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1. Introduction

Suppose that F(z) is meromorphic in |2|<1 and satisfies F(0) =0 there, and that
f(z)=F'(2). We define as usual

27
m(r, F)=’%z-fo log™ | F(re'®)| 0,

n(r, F) as the number of poles in |z|<r and

Nir, F)= J"n(t, dt
’ ° t .
Then T(r,F)y=m(r, F)+ N(r, F)

is called the Nevanlinna characteristic function of F(z). The function T'(r, F) is a

convex increasing function of logr, so that
T, Fy=lim T(r, F)
=1

always exists as a finite or infinite limit. If 7'(1, F) is finite we say that F(z) has
bounded characteristic in |z|<1.

Examples show that F(z) may have bounded characteristic in |z| <1, even if f(z)

does not.(1) We may take for instance f(z) to be a regular function

fe) = 3 2,

(1) The first such example is due to Frostman [3].
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where 0 <a<1, ,=K" and K is a large positive integer depending on «. Then for
|2|<1

|Fe)|<3ast= 3 K= <1,
n=1

K -1

so that |F(z)| <1 in |z|<1, T(1, F)=0. For |z|=e V4, we have A7 |z|*= K"*/e, while

L3 mlepeeSEemmemona s KN S oo
:m=n+l Km—n t=1 Kl a_l’
1 "zl 1
and T . Z 2% |z < K"“ Z K™ < <%

Thus if K is so large that K*>10, K'"*>10, then

2
mznla,‘,.lzll"<§l:lzll",

1 2 -4 l no

—1/4,

Thus for r=e Y*» and so for e Y <r<e V*n+1 we have

Na

T(r,f)>log(K9 ) alog 2, +0(1)—oclog———+ o).

lim L) f ) S 1.1)

r—>o0 log

l
On the other hand, if F(z) is bounded

o)

1
f(z)= 1=y and log |f(z)| <log T o(Q1).
Thus Iim ﬂ—{)— <1. 1.2)
7—1
lgl—r

This result remains true for functions for bounded characteristic.

For the sharpest results on the bounds for T'(r, f) if T'(1, F) is finite see Kennedy [8],
where more refined examples of the above type are constructed and sharper positive
theorems are proved. Since the minimum modulus of f(z) is unbounded in the above
examples while the maximum modulus of F(z) remains bounded, all means of F(z)

and no means of f(z) on |z|=r remain bounded as r—1.
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It is natural to ask whether conversely f(z) can have bounded characteristic,
while F(z) has bounded characteristic. This problem was raised during a recent Con-
ference at Cornell University. ()

At first sight the evidence appears to be in the opposite direction. Let us write

f,(re'®) = sup | f(te'®)|. (1.3)
Then clearly |Fz)|<rfi(2), |2]=r<1, (1.4)
If we write L, /)= {% flf(reio) P de}, 0<)<oo,

I (r.f) =gr+nmlz r.h)= sup |£(2)],

then Hardy and Littlewood [4] proved that if f(z), F(z) are regular, then
Litr, IYIi(r, ) SAQA) Ii(r, ), O0<r<l, 0<iA<oo,
where A(2) depends only on A, and also the stronger inequality [5]
I,(r, YSAQA) I1(r,f), 0<A<],

where u=4/(1—12), and in particular y= + oo, if 1=1.
If f(z) is regular then log™|f(z)| is subharmonic. Hence it follows from the Hardy-
Littlewood maximum theorem [4], that for 1>1

Ii(r,log" F(2)) <I;(r,log" |f,(2)]) < A(A) Li(r, log" f(2)), O<r<l.

The result we require, would follow at least for regular functions F(z) if the above

inequality were to remain true for A=1. In fact such an extension is not possible.

2. Statement of results
We shall prove the following theorems, using the notation introduced above.

THEOREM 1. Suppose that f(z) is meromorphic and of bounded characteristic in
|z} < R, where 0 <R < oo, and that f(0)=co. Then we have for 0<r<R
r

| I 1 R
ﬂ fo lOg+ fl (’I'eio) db < T(R, f) + 7; IOg E;i—:m(R, f) + Y (R) N(R, f)

<[1+e(3)]r@n @)

(1) [9, Problem 6]. See also [7, p. 349].
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2Vt
) (1-—t)log(l+1L_Vt—).

where pt)=

— (2.2)
nVt log n

The first inequality of (2.1) is sharp if [(z) is regular, so that
T(R,/y=m(R,f),  N(R,f)=0.

For meromorphic functions the inequality (2.1) is no longer sharp. However, we
note that
p(t)—>0 as t—>0 (2.3)

and p(t) =}Z log li—t+ o), as t—1. (2.4)

Thus the bound in (2.1) is asymptotic to the correct bound as r-—>0 and as r—>R.
We shall also prove an analogue of Theorem 1 in which —log|f| is replaced by a
subharmonic function (Theorem 4).

We deduce immediately

THEOREM 2. Suppose that F(z) is meromorphic in |z| <R, that F(0)=0, and that
{(z)=F’(z) has bounded characteristic in |z|< R. Then we have for 0<r<R

mir, F) < T(R, )+ - log 5 m(R, )+ (%) N(R, f)+log* r

< [1 +y (113)] T(R,{)+log" . (2.5)
Hence we have

T(r, F)< [2+¢(-;)] T(R,f)+log*r, O<r<R (2.6)

and if F(z) is regular the sharper inequality

R
T(r, F)< (1 +7lz log Rf:) T(R, f). @.7)

A result of the same general type as (2.6) but with A4/(1—¢)log[1/(1—1¢)] in-
stead of y(f) was proved by Chuang [2]. A version of (2.7) with the correct order of

magnitude but a less precise form is due to Biernacki [1, Lemma 1, p. 103].
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In the opposite direction we can show by examples that the orders of magnitude
of the bounds of Theorem 2 are correct as r—R. We have in fact

THEOREM 3. Given C>0 there ewists f(z) regular and satisfying |f(z)|>1 in
|z|<1 and

T(1,f)=log|{(0)| =C, (2.8)
while at the same time
T(r, F)>.12010g1—1_—r, ry<r<l. (2.9)
Here F(z)=f2 () de,  ry=1—[min (},0)H
0

and A is a positive absolute constant.
It is interesting to compare the results of Theorems 2 and 3 with the corre-

sponding inequalities in the opposite direction. If 7'(1, F) is finite, then (1.1) and (1.2)
show that

r—>1

log 1=
and that equality is possible even if T(1,F)=0. Thus the restriction on the order of
magnitude of T'(r,f) when T'(1, F) is finite is similar to that on T'(r, F) when T'(1,f)
is finite. However, in the first case the constant multiplying log[1/(1 —r)] is bounded
by one, while in the second case it is bounded by a fixed multiple of 7'(1, f) and so
can be as large as we please.

