, y~+l) - k,~ (x, Yi) =g (x, yi+i) --g (X, y~), and linear on the  interval  

[y~, y~+l], if x E E~. and 

C) ]~n (X, Y0) = g (X, Y0)" 

The functions /c~ are measurable and converge almost  everywhere to  g+. Hence 

g+ is measurable. 
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and 

1 

Since V (gx) = V (g+) + V (gx), for almost all x, and f V (g~:) dx< c~, it follows that  
0 

1 1  1 1 

f f l g  + (x, y)[dxdy<~ f(v(g+~)+M)dx< f V (g , )dx+M< ~ ,  
O 0  0 0 

1 1 1 1 

f fig-(~, y)Idxdy<f V(gx) dz<<f V (g.) d ~ <  ~ .  
0 0 0 0 

Hence the functions g+ and g- are summable. 

I t  is necessary now to make some notational clarifications. 

We consider an essentially linearly continuous / which is BVC and the cor- 

responding g, defined above, such that  g = /  almost everywhere and gx is continuous 

for almost all x. Then g has corresponding g+ and g- defined in the above way. 

For every k > O, we have the integral means of all three functions, which we designate 

by gk, (g+)k, and (g-)k, respectively. We also have the associated functions of a single 

real variable. (g~)x, (gk)v , ((g+)k)~, + k ( (g )  )v, ((g-)k)x, and ((g-)k)~. For example, for every 

x E [0, 1], the function ((g+)k), is defined by 

((g+)k)x (y) = (g+)k (x, y). 

Suppose, now, that  x is fixed and Yl < Y2- Then, 

k k 

(g+)~ (x, Y2) - (y+)k (x, y~) = k -2 f f {g+ (x+u, y2+ v) -g+ (x+u, y~ +v)} du dv>~ O, 
0 0 

since the integrand is positive almost everywhere. Thus, the funct ions ((g+)k)x are 

monotonically non-decreasing functions of y, on [0, 1 -  ]el, for every x, However, it  

is well known that  (g+)~ converges almost everywhere to g+. By  Lemma 5, for Mmost 

all x, ((g+)k), converges everywhere to (g+)x, the convergence being uniform on [0, 1 -  el, 

for every ~> 0. Indeed, by extending the definition of (g+)~ to all of I ,  in the fol- 

lowing way, we obtain that  ((g+)k)x converges uniformly to (g+)~ on [0, 1] for almost 

all x : 

For xe[O, l - k ] ,  y E [ 1 - k ,  1], let (g+)k(x,y)=(g+)k 
For x e [1 -- k, 1], y e [0, 1 -- k], let (g+)k (x, y) = (g+)k 

For x e [ 1 - k .  1], y e l l - k ,  1], let (g+)k(x,y)=(g+)k 

(x, 1 - k). 

(1-L y), 
( l - k ,  l - k ) .  

Similarly, the functions ((g-)k)x converge uniformly to (g-)x for almost all x. Since 

(g+ _ g - ) k =  (g+)k _ (g-)k, it follows that  (gk)z converges uniformly to gx for almost all x. 

Since the integral means of g and h are the same, (gk)~ converges uniformly to 

hy for almost all y. We thus see that  lim gk exists everywhere, except possibly at 
k--~0 
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points belonging to a negligible set, and the limit is linearly continuous, and is 

equivalent to 1. This proves 

T ~ E o R E ~ 2. I /  f, de/ined on I ,  is essentially linearly continuous and B VC, 

then / is equivalent to a linearly continuous g. 

One further remark may  be made. If  instead of averaging over squares, we had 

averaged over circles of radius /c, with center at  (x, y), in determining /~, our proof 

shows tha t  if / is essentially strongly linearly continuous then / is equivalent to a 

strongly linearly continuous g. We thus have 

C o R 0 L L A R Y  1. I f  /, de/ined on I,  is essentially strongly linearly continuous and 

B V C ,  then / is equivalent to a strongly linearly continuous g. 

