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Introduction (1)

This paper is a continuation of the series begun in [9]. Here, as in the previous
paper, we are concerned with the following problem: To extend, as far as possible to
the general case of several variables, properties of harmonic functions in two variables

which result from their close connection to analytic functions in one variable.

(*) The main results of this paper were announged in abstracts no. 566-35 and 566-36, Notices
of the A.M.S., 1960.

10— 61173080. Acta mathematica. 106. Imprimé le 20 décembre 1961.
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We shall be concerned with the local behavior of harmonic functions near the
boundary. To explain the main ideas of this paper we begin by recalling some results
from the classical case.

There we deal with a function u(xz, y) harmonic in the upper-half plane y>0.
We are concerned with the behavior of u(x,y) near the z-axis, or more precisely,
near a general measurable set K located on the x-axis. The study of this behavior
is intimately related with that of the conjugate function v(z, y), and thus the analytic
function F(z)=wu+1iv, z=x+1y. A basic concept in this connection is that of a “non-
tangential” limit at a point (2, 0) located on the z-axis. The results of the “local
theory” in the classical setup which concern us are then: ()

(A) u(x,y) has a non-tangential limit for a.e. x€E if u(x,y) is non-fangentially

bounded for a.e. x€E.

(B) If u(x,y) has a non-tangential limit for a.e. x €E then the same is true for

v(x, y), and conversely. (?)

The property of having a non-tangential limit (or more generally of being non-
tangentially bounded) is of an elusive nature and thus difficult to pin down analyt-
ically. It is therefore desirable to reexpress this property in a more tractable but
logically equivalent form. This restatement may be accomplished from results of
Marcinkiewicz and Zygmund and Spencer. We shall use the following definition.
I'(x,) will denote a standard triangular neighborhood which lies in the upper half

plane and whose vertex is at the point (%, 0). More precisely,
T (zg) ={(@, 9): |z —=p| <y, O<y<h}

for two fixed constants o and h. We then define the so-called area integral

seo [ (2o

with represents the area (points counted according to their multiplicity) of the image
of I'(x,) under F(2)=wu-+%v. The theorem of Marcinkiewicz, Zygmund and Spencer
can be stated, in this context, as follows:
(C) w(x, y) has a non-tangential limit for a.e. x €E if and only if the area integral
A (z) ts finite for a.e. x€ K.

{1) We use the abbreviation a.e. throughout to mean “almost every” or ‘“‘almost everywhere”
with respect to Lebesgue measure.

(2} These and other results of the classical theory may be found in [12, Chap. 14], where refer-
ences to the other original works may also be found.
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It should be noted that in this form, the proposition (C) implies (B), because

() (e -G+ )
oy ox)  \oy ox/’

by the Cauchy-Riemann equations. We add here that the concept of ‘“non-tangential”
limits and the corresponding notion of non-tangential boundedness are basic for the
conclusions (A), (B), and (C). For example, the approach to the boundary by the
normal direction only would not do as a substitute notion. (1)

We now turn to the situation in any number of variables. The generalization of
(A) to harmonic functions of several variables has been known for some time, see [1].

It is the purpose of this paper to obtain the extension of theorems (B) and
(C) to several variables. ’

We begin by considering the extension of (C). If u(X,y), X =(x), %, ..., %) 18
harmonic in the upper half space y>0, as a function of the »+1 variables (X, y),
then we set

49~ [[y*1varaxay, "

T'(Xp

n
where |Vul?=|ou/oy]* + leau/é)xkF, and I'(X,) is the truncated ‘“cone”
k=

{X,y): | X—Xy|<ay, 0<y<h},

for fixed a and k. In the folloving theorem E denotes an arbitrary measurable subset

of E,, where E, is considered as the boundary hyper-plane of our half-space.

THEOREM 1. In order that w(X,y) have a non-tangential limit for ae. X €EE, it

s mecessary and sufficient that the generalized area integral, A (X), be finite for a.e. X € E.

The pi'OOf of the theorem, which is contained in section 4, is based on the ele-
mentary lemmas of Section 3. The necessity of the finiteness of the integral in (¥)
was previously known, see [2]. The method we use leads to a simplification of the
proof of that part of the theorem. The sufficiency, which is our principal object,
makes use of some similar ideas, but is more difficult. We add two remarks: (a) A
different approach leading to the proof of Theorem 1 was found independently by
Calderon (b). The generalized area integral was considered in a different context by
us in [8].

By the use of Theorem 1 we can obtain a generalization of proposition (B) to

(1) See in particular the example in [11], Chap. 14, p. 204.
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any number of variables. For this purpose let us recall the system of harmonic func-
tions considered in Chapter I. The so-called Riesz system is made up of »+1 func-
tions, u, vy, ,, ..., ¥,, satisfying
du & 0v duw dv, O 0v;
ay k=1 8xk ’ 8xk 3y’ 890, 8xk
It can be characterized alternatively as arising as the gradient of a harmonic
function H (z;y); that is

(u, v, v 2) oH oH oH oH
v =\-— —, T ..., .
P op e e dy’ dx,’ O, ox,

Our generalization of Chapter IT can then be stated as follows (see Section 7).

TraEOREM 4. If u has a non-tangential limit for a.e. X € E, then so do the conjugates
Yy, Vg, --es Uy, and conversely.

It must be remarked that this theorem does nof follow directly from Theorem 1,
as in the case m=1. This is due to the fact that if n>1 then there is no simple
appropriate relation between kiJVvk P and |vVul®

Thus an extra step is needed to deduce Theorem 4. This step is given in Sec-
tion 5, and it allows us to obtain a wide generalization of Theorem 4. The nature
of this generalization may be understood as follows. The system of harmonic functions
satisfying the M. Riesz equations above represents one possible extension of the
Cauchy-Riemann equations to several variables. There are other generalizations—al-
though less direct—which are of importance. Some of these systems are discussed in Sec-
tions 7 and 8. A systematic discussion of these extensions cannot be given here, but will
be the subject of a future paper in this series. Without discussing the general problem
exhaustively, we can give a definition of conjugacy—which although tentative in
mnature—is significant technically in view of its inclusiveness and its applicability.

We shall say the harmonic function « (X, y) ¢s conjugate to v(X, y) if there exists
a positive integer » and a differential polynomial P (D) homogeneous of degree r in
3/ey, 9/0w,, ..., 8/8x, (with constant coefficients) so that w and v are related by

r
—Z—;=P(D)v.

This definition can be extended to the case when w and » are respectively vec-
tors of harmonic functions with k¥ and m components, and P (D) is then a kxm
matrix whose entries are differential operators of the type described. Our generaliza-

tion of Theorem 4 is then (see Section 6).
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TeEOREM 3. If v(X,y) has a non-tangential limit for a.e. X €E then so does
u (X, y).

Examples illustrating this notion of conjugacy and Theorem 3, are given in Sec-
tion 7. In Section 8 the meaning of this conjugacy is further examined in terms of
harmonic functions which are Poisson integrals. It then turns out that this notion is.
equivalent with that arising from singular integrals (i.e., generalization of the Hilbert.

3

transform) whose “symbols”, when restricted to the unit sphere, are (harmonic) poly-
nomials. This fact is summarized in Theorem 7 of Section 8 below.

We wish now to discuss briefly the possibility of further extensions of the above,
The first generalization is immediate: we need not assume that our functions are de-
fined and harmonic in the entire upper-half space, but only in an appropriate region
about our set E. For example, we could restrict our consideration to the “cylinder’”
{X,y): X€E, O0O<y<hy,y where E, is the set of all points at distance not greater
than A; from E, and k, h, are two fixed positive constants. In all our proofs below
we actually do not go outside such a cylinder, and we shall therefore assume once-
and for all that all our theorems are considered with this slight unstated generalization
in mind.

Our sets E lie on the boundary, which is a hyper-plane (y=0). It would be
desirable to extend these results by considering non-tangential behavior for sets lying
on more general hyper-surfaces. Presumably this could be done without too much
difficulty if the bounding hyper-surface were smooth enough. It would be of definite
interest, however, to allow the most general bounding hyper-surface for which non-
tangential behavior is meaningful. Hence, extension of these results to the case when
the bounding surfaces are, for example, of class " would have genuine merit. Whether

this can be done is an open problem.

