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1. Introduction

Given a set E in the cartesian product X x ¥ of two spaces X and Y, a set U is said to
uniformize E, if the projections nx B, 7, U of E and U through Y onto X coincide, and if,

for each point z of 7z E, the set

{@xYInT 1)

of points of U lying above x consists of a single point. The existence of such a uniformizing
set U follows immediately from the axiom of choice. But, if X and Y are topological spaces,
and E is, in some sense, topologically respectable, for example if E belongs to some Borel
class, it is natural to seek a uniformizing set U that is equally respectable, or at any rate
not much worse. Usually there is no way of controlling the topological respectability of
sets obtained by use of the axiom of choice, and quite different methods have to be used
in obtaining topologically respectable uniformizing sets.

The earlier work of N. Lusin (see [19]) on problems of this nature was confined to the
case when, for each z in 7wz E, the set (1) of points of ¥ lying above x is at most countable.
The first general result seems to have been the result obtained independently by N. Lusin
[20] and by W. Sierpinski [27] showing that; when X and Y are Euclidean spaces and X is a
Borel set in X x Y, the uniformizing set U can be taken to be the complement of an analytic
set. Following work by N. Lusin and P. Novikoff [21] on the effective choice of a point
from a complement of an analytic set defined by a given sieve, M. Kond6 [15] showed that,
in the Euclidean case, the complement of an analytic set could be uniformized by a comple-
ment of an analytic set. Since any Borel set in a Euclidean space is the complement of an

analytic set, this provided a most satisfactory generalization of the result of Lusin and
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Sierpinski. Kondd’s proof has been greatly simplified by Y. Sampei [26] and by Y. Suzuki
[371.

A year before Kondd’s work S. Braun [1], by a much simpler method, showed, in the
Euclidean plane, that any closed set E can be uniformized by a s —set, and that any
F,-set can be uniformized by a (Gss-set:

It is easy to extend the results of Lusin and Sierpinski and of Kond6 to the case when X
and Y are complete separable metric spaces by the following mapping technique. If X is a
complete separable metric space there will be a continuous furiction f that maps a relatively
closed subset I, of the set I of irrational numbers between 0 and 1, regarded as a subset of
the set R,, of real numbers, one-one onto X. Similarly there will be a continuous function
g that maps a relatively closed subset J of the set J of irrational numbers between 0 and 1,
regarded as a subset of the set S, of real numbers, one-one onto Y. Then the product map
f xg maps IyxJ, continuously and one-one onto X x Y. Hence the inverse map f~ xg~!
maps Borel sets and complements of analytic sets in X and Y into Borel sets and comple-
ments of analytic sets in I, x J,, which remain Borel sets and complements of analytic sets
in R, x8;. So the results of Lusin and Sierpinski. or of Kondé can be applied in R, x8;;
when the uniformizing set is intersected with I, x J, and mapped by fxg back to X x ¥
there results in X x Y a uniformizing set that is the complement of an analytic set as
required. These results will not hold, in general, when we merely take X and ¥ to be
separable metric spaces; but it is easy to verify (by passing to the completions of the spaces)
that they hold, if X and Y are separable metric spaces that are absolutely Borel relative
to metric spaces. We recall that a space is absolutely Borel, if it is a Borel set in every metric
space in which it can be embedded; a necessary and sufficient condition for this is that it be
a Borel set in its completion under its metric. k

Although other authors, see for example [21, 36] have obtained results that have some
similarity with these results, the only further work, with which we are acquainted, that lies
in the main line of development is a generalization of Sierpinski’s result by K. Kunugui
[17] and further developments due to M. Sion [28]. As Sion adopts a slightly different point
of view, it will be convenient to defer consideration of his main work until we have stated
some of our results.

Although Braun’s work is based on a very simple idea we have not discovered any direct
generalization in the litérature. But a parenthetic remark in Corollory 4.2 to Theorem 4.1
of Sion [28], suggests that he had a generalization of Braun’s work covering the case of a
compact set in the cartesian produclt of two metric spaces. This suggestion is reinforced by
the fact that such a result can be obtained by a minor development of his method. For sake

of completeness we use his method to prove:
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TrrOREM 1. Let X be any topological space. Let Y be any o-compact metric space. Let D
be the family of finite unions of differences of closed sets in X x Y. Then a closed set in X x Y
can be uniformized by a Ds-set, and a Fy-set in X x Y can be uniformized by a Djg,-set.

