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1. Area was defined, [2], in 1936 by L. Cesari for the “‘surface” given by any
equivalence class of measurable functions. Subsequently, we gave a somewhat diffe-
rent, but equivalent, definition. We then showed, [5], that this area agrees with the
Lebesgue area for surfaces given by continuous functions, and that the Tonelli theo-
rems temain valid for this wider class of surfaces, provided only that the notions of
absolute continuity and bounded variation are suitably modified.

On the other hand, for certain purposes, this class of non-parametric surfaces is
too wide. For example, it has already been observed by us, [6], that a theory of
similar scope is impossible in the parametric case, since the elementary area of quasi-
linear mappings from the square into euclidean 3 space is not lower semi-continuous
with respect to almost everywhere convergence. Moreover, for continuous non-para-
metric surfaces, it has been shown by Federer, [4], (also, see Mickle and Rado, [9]),
using earlier work of Besicoviteh, [1], for the case of a surface given by an ACT
function, that the Lebesgue area is equal to the Hausdorff 2 dimensional measure
of the graph of the function. Since, in our general theory, a surface is an equivalence
class of measurable functions, and since changing the values of a function on a set
of measure 0 may change the Hausdorff 2 dimensional measure of its graph, it is
evident that Federer’s theorem cannot remain fully valid. Moreover, we must contend
with phenomena such as that exhibited by the function f defined on the closed unit
square I given by f(x,%)=0, <} and f(»,y)=1, >1. In our theory, the area here
is 2, since the step is included, but the Hausdorff 2 dimensional measure of the

graph is 1.
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All this indicates that certain specialization is needed. In the first place, we
have been able to successfully define a parametric area for surfaces given by functions
which we call linearly continuous. This theory is being developed in another paper.
In the second place, for non-parametric surfaces given by linearly continuous funec-
tions, we shall show that the area as defined by us and by Cesari is equal to the
Hausdorff 2 dimensional measure of an ‘“‘essential” part of the graph. For these
reasons, and for others which arise as the text develops, it appears that the linearly
continuous functions deserve special attention.

We wish to thank the referee for his careful study of the paper and for his

suggestions leading to its improvement.

2. In 1942, 1. Verchenko, [14], showed that to every non-parametric surface of
finite area, given by a continuous function f on the unit square I, there corresponds
a measure y, such that for every open rectangle R< I, u,(R) is the Lebesgue area
of the surface given by f restricted to K. The main result of Verchenko was that
for every Borel set Ec I, if A(f)<oo, A(g)< oo, and f=g¢ on E, then y, (E)=u, (E).
This result also follows from Federer’s theorem, alluded to above, that for evéry
surface given by a continuous f the area of the surface is equal te the Hausdorff
2 dimensional measure of the graph.

For the linearly continuous case, we shall proceed as follows: We shall first
extend Verchenko’s work to surfaces given by linearly continuous functions. The
resulting measure will then play the essential part in the extension of Federer’s
theorem to these surfaces.

Indeed, we first consider any equivalence class of measurable functions. (We use
the function symbol f to designate such a class, whenever there is no danger of confu-
sion). We recall that the area of the surface given by f is defined as follows: Let
E (p) be the elementary area of a quasi-linear function p; i.e., p is continuous and
its graph consists of a finite set of triangles, and E (p) is the sum of the areas of

these triangles. Then
A (f)y=1nf [liminf E (p,)],

where the infimum is taken over the sequences {p,} of guasi-linear functions defined

on the closed unit square I which converge almost everywhere to f.

3. We associate a measure with f in the following way. Observe that for every
open rectangle R< I, the area A (f|R), of f restricted to R, may be defined in the
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above way, and that if R,<R, then A (f|R,)<A4 (f|R,). We use the notation S° for
the interior of a set 8. For [ itself, it follows from the definition that A (f|I)=A4 (f|I°),
so that the resulting measure y, will have the property that u, (I)=pu,(I°).

Analogous definitions to those of 4 (f|I) and 4 (f|I°) may be given for 4 (f| R)
and A (f|R°) for any closed rectangle R<I. As before, 4 (f|R)=4 (f|R"). However,
ps(R) may be different from u,(R°) since u,(R)=inf 4 (f|S), for open rectangles S
containing the closed rectangle R, may be greater than u;(R°).

A point (z, y) €I° will be called singular if, for every open R<=1I°, with (=, y) €R,
A (f|R)=-oc. The set S; of singular points of f is evidently closed. Tts complement
Gy=1I°~8; will be called the set of regular points of f.

We shall show that, for every &£>0 and regular point (z,y), there is an open R
such that (v, y)€R and A (f|R)<e. Moreover, if {R,} is a decreasing sequence of
open rectangles, with R, <@, where R, is the closure of R;, such that their inter-

section is empty, then lim 4 (f|R,)=0. These facts seem to be hard to prove by

direct use of the definition. However, we have obtained elsewhere, [5], [7], expres-

sions for A (f|R), in terms of variation functions, which may be used for this purpose.

4. We now give a brief recapitulation of these results in a somewhat improved
form. For a Lebesgue measurable function f, of a single real variable, defined on an

interval (a, b), we may define the generalized variation as
¢ (f; (@, b)]=inf {lim inf V[g,; (a, B)1},

where the infimum is taken for all sequences {g,} of continuous functions converging
almost everywhere to f, and V[g; (@, b)] is the variation of ¢ on (a, b). In [5], for
summable f using L, convergence, the function ¢ was shown to be equal to the
ordinary variation of f, restricted to its set of points of approximate continuity, or
to the min V[g; (@, )], where g is any function equivalent to f. This holds as well
in the present situation.

We use the term oriented rectangle for one whose sides are parallel to the
coordinate axes. Thus oriented refers to direction; the term is often used for sense
orientation in other works. For a function f, defined on an oriented rectangle
R={(a,b)x(c,d), for every x€(a,b), we designate by f, the function f(x, y) of y
defined for all y€(c,d) and, for every y€(c,d), we designate by f, the function

f(x,y) of x defined for all x € (a,b). We then have the generalized variations.
a b

O, (R)= [@lfy; (0, 0)]dy and @, (R)= [@lfs; (c, D)]da.

c a
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These variations were first defined by Cesari, [2], in a different way, and have been
used by Krickeberg, 8], Paue, [11], de Vito, [15], and others. We are .inferested in

the variation W (f) of the rectangle function
® (R)=[D} (R) + D3 (R )+ | R[*E.

