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Abstract

Two functions A and A,, of interest in combinatorial geometry and the theory of
linear programming, are defined and studied. A(d, ») is the maximum diameter of convex
polyhedra of dimension d with = faces of dimension d —1; similarly, A,(d, ») is the maximum
diameter of bounded polyhedra of dimension d with n faces of dimension d—1. The dia-
meter of a polyhedron P is the smallest integer [ such that any two vertices of P can be
joined by a path of [ or fewer edges of P. It is shown that the bounded d-step conjecture,
ie. Ay(d, 2d)=d, is true for d<<5. It is also shown that the general d-step conjecture, i.e.
A(d, 2d)<d, of significance in linear programming, is false for d>4. A number of other

specific values and bounds for A and A, are presented.

Introduction

In this paper two functions, A and A,, of interest in combinatorial geometry and the
theory of linear programming, are introduced and studied. For 1 <d <n, A(d, ») is defined
as the maximum diameter of polyhedra (i.e. convex polyhedra) of dimension d with
faces of dimension d—1. Similarly, A,(d, ») is the maximum diameter of bounded poly-
hedra of dimension d with n faces of dimension d—1. Here the diameter of a polyhedron
P, denoted 5(P), is the smallest integer I such that any two vertices of P can be joined by
a path consisting of I or fewer edges of P. The functions A and A, provide a convenient
notation for expressing a number of so-called “step” conjectures which have been circu-
lated more or less informally in the fields of geometry and programming. One of the
principal specific accomplishments of this paper is the proof of a 5-step conjecture which
implies that Ay(d, ») <n —d whenever n<d+5.
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The function § can be related to the study of what might be called edge-following
linear programming algorithms, which start with a vertex of the feasible region and pro-
ceed along suceessive edges of this region, according to some rule, until an optimum vertex
is reached. The feasible region of any linear program (if not empty) is a polyhedron, and
conversely, given a polyhedron P, it is always possible to construct a program with P as
feasible region and specify an initial vertex so that at least 8(P) iterations are required
to solve the program regardless of the edge-following algorithm employed. Thus A(d, n)
represents, in a sense, the number of iterations required to solve the “worst” linear program
of n inequalities in d variables using the “best” edge-following algorithm.

Discussing a general linear programming problem whose feasible region is determined
by m linear equalities in % nonnegative variables, Dantzig writes (p. 160 of [2]): “It has
been conjectured that, by proper choice of the variables to enter the basic set, it is possible
to pass from any basic feasible solution to any other in m or less pivot steps, where each
basic solution generated along the way must be feasible. For the case m <4, the conjecture
is known to be true [W. M. Hirseh, 1957, verbal communication].” Later (p. 168) he states
essentially the same problem in geometric form: “In a convex region in » —m dimensional
space defined by n balfspaces, is m an upper bound for the minimum-length chain of
vertices joining two given vertices?”

We shall call the above quoted conjecture, namely that A(d, n) <n—d, the general
Hirsch conjecture, and the assertion that Ay(d, n)<n—d, the bounded Hirsch conjecture.
The reverse inequalities, A(d, n)=n—d, and A,{d, n)=n—d when n<2d, are presumably
well-known and will be established incidentally in Section 2. The widely known special
cases of these conjectures, namely A(d, 2d) <d and A,(d, 2d) <d, will be called respectively
the general d-step conjecture and the bounded d-step conjecture.

Two major results of this paper are the evaluations A5, 10)=5 and A(4, 8)=5,
which prove the bounded 5-step conjecture alluded to in the first paragraph and disprove

d"d 1 2 3 A 5 6

1 1

2 * 2 3 4 5 6 ... A@, my=n-2
3 * 3 4 5 6 ... AB.m=n-3
4 * {5 ? ?

5 * ? ?

: i

Fig. 1. Values of 4(d, n).
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2 * 2 2 3 3 4 4 ... 4,2,n=[n/2]

3 * 3 3 4 5 5. ... 4,3, ny=[2nj3}—1
4 * 4 5 ? ?

5 * S ! ?

6 * ? H

Fig. 2. Values of 4,(d, n).

the general 4-step conjecture.® In fact, it will be shown that A(d, 2d) >d +[d/4], so that
excess of A(d, 2d) over the conjectured value tends to infinity with d. Some additional
results to be developed here can be described in terms of Figs. 1 and 2, which give all the
known values for A(d, n) and A,(d, n). The asterisks indicate that each column is constant
from the main diagonal downwards. Note that the d-step conjectures are concerned pre-
cisely with the values on the diagonal.

The values for d =2 are obvious. The values for A(3, n) were given in [12] and [13]. The
values for A,(3, n), and for A,(d, n) when n<d+4, were established in [9]. The remaining
entries are computed in this paper. In addition to these specific results, certain mono-
toneity properties of Figs. 1 and 2 will be proven. It will be shown that the rows in Fig. 1
and the diagonals paralle] to the main diagonals in both figures are strictly increasing.
It will also be shown that the rows in Fig. 2 and the columns in both figures are nonde-

creasing.

1. Definitions and Preliminary results

As the term is used here, a polyhedron is the nonempty intersection of a finite number
of closed halfspaces in a finite-dimensional real vector space. A polytope is a bounded
polyhedron. In addition to P itself, which is called the improper face, the faces of a poly-
hedron P are the intersections of P with its various supporting hyperplanes. We shall not
consider the empty set, &, a face of a polyhedron. Two polyhedra are said to be incident
if one is a face of the other. The dimension of a polyhedron P will be denoted by dimP.
Dimensions will also be indicated by prefixes, and the O-faces, 1-faces, and (d—1)-faces

() Thus Dantzig’s statement “For the case m<4...” should be modified to read “...m<4...’
or should be restricted to bounded regions.
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of a d-polyhedron P are called respectively the vertices, edges, and facets of P. A pointed poly-
hedron is one which has at least one vertex. A pointed d-polyhedron is said to be simple
if each of its vertices is incident to exactly d edges.

As we shall use the term, a (closed) complex is a finite set X whose members are
polyhedra situated in some finite-dimensional space such that (a) every face of a
member of X is a member of X and (b) the intersection of any two members of X
is empty or a face of both. Any two sets of polyhedra, X; and J,, whether compiexes or
not, are said to be equivalent if there exists a one-to-one correspondence between X, and
X, which preserves dimension and incidence in both directions. For any polyhedron P,
the complex of P, written J{(P), is the complex consisting of all faces of P including P
itself. Two polyhedra P and @Q are said to be (combinatorially) equivalent if X(P) is equi-
valent to J(Q). In general the set Xz(P)=X(P)~XK(F), where F is a face of the polyhedron
P, is not a complex because certain faces of its members are not members. Nevertheless
X(P) may be equivalent to the complex of a polyhedron ¢, and when this happens we
shall say the face F' of P is removable and @ can be obtained from P by removing F. It is
easy to construct examples of polyhedra with removable and nonremovable faces and to
show nonequivalent polyhedra may give rise to equivalent polyhedra upon removal of a
proper face from each. It is apparently a difficult task to characterize the removable
faces of an arbitrary polyhedron. However, the following proposition and its immediate

corollary will meet the needs of this paper.