Before proceeding further we need to introduce generalized analytic sets. The natural
generalization of analytic sets to general Hausdorff spaces seems to have been first given
by V. E. Snejder [33, 34, 35]; this was rediscovered and a considerable theory developed by
G. Choquet [3, 4, 5]. It was further developed by M. Sion [28, 29, 30, 31, 32] (in part inde-
pendently of Choquet) and by Z. Frolik [7, 8, 9, 10, 11, 12, 13]. Further results are due to
C. A. Rogers [23, 24], J. D. Knowles and C. A. Rogers [14] and C. A. Rogers and R. C.
Willmott [25]. For useful summaries see Z. Frolik [9] and D. W. Bressler and M. Sion [2].
We will use the following terminology in the introduction; further concepts will be neces-
sary later.

I will denote the space of all infinite sequences or vectors
=1y, 9, ..
of positive integers with the metric
.. 0, if i=j,
9(1”)2{246, it i,=j, for v<h, i+ j

If n is a positive integer and i€I the symbol i|» will denote the finite sequence i, 4y, ..., i,
of the first » components of the vector i. We will use Ij|, or sometimes I(i |n) to denote the
set of j in I with j|n=i|n. These sets I(i|n) are called Baire intervals.

A function K from I to the space X of compact subsets of a Hausdorff space X will be
said to be semi-continuous, if, given any i, in I and any open set @ in X with K(ij)< @,

there is a positive integer n =n(i,, G) such that
'K (Iio I ") < G’

i.e. such that K(iy= @ for i in I sufficiently close to i.

A set 4 in a Hausdorff space X will be said to be analytic if it is of the form 4 = K(I)
where K is a semi-continuous function from I to K. A set. B in a Hausdorff space will be
said to be a descriptive Borel set if it is of the form B = K(I), where K is a semi-continuous
function from I to X with the property

K(i)n K(j) =@

whenever i=] in I. 4 set 4 will be called a Souslin set if it is of the form

A=F@, Pi)=(FGlw),
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where each set F(i|n) is closed. 4 set B will be said to have a disjoint Souslin representation
if it has the form

B=F), F()= ) Fi|n)
where each set F(i|n) is closed and
FEnF(j) =9,

whenever i +j in I. Such sets were introduced and studied by K. Kunugui in [17] under the
name ‘ensemble d’unicité’.

We remark that is is possible to show that any analytic set is a Souslin set and that any
descriptive Borel set is a Borel set and has a disjoint Souslin representation.

We can state our main result in terms of these concepts.

THEOREM 19. Let X be a topological space. Suppose that Y is a Hausdorff space with a
representation Y =K(I) as a descriptive Borel set. Suppose that each open set in X x Y has a
disjoint Souslin representation. Let E be the complement of a Souslin set in X x ¥. Then there
5 a set U that is the complement of @ Souslin set in X x Y and that satisfies

() UcE,
by mxU=myFE, and

(¢) for each x in mx E the set

”Y{:’f}l(x) n U}

18 compact, and is contained in some set K(i) with i€l

In this result the set U will not in general be a set uniformizing E, but it may well be
a suitable substitute for such a set, more especially as a given space ¥ can often be frag-
mented into & descriptive Borel representation ¥ =K(I) where the sets K (i), i€X are chosen
to be small from some point of view. For an example of such a decomposition see Theorem 7
below. Of course, we obtain a genuine uniformization in the case when each set K (i) contains
at most a single point; this can, naturally always be arranged when Y is a complete separ-
able metric space (see Theorem 18 for a slight refinement of the result in this case). The
condition that each open set in X x Y has a disjoint Souslin representation arises naturally
in our proof, but it is not a particularly convenient condition to verify. We remark that it
will be satisfied if:

(a) each open set in X is an F,-set;
(b} each open set in Y is an F,-set; and
(¢) either:
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{c;) X has a countable base for its topology, or

{e;) Y has a countable base for its topology, or

(cg) each open set in X x Y is the union of a countable sequence of rectangles
U xV with U and V open.

The proof will depend on the mapping technique we have already explained. This
enables us to reduce the general theorem to the special case when ¥ =1I. The proof in this
special case. is closely modelled on Sampei’s simplified version of that of Kondb (see Theo-
rem 17).