Chapter I

The main purpose of this chapter is the proof of Theorem 1 in Section 4. Section I
contains various definitions and statements of known facts. Section 2 deals with a
technical device useful for the proof of Theorem 1. Section 3 contains several lemmas

needed in the proof of the theorem.

1. Preliminaries

We shall follows as far as possible the notation of the previous paper in this

series, which we now summarize.
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E, will denote the Euclidean space of n dimensions. Points in this space will
be denoted by capital letters X, X, Y, Z, and in coordinate notation we will set
X = (1w, &, ..., @) ... ete. E;,; will denote the Euclidean n +1 dimensional upper
half space: Its points will be denoted by the pair (X, %), where X €E, and 0 <y < os.
For X €E,, we have (X,0)€E,,;, thus we consider %, as embedded in E,., as the
boundary hyper-plane of E; ;.

We shall also use the following convention. Integrals over an (n+ 1) dimensional
subspace of E;.; will be denoted by double integrals, such as ([ (-)dady. If we inte-
grate over an n-dimensional subset, such as over E,, we shall indicate this by a single
integral like | (-)dX.

m(K) will denote the n-dimensional measure of a set in #, (all sets occurring
will be assumed to be measurable). ¢ and ¢’ will denote points in E;,;, and 2 will
denote a sphere whose center is o.

Let X, denote a point in E,. We denote by I'(X,) the interior of a truncated

cone in E7,, with vertex at X, Thus
F(XO):{(Xa ?/) IXWX0|<“Z/’ 0<?/<h},

for some fixed o« and h. When we wish to indicate the parameters o and % we shall

write
I'X,) =T"(X, «, h).

In what follows we shall refer to the interior of truncated cones simply as cones.
For any set E<E,, and « and b fixed we shall associate a region R in E; ;.
The region R is the union of all cones I'(Xy; o, &) where X, ranges over the points
of E. Thus
R= U I'X, a, k).
X,cE
The following two lemmas are known and we take them for granted. The first

is of an elementary character; the second, however, is deep. (1)

Lrmma 1. Let w(X,y) be continuous in Ef ,. Suppose we are given a bounded
set By < E, with the following property. Whenever X, € Ey, uw(X, y) is bounded as (X, y)
ranges in some cone I'(X,). (The shape of the cone and bound may depend on X,.) For

any €>0, then there exists a closed subset E, E<E,. so that

(1) The first lemma is contained, although not stated explicitly, in [1]. The second lemma, in a
more general form, is the main result of that paper.
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(1) m(E,—E)<e.
(2) If o and h are fized, w(X,y) is uniformly bounded in R = XUEF(XO; o, h).

For the statement of the next lemma we shall need the following definition. If
u(X,y) is defined in E;_.;, we shall say that it has a non-tangential limit I at the
point X, (X, €E,), if for every fixed a, u(X,y) =1, as y — 0, with | X —Xy|<ay.

LeMMma 2. Suppose that w(X, y) s harmonic (as a function of the n -1 variables)
in B3, and that for every point X, belonging to a set E<E,, u(x,y) ts bounded in
a cone I'(X) whose vertex is at X,. Then u(X,y) has o non-tangential limit for a.e.
point X, € K.

2. Regularization of the region R

Given a closed bounded subset E of E, and fixed positive quantities o and %
we associate with it, as before, the open region R=Xbl€JE I'(Xg; o, k). 1t is to be noted
that the region R is not necessarily connected. ()

We add a marginal comment. This type of region has been considered for some
time in the study of non-tangential behavior of harmonic functions, especially when
n=1. In that case the boundary of R is a rectifiable curve and thus the study of
harmonic functions in R is greatly facilitated by the use of conformal transformations
of R.(?) Needless to say, these considerations are not applicable in the general case.

The boundary B of R consists of two pieces, B=B'U B% To describe them we
introduce the distance function d(X, E) = distance of X from E. Then B' is the
“surface” y=oa '-d(X, B), lying over those points X so that d(X, E)<ah. B® is
that portion of the hyperplane, y=*h, lying over those X for which d(X, E)<oh.

A basic step in the argument that follows is the application of Green’s Theorem
to certain integrals extended over the region R. This requires that we approximate
our given region by a family of smooth regions for which Green’s Theorem is appli-

cable. This is accomplished in the lemma below.

Levmma 3. There exists a family of regions R., £>0, with the following properties.
(1) R.<R

(2) R, <R, if e,<¢g,

3) R.—~R as e—>0 (ie., UR.=R)

1 Even though it may be made connected by an inessential modification.
2 See footnote (1) on p. 138.
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(4) the boundary B, of R. is at a positive distance from E,(y=0), and consists of

two pieces B and B? so that
20 (X)

Ly

(6) Bt is a portion of the surface y = o -8,(X), where
k=1, ..., n, and 8,(X)€EC™.
(6) B is a portion of the hyperplane y=h.

'<1,e>0,

Proof. Let 6(X)=d(X, E) when d(X, E)<h, otherwise let §(X)=~h. Then §(X)

is defined on all of F,, and as is easily seen satisfies the Lipschitz condition
[0(X)—o(V)|<|X -7

Let ¢,(X) be a U* “approximation to the identity”. It may be constructed as follows.
Take ¢ (X)€C%, ¢(X)>0, ¢(X)=0 if |X|>1, and

f(p(X)dX=1.

En

Set @, (X)=5n""¢(X/5). Let f,(X)= fé(X—Y) @, (Y)d Y. Then by the usual argu-
En

ments, f,(X)€0%, and f,(X)—46(X) uniformly as ->0. Let =%/(e) be so small

so that

|1,(X)—8(X)|<e, and set 6.(X)=f,(X)+2e.

Taking a subset of the collection {4, (X)} (with possible reindexing of the sub-
script ¢) we obtain

(@) dc(X)>0(X)
(b) 8., (X)>6.,(X), if e,>¢;
(¢) 8:(X)—58(X).

Define now the regions R, to be
R, ={(X,y): 0.(X)<ay, O<y<h}.

In view of the fact that 6(X)=min {d(X, E), b}, (a), (b) and (c¢) imply conclusions
(1), (2) and (3) of the lemma. '
The boundary B, of R, is the union of two sets, B: and BZ

Bi={(X,9): ay=06.(X), 0O<y<h}

and BE={(X,y): y=h, 6. (X)<oah}.
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Clearly B; is a portion of the smooth surface oy =08, (X), while B? is a portion of
the hyper-plane y=h. In fact, the region R, consists exactly in the set of points
lying above B and below BZ.

In order to conclude the proof of the lemma it remains to be shown that

00.(X) <1
om, |

In view of the definition of 4.(X) it is sufficient to prove a similar inequality for

fn(X) = fa(X—Y)(p,,(Y)dY.

Ep
Now, (X — (X)) = f[é(Xl_Y)“é(Xz_Y)]‘Pn(Y)dY-

Hence |f,(X;)—f,(X,)|<| X, — X,| f(pn(Y)dY=|X1—X2| owing to the fact that § (X)

satisfies the above discussed Lipschitz condition. Therefore

21 (X)| _

oz

E

and hence ‘M <1 gqed.

oy,

3. Basic lemmas

In all that follows |Vu| will denote

2 %

+ 2

k=1

ou

3_’&&
0 ox,

val-]

2}%
We let B, o, k, and b be given positive quantities with §>«, and k> h.

Lemma 4. Let u(X,y) be harmonic in the cone I'(Xy; B, k) and suppose thai
|u(X, y)| <1 there. Then

y|Vu|<A4 in the cone T'(Xg o b),

where 4 =A(B,  k, h) depends only on the indicated parameters but not on X, or u.(*)

(*) The constants 4, «, ¢, ... need to be the same in different contexts.
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Proof. We shall need the following fact: If « is harmonic in a sphere 2. of radius
one in K,.,, and its absolute value is bounded by one there, then the value of |Vu|
at the center ¢ of 2 is bounded by fixed constant 4, which does not depend on u.
This may be read off from the familiar Poisson integral representation of harmonic
functions in a sphere in terms of their boundary values. Alternatively, we may use
the following indirect argument. Assuming the contrary, there would then exist a
sequence u, of functions harmonic in 2 and bounded by one in absolute value so that
|V u,(0)]— . By a well-.known property of harmonic functions, we can select a
subsequence of the u, which converge together with all derivatives uniformly on every
closed set interior to 2. This is a contradiction and proves the existence of the re-
quired A.