That is to say, for any finite set R={R,, ..., R,} of non-overlapping oriented rec-

tangles consider

®(R)= :i(I)(Rf

and let ¥ (f)=sup ® (R) for all R. This is an example of a so-called lower, or Géocze,
area. In previous work, we had used the notion of admissible subdivision in defining

a lower area. There we used the functions

d

O, (B)= [|fb,y)—fla.y)|dy and O,(R)= [|f(x,d)—f(x c)|dz.

and defined O (R) =[O (R)+ O3 (R)+|R Iz]%-

We then called a rectangle admissible if f is approximately continuous, separately in
each variable, almost everywhere on the boundary of R. We then defined a Géocze
area as the Burkill integral of ® (R) restricted to admissible rectangles. We call
this X {f).

We point out that ¥ (f)=X (f). Since, for every R, @, (R)> 0, (R) and @, (R)>
>0, (R), it is obvious that ¥ (f)> X (f). On the other hand, we showed in [5] that
@, (R) and @, (R) are, respectively, the upper Burkill integrals of ®, (8) and 0, (8),

where S is an arbitrary admissible oriented rectangle in E. Using the inequality
Ko+ a2+ (B4 - b2+ (o + - + e <(af + B3+ )+ - + (@h+ DL+ AR, (%)

it follows by a straightforward calculation that W (f)< X (f).
Since we know from [5] that X (f)=A4 (f), it follows that ¥ (f)=A4 (f).
Moreover, it easily follows from the definition that the following inequality holds

for every R:

D, (R)+ @, (R) + | R[>V (R) > max [D, (R), D, (R), | R].

5. Now, suppose (z,y) is a regular point. There is then an R=(a, b)X(c, d)
with (z, y) €ER and ¥ (B) < co. Since @, (8)<¥ (S), for every 8, and
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@
D, (S)= [ @lfy; (@, 8)]dy,

for 8=(a', b')x(c', d'), there is a 6'>0 such that @, ({a, D)x(y—¢, y+d))<}e.
Similarly, there is a &’ >0 such that @, ((x—06", z+6")x (¢, d))<ie. Let

d=min [, 8", Ve/12].
Then, using (*), it follows that
W ((x—d, z+8)x(y—0, y+d)) <e.
Since A (f|R)=W (R), it follows that there is a decreasing sequence {R,} of open
rectangles containing (x, ¥) such that 31_{{.10 A (f|R,)=0.
Suppose, next, that {R,} is a decreasing sequence of oriented rectangles, with
R, c@;, and nfi R, empty. Then either the lengths or the widths of the R, converge

to 0. Suppose the widths, b, —a,, converge to 0. Then it is evident that |R,| and
®, (R,) converge to 0, provided ®,(R,) is finite for some n. To show that @, (R,)
converges to 0, we need a fact regarding the generalized variation of a function of
a single variable. Let ¢ [f; (@, b)] < oo, and let I,=(a,, b,) be a decreasing sequence
of open intervals in (a, b) whose intersection is empty. Since there is a g epuivalent
to f such that V(g; («, f))=¢lf: (a, B)], for every («, f)<(a,b), it follows that
Jfglofp[f; (@n, b2)]=0. Let R, = (an, by) X (cy, dn). Then

dp
O, (R)= [ @lfy; (an b)1dy.

The sequence of functions {@[f,; (@, b,)]} are summable, decreasing, and converge
to 0 almost everywhere. Hence

dn,

lim @, (R,)=lim [ ¢[f,; (@, b,)1dy=0.
It now follows that lim 4 (f| R,)=0.

6. We now define the measure u, for all Borel sets in Gy For every open
oriented rectangle R< @, let u,(R)=A4 (f|R). For every open oriented line segment L

we define p,(L)=lim u,(R,), where {R,} is a decreasing sequence of open rectangles
n—>00

whose intersection is L. Since, if {S,} were another such sequence of open rectangles,
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then for every n, there are m’ and m'’ such that S, <R, and R,.<8,, it is clear

that py(L) is uniquely defined. For every point P €G;, we define y,(P)=0. The

definition is justified by the fact that if P= M R,, where {R,} is a decreasing
n=1

sequence of rectangles, then lim 4 (f|R,)=0.

Let Sc G; be the union of a finite number of pair-wise disjoint sets S}, S,, ..., S,

each of which is either an open oriented rectangle, an open oriented line segment,

or a point. For every such S=[8,, S,, ..., S,], we let us(S)= > u,(Sy).
: 5

We have shown [5, § 6] that if B is a rectangle and B= iljjl S;, where the S; are
open rectangles, open lines, or points, and are pair-wise disjoint, then u;(R)= ié U (Sy).
It then follows that for if S has two representations S={8,, S,, ..., S,] and
S=1[81, 8z, ..., Sn] then ié wr(8) = é; ur(S:) so that p(8) is well defined.

We note that the family §$=[S] is a ring of sets, for it is easily seen to be

closed with respect to finite unions and differences. Furthermore, we show that if
o0

{8,} is a decreasing sequence of sets in §, with u;(8,)<co and M S, empty, then
n=1

lim p,(8,)=0. For this proof, we use auxiliary measures u; and u7, which are defined

n-—»o0

in exactly the same way as u;, except that the functions ®,(R) and @, (R) are
used instead of A (f|{R). The basic inequality

17 (8) + pif (8) + | 8] > s (8) = max [7 (S), w7 (8), | S]]

then holds.
In order to show that lm u(8,)=0, we need only show that

lim u} (S,) =lim 2 (S,)=lim |S,|=0.

n—>00
It is only necessary to show that lim uj =0. For this, for every y,€(0, 1), let S,.,,

n—>o0

be the linear set of x for which (x,y,) €S,. It is apparent that

1
u (8,) = of @[fv; Sny1dy.