Till now we have been concerned with the problem of finding a ‘respectable’ uniformi-
zing set U for a given set £ in X x Y. Associated with this set U is a function f defined on
7tz B mapping a point 2 of 7y £ onto the unique point y in ¥ lying in the set

ay{nx' (@) n U}

We say that such a function uniformizes the set E. In his work on uniformization M. Sion
transfers his attention from the problem of the ‘respectability’ of U to that of f. He proves
a theorem, which is in its general form very similar to Theorem 19 above. He allows X
and Y to be arbitrary Hausdorff spaces, but insists on E being an analytic set. He proves
the existence of a set U satisfying (a), (b) and the first part of (¢) of Theorem 19, and with
the property that, if F is any closed set of X x Y, the set 7x(U N F) belongs to the smallest
system of sets 7 that contains the analytic sets in X and is closed under the operations of
countable union and set difference. By applying a second theorem he shows that, provided
the space ¥ has certain properties, he is able to define a uniformizing function f on 7wz £
with the property that f~%(V) lies in the above system N for each open V in Y. The condi-
tions on Y are that it should be a regular Hausdorff space, with a base whose power is at
most that of the first uncountable cardinal, and that every family of open sets should have
a countable subfamily with the same cover.

By using some of Sion’s arguments in conjunction with a transfinite inductive applica-

tion of Theorem 19 we obtain

TrEOREM 20. Let X be a topological space. Let Y be a Hausdorff space that is descriptive
Borel, suppose that open sets in Y are JF,-sets, that the topology has a base whose power is at
most that of the first uncountable cardinal and that every open set is a countable union of base
elements. Suppose that each open set in X x Y has a disjoint Souslin representation. Let E be
the complement of a Souslin set tn X x Y. Then there is a uniformizing function f from sy E
to Y, with the property

(xxf(x))€E
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for each x in nx E, and such that for each open set V in Y the set f1[V] is the projection on
X of the complement of & Souslin set in X x Y.

Note that the example V=Y and f1[Y]=nyF shows that it would be unreasonable
to expect f—ltV] to satisfy any stronger condition.

In § 2 we give a summary of definitions and notational conventions. in § 3 we prove
the generalization (Theorem 1) of Braun’s theorems; the remaining sections do not depend
on this section. In §§ 4-7 we develop some preliminary results. In particular in § 4 we study
sets that have disjoint Souslin representations. In § 5 we study some procedures for the
decomposition of spaces with the property that each open set has a disjoint Souslin repre-
sentation. In § 6 we study a rather special mapping that can in certain circumstances be
found mapping a space X x Y into the space X xI; the results will be used to reduce the
general Theorem 19 to the more special Theorem 17. In § 7 we study sets defined in terms
of sieves and make comparisons between different sieves; the results are vital for the sequel.
In § 8 we digress to use results of § 7 to prove a generalization of Lusin’s second separation
theorem due to Kunugui [17] and to obtain a form of the first separation principle due to
Kondb [16]. In § 9 we give the main proof, that of the ‘reduced’ Theorem 17. In §§ 10 and 11
we use the results of § 6 to establish the more general theorems 18 and 19. In § 12 we use

Theorem 19 together with Sion’s methods to obtain the final Theorem 20 above.

2. Definitions and notational conventions

The notations and definitions are all stated elsewhere in this paper at the places where
they are first needed; they are repeated here for ease of reference.

The space of sequences of positive integers. We use lower case bold letters, typically the
letter i, to denote a corresponding sequence, such as ¢, 4,, ... of positive integers. We use I
to denote the space of all such sequences i. When i€l and n is a positive integer we use
i|n to denote the finite sequence iy, 1, ..., i, formed by truncating the sequencee iy, z, ...
after n terms. For each positive integer » we use Ij), or I(i|») to denote the set of all j in X
with j|n=i|n. When we have occasion to use the space I in two different contexts within
a single argument we use J and H to denote copies of I and use similar notations Jj»,
J(j|n), Hn(» and H(h|n).