1.1. ProrositioN. If the polyhedron P is contained in the strip between two parallel
supporting hyperplanes H and H', then the face H N P is removable.

Proof. The proof consists in constructing a projective transformation of P into a
polyhedron @ such that (@) is equivalent to Xy p(P). From E, the vector space in which
P, H, and H' are situated, construct ¥ x R, the product of ¥ with the real numbers. Let
J=HXR and J'=H' xR, so that E x {0}, J, and J' are hyperplanes in K x B. Choose
a point u in J ~ (H % {0}), and for each point p in P~ H, let 7p denote the point at which
J’ is intersected by the ray issuing from » and passing through p X 0. Then 7 is a projective
transformation, @ =t(P ~ H) is a polyhedron in J’, and the faces of @ are exactly the sets
of the form 7(G'~ H), where @ is a face of P not contained in H. Hence K(Q) is equivalent
to Kunp(P).

1.2. CoroLLARY. Every proper face of a polytope is removable.

For two vertices « and y of a polyhedron P, a path of length | from x to y is a sequence

of edges of P, ([zy, %], (%1, %], .-, [%1_1, #]), Where zy==z and x;=y. The smallest ! for
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which such a path exists is the distance dp(z, y) between x and y in P. More generally a
facial path, specifically a (ky, k,, ..., k,)-path, from z to y in P is a sequence (K,, K,, ..., K,)
of faces of P such that

2€K,,

YEK,,
dimK, =k, 1<i<r,
K NK ,+0, 1<i<r

Note that a (1, 1, ..., 1)-path need not be an (ordinary) path, but for the type of problem
to be considered here, this distinction will cause no difficulty.

We shall say a polyhedron belongs to class (d, n) if it is a pointed d-polyhedron with
n facets and 1<d<n. Note that if a polyhedron belongs to & class, its diameter is well-
defined, and conversely, if a polyhedron does not belong to any class, its diameter is un-
defined or zero. We also introduce the concept of a triple, (P, , y), consisting of a (neces-
sarily pointed) polyhedron P and two vertices z and y of P. We shall say (P, z, y) is bounded,
simple, of class (d, n), etc. if P is. An edge or facet of P incident to a vertex » of P will
be called a v-edge or v-facet of P. Thus an alternate definition for A(d, n) (respectively,
Ay(d, n)) is the maximum of §p(x, y) as (P, z, y) ranges over all triples (respectively, boun-
ded triples) of class (d, n).

We turn now to two constructions, the product and the wedge, which will be used

repeatedly in the following sections.

1.3. ProrosiTioN. If P; i¢s a d;-polyhedron and P, is a dy-polyhedron, then their
product P, X P, is a (d, +d,)-polyhedron whose k-faces are precisely the sets of the form K, X K,,
where each K; is a ki-face of P; and k=Fk,+k,. In particular, the vertices, edges, and facets
of Py X P, are respectively products of the vertices of the factors, products of a vertex of one
factor by an edge of the other, and products of one factor by a facet of the other. Thus the number
of facets of the product is the sum of the numbers of facets of the factors. A path « on P; X P,
corresponds to the locus traced out by the product of two points which trace out paths §, and f,
simultaneously on their respective factors in such a way that at any time at most one of the
points is not af a vertex of its factor. The paths (8, and f, are the projeciions of o on Py and
P, (it being understood that one-point projections are deleted). Thus the diameter of the product
18 the sum of the diameters of the factors. If both factors are bounded or simple, so is the product.

1.4. ProPos1iTION. Suppose K is a k-face of a d-polyhedron P, 0<k<d. Let C denote
the product of P with the half-line L =10, o), and let each point p.in P be identifted with the
point pX0 of C.-Let H be a hyperplane in the space spanned by C such that HNP=K and
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H intersects the interior of C. Then C is divided by H inio two (d +1)-polyhedra, one of which,
say W, contains P. Combinatorially, W is completely determined by P and the choice of K.
We shall call W the wedge over P with foot K. The facets P and H N C, which will be called
respectively the lower and upper base of W, are equivalent. If x is a vertex of P not in K,
x* will denote the vertex of the upper base over x, that is, the intersection of the upper base
with the product of x and L. An s-face of W is either an s-face of one of the bases, or the wedge
over an (s—1)-face T of P with foot TN K, or a face V of W intersecting both bases but not
K; in the last case V is equivalent to the product of V 0P with an interval. Indeed, W may
be obtained (combinatorially) from the product P X[0,1] by collapsing K X[0, 1] into K.
Thus the paths on W correspond to simultaneous paths on P and [0, 1] subject to the same
restriction as in 1.3 except that when the point in P is at a vertex of K the point in [0, 1] may
change endpoints without contributing an edge of W. The path in P is the projection parallel
to L of the path on W. If P is bounded, so ws W. If P is simple and K is a facet of P, then
W is simple.

Finally, we summarize some properties of simple polyhedra. We shall occasionally
refer to this summary when in need of a result on simple polyhedra, even though the

needed result may require some intermediate argument.

1.5. ProprosiTIoN. Suppose P is a simple pointed d-polyhedron, d>1. Then:
(a) For any neighborhood N of a vertex of P, there exists a closed halfspace J such that

PNJ is a d-simplex contained in N. Thus if r and s are any integers satisfying

d —
0<r<s<d, then every r-face of P is inctdent to exactly ( ) s-faces of P.

,

d—s

(b) Each k-face K of P is a simple k-polyhedron. Moreover, if k<d, K is the intersection
of d—Fk facets of P, and conversely, the intersection of any d—k facets of P is empty
or a k-face of P.

(c) Suppose x,, ..., x, are successive vertices of a path of length l on P. For each i, 0 <i<l,
in passing from x; to x;,, exactly one facet of P is left behind and exactly one new
facet of P is met. If, in all, the vertices z,, ..., &, are incident to n different facets of

P, then Il=2n—d. If 1<d, the path lies entirely in a face of P of dimension at most l.

2. Some reductions

The main results of this section are ‘“reduction theorems’ in various senses. A first

group of three results may be summarized as follows:

2.1. It is sufficient to consider simple polyhedra and simple polytopes when deter-
mining A(d, ») and A,(d, »).
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2.2, Tt is sufficient to consider dp(z, ) for vertices  and y not on any common facet
of P when determining A(d, #) and Ay(d, ») if n>=>2d.

2.3. It is sufficient to consider vertices x and y which are incident to unbounded edges
of P when determining A(d, ») if d>2.

From these results some recursive inequalities for A and A, are developed, including:

2.4. Figures 1 and 2 are constant from the main diagonal downwards; that is,
ATk, 2d+E)=A(d, 2d) and A,(d+k, 2d+k)=A,(d, 2d) for all positive integers d and k.

In view of 2.2 and 2.4 we are led naturally to consider what we shall call a Dantzig
figure, specifically, a triple (P, , y) of class (d, 2d) with exactly d facets incident to « and
exactly d other facets incident to y. We shall also recall a conjecture of Wolfe and Klee
[12, 13] that any two vertices of a polytope can be joined by a so-called W, path—that is,
by a path which “visits” no facet more than once. Despite an apparent greater strength

of this conjecture (which prompted its original formulation), we show:

2.5. THEOREM. The following four assertions are equivalent:

(a) Any two vertices of a simple polytope can be joined by a W, path.