If now 2 is the sphere of radius ¢ and |u| is still bounded by one there, then
|Vu(o)|<A4/o. This follows from our previous observation by making a change of
scale which expands each coordinate by a factor of g.

We now consider (X, y) which is harmonic in the cone
DB, k) ={(X,9): |X-X,|<By, O<y<h}.

Let (X, y) be any point in the smaller cone I'(«, #). Notice that since e <, and A<k,
there exists a fixed constant ¢>0, so that the sphere of radius ¢y whose center is
(X, y) lies entirely in I'(B, k).
We now apply the previous fact to the case where 2 is the sphere of radius cy
whose center ¢ is (X, y), and obtain
IVu(X,y)|<d/cy, (X,y)€T (@ h)
that is, y|Vu(X,y)|<d/e. for (X,y) €l (a,h), q.ed.

LeEMMA 5. Suppose that u (X, y) is harmonic in the cone I'(Xy; B, k) and

Y| vulfdXdy<l1.

T'(Xe B K

Then y|Vu(X,y)|<4 in T'(Xy a,b),
a<pB, h<k. The constant A depends only on «, 8, b and k and not on u or X,

Proof. Let 2 denote a sphere located in E,.;, and let ¢ denote its center. Then

by the mean-value theorem

Mk f —dXdy, k=0, 1,
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where y =z, and |2 | denotes the n+1 dimensional volume of >. Hence, by Schwarz’s

inequality

dXd
axk Y-

Adding, we obtain V u (o) vulPdX dy.
¢ 12|

Arguing as in the proof of the previous lemma, we take o= (X, y) to be any
point in I'(Xy; «, k); then if 2 is the sphere of radius cy whose center is o,
2.cI'(Xy; B, k). Notice that |5 |=cy"*'. We therefore have

|Vu@) = |vuX,yp<’ dX dy

<o [[yrivaraxay<ar [yt varaxay,
b T
where I'=1"(X; 8, k). This proves the lemma.

4. The generalized area theorem

The theorem which we shall prove can be formulated as follows.

TarorEM 1. Let w (X, y) be harmonic in Ei ..

(a) Suppose that for every point X, belonging to a set E, w(X,y) is bounded in a

cone I'(X,) whose vertex is X,. Then the generalized area integral (1)

ffw”WVuPdXdy (4.1)
'y
s finite for a.e. X, €E
(b) Conversely, suppose that for every X, € B, the integral (4.1) is finite, then u (X, y)

has a non-tangential limit for a.e. X,€E.

Proof. We consider first part (a).
We may assume, without loss of generality, that the set E has finite measure,

and by the use of Lemma 1, neglecting a set of arbitrarily small measure, we may

(1) We use the terminology of “generalized area integral” although (4.1) when n>1, no longer
can be interpreted as an actual area or volume.
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also assume that A is closed and bounded on that % (X, y) is uniformly bounded in

the region.
R=UT (X8, k) (4.2)
X,e E
whatever fixed § and k& we choose.
We shall show that
A(X,)= ffyl_" |[Vul?dX dy is finite for ae. X,€E,

X0

where I' (X)) =I"(X; «, ) and kb are fixed quantities chosen once and for all, and taken
so that §>w«, k>h.
Let BR=UT(X,xh) (4.3)

X,e E

and thus R< R, and hence u is uniformly bounded in R also. In order to show that
A (X)) < oo, for a.e. X,€E, it suffices to show that

fA(XO)dX0< oo,

E

Let W' (Xy; X, ) be the characteristic function of T'(X; «, h). That is,
V(X X,y)=1 if |X—X,/<ay and O0<y<h,

otherwise ¥ (X,; X, y)=0.
We must, therefore, show that

f”f ¥ (X, X, y)dXo} vy Ivu (X, y)fdX dy

is finite However J“F(XO; X, y)dX,< f dX,=cy"

| Xo—X|<ay

Thus it suffices to show that

Hyqu(X,y)|2dXdy<oo, (4.4)

where R is as in (4.3).
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We shall transform the integral (4.4) by Green’s theorem. In order to do this
we shall use the approximating smooth regions R, discussed in Section 2. By the

properties listed in Lemma 3 it may be seen that (4.4) is equivalent with
ffy|Vu(X,y)[2dXdy<c<oo, (4.5)
Ré’

where the constant ¢ is independent of &.
Since the region R, has a sufficiently smooth boundary B, we apply to it

Green’s theorem in the form

f(GaF _FaG
3 N, 0N,

€

)dn: ”(GAF—FAG)dXdy.
BE

Here 0/07. indicates the directional derivative along the outward normal to B..
d7. is the element of “area” of B,.

In the above formula we take F=u’ and G=y. A simple calculation shows
that A (4%)=2|Vu[?, since w is harmonic, while it is clear that A (y)=0. Therefore,

we obtain
out  , 9y J‘ .
—— ) = dXdy.
Bf (yﬁne “ on, 2 yqul dy
RE

£

It is therefore sufficient to prove that

out  , dy
- = < oo, 4.6
f(yans w2l dr,<e< (4.6)
Be

Notice that B.cRcR. Hence, u and therefore «? is bounded uniformly there.
Moreover |dy/dmn.|<1; notice also that du?/6n=2udwu/én. Thus

ol
on,

ou
< TR Pl g var - .
o2 | <2ty | 2| <2l
therefore by Lemma 3 yadu®/@n, is uniformly bounded in B.<cR= U ['(X; «, k), be-
X,e E
cause u is bounded in B= U I'(Xy; B, k).
X, E

Hence the integral in (4.6) is uniformly bounded by a constant multiple of fdre.

B
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However, f dt. = f dt. + f dz,.
B! B2

B,

Now B! is a portion of the surface y=o"'-8.(X). Therefore

s (00 (X)\P\}
d'rg=(1+oc 2. (—ﬁ) dX
k§1 8xk
there. However, |86,(X)/d%,|<1. Thus dr.<(1+na?*dX. Also B? is a portion of
the hyper-plane y=#. Since both B and B? are included in a fixed sphere, it follows

that fdrs is uniformly bounded. This proves (4.5), and hence part (a) of the theorem.

B,

We now pass to the proof of part (b). We temporarily relable the set on which
the integral (4.1) is finite by calling it F, By simple arguments we may reduce the
hypotheses to:

(1) ff v | VulfdXdy is uniformly bounded as X, ranges over E,, where f
(X%l B, b

and k are some fixed positive quantities,
(2) the set E, is bounded.

Given now any #>0, we may pick a closed set K, E<E, which satisfies
the following two additional properties
(8) m(E,—E)<n
(4) there exists a fixed p,, so that

m({Y: | X-Y|<o}nE)=>} -m{Y: | X-Y|<g}, it X€E, 0O<g<g,

This can be done as follows. Almost every X €K, is a point of density of E;

then for such X we have

iy MUY | X~ Y] <0} 0 By) _

1.
o m{Y:|X-Y|<p}

Hence a simple argument shows that for any % we can find an appropriate
subset E of E, to satisfy (3) and (4).