Classes of sets. If X is a topological space we use G(X), FX), X(X) and D(X) to
denote respectively its classes of open sets, closed sets, compact sets and set differences
between open sets. When no ambiguity can arise we drop the ‘(X)’ from this notation. If ¥

is any class of sets we use }, and H; to denote the class of all countable unions of sets of
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2 and the class of all countable intersections of sets of 3. We use Souslin- { to denote the

class of all sets of the form

HE), HE=- 0 HG|»),

where all sets H(i|n) belong to # for i€I and » a positive integer.
We say that a set is a Souslin set in X if it belongs to the family Souslin- F(X) and that
a set is bi-Souslin if both it and its complement are Souslin. We say that a set has a disjoint

Souslin representation if it is of the form

FQU), F(i)= ﬁl F(i|n)

where all the sets F(i|n) are closed and F(i) N F(j) =@, whenever i, j are distinct sequences
in I; such sets are called ‘ensemble d’unicité’ in Kunugui [17].

A function K from I to the space }(X) of compact subsets of a Hausdorff space X
will be called semi-continuous, if, given any i, in I and any open set G in X with K(i,)= G,

there is a positive integer n =n(i,, ¢) such that
K (Iiol n) < G‘

A function F from I to the space F(X) of closed subsets of a topological space X will be
called weakly semi-continuous if given any i, in I and any point e of X not in F(i) there is

dn open set V containing e and a positive integer n with
V0 F(li, )= 2.

Both these semi-continuities are discussed in G. Choquet’s paper [6].

A set in a Hausdorff space X will be said to be analytic if it is of the form K(I) where K
is a semi-continuous function from I to K (X). A set in & Hausdorff space X will be said to
be descriptive Borel if it is of this form K(I) where K is a semi-continuous function from
I to X(X) that carries distinct elements of I into disjoint compact sets of X.

When we have a disjoint Souslin representation F(I) or a descriptive Borel set K(I)
the disjoint sets {F(i) }191 or {K(i)}ie1 will be called the fragments of the representations.

Cartesian product spaces. When we study a cartesian product X x Y of two spaces we

use 7ry, 7ty to denote the projection operators onto X and Y respectively, so that

nx(®xy) =2, AY(EXY) =Y,
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forz€X and y€ Y. If Cisany set in X x Y we use C'9, for z€ X, to denote the set of y in ¥
with z x4 €(; and we use O3, for y €Y, to denote the set of x in X with z xy€C. We also
define the cylinder on a set £ in X x Y to be the set

(ngE)x Y

and use cy E to denote this cylinder.
A set U will be said to uniformize a set F in X x Y, if

UcE,

axU=nxFE,

and U® contains a single point for each z in zy B. A function f will be said to uniformize

aset Hin X x Y, if f is defined on sz & and maps s, F into Y so that

zx f(x)EE,
forall zin nx E.

Sieves. Let X be any space and let ¥ be any subset (not necessarily proper) of the
space of real numbers. Any set in X x Y is called a sieve. The set sifted by a sieve Cin X x ¥
is the set & of those points « in X for which C*® (which is a set of real numbers) contains an
infinite strictly decreasing sequence. The complementary set E=X \Z will be called the com-
plementary set determined by the sieve.

Ordinal functions T and ¢. If R is any set of real numbers we associate two ordinals
TR and oR with R, taking

TR=0cR=0Q,
where Q denotes the first ordinal with uncountable cardinal, when R contains an infinite
descending sequence, and taking R =17 +1 and 7R to be the ordinal similar to R, when R

is well-ordered.

3. Braun’s uniformization theorems

Our aim in this section is to prove Theorem 1. We first introduce some notation and
prove a lemma. '

We will call a set Z in X x Y a cylinder parallel to Y if it is of the form Z=P x Y for
some subset P of X. If E is any set in X x ¥, we use ¢y £ to denote the cylinder (mz E) x Y.

Lemma 1. Let Y* be a compact subset of a Hausdorff space Y. Let J be a set of the form
F\Z in X x Y with F closed and Z a closed cylinder parallel to Y. Then the sets
Jo=J N {X x T*},
Jy=J\ey{J,},
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are both of the same form as J and
(xdo) N (5 dy) =9,

(xJo) U (mxdy) =g,

Proof. Let J = F\Z with F closed and Z a closed cylinder parallel to ¥. Then
Jo={P\Z}IN{XxY*} ={FN(XxY"}\Z

is of the required form, as F N (X x Y*) is closed. As Y is compact, it follows easily that
wx{F N(X x Y*}} is a closed set in X. Hence the set