But, by the same argument as given before, the sequence of functions {g [f,; Su.,]}

are summable, decreasing, and converge almost everywhere to 0. Hence,
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1
Tim g (8,) = Tim [ p[fys S.s]dy =0,
—300 )

It follows that u; is completely additive on § and may be extended to the
Borel sets in (. Moreover, if K< G; is compact, then u;(E)< oo, since every point
P el is contained in an open rectangle R such that u,(R)< oo, and a finite number
of these rectangles covers E. Since G, is the union of countably many compact sets,

the measure is totally ¢ finite for ;. We summarize the above results in

THEOREM 1. If [ 4s an equivalence class of wmeasurable functions defined on
I=(0,1)x(0,1), there corresponds to [ a closed set S; and its complement G;=1~ 8,
and a measure y; such that u;(8)=co for every non-empty S<8;, uy is totally o finite
on Gy, and p;(Ry=A (f|R) for every open rectangle R.

We remark that if Sc @ and S<Z,%xZ,, where |Z,]=]%,|=0, then p,(8)=0.
For, evidently, uf (S}=u?(S)=|8|=0, and u;(8) <pf (8)+ uz (S)+|8|.

7. We digress briefly to a discussion of the measure associated with a continuous,
parametric surface. This theory has been developed by Cesari, [3], for surfaces of
finite area. Consider the closed square I=[0, 1]x[0, 1]. Let { be a continuous mapping
from I into euclidean 3 space Ej; For every point P € E; consider the set I'p of

components of f7'(P). Let I'= U I's. The sets yeI’ are pair-wise disjoint and their
PeE;

union is I. We topologize T' as follows: A subset G<=T' will be open if U, is an
ye @

open set in I. It is known, [3], [12], that I’ is then a Peano space. In particular,

every open set is of type F,, and the space I' is normal. It follows that, for every
open G<T', there are

GICGIC CG,LCG"C

such that G= Loj G., and G, is the closure of @, for every n. Evidently, @, is
compact. "

A point y €' will be called singular if, for every open G<I', y €G, we have
A (f|G)=co. Otherwise, y is called regular. The set @, of regular points is open

00
relative to I', and the set U, is open relative to I. Furthermore, G;= U G,, where
vEeGy n=1

G,cG,c---cG,<F,< . For each G,, we consider the Cesari measure for the Borel
sets in G, This is defined since A4 (f|G,)< oo, the G, being contained in compact

sets composed of regular points. Moreover, every G, is an admissible set & la Cesari,
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[12]. It also follows that, for every =, A(f]Gn) equals the Cesari measure of G, as
a subset of G, obtained by considering the function f restricted to G .:.

Thus we obtain a uniquely defined measure, perhaps having infinite values for
some sets, for the Borel subsets of G; recall that these are subsets of I not of I.
It is a totally ¢ finite measure. It would seem that an improper surface integral may

also be defined for such surfaces, and we intend to discuss these matters elsewhere.

8. In this section, we point out that an analog of Verchenko’s theorem for non-
parametric surfaces of finite area does not hold for continuous parametric surfaces of
finite area, even for the case where the mappings involved are homeomorphisms.

For this purpose, we construct a closed, zero dimensional set in the unit square
as follows: Consider a finite set of pair-wise disjoint, oriented, closed squares; call
these squares of rank 1. In each square of rank n>1, consider a finite set of pair-
wise disjoint, oriented, closed squares; call these squares of rank n+ 1. For every
n>1, label the squares of rank » with » subscripts R, .. .i, in such a way that

By, <Riy...q, ;- Let S,=U Ryy,...;, be the union of all squares of rank =,

o0

and let §= N §,. Moreover, choose the squares so that every square of rank » has
- n=1

n-1'n

diagonal of length less than 1/n, and so that |S|=1 It is clear that S is zero
dimensional.
Directly above the center of I, at height 2, place a square o, and directly above

the center of each R, ;. at height 1/k, place a square oy ,,...;. From each of

i
these squares punch as many holes as there are squares Ry, ,,;... ,» and join the boundaries
of these holes by means of the boundaries of pipes to the boundaries of the squares
Oiy,...44n Yor every u, the boundary of ¢ and its interior, minus the punched holes,
together with the pipes leading to the boundaries of the g,, their interiors minus the
punched holes, and so on, until finally the pipes leading to the boundaries of the
Oi,4,...1, and the interiors of the 6y, ...;,, form a parametric continuous surface §,, given

by an f, which maps each R, ..., onto oy,,... ;. Moreover, the pipes can be chosen

in
so that there are no intersections and the mapping f, is a homeomorphism. Further-
more, the squares and pipes can be chosen sufficiently small that 4 (§,) <31, for
every n.

The sequence {f,} converges uniformly to a continuous mapping / for which all

points in § are fixed. Let § be the surface of this mapping. Then, since

A(8)< lim inf 4(S,), 4 (S)<L.
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Accordingly, it necessarily follows that u,(S)<1. Consider the identity mapping g of
the unit square onto itself. Clearly u,(S)=13.

9. A real function f, on the closed unit square I, will be called essentially
linearly continuous if there are ¢ and h, equivalent to f, such that g, is continuous
in y for almost all x, and A, is continuous in x for almost all y. The function f will
be called linearly comtinuous if f, is continuous in y for almost all z and f, is conti-
nuous in z for almost all y. A lineariy continuous function can be infinite on a subset
of a set of the form Z,xZ, where Z,, Z, are of linear Lebesgue measure zero.

A related property is one which we call strong linear continuity. f has this pro-
perty if, for every line L, f is a continuous function of one variable on almost all
lines parallel to L.

Certain special kinds of sets are of interest to us. Let U=[0,1], V=10, 1], and
I=UxV. A set Z< I will be called negligible if there are A< U, B V, with Z=AXB,
and |A|=|B|=0. A set & will be called elementary if

E=(E,xV)U(UxH,),

where E,c U and E,<V are closed sets.
We first show that if f is linearly continuous, then for every &> 0, there is an

elementary set € such that |£|>1—¢ and f is continuous on &.