12. Jus t  as continuous functions go with uniform convergence, summable func- 

tions with L 1 convergence, etc., linear continuity has its own particular kind of con- 

vergence. This is linear convergence, and the above proof implies tha t  i f / i s  linearly 

continuous and BVC, then /~ converges linearly to /. 

A sequence {gn} of functions defined on I converges linearly to a function g, if 

(gn)x converges uniformly to gx, for almost all x, and (gn)y converges uniformly to g~, 

for almost all y. This type of convergence has an associated metric when restricted 

to the set of linearly continuous functions. Let  /, g be linearly continuous, and let 

d (], g) be the infimum of the set of all k for which there are E c U, F c V, I E l  > 1 - k, 

IFI > l - k  such tha t  I / ( x , y ) - g ( x , Y ) ] < / c  on (E•  u ( U •  

The space of linearly continuous functions, with this metric, is evidently a com- 

plete metric space s Theorem 2 has the 

C o R 0 L L h Ir Y 2. I~ / is linearly continuous and B VC then the integral means f~ 

converge linearly to /. 

We also have 

TH]~ORV.M 3. The space s is the metric space completion o/ the  space ~ o/quasi-  

linear /unctions when given the metric o/ linear convergence. 

Proo]. We need only show tha t  ~ is dense in E. Let  / E C. By Lemma 4, there 

is a set ~ = ( E •  0 ( U •  such tha t  E and F are closed, I E ] > l - ~ s ,  ]FI>I-~, 
and / is continuous on E relative to E. By the Tietze extension theorem, there is a 

continuous g on I such tha t  g =)~ on ~. There is a quasi-linear p such tha t  I P (x, y) - 

- g (x, y) I < e for every (x, y) e I .  But  then d (/, p) < ~. 
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13. For  non-paramet r ic  surfaces, the  Lebesgue area is cus tomari ly  defined for 

cont inuous surfaces as an  extension f rom the quasi-l inear ones using the  topology of 

uniform convergence;  and,  the  area we consider for  measurable  functions is obtained,  

in similar fashion, using the  topology of convergence in measure  (or convergence 

a lmost  everywhere) .  We show t h a t  the  area ~ (/), obtained,  in this way,  for the l inearly 

continuous functions, using linear convergence, equals A (/). 

Le t  / be l inearly continuous, and let 

(/) = inf [lim inf E p~)], 
n -->oo 

where the  inf imum is t aken  for all sequences {p~} of quasi-l inear funct ions which 

converge l inearly to ]. We shall show t h a t  ~ ( / ) = A  (/) by  noting t h a t  ~ ( [ )=  ~F (/). 

I n  the first  place, ~ is lower semi-continuous on ~) wi th  respect  to  linear con- 

vergence, since it  is lower semi-continuous on ~ with respect  to a lmos t  everywhere  

convergence. I t  then  follows, f rom the definition, t h a t  ~ is lower semi-continuous on g .  

Moreover,  if (P is a real va lued funct ional  on g ,  which is lower semi-continuous and  

equals the  e lementary  area on ~ ,  then  for every  / E  g ,  �9 ( / ) <  ~ (/). Since the func- 

t ional  ~F is lower semi-continuous on g ,  wi th  respect  to a lmost  everywhere  con- 

vergence, i t  is also lower semi-continuous with respect  to linear convergence. More- 

over, we know, [7], t h a t  l im ~F (/k) = ~F (/), for every  / e I: ; indeed, for every  sum- 
k-->0 

mable  /. I f  / is BVC, /~ converges l inearly to /. There then  exists a sequence {p~} 

of quasi-l inear functions,  converging l inearly to /, wi th  l im E(p~)=W'(/) .  Hence  
n - - > ~  

([)~<~F([), so t h a t  ~ ( / ) = ~ F ( [ ) .  We now know t h a t  if / is BVC then  ~ ( / ) = A ( / ) .  