(b) The bounded Hirsch conjecture is true for all d and n, I1<d<n.

(¢) The bounded d-step conjecture is true for all d.

(d) For any simple d-dimensional bounded Dantzig figure (P, z, ), 0p(x, y) =d.

Our first goal is to show attention may be restricted to simple polyhedra and poly-
topes when computing A and A,. This was shown for A, in [9] by an argument which
involved passing from a polytope P to the polar polytope and applying a “‘pushing process”
in which the vertices of the polar were pushed inward. This pushing process was carried
out in such a way as to produce a new polar polytope corresponding to a simple polytope
@ with diameter at least as large as the diameter of P. A similar but somewhat simpler
“pulling process’ was described in [4]. Had the displacements of vertices of the polar been
specified in [9] as along a line through the center of the polarity, rather than in an arbitrary
direction into the interior of the polar, the modified polytope @ would have been precisely
the result of parallel displacements of the hyperplanes determining the facets of P. A
little thought suggests that a small parallel displacement of the facets of a nonsimple
polyhedron, whether bounded or unbounded, can be made to produce a simple polyhedron
of no smaller diameter. This and other more-or-less plausible results concerning parallel
facet displacement will be proven in a separate paper by the second author. The re-

sult we need here is the following:
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2.6. LemMA. For any nonsimple polykedron P of class (d, n) there exvists a simple
polyhedron Q of the same class such that:

{a) @ is bounded or unbounded according as P is.
(b) There exists a mapping 0 of K(Q) onto X(P) such that if F and G are any faces of
K@), then
(i) F2G implies 0(F)26(G);
(i) dimO(F)<dim F.
Moreover every face of X(P) is the image under 0 of a face of K(Q) of the same dimen-

ston.

From this follows readily:

2.7. LeMMA. Suppose d, n, r, and ky, ..., k, are positive infegers with each k, equal to
or less than d. If there exists a (ky, ..., k,)-path from x to y in every simple bounded triple
(P, x, y) of the class (d, n), then there exists such a path in every bounded triple in that class.
The foregoing statement is also true when “‘bounded” is replaced by “unbounded’ or removed

entirely.

Proof. Suppose the “if”” part of the statement is true for a particular set of values
for d, n, r, and ky, ..., k,, and let (P, z, y) be any bounded triple of class (d, n). By 2.6
there exists a simple d-polytope @, a mapping 6 of K(Q) onto X(P) as in 2.6, and vertices
«" and 3’ of @ mapped by 6 into x and y respectively. Since we have supposed the “‘if”
part of the statement true, there is a (ky, ..., k,)-path, say (K1, ..., K,), from =’ to ¢’ in Q.
From property (i) of 2.6 it follows §(F) and 6(Q) intersect in P whenever the faces F and
@ intersect in @. Thus (8(K3), ..., 8(K;)) is a path from z to y in P. In fact, by property
(ii) of 2.6, it is a (k7, ..., ky)-path with k] <k, But of course we can replace each member
0(K;) of the path by a face K, of P which contains it, so that (K, ..., K,) is a (k;, ..., k,)-
path from x to y in P. This proves the lemma for polytopes. The same proof applies for
unbounded or unrestricted polyhedra.

It will be seen immediately that 2.7, applied in the special case of (1, 1, ..., 1)-paths,
is sufficient to prove 2.1. In the following theorem we shall show not only that 2.1, 2.2,

and 2.3 hold, but that the reductions they represent may be carried out simultaneously.

2.8. THEOREM. The value Ad, n), 1 <d <n, can be realized as the distance befween
vertices x and y of a simple d-polytope P with n facets. The value A(d, n), 2<d<n, can be
realized -as the distance between vertices x and y of a simple d-polyhedron P with n facets in
such a way that both x and y are incident to unbounded edges of P.XWhen n>2d the requirement
may be added (for A and A,) that x and y do not lie on the same facet of P.
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Proof. The theorem is trivially true for d <2; hence we shall assume in what follows
that d=>3. The first sentence and the first part of the second have already been proven
in 2.1 and 2.7.

Now suppose n>2d and consider A(d, ») as in the third sentence. From among the
triples (P, z, y) such that 6p(x, y) =A(d, ») choose one which maximizes the dimension
of the smallest face, &, of P incident to both & and y. We must show dim G'=d. Suppose,

to the contrary, @ is contained in some facet F of P. Note that
Or(x, y) >0p(x, y) = A(d, n)

and that F is a simple (d—1)-polyhedron with at most n—1 facets of its own. We can
construct from F a polyhedron F' with exactly n—1 facets by a suitable number of suc-
cessive truncations of vertices other than x and y. (For such other vertices not to exist
would lead to the conclusion G =[xz, y], an absurdity for d >3. Each truncation, of course,
increases the number of vertices by d—2.) It may be verified that F’ is simple, that
Op (z, y) =0p(x, y), that G, the intersection of G with F’, is the smallest face of #’ con-
taining z and y, and that dim ¢’ =dim @. Since F’ is simple and n—1>2(d —1), there must
be at least one facet K of F” not incident to either z or y. (This is an immediate result
of counting the number of facets incident to the simple vertices « and y. Similar compu-
tations will be relied upon without comment in the proofs of other results in this paper.)
Let W be a wedge over F’ with foot K, and let y* be the vertex over y in the upper base
of W. Then W is a simple d-polyhedron with exactly » facets, and

dw(x, y*) = 0p (@, y) > Ad, n),

where, by the definition of A(d, #), equality must actually hold. Now what of the smallest
face S of W containing both x and y*? Since S is not a face of either base of W, it follows
from the characterization of faces of the wedge in 1.4 that SN F’ contains « and y and
therefore G'. Since G’ is not all of 8, dim8>dimG. But then the triple (W, z, y*) con-
tradicts the choice of (P, x, ) so as to maximize the dimension of @. Thus dim G=d, and
we have verified the third sentence of 2.8 for polyhedra. The sameé argument applies to
polytopes.

To complete the proof of 2.8, we must consider a triple (P, z, y) satisfying all the re-
quirements of the theorem relative to A(d, n) except possibly for the existence of unbounded
edges incident to z and y. We may as well suppose P unbounded for if P were bounded
we could remove a-vertex without affecting other essential properties of P. Let L be the
line through = and y, let ¢ be the midpoint of the segment [z, ¥], and let C be the union
of all rays in P which issue from ¢. Then O is a polyhedral cone and O N L= {c}. Let H
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be a hyperplane which supports C' at ¢ and contains L, and let H' be a translate of H
intersecting the interior of C. P is divided by H' into two polyhedra, and the one of these,
P’, which contains z and y is bounded. If H’ is chosen sufficiently close to H, then P’
is a simple d-polytope with at most n-+1 facets such that at least one edge incident to «
intersects the facet PN H’' and at least one edge incident to y intersects PN H'. Now
let (P”, 2", y") be a triple obtained from (P’,z,y) by removing PN H’ and truncating
enough vertices to bring the number of facets up to n. It is not difficult to see that

(P", 2", y") satisties all the requirements of the theorem relative to A(d, n).

Using the foregoing general results, we shall next establish some simple inductive
inequalities for A(d, n) and A,(d, n). These inequalities, interpreted in terms of Figs. 1

and 2, are exactly the monotoneity conditions mentioned in the introduction.

