ANALYTIC FUNCTIONS AND LOGMODULAR BANACH ALGEBRAS

BY
KENNETH HOFFMAN

Massachusetts Institute of Technology, Cambridge, U.S.A.(%)

1. Introduction

The first part of this paper presents a generalization of a portion of the theory of
analytic functions in the unit dise. The theory to be extended consists of some basic theorems
related to the Hardy class H? (1 <p< o). For example, (i) the theorem of Szegs, Kolmo-
goroff and Krein on mean-square approximation of 1 by polynomials which vanish at the
origin, (ii) the theorems of ¥. and M. Riesz, on the absolute continuity of ‘“‘analytic”
measures, and on the integrability of log | f| for f in H?, (iii) Beurling’s theorem on invariant
subspaces of H?, (iv) the factorization of H? functions into products of “inner” and “outer”
functions. The second part of the paper discusses the embedding of analytic discs in the
maximal ideal space of a function algebra.

The paper was inspired by the work of Arens and Singer [3; 4], Bochner [6], Helson and
Lowdenslager [14; 15], Newman [24], and Wermer [27]. Some of the proofs we employ
are minor modifications of arguments due to these authors; however, the paper is self-
contained and assumes only standard facts of abstract “‘real variable’ theory, e.g., funda-
mental theorems on measure and integration, Banach spaces, and Hilbert spaces. In
particular, very little knowledge of analytic function theory is essential for reading the
paper, since the classical results which are to be generalized are special cases of the theorems
here.

The Hardy class H® (1<p<oco) consists of those analytic functions f in the unit disc

for which the integrals
f | (re®) | *db

(1) This research was partially supported by the Office of Scientific Research, United States Air Foree.
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are bounded as  tends to 1. Since these spaces arise naturally in the study of Abel-Poisson
summability of Fourier series, it was realized early in their development that many pro-
perties of H? functions belonged in the realm of “real variable” theory. Specifically, we
mean that general compactness arguments enable one to write each H” function as the
Poisson integral of an L” function on the boundary (or, a measure in the case p=1); and
thus, by identifying an H” function with its boundary-values, some results can be deduced
without reference to the geometry of analytic mappings. It now appears that the portion
of the theory which is susceptible of a “real variable” treatment is much larger than one
would have imagined.

From the point of view which we adopt, the basic vehicle for the study of H” is the
algebra of continuous functions on the unit circle whose Fourier coefficients vanish on the
negative integers. The space H? is regarded as the completion of this algebra in the Banach
space L? (of the unit circle). Thus, in our general treatment, we begin with a uniformly
closed algebra A4, consisting of continuous complex-valued functions on a compact Haus-
dorff space X. The role of the points of the unit disc is played by certain positive measures
on the space X. In the case of the disc, these are the harmonic (Poisson) measures for
the various points. What is most important to us is that these measures are multiplicative

on the algebra:

J1aam = [1am[gim .gea

If we fix a measure m on X which is multiplicative on the algebra A, we can introduce
HP(dm), the completion of 4 in the Banach space L?(dm). Of course, we cannot expect
many interesting results about H” in such extreme generality. We need some hypothesis
on the underlying algebra 4 which (roughly) forces it to resemble an algebra of analytic
functions. Our hypothesis is that 4 is a logmodular algebra, by which we mean that each
real-valued continuous function on X can be uniformly approximated by functions log |f|,
where both f and 1/f belong to 4. For such algebras, and any multiplicative measure m,
we can study H?(dm) with considerable success, We shall concentrate on the values p=1,2,
and oo,

In their paper [14], Henry Helson and David Lowdenslager studied algebras of contin-
uous functions on special compact abelian groups. The algebras were isomorphic to rings
of analytic almost periodic functions in a half-plane, and they are described in Example 3,
section 3. Arens and Singer [4] began the study of analytic function theory for these algebras,
in the sense of working directly on the compaect groups. Helson and Lowdenslager discovered

elegant proofs for most of the theorems itemized in the first paragraph of the Introduction
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(as they apply to H? as the completion of the algebra in L? of the compact group). After
their paper appeared, Bochner [6] pointed out that several of their proofs could be applied
to a general class of rings of functions. The abstract rings which Bochner described are
much like certain function algebras which were being studied at the time, namely, Dirichlet
algebras. (The algebra of continuous functions A4 is called a Dirichlet algebra provided
each real-valued continuous function on X is a uniform limit of real parts of functions in
A.) Indeed, a careful reading of Helson-Lowdenslager revealed that their proofs were
valid for Dirichlet algebras, virtually without change. Wermer [27] made use of some of
the arguments to embed analytic dises in the maximal ideal space of a Dirichlet algebra.
The Helson—-Lowdenslager arguments are applied to the classical case in the author’s
book [18]. A description of the form of some of the results for Dirichlet algebras appears
there, as well as in Wermer’s expository paper [28]. However, a detailed treatment of the
proofs in the Dirichlet algebra context has not been available until now.

Dirichlet algebras are special cases of what we call logmodular algebras. Thus, this paper
will include a detailed development of the Dirichlet algebra results which we have been
discussing. But, it will go considerably beyond this, for two reasons. First, even in the
Dirichlet case, we shall affect a reorganization of the order of the theorems, as well as an
increase in the number of theorems which are generalized. Second, for logmodular algebras,
one cannot simply repeat the Helson-Lowdenslager arguments. They can be used, with
some modifications; however, one must first prove some basic theorems about a logmodular
algebra. The most basic of these theorems are (i) each complex homomorphism of the
algebra A has a unique (positive) representing measure on the space X, (ii) if m is such a
representing measure on X, the functions in 4 and their complex conjugates span L*(dm).
These facts are evident for a Dirichlet algebra, but far from obvious for a logmodular
algebra.

It is a tribute to the clarity and elegance of the Helson-Lowdenslager arguments that
they are capable of generalization in many directions. If one wants only part of the results,
there are various other hypotheses which one can place on the ring of functions 4; for
example, hypotheses such as (i) and (ii) of the last paragraph. We shall try to indicate
some of these weakened hypotheses as we go along. It is the author’s feeling that, if one
wants the full strength of the results, logmodular algebras provide the natural setting. In
any event, this setting does capture the full strength of the theorems; and, it allows for a
considerable amount of non-trivial generality, as one can see from the examples in section 3.
There are two objections to our approach which might occur to one. First, we insist that
our ring A4 should consist of continuous functions on a compact space. Second, we treat
H?(dm), where m is an arbitrary measure which is multiplicative on 4. One meets situations
18 - 622906 Acta mathematica 108. Imprimé le 28 décembre 1962
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in which A is a ring of bounded measurable functions on a measure space (S, 2, m), the
measure 7 is multiplicative on 4, and the interest is in the particular spaces H?(dm). But
such a ring of functions is isomorphic to & ring of continuous functions on a compact space
X (the maximal ideal space of L*(dm)), and m can easily be transferred to a measure on X.
After H” spaces have been discussed, we turn to analytic structures on subsets of the
maximal ideal space of a logmodular algebra. Given our basic knowledge of logmodular
algebras, one can employ the argument which Wermer [27] gave for Dirichlet algebras,
to show that each Gleason “part” of the maximal ideal space is either one point or is an
“analytic disc”. This extension of Wermer’s result is particularly interesting, because it
applies to the algebra of bounded analytic functions in the unit disc. This algebra is (iso-
morphic to) a logmodular algebra, and very few things about the structure of its maximal
ideal space are easy to treat.
The author would like to express his appreciation to Professor Richard Arens, for many

enlightening discussions during the evolution of the concept of a logmodular algebra.

2. Notation and basic definitions

Throughout this paper, X will denote a compact Hausdorff space. We denote by
C(X) [(Cg(X)] the complex [real] linear algebra of all continuous complex [real] valued
functions on X. Each of these algebras is a Banach space (Banach algebra) under the sup

norm

Il =sup

By a measure on X we shall understand a finite complex Baire measure on X. We shall
make frequent use of the Riesz representation theorem, in this form. Every bounded (i.e.,

continuous) linear functional L on Cgx(X) is induced by a real measure g on X,

L(f)= f/du-

Similarly every bounded linear functional on C(X) is induced by a (complex) measure on
X. The norm of the linear functional L,

Li|=sup | Lf) |,
HEAS e 01

is precisely the total variation of the measure u. See [9; Chap. IV, §6].
Derixition 2.1. A sup norm algebra on X is a complex linear subalgebra 4 of C(X)

which satisfies
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(i) A is uniformly closed;
(i) the constant functions are in 4;

(iii) 4 separates the points of X, i.e., if x and y are distinet points of X, there is an
fin A with f(z)+ f(y).

If A is a sup norm algebra on X, we shall have occasion to discuss other classes of
functions associated with 4, and we shall adopt a uniform type notation for these classes.
For example, A~ will denote the set of invertible elements of A, that is, the set of all
functions f in A such that f~1=1/f is also in 4; Re 4 will denote the set of all real parts of
functions in 4; 4 will denote the set of complex conjugates of functions in 4; and Jog | 41|
will denote the set of logarithms of moduli of invertible elements of 4.

DerFiNiTION 2.2. Let A be a sup norm algebra on X. A complex homomorphism of A is
an algebra homomorphism, from 4 onto the field of complex numbers.

Since the sup norm algebra 4 is uniformly closed, it is a Banach space (Banach algebra)
under the sup norm. We need to know that each complex homomorphism ® is a bounded

linear functional on that Banach space, indeed that

@O <|Ifll (te4). 2.11)
This has a simple proof. If (2.11) does not hold, there is an f in 4 with ®(f)=1 but ||f|| <I.
Since A4 is a uniformly closed algebra, the series expansion (1—7)1=1+f+/2+ ... shows
that (1 —f) is invertible in 4. Since @ is not the zero homomorphism, we must have ®(1)=1;
hence ®(1 —f) =0. We have the contradiction

1=0(1) =®(1 - )H@([1 -] ) =0.

Of course, (2.11) together with ®(1)=1 tells us that the norm of @ is precisely 1.
DeriNiTION 2.3. Let 4 be a sup norm algebra on X, and let ® be a complex homo-

morphism of A. A representing measure for @ is a positive measure m on X such that
O(f) = ffdm (fe4).
An Arens—Singer measure for @ is a positive measure m on X such that
tog| @19~ [1oglflam (fe47"

It is important to note that both representing measures and Arens-Singer measures

are required to be positive. Since (1) =1, either type of measure satisfies

J‘dm=1

and is, consequently, a probability measure (positive measure of mass 1).
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THEOREM 2.1 (Arens-Singer [3]). Let ® be a complex homomorphism of the sup norm
algebra A. There exists at least one Arens—Singer measure for ®. Furthermore, every Arens—
Singer measure for ® is a representing measure for @.

Proof. Given @, we definc a function L on the set log | A~!| by

L(log |f}) =log |®(/)| (f€4™).

We now extend L linearly to the linear span of log|A47*|. This linear span is a subspace
of Cx(X), and we shall verify that L is a well-defined function on that subspace and that

L is bounded by 1:
| L(u)| < sup [u].