Lemma 1. If f is lnearly continuous on I, then for every e>0, 6> 0, the subset

EcU, for which x €E and |y—y'| <6 implies |f(», y)—f(x,y')|<e, is measurable.

Proof. Let x €E, if and only if f, is a continuous function of y, and there are
v,y with |y—y'|>6 and |f(x, y)—f(z, ¥)|>e—1/n. Let z,€E,, |y—y'|<6, and
|f (%, ¥) — f (%5, ¥')| >&—1/n. Then there are y,, y, such that f, and f, are continuous
functions of =z, |y, —wy,|<d, and |f(zg 4y) —f (% ¥5)|>e—1/n. There is an open
interval G U, x,€6G, such that for every x €G, |f(x, y,)—f(®, ¥5)|>&—1/n. Thus,

E, is measurable. But B differs from O (U E,) by a set of measure 0, so that £ is
n=1

measurable.

LemMa 2. If f is linearly continuous on I, then for every &> 0 there is a closed
set E< U, |E|>1—¢, such that the saltus of f, relative to ExV, is less than & at every
point of ExV.

Proof. There is a 6>0, such that if K is the subset of U for which z€E and
|y, —y,| <6 implies |f(x, ;) —f(x, ¥»)| <&, then the exterior measure of E exceeds

1 —¢. But, by Lemma 1, £ is measurable, so that we may assume it is closed.
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Suppose xz,€E, z,€E, n=1,2, ..., and that {(z,, y,)} converges to (z,, ¥,)-
Consider the subsequence of {(x,, ¥,)} for which xz,>x,, v,>y,; call this subsequence
also {(«,, y,)}. There is a y’ such that 0<y' —y,<d and f, is a continuous function
of z. There is then a &' >0 such that 0 <2’ —x,<d’ implies |f(z, ') —f (=, ¥'}|<e.

Now, if » is large enough, (%,,y,) is in the rectangle [z, 2, + "1 [y, 3']. Then
| @ns ) = 1 (200 y) | < | (@, ) — f @y )|+ | @y ') — f (@0 9 |+ |f (@00 ) = f (05 90) -

But the first and third terms on the right hand side are each less than ¢ since
zy, ¥, €E and |y,—y'|<d, |yo—y'|<d, and the second term is less than ¢ since
|4, —yo| <&’. The subsequences of {(x,, ¥,)} for which z, >, ¥y, <¥e; Tu<Zg Yn>Yos
and #, <, ¥, <y, may be treated similarly. Putting all together, we obtain the

lemma.

Lemma 3. If | is linearly continuous on I, then for every >0 there are closed
sets EcU, F<V, with |E|>1—¢, |F|>1—e¢, such that if E=(ExV)U (UxF), then

the saltus of f, relative to &, is less than e at every point of E.

Proof. By Lemma 2, there are closed sets E< U, F<V, such that |E|>1—¢,
|F|>1—e, and the saltus of f, relative to ExV, is less than ¢ at every point of
ExV, and the saltus of f, relative to UXF, is less than & at every point of UXF.
Clearly, the saltus of f is less than g, relative to &, at every point of E~ (UxF) N
N(VxE)). Let (z, y) E(UxF)yn (ExV). There is a circle K,, center (z, y), such that
the saltus of f is less than & on the set K, N (UXF), and a circle K,, center (z, y),
such that the saltus of f is less than ¢ on the set K, N (ExV). Hence the saltus

of f, relative to &, is less than & at (x, y).

Lemma 4. If | is linearly continuous on I, then for every £>0, there are closed

sets B<U, F<V, with |E|>1—¢, |F|>1—¢, such that | is continuous on

E=ExMU(UXF),
relative to &.

Proof. Let {e,} be a sequence of positive numbers with 7218”:& For every =,
let E,, F, be such that |E,|>1—s,, |F,|>1—¢, and such that the saltus of f is
less than ¢, at every point of &,=(E,xV)U (UxF,), relative to &,. Let E=ﬁ1En,
anaFn. Then |E|>1—e. |F|>1—¢, and f is continuous on E=(ExV)U(UxF)

relative to &.



NON-PARAMETRIC SURFACES 279

In other words, for every &>0, there is an elementary set of “size” 1—¢ on

which f is uniformly continuous.

10. A measurable function f on I has finite area if and only if it is of bounded

variation in the sense of Cesari (BVC). This means that

1 1
[o(fddz<oco and [g(f)dy<oco;
0 0

or, that there:are functions g and %, equivalent to f, such that
fV(g,)dx<oo and fV Ydy < oo,

We prove the existence of g with this property. We first note that if S is a
planar measurable set then the linear density in the y direction of § exists and
equals 1 almost everywhere on S. It then follows that f is approximately continuous
in y almost everywhere. Thus if for every =z, we let g, be the upper measurable

boundary of f, then ¢, is an m function. We then define ¢ (%, ) =g, (¢). The funection
1 1

g is measurable and such that f Vig,)dx= f @ (f)dx.
0 0

Before going any further, we first observe that if f is BVC then it is summable.
For this, we note that, for almost all z, the saltus, w(g,), of g, is less than or equal
to V(g.). Moreover, there is a y, (indeed, almost every y has this property) such
that g, has bounded variation relative to a subset E of [0,1] of measure 1. There
is thus an M such that |g (=, y,)| <M for every x€E. It follows that, for almost
all , |f(z, ) |<w(g:)+ M, for every y. Thus,

o

Ot

1 1
[l @ yldyde<[(@ @)+ M) da< [ (Vg + M) A<D (f)+ M.
Hence, f is summable.

Since we shall first consider the finite area case, we shall, for the time being,
deal only with summable functions.

Suppose f is essentially linearly continuous. We shall show that if { is also BVC,
then it is equivalent to a linearly continuous ¢; indeed, to a strongly linearly
continuous one. In the process of proving this, we shall also obtain the fact that
for a linearly continuous f, of finite area, the integral means converge to f, in a
quite strong sense, which we call linear convergence.

We need the known
19 — 603808 Acta mathematica. 103. Imprimé le 21 juin 1960
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Levwma 5. If | is a continuous, monotonically non-decreasing, real function on
[0,1], ¢f {f.} tis & sequence of continuous, monotonically non-decreasing functions con-
verging to f almost everywhere, then {f,} converges to f everywhere, and the convergence

18 uniform.