We shall prove Theorems 1 to 3 in turn. We reserve for a late paper the appli-

cations of these results to integral functions and functions meromorphic in the plane.

3. Some preliminary results

In order to prove Theorem 1, we need some preliminary estimates. We suppose
that 0<r<R, 0<|¢|<n and write

R*— 2

P(E,r,¢)= R®—2Rrcos ¢ + 1%’

3.1)

P(R, r, $) = sup P(R,t, ¢). (3.2)

ogigr



186 W. K. HAYMAN

We also suppose that 0 <z <R and write

G(R, 7, z, $) =log Ri(z';,—ﬂf% , (3.3)

and g(R,r,x, P) =0s<1:£IG’(R, r,t, ). | (3.4)
LeMma 1. We have with the above notation

% ffnp(R, r,¢)dd=1 +}t log %;—: s (3.5)

and 51; j :g(R, r, B, $) d <log ? + 1;27;1;2 log (1 + ;j’_’_’;) . (3.6)

We note that P, p, G and g are homogeneous functions in R, r and x and so we

may suppose without loss in generality that E=1.

3.1. We proceed to prove (3.5). We note that for R=1 and }n<|¢| <z P(1,r,¢)
is a decreasing function of r. For 0<|¢|<}in the function P(1,r, ¢) increases from 0
to |cosec | as r increases from 0 to cos¢/(1+|[sinh|) and then decreases again. If.

¢ is the number in the range 0<¢,<}im given by

cosdy _ $o_1—r1
T+sing, " ° PP TITy
P(L,r,¢), 0<|$|<dy
then p(1,7,¢)= sup P(L,t,$)= | [cosec $|, dy<|d|<3x
ogtgr
1 |, jzn<|d|<n.
£ b0 in
Thus j p(l,r,¢)d¢=n+2f P(l,r,¢)d¢+2f cosec ¢ d¢.
. 0 do

On setting ¢=tan (}¢), f{,=tan (3¢,)=(1—7r)/(1+7), this becomes

t 2 1
. (1—r*)dt dat
”+4L T a+e 2]

1+7r é
= e Puiiah 10
7 +4 tan (1__"to)-l—logco‘o2

=2n+2log(;—+r).

This gives (3.5) when R=1 and so generally.
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3.2, We proceed to prove (3.6). Suppose that R=1, 0<|d| <}z and set

G(,r,z,¢)=log K.
We obtain

A-r)(1-2®) _
r®+a® —2rx cos ¢

-1, (K®—r™a2®—2(K®—1)rrcosd+ K>r*—1=0.
For fixed K, r and ¢ this is a quadratic in z, and the maximum value of K occurs
when this quadratic has equal roots, i.e. when

(K= (K*r*~1)=1"cos® ¢ (K2~ 1)

This may be written as

(K2+1)2_K2(1+r4—2r200s2¢)=0.

r*sin® ¢
Since the maximum value of K is greater than one, we deduce that

4 2
K'—KVb+1=0, where b= 117 —2r cos2¢

7% sin® ¢ 2
or K=31Vo+Vo—4)=c+ViE+1,
12
=1 —=
where c=3Vb—4 S e gl (3.7)

Again if iz <|d|<um, it is evident that K decreases with increasing x for 0 <z <1,

so that K attains its maximum value when x=0. Thus

log[e+Ve*+1], 0<|d|<}m.

gL, 7, 1,4)= 1
lOg;, %n<|¢|<n;

where ¢ is given by (3.7).

Hence
-—j lrqu)qu———f (1,r,1,4)dd
2 g( LA 3 g ER 7-

in —_—
log%+i L log [c+V1+c* dé

1, 1. [ — 1L [P0 gde
==lo —+[—lo c+V1+cz] +—f . 3.8
By 8t o "2 lemnre O
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— 2
el .c° where co=1 2: .

Now c=

do= —cq cos pdep

sin® ¢

J‘" ddc ¢, J‘*" ¢ cospdd 3.9)

912 V1+c2 # Jo singVsind+cy

Hence

and

1
n

:

sin’® ¢

cos ¢ >¢"

We now note that O<p<iam.

In fact we have for 0 <¢<2

sin® ¢

¢

1 - cos 2¢
24*

Sl (-4

_#_ ¢
; 24>O.

cos ¢ = —cos ¢

Thus we have for 0 <¢ <}m.

sinqSVéin2¢+c%_Vsin4¢ 2, g s
cos = cosz¢+cotan >Vet+ .
Co J‘*” ¢ cos p d <% L

Hence = —r
7 Jo singVsin®dp+cz ® Jo Vei+g?

Co 2 2y 37 %o T 7
=og {¢p+Vcs+¢*}15*=—"log | :—+} 1+
7 k17 2¢,

4cd
Co a\ 1-1* 2ar
% ) - 1+ 2.
<n]og (1 +60) P log( T

Thus we obtain from (3.8) and (3.9)

3

1, 1.1 e 2mr
g(l,r,¢)d</><2log;+§log[co+‘/1+co]+ oy log(1+ —r2)

27 ), 1

1 1-7° 2nr
—log;+ o log(l +it—;2)

as required. This completes the proof of (3.6) and so of Lemma 1.
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4. Proof of Theorem 1, when f(z) is regular
We can now prove

LeMMA 2. Suppose that f(z) is regular and of bounded characteristic for |z|<R.
Then, if f,(2) ts given by (1.3)

R A 0y 79 < 1. R+r
Py f_"log f1(re®)di < 1+nlogR_r T(R,f), 0<r<R (4.1)

and this inequality is sharp.

To see that (4.1) is sharp, we set

-

where ¢ is a positive constant. Then since log|f(z)| is positive and harmonic
T(R, f)=m(E, )= lim m(e, /) =log|/(0)| =c.