Obviously the second condition implies the first. If L is not bounded by 1, then, since we
are dealing with real-valued functions, there will exist some « in the lincar span of log | 4~1|

with

L(u) > max u. (2.12)
X
Now u has the form u—¢t u, - ... +t,u,, where each u; is of the form u;=log|f,|, f,€471,

and the ¢, are real numbers. The number L(x) is defined by L(u) =2 t,log |®(f,)|. We may
assume that each ¢; is rational, since (2.12) will not be affected by a small change of any ¢;.

Choose a positive integer r such that every r¢; is an integer, say rt;=p;. Then (2.12) says
> Plog | @(f;) | > max 3P 1og] 1. (2.13)
i x Gr

If we let f—=f7...f2", then f€ 47" and (2.13) becomes

log | ®(f)| > max log|f|.
X

This contradicts the fact that @ is bounded by 1.
Now we have a linear function L on a subspace of Cp(X), and L is bounded by 1.
The Hahn-Banach theorem tells us that we can extend L to a linear functional L on C r(X)

which is also bounded by 1. This L has the form

i(u) — Ju dm (u€CHX)),
where m is a real measure on X of total variation at most 1. But the constant function 1
is in log | 4~'] and L(1)=1. Thus | dm 1. Since m has integral 1 and total variation at
most 1, it is clear that m is a positive measure. Hence, we have produced an Arens—Singer
measure for ©.

If m is any Arens—Singer measure for @, then m is a representing measure for @. To

show this, it will suffice to prove that
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fRefdm = Re ®(f) (fed).
If fe 4, then ¢/€ A-1; consequently

fRefd-m =f10g |e’|dm —= log |®(e/)| — log |e®”] —Re @ (f).

This concludes the major part of what we need to know about sup norm algebras in
general. However, for our work in Section 7, and also to understand some of the examples
in the next section, we require some familiarity with the maximal ideal space of a sup
norm algebra.

For the sup norm algebra 4, we denote by M(A4) the set of all complex homomorphisms

of A. With each fin A we associate a complex-valued function f on M(4) by
@) =d(f) (@eM(A)). (2.14)

If we topologize M(A) with the weakest topology which malkes all these functions f con-
tinuous, then M(A4) becomes a compact Hausdorff space. This is a consequence of the fact
that the Cartesian product of compact spaces is compact [10; 21]. This space M(4) is
known as the space of complex homomorphisms of A or the maximal ideal space of A. The
latter terminology arises from the fact that there is @ one-one correspondence between
complex homomorphisms @ of 4 and maximal ideals M in the algcbra A. 1t is defined by
M =kernel ()= {f€A4; ®(f)=0}. One may consult |10; 21] for a proof, although we shall
not need this result.

Each point z in X gives rise to a complex homomorphism @, of 4 by

D.(f) = f(2).
It is not difficult to see that 2 —>®_is a continuous map of X into M(A4). Since 4 separates
the points of X and X is compact, this map is a homeomorphism of X into M(A4).
We have the representation f—f of 4 by an algebra 4 of continuous functions on

M(A). This representation is not only one-one but also isometric. The inequality
3 <
supl/|<)f]
results from the fact that each ® in M(A4) is bounded by 1. On the other hand,
sup|f| = - =[£I
sup|f|>sup| (®.)| = sup| f=) | = [If]

Therefore, when it is convenient, we may employ the isometric isomorphism f—f to regard
4 as a uniformly closed algebra of continuous functions on M(4); and we may also employ

the homeomorphism z— @, to regard X as a compact subset of M(A).
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3. Logmodular algebras

We now introduce the class of algebras in which we are primarily interested.

DeriniTioN 3.1. Let A be a sup norm algebra on X. We say that A4 is a logmodular
algebra on X if the set of functions log | 47| is uniformly dense in Cx(X).

It is important to note that, in order for 4 to be logmodular, we require the set log | 4|
to be dense, not its linear span. As we shall see, the distinction is important.

Dirichlet algebras provide a class of examples of logmodular algebras. A Dirichlet
algebra on X is a sup norm algebra 4 on X such that the space Re 4 is uniformly dense
in 0;3(X ). Certainly such an algebra is a logmodular algebra, because Re 4 is contained in
log [A-1]:

Re f=1log|e/|.

Tt is easy to see that 4 is a Dirichlet algebra on X if, and only if, 4 + 4 is uniformly dense
in C(X), or, if, and only if, there is no non-zero real measure on X which is orthogonal to 4.
We shall now give some specific examples of logmodular algebras, some of which are
Dirichlet algebras and some of which are not.
Example 1. Let X be the unit circle in the plane, and let A be the algebra of all
continuous complex-valued functions f on X such that the negative Fourier coefficients

of f are zero:
f e"H0)dO=0 (n=1,2,3,...).

Then A4 is a Dirichlet algebra on X. This is a consequence of Fejer’s theorem, or of the
Weierstrass approximation theorem. We shall refer to this algebra as the standard algebra
on the unit circle. It may also be described as the uniform closure (on the circle) of the
polynomials p(z), or, as the algebra of boundary-values of continuous functions on the
closed unit disc which are analytic in the interior. The last description arises from the
fact that each f in A can be (analytically) extended to the disc by the Poisson integral
formula:
f(z) = %Z 1) [%,iz] de_z{: " e PL(0)0. (3.11)
The maximal ideal space of 4 is the closed unit disc in the plane. The complex homo-
morphism which corresponds to z, |z| <1, is ®,(f)=fz), where f(z) is given by (3.11).
The measure
1
27

dm,(0) = —— P,(0)d0

is the unique representing measure for the homomorphism ®@,.
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Example 2. The following is a generalization of Example 1. Let X be a compact set in
the plane, with the property that each point of X is in the closure of the unbounded com-
ponent of the complement of X. Let A be the algebra of continuous functions on X which
can be uniformly approximated (on X) by polynomials p(z). Then 4 is a Dirichlet algebra
on X. See Wermer {28, p. 68].

Example 3. One can generalize Example 1 in another direction. Let G be a (non-trivial)
subgroup of the additive group of real numbers. Regard G as a discrete topological group,
and let @ be its compact character group. Let 4, be the algebra of continuous functions

f on G whose (generalized) Fourier transforms vanish on the negative part of G-

ﬁ (o) fa)da=0  (x<0). (3.31)

In (3.31), « denotes the typical element of G, that is, a mapping of @ into the unit circle
such that oz, +x,)=a(x,)a(z,). Of course, (x,a> denotes «(x). The measure de is the
Haar measure on @, that is, the unique probability measure on G which is translation in-
variant.

The algebra A is a Dirichlet algebra on G; because, the ‘“‘trigonometric”” polynomials
N

Pla) = 2 Inllns ) (£, €QG) (3.32)
n=1

are dense in O(@), and each such function has the form f+g, where f and g belong to Ag.
Indeed, A4, is the uniform closure of the polynomials (3.32) for which each ¢, is a non-
negative element of G.

Now 4, is isomorphic to an algebra of analytic almost periodic functions in the upper
half-plane. If P is a function of the form (3.32), we associate with P an exponential poly-

nomial @ on the real line, by

Q@)= 3 A", (3.33)

The map P—> @) is easily seen to be an algebra isomorphism. Furthermore, it is isometrie:
sup| P(a) | = sup | Q(a) |

This isometric isomorphism can therefore be extended to one between the uniform closures
of the two algebras of “polynomials”. The uniform closure of the functions (3.32) is C(G),
and the uniform closure of the functions (3.33) consists of the almost periodic functions F

on the real line such that the Dirichlet series for F is supported on G:

T

3 1 —itx _
}Er;ﬁ _Te Fx)de=0 (t¢6).
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Under the same isomorphism, the algebra A is carried onto the algebra consisting of
the almost periodic functions F on the line which have a Dirichlet series supported on the
non-negative part of . In other words, the image algebra is the uniform closure of the
exponential polynomials (3.33) for which each ¢, is a non-negative element of . Each
function F in this algebra has an analytic extension to the upper half-plane. For the

polynomials @ (3.33), the extension is

Qz) = 2 A€,
When each ¢, is non-negative

Jup ] @@l sup| Q)|

and this permits the analytic extension of any uniform limit of such polynomials.

When G is the group of integers, G is the unit circle and A; is the standard algebra
of Example 1. When G is the group of all real numbers, G is the Bohr compactification of
the real line, and A is isomorphic to the algebra of all analytic almost periodie functions
in the upper half-plane which have continuous boundary-values. Another interesting case
is obtained as follows. Choose an irrational number y, and let G be the group of numbers
of the form m +ny, where m and n are integers. The group G is the torus, and A, consists

of the continuous functions f on the torus whose Fourier coefficients

1 —im in
a'""r4néffe b¢ ™10, v)dOdy

vanish outside the half-plane of lattice points for which m +ny >0.

Algebras of analytic almost periodic functions were studied some time ago by Bohr
[7] and others. A systematic study of 4; as a sup norm algebra was begun by Arens and
Singer [4], and continued by Arens [1], the author [17], Helson and Lowdenslager [15],
and deLecuw and Glicksberg [8]. Arens and Singer identified the maximal ideal space of
Ag, and it will be helpful for us to describe it. Topologically, it is the Cartesian product
of the unit interval and @, with all the points (0, «) identified to a single point.

Suppose 0<r<1 and x€G. Define a complex homomorphism on the polynomials P,

of the form (3.32) with £,>0, by
q)ra: (P) - Zznrtna(tn)'

Then |®,,(P)| <|| P| and so ® extends uniquely to a complex homomorphism of 4. These
functionals ®,, exhaust the complex homomorphisms of 4, except for the Haar homo-

morphism

O,(f) — fé/(a) da. (3.34)
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The points of G, which define homomorphisms of 4 by point evaluation, are then embedded
in the maximal ideal space of 4, as the homomorphisms ®@,,.

When @ is not isomorphic to the group of integers, the maximal ideal space of A4
is often called a “Big Disc”. The reason for the terminology should be evident from the
analogy between the discussion above and Example 1. The group @ is the “boundary”
of the Big Disc, and the Haar Homomorphism (3.34) is the “origin”.

Example 4. The algebra H*, consisting of all bounded analytic functions in the unit
disc, is (isomorphic to) a logmodular algebra. A classical theorem of Fatou states that if
fE€H> then f is representable as the Poisson integral of a bounded Baire function ¥ on the

unit circle:

1 I
ﬂz):?}f, F(0)P,(0)d8.

Furthermore, the bound of f is the (Lebesgue) essential sup norm of F:
sup [fe)| =1 Pl = ess sup [ F0) |

This identifies H* with a closed subalgebra of L*, the algebra of bounded measurable
functions on the circle. The subalgebra, which we shall also call H*, consists of those
funetions in L* whose Fourier coefficients ¢, vanish for »<0. The algebra L* is isome-
trically isomorphic to ¢(X), where X is the maximal ideal space of L*. This isomorphism
carries H® onto a sup norm algebra 4 on the space X. Now 4 is a logmodular algebra on
X; indeed, log | A~!| =Cg(X). This simply states that each real-valued function w in L%
is the logarithm of the modulus of an invertible H* function F. The appropriate F is the
boundary function for the bounded analytic function f, defined by
f(z) = exp [i f " et:+ zu(@)d@] .