I t  remains  only to show tha t  if / is not  BVC then  ~ ( / ) =  ~ .  We need only observe 

tha t ,  for every l inearly continuous /, ~ (/) I> (I) 1 (/), O 2 (/). This clearly holds for  quasi- 

linear p. Le t  {p~} converge l inearly to  /, and  be such t h a t  zr ( / )=  l im E (p~), where if 
n-->oo 

(/) = ~ ,  we mean  t h a t  E (p~) approaches  infinity.  Since @1 is lower semi-continuous 

wi th  respect  to l inear convergence, we have  

O 1 (/) ~< lim inf O 1 (Pn) <~ l im E (Pn) = ~ (/)" 
n-->r n --> r 

Also O 2 ( / )<  zt (/), in similar fashion. I f  / is not  BVC, either 4Pl ( / ) = ~  or O~ ( / )=  

so t h a t  ~ ( / )=  co. 

14. Le t  f be BVC and l inearly continuous on I .  Suppose E=  (E• V)U (U• 

is an  e lementary  set, and / is continuous on E relat ive to E. We shall obta in  an 

expression for /~r (E) in te rms  of the measures  #~ and ju~. 
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Let  R = [a, b] • [c, d] be an oriented rectangle. Since the functions /x and /y are 

continuous, for almost all x and almost all y, respectively, and of bounded variation, 

the measures corresponding to their variations are given by  the expressions of Banach, 

[10], now to be described. 

Let  g be a continuous real function on [0, 1], of bounded variation. The measure 

corresponding to the variation is then given, for a Borel set E, by 

mr(E)= S N (I, y, E)dy, 
- o o  

where N (/, y, E) is the number  of points, x E E, for which / ( x ) =  y. Now, 

d 

tt~ (E_. N R) = S mly ((E N R)y) dy 
c 

b 

and /l~ (~ N R) = S ms~ ((~ N R)x) dx. 

Since, from the Banach expression, if [1 and /2 are continuous real functions, of 

bounded variation, on [0, 1], and fl =/2 on a Borel set E, then ms, (E)=ms~ (E), it 

follows tha t  if / and g are BVC and linearly continuous on I ,  then if [ = g  on an 

elementary set E, we have /~ (E N R ) = / ~  (~ N R) and #~ (E N R) = / ~  (E N R), for every 

oriented rectangle R. We consider the rectangle function 

h i  (R) = [{/~ (E N R)} 2 + { ~  (E N R)} ~ + ]E N R 12] ~. 

Let ~F e(/) be the variation of A~(R) on I .  Then, if / = g  on E it follows tha t  

ItPe (l)=lt/'e (g). We show tha t  Life (f)=/~I(~).  Let  {R=} be the sequence of oriented, 

open rectangles, which are the components of the complement of E. Then 

oo 

~ (~) = ~  (x) - Z ~,,-- (R.). 
n = l  

For every n, let Qn=I..~ 5 Rk. Then /~I(Qn) is the infimum of the variations of 
k = l  

1F (R) on figures containing the figure Qn- Since E c Q~, it follows immediately from 

the definitions tha t  /~/(Q~)~>xFe(/), for every n. Let  ~ > 0 ,  and let Q~ be such tha t  

I Q~ ~ El < ~ e, /~r ~ (~'~ ~ E ~ < ~ ~ and ~ (Qn ~ ~) < 1 e. Then, using the inequality (*), 

defined in w 5, for every finite set of pair-wise disjoint rectangles, $1, S 2 . . . . .  Sk, 

we have 

k k 
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so tha t  

Bu t  #I(Qn)>~#s(~) so that ,  for every e > O ,  ~ F e ( f ) > ~ p / ( ~ ) - e  and so qf~(f)>~/~/(~). 

This shows tha t  ~F e ( / ) = # / ( E ) .  

Since ~F e (/) depends only on the values of / on ~, we have the following exten- 

sion of Verchenko's  theorem. 

TI~EOREM 4. I /  / and g are BVC and linearly continuous, and i/ ~ is an ele- 

mentary set such that [ and g are continuous on E, relative to ~, and i] / = g  on E, 

then #s(~) =#g (~). 