11. By the integral means f*, h>0, of a summable f, we mean the functions
nh
iz, y)=h"2 fff(x+u, y+vydudo.
00

Observe that if f is defined on I, then f* is defined on [0,1—%]%[0, 1—A].

The first goal is to prove the summability of f.

Let f be essentially linearly continuous and BVC, and let g be equivalent to f
and such that g, is continuous for almost all x. Now, V (g;) < oo almost everywhere,

so that, for almost all z, g, has a canonical representation
9:=9: — g

as a difference of monotonically non-decreasing functions of y. For every y €[0, 1],
and every real ¢, this representation may be defined so that g3 (y)=c. Now, choose
Yo SO that there is an M such that |g(x, y,)| <M for almost all z, let E be the set
of these z, and choose the representation functions g and g; so that g7 (y,) =¢ (=, ¥,)
and g7 (y,) =0, for all € E. Finally, define the functions g*, ¢~ by ¢* (z, ) =97 (%),
9" (x,y) =9z (y), for 2 €E, and ¢* (=, ) =g (x,y) =0, everywhere else.

The functions ¢g* and g~ are Lebesgue measurable functions with respeect to 2

dimensional Lebesgue measure. We give the proof for g*. g, is measurable, as is g,

for almost all . Fix n and consider y_, < -+ <y, <y; <---ys where y_p<1/n,y;>1—1/n
and so that yi+1—yi<l/n and g,, is measurable, for every ¢. For every 4, let E; be
the set of « for which ¢ (z, yi+1) >¢ (2, ), and g, is continuous. Then E; is measurable.

Define the function k, as follows: If ¢, is not continuous, let %, (x,y) =0, for

every y. If g, is continuous, define %, (z,y) as the quasi-linear function of y which

a) is constant on [y;, ¥i+1] if 2 ¢ B,

b) is such that k, (z, ¥i11) — k, (x, ;) =g (%, yi+1) — g (%, ¥;), and linear on the interval
(i, ¢:41], if x €K, and

©) kn (@, yo) =9 (, ¥o)-

The functions k, are measurable and converge almost everywhere to g*. Hence

+

g™ is measurable.
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1
Since V (g,)=V (g93)+ V (g5), for almost all z, and f V (g.) d < oo, it follows that
0

1 1
g @, y)|dedy< [ (VgH)+M)dz< | V(g )dz+ M < oo,
Y) ys ) )

[ —
Ct—

1 1 1
and “g‘(x,y)ldxdy<fV(g;)dx<fV(g,)dx<oo_
0 [ 0

Pl

Hence the functions g* and g~ are summable.

It is necessary now to make some notational clarifications.

We consider an essentially linearly continuous f which is BVC and the cor-
responding g, defined above, such that g=f almost everywhere and g, is continuous
for almost all . Then g has corresponding g* and g~ defined in the above way.
For every k>0, we have the integral means of all three functions, which we designate
by ¢*, (9%), and (97), respectively. We also have the associated functions of a single
real variable. (9°)z, (9*)y, ((9")") (97> ((97)%)s, and ((g7)"),. For example, for every
z€[0, 1], the function ((g*)*), is defined by

(")) ) = (@" ) (2, 9).

Suppose, now, that z is fixed and y, <y,. Then,

k k

@ (@92 — 0 (@ y) =57 [ [{g* (@+u, yp+0) —g" (@+u, 5, +0)} dudv>0,
00

since the integrand is positive almost everywhere. Thus, the functions ((g*)*), are
monotonically non-decreasing functions of y, on [0, 1 —k], for every x, However, it
is well known that (9%)* converges almost everywhere to g*. By Lemma 5, for almost
all x, ((9%)"); converges everywhere to (g%),, the convergence being uniform on [0, 1 —¢],
for every £>0. Indeed, by extending the definition of (g%)* to all of I, in the fol-
lowing way, we obtain that ((9*)¥), converges uniformly to (g%), on [0, 1] for almost
all x:

For z€[0,1-k], y€[1—k, 1], let (g%)* (x,y)=(¢")* (x, 1 — k).

For €[1—k 1], y€[0, 1—k], let (") (x, y)=(¢*) (1~ E, y),

For x€[1—k. 1], y€[1—k, 1], let (g% (x,9)=(g* ) (1—k, 1 —k).
Similarly, the functions ((97)¥), converge uniformly to (§7), for almost all z. Since
(9" =g V=(9"V —(¢97), it follows that (g*), converges uniformly to g, for almost all z.

Since the integral means of g and A are the same, (g%), converges uniformly to

h, for almost all y. We thus see that lim g* exists everywhere, except possibly at
k—>0
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points belonging to a negligible set, and the limit is linearly continuous, and is

equivalent to f. This proves

THEOREM 2. If f, defined on I, is essentially lnearly continuous and BV,

then f is equivalent to a linearly continwous g.

One further remark may be made. If instead of averaging over squares, we had
averaged over circles of radius k, with center at (x,y), in determining f*, our proof
shows that if f is essentially strongly linearly continuous then f is equivalent to a

strongly linearly continuous g. We thus have

CoroLuarY 1. If f, defined on I, is essentially strongly linearly continuous and

BVC, then f is equivalent to a strongly linearly continuous g.

12. Just as continuous functions go with uniform convergence, summable func-
tions with L, convergence, etc., linear continuity has its own particular kind of con-
vergence. This is linear convergence, and the above proof implies that if f is linearly
continuous and BVC, then f* converges linearly to f.

A sequence {g,} of functions defined on I converges linearly to a function g, if
(¢n): converges uniformly to g,, for almost all x, and (g,), converges uniformly to g,,
for almost all y. This type of convergence has an associated metric when rvestricted
to the set of linearly continuous functions. Let f, g be linearly continuous, and let
d (f,g) be the infimum of the set of all k for which there are EcU, F< V, |E|>1-k,
| F|>1—% such that |f(z,y)—g (x. y)|<k on (ExV)u (UxF).