We now fix the set E found in this way. It will suffice to show that (X, y)
has a non-tangential limit for a.e. X € E. (Thus at the conclusion of the proof we
let m (¥,—E)—0.)
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First step
We consider the region

B= U I'Xy «, b),

X, E

where a<f, h<k, and B is the boundary. The first step in the proof of part (b)

will be to show, in effect,

f|u]2d1<00. (47)
B

Of course, (4.7) as it stands is not meaningful, because % is not defined for all
of B and neither is the element of “area” d=.
To bypass these technical difficulties we consider again the approximating regions

R, with their boundaries B, discussed in section 2, and we show that

f|u|2d1:5<c< oo, (4.7%)
Be

where the constant ¢ is independent of e.
The proof of (4.7*) is in some ways a reversal of the argument used to prove

part (a). We begin by showing that
ffy]Vul?‘dXdy< oo, (4.8)
R

This is done as follows. By (1) we have

¥ | VulPdXdy<d< oo, X €E,.
(X 5,5

Integrating over E, we obtain
f”%E,.(Xo)‘F(Xo;X,y)yl‘"lvu(X,y)ldedde0<°<>- - (49

Here X5, is the characteristic function of E,, and ¥ is the characteristic function of
the cone I'(X,; 8, k). We shall show that

J“F(X@ X, ypdX,zcy", (4.10)
Ey
where (X,y) €R, ¢>0.
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Recall that R= U I'(Z; «, h). Thus (X, y) € R means that there exists a ZEE

ZekE
so that |X—Z|<ay, O0<y<h. Since ¥ is the characteristic function of the set
where | X —X,|<By, 0<y<k, we see that

JT(XO; X, y)dX,> dX,.

B,y Eyn{|Xo—Z|<(B-)y}

Since Z €K, an application of (4) shows that the second integral exceeds c¢y”,
(if 0<y<h), for some appropriate constant ¢, ¢>0. This proves (4.10). Applying
(4.10) in (4.9) proves (4.8). We now replace (4.8) by an equivalent statement

”ylvu|2dXdy<c<oo. (4.11)
RS

K, are the approximating regions of R, and ¢ is independent of &.
We now transform (4.11) by Green’s theorem—as in the proof (a) of the theorem.
We obtain
2 7
0< J(ya—u~u2——-y—) dr,<c< co. (4.12)

on, on,
&

Now the boundary B, is the union of two parts Bi and B?. However, B2 is a portion
of the hyperplane y =7 (and thus at a positive distance from the boundary hyper-
plane y=0).

Moreover, B? is contained in a fixed sphere. Thus the total contribution of the

integral (4.12) over B? is uniformly bounded. We therefore have
our oy
[ i)
B

We claim that dy/on,< —a(a®+n)"%. In fact, 9/8n, is the (outward) normal deriva-
tive to the surface whose equation is F. (X, y)=ay—06.(X)=0. A set of (unnormal-

<e< oo, (4.13)

ized) direction numbers for this direction is

(—aFe oF, oF, aFe)_(_ -89, —00, —aas)
oy oz 0w, T 0m,) © 8wy T ow, 7 om, )T

However, |86, (X)/0,|<1. This shows that dy/0n,< —a (a®+n) L.
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o
yan

in U I'(X,; «, &) and hence in B: Combining these facts in (4,13) we obtain

X, e E
] ¥
f|u|2d15<cl f|u|dr€+02<cl (Jlulzdre) (fdr) + ¢y
1 1 1 1

B B, B B

& € & &

But <2|u|-y-|Vu|. Moreover by Lemma 4 y |V | is bounded

ou
Zuy%

We have seen in the proof of part (a) that fdrs is uniformly bounded. Letting

1
BE
2
Je= flu] d.,
1
BS
we obtain JE< ey d s+ cy.

Since ¢, and ¢, are independent of &, we then have that J, is uniformly bounded
hence

f|u|2dre<c<oo. (4.14)
Bl
Second step

We next seek to majorize the function (X, y) by another, v(X,y), whose non-
tangential behavior is known to us. We proceed as follows. The “surface” B! is a

portion of the surface
y=o"18,(X).

Let f,(X) be the function defined on y=0, whose values are the projection on
y=0 of the value of u(X,y) on B, and otherwise zero. That is,
fo(X)=u(X, « d. (X)),
for those (X, 0) lying below B., otherwise f(X)=0. We claim
f|f€(X)|2dX<c<oo. (4.15)

Ey

In fact, since dz.,>dX, we have

flfe<X)|2dX< f|u|2dfe<c<oo,
E, Bi
by (4.14).

11 — 61173060. Acta mathematica. 106. Imprimé le 20 décembre 1961.
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We now let . (X, y) be the harmonic function which is the Poisson integral of
the function |f,(X)|. Thus
v (X, y)= fP(X— Z,y)|f.(Z)|d 2,

En
where P (X, y) is the Poisson kernel

- Y
P = e s T e

(For the needed properties of Poisson integrals, see the previous paper in this
series, Section 3.)

We shall show that there exists two constants ¢, and ¢, so that
|u (X, y)| <c v (X, y) +ep (X, y) ER.. (4.16)

By the maximum principle for harmonic functions it is sufficient to show that
the inequality (4.16) holds for (X, y) belonging to the boundary B,. Now B,=B}U Bz,
where B2 is a subset of the hyperplane y = h, lying in a fixed sphere. Since
v.(X,y) >0, we can satisfy (4.16) on B? by choosing ¢, large enough (and independ-
ent of &).

It remains to consider (X, )€ Bi. Let us call o= (X, y). Since

BiCR= U F(Xo; d: h)’

X,e E

we can find a constant ¢>0, with the following property: The sphere > whose

center is o=(X,y), and whose radius to cy lies entirely in U I'(X,; 8%, §*), where
Xse E
a<p*<p, and h<k*<k. Recall that the cones I'(X,; B, k) have the property that
Y VulfdXdy<Ad<oo, X €E.
T'(Xet i k)

Making use of Lemma 5, it follows that

y|vul<d, <o for (X,y)€ U I'(Xy 8% E). (4.17)
X,e E

Let now ¢’ be another point in the sphere >, and let ! be the line segment joining
¢’ with o. Then

(6~ ()| |~ o] sup |Vl
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Since, however, |¢' —o| < radius of > =cy, it follows from (4.17) that
|u(c’y—u(o)|<4, if o €. (4.18)
Let 8 = that portion of the surface B! which lies in the sphere .
Let | S| denote its area
[8] = fd T
EnBi

Since d7,>dX, and > is a sphere of radius cy, we obtain after a simple geometric

argument,
8|z ay,

where a is an appropriate constant, a>0. Using (4.18) we obtain

)| < gy [ln@)ar o)+ 4.

In view of our definition of f,(X), our estimate for |S|, and the fact that

dr.<(l+na?}dX (see the proof of part (a)), we then get

|u(o)|<by™ f [f.(Z)|dZ+ A.

| X~ Z|<cy
The Poisson kernel has the property that
P(X,y)=({b/c)y™ " for |X|<cy,

where ¢, is an appropriate constant. We therefore obtain
lu(0)| = |u(X, y)l<01fP(X~Z, N (Z)|dZ+4 for (X,y)€B;.

This proves our desired estimate (4.16) on B.. We have already remarked that
on B? it is semi-trivial. Hence, we have the estimate on B, and therefore on R,.
Thus (4.16) is completely proved.

Because of the uniform estimate (4.15) on the norms of f,(X), we can select a
subsequence {|f., (X)|} of the functions {|f.(X)|} which converge to |f(X)|€ L*(E,),
weakly in L2
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Let v(X, y)= fP (X—Z, y)|f(Z)|dZ be the Poisson integral of |f|. Then for

each (X, ), ¥>0, v (X, y)—>v (X, y). Since R.—~R, we then have
|u (X, y)|<e v (X, y)+e (X, y) €ER. (4.19)

This is the decisive majorization of (X, y).

Final step

Because of the known behavior of Poisson integrals near the boundary, we can
assert that »(X, y) is bounded non-tangentially for almost every X, in E,. More
precisely, for a.e. X,€E,, (X,y) is bounded in the cone I'(X)=1I"(Xy; «, A). (For
these facts see I, Section 3.)

Because R=XL£EF (Xg; @, h), and (4.19), it follows that for ae. X,€E, u (X, y)

is bounded in I'(X, «, k). In view of Lemma 2, this shows that » has a non-

tangential limit for a.e. X,€£. This concludes the proof of the theorem.

Chapter 11

The main purpose of this chapter will be the proof of Theorem 3 in Section 6.
Actually this will be an easy result of Theorem 1 proved in the previous chapter and

an auxiliary result, Theorem 2, which is contained in Section 5.