~5. We are now ready to prove our main  theorem. Le t  I be the open uni t  

square. If  / is a function, and E c I is a Borel set, theI1 H (/, E) will designate the 

Hausdorff  2 dimensional measure of the set of [ ( x , / ( x ) ) : x E E ] .  Since this set is 

analyt ic  it is measurable in the cases being considered. 

For  every Borel set E c I and continuous / of finite area, # I ( E ) = H  (], E). This 

is t rue because /~f (E) and H (/, E) are both measures, which agree for open rectangles, 

and so for all Borel sets. We show tha t  if ] is linearly continuous and BVC, then 

for every e > 0, there are closed sets E c U, F c V, with IE  I > 1 -  s, I FI > 1 -  s, and  

a continuous g, of finite area, such tha t  / = g  on E =  (E•  V)U ( U •  For  this pur- 

pose, we choose E and  F so tha t  / is continuous on E, for every x E E,  (/,)h converges 

uni formly to / ,  and ~v (/~)< ~ ,  and for every y E F,  (•)h converges uniformly to G 

and ~v (G) < cr 

Let  Sn be a closed square in I whose boundary  is in E and has distance less 

than  1/n  from the boundary  of S=. Then S n - E  consists of a countable set of pair- 

wise disjoint open rectangles R n =  (an, bn)• d~), n =  1, 2, . . . .  Le t  R = R ~ ,  for some 

fixed n. Then / is continuous, as a funct ion of one variable, on the boundary  of R, 

and  is of bounded variat ion there. The functions ]h are continuous everywhere. More- 

over, lira A (]~1 R) = A (t IR). This follows f rom the  fact  t h a t  A (fhlR) <~ A (]l R~), where 
n-~ao 

Rh=(an, bn+h)• d=+h), tha t  l i m A ( ] ] R h ) = A ( f ] R ) ,  and tha t  l i m A ( ] h ] R _ h )  = 

= A (/]R), where R-h  = (an, bn - h) • (c,, dn - h). We have used here the additional fact, 

to  be proved two sections hence, t ha t  if [ is linearly continuous and BVC, then 

gf  ( L ) =  0 for every line L. 

Le t  e > 0. Choose h so tha t  A ([h I R) < A ([IR)  + s, and  so tha t  

bn b n 

an a~ 
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dn dn  

f I/ (an, and f 
Cn Cn 

are all less than  s. Thus  the boundary  of R is spanned by  a continuous parametr ic  

surfaces ~ whose area satisfies A (~) < A (1[ R) q- 5 s. 

I t  is easy to replace a by  a non-parametr ic  g such tha t  A (g ]R)< A  ( / IR)+ 5s  

and g = ]  on the boundary  of R. Indeed,  since the surface of minimal area, [15], 

spanning the curve given by  / on the boundary  of R, is a non-parametr ic  surface, 

and since the above holds for every s > 0, g m a y  be chosen so tha t  

sup [I g (x, y)] : (x, y) E R] = sup [[/(x,  y)[ : (x, y) E bdry  R] 

and so tha t  A ( g I R ) ~ A ( / I R ) .  

By  extending / from E to  Sn, by  adding the above g = gn on each Rn, we obtain  

a function g, defined for all (x, y )E  S~. I t  is evident tha t  g is continuous and tha t  

A (g) ~< A (/). Let  E ~ = E U S~. Now fig (E n) = H (g, E~). But,  /~f (~n) = #g (En). I t  thus 

follows tha t  # f ( ~ ) = H ( g ,  ~), since # f ( ~ ) = l i m / j f ( ~ n )  and H g ( ~ ) = l i m  Hg(E~). 
n-->oo n-->oo 

Let  E~ = (E~ • V) U (V • F,),  n = 1, 2 . . . . .  where [E~ [ > 1 - I /n ,  [Fn [ > 1 - 1/n, each 

have the above properties. Suppose, moreover,  as we may,  t h a t  E~ c E~+I, n = l, 2, . . . .  