2n) 60—z

This logmodular algebra A is not a Dirichlet algebra. For a proof of this and other facts
pertinent to the foregoing discussion, see [18; Chapter 10].

Example 5. Let G be a (non-trivial) subgroup of the additive group of real numbers.
We refer to the algebra 4, of Example 3, and its maximal ideal space M (A4);. The algebra

A is the uniformly closed linear span of the monomials
M) = aft) (f€G, t=0)

that is, the characters of G which arise from non-negative elements of G. If we neglect the
“origin” of M(4), the function M, is extended to M(4,;) by

M y(r, ) = M,(D,,) = 'alt).
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We now fix an “annulus” S in M(4;):
8 ={(r,a); r=e1}.

Let B be the uniformly closed subalgebra of C(S) which is generated by the functions M ¢
and their reciprocals. It is easy to see that each function in By attains its maximum over
S on the “boundary”,

X = (@)U G,

which consists of two disjoint copies of G. We are going to show that B is a logmodular
algebra on X if, and only if,  is a dense subgroup of the real numbers. Before we do this,
let us note the concrete representation of the algebra Bg. If one refers to that portion of
Example 3 in which we identified 4 with an algebra of analytic almost periodic functions,
one sees that B is isomorphic to an algebra of analytic almost periodic functions in the

strip 0 <Imz<1. The algebra By is the uniform completion on 8 of the functions
P(r,a)=2 Irtralt,) (¢, €Q).

From this it is easy to see that By is isomorphic to the uniform completion of the expo-

nential polynomials
Q@) =2 Mpe'™* (1, €G)
on the strip 0<Imz<1.

Note that By, is not a Dirichlet algebra on X. Let y, be the measure on X which is “Haar

measure on G minus Haar measure on (e-1G)"":

f fdpe= f* floe) dow — J“ fle™t, o) da.
X [e] G

It is easy to check that u, is orthogonal to Bg; hence, B is not a Dirichlet algebra on X.
We need to observe that any real measure on X which is orthogonal to B is a scalar multiple
of y4,. Suppose y is such a measure, and write u as the sum of two measures, the real measure
p; on G and the real measure u, on (e='G). Since u is orthogonal to each monomial M,,
t€G, we have

f o> dpy (o) +e_th (o) dptg(a) = 0. (3.51)
G G

If we replace ¢t by (—t), i.e., replace M, by its reciprocal, and then conjugate, we

have

f“ by dpey (o) + etJA {ty o> dps(o) = 0. (3.52)
& &
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From (3.51) and (3.52) we see that
f > du(@ =0 (t+0).
G

But, since y, is a real measure, we then have du,(a) =cdu, for some real scalar c. It is easy
to see that du,(«)= —cde, and hence that u =cu,.

When G is a dense subgroup of the line, we wish to show that log | Bg'| is dense in
Cr(X). We know that log | Bg'| contains Re B, and that the annihilator of Re B is the
one dimensional space spanned by the measure g, Therefore, in order to prove that By
is a logmodular algebra on X, it will suffice to prove that the uniform closure of log | Bs'|
contains a linear subspace N of Cgz(X), such that N contains Re B, and one function which

is not annihilated by u,. Let t, be a fixed non-zero element of ¢, and let
w=1log | My,|.

Then %€ log |Bg'|, and [wudu,+0 because

y_ 0, on G
~t, on e 'G.
Now log {Bg'| contains

cu+Re f

provided (ct,) €EG and f€ B;. When G is a dense subgroup of the line, there is a dense set
of real numbers ¢ such that cf, lies in G. Hence, the uniform closure of log | B;'| contains
the linear subspace spanned by » and Re Bg.

When G is not dense in the line, i.e., when G is isomorphic to the group of integers,
the algebra By consists of the continuous functions on the annulus e < |z| <1, which are
analytic in the interior; and X is the boundary of the annulus. In this case, By is not a
logmodular algebra on X. Points inside the annulus do not have unique representing
measures on X, whereas, we shall soon show that representing measures are unique for a
logmodular algebra. It is worth noting (in the case of this annulus algebra) that the linear
span of log | Bg'| is dense in Of(X), although log | B3!| itself is not dense.

Other examples of Dirichlet algebras may be found in Wermer [27; 28]. We shall see
other examples of logmodular (non-Dirichlet) algebras later. We might point out that, if
4 is a logmodular algebra which is not a Dirichlet algebra, then the maximal ideal space
M(A) cannot be simply connected, i.e., the Cech cohomology group HY(M(A4); Z) cannot
be trivial. For, if this group is trivial, a theorem of Arens and Calderon {2] states that
every invertible element of A is of the form e/, with f€ 4.
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4. Representing measures

From this point on, we shall be studying a fixed logmodular algebra 4 on the space X.
THEOREM 4.1. Let ® be ¢ complex homomorphism of A. Then there is a unique Arens—

Singer measure m for @, and that measure satisfies Jensen’s inequality:

f fam

Proof. Since all Arens—Singer measures for @ agree on log |A~!{, which is uniformly

log | ®(f)| = log

<flog [f|dm (f€A).

dense in Cx(X), there is not more than one such measure. By Theorem 2.1, there exists
such a measure m, and it is a representing measure for ®. To establish the Jensen inequality,
we argue as follows. Let f€ A and let £¢>0. Then log(|f| +¢) is a continuous real-valued

function on X. Hence there is a function » in log|A~*| which is uniformly within & of

log ([f]| +e):
d u—e<log(|f] +e) <u-te. (4.11)

It u=log|g|, g€ A=, let h=fg~'. Then h€ A; and, by the right-hand inequality of (4.11),
we have |h| <ef on X. Therefore |®(h)| <e’. But then

| ()| |<I><g)l‘1<es}

(4.12)
log | ()| —log | Q)| <e.

Now m is an Arens-Singer measure for @ and ¢ is invertible. Consequently
log |®(9)| =flog |g|dm :fudm.
By the left-hand inequality of (4.11)

fudm <3+flog(|f| +e)dm.

If we combine this with (4.12) we obtain

ffdm

As ¢ tends monotonically to 0, we obtain the Jensen inequality.

log |O(f)| =1log

< 28+flog(]f[ +¢g)dm.

THEOREM 4.2. Let O be a complex homomorphism of A. Then ® has a unigue represent-
tng measure.

Proof. Let m, and m, be representing measures for ®. Let f€ A-1. Then
@)= [1amy; |ou)< [if1am,

o )= [ 10G7]< [1f] dmy
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But O(f)®(f')=1, hence

1< [flam, 111 am,
Since this holds for every f€A " and log|A™"| is dense in Cx(X), we have
1<fe“dm1fe*“dm2 (u €0y X)). (4.21)
Fix u€0g(X) and define

o(t)= fe*“dmlfe’t“dmz (— o0 <t << o0).

Tt is clear that g is an analytic function on the real line. By (4.21) we have g(f) =1 for all

t; because m, and m, are probability measures, o(0) =1. Therefore p’(0) =0. But

0'(0)= fu dm, — fu dm,,

We conclude that m, and m, define the same linear functional on Cg(X), and hence that
My =M.

Several remarks are in order. Theorem 4.1 is due to Arens and Singer [3]. Indeed, they
proved this theorem under the hypothesis that the linear span of log[A4~!| is dense in
Cx(X); this can be proved by slightly modifying the proof we gave for logmodular algebras.
The present proof is a minor modification of a proof for Dirichlet algebras which was shown
to me by John Wermer. Theorem 4.2 is a special case of a result about the general sup
norm algebra, as can be seen by examining the proof. If @ is a complex homomorphism
of the sup norm algebra A, then all representing measures for @ agree on every u € Cp(X)
which has the property that every (real) scalar multiple of u is in the weak closure of a
bounded subset of log | 47|.

The uniqueness Theorem (4.2) is (of course) trivial if A4 is a Dirichlet algebra. For the
“Big Annulus” algebra of Example 5, section 3, the uniqueness of representing measures
was proved by Wermer. For the algebra H* of Example 4, section 3, Gleason and Whitney
{12] proved that the homomorphism “evaluation at the origin” has a unique representing
measure. The uniqueness of all representing measures for H* was proved by the author
[18; page 182]. Of course, the uniqueness of the representing measure for ® can also be
stated as follows: the linear functional @ has a unique norm-preserving extension to a
linear functional on C(X).

Because of Theorem 4.2, there is really no need to speak any longerof complex homo-
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morphisms of the logmodular algebra A4, we may instead discuss probability measures m

on X which are multiplicative on A:
[taan=[1an[gan g.gea)

In this language, the last two theorems say the following.

COROLLARY. Let m be any probability measure on X which is multiplicative on A. Then

log J‘fdm\< flog|f|dm (fEA).

In particular, if §fdm=0 then log |f|€LXdm). If p is any positive measure such that
ffdm=[fdu for all f€EA, then p=m.

For a discussion of the integrability of log |f| when | fdm =0, see the remarks after
the corollaries to Theorem 6.3.

We shall now extend to the class of logmodular algebras a theorem of Szegs [26] and
Kolmogoroff and Krein [19], concerning mean-square approximation of 1 by polynomials
which vanish at the origin. The role of the polynomials will be played by the functions in
A, and that of the origin will be played by a multiplicative measure on A4.

DerINITION 4.1. Let m be a probability measure on X which is multiplicative on 4.
We denote by A,, the set of all functions f in A such that § fdm=0.

Of course, 4, is a maximal ideal in the algebra A. The setting for the Szegé theorem
is this. We are given m and also an arbitrary positive measure 4 on X. We wish to compute
the distance from the constant function 1 to the space 4, in the Hilbert space L*(du). The
square of this distance is

inf f|1—f|2d,u

fedm
and the result is that the above infimum is equal to exp[  loghdm], where £ is the derivative
of w with respect to m. The proof we give is a modification of a proof due to Helson and
Lowdenslager [14]. Their proof is also discussed in the author’s book [18; page 46].

THEOREM 4.3. Let m be a probability measure on X which is multiplicative on A. Let
u be an arbitrary positive measure on X, and let y, be the absolutely continuous part of u with
respect to m. Then

inf f|1—f|2dﬂ= inf f|1—f|2dua.
fedm FeAm
In particular, if p is mutually singular with m, then 1 lies in the closed subspace of L*(du)

which is spanned by A,,.
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Proof. In the Hilbert space L¥(du), let ¥ be the orthogonal projection of 1 into the
closed subspace spanned by 4,,. Then

f| 1-F[*dp= inf f| 1—f]*du.
redm

If f€A,, then (1—F) is orthogonal to f in L*du). Choose a sequence of functions f, in 4,,
which converge to F. If f€A,, then (1—f,)fis in 4, because 4,, is an ideal in 4. Since f
is bounded, (1 —f,)f converges to (1—F)f, and the latter function is (therefore) in the
closure of A,,. Hence (1 F) is orthogonal to (1 — F){. In other words

ffll—Flzd/FO (€ 4.

Let Ic=f|1—F|2d,u.