5. An Auxiliary theorem

Theorem 1 we have just proved is useful because—disregarding sets of measure
zero—it shows that the existence of non-tangential limits for harmonic functions is
equivalent with the finiteness of certain integrals. In many cases these integrals are
easier to deal with. We shall see that this is the case in the following theorem
which is of particular interest in terms of its applications considered in the following
paragraphs.

In what follows « (X, y) will denote a vector of k components

(ul (X: y)’ Uy (X’ y) cees Ug (Xa ?/)),

where each component is harmonic. Similarly ¢ (X, y) will denote a vector of m

components (k<m, in general), each component being harmonic. We shall seb

ful=( 2 lut)’
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similarly for ». When we say that (X, y) has a non-tangential limit at a given

point X, we shall mean that each component has, ete.

THEOREM 2. Let w (X, y), v(X, y) be harmonic in the cone I' (X; 8, k). Let P (D)

be a kxm mairiz, eack of whose entries is a homogeneous differential operator i 6/dy,

0/0x,, ..., 8/0x, of degree r, with constant coefficients. Assume that w and v are re-
lated by
u
X, y)=P(D)w. 5.1
oy S V=P D) (5.1)
Assume also that f g v]PdXdy < oo.
T'(Xy: 8. )

Then +f a<f, h<k, we can conclude that

vy ulPdXdy< oo,

T'(Xeiex, b)

The equation (5.1) may be viewed as a relation between a harmonic function
and its conjugates, in its most general form. Examples and interpretations of (5.1)
will be discussed in Sections 7 and 8.

Before proving the theorem we derive from it a particular consequence of in-

terest.

CoROLLARY. Let the cones I'(Xy; B, k) and T’ (Xy; «, k) be as in the above theorem.
Suppose that H (X, y) is harmonic in the cone I' (X; B, k).

(a) if ff ln“’ IXdy< oo
T'(X,i 8, k)
then gy Fr dXdy<oo i=1,2,
I'Xgien b)Y

(b) If each of the integrals

e

(X3 8, k)

e dXdy<oo 7=1,2, ..., %,

then, Yyt

(X, e )

dXdy<oc.

ou
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Part (a) of the corollary is proved by taking w=8H /0, v=38H/8y; then (5.1)
becomes du/dy=28v/8x;. To prove (b) we take

wu=8H/dy, and v=(vy, vy, ..., v,)=(0H/0w;, ..., dH/0x,).

Then (5.1) becomes du/0y= —(0v;/0@, +0v,/0%, ... +8v,/0,).
The meaning of this corollary in connection with Theorem 1 is clear. In order
to prove that # (X, y) has a non-tangential limit a.e. in a set K€E,, it suffices to

prove that either

1-m 8u,2
Y iﬁyl dXdy< oo, for ae. X €F,
1

Ty
1-n & ou ?
or y Sl idXdy<oo, for ae. X €E.
i i-1|0;

This is a definite strengthening of Theorem 1, part (b).

For the case m=1 this fact has already found application in certain problems
in one real variable, see Stein and Zygmund [10]. In that case (n=1) the corollary
follows from a theorem of Friedrichs, see [4]. As far as the case of general » is
concerned, Friedrichs has proved in [5] a generalization of his previous result. But
this does not overlap with our result for general n.

The proof of Theorem 2 will require two preliminary lemmas of an elementary

character.

o«

LEvmMA 6. Let @ (s)= [medt. Then

8

oo

f [(I)(s)lzds<4f|<p(t)2dt.
0

0
This is a well-known inequality of Hardy, see [6].

LemmaA 7. Let 0<a,<a< oo, and

F(s)= ff(t)dt.

b b
Then f‘F(s)]zsds<4a62f|f(t) [Fede. (5.2)
0 )
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Proof. First, if @ (s)= fﬂtﬁ—)dt, then fl@ (s)Pds<4a’ ﬂ«p @) |*d¢t. This follows
i b

as

from Lemma 6 by the change of variable s—as. Next

d
|4 F ()] = Tl

st ff(t)dt‘<a% ft%lf(mdt:ﬁ fﬁ

as as

Applying the previous inequality proves the lemma.

We now come to the proof of Theorem 2. We shall assume for simplicity that
the vertex is X;=0; this involves no loss of generality. We then relable the cones
I'(Xg; B, k) and T' (Xy; «, ) as I'(B, k) and D' («, k) respectively.

Now let o denote that segment of a ray passing through the origin and lying
in the cone I'(x, k). Let s be the parametrization of the segment p according to its
length, with s=0 corresponding to the origin. With u (X, y) given, we shall define
u, (8) by, wu, (s) =restriction of u (X, y) to the ray segment p.

We shall show that

R
Jps|u9(s)|2ds<A<OO, (5.3)
0
where the bound is independent of the ray ¢ lying in I'(x, ). If we prove this in-
equality, then an integration of it over all ¢ of the type specified will then prove
our theorem. We therefore turn to the proof of (5.3).
By (5.1) we obtain

h

(r—1)! f(y_’)r“l[P(D)v(X, Wldv+R.

(5.4)

w(X, y)=

Since R involves only the values of u (X, ), 2u(X, y)/0y, ..., & " (X, y))/0y" "
at y=~h, this term is uniformly bounded.

We now examine the term P (D)v(X, 7) in (5.4). We use again a fact used
several times before: We can find a constant ¢, ¢>0, so that if ¥ (X, 7) is the sphere
whose center is (X, 7}, with (X, )€1' («, #) and whose radius is ¢, then X< 1'(f, k).
We fix this constant ¢ in the rest of this proof. We also need the following fact.
Let P(D) be a fixed matrix of differential polynomials, homogeneous of degree r, and

let > be the sphere whose center is ¢ and radius in 6. Then (if v (X, y) is harmonic)

| P(D)v(o)|<d stttz (”lvlzdxozy)%. (5.5)
%
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This may be seen as follows. First consider the case when X is of radius one.

Notice that the class of harmonic functions which satisfy Jf[de Xdy<1, are uni-
b3

formly bounded on interior compact subsets, by the mean value property. It then
follows by an indirect argument (of the type used in the proof of Lemma 4) that
there exist a constant 4 so that |P(D)v(s)|<4, for this class of functions. The
general inequality (5.5) then follows by a homogeneity argument which involves stretching
each component by the factor §. Alternatively, (5.5) can be proved directly from the
Poisson integral representation for spheres.

We then take (5.5) with 2 being the sphere X (X, 7) whose center is (X, 7) and

whose radius is c7, and substitute this estimate in (5.4). This gives

h
lu (X, y)|<BJT-W+3>{ ” |v|2dXdy}2dr+A. (5.6)

y (X,

We now call S; the “layer” in the cone I'(f, k) contained between 7—c¢7v and
T+c1; e,
S, ={(X, y): |X|<By, t—cr<y<t+ect}.

Then clearly, since 2 (X, r)<IT'(B, k) we have 2 (X, 7)< S,, and therefore

U|v|2dXdy<U|v|2dXdy=J,.
b s,

Next, call 0 the angle that the ray ¢ makes with the y-axis. Since the ray is
contained in the cone |X|<ay, O<y, it follows that 1> cos §>ay=(1+a%)"t>0.
Notice that y=s cos §, where s is the parameter of arc-length along ¢. Recalling the
definition of wu, (s), (5.6) gives

=

|u, (s)| <B J TR g dr+ A, (6.7)

scosf

We now invoke (5.2) of Lemma 7. We therefore obtain

h

h
fslug (s)|Pds< B fr—" J.dz+A.
0

0

However,
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h h
f‘f”J,dr=Jr‘"{ff|v|2dXdy}dr< ff |v|2{fr‘“"x(r, X, y)dr}dXd Y,
0 T, k)

0 S5

where % (v, X, y) is the characteristic function of the layer S, in I'(f, k).

yil~c

But f‘f”%(r, X, y)dr= f TThdr< f " dr=c,y "
{rAc(z)zzszr Yyil+c

This shows that

n
fslue(s)|2d8<B1 y " HoPdXdy+B,,
0 re o
which proves (5.3).
Integrating (5.3) over all ray’s o lying in I’ (e, ») shows the finiteness of the

integral
ffyl‘" [uPdX dy.
T

Here I' is that portion of the cone |X|<ay, in the upper half-space, which is
truncated by the sphere |X [*+3?=3%% This ‘“cone” differs from our original cone
I’ (o, 2) by a set which lies at a positive distance from the exterior of I' (8, k). Since

# was assumed harmonic in ['(8, k) it is certainly bounded in I (e, h)—T. Thus the

integral over I'(«, k) is also finite. This concludes the proof of theorem.