Also log™ f,(re'®) = cp(R, 7, $),

and now Lemma 1, (3.5) shows that equality holds in (4.1).
To prove (4.1) in general we may suppose without loss in generality that f(z)
is regular in |z|<R, since the general case can be deduced from this by a limit

argument. Now the Poisson—Jensen formula shows that for 0<r<R, 0<0<2x
1 27
log* ()| <3, | og" /(R | P(R, 7,0~ $) d,
0
1 27
Hence log™ f,(re®) < . f log* |f(Re'®)| p(R,r,0 — $) deb.
)
Thus L f2n10g+ f,(re'®)y dO <i j 2nd0—1— J%tlog+ |f(Re'")| p(R, 7,0 — ) d
27 0 1 27 0 27 0 T
1 25 6 1 27
_ — + [ —
P J; log* |f(Re'*)| d¢ (2n fo p(R,r,0—¢) de)

1 R-+r
= (1 +:r_tlogR—r) m(R, f),

by (3.5). This completes the proof of Lemma 2.
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5. Completion of proofs of Theorems 1 and 2

We suppose now that f(z) is meromorphic in [z|<R, f(0)+ o, and that
b,=|b,| €%, =1 to N are the poles of f(z) in |z| <R with due count of multiplicity.
Then the Poisson—Jensen formula yields for z=re', using (3.1), (3.3),

2n N
log* W)[g% f log* |f(Re'%)| P(R, 7,0 —$)ddp + > G(R,|b,|,r, ,—0).
0 r=1
Thus in view of (3.2) and (3.4) we have
1 fhlo * £, (re'?) dB<L fgndo—l— fznl *|{(Re'?®)| p(R, 7,0 — $) d
27 0 g h \27t 0 27t 0 o8 P87
1 Y J g(R,|b,|,r,¢—0)db.  (5.1)

In view of Lemma 1, (3.5) we have

—f log* f(Re) d - fp(RrB $)do= me)(H’l"lng)'

(5.2)
We next set R,=(rR)* and suppose first that B, <|b,|<R. Then G(R,|b,|,r,¢—0)
is a positive harmonic function of z=re' for 0 <r < R,. Hence we may apply Lemma 2
with R, instead of B and G(R,b,,r,$—0) instead of log* [f(re)|.

This yields for R, <|b,|<R

R, +r

2n
_r) o fo &R, |b,|,r, ¢ —0)dd

1 2n
%f g(B,|b,|, 7, ¢ — 0)d0<(l+——1

R, +r _ 1. R +r R
(1+ lgR )G(R,[b,.[,O,O)-(l—l—xlogRl_r)log!bvl. (5.3)

Next if 0<|b,|<R, we have from Lemma 1, (3.6)

1 2 1 27
gfo g(R,lbyl,r,qS-e)dK%fo g(R,|b.|, B, —0)do

) L 2%!*»13)

— . 4
<‘°g|b| lblR‘g(”m—lb,lz 64
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It remains to estimate the right-hand sides of (5.3) and (5.4). To do this we set

1-¢ 2nt
h(t) = ———1 + <1,
®) 2ntlog 1/t og(l l—tz)’ 0<t
and note that A(f) is an increasing funection of ¢ for 0 <i<1. In fact

_t1-t) d oghlt) = (1-£3) N 1
- 2 7y - 2 Y
1+ dt (1+*)logl/t (1+1 t)l (1+ 2m2)
. 2nt 1-¢

H() -1.

We apply the elementary inequality
2Qogr<zx—x}, z>1

in turn with x=¢"% and x=1+2/(1 — %), and set t=y>. This gives

yl+9") (-gY)

_ y1-y) [(L+9) A +y+ o2 +9%) —my(l—y) (L +y+47)]
L+ (L —y* +ay®)

y1=y) (1+y+ )1+ — 7wyl —y)]

>
(1 +y") (1 —y* +ay’)

>0, O<y<l.

Thus A(t) is an increasing function of ¢ for 0 <¢<1.
We deduce that for 0<t<R,/R=(r/R)}, we have

e <hier/R¥ =y 7).
Thus (5.4) gives for |b,|<R,

1 [ R b, R
o J;) g(R, |bvl,'r, $—0) d6<10g|—bjl [1+h(|R|)] <log|b—vl [1 —Hp(é)] . (5.5)

1-¢
2tlog 1/t

Next we note that L(t) =

decreases with increasing ¢ for 0 <t<1. To see this set
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1 (-9 (1 +y) 1-4° 3
and — = lo = + +...
Lo~ 2y el y (y+iy )

=1-(1-Hy-G-Hy' ...
which is clearly a decreasing function of y. In particular we see that

Li)>1. (5.6)
Thus

1. 1+t 1 2t(1+1) ont \  h(t)
Lot o 50 L 24

Thus (5.3) yields for R, <|b,|<R

—21;f:ng(R,[byl,r,cﬁ—G)dHé[l—H&(RLI)](loglfl) [1+¢(R)]Iog%. .7)

On combining (5.1), (5.2), (5.5) and (5.7) we obtain
| I 1 R+T) R ( (1))
%fo log* f,(re') dO < m(R, f) 1+n10gR—-r +210g|b,| 1+y 7))

which is the first inequality of (2.1). The second inequality follows at once, since
by (2.2), (5.6) we have, setting t=r/R,

1 2 V't 2¢6\_1. R+vr 5.8
pit)> g(l+———)> lg(l-i—l__t)—nlogR_r. (5.8)

This completes the proof of Theorem 1.

In view of (1.4) we have

log* | F(re'®)| <log* f,(re®) +log™ r,
1 27
so that m(r, F) < py j log™ f, (re®®) d6 +log™ 7,
0

and now (2.5) and (2.7) follow from (2.1). Also since the poles of F(z) occur at the
same points as the poles of f(z) and have smaller multiplicity, we deduce that

N(r,F)<N(r,))<T(r,/)<T(R,}),
so that T, Fy=m(r, F)+ N(r, F) < [2+1p( )] TR, f)+ log*r

by (2.5). This proves (2.6) and completes the proof of Theorem 2.
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6. An extension to subharmonic functions

Suppose that u(z) is subharmonic in |z[<R. In view of Riesz’ decomposition
theorem [10] there exists a positive mass distribution due(l) in |{| <R, such that
for 0<r<R

n(r) =f du e({)
[[4E84
is finite and w(z) — f log|z—¢|due(l)
lel<r

remains harmonic for |z|<r. We also have the Poisson—Jensen formula, [6, p. 473]
which asserts. that for z=re®, 0 <r<R,

e ~ R(:—{)
u(z) = P .fo u(Re'®) P(R,r,$—0)db + £5l<klog oo du e(l). (6.1)
We set u'(z) = max (u(2),0), « ()= —min (u(z),0).

r d
N(r,u)=f0 0 fm log ,f.—,due@).