Of course, we may have k=0; this happens if, and only if, 1 is in the L?(dy) closure of 4,,.
If k>0, the measure du, =k 1|1—F|2dy satisfies | fdu,= [ fdm for every f in A. By
Theorem 4.2 we have y, =m. Thus, whether % is 0 or not, we have

| |1~ F|2dy =kdm. (4.31)

It we write =, -+ u;, where y, is absolutely continuous with respect to m and y, is mutually
singular with m, then it is evident from (4.31) that (1 —F) vanishes almost everywhere

with respect to y,. For any fin 4,, we then have
f(l —F)fd/ua=f(1 ~Fyfdu=o0. (4.32)

If we assume (as we may) that F is a Baire function, then F belongs to the closure of 4,,

in L%(du,), because
f|F~fn|2dﬂa<f|F——f"|2du.

If we combine this observation with (4.32), we see that F is the orthogonal projection of
1 into the L3(du,) closure of 4,,. This proves the equality of the two infima in the statement
of the theorem:

in f}l—ﬁzdﬂ=ﬁl—F)2d,u=ﬁl—FFdlua:fiElgnﬂl——f,zd,ua.

fedm

In case u is mutually singular with m we have u, =0, and hence 1 is in the L?(du) closure

of 4, ie., F=1 almost everywhere with respect to u.
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Now we proceed to investigate the infimumum for absolutely continuous measures.
We shall need two lemmas concerning probability measures.

LemMMA 4.4. Let m be a probability measure on X, and let g be any real-valued function

in LY (dm). Then
fe"dm = exp “ gdm] .

Proof. This is a well-known theorem. It is a consequence of the familiar inequality
between arithmetic and gecometric means. 1t is included because the author assumes he
was not alone in being unaware of the following clegant proof, which was shown to him
by Steven Orszag. Apparently this proof is originally due to F. Riesz. 1t clearly suffices to
prove the inequality when [ gdm=0. In this case simply observe that ¢/>1--g and
integrate.

LEMMA 4.5. Let m be a probability measure on X and let h be a non-negative function

in Li({dm). Then
exp [j]og hdm] - inffe"hdm (Jg dm - l)) , (4.51)
4 \

where g ranges over any one of the three following spaces of functions: (a) the space of real func-
tions in L1(dm); (b) the space of real bounded Baire functions; (c) the space Cr(X).

Proof. Since h€LYdm) and log h < h, we can only have log A non-integrable if
f log k dm — - co. In this case the left-hand member of (4.51) is defined to be 0. Let g be

any real function in L'(dm) such that | gdm —0. By Lemma 4.4 we have
Je"h dm = exp [J(g -4 log k) dm] —exp Lf]og h dm] , (4.52)

at least in the case when log A is integrable. Tf log  is not integrable the inequality is trivial,

Thus
exp [flog h dm] < inffe"h dm (g € Li(dm), fg dm — 0) .
[

(Lr(dm) denotes the space of real L functions.) Suppose log A is integrable. Let

g --logh+ flog hdm

so that g€L}(dm) and | gdm —0. For this g, equality holds in (4.52). If log % is not inte-
grable then, for any &>0, log(h+¢) is integrable; and if we let ¢ tend monotonically to 0
we obtain (4.51). Thus (4.51) holds for all non-negative & in L!(dm), where g ranges over
Li(dm).
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The infimum on the right of (4.51) is unaffected if Lx(dm) is replaced by the class of
real bounded Baire functions. Given any g€ Li(dm) for which | gdm =0, we can select of

sequence of real bounded Baire functions g, such that § ¢,dm—0,
g,V 0 =max[g,,0]

increases monotonically to ¢ V 0, and
9, A 0 = min[g,,0]

decreases monotonically to g A 0. By the monotone convergence theorem,
limfe’“k dm= fe"h dm. (4.53)

From this it is clear that the infima corresponding to Li(dm) and the space of bounded
functions are equal.

If g is a real bounded Baire function with | gdm =0, we can find a sequence of func-
tions g, € Ox(X) which is bounded, satisfies | g,dm =0, and converges pointwise to g almost
everywhere relative to m. By the bounded convergence theorem, we have (4.53). That

proves the lemma.
Now we return to our logmodular algebra 4 and prove the generalized Szegt theorem.

THEOREM 4.6. Let m be a probability measure which is multiplicative on A and let h

be a mon-negative function in L dm). Then

inf f| 1—f|*hdm=exp [flog hd-m].

ledy,

Proof. By the last lemma

exp [flog kdm] = inff e*hdm (uEC’R(X), fudm= O) .

Since log |4 | is uniformly dense in Cx(X) we have

exp[floghdm]=ir}ff|f|2hdm (feA“, ffdm=1).

Here, we have used the fact that m is an Arens—Singer measure, so that when we approxi-
mate u€Cx(X) by log|f|%, f€A~, the number log| § fdm|2= [ log|f|2dm will be near
Judm. If f€A-! and { fdm=1, then f=1—g, where g€4,,. Thus

exp [flog hdm] > inf f| 1—g|*hdm. (4.61)

9ed;y

19— 622908 Acta mathematica 108. Imprimé le 28 décembre 1962
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On the other hand, if g€4,,

flog |1—g|*dm>2 log

f(l—g)dml=0

because m satisfies Jensen’s inequality (Theorem 4.1). By Lemma 4,4 we then have

f]l—glzhdm> exp{f[log[l—gﬁ—i—logh] dm}>exp [floghdm].

This establishes the reverse inequality in (4.61), and the theorem is proved.

THEOREM 4.7. Let m be a probability measure on X which is multiplicative on A. Let
4 be a positive measure on X, and let du=hdm-+du, be the Lebesque decomposition of u
relative to m. Then

inf fl 1—f|*du=exp [flog hdm] .
fedy

Proof. The absolutely continuous part of u relative to m is Adm. Now apply Theorems
4.3 and 4.6.

5. The space H?
We now begin to study the analogue (for logmodular algebras) of a segment of analytic
function theory in the unit dise.

DEeriNiTION 5.1. Let u be a positive measure on X. The space H?(du), 1 <p< oo,
is the closure of the algebra A in the Banach space L?(du).

When A is the standard algebra on the unit circle and m is normalized Lebesgue
measure on the circle, the spaces H?(dm) are (isomorphic to) the Hardy spaces H?. These
spaces are discussed from this point of view in [18].

In this section, we shall fix a probability measure m on X which is multiplicative on our

logmodular algebra A, and concentrate on a study of the Hilbert space H?(dm).

THEOREM 5.1. The measure m is multiplicative on H*(dm). Also, we have the Jensen

tnequality

log

ffdm\ < flog [fldm (f € H¥dm)).

Thus, if f € H¥dm) and [ fdm==0 the function log |f| is integrable with respect to m.

Proof. If f,q are in H*(dm) we choose sequences of functions f,, ¢, in A which con-
verge (respectively) to f and g in L? norm. Since [f,gn=1{f.fgs it is clear that
ffgdm={ffdm§gdm, ie., that m is multiplicative on H*dm).
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Given f€H%dm) choose functions f, in 4 which converge to f in L¥dm) and which
satisfy { f,dm= [ fdm. Let £>0. Then |f,| +& converges to |f| +¢ in L}(dm). Therefore
log(|f,| +&) converges to log(|f| +¢) in L{(dm). For, it is easy to verify that if m is any
positive measure and {p,} is a sequence of positive functions in L!(dm) which converges

to p in Ll(dm), and if p,>¢>0 for each n, then logp, converges to logp in L. Thus

flog (|f|+s)dm=limflog(If,,|+e)dm>1i—mflogIf,,ldm

ffdm'.

Here we have used the Jensen inequality for functions in the algebra 4. If we let & tend

ffndm’ =log

> lim log

monotonically to 0, we are done.

The Jensen inequality for functions in H%(dm) can also be deduced from the Szegd
theorem (4.6). This proof is not only simpler, but has two other advantages. It works just
as well for functions in H'(dm); and it does not depend upon the fact that 4 is a logmodular
algebra. It assumes only that the measure m is multiplicative on the sup norm algebra 4
and that m satisfies the Jensen inequality on the algebra.

Now we come to one of the most basic facts about a logmodular algebra. What we
want to prove is that L*(dm) is the (Hilbert space) direct sum of H%(dm) and H%(dm), the
space of complex conjugates of H? functions which are annulled by m. This amounts to
showing that if g€L*dm) and § fgdm =0 for all f€A,, then g is actually in H2(dm). In
case 4 is a Dirichlet algebra, this is almost evident, because the space 4 +4 is uniformly
dense in C(X). For the general logmodular algebra, 4+4 is not dense in C(X), but we
shall show that it is dense in L2(dm).

TEEOREM 5.2. Let g€LY(dm), and suppose that | fgdm=0 for all f€A. Then

flog[l—g|dm>0.

[ram= =g 1am

< [inl1L-glam,

Proof. Let €A™', Then

and so ‘ f fdm

log

ffdm]<log [1f111=g1dm.



292 KENNETH HOFFMAN

Since m is an Arens-Singer measure and /GA’l, we have

floglfldm<10g flflll—gldm

or exp | [1ogilam| < [11111-gam.

Since log |A7!| is uniformly dense in Cx(X), we have
1<fe“|l—g|dm (uGCR(X), fudm=0). (5.21)

The infimum over u of the right-hand member of (5.21) is

exp [flog [1—g] dm]

by Lemma 4.4. That proves the theorem.

Lemma 5.3. Let m be a probability measure, and let g be a real-valued function in
L¥dm). Suppose that

flogll—tgldm?() (5.31)

for every real mumber t in some interval |t|<d. Then g=0 almost everywhere with re-

spect to m.

Proof. If we employ (5.31) for ¢ and —¢ and then add, we obtain
0<f10g|1—t2g2|dm (0<t<d).
Let E, be the set on which 1—¢*¢*>0, and let E; be its complement. Then
0< fE log (1— t*¢®) dm + J‘E" log (£2g* — 1) dm.
:

We apply the inequality log (1—)< —x in the first integrand and the inequality

log (x—~ 1)<z in the second integrand. We obtain

< __t2 2_{.;2 2

0 f”&g fttg

or 0< —f g2+f 7.
E; £



ANALYTIC FUNCTIONS 293

Now let . approach 0. Since E,={y*<1/*} and g¢* is integrable, lim m(E,)=1.
t—=>0
Thus we obta:n

0< —ngdm

and therefore g=0.

THEOREM 5.4. The spuce (A+ ) is dense in L*(dm). Thus
“(lm) = H¥dm) ® Hz,(im),

where H% is the closure of A, in L*dm). In particulur, a fus.ction g in L*dm) belongs
to H*dm) if, and only if,

ffgdm=o (FeAn).

Proof. If A+ A is not dense in L*dm), there exists a non-zero function in L*(dm)
which is orthogonal to 4 and A. Thus there exists a non-zero real-valued g in L*(dm)
which is orthogonal to 4. Each real scalar multiple of g will also be oril.czonal to A.
By Theorem 5.2 this g satisfies

flogll—tg]dm>0 (— o0 <t< o0).

By Lemma 5.3, this is impossible with g==0. We conclude that 4 + 4 is dense in L2(dm).
Since 4 and 4,, are orthogonal subspaces of L%dm) and their sum is dense, we have L2=
H2®H?Z. Thus H? is characterized as the subspace orthogonal to 4, and we arc done.

Needless to say, it follows from the same argument that 4+ A4 is dense in L"(4m),
1<p<2. In the next section we shall prove the density for p>2.