Zi=cy {FN(XxYH} =[ng{FN(XxT*}IxY
is a closed cylinder parallel to Y. Further
oy Jo=cy [{F N (X x Y }\Z] =Z,\Z.
So Ji=J\ey Jo={F\Z}\{Z,\Z} = F\{Z U Z,},

and J, has the required form.
The formulae for the intersection and union of the projections of J, and J; follow
immediately from the facts that J, is a subset of J and that J; =J\cy J,,. This proves the

lemma.
Proof of Theorem 1. Let E be a closed set in X x Y. As Y is g-compact and metric, we
can choose a sequence Y, ¥, ... of compact sub-sets of ¥ with the properties:

(a) the diameter of Y tends to 0 as i tends to infinity;
(b) each point of ¥ belongs to infinitely many sets of the sequence.

We define sets D,, D,, D,, ... inductively by taking D,=E,
Dn+1: [—Dn n (X X Yn+1)] U [Dn\cy {-Dn n (X X Yn+1)}] (2)

for n=0, 1, 2, .... It follows inductively, by use of the lemma that D, is the union of 2" sets,
each of the form F\Z with F closed and Z a closed cylinder parallel to Y, having disjoint

projections with union wy E.

Write U= D,.
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Then each set D, belongs to D and U is a Dyset. As
nyUcnyDy=nyxE,

it will suffice to show that, given any x in iy B, there is a unique point y, with x xy,€U.

If z is any point of X and 4 is any set of X x ¥ we use A® to denote the set of points
y of ¥ with 2 xy€A4. So, if x is given in 7y E, the set D’ = B is closed and non-empty.
Our aim is to show that the sets D&, =0, 1, 2, ..., are closed, decreasing, non-empty,
compact for n sufficiently large and with diameter tending to zero. This will ensure that the

set
=]

U(z) — n Dﬁf
n=0
consists of a single point, as required.
It follows from the formula (2) that

D=DP 0 Yoi1, i DP0Ynii+0,
D&y =D, if D®0Yn=0,

for n=0, 1, 2, .... It follows immediately that the sets D, n=0, 1, 2, ..., are closed, de-
creasing and non-empty. As the sequence Y, ¥, ... covers ¥, it follows that for some first
integer n(x), the set DN ¥, is non-empty. This implies that D& is compact for
n2n(zx)+1. As each point of Y lies in infinitely many sets of the sequence Y,, Y,, ..., and
as the diameters of these sets tend to zero, it follows that the diameter of D& also tends
to zero. This completes the proof of the case when E is closed.

Now consider the case when E is an J,-set. As Y is g-compact we can express E in the
form E=U7-1 E,, where each set E, is closed and each set 7y B, is a subset of a compact
set in Y. Then each set 7 E, is closed (being effectively the projection of a closed set

through a compact space). Let U, be a D;-set uniformizing E,, for n=1, 2, ....
Let Un =N Dnm

m=1

where each set D,,, belongs to D. It is clear that the set
U =n91{ Un\cy (VL<Jn Dyv)}

uniformizes &. But U\ey (U U) = A {Dunoy (U B}
r<n m=1 y<n
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As n, E, is closed for v <mn, the set

Dnm\cy (UE,)
y<n
belongs to D. Hence U is a Dj,-set as required.

CoroOLLARY. If each open set in X is a F-set, the uniformizing set for a closed set can be

taken to be a Gs-set and that for a F,-set can be taken to be a (fs,-set.

Proof. In this case each open set in X x Y is a countable union of open rectangles
U x V. Then, as each open set U in X and V in Y is an F,-set, each open set in X x ¥ is an
F,-set. So each closed set and so each set of D is a §4-set in X x Y. The result follows.

4. Sets with disjoint Souslin representations

In this section we develop some of the properties of this class of sets, proving a little
more than will be essential in the sequel.