Then if we put z=0 in (6.1) we obtain the analogue of Nevanlinna’s first funda-

mental theorem, namely
T(R, u) = m(R, u) + N(R, u) +u(0). (6.2)

Suppose now that «(0) is finite, so that N(r,u) is finite for 0 <r<R, and set

u, (re'®) = sup u~ (te'%).
ogtgr

We then prove the following analogue of Theorem 1.
THEOREM 4. We have with the above notation
1 (= 0 ( 1 R+r) r
—_— < — —_
o L u, (re’?) dO 1+nlogR-—r m(R, u) + l+1p(R N(R,u)
< [1 +y (1%)] (T(R, u)—~u(0)),

where p(t) is given by (2.2).
13 — 642907, Acta mathematica. 112. Imprimé le 2 décembre 1964.
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To put the above result in its setting we recall that u(z)= — oo is possible for
a dense set of z in |z| <R, so that u,(re®)= + co may hold for a dense set of 0.
To prove Theorem 4, we deduce from (6.1) and (3.1), (3.3) that
. 1 2n
u (re"’)<-—J~ u” (Re'*) P(R, v, ¢ —0) dO
27 0
+ f f G(R,t,r, —0)due(te').
O0<t<R JO<p<2n
Using (3.2), (3.4) we deduce at once that

u, (re'®) < 1 J%’ u” (Re'®) p(R, 7, ¢ —0)dd
27! 0

+ f f g(RB,t, 7, —0) du e(te”). (6.3)
O<t<B JO<¢<2n

We now integrate both sides with respect to 0§ and invert the order of integration,
which is justified since all integrands are positive. In view of (5.5) and (5.7) we have
1 (> R r
— g(R,t,r,d—0)do<log— |1+y|5){, O<i<R, O<r<R. (6.4)
27 Jo t R

Thus we deduce from (6.3), using (3.5) and (6.4)

R_——;' 2n 0

r R
-+ [1 +1/J(E)] _ﬁc|<nlog '—El‘dlu e(C)

This is the first inequality of Theorem 4. In view of (5.8) we deduce

(1 +}Zlogf;t:) m(r, u) + [1 +1p(]%):| N(r,u)

< [1 +y (1%)] [m(r, w) + N(r, u)] = [1 +y (%)] [T(r, %) — uw(0)],

1 (> . 1. R+r\1 f" it
—_— S — _—
Py fo u, (re’®) db (1 +ﬂlog ) u™ (Re') db

by (6.2). This completes the proof of Theorem 4.
We note that if u(z) is non-positive in |z|<R so that T(r,u)=0, we have

u(0) > L fzn —u, (re'®) df > [1 + (1)] u(0) (6.5)
/271; 0 1 = L4 R »
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where y(f)->0 as £—0. In fact the left-hand inequality of (6.5) is trivial, since

—~u, (re®y = inf w(te’?) <u(0)
ogigr
in this case. The right-hand inequality follows from Theorem 4. The inequality (6.5)
shows that on most radial segments, going outward from the origin and having length
7, %(z) is not much smaller than #(0), provided that r is small compared with R.

7. Outline of proof of Theorem 3

We proceed to construct the counter examples whose existence is asserted in
Theorem 3. To do this we define(!) a function «(f) in the interval [0, 1], to satisfy

the following conditions
(i) o«(t) is increasing for 0<t<1, and «(0)=0, «(1)=1.

(ii) Suppose that «(f) has already been defined when ¢ is of the form p 10™7, where
p is an integer, such that 0<p<10". Then we define

P\ _ (ptH\_1[ (p ptl < ¥

a(—-—mN “\5ov ) =3 |\ 707 +a B 0<p<10v.
It follows from (i) and (ii) that oft) is constant for (p+4) 107 ¥ <t<(p+54) 107",
Thus «(t) is defined at all points of the form p 107", where p, N are positive integers

and p<10". Clearly «[(p+1)10""]—a[p10°"]=0 or 27¥. Thus «(t) is uniformly

continuous on the points p10™" and so there is a unique continuous extension of «(f)

to all real numbers ¢, such that 0 <¢<1. This extension is the unique function a(t)
in [0, 1], which satisfies (i) and (ii).

We set f(z) =exp {0 fl et da(t)},
0

et —z

where C is a positive constant and
F(z)=fo HE)de.

We shall then prove that F(z) satisfies (2.9). It is trivial that (2.8) holds, since for:
0<r<l, 0<0<2n,

() We could probably improve our estimates somewhat by replacing 10 by a smaller integer,
e.g. 5 or 6 in this definition, but at the cost of considerably more delicate analysis.
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1

log |f(re)| = 0f P(1,r,t—0) da(t) >0,

0

so that log |f(z)] is positive and harmonic in |z| <1, and
1 21
T(r,y=mlr.h =5 f log | f(re®)| 40 =log [f(0)|=C, O<r<1.
0

The idea of our proof is as follows. We set 0,=(p+3)107", h=310"7, 0, =277,
and suppose that a(f,+h)—a(f,—h)=2"". Then when z =re'%, and r is near to 1 — A,

Cog [L+7e™ 1-+re™™ Coy(1 —7%)
lf(z)l'—eXP_é—{l—re"‘ 1—re [ = P ia

Thus if 6 is a small absolute constant and N is large

t Cog(1 —1%) C(1—9) o
i8y
| Fe )I_Afoexp——-———(l r)2+h2dr>exp—————h .

Also if 0,~h($—08)<argz<0,+h(§—9), |z|>1—36%, then |f(z)| is much smaller
than F(e'®), and so

(w@) = |re+ [, 100 |> 11F ).

In particular

1 99+h(t—d) + i0 Cal)(l —6) 2h(% - 6) e 40“0
log* | F(re")| d6 > 2mh = hw

27 Jo,-n(3-2)
The argument is applicable for fixed N and 2V distinct values of ,, provided that

(1—r)<‘32—h &

_9 ia-¥
3 8lO .

For each N the total contribution to m(r, f) from all the 2¥ intervals of length $ 1077,
in which «(f) is constant is about 2¥4Cw/(5m) i.e. 4C/(5m).

For N we have

2
107 < 4 + 4.

1
<2 | N<——1
si=r Y <icg1o 8

1—r

“Thus the total contribution of all the intervals for varying N to m(r, F) is at least
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4C 1 C 1
57 log 10 [log 1—r+ A] >1610g 1—#’

when r is sufficiently near 1, which is the type of result we require.

* 8. The saddle points

Unfortunately a good deal of rather delicate analysis is required for the actual
lower bound for |[F(e'*)| and to this we now turn, using a saddle point technique.

LemMuma 3. With the above notation set 1 —ze " =¢ =&+, and write

1 it
bl—log He) = f € 2 () = g(8) = u + .

g € —%
Then if N is sufficiently large, g({) has the following properties:

7] —Ta ' S 4h h
(@) Rg"(Q) <—z~", and |g" Q)| <555 for = <E<h, |yl<g.