2.9. PrRoPOSITION. If I<d<n, then
(a) Ad,n+1) >A(d, n), (b) Ayd, n+1)y  Z2Ad, n),
(¢) A(d+1, n+2)>A(d, n), (d) Ayd+1, n+2)>A7d, n).

Proof. Part (b) is easily proved by the truncation process used in the proof of 2.8.
Parts (c) and (d) follow from 1.3; if P is a d-polyhedron of diameter A(d, n) with » facets,
then P x[0, 1] is a (d+1)-polyhedron of diameter A(d, n)+1 with n+2 facets. For part
(a) let (P, z, y) be the triple of diameter A(d, ») described in 2.3, let g be an unbounded
y-edge of P, form a new polyhedron P’ from P by truncating y, and denote by ¥  the
new endpoint of g. Then P’ is a d-polyhedron with n+1 facets and §,(z, ¥')=A(d, ») +1.

2.10. PrRoPOSITION, If Y <d <, then
(a) Ad+1, n+1)>Ald, n),
(b) Ap(d+1, n+1)=A,d, n),
with equality in both cases if n<2d.

Proof. Consider (b); the proof for (a) is analogous. Let P be a d-polytope of diameter
Ay(d, n) with n facets, let K be any facet of P, and let W be the wedge over P with foot
K as constructed in 1.4. Then W is a (d+1)-polytope with n+1 facets and its diameter
is at least A,(d, »). This proves the inequality for (b). Now assume n<2d and let (@, z, ¥)
be a triple of class (d+1, n+1) such that d4(z, y) =A,(d+1, n+1). Since @ has fewer than
2(d +1) facets, it must have a facet P incident to both z and y. P is itself a d-polytope
with at most n facets, and clearly 8p(x, y) =d¢(x, ). The reverse inequality and hence

equality in 2.10b now follow from 2.9b.
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In connection with the d-step conjectures and the values of A(d, 2d) and A.(d, 2d),
we are led to introduce some special terminology. As was mentioned earlier, a triple
(P, z, y) is called a d-dimensional Dantzig figure if P is a d-polyhedron with 24 facets of
which exactly d are incident to x and exactly d others are incident to y. The name is
suggested by a problem posed by Dantzig in [3], which asks for the maximum of dp(z, ¥)
as (P, 2, y) ranges over all bounded d-dimensional Dantzig figures. From 2.3 it follows
that the answer, whatever its value may be, is exactly Ay(d, 2d). In this same connection,
let us also recall a notion from [12] énd [13]. A path ([xg, z,], --., [%;—y, 2,]) In & polyhedron
P is said to be a W, path if for i <j<k, z; is incident to a facet whenever x; and =, are.
Less formally, a path is a W, path if it does not revisit any facet of P. The following propo-

sition concerning W, paths is easily proven:

2.11. PROPOSITION.

(a) A path lying in a face F of a polyhedron P is a W, path in F if and only if it is a
W, path in P.

{b) A path in the product of two polyhedra is & W, path if and only if its projections in
the factors are W, paths.

(c) If a path in a wedge over P is a W, path, then so is its projeciion in P.

The final result of this section demonstrates the relationship among Dantzig figures,

W, paths, and the step conjectures.

2.12. LeMmma. Let m and d be positive integers, with d>2 tf m>1. Then each of the
following statements implies the next:
(a) The vertices x and y of any bounded simple m-dimensional Dantzig figure (P, z, y)
can be joined by a path of length at most m.
{(b) Any two vertices of a simple polytope of class (d, d+m) can be joined by a W, path.
(¢} The bounded Hirsch conjecture is true for class (d, d+m), t.e. Ay(d, d-+m)<m.

Proof. In 2.10 part (b) it was shown, though not explicitly stated, that the bounded
d-step conjecture is true for some dimension m if and only if the bounded Hirsch conjecture
is true for all classes (d, d +m). This is nothing more than an observation that the maximum
entry in any column of Fig. 2 can be found on the diagonal. Thus, because of 2.8, statement
(a) implies statement. (c). In fact, from an application of 2.8 and 1.5¢ it follows (b) implies
(¢). To see that (a) implies (b), let (P, z, y) be any bounded simple triple of class (d, d +m).
Write yo=y and let Fj be the smallest face of P incident to x and y. Then (F, z, y,) is a
bounded simple triple of elass (d’, d’ +m'), where d'<d and m'<m. Indeed, since no
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facet of F is incident to both x and y,, m'=d’ +k, where k is the number of facets of F,
incident to neither x nor y,. If £>0, let @ be any facet of F, missing = and y, and form
the wedge F; over F, with foot G. The triple (F,, z, y,), where y, is the vertex over y,,
is a bounded simple triple of class (d'+1,d +m’+1) with k—1 facets incident to neither
2 nor y; and none incident to both. Repeating the wedging process, we must obtain in k
steps a bounded sifnple triple (Fy, x, y;) of class (d'+k, d'+m' +k)y=(m’, 2m") with no
facets incident to both z and y,. If we suppose statement (a) true,; then since (Fy, x, yy)
is a simple Dantzig figure, since m’<m, and since 2.9d holds, we conclude there is a path
of length at most m’ from « to y, in F,. By 1.5 such a path is of length exactly m” and
must be a W, path. Now the projection of this W, path back through the sequence of
triples, (F', x, y;), produces a W, path in F from x to y. Since this is what is required in
(b), the lemma is proven.
The theorem, 2.5, now follows directly from the above lemma and 2.8.

3. Facial paths in Dantzig figures

In the previous section it was shown that the study of the d-step conjecture leads
naturally to the study of d-dimensional simple Dantzig figures (P, x, ). And from 1.5it
follows that dp(x, y)=d if and only if P admits a (kj, ..., k,)-path from z to y for every
sequence of positive integers (ky, ..., k,) whose sum is d. Thus it seems natural to study
the existence of such paths for Dantzig figures, and this is the purpose of the present
section. Our first results show that any simple Dantzig figure admits a (k,, 1, k;)-path
and that, as a consequence of a general relationship between unbounded and bounded
figures, any bounded simple Dantzig figure admits a (1, k,, 1, k,)-path. The latter result
implies the existence of (1,d—2, 1)-paths in the bounded case, a fact which is employed
in the proof of the bounded 5-step conjecture in Section 4. The rest of the present section
serves primarily as an introduction and supplement to Section 5, where the general 4-step
conjecture is disproved by constructing a 4-dimensional simple Dantzig figure (P, z, y)
admitting no (1, 2, 1)-paths from z to y.

If (P, 2, ¥) is a d-dimensional Dantzig figure, then P is the intersection of simple
polyhedral cones P, and P, with vertices x and y respectively. Each cone contains the
vertex of the other in its interior, and the faces of P incident to (say) x are subsets of faces
of P, of the same dimension cut off by the cone P,. Employing a natural correspondence,
we say an x-facet F and an z-edge f are complementary if f is the only z-edge not lying in
F or, equivalently, ¥ is the only x-facet not containing f. The same term applies to y-facets

and y-edges.
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3.1. ProrosiTiON. For any positive integers d, r, and ky, ..., k, such that k;<d, the

following are equivalent:

(@) Given any d-dimensional simple Dantzig figure (P, x, y), the vertices x and y can
be joined by a (ky, ..., k,)-path.