We turn now to the discussion of certain invariant subspaces of H*dm). The result
is a generalization of Beurling’s theorem [5], for the case in which A is the standard algebra
on the unit circle. The proof we employ is due to Helson and Lowdenslager [14]. Other
relevant references are Lax [20], Masani [22], Halmos [13], and [18, Chapter 7].

THEOREM 5.5. Let 8 be a closed subspace of H¥dm) which is invariant under multi-
plication by the functions in A. Suppose that | gdm =0 for at least one function g in S. Then
there is a function F in H*(dm) such that

(i) |F| =1 almost everywhere with respect to m;

(i) 8=FH?2dm).

The function F with these two properties is unique to within a constant factor of modulus 1.
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Proof. Let & be the orthogonal projection of 1 into S. Then (1 —@) is orthogonal to 8.
Since & belongs to S and § is invariant under multiplication by the functions in A4, the
function (1 —@) is orthogonal to fG, f€A; that is

0=f(1—@)Gfdm (fEA).
In case f€EA, then (fG)€H?% and so ffGdm=0. Therefore, we have
0= [rl6ran e,

By the uniqueness of m (Theorem 4.2), we must have
|G |2dm=k*dm

that is, |G| is a constant k& almost everywhere.

Since @ belongs to S, the subspace S contains G4. But @ is a bounded function, and
80 S contains GH2. We can see that S=GH? as follows. Suppose g€ and g is orthogonal
to GH2. Then |

0=ff§gdm (fed). (5.51)
Since g€8 we have (fg) €8 and (1—g) is orthogonal to fg. In case f€A,, this says
0= ff Ggdm (f€A,). (5.52)

‘Combining (5.51) and (5.52), we see that Gg is orthogonal to (4 +A4). By Theorem 5.4 it
must be that Gg=0. But @ is a function of constant modulus %, and that constant cannot
be 0 because we have assumed that 1 is not orthogonal to 8. (1 is orthogonal to § if and
conly if [ hdm=0 for all h€S.) Therefore g=0. We conclude that S=GH2. If we let F =
‘G[k then F has the properties required.

Suppose F, is a function in H%dm) such that S=F H? and | F,|=1 almost every-
where. Let A=f F;dm. It is trivial to verify that 1F; is the orthogonal projection of 1

into S. Hence, F, is a constant multiple of F.

THEOREM 5.6. Let g be a function in H2(dm). The set of functions Ag is dense in
H2(dm) if, and only if,

fgdm‘> — oo, (5.61)

flog[g|dm=log

Proof. The space Ag is dense in H2(dm) is and only if 1 belongs to the closure of Ag.
In order for this density to prevail, it is clearly necessary that [ gdm = 0. Since (5.61) is
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not affected if ¢ is multiplied by a nonzero scalar, we may assume that  gdm=1. As we
already noted, Ag is dense in H? if and only if there exist functions £, in 4 with

limfl 1—f.g)?dm=0.

Since fgdm=1 we may assume that (f,dm=1, i.e., that f,=1—g,, with g,€4,.
Now

ﬁl—(l —guglPdm=—1+ ffl—gnfzfgfzdm
and so Ag is dense if, and only if, there exist functions g, in A4, with

limﬁl—gn|2]g|2dm=l.

But [r=nttapan=| [a-naani?=1[oam =1

for any f€4,. Thus the density of Ag in H? is equivalent to
int f[l—/|2[9[2dm=l.
f€Am

By the generalized Szegé theorem (4.6), this infimum is cqual to

exp [flog |g|2dm] .

Since § g?dm=1 we obtain (5.61) as the necessary and sufficient condition for the density
of Ag in I3,

DerINITION 5.2. An dnner function is any F in H2(dm) such that |F| =1 almost

everywhere relative to m. An outer function in H2is any ¢ in H%dm) which satisfies (5.61).

Our last two results may then be stated as follows. If S is a closed subspace of H%dm)
which is invariant under multiplication by the functions in 4, and if not every function in
8 “vanishes at m”, then §=FH?, where F is an (essentially unique) inner function. A
function ¢ in H%(dm) is an outer function if, and only if, Ag is dense in H?, i.e., if, and only
if, g lies in no proper “invariant’ subspace of H2. It should be noted that when 4 is the
standard algebra on the unit circle, Theorem 5.5 is valid if one merely assumes that S is
not the zero subspace; however, the hypothesis that 1 is not orthogonal to S cannot be
deleted for the general logmodular (or even Dirichlet) algebra. Consider the Dirichlet
algebra A; of Example 3, section 3. Let m be Haar measure on G, and let § be the space
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HZ,. Then, unless G is isomorphic to the group of integers, the subspace § is not of the
form FH?*dm).

TEEOREM 5.7. Let f be any function in H2(dm) for which | fdm=0. Then f=Fyg,
where F is an inner function and g is an outer function in H¥dm). This factorization of f is

unique up to a constant of modulus 1.

Proof. Let 8 be the closure of Af in H2(dm). Then Sis “invariant”’; and 1 is not ortho-
gonal to 8, because | fdm=+0. Thus S=FH?, where F is an inner function. In particular
f=Fg, where g€H?. Since Af=F-(Ag) and §=FH?, it is clear that the closure of Ag is
Hz2, Thus ¢ is an outer function in H2. The factorization is unique, by the uniqueness state-
ment of Theorem 5.5.

The following theorem will be important for our work in the next section, and will
help us to characterize moduli of H? functions. The proof is due to Helson and Lowdens-
lager [14]. Also see [18; p. 44].

THEOREM 5.8. Let u be a positive measure on X, and assume that 1 is not in the L*(du)
closure of A,,. Let G be the orthogonal projection of 1 info the closed subspace of L*(du) which
s spanned by A,,.

(i) |1=G|2du=Fk dm, where k is a positive constant.
(ii) The function (1—@Q)1 is an ouler function in H3(dm).
(iii) If du="h dm+du,, where h€ L) (dm) and s is mutually singular with m, then (1 —G)h
18 in L¥(dm).

(iv) k=exp [f log b dm].

Proof. Statement (i) results from the definition of G¢' and the uniqueness of m. See
the proof of Theorem 4.3. We then have |1—G|2kdm=Fk dm, from which it is clear that
(1 —@®-1is in L¥*dm). Let f€4,,. Then

ff(l—G)"dm=,%ff(l—G)‘lll—Glzdu=7lJf'(l—@)du=0

because (1 —@) is orthogonal to 4, in L*du). By Theorem 5.4 we see that (1—-G)~! is in
H?(dm). Since
- hdm=k-(1—G)dm

and (1 —@&)-! is in L%(dm), we see that (1 —Q)h€L*dm). Statement (iv) is simply a repeti-
tion of the Szegd theorem (4.7). This completes the proof, except for the assertion that

(1 —@)~1 is an outer function. This we see as follows. We have

h=k|1—@|2, almost everywhere dm.
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Thus logh=1logk+2log|1—G| ™

By statement (iv), [log hdm=1log k. Therefore
flog |1-@|dm=0.
On the other hand,

1 _ 1 _ 1 _
f(l—G)"ldm=iJ(l—G)d,u-*—%f(l—G)dy—]—cf(1~G)Gd,u

=%f|l—G]2dy=fdm=l.

Here, we have used the fact that (1 —@) is orthogonal to G in L*(du). Therefore
Ja-ar

THEOREM 5.9. Let h be a non-negative function in L(dm). The following are equivalent.

=0

flog [1- G| dm=1log

and (1—-@)' is an outer function.

(i) logh is integrable with respect to m.
(il) h=|f|2, where {€ H¥dm) and { fdm =+0.
(iii) %= |g|? where g is an outer function in H*dm).

Proof. The equivalence of (ii) and (iii) is evident from Theorem 5.7. It is also clear that
(iii) implies (i). Suppose (i) holds. Let du=Fh dm. Since logh is integrable, 1 is not in the
closed subspace of L*du) which is spanned by 4,, (Theorem 4.6). Let G be the orthogonal
projection of 1 into that subspace of L*(du). By Theorem 5.8 (and its proof), (1 —G)-1is

an outer function in H%*(dm) and
h=k|1-@G|? (k=exp [flog hdm]) .

Let g=Vk(1 — @)%, and then g is an outer function with lg|2=n.

6. The spaces H' and H*

We retain our fixed logmodular algebra A4 and the fixed probability measure m,
which is multiplicative on 4. In the last section, we introduced the spaces H?(dm), 1 <p<oo,
and studied H2(dm) to a certain extent. Now we consider H(dm) and its basic properties.

We shall also define and discuss the space H>(dm). Our first problem is to characterize
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H! as the space of all functions 4 in L'(dm) such that [ fhdm =0 for every f in A,,. This
leads to the factorization of H! functions. We shall also treat complex measures which are

orthogonal to 4,,.

TaeEoREM 6.1. Let b be a function in L'(dm) such that [ fhdm=0 for every f in A,
and for which § b dm=0. Then h is the product of two functions in H*dm).

Proof. Let us assume that [ A dm=1. Then h=1—g, where ¢ is a function in L(dm)
which satisfies | f gdm=0 for every f in the algebra A. According to Theorem 5.2, the
function log |1 —g| =log || is in L*(dm). By the general Szeg6 theorem (4.6), the constant
function 1 does not lie in the closed subspace of L*(|k|dm) which is spanned by 4,,. Now
Theorem 5.8 tells us that, if @ is the orthogonal projection of 1 into that closed subspace,
the function (1—G)~! is in H*(dm) and (1 —@G)|h| is in L¥*dm). Therefore (1—@G)k is in
L2(dm). The claim is that (1 —G)A is in H%*dm). By Theorem 5.4, this is equivalent to the
statement that

f11=G)hdm =0 (f€A,).
Choose a sequence of elements f, in 4, which converge to & in L3(|k|dm). Clearly, for any

fin A, we have
f/(l --@) hdm = limff(l —fn) hdm.

But each function (1—f,)f is in 4,,, and & is “orthogonal” to 4,,. We conclude that (1 —G)k
is in H¥dm), and the factorization of A which we seek is
h=1—-G)(1-G)k]
CorROLLARY. The space H'dm) consists of those functions h tn L'(dm) such that
S fhdm=0 for every fEA,,.

Proof. Obviously any H! function is “orthogonal” to 4,. On the other hand, if we are
given an k in L'(dm) with this orthogonality property, we can choose a constant ¢ so that
(c--h) is orthogonal to 4,, and has mean different from 0. By the Theorem, (c+£2) is the
product of two H? functions. From this it is obvious that (c+A) is in the L! closure of A.
Hence & as in the L! closure of 4, i.e., & is in HY(dm).

We can now proceed to factor H! functions, just as we did H?2 functions.

DerFINITION 6.1. An ouler function in HYdm) is a function g in H(dm) such that

flog |g|dm—1log Jg dm

There is no need for us to have another definition of inner function. Such a function

> — o0,

F was defined as an element of H%(dm) which has modulus 1 almost everywhere. Certainly
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this is the same as saying that F is an element of H'(dm) which has modulus 1 almost

everywhere. One can say slightly more.