(b) There exists (o=§&,+in, such that 84h<E&y< .96h, |170|<€§6, and g’ ({,)=0.

h
(©) We have for |t=Lo| <55, latg(~g" (@)]<F.

We divide the interval [0, 1] up as follows. We denote the interval 6, —h <t <0,+h,
ie. pl07Y<t<(p+1)107Y, by J,. We define intervals J,, J,, 0<v» <N —1, as follows.
Suppose that J, is an interval of the form p,10°" ¥ <t<(p,+1)10°"Y, where p, is an
integer, and that «(t) increases by 2" in J,. This is true for »=0 with p,=p.
Then by (i) we must have p,=0 or 9(mod10). If p,=0(mod10), we define
Pr1=0,/10, p,=p,+9. If p,=9(mod10), we define p,=p,—9, and p,.1=7p,/10.
Then if J, is the interval p, 10°"¥ <¢<(p,+1)10°"7, and

J,41 the interval p,.110°" 1"V <t < (p, ;1 +1) 107717V,

it is evident that «(t) increases by 2" in J, and so by 2"*"¥ in J,,;. Hence our
inductive hypothesis is satisfied also for J,,;. We note that J, contains J,_;, for
1<y<N-1. Also if ¢(t) is continuous in [0,1], then

f] &(t) dar(t) = f, é(t) da(t) + f dt) da(t), 0<y<N-2.
y 31 7,
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1
Thus J; d(t) da(t) = (J;&—l + le-l) () da(t)

=f + f + Pty da(t)=...
Ty-1 V-2 JIn-2

N-1
= f: &(t) du(t) + go ]'¢(t) da(t). (8.1)

In order to estimate the integrals occurring in this identity we note that if ¢,¢ lie
in J,, J, respectively, then

[t—#]>8.10"" =164 10" (8.2)
In particular this inequality holds if ¢ lies in J, and ¢ in J,.

8.1. We now set 1—ze *%={=¢+4ip, and suppose that

%<§<h, l’?l<%- (8.3)

i 00 1 _
We write g(¢)=fet+ea (1 Oda(t)=go(4)+gl(é),

e+ e (1—¢)

T

where 790(0)= f ,

VL[ ettt g (1— ()

g:(0)= g) . m(—lfﬁd“(t)-
v 4.¢'¢+200 Jo(t)
b S I .
‘Thus o (C) N [eit__efoa (1 — C)]:i
We set £=0,+ 7, and note that
geftrBw g 4l —cost—§&)+i(sint+n)PeT
[e“—e“"’(l—é’)]” [l_eit__é-]s— ll_eit__é-ls

{4lE— iz + )P+ O(Y)} dalt)
le+tiztpltrow)

b [ 4EE-3(n+ 1) (;«2)
Rgo (C)—fh——————[é2 Tt O deft) + O )

Thus g ()= f
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We note that dux(t)>0, only for $h<|t|<h. Since &, % satisfy (8.3) we have
S8h<E<h, and .75h<|7+7|<1.05h. Consider now

_ 4a(3b*—a?)
¢(a’: b) - [(12 + b2]3

in the range 8A<a<h, .75 <b<1.05h. Then

o(a,b) 12 (a*+ b*— 6a%b?)

2a @ e 0

in the range. Thus, for fixed b, ¢(a,b) is smallest when a=h. Also

d¢(a,b) _48ab(a®— b?)
&b (@Lby

so that for fixed a, ¢(a,b) first increases to a maximum at b=a and then de-
creases. Thus
- $(a, b) > min {$(k, 1.05%), $(k, .75%)}

. {4(2.3075)h'3 (11/4)h—‘°'}
(2.1025)° ’° [25/16

- (11) (2"
AT h"'
Thus it follows that
tr . 2
Ryl (&)< -2 f dac(t)-l—O( ) 7h3°‘°+0(%). (8.4)

Also we have in the range (8.3)

i@l <4 |, o () <m0 () <o) oo

Again in view of (8.2) we have in J,, {t|> 164 10", and |n|<%/20, and
|1—€"—¢|>|sinz|—[n].

Also |7|<1, so that [sinz|>|7|sin1>§|7z|. Thus in the range (8.3) and for ¢ in J,

i 5 k
L - v __ v
|1-¢"~¢|>216h 10"~ 25> 13R 10", (8.6)
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Th <
us lg1 Q)] < Z f = Clsdoc(t)
4.2, 4a, 2 2 \? oy
—— | . 8.
g (13h 10’)3 2197 h3(1+1000+(1000) ) 50043 87
Thus we deduce from this and (8.4) that
7o,

Rg"(z)<;‘:-g[- 72+.002+0(h)] < ~ 530

if b is sufficiently small, i.e. if N is sufficiently large. Further by (8.5) and (8.7)

we have

Sty

9 @1 <1ai' 1 +lax )] <53 [ 4+ 50+ oum] < .

500

This completes the proof of Lemma 3 (a).

8.2. We proceed to prove (b). To do this we suppose now that =0, 0<&<h.
Then

co NN — 267 daft)
a0~ 2, )y e —tr o

We note that (8.6) still holds on J,. Thus

y f —~ 2¢" daft)
5 (" —1+¢)

LA
< El (137, 10°) f dat)

N 2v+l% 4% 1 1 2 “0
2 BRI 1302h2(1+50+(50) T )<4000h“' (8.8)

Again we have in Jg 17h<|t|=t—6,<19h, (8.9)
so that €T —1+C=E+it+OR?).
— 26" daf(t) f [1 4+ O(R)] da(t)
Th —— s
s P L Y ey

[ 2 &) dalt) difvda(t) (ﬂ)
“f:o @ )@ 2

=I+il'+0(%) say.
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In view of (8.9) and 0<&<h, we deduce that

27 1)
(19% + 1) b2

20t
(17h)?

>I> (8.10)

and || < (-‘f%%é. (8.11)

. v [ —2€%da(t)  [* (2P — %) da(t) @)
Again "’°(5)“ff. 1T e "‘Lh @+ +0(h ’

since the mass dof(t) is symmetrical about the centre of J, and is zero on the interval
(—%h, h).

The function «(f) increases by o«,/4 in each of the intervals (.8h, .82h) and
(.98h, k) and is constant in the interval (.82h, .98A%). Thus if &£=.95h then

f" (Ez—rz)da(t)> % { (.95)2—~1 N (.95)2—(.82)2}
sn [+ 7 4R |[(95)2+ ((98)%F ' [(.95)%+ (.82)%

@ (13)(L77) — (05) (1.95) 13wy %
4n? 4 1642~ 125R%°

Thus for this value of & we have for large N in view of (8.8) and (8.10)

- 4“0
125 1?