6. General theorems about non-tangential limits of conjugate functions

We now come to the principal result of this paper.
% and v will denote, as in the previous section, vectors of harmonic functions of

k and m components respectively.

THEOREM 3. Let u (X, y) and v (X, y) be harmonic in Ej.;. Suppose that they
satisfy the relation
ou
. p(D 6.1
a yr ( ) ’I), ( )
where P (D) is a kxXm mairiz whose eniries are differential polynomials (with constant

coefficients) homogeneous of degree r, r =1. Suppose that for a given set B, E< E,, v(X, y)
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has a non-tangential limit for every X €E. Then uw (X, y) has a non-tangential limit
for a.e. X€EE.

Proof. In order to show that « (X, y) has a non-tangential limit a.e. in E it

suffices, by part (b) of Theorem 1, to show that

¥ " |VulPd Xdy< oo for ae. X €E.

T(Xos o )

However, by part (a) of that theorem is follows that

Y| VoPdXdy< oo for ae. X,EE.

T'(X,: B, k)

Let now U denote the vector whose components are (8u/dy, du/dz,, ..., du/0%,).
Actually since u itself is a vector of k& components, then U is a vector of k(n+1)
components, suitable arranged. Similarly let V =(2v/dy, 9v/0x,, ..., 0v/0x,) be the
indicated vector, of m(n--1) components. If we differentiate the relation (6.1) suc-

cessively with respect to 9/dy, 8/, ..., 8/, then we obtain the relation

—P(D)V. (6.2)

Here IS(D) is & k(n+1)xm(n+1) matrix which consists of n+1 copies of P (D)

arranged down the diagonal. Or put in another way, the matrix IB(D) is the tensor
product of P(D) by I,,;, where I,,; is the (n+1)x(n+1) identity matrix.

Notice that by our definitions |V |=|vv| and |U]|=|vu|. We are thus in a
position to apply Theorem 2, with (6.2) in place of (5.1). From the finiteness of

ff Yy voeldXdy = ” yrrVPdXdy
(X 8. k) T'(Xe: 8, 5>
follows the finiteness of
ff gt |Vu]2dXdy=ffyl’”| UPFdXdy;

T(Xos o 1)

and thus by what has been said above, we obtain the proof of the theorem.
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Chapter 111

7. Various examples

We consider first the generalization of the Cauchy-Riemann equations studied in
paper I, and also discussed in the introduction of the present paper. Let us change

the notation slightly (making it symmetric in all variables) by ecalling y =, Thus

the underlying variables are =z, @, ..., ,. Similarly let us call u,=u, and u, =v,,
Uy =%y, ..., U, =0,. Then the equations become
5 o,
k=0 0 (7.1)
8—u’f=a—uj, 0<79, k<n.
dx; Oz

‘We then have

THEOREM 4. Let uy, u,, ..., u, the system of functions satisfying (7.1).

{a) Suppose that w, has o non-tangential limit for each point (@, %5, ..., 2,) be-
longing to o set E < E, (=the hyperplane xy=0). Then for a.e. (x,, x5, ..., %,) EE,
the same is true for each wg, k=1,2, ..., n.

(b) Conversely, suppose that uy, Uy, ..., u, each have non-tangential limits in a se

EcE, Then for a.e. point in B the same is true for u,.

Proof. To prove (a) we use dw,/dy=0u,/dz, For (b) use
Oug/0y = —(0u, /o2, +0uy/d2, + ... +0u,/0x,).

Thus an application of Theorem 3 proves the theorem immediately.
It is evident that this theorem generalizes the corresponding classical result for
analytic functions of Privalov and Plessner.

It may be seen that this theorem ist best possible in the following sense.

(a) If we want we existence of non-tangential limits for the n+1 components
Ugs Uy, .o, U, (2.6, on a set H) by assuming it for only one of them, then this one

must be u,.

(b) However, if we do not make any assumptions on %, we must assume that
the remaining » components, u,, #%,, ..., %,, have non-tangential a.e. in ¥ in order
to obtain the conclusion for all the #-+1 components. To show this consider an

F(2) =uy (2, + 1y} +iu, (¥, +iy) which is analytic for y >0, but does not have boundary
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values for y=0. Then the set (u,, %, 0, 0, ..., 0) satisfies (7.1) but does not have
non-tangential limits.
It is to be recalled that the system (7.1) is locally equivalent with one arising

out of a single harmonic function H (X, y) via

_oH

Y=g T 0Si<m. (7.1%)

The system (7.1) (or alternatively (7.1%)) may be thought of as the most direct
generalization of the Cauchy-Riemann equations. However, there are notions of “con-
jugacy” which have no direct analogue to the classical case but which are never-
theless of interest in higher dimensions. A systematic approach to the possible no-
tions of conjugacy (i.e., appropriate generalizations of the Cauchy-Riemann equations)
involves the study of how these systems transforms under rotations-—and thus is in-
timately connected with the theory of representations of the group of rotations in
n+1 variables. This problem will be treated in a future paper of Guido Weiss and
the author. Here we shall consider only briefly some of the possible systems which arise.

For every integer r we shall consider the “gradient of order r’—that is, the
system of harmonic functions obtained from a single harmonic function H (z;, @, ..., %n, ¥)

as follows:

o H(zq, x,, ..., . . .

{ ayfsalxhz 8003:)’ (G + i+ ... +zn=r)}. (7.2)
T ... o

This system may also be characterized by a set of equations like (7.1. We now

state the following theorem which generalizes Theorem 4.

THEOREM 5. Suppose that for each point (%, %,, ..., x,) belonging to.a set E< E,,
the function &"H/9y" has a mon-tangential limit. Then the same is true a.e. in E for
each other derivative of order r (i.e., other component of (7.2)), and conversely.

This theorem, like Theorem 4, is an immediate consequence of the general Theo-

rem 3.

Remark. While this theorem is clearly a generalization of Theorem 4, it has only
a secondary interest relative to Theorem 4. This is because the assumptions of the
converse are to a large measure redundant. This may already be seen in the case
r=2, n=2. The existence of the non-tangential limits of each of the following three
sets of components implies that a.e. all the other second order components have non-

tangential limits:
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" azH(* *H 325)

ay” T 9al

2 2
o d@H

2
@ oy ox, an 0y 0%,

S H &FH &H
an T — 5
3z’18x2 axl oxs

(3)

That (1) does is of course contained in Theorem 5. From Theorem 4 it may be
shown that the existence of non-tangential limits of (2) also implies the other second-
order components. (3) may be proved by similar arguments.

This leads us to the following general question. Suppose P, (D), Py(D) ... P, (D)
are k given differential polynomials in 8/2y, 6/0x;, ..., 8/8x,, homogeneous of degree 7.

Question: What conditions must be imposed on P, P,, ..., P, so that they are
determining in the following sense: If H is harmonic in (x, Z,, %5, ..., %, y) and
P, (DYH, P,(D)H, ..., P,(D)H have non-tangential limits in E, then a.e. in ¥ so does
any derivative of order r of H.

We shall now attempt to answer this question.

Suppose that P (D) is a homogeneous polynomial of degree r in 8/0y, o/,
e 8/6xn, we shall consider with in the associated polynomial, p(X), which is a
polynomial of the n variables x;, #,, ..., , of degree <r.

First, there exists a homogeneous polynomial of degree r in 8/0y, 8/0x,, ...,
8/0x,, P*(D), so that

(a) P*(D)H =P (D)H, whenever H is harmonic,

(b) P*(D) is of degree <1 in 8/dy.