DeriNiTioN 6.2. The space H®(dm) is the set of all A in L*(dm) such that
§ fhdm =0 for every fin 4,

It is clear that H®(dm) consists of the bounded functions in H?(dm); or, equivalently,
it consists of the bounded functions in H!(dm). We see also that an inner function is precisely

an element of H*(dm) which has modulus 1 almost everywhere.

THEOREM 6.2. Let f be a function in H(dm) such that | fdm +0. Then f=Fg, where

F is an inner function and g is an outer function in H'(dm).

Proof. Since | fdm =0, we know from Theorem 6.1 that f=f,f,, where f, and f, are
in H*dm). Obviously [ f,dm+0+ [ f,dm. By the factorization theorem (5.7) for H2, we
have f,= F,g,, j=1,2, where F, and F, are inner functions and ¢, and g, are outer functions
in H%(dm). Certainly F =F, F, is an inner function, and it is easily checked that g=g,g,
is an outer function in H(dm).

Of course, we want to know that this factorization for H* functions is unique, just as

it is for H? functions. To see this, it is both convenient and instructive to proceed as follows.
THEOREM 6.3. Let g be a function in HX(dm). The following are equivalent.

(i) g is an outer function.

(il) The space Ag is dense in H'(dm).

(iii) [ gdm =+0; and if b is any function in H'dm) such that |k| < |g|, then hjg is in
H*(dm).

Proof. Suppose ¢ is an outer function. By Theorem 6.1, g =g,9,, where g; and g, are
in H2(dm). It is clear that g, and g, are outer functions. By Theorem 5.6, the L?(dm) closure
of Ag, is H%dm). Since g, is in L¥dm), it follows that the L'(dm) closure of 4g=g,(4g.)
contains Ag,. Since g, is outer, 1 is in the L*dm) closure of Ag,. Thus 1 is in the L(dm)
closure of Ag, from which it is apparent that Ag is dense in H(dm). Thus (i) implies (ii).
Suppose (ii) holds. Since 1 is in the L(dm) closure of Ag, it is evident that { gdm 0. Let
% be a function in H'(dm) such that |k| <|g|. Choose a sequence of elements f, in 4 such

that f,g converges to 1 in L! norm. For any fin 4,
h k
—dm=limf g —dm
[1an=m 110"

because the function f[/g] is bounded. Since [ ff,hdm =0 for each n, we see that hfg is
bounded and ‘“‘orthogonal” to A4, i.e., kfg is in H*(dm). Thus (ii) implies (iii). Suppose
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(iii) holds. Since | gdm +0 we have g = Fyg,, where F is an inner function and g, is an outer
function. Now |g,| =|g| and so (by (iii)) the function g, /g is in H*(dm). But g,/g=1/F=F.
Thus both F and F belong to H*(dm). This implies that F is constant, either by the ob-
servation that any real-valued function in H2%(dm) is constant, or by the following. Let
A=f Fdm. Then F=1+G, where GEH*(dm) and | Gdm=0. Since F=7+@ is also in
H*(dm)

1=f|F|2dm=f(l+G)(Z+@)dm
=|l|2+Zdem+Zf§dm+fG§dm

=|Af+0+0+0=|2]

Since | F| =1 and |{ Fdm|=11itis clear that F =4 almost everywhere. Since F is constant,

g =Ag,, an outer function.

CoroLLARY. If g and g, are outer functions in H'(dm) such that |g| = |g,|, then g=12g,,

where A is a constant of modulus 1.
CorovrLarY. The factorization in Theorem 6.2 is unigque up to a constant of modulus 1.

Proof. If Fg=F,g,, where F and F, are inner functions and g and g, are outer functions,
then |g]| =|g,|, so that g=A4g,. Therefore AFg, = F,g,. Since log | g, | is integrable, g, cannot

vanish on a set of positive measure; hence AF =F,.

COROLLARY. Let g be an outer function in HY(dm). Then g=h2, where h is an outer
function in H2(dm).

Proof. In the Hilbert space L?(|g|dm), the constant function 1 is not in the closed
subspace spanned by A4,,. (Because, log|g| is integrable (4.6).) Let G be the orthogonal
projection of 1 into that subspace. Then, by Theorem 5.8, the function (1 —G)~! is an outer
function in H2(dm), and ‘

|1-G|2|g|dm =Fk dm,
where k=exp [f log [g|dm]=| gdm|. Thus |g| =k|1—G|-2, and since both g and (1 —G)~2
are outer functions g =k*2(1 —@)~2, where |1| =1. Thus g is the square of an outer function
in H2(dm).

CorOLLARY. Let f be a function in H(dm) such that [ fdm +0. Let G be the orthogonal
projection of 1 into the closed subspace of L2(|f|dm) which is spanned by A,,, and let

c=exp [%floglfldm].
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Then g=c(1 —G)~2 is the outer part of f, that is, g is the (essentially unique) outer function oc-

curring in the factorization of Theorem 6.2.

In the classical study of H” spaces, one deals with the special case in which A is the
standard algebra on the unit circle and m is normalized Lebesgue measure. In this case,
the factorization theory is valid without the hypothesis that f fdm=0. One need only
assume that f+4-0. This results from the fact that an analytic function in the unit disc
which is not identically zero can be written in the form z*f, where f does not vanish at the
origin. Thus, any non-zero function in H! has an integrable logarithm. This fails for the
general logmodular algebra A, even in the case when m is non-trivial, i.e., when m is not
simply a point mass on X. Indeed, there may exist functions f in the algebra 4 which vanish
on an open subset of X with positive m measure, but which are not 0 almost everywhere
relative to m. In special cases, the integrability of log |f| does go through. Consider the
case in which X is the Bohr compactification of the real line and A is the algebra of analytie
almost periodic functions (Example 3, Section 3). Take m to be Haar measure on X. This
is a situation which closely resembles the standard one on the unit circle. Arens [1] proved
that if f is a non-zero element of 4, then log | f| €L!(dm), even if | fdm =0; however, Helson
and Lowdenslager [15] showed that there exist non-zero functions in H®(dm) which do
not have an integrable logarithm. It is interesting to note that this algebra H*(dm) is
again a logmodular algebra. This is true for the general logmodular algebra.

THEOREM 6.4. Let h be a non-negative function in L(dm). Then h= |f|, where { € H(dm)
and § fdm +0 if, and only if, log h is integrable with respect to m. A non-negative function h
in L*(dm) has the form h=|f| with { € H*(dm) and | fdm +0 if, and only if, log h is in L*(dm).

Proof. Since every f in H'(dm) for which { fdm =0 is the product of two functions in

H?(dm), this is immediate from Theorem 5.9.

CorOLLARY. The algebra H®(dm), with the m-essential sup norm, is a logmodular

algebra on the maximal ideal space of L*=(dm).

Proof. From the Theorem, every real-valued function % in L*(dm) has the form
u=log |f|, where f is in H*(dm). We can (of course) arrange that f is an outer function in
H*(dm), just as in Theorem 5.9. This { is invertible in H*(dm). Simply choose an outer
function g in H*(dm) such that |g| =e~*. Then the outer function fg has modulus 1 and
must be constant; hence, a scalar multiple of g is the inverse of /. We conclude that

log |(H*)™'|=L%

and therefore H*(dm) is a logmodular algebra on the maximal ideal space of L*(dm).

See Example 4, Section 3.
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One of the most beautiful theorems in the theory of analytic functions in the unit dise
is due to F. and M. Riesz [25]. It provides a characterization of functions in the Hardy
class H. It states that if x4 is a (complex) measure on the unit circle whose Fourier coef-
ficients vanish on the negative integers, then y is absolutely continuous with respect to
Lebesgue measure. The analogue of this theorem is false for logmodular algebras; however,
there is a general theorem of this sort which easily implies the classical result. The proof
is due to Helson and Lowdenslager [14]. See [18, page 46] for a discussion.

THEOREM 6.5. Let u be a complex measure on X such that p s orthogonal to A,
[tau=0 gean.

Let u, and us be (respectively) the absolutely continuous and singular parts of u with respect
to m. Then u, and u; are separately orthogonal to A,,, and u is also orthogonal to 1. Further-
more, du,=h dm, where h € H(dm).

Proof. Let du,=h dm, and let g be the positive measure on X defined by
do=(1+|h|)dm+d|u,
where |p;| denotes the total variation (measure) of u,. If f€A4,, then,

f|1—f|2d@>f|1—f|2dm>1. (6.51)

Let G be the orthogonal projection of 1 into the closed subspace of L2(dp) which is spanned
by 4,. By (6.51)

f|1—G|2dQ>1.

By Theorem 5.8, the function (1 —G)-! is (an outer function) in H%(dm), and (1 —G) (1 + |2])
is in L?(dm). Therefore (1 —G)k is in L*(dm).
Again, let f€A,,. We claim that

J.(I—G)fd[u=0.

For, choose a sequence of elements f, in 4,, which converge to & in L?(dg). Since u is abso-

lutely continuous with respect to ¢ and du/do is bounded

Ja-asau=tim[a-ptau-o

because each (1—f,)f is in 4, and y is orthogonal to 4,,. From Theorem 5.8 we know that
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(1 —@) vanishes almost everywhere with respect to the singular part of 9. Thus (1 —-G)
vanishes almost everywhere relative to u,, and so

0=f(1—G)fdya=f(1—G)fhdm (f€A,,). (6.52)

Let g, be a sequence of elements of 4 which converge to (1 —G)~! in L3(dm). There
is such a sequence, since (1 — @)~ is in H%(dm). By (6.52)

fgnf(l ~G)hdm=0 (6.53)

for each n. Now (1 —G)h is in L*(dm) and ¢, converges to (1—G)! in L¥dm). We may,
therefore, pass to the limit in (6.53) and obtain

ffhdm:o (f€Anm).

This proves that g, is orthogonal to 4,; and hence that u, is also.
According to Theorem 4.3, 1 belongs to the closure of 4, in L? of the positive singular

measure |u;|. If we choose functions f, in 4,, which converge to 1 in L(d|u,|), we shall
K 12

Jdﬂs = limjfndys.

But u, is orthogonal to A,; consequently | du,=0. By the Corollary to Theorem 6.1,
h€ HY(dm). That completes the proof.

have

We should like to relate some further results concerning measures which are orthogonal
to A, (or A). We shall need the following lemma which extends Lemma 5.3. This argument
is bagically due to R. Arens, and we should like to thank him for allowing us to use his
proof.

LEMMA 6.6. Let m be a probability measure and let g be a real-valued function in L)(dm).
Suppose that

flog|l—tg|dm>0 (6.61)

for every real number t in some interval |t| <§. Then g vanishes almost everywhere with respect
to m.

Proof. First, let g be any function in L}(dm). If z is a complex number in the (open)
upper half-plane, define

w(z) = Jlog |1—2g|dm.
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It is easy to sec that u is a harmonic function in the upper half-plane. Furthermore,

im 4% o, (6.62)
y=»0 Y
We see this as follows. First,
. 1 T 1 2 2
u(-zy)=§ log |1 —iyg| dm=§ log (1+ ¥*g%) dm.
u(iy)=l l 2 2 1 ~l 2 2
Thus y 2fylog(l+yg)dm—zjyglog(l+yg)gdm. (6.63)

For each y >0, the function log(1 +y2%?)/yg is defined to be 0 on the set, where g =0. As
y—>0, this one-parameter family of functions converges pointwise to 0; and, the convergence
is bounded, since the function log(l +z?)/x is bounded on the real line. Since the function
g is integrable, the bounded (dominated) convergence theorem tells us that we may pass
to the limit in (6.63) and obtain (6.62).