20ty o O(oty)
280K T 40007 |

+ <0,

Ry ()<

Again, for &= .85h,

P -Tdalt) _ o [(.85)2—(.98)2 (.85)2—(.8)2]
sn [+ 4R [(852+ 1% T [(.85)% + (.8)*F
% [—.(1.83) (.13)+ (.05) (1.65)] < _
452 (1.73)2 (1.36)2

%
20042

Thus for £=.85 we have, using (8.8), (8.10),

' G % %o
Ry (©)> 5o 4000h2+0(h)>°'

Thus there is a value &;, such that
85k <& <.95h (8.12)

and Ry (&) =0.
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Also for this value £, we have by (8.8) and (8.11)

|90 €l <I71+ e+ 0(%)

x| 4 1 %
<Bl 2 4 ,
A2 [4913 2000 T O )] 900

(8.13)

when N is large. Thus lg'(&)] < %th

We now set C=§+in=}e""’+§1. We suppose r <h/20, so that the estimates of
Lemma 3 (a) hold. Also

9' () =g"(&)+ ng” (R)dz=g'(&) + J; 9" (& +te'?) e,

Thus by Lemma 3 (a) Re ™™g () —g ()< —Zg(}::-
In particular l9'(2) —g' ()] > Zg;ﬁ’ |t —&|=r.
We choose r=5/630, so that in view of (8.13)

Toal_ g (.

1043 9001»2

Thus by Rouché’s Theorem ¢’(Z)—g’(£;) and ¢’ (&) =9'() —9¢' (&) +¢' (&) have equally
many zeros in |{—&,|<7, i.e. at least one. We set such a zero equal to {,=§&)+ iz,

and note that

|61— Col < " ’ (8.14)

630’
where &, satisfies (8.12). This gives (b).

8.3. It remains to prove (c). We note that in view of Lemma 3 (a) and (b)

1 h
Ry, (£) <0 for |§—§1|<é6=,.0 say.

Also if g;,’(&')—“-%'*‘ian(f_fl)", [C—&l<r,,
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then a, is real and negative, and by the Borel-inequalities |a,|<2|a,|/r§. Thus for
|z — & | <ry/5, we have

Again in the same disk |z2—&;|<7,/5, we have also by (8.7)

r ’’ .7“0
9" (2) — g5 ()] =197 (z)|<500h3’ and |g"(z |>“};s“-
. _% . %
In particular lag] = (51)l/ h‘°’ T E00R 3%
We deduce further for |z—&|<r,/5, that
7 rr a Q,
"0 =ao] <l (9=l +1ai ] < 5l Lol <Ll
Since @, is real and negative we deduce that
jorg [ @1 <, [e~ & <=1
' 4’ 1751007

and so in particular for |z—{,|<h/120<%/100—h/630. This completes the proof of
Lemma 3.

8.4. We also need a global estimate for the growth of w(£).

Levwma 4. With the notation of Lemma 3 the function u(&) assumes its maximum
value for 0<E<1 at &=&, where |&;—¢,| <h/630. Also u(§) increases in the interval
[0, &1 and decreases in the interval [&,, 3R] and w(&)<u(3h) for &> 3h.

We have seen that u(£) has a local maximum at & =£;, where by (8.14) and (8.12)
|& C°l<630’ and .85h <& <.95h.

It also follows from Lemma 3 (a) that

2
Z—g“<0, 8h<E<h,

so that «(£) increases in the interval [8h,&] and u(£) decreases in the interval

[61: h’]°
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Suppose now that & <.8%. Then as we saw in section 8.2

-8 _ ( )
Tt 4000k2+0 ,

d v ’
£=Rgo<§)+ngl(£)>4f

in view of (8.10).
Thus # increases in the range [0, .8%] and so in [0, &]. Again for £>h

du B2 8% (= E)da(t) o ( )
T 4f s (24 &Y)° dat) +2 5 (BPHE 20002 T 0 h

Since |7|>17h, we see again that

(@* ~ &) dalt) fd"‘(t) 2ay
5 (@P+E? <2 5 T <(17h)2'

Suppose first that A <& < 2h. Then

4 f" (@ —&)dalt) _, f""“" (v~ E)daft) _ — [£* — (82h)°]
s ()P s (TP E)? [+ (82h)°F

The right-hand side is less than
3247
% g
Thus in this range

du o, 2 1
d§ h2[ 0128+172 4000]+0( )<0.

Next if &> 24 4f: (r* — &) dalt) _ _4f” $8da(t) —24a,
h

(T2+§2)2 PPN (%52)2 - 2562 .
2
Thus j’; <% [(%) +40100] z‘;;g+o( )<0 if £<10.

Thus u decreases also in the range [#, 10%] and so in [£,, 10k}
Finally if £>102

2da(t) Nt 2da(t)
U< ].Iit_(l__g)l Z J;len—l‘*'él'
In J, | — (1 - &)| > &£+ O(h%) > 10k + O(h?),
so that 2dalt) + O(ay).

Jo |ei1_(l S)I
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Also in J, we have by (8.6) for 0<£&<1,

|1—e"—&| <13A 107,

N-1 2da(t) N1 24,2 209 _5ap
$o that f Ien—1+§|< ,,Zo (134) 10°° 13h(1—}) 26

Thus in this range we have

<%0,5% 4 oy<

20
5k 26k 5h°

On the other hand, we have for £=3h

>Rf [e”+(1 £)] dout) _ f [t —(1—§)"d(t)

—(1-9§ Rl+(1—§&°%—2(1—¢&)cost
2+ O(R?
=f %fgj—) dot) > ;oj‘_’i2+ Oog) = 52+ Oy,

Thus (&) <u(3k) for £>10h, and hence also for &> 3k, since u(&) decreases in the
interval [3h, 10A]. This completes the proof of Lemma 4.

9. Construction of the path of integration
We shall need

Lemma 5. Suppose that g(z)=wu+iv is regular and not constant in the disk
|2—2| <7 and satisfies |argg” (z)| <1 there and ¢’ (2))=0. Then there exists an ana-
lytic Jordan arc y with the following properties

(a) v is a cross cut in |z2—z,| <7 with end points on |z —z,| =7 and passing through
the point z,.

(b) If z describes y in a suitable sense v is constant on y and z, divides y info
two arcs y,, y1, such that u decreases on y, and increases on y,.

(¢) On y; we have |arg (z—z,)| <}n, and on y, we have |arg (z—z,) — 7| < im.