The space of linearly continuous functions, with this metric, is evidently a com-

plete metric space £. Theorem 2 has the

CoROLLARY 2. If f is linearly continuous and BVC then the integral means f*

converge Linearly to f.
We also have

THEOREM 3. The space £ is the melric space completion of the space D of quasi-

linear functions when given the metric of linear convergence.

Proof. We need only show that P is dense in £. Let f€ L. By Lemma 4, there
is a set E=(ExV)U (UxF) such that £ and F are closed, |[E|{>1—}¢, |F|>1—1¢,
and f is continuous on & relative to £ By the Tietze extension theorem, there is a
continuous g on I such that ¢=f on &. There is a quasi-linear p such that |p (z, y) —

—g(x,y)|<e for every (x,y)€I. But then d(f, p)<e.
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13. For non-parametric surfaces, the Lebesgue area is customarily defined for
continuous surfaces as an extension from the quasi-linear ones using the topology of
uniform convergence; and, the area we consider for measurable functions is obtained,
in similar fashion, using the topology of convergence in measure (or convergence
almost everywhere). We show that the area « (f), obtained, in this way, for the linearly
continuous funections, using linear convergence, equals A4 (f).

Let f be linearly continuous, and let

« (f) = inf {lim inf E p,)],

N->00

where the infimum is taken for all sequences {p,} of quasi-linear functions which
converge linearly to f. We shall show that o (f)=A (/) by noting that o (f)="F (f).

In the first place, « is lower semi-continuous on P with respect to linear con-
vergence, since it is lower semi-continuous on P with respect to almost everywhere
convergence. It then follows, from the definition, that o« is lower semi-continuous on L.
Moreover, if ® is a real valued functional on L, which is lower semi-continuous and
equals the elementary area on D), then for every f€L, @ (f)<«(f). Since the func-
tional ¥ is lower semi-continuous on £, with respect to almost everywhere con-
vergence, it is also lower semi-continuous with respect to linear convergence. More-

over, we know, [7], that lim ¥ (f)="F(f), for every f€L; indeed, for every sum-
k—>0

mable f. If fis BVC, f* converges linearly to f. There then exists a sequence {p,}

of quasi-linear functions, converging linearly to f, with lim H (p,)="Y (f). Hence
n—=>00

a ()<Y (f), so that a(f)=T(f). We now know that if f is BVC then «(f)=4 (f).
It remains only to show that if f is not BVC then «(f)=co. We need only observe
that, for every linearly continuous f, «(f)=®, (f), ®,(f). This clearly holds for quasi-
linear p. Let {p,} converge linearly to f, and be such that «(f) =n1i111<> E (p,), where if

o (f)= oo, we mean that E (p,) approaches infinity. Since @, is lower semi-continuous

with respect to linear convergence, we have

®, () <lim inf ®, (p,) <lim E (p,) = (f).

Also @, (f)<a(f), in similar fashion. If f is not BVC, either @, (f)= oo or P, (f) =0
so that o (f)=oco.

14. Let f be BVC and linearly continuous on I. Suppose E=(ExV)U (UXF)
is an elementary set, and f is continuous on & relative to £ We shall obtain an

expression for u,(€) in terms of the measures u; and uj.
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Let R={a,b]x{c,d] be an oriented rectangle. Since the functions f, and f, are
continuous, for almost all z and almost all y, respectively, and of bounded variation,
the measures corresponding to their variations are given by the expressions of Banach,
[10], now to be described.

Let g be a continuous real function on [0, 1], of bounded variation. The measure

corresponding to the variation is then given, for a Borel set E, by

m(B)= [ N(f,y, B)dy,
where N (f,y, E) is the number of points, z € E, for which f(x)=y. Now,

pHENR)= [ m, (ENR))dy

b
and HHENR)= [m, (ENR))da.

Since, from the Banach expression, if f, and f, are continuous real functions, of
bounded variation, on [0,1], and f,=f, on a Borel set E, then m, (E)=m,(E), it
follows that if f and ¢ are BVC and linearly continuous on I, then if f=¢ on an
elementary set £ we have u; (€N R)=pu; (ENR) and U7 (E0 R)=pu2 (€N R), for every

oriented rectangle E. We consider the rectangle function
7 (B)=[{u (En R +{uf EN R +|ENRPT.

Let W¢(f) be the variation of A%(R) on I. Then, if f=g on & it follows that
Y (f)="P¢(g). We show that W&(f)=pu, (E). Let {R,} be the sequence of oriented,

open rectangles, which are the components of the complement of €. Then

0 (E) =y (D)= 3 ts (Bo).

For every n, let @,=I~ U R,. Then u;(Q,) is the infimum of the variations of
k=1

Y (R) on figures containing the figure @,. Since £<@,, it follows immediately from
the definitions that u,(@,)>W2(f), for every n. Let £¢>0, and let @, be such that
|@n~E|<ie, 4} (Qu~E)<le and pf(@n~E)<ie. Then, using the inequality (*),
defined in § 5, for evéry finite set of pair-wise disjoint rectangles, S, 8,, ..., Sy,
we have

k

> A5 (8)> jgl,uf (S;NQy)—E&,

=1



NON-PARAMETRIC SURFACES 285
so that e (h=p (@) — E.

But u, (@)= p,(E) so that, for every ¢>0, ¥ (f)=pu, ()~ and so W2 (f)> u (E).
This shows that W (f) = u, ().

Sinece V¢ (f) depends only on the values of f on &, we have the following exten-
sion of Verchenko’s theorem.

THEOREM 4. If f and g are BVC and linearly continuous, and if £ is an ele-
mentary set such that f and g are continuous on &, relative to &, and if f=g on &,
then ps (€)= g (E).

15. We are now ready to prove our main theorem. Let I be the open unit
square. If f is a function, and E<1T is a Borel set, then H (f, ) will designate the
Hausdorff 2 dimensional measure of the set of [(x,f(x)): # € E]. Since this set is
analytic it is measurable in the cases being considered.