Now suppose (6.61) holds for —§<¢<4. Then the function u is non-negative in the
strip —d<Re z<§. This follows from the observation that

u(x+iy)=%flog|1—(x+iy)g|2dm=§flog [(1 -—xg)2+y2g2]dm>flog |1—zg|dm.

The remainder of the proof consists in showing that, if « is a non-negative harmonic
function in the half-strip — 6 <Re 2 <4, and if u(iy)/y tends to 0 as y—0, then » =0. Actually,
% does not have to be defined in so large a region. Let

v(w) =u[18(1 —w)] (|w|<l).
Then v is a non-negative harmonic function in the unit disc. Also, (6.62) becomes

Bim 27 o, (6.64)

ro1l—7
According to the theorem of Herglotz [16; 18; 23], v has the form
vt0) = [ P.10) i),

where u is a finite positive measure on the unit circle (and P, is the Poisson kernel).
Now
1

. -7
mom P,(O) = m
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1—r
th z— {du.
so that v(r) T R

From (6.64) we have immediately u=0. Therefore v=0, hence u=0.
. 1 9
Since u=0, O=u(z)=§ log (1 +-g¢°%) dm

from which it is apparent that g =0.

THEOREM 6.7. Let g be a function in L (dm) which is orthogonal to (A +A). Then
g =0 almost everywhere relative to m.

Proof. It suffices to prove that if g is a real-valued function in L'(dm) such that
J fgdm=0 for every f in A4, then g=0. Any such function g satisfies the hypotheses of

Lemma 6.6, as follows from Theorem 5.2. Hence g=0.

COROLLARY. If 1<p<oo, then (A +A) is dense in LP(dm). In particular, any real-
valued function in HP(dm) is constant.

CoROLLARY. Let u be a (complex) measure on X which is orthogonal to (A + A). Then
u s mutually singular with m.

Proof. By the generalized Riesz theorem (6.5), if du =% dm +du,, where k€L (dm) and
s is mutually singular with m, then both % and u; are orthogohal to (4 +A4). By 6.7, h=0.

COROLLARY. Let g be a function in L (dm), an let L be the linear functional on the sub-
space (A +A) of C(X) which is defined by

L) = f fgdm  (fe(4+ ).

Then L has a unique Hahn-Banach (norm preserving) extension to a linear functional
L on C(X). Furthermore, this extension L is defined by

Lify= ffg dm  (f€0()).

In particular f|g|dm=sgp ffgdm' (fe@a+4), |fll<D.

Proof. Let L be any linear functional on C(X) such that L is an extension of L
and

ILI =11 2] = sup

ffgdm| (fed+4), |fl<y.

20 — 622906 Acta mathematica 108. Imprimé le 28 décembre 1962
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Then L arises from a (complex) measure u on X, say
dy =hdm+du,,
where k € L'(dm) and p, is mutually singular with m. Since L is an extension of L, the measure
du—gdm = (h—g)dm+du,

is orthogonal to (4 +4). By the generalized Riesz theorem (6.5), the measures (h—g)dm
and du, are separately orthogonal to (4 +4). Thus (h—g) is a function in L!(dm) which is
orthogonal to (4 + 4). Hence, h=g. Since the norm of L is

[iotdm 1)

and is equal to the norm of L, it is clear that u,=0 and

120~ [1gldm.
COROLLARY. Let g€ LY{(dm) and let L be the linear functional on A defined by
Li)- [lgam  (je )
Then L has a unique Hahh-Banach extension lo a linear functional L on C(X), and L
has the form
i~ [fgam jeoc,
where § € LY(dm).

Proof. Let L be any norm-preserving extension of L to a linear functional on C(X).
Then

Lif)= f fdu (feC(X)),

where p is a complex measure on X, and the total variation of u equals || L||. Let
du=§dm+du,,

where §€LYdm) and u, and m are mutually singular. Since L is an extension of L, the
measure dy ~gdm is orthogonal to A. By the general F. and M. Riesz theorem, the absolutely
continuous and singular parts of this measure are separately orthogonal to A. Thus, u,
is orthogonal to 4 and (§—g) is in H}(dm). Therefore, if f€ 4

[ 1au= [19am~ [1gam.
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fioan|- oup

17111

Hence sup
fed
1r1<1

[taam| =121,

From this we see that || L] <||§|l,- But

WLl =l =1G M+ N el
We conclude that

p=0 and |gll,=]IL].

Any other Hahn-Banach extension of L must have the form

f Hg+hdm  (fe0(X)),

ffﬁdm‘.

Since the unit ball in L* is weak-star compact, we can find an f€ H*(dm) such that
[#lle=1 and

where h€H(dm) and ||§+ A, = 4],

Now Igll,=" sup

1<t

f fgam=g|l.

This results from the evident fact that the weak-star closure of the unit ball in 4 is con-
tained in the unit ball of H*(dm). Since |f]| <1, it is clear that fg=|g|. But, nte that

[ta+man=[igan=lal=1g+1.

Thus f(g +k) = |g +%|. Since fg and f(g + k) are non-negative, fh is real-valued. But f € H*(dm)
and h € H'(dm). Therefore (fh)€H*(dm), and being real-valued, is constant. Since | hdm =0,
we have fh=0. Now, from

fa=lgl, fh=0, |g|=]g+r]|

it is evident that 2 =0. This proves the corollary.

7. Analytic structures in M(4)
We shall now regard the space X as embedded in the maximal ideal space M(A4), as
we described in Section 2. We shall once again discuss complex homomorphisms of A.
If @ is such a homomorphism, we know that there is a unique positive measure m on X
such that

f(<D)=Lfdm (fe4)
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We are primarily interested in ®’s which do not lie in X, that is homomorphisms which
are not simply evaluation at a point of X. It is worthwhile to ask what distinguishes X
among the closed subsets of M (4).

TueOREM 7.1. The space X is the Silov boundary for A; that is, X is the smallest
closed subset of M(A) on which every function f, f€ A, attains its mazimum modulus.

Proof. Since A was originally defined as a sup norm algebra on X,
sup |f|=sup |/|=sup|/]

for every fin A. Let 2€X and let U be a relatively open subset of X which contains X,
Since log | 41| is uniformly dense in C»(X), it is clear that we can find a function f in 4
such that f(z) =1, ||f|| <1+e¢, and |f| <e on X —U. Therefore f does not attain its maximum
modulus on X - U,

We are interested in strengthening the analogy of logmodular algebras with algebras
of analytic functions, by finding subsets of M(A4) which can be endowed with an analytic
structure in which the functions f are analytic. Whether this is always possible or not
remains an unsolved problem; however, we can show that if @ is a point of M(A4) such
that there is at least one other point @, “closely related” to it, then there passes through
® an “analytic disc” in M(4). The argument we present is due to Wermer [27], who
proved the corresponding result for Dirichlet algebras. We shall reorganize Wermer’s
proof considerably, in order to gain a slightly more general theorem. We continue to work

with our logmodular algebra 4, and will comment on the generality later.

DEFINITION 7.1. Let @ be a complex homomorphism of A4 with representing measure
m. Let y be another complex homomorphism of 4. We say that y is bounded on H*(dm)

if there exists a positive constant K such that
}
|w(f)|<K'Ulfl2dm] (€ 4).

The reason for the terminology should be apparent. We are discussing a linear func-
tional y which is bounded on the pre Hilbert space consisting of 4 with the (semi) norm
of the space L*dm). If y is so bounded, it is clear that y has a unique extension to a bounded
linear functional on H%(dm), the completion of 4 in L2(dm). We shall call this extended

functional y also. It is clearly multiplicative:
y(fe) =v(yle) (f, g€ H*(dm)).

THEOREM 7.2. Let ® be a complex homomorphism of A with representing measure m.
Let y be a complex homomorphism of A which is distinct from @ and which is bounded on
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H2(dm). Let G be the orthogonal projection of 1 into the closed subspace of H2(dm) which is
spanned by kernel (v)={f€A4;p(f)=0}. Then | Gdm=k2, where 0<k<1. Furthermore, if

we define

1 ¥-¢
Z=z- -G (7.21)
we have the following.
(i) Z is an inner function in H(dm).
(i) The measure
1-G? 1-%*

is a (the) representing measure for y.
(ili) ZH?=H?, the space of fumctions in H*dm) such that ®(f)=ffdm=0.
(iv) If f€ H dm) and a,=§Z"fdm, then

p(h) = Zoan[w(z)]"-

Proof. Let S be the closed subspace of H?(dm) which is spanned by the kernel of y.
Then S is invariant under multiplication by the functions in 4. Also, 1 is not orthogonal
to S; because, y +® and so there exists an f in 4 such that y(f)=0 but O(f)= [ fdm 0.
By Theorem 5.5, G is a function of constant modulus

|G| =k>0
and S =GH?*dm). Since (1 —@) is orthogonal to G,

fG dm = k2.

Evidently k<1; for ¥2< [ |G|dm =k, and if k=1 then @ is constant. But this means that
8 =H?, which is impossible since y is a bounded and non-zero functional on H%*(dm). (Its
kernel cannot be dense, unless  =0.) Now define Z by (7.21). Then

1
k—EG

——r
1- k(% G’)
and since |k'G|=1, Z is a function of modulus 1. Certainly Z€ H*dm) because Z is

the sum of a uniformly convergent power series in G. That proves (i).
Define x4 by (7.22). Let f€ A. Then

7=

(1—kz)ffdu=ff-(l—G)(l—G’)dm.
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If y(f)=0 then (1-G)f is in the subspace §; hence (1— @) is orthogonal to (1—G)f
and ffdu=0. Since (1—G) is orthogonal to @

f|1—G|2dm=f(l—@)dm=l~k2
and thus Jd‘u= 1.
Therefore pu is a representing measure for .

It is clear that [Zdm=0, since G dm=X> Since {Z|=1 we have ZH*? contained
in H%. Let g€ H, and suppose that g is orthogonal to ZH®. Then g€S, i.e., g(g)=0.

For
_ _ (. [1-@
w(g)—fydﬂ—fg 1~ dm.

From (7.21), G is the sum of a uniformly convergent power series in Z. So |1— GJ?

is a power series in Z and Z and we shall have w(g) =0 provided we can show that
JZ”gdm=O (n=0, £1, £2, ...).

For >0, this follows from the fact that {gdm=0. For n <0, it follows from the
fact that g is orthogonal to ZH?. Now, since y(g) =0, we have g= Gh, where k€ H*.
Note that

1
By (7.21), G=k*+ Zf, where f€ H®. Since ¢ is orthogonal to ZH?,

1

f[h|2dm=zsz2hgdm=f(7|h|2dm.
But |G|=k<1 and so k=0, ie., g=0. That proves (iii).
Let € H% Then f—®(f)=f—ffdm is in H%. So
= ®(f)=2g,

where g is in H% Obviously g is uniquely determined by f. The constant functions
are orthogonal to ZH* and so

fl flPdm = fl Zg|*dm= f| g [*dm.
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If we define a linear operator 7' by T'f=g, i.e.,
f=®()+2(Tf)
then the operator 7' is bounded by 1 on H?(dm). If we define

a,= fZ"fdm

then it is clear that f=a,t+Z(Tf)
Tt = a, +Z(T?f) ete.