(d) If 2y, 2, are points on yy, y, respectively and |b;|<im, |¢py—7|<in then for
§=1,2, u(z+te'?) increases while t increases through positive values as long as z;+ te'®i re-

mains in |z—z| <r.

It follows from our hypotheses that Rg”’(z)>0 in |z—z)| <r. Here strict in-
equality holds unless g''(z) =i, which conflicts with our hypotheses, unless §=0.
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In this case g¢’(z) = constant = g'(z,) =0, so that g(z) is constant contrary to hypo-

thesis. Thus
Rg"(2)>0, [z2—z]|<r.

If we set g”'(z,) =2a,, it follows that a,+0 and hence by classical theorems the set
v=1(z,) consists near z=z, of two Jordan arcs which intersect at right angles at z,.
We have near z=z,

9(2) —g(z) ~ a5 (2 —2,)%, a8 2>z,
and hence arg a,(z—z,)° >0 or m, as z—>z,

so that ¢(z) = constant. We choose for ¥ that arc for which
arg [(z—z,)%] > —arga,=¢

say, where by hypothesis we may suppose |¢|<}zx. Thus

£ £
arg (z—z,)—> or -

2 2$n as z—>2z, on y.

As z describes y, dg(z) =g’ (z)dz is purely real. We have
g (z,+0e®) = f:g” (2, +e) ®dt, O0O<p<r.
From this and our hypothesis that |argg”(z)| <1z it follows that
B—ZSargg'(zo-l-ge"’)<0+g 9.1)

and that g'(2)*+0, 0<|z—z)|<r. 9.2)

If z=2,+0¢€"% is a point on y, then by (9.1)

argdz = —argg'(z)ég, if 9=g,
argdz>—7§z, if 0=—g.

If we denote by y,, y, the arcs of y on which arg(z—z,) approaches {¢ and 3¢+

respectively, then it follows that y, remains in the sector

larg (z — z,)| <7§t. (9:3)
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Similarly p, remains in the sector
Iarg(z—zo)—n|<%.

We have for z on y, if s denotes arc length on y
o __,, v
3.= Fle@l =0

If z describes y, away from z, then it is clear that initially

u(2) — w(ze) ~ @y (2 — 2)* ~ lazl Iz—zo|2 >0.
ou
Thus Pyt lg'(2)]

as y is described in this direction. It follows from (9.1) that y; can have no double

points and continues as a Jordan arc to the boundary circle |z—z,|=7. Also
ou ,
5=l @1>0

on the whole of y,. Similarly if y, is described away from z,

u_,
2= lg'@1>0 on ,

and y, continues to the boundary circle |z —z,|=r. Since y,, y, lie in different sec-
tions of the plane they do not meet and so we have proved (a), (b) and ().

It remains to prove (d). If z;=2,+0€? is on y;, and argg’(z;)="0,, then on y,
we have by (9.1) and (9.3)

Jarg dz| =| - ,] <|6] +% <. (9.4)

Hence if |¢;| <1z we have |¢,+0,]<im, so that

bl .
PR te'%) =|g’'(2,)| cos (¢; +6,) >0, at t=0.

Also for t=0

o* ;
pre u(z, +te*) =R (,% glzy +te'9) =R ¥4 g" (2, +te'*) >0,
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since by our hypotheses

T

rr n
|arg {e¥**g" (2, + te'®)}| < 1 + 24, < 5

Thus if w(z; +te'*)=wu,(¢) then
t

uy (£) = w1 (0) + j uy (7)dT=>u1(0)>0,
)

provided that (z;+te') lies in |z—2z,| <7, so that u,(t) increases with ¢ as required.
Similarly u(z,+te'®) increases with ¢, when z, lies on y, and |¢,~n|<}n. This
completes the proof of Lemma 5.

10. The estimate for F(e'%)

We can now prove

LeEMMA 6. We have with the notation of Lemma 3

3
flec”(C)dC > Cuto (Alh )*’
0 Co,

provided that N> A,(1+1log* 1/C) where 4,, A, are positive absolute constants.

Let £, be the zero whose existence is asserted in Lemma 3. We apply Lemma 5
with zy={_,=&,+in, 7=10"%h and —g({) instead of g(z). Let y be the corresponding
cross cut with end points (,, &5, where |,]<|C,| <|Cs]- Let &y, &, be the points

h h

h=6— 55 =6 tigg (10.1)

and let I be the contour 0,341, taken along straight line segments from 0 to
& &y to &y &y to £, and from £, to 1 and along y from £, to ;. We proceed to

estimate

I =J 7O d;
r
by considering the integrals along each of these arcs in turn.
Set L=C,+re®”, —107°h<r<107%h,

on y, where r= —10"%h, 107h correspond to (,, {; respectively, and

g9()=U(r) + v,
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on y, where v is constant. Also by (9.4) we have on y

, 3n
|arg dC|=|argg' (0)| <5

1073

37
f eC”‘C’dCl > Rf eCOO- M gr > f e“Y? cos 5 o
v v

-107%h

Now since g'(£,) =0, we have
[
9(0) = 9(Co) + f a0 @

We integrate along a straight line segment from (, to {,+re'*”, and note that in
this segment we have by Lemma 3 (a)

1 5“
@l <3, Jegl <.

Thus for |z—z,|=r we have

5oy r®
5

107 _ 2
> cos ?%t e" f exp (M—) dr

—107%h

3 \} b
> cos %73 PRlC (%%) f e dt,

[u(z) — ulze)| < |g(2) — g(z5)| <

f A dC
Y

Thus

—ty
3
where t,=1073 (—5-%) =Ct10728 57,

Hence fy—occ as N->oo, and we deduce that

o0 dr|> a6 (BN it W5 4,108 10.2
e C = 3e C'oz s 1 LY | Og C? ( - )
Y 0.

where A4,, A,, A; are absolute constants.

Again we have for z={,+re'®, 0<r<107%h,
i 2 r

e g (z)=¢" f g"(0)ds = f 9" (o +te?) dt.
2o 0

Thus we have in view of Lemma 3 (a)

14 — 642907, Acta mathematica. 112. Imprimé le 2 déeembre 1964.
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l9' )| > U Rg”(¢o+te‘¢)dt! “"’

ou s
Also on y g(z)~g(§o)=u(z)—u(z0)=J. (—l—sdsz ~fy|g (2)| ds
Y
2
f 7a°tdt< _ 35ho;0r

In particular we have if {=¢, or {,, so that r=107%h,

Ieca(;)l < U@ exp (:_A_}:_Oﬁ)) . (10.3)
2
Next we have |tan arg (£, — &;)] < 5> 80 that |arg (£, —¢)|<
. 3 .
since  R({,—(y) > 13—0 1000 0065k, |J(5— )] < 63O+10 h < .0026 .
B\NE, (R Y _ R

Also —- gl/ — ) <.