Then P r ( E ~ ) = H ( / ,  E~). Le t  E =  5 E~. Then /~ f (~)= l im ~u I ( ~ ) ,  and H ( / ,  E ) =  

lim H ( I ,  E~). Hence, /*I (E) = H (/, ~). Since I ~  is negligible, t t I ( g ) = A  (/), so tha t  

A ( 1 ) = H  (l, E). We have thus  proved 

Tn]~OBBM 5. I /  ] is linearly continuous on I ,  and BVC,  there is a negligible 

set Z such that the Hausdor/l 2 dimensional measure o/ the graph o/ l, restricted to 

I ~ Z ,  equals the area o/ the sur/ace given by /. Moreover, the same holds /or every 

negligible set containiny Z. 

In  the process of proving Theorem 5, we have obtained a general version of the 

Plateau problem for the non-parametr ic  case. This asserts t ha t  among  the linearly 

continuous, non-parametr ic  surfaces which span a continuous curve of finite length, 

defined over the boundary  of a rectangle, there is one of smallest area, and  it is 

given by  a continuous function. 

Also, from Theorem 5, there follows an extension of Verchenko's  theorem. Let  

/, g be linearly continuous and BVC. Let  Z r and  Zg be the associated negligible sets 

of the theorem. They  are Borel sets. Let  E be a Borel set such tha t  / = g  on E.  

Now, ttl (E ~ Z I O Zg) = #g (E ~ Zf U Zg) since H (l, E ~ Z I U Zg) = H (g, E,~ Zf U Z~). More- 
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over, /~i (ZI) = / ~  (Zg) = 0. Finally,  /~I (Zg ~ Zr) = #~ (Z I ~ Zg) = 0. This last follows since, 

for example, ~t~ (Zo~ Zs), being majorized by  the  integral of a function defined on a 

set of measure 0, is 0. We thus  have 

T H E o x ] ~  6. I /  / and g are linearly continuous and o/ /inite area, and i/ / = g  
on a Borel set E, then #f(E)=/~g (E). 

16. I t  remains for us to consider the case where [ is linearly continuous and 

has infinite area. Then A ( / )=  ~ .  We show t h a t  H(/,  E ) =  ~ ,  whenever  I ~  is 

negligible. Suppose (I) 1 ( / )=  co. Then, for any  given M,  there is a finite set of pair- 

wise disjoint rectangles $1, S 2 . . . . .  S= such tha t  if Sk = (ak, bk)• (ck, d~), k = 1, 2 . . . . .  n, 

then 
dk  

f l / (bk,  y ) - / (a~ ,  y ) l d y > M .  
k ~ l  

Ck 

dk 

Since H(/,Sk)>~ f I/(bk, y ) - ] (ak ,  y) ldy, k = l  . . . . .  n, 
ek 

it follows tha t  H (/, E) >~ ~ H (/, Sk) >~ M. 
k = l  

Hence, H(/ ,  ~) . . . .  Theorem 5 thus has the 

COaOLLA~Y 3. I / /  is linearly continuous, then the area o/ the sur/ace given by 

/ equals the Hausdor// 2 dimensional measure o/ the graph o/ /, provided that the values 

at a certain negligible set are deleted. 

We m a y  also state 

CO~OLLA]~Y 4. Let / and g be linearly continuous on I and let G=G r N G~. I /  

E ~  G is a Borel set, and / = g  on E, then /~r(E)=#g (E), /inite or in]inite. 

The proof, which is now easy to obtain, is omitted.  

i 7 .  For  any  measurable /, ~f is zero for the points in G I. However,  as we have 

noted, lines m a y  have positive measure. We have also used the fact, now to be 

proved, t ha t  for linearly continuous / which are BVC, /~r is zero for lines. 

We call a set rid~ if almost  all lines, parallel to  the coordinate axes, meet  S in 

countable sets. We shall use the facts that ,  for every Borel set E, 

#} (E) §  (E) + [El  >~/~+ (E) >~ max  [#~ (E), /~ (E), [E  []. 