For every Borel set <l and continuous f of finite area, u,(#)=H (f, E). This
is true because u,(E) and H (f, E) are both measures, which agree for open rectangles,
and so for all Borel sets. We show that if f is linearly continuous and BVC, then
for every >0, there are closed sets E< U, F< V, with |[E|>1—¢, |F|>1—¢, and
a continuous g, of finite area, such that f=g on £=(ExV)U (UxF). For this pur-
pose, we choose E and F so that f is continuous on &, for every x € E, (f,)* converges
uniformly to f, and ¢ (f,)<cc, and for every y € F, (f,)* converges uniformly to f,
and ¢ (f,) < co.

Let S, be a closed square in I whose boundary is in € and has distance less
than 1/n from the boundary of S,. Then §,— & consists of a countable set of pair-
wise disjoint open rectangles R, = (a,, b,)%(c,, d,), n=1, 2, .... Let BR=R,, for some
fixed n. Then f is continuous, as a function of one variable, on the boundary of R,
and is of bounded variation there. The functions f* are continuous everywhere. More-
over, nlixg A (f*|R)= A (f|R). This follows from the fact that 4 (f*| R)< 4 (f| Rs), where

Ry= (@, by + k)X (cs dp+h), that lim A (f|Ry) =4 (f|B), and that lim A (*|R_,)=
=4 (f|R), where R_,=(ay,, by—h)x(c,, d,—h). We have used here the additional fact,

to be proved two sections hence, that if f is linearly continuous and BVC, then
ur(L)=0 for every line L.
Let £>0. Choose & so that A (f"|R)< A4 (f|R)+e¢, and so that

Op

[ @, )= f @ c)|dz, [|f* (@ d)—f (e, dy)|dz,

an
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dn
[ 17 @ =@y, w0 T 1)1 by
are all less than &. Thus the boundary of R is spanned by a continuous parametric
surfaces ¢ whose area satisfies 4 (¢)<4 (f|R)+5e.
It is easy to replace o by a non-parametric g such that 4 (g|R)<A (f|R)+5e
and g=f on the boundary of R. Indeed, since the surface of minimal area, [15],
spanning the curve given by f on the boundary of R, is a non-parametric surface,

and since the above holds for every ¢>0, g may be chosen so that

sup [lg (2, y)|: (z, y) € Rl=sup [|f (v, y)|: (x, y) € bdry ]

and so that 4 (g| R)< A4 (f| B).

By extending f ifrom & to §,, by adding the above g=g, on each R,, we obtain
a function ¢, defined for all (x,y)€S,. It is evident that ¢ is continuous and that
Ag)<A(f). Let £'=EUS,. Now pu,(E"N=H(g, E"). But, u(E") =pu, (E"). It thus
follows that u,(E)=H (g, £), since ,uf(5)=n1ilg ur(E™) and H, () =nlin°1o H,(E™).

Let &,=(E,xV)U(UxF,), n=1, 2, ..., where |E,|>1—1/n, | F,|>1-1/n, each

have the above properties. Suppose, moreover, as we may, that £, < &,,., n=1,2, ....

Then u (E,)=H(f, £,). Let E= ng- Then y,(E)=lm u(&,), and H(f, &)=

n=1

lim H {f, £,). Hence, u(E)=H (f, £). Since I~ & is negligible, u,(E£)=A4 (f), so that

=00

A(f)=H(f, E). We have thus proved

THEOREM 5. If f is linearly continuous on I, and BVC, there is a negligible
set Z such that the Hausdorff 2 dimensional measure of the graph of f, restricted to
I~Z, equals the area of the surface given by f. Moreover, the same holds for every

negligible set containiny Z.

In the process of proving Theorem 5, we have obtained a general version of the
Plateau problem for the non-parametric case. This asserts that among the linearly
continuous, non-parametric surfaces which span a continuous curve of finite length,
defined over the boundary of a rectangle, there is one of smallest area, and it is
given by a continuous function.

Also, from Theorem 5, there follows an extension of Verchenko’s theorem. Let
f. g be linearly continuous and BVC. Let Z; and Z, be the associated negligible sets
of the theorem. They are Borel sets. Let E be a Borel set such that f=¢ on E.
Now, us(E~Z;U Zy)=puy,(E~2Z;U Z,) since H(f, E~Z;U Z,)=H (g, E~ Z;U Z,). More-
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over, ur(Zy)=pu,(Z,)=90. Finally, u(Z,~ Z;)=py (Z;~ Z,)=0. This last follows since,
for example, uf(Z,~ Z;), being majorized by the integral of a function defined on a
set of measure 0, is 0. We thns have

TueorEM 6. If [ and g are linearly conbinuous and of fimite area, and if f= g
on a Borel set E, then us(E)=u, (H).

16. It remains for us to consider the case where f is linearly continuous and
has infinite area. Then A (f)=co. We show that H (f, &)= oo, whenever I~ §& is
negligible. Suppose @, (f) = co. Then, for any given M, there is a finite set of pair-
wise disjoint rectangles S;, 8,, ..., S, such that if S,=(ay, b))% {cx dx), k=1, 2, ..., n

n 9
then S [1F b )= f(an, ) |dy> M.
k=1 ok
Since H(f, 8= f b )= f o ) | dy, k=1, ..., n,
it follows that H(f, &)= %H(]‘, Spy=M
k=1

Hence, H (f, £)=co. Theorem 5 thus has the

CorOLLARY 3. If f is linearly continuous, then the area of the surface given by
f equals the Hausdorff 2 dimensional measure of the graph of f, provided thot the values

at a certain negligible set are deleted.
We may also state

CoroLLARY 4. Let f and g be linearly continuous on I and let G=G;N G, If
Ec @ is a Borel set, and f=g on E, then p(E)=puy (E), finite or infinite.

The proof, which is now easy to obtain, is omitted.

17. For any measurable f, u; is zero for the points in G, However, as we have
noted, lines may have positive measure. We have also used the fact, now to be
proved, that for linearly continuous f which are BVC, u, is zero for lines.