(b) Given any simple d-polytope P’ with 2d -1 facets, two vertices x and y of P’ not on
the same facet, and a facet F of P’ not incident to either x or y, then the vertices x

and y can be joined by a (ky, ..., k,)-path, no member of which lies entirely within F.

(c) Given any (d+1)-dimensional bounded simple Danizig figure (@, u, v) and any facet
G of Q incident to u, the vertices w and v can be joined by a (1, ky, ..., k,)-path, no
member of which lies entirely within G.

Proof. The proposition is easily verified when d=1, hence we may assume d>2 for

the rest of the proof.

(b)—(a). Assume (b) and consider (P, z, ) as in (a). Construct from P a simple d-
polytope P’ with 2d+1 facets as follows: If P is bounded, form P’ by truncating a vertex
of P other than « or y (such a vertex exists if d>2); if P is unbounded, “truncate the
vertex at infinity” by intersecting P with a halfspace J such that the interior of J contains
all the vertices of P and the boundary of J intersects all the unbounded edges of P. The
polytope P’ will satisfy the hypotheses of (b), with the facet added by truncation as F.
Let (K3, ..., K;) be one of the paths in P’ guaranteed by (b). Each K; is the result of a
(possibly trivial) truncation of a unique face K; of P of the same dimension, and none of
the intersections K; N K/, is empty, hence (K, ..., K,) is a path satisfying the requirements
of (a).

(a) —>(b). Assume (a) and consider (P’, z, y) and F as in (b). The figure (P, , y) ob-
tained from (P, %, y) by removing F satisfies the hypotheses of (a), hence there exists a
(ky, ..., k,)-path, say (K, ..., K,), joining z to y in P. It is easily checked that (Kj, ..., K;),
where each K| is the face of P’ corresponding to the face K, of P, is a path satisfying the
requirements of (b).

(@) A (b) —(c). Suppose (a) and (b) hold and consider (@, %, ) and G as in (c). Let
[u, x] be the u-edge complementary to @, and let P’ be the unique facet of @ incident to
x but not ». Then P’ intersects v and is itself a simple d-polytope with d facets incident
to z, d other facets incident to v, and at most one additional facet, which, if it exists, is
the intersection of P’ with @. If this extra facet is present, then (P’, z, v) satisfies the
conditions of (b), and the faces of the (&, ..., k,)-path from z to » guaranteed by (b),

together with [u, v], comprise a (1, ky, ..., k,)-path in @ from u to v. It is easily seen that
5—662903. Acta mathematica. 117. Imprimé le 7 février 1967.
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none of the members of this path lies entirely in &, hence this path satisfies the rquire-
ments in (c). If the extra facet is missing, the same result follows from an application of (a).

(¢} —~(b). Assume (c) and consider (P’, x,y) and F as in {(b). Construct the wedge @
over P’ with foot F, and let % denote the vertex of @ above z. Then (@, %, ) and G, where
G is the upper base of @, satisfy the hypotheses of (c). Let (K, Ky, ..., K,) be a (1, &y, ..., k,)-
path from u to v as required by (c). Since none of the K, lies in G, it follows that K=
[, ], each K, intersects P’ in a nonempty face K; of P’ which does not lie in F, and
each intersection K; N K/,; is nonempty. Now a face K; may fail to have dimension %;,
s0 we select faces K, 1 <4<r, so that K,  is a face of P’ of dimension %k containing %; . The

sequence (K1, ..., K,")is a (ky, ..., k,)-path of P’ from x to y satisfying the requirements in (b).

A number of special cases of 3.1 are of interest; we give here two corollaries which

follow immediately from 3.1 and 2.3.

3.2. CoroLLARY. For any positive integers d and 1, the following are equivalent:

(a) Given any d-dimensional simple Danizig figure (P, x, y), x and y can be joined by
a path of length at most 1. ‘

(b) Given any simple d-polytope P with 2d+1 facets, two vertices x and y of P’ not on
the same facet, and o facet F of P’ not incident to either x or y, then & and y can be
joined by a path of length at most | which does not intersect F.

(c) Given any (Vd +1)-dimensional bounded simple Dantzig figure (Q, u, v) and any facet
G of Q incident to u, then v and v can be joined by a path of length at most 1+1 which

intersects G at u only.
3.3. CoroLLARY. A(d+1, 2d+2)<A(d, 2d) +1.

3.4. ProrosiTIOoN. Let (P, z,y) be a d-dimensional simple Dantzig figure, and let
ky, ..., ky be positive integers such that ky +1+ky=d=1+k,+1+k, Then:

(a) P admits a (ky, 1, ky)-path from x to y.

(b) If P is bounded it admits a (1, k,, 1, k,)-path from x to y.

Proof. Consider an arbitrary path in P from x to y, let x, denote the last vertex on
this path incident to %, or fewer y-facets, and let x; denote the vertex following z,. From
1.5 it will follow that (K, [z, x;], K;) is a (&, 1, k;)-path from z to y, where K; and K,
are the intersections respectively of the z-facets incident to x, and the y-facets incident
to x;. This proves (a). An application of 3.1 to (a) proves (b).

It is a consequence of 1.5 that if a simple figure (P, «, y) admits a (ky, ..., k,)-path

from z to y then it also admits a (kj, ..., k;)-path from z to y, where the sequence (kj, ..., k;)
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F1 F2 F3
o O O
O O O
G1 G2 GS
Fig. 3.
is obtained from (ky, ..., k,) by removing adjacent terms and replacing them by a single

term equal to their sum. Thus, for example, 3.5 implies that bounded simple Dantzig
figures (P, #, y) of dimension d possess (1, d —2, 1)-paths from z to y. We do not know
if such figures must have (1, k,, kg, 1)- or (&, 1, 1, k,)-paths whenever 1+k,+k;+1=
k,+1+1+k,=d. In the rest of this section we will be concerned exclusively with (1, d —1)-
and (1, d—2, 1)-paths.

As a guide in making the construction in Section 5, we have relied not only on the
well-known notion of the Schlegel diagram of a polyhedron, but also on the notion of the
ef-diagram of a Dantzig figure, which is described in the next paragraph. While these
notions are not strictly necessary to present our results, both of them played an effective
role in our investigations.

The edge-facet diagram (or ef-diagram) of a d-dimensional Dantzig figure (P, z, y) is a
directed bipartite graph whose nodes are (identified with) the facets of P and whose arcs
represent the (1, d —1)-paths from z to y and y to z. The z- and y-facets of P are referred
to as a- and y-nodes of the diagram. The diagram contains a directed arc (F, @), called
an z-are, from the x-node F to the y-node & if and only if (f, G) is a (1, d—1)-path from
x to y, where f is the z-edge complementary to F. Similarly, (@, F) is a directed arc, called
a y-arc, from G to F if and only if the y-edge complementary to ¢ and the z-facet F con-
stitute a (1, d —1)-path from y to =.

In Fig:. 3 above, the Schlegel diagram and the ef-diagram of a 3-dimensional non-
simple unbounded Dantzig figure are shown.