1 1 

and  tha t  ]~ (E)= f mfy (E~)dy, #~(E)= f msx(Ex)dx. 
0 0 
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Now, if S is a rid~, Borel  set, and  if ] is l inearly continuous and BVC, t h e n  

/ ~ ( S ) = / ~ ( S ) = ] S I = 0 ,  so t h a t  # r ( S ) = 0 .  I t  follows t h a t  if ] is l inearly continuous,  

then  / ~ f ( S ) = 0  for every  rid6 Borel  subset  of G r. This is no t  a lways t rue  for func- 

t ions which are not  essentially l inearly continuous. We conjecture t h a t  this p rope r ty  

characterizes the essentially l inearly Continuous functions.  

For  l inearly continuous f, there  is a va r ian t  of LIP which also gives the  area. 

Le t  ] be l inearly continuous and  BVC on I .  For  every  or iented R c I ,  let ~1 R 

and ~ 2 R  be the  project ions of [(x, y, / (x, y)) : (x, y) E R] into the  x z  and  y z  planes,  

respectively.  Le t  

~r (R) = [I ~1 R I' + I n ,  R 1~ + ] R 12] �89 

n 

Then,  let ~ (f) = supk~ 1 ~I (Rk) 

for all finite sets of pair-wise disjoint rectangles R1, R z . . . . .  R~. Our  assert ion is t h a t  

for l inear ly  continuous ], which are BVC, ~ ( ] ) = ~  ( ] ) = A  (]). This is obviously  false 

for BVC funct ions in general  since, for  the funct ion f(x,  y)=O, x~<~, ](x, y )=] ,  

x>�89 ~ ( [ ) = 1  bu t  L F ( h = 2 .  

For  the  l inearly cont inuous case, the  proof runs as follows: For  every  rectangle R, 

O n (R) >~ I re2 (R) I- On the  other  hand,  for every  s > 0, R contains pair-wise disjoint  

rectangles R1, R 2 . . . .  , R~ such t h a t  ~ I ze2 (Rk) l > ~ (R) - s. Then,  for a lmost  all x, 
k - 1  

f~ is continuous in y, so t h a t  there  is an n = n (x) for which 

N 

5 It y , ) - t  (x, > v (I.) 
i - 1  

where the  y, can be chosen arbi trar i ly,  except  t h a t  lye-y,-1] < 1/n (x), i= 1 . . . . .  N. 

There  is an n such t h a t  n > n (x) for all x, except  possibly for  a set of measure  less 

t han  ~, where ~ is chosen so t ha t  for every  set  E,  wi th  ]E  I > ( b -  a ) -  ~, i t  follows 

t h a t  f ~ (Ix) d x > ~P~ (R) - ~ e. Consider the  rectangles 
E 

R~ = [a, b] x [i/n, (i + 1)/n], i = 1, 2 . . . . .  n. 

Then  ~ I re~ (R~)l > r  (R) - 8. 

Similarly, there is a set S~, S 2 . . . . .  Sk of pair-wise disjoint rectangles in R, such t h a t  
k 

I ~  (Sj)] > r (R) - e. Now, for a ref inement  of bo th  the R, and  Sj, say Qk, we have  
t ~1  
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~ I ~ Q ~ ) [ > % < R ) - ~ ,  and ~ I ~ : ( Q ~ ) I > O : ( R ) - ~ ,  
k = l  k = l  

so tha t  ~ $I (Q~) > �9 (R) - 2 s. 
k = l  

I t  follows from these inequalities tha t  ~ (/)~> ~F ([). But  since, for every R, O~ (R)/> 

~> [ ~  (R)[, i = 1, 2, it is evident tha t  fl  (/) ~< ~F (/). 

The converse is also true. I f  / is not essentially linearly continuous, and is BVC, 

then fl  ( / )< ~F (/). Let  us call fl  I (/) the upper Burkill integral of the rectangle func- 

tion [z~ (R)[, with a similar meaning for ~ (/). Now, 

�9 F if) - ~ (D I> max  [~1 (D - ~ (D, W~ (/) - ~ (/)]. 