P* (D) is obtained from P (D) by replacing &'/8y’ by (—)¥ (8*/oxi +8*/aa} ... +8*/oas)¥
if § is even; and replacing &/aa’ by 8/0y (=)} Y (P/oat+ ...+ oE)Y, if § is
odd. Thus

s Dy—s( 9 4+ 0 _fl)
P (D) 8(8X+8yt(8 ,

where s and ¢ are respectively homogeneous polynomials of degrees r and r—1, and
0/0 X =(0/0x,, 3/0%,, ..., 0/0,).
We then define p(X) by

p(X)=s(X)+£(X).

Examples of this definition are as follows:
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(a) If P(D)=&"/0}, then the associated polynomial, p(X), is af.
(b) If P(D)=0"/0y", then p(X)=(—)} (ai+a5... +a2)¥, if r is even;

p (X) = ( - ),3-(1'41) (x% -+ x% I xﬁ)ﬁ@*b)
if » is odd.

We can now obtain the following result which is a refinement of Theorem 5.

THEOREM 6. A sufficient condition that the k differential polynomials P, (D),
P,(D), ..., P (D) are determining is that the common complex zeroes of the k associated
polynomials p,(X), p,(X), .., pe(X) satisfy ai+as+a5 ... +a5 =0.

We list two immediate consequences of interest.

COROLLARY 1. The existence of the non-tangential limits in a set E of the com-
ponents
dH o H o H
oy’ o2y’ 7 baly

vmplies the existence of non-tangential limits a.e. in E of all the other derivatives of
order r of H.

CorOLLARY 2. Let H (z,, z,, y) be harmonic in E3. Suppose that the two func-
tions v, and v,, defined by
; o H o H
= W = —\ebor T
“ ie%n( ) Ojaxiﬁax%’ 2 jc%:d( ) "owm oy
have non-tangential limits the in E. (C; are binomial coefficients.) Then a.e. in E the same
s true of all the other r-th dertvatives of H.
The significance of the type of conjugacy arising in Corollary 2 will be discussed

further in Section 8.

We shall need the following lemma.

LemMMA 8. Let I be an ideal in the ring of all polynomials in x, %,, ..., Tp.
Suppose that f(X) is a given polynomial. Then a sufficient condition that there exists
an integer N so that (f(X)W€I s that the (complex) zeroes of f be contained in the
common zeroes of I.

The condition is evidently necessary. This is the Hilbert “Nullstellensatz” for
the complex number field. See e.g. [12], § 79.

Proof of the theorem. Let I be the ideal generated by p; (X), py (X) ... 4 (X).

Take f(X)=ai+a3...+2> in the above lemma. Because of our assumptions on the
p
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P (X) it follows that there exists an integer N, and polynomials ¢, (X), ¢, (X), ..., g, (X)
so that
k
3 (X) py (X) = (e} +a3 ... +a7)". (7.3)
=1

7
Recall that p; (X)) =s; (X} + ¢ (X),

where the s; are homogeneous of degree #, and {; are homogeneous of degree r—1.
It should be noted from this that 2 N>r—~1 and that we may assume the degrees
of the ¢;(X) are <2N —r-+1. Write now

@(X) =2 .. (X),

where g;..(X) is homogeneous of degree e. Thus we have

(g (X)) (5(X) +8; (X)) = (2] + a5 ... + 7)™

Making the substitution {%}—{£ '}, we get

§ (§ G.e (X)E ) (5 (X)E7+4(X) €T =7 (@ + 23 -+ +az)",
and hence § (2 5.0 (X) V%) (85 (X) + 4 (X) &) =& (a7 + a5 ... + ). (7.4)

Since the degree of ¢;(X) is <2N—r+1, it follows that e<2N—r+1 (and
since r>1, then 2N —e>0.

Now in the above polynomial identity, substitute for X =(z;, @5, ..., 2,), (8/0 %,
0/2x,, ..., 8/8x,); and for £ substitute 8/0y. (7.4) so transformed and applied to a

harmonic function H, gives

2N+TH
Q@) P ONH= ()" e (1)
xpy=s (-2 )+ 24 (-2
where P; (D)=s; (8 X) +ayt, (8 X)
P o 2N—-e
and Q; (D)= Ee Gs.e (é—X) : (@) s

This shows that the @;(D) are homogeneous in 8/0v, 8/8x,, ..., 8/dx, of de-
gree 2N.
Let now w=8"H/ay" and v,—P; (D)H. Then (7.5) becomes

2y;§= (=) [Q, (D) vy +Q, (D) v, ... +@p(D)v,]. (7.6)



168 ELIAS M. STEIN

This is exactly of the form (6.1) appearing in Theorem 3 (here 2N =r). By our
assumption (v, v, ..., v,) = (P, (D) H, P, (D) H, P, (D) H) have non-tangential limits in
E. Thus by Theorem 3 so has w=0"H/dy" a.e. in B. The proof of the theorem is
completed by appealing to Theorem 5.

We add one final remark. It is possible that the condition that the associated
polynomials vanish jointly only on the set a3 a3 ... -+a% =0, is not the best possible.
In fact, it may be conjectured that a necessary and sufficient condition that the
polynomials P, (D), ..., Py( D) are determining (in the sense defined above) is that
the only real common zero of the associated polynomials be the origin. The proof

of this latter assertion, if true, would seem to be beyond the methods of this section.

8. Relations with generalized Hilbert transforms

Up to now we have considered harmonic functions defined in E ; (or smaller sub-
sets) and have studied relations of conjugacy given by differential equations like (6.1).
We want now to investigate further this meaning of conjugacy in terms of harmonic
functions which are Poisson integrals (of their boundary values in K,). This will allow
us to understand relation (6.1) in terms of (a) the boundary values of the harmonic
functions, and (b) the Fourier transforms of these boundary values.

Let us consider first the classical case (n=1). See, e.g., [11], Chap. 5. Let u (x, )
be the Poisson integral of a funetion f(x) belonging to, say, L*(— oo, o). (1) Then

_1 M_?/_
u (2, y)—n fyzﬂx_z)zf(z)dz.

Moreover, the conjugate function v (z, y) (which is determined up to an additive
constant) is again the Poisson integral of a function, g (x), belonging to I? (— oo, o).
g (x) and f(x) are related by the Hilbert transform

sw=2 [ [P, &

the integral existing a.e. in the principal value sense. If we denote by f and § re-

spectively the Fourier transforms of f and g, then we have

d (x)= —i sign () f (@). (82)

(1) The limitation to functions in L2 is made only for the sake of convenience and is not ne-
cessary. Many other classes of functions would do.
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We can take (8.1) (or alternatively (8.2)), which expresses the classical relation of
conjugacy in terms of boundary values, as our starting point.

The transformation (8.1) has a well-known generalization to » dimensions. If we
use the notation X = (x;, %, ..., %,), Z=(2y, 2,. ..., 2,), then we consider transforma-
tion f—T (f) defined by
QX -27)

T X)=gX)=af(X)+ TX=2f

f(Z)d Z. (8.1%)

Here Q(Z) is a function which is homogeneous of degree zero (that is, depends only
on the direction of the vector Z) and has the further property that its mean-value on
the unit sphere vanishes; @ is a constant. The integral exists a.e. in the principal value
sense, if we restrict ) and j appropriately; moreover, if () satisfies certain minimal
restrictions (e.g., Q is bounded), the transformation is a bounded operator on L?(H,).
For those Q, the Fourier transform
. Q(Z)
a+ 1:3) 1z

s<|Z]<1/e

e 242 =Q (X)

. . . » 2
exists for every X, is bounded and is homogeneous of degree zero. Moreover, if f and

g denote the Fourier transforms of f and ¢ respectively, then
§(X)=QX)](X). (8.2%)

Thus (8.1%) and (8.2*) are clearly the generalizations of (8.1) and (8.2). The func-

tion Q (X) is sometimes referred to as the symbol of the transformation (8.1%).
Since Q(X) is a function which is completely determined by its values on the

unit sphere, we expand it in spherical harmonics. That is, we have
QX)) =0, (X)+Q(X)+... + Qu(X) + ..., (8.3)

where Qy(x) has the following properties:

(@) | X |¥Qu(X) is a homogeneous polynomial of degree N.
(b) | X|¥Qy(X) is harmonic, in the n variables X = (2, 2, ..., %p)-

(¢} The expansion (8.3) converges to () in L* norm of the unit sphere.