A considerable amount of information about a particular Dantzig figure (or Dantzig

figures in general) can be extracted from the ef-diagram. As the following proposition
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will show, the ef-diagram provides information about the (1, d—2, 1)-paths as well as the
(1, d~—1)-paths. Part (d) of the proposition will be used in analyzing the counterexample

in Section 5.

3.5. ProrosiTioN. The ef-diagram of a d-dimensional Dantzig figure (P, x,y) pos-

sesses the following properties:

(a) There is at least one x-arc.

(b) For every z-arc (¥, Q) there is a y-arc (', F'} such that G' +G.

() If there is an z-arc (F, G) and a y-arc (G', F'Y such that F' +F and & 4G, then P
admits o (1, d—1, 1)-path (f,Q, g') from x to y, where f and g’ are respeciwvely the
edges complementary to F and G'. If P is simple, the converse holds.

(d) I} P does not admit (1, d—2, 1)-paths from x to y, then the ef-diagram contains exactly
two x-arcs, (F, @) and (F', @), and exactly two y-arcs, (G, F') and (G, F), and
moreover F' = F and G' +G. If P is simple, the converse holds.

Proof. (a) P must have at least one bounded z-edge, and every bounded x-edge is the
first member of a (1, d —1)-path from x to y.

(b) Suppose (F, G) is an z-arc. Since G intersects an x-edge, it cannot be a cone and
s0 must contain at least one bounded y-edge ¢’. Since ¢’ is bounded there exists a y-arc
(&', F'), where G is complementary to ¢’, and since ¢’ is not complementary to G, G’ +=G.

(¢) Tt is readily checked that, if the hypotheses hold, then (f, F' N\ G, ¢’) is a path from
z to y. If F' N & has dimension less than d —2, the deficiency is easily removed by replac-
ing F' N G by a face of dimension d —2 containing it. Conversely, if P is simple and (f, @, g")
is a (1,d —2, 1)-path from z to y, then there exist (actually unique) facets F' and G such
that F' > fUQ and G>QUg'. The facets F, &', F', and G satisfy the desired relationships.

(d) An application of (a), followed by repeated applications of (b) with care not to
produce a pair of arcs as in (c), leads directly to the indicated diagram. The converse is

a direct consequence of the converse to (c).

4. Proof of the bounded 5-step conjecture

The bounded d-step conjecture has been established elsewhere for d <5; it will be
proved here for d=>5. As we saw in 2.8, to establish the bounded d-step conjecture it
suffices to show that dp(z, ¥) <d whenever (P, x,y) is a d-dimensional bounded simple
Dantzig figure, By 3.4 there is always a (1,d —2,1)-path (f, @, g) from z to y in such a
figure, and, of course, @ is a (d —2)-polytope with at least 2d —4 and at most 2d —2 facets.
We shall first prove that if @ has a certain property defined below, then dp(z, ) <d. We
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then prove the bounded 5-step conjecture by showing that this property is possessed
by every simple 3-polytope with 6, 7 or 8 facets.

A d-polytope @ will be said to have property A provided the number of facets of @
is between 24 and 2d+2, and the following condition is satisfied: If the facets of @ are
divided into two disjoint classes X and Y, each consisting of at most d+1 facets, if X
(respectively Y) denotes the set of all vertices of @ which are entirely surrounded by
members of X (respectively YY), and if neither X nor Y is empty, then @ admits a path
of length at most d joining a member of X to a member of Y.

The proposition, ‘“Property A4 is possessed by every simple d-polytope with 2d, 2d +1,
or 2d+2 facets,” would be a strengthened form of the d-step conjecture. The proposition
is obviously true for d=2, and we show below that it is true for d=3. That it is false for
d=4 may be seen by considering a wedge over the polytope shown in Fig. 4. Since the
graph of Fig. 4 is planar, 3-valent, and 3-connected, Fig. 4 is at least equivalent to the
Schlegel diagram of a simple 3-polytope T (cf. {87, [11], [14]). Let W be the wedge over
T with foot F. Assign the lower base of W to the class X, the upper base to the class Y,
and assign the lateral facets to X or Y according to the labeling in Fig. 4 of their inter-
sections with the lower base. Then X ={z}, Y ={y*}, and dy(x, y*)=5. Hence W lacks
property A, although it is a simple polytope of class (4, 10).

There is also an example of a simple 5-polytope with 11 facets which lacks property
A. Take the triple (P, z, y) of class (4, 8) and diameter 5 constructed in 5.1. Truncate the
vertex at infinity to produce a triple (@, #, ) as in 5.2 and designate the new facet F.
Let w and v denote the vertices of @ where the two unbounded x-edges of P intersect F.
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The segment [u, v] will be an edge of Q. By intersecting £ with a halfspace J which misses
u and v but contains all other vertices of @ in its interior, form a polytope @ with facet
F'=FnJ,etc., and denote by G the new facet. Label F’ and the x-facets of @ as X facets
and G and the y-facets as Y facets. Thus @’ is a simple polytope of class (4, 10), X ={x},
Y={y}, and g (z, y)=5, so that @ is an alternate to the example constructed from
Fig. 4. Now let @ be the wedge over @’ with foot G. Assign the lower base to X, the upper
base to Y and the lateral facets according to the labeling in @'. We have X = {z}, ¥ = {y*},
and @" is a simple polytope of class (5, 11). Now suppose, as required for property A,
that o were a path from x to y* of length 5. Consider the path 8 obtained by projecting o
into . Of course 5 has length at most 5. Since dq (%, y) =5, by the characterization of
paths in wedges in 1.4, § must visit G. But G does not intersect any y-facets of @'—only
x-facets and F'. Therefore when f leaves G it either retraces to x or visits #. Either alter-
native implies the length of # is 6. The contradiction shows @” does not have property 4.

These examples of polytopes of class (4, 10) and (5, 11) which fail to have property
A have suggested to us that there might be a simple polytope of class (6, 12) lacking
property A. Such an example would be nothing less than a counterexample to the 6-step

conjecture.

4.1. ProrosirioN. If a d-dimensional bounded simple Dantzig figure (P, z,y) ad-
mits o (1, d—2, )-path {[x, '], @, [¢/, ¥)) such that Q has property A, then dp(z, y)<d.

Proof. Note first that ) is the intersection of an z-facet F with a y-facet ¢. Each facet
K of @ is the intersection with @ of a unique facet H(K) of P distinct from F and G. Let
the facet K be assigned to the class X or Y according as H(K) is an z-facet or a y-facet
of P, and let X and Y be defined as in the definition of property A. It is evident that
2'€X, y'€Y, and each of the classes X and Y includes at most d—1 facets of . Since
@ has property A4, there is a path of length at most d —2 joining a member 2" of X to a
member " of Y. But from the definition of the class X and the fact Q= F N @G, it follows
x” i3 the intersection of d—1 z-facets with G therefore, " is the endpoint of an x-edge.

Sinece also y” is an endpoint of a y-edge, there is a path of length d from z to y.