For any » we (therefore) have
f=ay+a,Z+...+a, Z"1+ZT7).

Now y(Z)=k<1. The numbers p(T™"f) are bounded, because y is a bounded functional on
H? and || T|| <1. Therefore we let n—~c and obtain

o«

v = 2 a,{p(2).

=0

THEOREM 7.3. Let O, m, p, and Z be as in Theorem 7.2. Let § be any complex homo-
morphism of A which is bounded on H2*(dm). Then, for every f in Hdm)

0(f) = Zoan[e(z)]"-

n=

Proof. If 6 =0, the statement is evident. Suppose § +=®. We apply Theorem 7.2 with
p replaced by 6. We obtain an inner function Z, associated by 6, such that HZ =Z, H?

and the corresponding series expansion for §(f) is valid. Since

ZH®* =7 H?
and |Z|=|Z,| =1, the function Z/Z, and its complex conjugate both belong to H2(dm).
Since (4 + A) is dense in L*(dm) (Theorem 5.4), there are no non-constant rea-valued fune-

tions in H%(dm). Therefore Z, =1Z, where 1 is a constant of modulus 1. It is easy to see

that the series

[

S @02, a,= f Z*f dm

n=0
is unaffected if Z is replaced by 1Z, |A| =1. We are done.

THEOREM 7.4. Let ® be a complex homomorphism of A with representing measure m,
and suppose there exists a complex homomorphism v of A which is distinct from ® and which
18 bounded on H*(dm). Let Z be the function defined in Theorem 7.2. Let D be the set of all
complex homomorphisms of A which are bounded on H2(dm). If 6 € D define Z(8) =6(Z). Then
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Z is a one-one map of D onto the open unit disc in the plane. The inverse mapping 7 of Zis
a continuous one-one map of the open unit disc onto D, and for every f in A the composed func-
tion fot is analytic.

Proof. Obviously Z maps D into the open unit dise. For suppose 6 € D. Associated with
6 is a function Z,, as in the last proof; and Z, =1Z, where |4| =1. By Theorem 7.2, |6(Z,)| <1,
so |Z(6)| <1. If f€ H® we have

o0

0= 3 alZO0T, a f Z*fdm

n=

forall @ in D. If 2(01) =Z(02), then 0,(f) =0,(f) for all f in 4; hence §, =8,. Thus Z is a one—
one map of D into the open unit disc.

To see that Z is onto, we argue as follows. Suppose f and g belong to 4. Let
a, = fZ"/dm, b,= fZ”gdm. (7.41)

Then f=a,te,Z+..+a,Z"+Z"t1h,
g =byt+b,Z +...+b, Z"+Z"+1h,,

where %, and %, are (bounded) functions in H2%(dm). From this it is easy to see that if
.

Co = by,

¢, = ayb, + a,b,,

we have v (7.42)
€y = agby + a,b, + ayb,,
ete.

Now let 4 be a complex number, |A]<1. For any f in 4 define
6= 2 a, 2", (7.43)
n=0

where the a, are defined by (7.41). Obviously § is a linear functional on A, and by
(7.42) 6 is multiplicative. Suppose f€ A and

f|f|2dm<£2.

Then |a,|<e for each n and
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(i) || @, —D,|| <2, i.e., there exists a constant K, 0<K <2, such that |®,(f) —@y(f)| <
K||f|| for every f€ A.

(i) There is a positive constant ¢<1 such that |Dy(f)| <c||f|| for every f in A which

satisfies @ (f) =0.

Proof. Suppose (ii) fails to hold. Then there is a sequence of functions f, in 4 such
that @y(f,) =0, ||f.]| <1, and |Dy(f,)|—1. If {1,} is a sequence of points in the closed unit
disc such that |A,|—1, it is easy to find a sequence of linear fractional maps L, (of the
unit disc onto itself) such that |L,(0) —L,(4,)| 2. Each L, can be uniformly approximated
on the unit disc by polynomials. Hence, if /€4 and ||f|| <1, then L,o f belongs to 4. Find
such a sequence of maps for A,=®,(f,). Then define g,=L,0 f,. We have ||g,/| <1 and
| @1(g,) —Po(g,)| 2. Thus (i) does not hold, i.e., ||®, —D,|| =2.

If (i) does not hold, i.e., if [|®, —®,|| =2, there is a sequence of functions g, in 4 with
lgall <1 and [®4(g,) ~®@ulga)| 2. Let fu=H[gn—®,(ga)]. Then fo€4, [[4] <1, @y(f) =0,
and |®y(f,)|—>1. Thus (i) does not hold.

THEOREM 7.6. Let A be a logmodular algebra on X, and let ®; and ®, be complex homo-

morphisms of A. The following are equivalent.

(1) [P, —D,| <2.
-(ii) If m, and my are the (respective) representing measures for O, and @,, then m, 1s
absolutely continuous with respect to m,, and the derivative dmy/dm, is bounded.
(iil) D, is bounded on H2(dm,).

Proof. Let K be a positive constant, and suppose that we do not have m,< Km,.

Then there is a positive continuous function » on X such that
fudm2>Kfu dm,. (7.61)

Since log|A47!| is uniformly dense in Cg(X), we may assume that u= —log |f], fe4™".
Since #>0 we have ||f]| <1, and (7.61) says

flog Ifldm2<Kf16ng|dml

that is, | @) | < | DuUH|E.
Let o= ®,(f) and /3=(D1(f). Let

<
I
p—
!
'8’1.



ANALYTIC FUNCTIONS 313

Hence 0 is a complex homomorphism of 4 which is bounded on H2(dm), i.e., 0 is in D,
Certainly Z(6) =2A. Thus Z maps D onto |A] <1.

Now let 7 be the inverse map of Z, i.e., if [A] <1, then 7()=0, the complex homo-
morphism of 4 defined by (7.43). We know that 7 is one—one and maps the open unit disc
onto D. It is also clear that 7 is continuous. This simply says that, if we fix f€ A, the map
A—>7(J)(f) is continuous, i.e., that for is continuous. But for is an analytic function in the

unit dise:
(fer) ()= 2 anl",
n=0
where {a,} is the bounded sequence of numbers defined by
a, = fZ" fdm.

That completes the proof.

We should now ask ourselves just which properties of a logmodular algebra were used
in this argument. Actually, we employed only properties of a particular representing meas-
ure for the fixed complex homomorphism @. The properties were those which were necessary
for the proof of the invariant subspace theorem (5.5), (i) 4 +4 is dense in L*dm), (i) if
u is a representing measure for ® which is absolutely continuous with respect to m, then
p=m. Suppose we have a sup norm algebra 4 and a complex homomorphism ® of 4 which
has a representing measure m which satisfies (i), (ii), and (iii) there exists a complex homo-
morphism y of 4 which is distinct from @ and is bounded on H%(dm). By the same argument,
there exists an “analytic dise” in M(A4) which passes through @, i.e., there exists a one-
one map 7 of 1| <1 into M(4) such that 7(0)=® and for is analytic for every f in 4.

For the logmodular 4, one can give a slightly more intrinsic characterization of the
analytic disec D which occurs in Theorem 7.4. It is what Gleason termed the ‘“‘part” of ®.
In [11], Gleason pointed out that the relation

D, ~ Dy ||, — Dy < 2

is an equivalence relation on the set of complex homomorphisms of a sup norm algebra
(or commutative Banach algebra). The equivalence classes for this relation he called the
parts of M(A4). It is not immediately evident that the relation is transitive; however, it is
not difficult to show that it is. For logmodular algebras, the transitivity will soon become

evident.

LeMma 7.5. Let ®, and O, be complex homomorphisms of the sup norm algebra A.

These statements are equivalent.
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Then |g|[<1, g€ A, ®y(g)=0, and

1Bl =]al J[BI=1BFF
1-|af{g]" 18"

Now (7.61) will not be affected if we replace u by eu, £>0. As &0 we have |8|—1. Since

Iq)l(g) | =

=k
ap

lim = *  K-—1
r—)ll_rK+l .K+1’
we conclude that
A< |o] wed, lgll<1, 00)=0)
K+1 11 ’ PR
If | ®; —d,|| <2, Lemma 7.5 tells us that the supremum on the right is less than 1. Thus,

for some sufficiently large K we must have

my < Km,.
Therefore (i) implies (ii).
It is evident that (ii) implies (i), and also that (ii) implies (iii). If (iii) holds, we can
deduce (ii) immediately from part (ii) of Theorem 7.2. That completes the proof.
We can easily see (from this result) that [|®, —®,|| <2 is an equivalence relation on
M(A4). This relation, i.e., “belonging to the same part”, means that the representing meas-
ures m, and m2 are mutually absolutely continuous, with bounded derivatives each way.

If we combine the last theorem with Theorem 7.4, we have the following.

THEOREM 7.7. Let A be a logmodular algebra on the space X. Let ® be a complex homo-
morphism of A, and suppose that the (Gleason) part P(®) contains at least two points. Then
there exists a one—one continuous map © from the open unit disc into the maximal ideal space
of A such that

(a) the range of T is the part P(®)
(b) for every f in A, the function for is analytic.

It is easy to see (for example, by Theorem 7.5) that each point of X constitutes a one-
point part in M(A4). A point not in X (i.e., not on the Silov boundary) may constitute a
one-point part. One can raise the same questions for logmodular algebras that Wermer [27]
raised for Dirichlet algebras. If 4 =C(X) is X a proper subset of M(A4)? If 4 +C(X) must
there exist a part in M(4) which contains at least two points?

In the various examples of section 3, it is relatively easy to identify the parts, except
in the case of the algebra H* (Example 4). We shall discuss the parts for this algebra in

a later paper. In Example 1, the open unit disc is one part, and the points of the unit
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circle constitute one-point parts. For the ‘“Big Disc” algebra 4, of Example 3 (G' not
isomorphic to the integers) the description of the parts is as follows. Each point of the
boundary G constitutes a one-point part. The “origin” of M(A4g), i.e., the Haar homo-
morphism, is also a one-point part. The remaining parts are “analytic discs”, each of
which is dense in the entire maximal ideal space. These parts are easily described. If one
regards A; as an algebra of almost periodic functions in the upper half-plane, there is a
natural injection 7 of the half-plane into M(4;), “z goes into evaluation at z”. The image
of the open half-plane under 7 is a part of M(Ag). It consists of all points (r,«) in M(A4g)
such that 0<r<1 and o« belongs to a dense one-parameter subgroup of G. This subgroup
K is the image of the real axis under (the extended) 7. Any remaining (non-trivial) part
is formed of the points (r,«), 0<r<1, where o ranges over a coset of the subgroup K.
The description of the parts for the algebra B, of Example 5 is similar. In this case there
are no one-point parts of the Silov boundary X. ‘
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