Suppose, now, tha t  for a set E of values of x, of positive measure, there is a y (x) 

such tha t  ms ({y (x)}) > 0. I t  then follows easily tha t  for every subdivision R1, R2, ..., R~ 

k = l  E 

I f  the above were not true for a set of values of x of positive measure, then it 

would be true for a set of values of y of positive measure. We have thus proved 

THEOREM 7. I /  / is BVC, then f l ( / ) = ~ F ( / )  i/ and only i/ / is equivalent to a 

linearly continuous g. 

We wish to remark tha t  even if / is not BVC, then the linear continuity of / 

implies tha t  f l  ( [ ) = ~  ([)= co. However, Theorem 6 no longer holds, since s (/) may  

be infinite for an / which is not essentially linearly continuous. 

t8 .  Lest there be some misunderstanding regarding the scope of generality of 

the linearly continuous functions, we now discuss this matter .  We first define a pole 

19 of a function [ as a point 19=(x0, Y0) such that ,  for every M, there is a disk a, 

center 19, such that,  for every q e o, ] / (q) ] > M. 

Let  R be an oriented square, with center (x0, Y0), and S the concentric oriented 

square whose area is half that  of R. We call the quasi-linear function which is 0 on 

I , , ,R ,  k on S, and linear on lines joining bounding lines of R to the corresponding 

bounding lines of S, a spine function of center (x0, Y0) and height k. 

LEMMA 6. I[ 19 i8 quasi-linear, ther /or every (Xo, Yo) , k > 0 ,  and s > 0 ,  there is 

a spine [unction q, o/ center (x., Yo) and height k, such that E (19 +q) < E (19)+ s. 

The proof is by  elementary geometry, and is left to the reader. 
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X n n , , . ~  Now, for every n, let ( ~ , y ~ ) ,  i = 1 , 2 ,  i~, be a finite set of points i n l s u c h  

t h a t  every (x, y ) E 1  has distance less than  1/n  from at  least one of them.  

For  every i = 1, 2 . . . . .  il, let p~ be a spine funct ion of center (x~, y~) and height  1, 

such tha t  E p~ <~. Le t  P l =  ~ pl. For  every i = i ,  2 . . . . .  i2, let p~ be a spine 
i =  i = l  ( ) " function of center (x~, y~) and height 2, such tha t  E Pl + P~ < 47" Let  Pe = ~ PP- 

g =  i = 1  
n/z 

Continue ad  infinitum, so that ,  for every k, E ( p l + p i + . . . + p k _ l +  ~ p ~ ) < 2 - 2 - k .  
i = 1  

Moreover, the spine functions m a y  be chosen so that ,  for every  k, the sum of 

the perimeters of the R~ is less than  2 -k. 

Let  q= = p~ + P2 + "'" + P=, for every n. Then, E (q~) < 2, for every n. Since for 

every x, except  for a set of measure less than  2 -~, p,~=O, and similarly for y, it 

follows tha t  the sequence {q~} converges linearly to a funct ion /. / is l inearly conti- 

nuous. Moreover, A (/) ~< lim inf E (qn), so tha t  A (/) ~< 2. 
n - - ~  

rtk 

Let  T~ be the interior of S~, and let Gk= LI T~. Now, let H k =  (~G, .  For  
i = 1  n = / z  

every k, Hk is an everywhere dense open set. t Ience,  the complement  of H =  N H~ 
k = l  

is of the first category. Let  (x 0, Y0)E H. Then, for every k, there is a circle 6, center 

(x0, Y0), which is contained in Hk, so tha t  ]/(x,y)]>~k on a. Hence H consists of 

poles of ]. We have thus  proved:  

THEOREM 8. I /  / is linearly continuous, and o/ ]inite area, then the complement 

o/ its set o/ poles can be o/ the [irst category. 
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