4.2. LEMMA. Every simple 3-polytope with 6, 7, or 8 facets has property A.

Proof. It should be clear that (if true) the lemma can be proved by exhaustion in
one way or another; we give a proof by contradiction. Suppose @ is a simple 3-polytope
with 6, 7, or 8 facets, and suppose X, Y, X, and Y are as in the definition of property 4,
but suppose no members of X and ¥ can be joined by a path of length less than 4. Select

any vertices x and y from X and Y respectively. If v, e, and f denote respectively the
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number of vertices, edges, and facets of G, then v ~e+f=2 (Euler’s theorem) and, because
G is simple, 3v=2¢, so v=2f—4. Now any two vertices of G, in particular z and y, can be
joined by three independent paths, that is, paths which intersect only at their common
endpoints [1]. Such paths must be of length at least 4, hence v>11. But since v=2f—4

we must have f=8 and »=12. Accordingly, there are two cases to be considered:

(1) For every choice of three independent paths from z to y, two of the paths are
of length 4 and one is of length 5. (In this case, every vertex of @ lies on one of the paths.)
(2) The vertices x and y can be joined by three independent paths of length exactly 4.

(In this case exactly one vertex is not on a path.)

Before we go on with the analysis of these two cases, let us consider an arbitrary
path of length 4 from x to y and note how the edges incident to the three intermediate
vertices may be distributed between the two sides of the path. They cannot all be on the
same side because then a facet would be incident to both z and y, contrary to the con-
struction of X, Y, etc. They cannot alternate, as in Fig. 5a, because if W€X then ' €X
and §(z’, y)=3, and if WEY then ' €Y and d(x, y') =3. Therefore, except for symmetries,
including a possible interchange of (¥, X, z) and (Y, Y, y), they must appear as in Fig.
5b, with W €Y because W €X would imply 2" €X and d(z", y)=3.

Now consider case (1). Note that no two vertices of the same path éan be connected
by an edge unless that edge is already an edge of the path. Let the sets of intermediate
vertices of the three paths be 4, B, and O, where B is the set consisting of four vertices.
Then each member of B is adjacent to a member of 4U C and, in fact, two are adjacent
to 4 and two to C. Recalling the significance of Fig. 55 and observing the restriction
d(x, y) >4, we soon see that the faces of G must be disposed as in Fig. 6a except for a
possible interchange of (¥, X, z) and (Y, Y, y). Comparing the top and bottom paths
from « to y in Fig. 6a with Fig. 5b, we are led to the conclusion, contrary to hypothesis,
that Y contains five facets. Thus case (1) cannot occur.

Finally, consider case (2). Reasoning quite analogous to that for case (1) shows that,

except for symmetries, the faces of G must be disposed as in Fig. 6b. As in case (1) we

Fig. 5.
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Fig. 6.

find, contrary to hypothesis, Y must have five members. This contradiction completes
the proof of 4.2.

We have now proven the major result of this section:

4.3. TaEOREM. A\(5, 10)=5.

5. Disproof of the general 4-step conjecture
In this section our first aim is to disprove the general 4-step conjecture. We then

show that A(4, 8)=5, A,(4, 9) =5, and A(d, 2d)>d +[d/4)].

5.1. TEEOREM. There exists a 4-dimensional unbounded simple Dantzig figure (P, , y)
whose edge-facet diagram is as follows:

F1 F2 F3 F4
(x) o ]D 0 o
y) (o) o} o} (o}

G, G, G, G,

Thus P admits no (1, 2, 1)-path from z to y, and in particular dx(x, y) >4.

Proof. The second statement will follow from the first by 3.5 and the remarks follow-
ing 3.4.

The 4-polyhedron P of our example is defined by means of a system of four linear
equations in eight nonnegative variables. These are shown in the basic tableau S of Fig. 7
below using the detached coefficient conventions of linear programming. Thus, for example,
the third equation is

35z, +45x, — 623 — 32, +y; =8.
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X1 Xz X3 Xy 141 Ya Y3 Ya b
S: 6 3 —1 1 1
3 6 -1 1 1
35 45 -6 -3 1 8
45 35 —3 -6 1 8
X1 X2 X3 X Y1 Ya Y3 Ya b
T: 1 3 [ -1 1
1 3 -1 1
1 45 35 -3 -6 8
1 35 45 -6 -3 8
Fig. 7

In verifying the important properties of P we shall use the terminology and basic results
of the simplex method. This will simplify the discussion, and it seems appropriate since
the problems of this paper were originally raised in connection with linear programming.

If M denotes the set of all points of R® which satisfy the four equality constraints,
then it is evident that M is a 4-dimensional flat in R®, and since M includes an interior
point of the positive orthant, namely x;,=y,=1/9, it follows that the intersection of M
with the orthant is a polyhedron P of dimension 4. A second basic form of the tableau S
is given in 7. It is easily verified that if the matrix of y-columns in 7' is applied as row
operations (left multiplication) on S, the tableau T results. The basic solutions of S and
T, namely

T =x = =2, =0, y=y,=1, y3=y,=8,

and N=Y=Y3=Us=0, zy=2,=1, x3=2,=8,

are vertices of P which will be denoted by x and y respectively. The four z-facets F, of P
are given by x,=0, and the four y-facets ; are given by y,=0. Utilizing the symmetries
in § properly, it is a matter of only moderate labor to verify that no positive linear com-
bination of three or fewer of the first eight columns of S is equal to the constant column.
This implies that no point of P is on five or more facets, i.e. (P, z, y) is a simple Dantzig
figure.

The ef-diagram of (P, x, y) can be constructed readily from 8 and 7. For example,
pivoting on y, in T’ removes y, from the non-basis and replaces it with x,. This corresponds
to leaving the y-facet G, along the y-edge determined by y,=%;=v,=0 and terminating
on the z-facet F,. Thus the ef-diagram contains an arc (G, F,). On the other hand the
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y-edge complementary to G, is unbounded, as indicated by the nonpositivity of the col-
umn for y,, and no arc of the ef-diagram issues from the node G5. The completed ef-dia-
gram is as required, and the proof of 5.1 is complete.

Of course an alternate proof that dx(z, y) >4 could have been obtained by considering
the various feasible pivot sequences on S. It can be checked, if desired, that S can be
transformed into 7' by successive feasible pivots on xy, ¥, @5, %, and z;, in that order,

followed by a permutation of the rows of the resulting tableau. Hence dy(x, y) =5.

52. THEOREM. A(4, 8) =A,4, 9)=5.

Pyroof. The example (P, x, y) of 5.1 shows that A(4, 8)=5. To see that A,(4,9)>5,
let @ be the simple 4-polytope with 9 facets obtained from P by truncating the vertex
at infinity as described in the proof of 3.1. If a path in @ from z to y intersects the added
facet, then by 1.5 its length must be at least 5. If the path never intersects the added
facet, it is a path in P and therefore a path of length at least 5. To see that A(4,8)<5or
A, (4, 9) <5, consider an appropriate triple (P, z, y) as described in 2.3. By 3.4, P admits
a (1, 3)-path (f, @) from x to y, where G is a 3-polyhedron with at most 7 facets or a 3-
polytope with at most 8 facets. The desired conclusions follow from A(3, 7) =4=A.(3, 8).
An alternate proof of A,(4, 9)<<5 can be obtained from 4.3 and 2.10b.

The example constructed in 5.1 not only disproves the d-step conjecture, it can be
used to show that the excess of A(d, n) over the value given by the general Hirsch con-

jecture tends to infinity with min(d, n —d).