We now define Qy(X) as the Fourier transform of Qy(X)/|X|* (as in the for-

mula defining Q(X) above, with ¢ =0), then we have

A N,
O (X) =92 Oy (X). (8.4)
12 — 61173060, Acta mathematica. 106. Imprimé le 20 décembre 1961.
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Here 34" is a non-zero constant depending only on the degree N and the dimensjon.

It does not otherwise depend on Q. From this we can easily conclude the kernel

Q of the transformation (8.1*) is a (spherical harmonic) polynomial if and only if Q
has the same property. The results in the foregoing paragraphs related to the trans-
formation (8.1%) may be found in, e.g. [3], where there are other references.

Let us now return to harmonic functions in E;,;, more properly those which
are Poisson integrals.

Let u (X, y) be the Poisson integral a function f(X)€L*(E,). Since u(X,y)—f(X)
in the L* norm as y—0, we shall denote by #(X, 0)=/(X). Similarly let v (X, y) be
the Poisson integral of »(X, 0)€L*(E,). We let 4(X), 4(X, y), #(X), and % (X) denote
the Fourier transforms of « (X, 0), (X, y), v(X, 0), and v (X, y) respectively (as fune-

tions of X, for each fixed y). Then, as is well known,
WX, y)=¢ "HAX); (X, )= "Ho(X), (8.5)
We now assume that « (X, 0) and »(X, 0) are related by (8.1%); that is

Q(X - %)

En

w(X, 0)=av(X, 0)+

This means that the Poisson integrals are related similarly,

QX—-Z
WX ) =av(X, )+ [T

En

v(Z, y)d Z, (8.7)

and their Fourier transforms are related by

4 (X, y)=Q(X) > (X, y). (8.8)

By what has been said above it is not difficult to see that indeed (8.6), (8.7),
and (8.8) are fully equivalent.

From now on it will be convenient to adopt the following notation. j will stand
for a multi-index of » components. Thus §={(j;, 75, ..., 7,). The symbol X’ will stand
for the monomial 27, 2% ... a/», and |j| will stand for its degree, || =4, + 75+ ... +]pn
Similarly 8”'/6 X’ will stand for the differential monomial (8/8x,)" (8/8,)" ... (8/0 2,)™.

Reverting to our discussion, let us take the case where Q (X)=Qy (X), and a =0.
Then | X ¥ QN (X) is a homogeneous polynomial of degree N, and hence in our nota-

tion we write

O (X)=|X|"" 2 0 X’
li|l=N
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and then 4(X, y) ={|X|"Nlu|§N a; X} (X, y). (8.9)

Let us now recall that the Fourier transform of 8! v (X, 4)/0 X7 is (¥ X’ (X, ),
l[=N.
Moreover, in view of (8.5) the Fourier transform of 8¥u (X, y)/0y" is

(—| XV (X, y).
This shows that the relation (8.9) is equivalent with

Mu(X, y)

oy TvD)v X, y), (8.10)
o oVl
where Py(D)=1" IJIEN S ek

More generally, suppose that on the unit sphere Qis a spherical harmonic poly-

nomial of degree r. Then
Q(X)=a+Q (X)+ ... + O, (X).

It then follows by the same argument that the relation (8.7) or (8.6) (for this f))

is the equivalent with

T ) _p(pyw(x, y), (8.11)
oy
2] S ()
where P(D)—a(ay) —f—Nzl{z uéwajaX’} 6y) . (8.12)

We thus see that whenever Q is a spherical harmonic polynomial (or what amounts
to the same thing, Qisa spherical harmonic polynomial), then the transformation
(8.1%) when expressed in terms of Poisson integrals can be written in the form (8.11).

Let us now consider the converse. We thus have two harmonic functions u (X, y)
and o (X, y) which are Poisson integrals of (X, 0), (X, 0) respectively (both being
in L*(E,) and are related by (8.11). (Notice that (8.12) represents the most general
differential polynomial homogeneous of degree r in 8/3y, 8, ..., 3/8x,.) We then have

(X, y)={a+ 2 |X|Y = X'} (X, y)
N=1 1/|=N

Now it is known that any polynomial, e.g.,
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is equal on the unit sphere to a harmonic polynomial. Thus

at+ B |X[7{ 2 X =a"+Q (X)+... + O (X)
N=1 17}=N

{for appropriate Q’s) on the unit sphere. Since both sides are homogeneous of degree

zero, the above identity holds everywhere. We therefore have
4(X)={a’+Q, (X)+ ... + O, (X)} 5 (X)

QX - Z2)

and hence (X, 0)=a"v (X, 0)+ |X_-—Z-|7 v(Z,0)d Z,

En

where Q restricted to the unit sphere in a harmonic polynomial. This proves the
converse.

A similar situation holds if we replace the relation (8.11) by one among vectors,
as we have done in the above sections.

We discuss briefly two exemples.

(a) The notion of M. Riesz conjugacy, contained in equations (7.1) leads to the
generalization of the Hilbert transform whose “symbol” is the vector —i(z,/|X|,
2,/|X|, ..., 2./| X|). The n component transformations (corresponding to (8.1%) with
a=0) are then the so-called Riesz transforms. These transformations were discussed
in paper I. For more details, see also [7].

(b) We next consider the notion of conjugacy implicit in Corollary 2 of Theo-
rem 6. Since X =(wy, ¥,) it is convenient to use polar coordinates, z; +ix,=p €.
Because (X) is a function homogeneous of degree zero, we can consider it as a
function of 0, and write it as Q(G), 0<0<2n. Of special interest is the case

O 0)=¢€" or e r a positive integer.
Since .
¢ = (cos 0+ 1 sin )" = (l—XI—I +1 |_£_|) ,
we have

= |X|T{ T (=)W alar i T (—)VCTalat )

jeven jodd

Thus for Q(6)=¢"°, we have

o u
8yr=P(D)r,
o .o
where P(D)—[—z(%—l-wa—xz)] .
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However, if H is harmonic in (%, ,, ¥) and w=0"H/2y", then

yu—qig—bﬁ%ﬁi+fiyﬂ=(—y(ﬁw4 9iy(i_¢£)31

oy oy dxr dab dx, 0my) \Ox, Om,
r
But —8——1—6— H=v,—1iv,,
ox; 0wy
; o H
where R e e ST
; o'H
= 3 (v It
V2 jodd (=) T o2 9 ad

Thus if v=—i(v,—iv,), u=08"H/0y" we have & w/0y =[—1(0/62,+8/0x)] v, as
above.
Also » and v are related by

QX —2)

2

v{Z, y)dZ

with yI'1 Q (o €'%) = €™,
It should be noted that the transformation T with this kernel is unitary (on
L? (E,)) and its inverse is obtained by replacing  with —r.

We now summarize the discussion in this section in the following theorem.

TarorEM 7. Let w(X, y), v (X, y) be two harmonic functions in Er.1, which are
Poisson integrals of u (X, 0), v(X, 0) € L* (E,), respectively. (*) Then the following three
statements are equivalent

(1) v (X, y) and v (X, y) are related by

I u(X, y)

v L) _pp
oy LDy,

where P (D) ts a differential polynomial in 8/0y, 8/8x,, ..., 8/0x, homogeneous of

degree r.

QX -2)

2) (X, 0)=av(X, 0)+ —lm

v(%,0)dZ,

where () is homogeneous of degree 0, and coincides on the unit sphere with a harmonic

polyrnomial.

(1) See the footnote on p. 168.
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3) 4(X, 0)={Q(X)} 5 (X, 0),

where Q) is homogeneous of degree zero and coincides on the unit sphere with a harmonic
polynomial, and 4 (X, 0), 9 (X, 0) denote respectively the Fourier transforms of w (X, 0),
v (X, 0).
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