[ (630) +(130) <120

C9®]| increases

Thus by applying Lemma 5 (d) and using Lemma 3 (c) we see that |e
as { describes the segment [, ,, so that (10.3) holds on this segment also. Similarly
(10.3) holds on the segment {,¢,.

Finally by Lemma 4 and (10.1)
w(f) <u(l,) on the segment [{,, 1] and wu({)<wu({;) on the segment [0, {,]

so that (10.3) holds on these segments also.

Thus (10.3) holds on all of I'" except y. Since the total length of the four segments
which make up this part of I" is at most 2, we deduce from (10.2) and (10.3) that
for N> A,log (4;/C) we have

B\t — A0\ _ 1 AN
> Cua | =~ ) _ 9, ,Cule B b ) S Cudo( ) |
l - Aje (C ) 2e exp( 7 ) 2A3e ( )

COu,
AgCa, K
rovided that 2ex (———0) <-4 ( )
p p 3 Og
L . 3 10
ie. if AgC5Y > logC+logA log2+Nlog2i

which is true if N> A,log(A4y/C). This completes the proof of Lemma 6.
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11. Proof of Theorem 3

To complete the proof of Theorem 3, we need to estimate |f(z)| from above in
the neighbourhood of ¢® and to estimate the quantity »(,) which occurs in Lemma 6
from below. The result is contained in

LevMa 7. We have for all sufficiently large N

u(Zy) =35, (11.1)
Also if z=re and  are related as in Lemma 3 and
ettty
U(z) =u[l(2)] = R f T da(t),
0 € z
then if 0<d<4%, |0~0))<(4—8)h and 1—}8*h<r<]1, we have
U() < bu(ly). (11.2)

It follows from the arguments leading to the proof of Lemma 6 that u(l) assumes
its maximum value on the path I' at the point {,. Also I' contains the interval [0, {1]
of the real axis and
h

C1=§0—E(—)> .83h,

by Lemma 3 (b). Again when [ =.83h, z=re'%, where r=1—.83h

_(_Q=rda(t) (1~ ) da(t)
U(z)—fo 1—2rcos(00—t)+r2>f,.1—2rcos(60—t)+r2

h —_—
- Lh [(T‘%lr)z—g?“ 0(1)] (0 + 7).

The function «(f,+17) increases by «,/4 in each of the intervals [.8h, .82A] and
[.98R, h]. Thus

1 1
(1 _7,)2_'_ (.82)2h2+ (1 "1’)2+h2] + 0(“0)

UR)=(1—~7) ao[

_ B3oy 1
ro[(.83)2+

Since u(l,) > u(l)=U(z), we deduce (11.1) for small %, i.e. large N.

1'121 %01 +o(1)].

+ O(a) >

1
(.82)2+ 1+ (.83)2]
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Next suppose that z=re, where r>1—¢%h/8 and [0—0,]<$h(1—35). Then we
have by (8.1)

— %) daft) g (1 —7%) daft)
Ute) = fl — 27 cos (6 —t) + 7* El 5 1—2rcos(0—1t)+r*

We have 1—2rcos (8 —8)+r2=sin®(0—t)=

4w—n
- (11.3)

since |# —t]<1<}n, and also since 0 lies in J, and so in J, we have for ¢ in J,
|6—t]>16%10°
by (8.2). Thus

N1 f (1 —r%) daft) Z 2(1 —r) daft)
J;1~2rcos(6-—t)+r o J1 [32h10”]

221 —1r) ™S - —r)a, o
T VZ (50)" <! 45h2 360%"

Again in J, we have [t—0,|> 4% in the intervals in which «(t) is not constant and
|6 —6,| <4k (1—6). Thus by (11.3)

1—2rcos(§—t)+ 72> - (460)%,

U . 2
so that f (1 —77) dal?) <2°‘0(1 r)257° oy

5o 1—2rcos(68—1t)+72 64 6%1° 2h°

if (1—7)<3206%h/(257%) i.e. certainly if r>1—6%h/8. Thus in this case

Ulz) < %)

2h 360h 2
by (11.1). This completes the proof of Lemma 7.

11.1. Tt remains to put our results together. If we set

) =fo o) dz,

then with the notation of Lemma 3

elba
[ e
1]

| F(e'o)| =

= ‘ flng(c) ¢'% dc I > gCutn (Alhs) ¢
0 Coy
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by Lemma 6, provided that N> A(l+log* 1/C). Suppose next that z,=re®, with

2
r> l——%‘, and [6—60|<§5ﬁ(1—6).

We integrate f(z) from e so z,, first along a radius from e to re'®, and then along

the smaller arc of |z]=r from re® to z,, On this path we have by (11.2)
If(z)l = CU@ egCu(Co).

Also the length of the path is less than 2. Thus

[

by (11.1}, provided that N> A(d)(1+log* 1/C), where A(d) depends only on 4. Thus

>ecu@o) Alhs &_ 28“%01‘(50) >ex —_
> pI(1.1—8) ay C/R,

| Pzo)| = | F(e'®)| — Oty

O+ 401~ 0) ) -
J log* | F(re®)]| do 581 =9)
00— $h(1—8) 5

_ay % ¢
(1.1-8)=2=.

There are just 2¥=1/x, different values of 6, for fixed N, and their total contribu-
tion is thus at least 1.6(1—6)(1.1~4)C. For N we have the inequalities
N 1. v_ 8
A@)(1+log*1/C)<N and h-——‘élO >3 (-7,

2

9
th t < ——— |
so tha Nlog10 10g16(1—r)
The number N, of distinet values of XN satisfying these inequalities itself satisfies

1 1 16 !
N0>10g10{logl_r Iogaz} A(é)(l-l—log _é) 1,

(1-5) 1
“log 10 {log 1 —r}’

if logi—_l:; > 4, () (1 +log* é—) (11.4)

where 4,(d) also depends only on 8. In this case

16(1-0P(L1-8)C, 1
27 Jog 10 log 11—+

1 2 + i0 No
py fo log* | F(re )|d0>%1.6(1 0 (1.1-8)C>
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We note that (1.6)(1.1)/(2rlog10)=.121.... Thus if 8 is a sufficiently small absolute
constant and (11.4) holds we deduce that

L 2"10 * | F(re®)|d6>.12C o, 1
27 Jo 8 ' 81—+

This gives Theorem 3.
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