5.3. PROPOSITION. A(d,n)>n—d+min([ﬂ, [Zb;—d])

Proof. Let k=min([d/4], [(n —d)/4]), so that d=4k+¢ and n—d=4k+j. Let @ be the
product of k copies of the polyhedron of 5.1. By 1.3, @ is a polytope of class (4%, 8k) of
diameter 5k; hence A(4k, 8k) = 5k. Then from 4 applications of 2.9a and ¢ applications of

2.10a, it follows
A(d, n) =A(d, 8k+i+j)=bk+j=n—d+k.

6. Some rough bounds for A(d, r) and A,(d, n)

In this section we collect a number of miscellaneous results on bounds for A(d, n)
and A,(d, n). It was proved in [9] through construction of specific polytopes that

Ab(d,n)>(d—l)[g] —d+2, d>3, (6.1)

@-1

and Ab(d,n)=[ ; ”]—d+2, d<3.
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Combining these values with the special value A,(4, 9)=5 from Section 5, employing the
monotoneity conditions of 2.9 and 2.10, and making occasional use of 1.3, we can obtain
the lower bounds for ‘A, tabulated in Fig. 8.

d 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

2 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14
3 3 3 4 5 5 6 7 7 8 9 910 11 11 12 13 13 14 15 15 16 17 17 18 19
4 4 5 5 6 7 7 8 8 10 1010 11 13 13 13 14 16 16 16 16 19 19 19 19 22
5 5 6 6 7 8 9 9 10 11 11 13 13 14 14 14 17 17 17 17 19 21 21 21 22 23
6 6 7 7 8 9 10 11 11 12 13 14 14 16 16 17 18 18 18 21 21 22 22 22 23 26
7 7 8 8 9 10 11 12 13 13 14 15 16 17 17 19 19 19 21 22 22 23 25 25 26 27
8 8 9 10 10 11 12 13 14 15 15 16 17 18 19 20 20 22 22 23 23 25 26 26 27 29
9 9 10 11 11 12,13 14 15 16 17 17 18 19 20 21 22 23 23 25 25 26 27 27 29 30
10 10 11 12 12 13 14 15 16 17 18 19 19 20 21 22 23 24 25 26 26 28 82 29 30 3
11 11 12 13 13 14 15 16 17 18 19 20 21 21 22 23 24 25 26 27 28 29 29 31 31 32
12 12 13 14 15 15 16 17 18 19 20 21 22 23 23 24 25 26 27 28 29 30 31 32 32 34

Fig. 8. Lower bounds for 4,(d, n).

Since the columns of Fig. 2 are constant from the main diagonal downwards, it is
more efficient to tabulate A,, as in Fig. 8, in terms of d and »—2d. For this arrangement
the monotoneity conditions of 2.9 and 2.10 assert that the rows and diagonals perpendicular
to the main diagonal are monotone, while the columns are strictly monotone.

A pair of results of general interest can be abstracted from Fig. 8:

6.2. PrROPOSITION. Ay(d, n)=2n—d—1 if n<3d,
Afd, n)y=n—d if n<9d/4.

Proof. Substitution of » =3d into 6.1 yields the entries 2d —1 =n —d —1 on the diagonal
in Fig. 8. The monotoneity conditions, in particular the strict monotoneity of columns,
complete the proof of the first inequality. Similarly the entries 5k at positions d =4k,
n—2d=F in Fig. 8 follow from 1.3 and the value A,(4, 9)=5. The second inequality then
follows from the same monotoneity conditions.

Provided n is not very much larger than d, the lower bounds given in Fig. 8 can fre-
quently be realized as the diameters of polytopes dual to the cyclic polytopes considered
by Gale in [5]. For example, following Gale’s presentation, we may consider a cyclic

6-polytope, @, with 23 vertices arranged on the moment curve in R® in the order:

UUUUUUGIVVIQIIVVGIGVVQQQ.
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The vertices indicated by “u”’ determine a facet of @ and hence a vertex x of the 6-polytope
P dual to Q. Similarly, the vertices indicated by ‘v’ determine a vertex y of P. It is a
simple exercise to verify, using Gale’s characterization of facets of @, that dx(z, y) is 14,
which is exactly the bound on A,(6, 23) given in Fig. 8.(1) We have not found any poly-
topes of this type whose diameters exceed the bounds of Fig. 8, and we do not know of
any better lower bounds for A than those given by 5.3.

We have no reason to believe that our lower bounds come close to representing the
behavior of A or A,. For upper bounds the situation appears to be even worse. For a
limited range of values of d and n we can derive comparatively narrow limits for A and A,

using the following elementary inequalities.

6.3. PROPOSITION.
(a) Ad, 2d+E)<Ad-1,2d+k~-1)+k+1 if E=0, 1.
(b) Ayd, 2d+E)<A(d—1,2d+Ek—1)+[k/2]+1 4 k=0,1,2,3.

Proof. Consider a triple (P, z, y) of class (d, n). If n <2d or if P is bounded and n <2d +1,
then P admits a (1, d ~1)-path from z to y. The inequalities, (a) for k=0 and (b) for £ =0, 1,
follow immediately. For the remaining inequalities it suffices to show that if n<2d+1
or if P is bounded and % <2d+3, then P admits a (1,d—1, 1)-path from x to y. Let us
congider the bounded case only as the argument for the unrestricted case is similar but
simpler. Note that we may assume P does not admit a (1, d—1)-path from « to y or from
y to x since otherwise the existence of a (1, d—1, 1)-path is automatic. We are left with
the conclusion that P has at least d facets incident to z, at least d facets incident to y,
at most three facets incident to neither x nor ¥, and that every z-edge and every y-edge
terminates on one or more of the additional facets. For all the z-edges or all the y-edges
to terminate on the same one of the additional facets would lead to the clearly contra-
dictory conclusion that P is a pyramid over that facet. Thus two of the additional facets
intersect z-edges, two intersect y-edges, and hence one intersects at least one z-edge and

one y-edge, i.e. P admits a (1, d—1, 1)-path from z to y.
6.4. CoROLLARY. A(4,9)=6 or 7. A(5,10)=6, 7, or 8.

6.5. CoROLLARY. The values of Ay(d, n) for certain d and n lie in the ranges indicated
in the following table:

(*) This method was followed in [9] to prove, if the d-polytope P is dual to a cyclic d-polytope
with n vertices, theo §(P)=n—d for n<2d. It was suggested there that §(P)=[nf2] for n> 2d, but
this is not correct.
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n—d
d 4 5 6 7
4 5-7 6~7
5 * 6-8 6-9
[ 6-9 7-10
7 * 7-11

Proofs. Apply 6.3 and the known values given in Figs. 1 and 2 for the upper bounds.
Use Fig. 8 and 5.3 for the lower bounds.

It has been conjectured that for polyhedra of class (d, ») the maximum number of

5

n—d n—d

vertices is

This conjecture has been established for »<d +3 in [6] and for #>(d/2)2—1 in [10], hence
for all n if d<6. It is also known that for d-polyhedra with v vertices the maximum dia-
meter is v —1, and for d-polytopes with v vertices the maximum diameter is [(v—2)/d]+1
[7]. These results can be combined in an obvious manner to provide some explicit but

apparently extremely rough upper bounds for A(d, n) and A,(d, n).
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