We call a set ridé if almost all lines, parallel to the coordinate axes, meet S in

countable sets. We shall use the facts that, for every Borel set E,

4 (B)+ 1 (B) + | E| > py (B) > max [} (B), 4 (B), | B[]

1
and that I (B)=| f E)dy, ui(B)= J’mfx
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Now, if § is a ridé, Borel set, and if f is linearly continuous and BVC, then’
wuy (8)=uf (8)=|8|=0, so that u;(S)=0. It follows that if f is linearly continuous,
then u,(8)=0 for every ridé Borel subset of G, This is not always true for fune-
tions which are not essentially linearly continuous. We conjecture that this property
characterizes the essentially linearly continuous funections.

For linearly continuous f, there is a variant of ¥ which also gives the area.

Let f be linearly continuous and BVC on I. For every oriented R< I, let &, B
and s, R be the projections of [(x, ¥, f(x,¥)): (x, y) € R] into the xz and yz planes,
respectively. Let

& (B) =1l B[ +|m, BI* +| R

Then, let Q =supk2 & (Ry)

=1
for all finite sets of pair-wise disjoint rectangles Rl, R,, ..., B,. Our assertion is that
for linearly continuous f. which are BVC, Q(f)=¥ (f)=4 f) This is obviously false

for BVC functions in general since, for the function f(z,y)=0, 2<% f(z, y)=1,
z>1, Q(f)=1 but ¥ (f)=2.
For the linearly continuous case, the proof runs as follows: For every rectangle R,

(R)z|m, (R)|. On the other hand, for every £>0, R contains pair-wise disjoint
rectangles R, R,, ..., B, such that > |m,(R;)|>®,(R)—e. Then, for almost all z,
K=1

f: is continuous in y, so that there is an n=mn (x) for which

21 @ 9= @ yi2) [> @ () -

where the y; can be chosen arbitrarily, except that |y —#i-1|<1/n(z), i=1, ..., N.
There is an n such that »>n () for all x, except possibly for a set of measure less
than &, where 0 is chosen so that for every set E, with |E|>(b—a)—d, it follows

that f(p (f)dx> Dy (R)—1e. Consider the rectangles
E
R,=[a,b]x[i/n, G+ 1)/n], i=1,2, ..., n

Then ' Zl‘ 7, (By) ‘ >, (R)—

Similarly, there is a set 8,, S, ..., S; of pair-wise disjoint rectangles in R, such that

K
72|n1(;5',)|>(1)1 (R) —e. Now, for a refinement of both the R; and 8§;, say @, we have
4
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§1|7T1 Q)| > @, (R) -, andléllyr2 (@) > Dy (R)— ¢,

m

so that > E(Q)>D(R)—2e.

k=1

Tt follows from these inequalities that Q (f)= W (f). But since, for every R, @, (R)>
>|m (R)|, i=1, 2, it is evident that Q ()< ().

The converse is also true. If { is not essentially linearly continuous, and is BVC,
then Q(f) <W¥ (f). Let us call Q, (f) the upper Burkill integral of the rectangle func-

tion |7, (R)|, with a similar meaning for €, (f). Now,
Y -Qhzmax ¥ ()~ (), Yo —Q ()]

Suppose, now, that for a set E of values of z, of positive measure, there is a ¥ (x)
such that m, ({y (x)})> 0. It then follows easily that for every subdivision R, R,, ..., R,

Z[ m (B) | < @y () — f m, ({y (@)}) d.

If the above were not true for a set of values of x of positive measure, then it

would be true for a set of values of y of positive measure. We have thus proved

TaEorEM 7. If fis BVC, then Q ()= (f) if and only if f is equivalent to a

linearly continuous g.

We wish to remark that even if f is not BVC, then the linear continuity of f
implies that Q(f)="% (f)= co. However, Theorem 6 no longer holds, since Q (f) may

be infinite for an f which is not essentially linearly continuous.

18. Lest there be some misunderstanding regarding the scope of generality of
the linearly continuous functions, we now discuss this matter. We first define a pole
p of a function f as a point p=(xy, y,) such that, for every M, there is a disk o,
center p, such that, for every q€o, |f(g)|>M.

Let R be an oriented square, with center (x,,y,), and S the concentric oriented
square whose area is half that of R. We call the quasi-linear function which is 0 on
I~R, k on 8, and linear on lines joining bounding lines of R to the corresponding

bounding lines of 8, a spine function of center (z,, y,) and height k.

Lemma 6. If p is quasi-linear, ther for every (x,,vy,), k>0, and £>0, there is
a spine function q, of center (xy,y,) and height k, such that E (p+q)<E (p)+e.

The proof is by elementary geometry, and is left to the reader.
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Now, for every =, let (7, i), 1=1, 2, ..., ¢,, be a finite set of points in I such
that every (z,y) € has distance less than 1/n from at least one of them.

For every i=1, 2, ..., i,, let p} be a spine function of center (!, ;) and height 1,

7, e
such that E(E p}) <3 Let p,=> pt. For every i=i,2, ..., 14, let P} be a spine
1 i=1

i=

e 7,
function of center (a7, ¥7) and height 2, such that E (pl—l- > p,z) <I. Let p,= 2. pi-
i=1 i=1
nE
Continue ad infinitum, so that, for every k, E (p,+p,+ - +pr_1+ > pF)<2—27%
=1

Moreover, the spine functions may be chosen so that, for every k, the sum of
the perimeters of the RF is less than 27%,

Let ¢,=p,+p,+ - +p, for every n. Then, E(g,)<2, for every n. Since for
every », except for a set of measure less than 27", p,=0, and similarly for y, it
follows that the sequence {g,} converges linearly to a function f. f is linearly conti-
nuous. Moreover, 4 (f) < 7}im inf £ (q,), so that A (f)<2.

ng ]
Let T be the interior of SF, and let G,= U TF. Now, let H,= U G,. For
i=1

n=k

[l
every k, H, is an everywhere dense open set. Hence, the complement of H= (N H,
k=1

is of the first category. Let (z,, y,) € H. Then, for every k, there is a circle o, center
(¥g» ¥o), Which is contained in H,, so that |f(z,%)|>k on ¢. Hence H consists of

poles of f. We have thus proved:

TueorREM 8. If | is Linearly continuous, and of finite area, then the complement

of tts set of poles can be of the first category.
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