We first prove a result, noted by Frolik [13], showing that the Souslin sets can be
characterised as images of I under certain mappings. We say that a function F from I to
the space F of closed subsets of a space X is weakly semi-continuous if given any i, in I and
any point ¢ of X not in F(iy) there is an open set V containing e and an integer » so large
that ¥V N F(ly,|2) =D. In terms of this definition we obtain Frolik’s result:

THEOREM 2. A set A is a Souslin set if and only if A=F({) for some weakly semi-
continuous map F from 1to F. A set B has a disjoint Souslin representation if and only if
B=F(1) for some weakly semi-continuous map F from I to F that satisfies the condition

FinF{ =02

whenever 1==§ and i, j are in L

Proof. Suppose 4 is a Souslin set. Then
A=F®), F@)=QNF(in)
n=1

with all the sets F(i|n) closed. Now F(i) is closed for each i in I. So we need to prove that ¥

is weakly semi-continuous. Given i, in I and e not in

Flig) = 0 Fli|)
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we can choose n, with e ¢ F(iy]| no);

and e belongs to the open set ¥V =X\ F(iy|ny). Then for all i with i|n,=iy|n, we have
F)< F(i|ng) = Flig|ne) = X\V

and ¥V 0 F(i)=0. Thus F is weakly semi-continuous.
Now suppose that 4 = F*(I) where F* is a weakly semi-continuous map from I to F.
We define the set F(i|n) to be the closure

el F*(Iy ),

for each i €I and each n. To prove that A is Souslin it suffices to prove that

for each i in I. Clearly
oo [ oo
Fri)c N F*{ip) < N ol F*(1 »)= N F(i|n).
n=1 n=1 nel

Thus it suffices to prove that
N F(i|n) < F*(i).
n=1

Suppose e¢ F*(i). Then we can choose an open set ¥V containing e¢ and an integer n,

so that
V0 F*(Ijjn,) =9D.

Then F*(Lija,) < X\V.

As X\V is closed it follows that
Fi|ng) < X\V

so that F) F(i|n)=X\V.
n=1
Hence eg ﬁF(iIn).
n=1

This proves the required result

F*(i)= N F(i|n).

n=1

The corresponding result for a set B with a disjoint Souslin representation follows in

the same way.
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CoroLLARY. The relationship between the Souslin representation A= F(I), F(i)=
N7e1 F(i|n) and the representation A =F*(1) in terms of a weakly semi-continuous function
F* is provided by the formulae

Fr(1)=F(i),

F(i|n)=cl F*(Iy.).

Our next result shows that the intersection of a countable sequence of sets with
disjoint Souslin representations is again a set with a disjoint Souslin representation. To state
the result in a refined form it is convenient to introduce a further definition. If the set B has

a disjoint Souslin representation

B=F), F()=FG|n),

with each F(i|n) closed, we will call the sets F(i) the fragments of the representation.

TaEOREM 3. Let By, B,, ... be sets having Souslin representations
B,=F©(), F”@)=NF"(|n), r=12,..., (3)
n=1

the sets F(i|n) being closed. Then the intersection B= (V21 B, has a Souslin representation
B=F{I), F(i)= an (i|»), (4)
n-

each F(i|n) being closed, with the property that, for each r>1, each set F(i), i€1 is contained
in some set F(j), jEL. Further if the representation (3) is disjoint, the representation (4) will
be disjoint and, for each r>1, each non-empty fragment F(i) meets just one fragment of the
representation (3).

Proof. Let I'") denote a copy of I for =1, 2, .... Let ¢ be one of the standard homeo-
morphisms (see for example, [19] or {18] mapping I onto the cartesian product

oo

X I7.

r=1

(¢ @) -

We may write =% % ...,

where ¢ maps I onto I” for »=1,2,.... Define a function F from I to F by taking

F@)= N F© (o ().

r=1
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Then, for each 7, FI)yc FO(I)=B,,
so that FI)cB.

Conversely if b€ B, then b€B,, r=1,2,..., and so, for some sequence j*,j?, ...,

beF® (7).
Now we can choose i €1 with

QP =j", r=1,2,....

o«

Hence be a FOG) = () FO (@ (i)) = F(i) < F(T).

r=1

Thus B= F(I).

It is now clear, by virtue of Theorem 2, that it will suffice to prove that the function
is weakly semi-continuous. By virtue of Theorem 2, we may suppose that the functions
F are weakly semicontinuous for r=1, 2, .... Let i, be given in I and suppose that e is a

point not in

Flig) = N 7 (@ (o).
We can consequently choose an integer 7, so that e is not in

F (7 ).

By the weak semi-continuity, we can choose an open set V and an integer m, such that

¢€V and
V NFO(E)y =0

for all i’ in 1Y with 17| my = @9 (ip) | my.
Then we can choose n, so large that
@ (i) | mo = ™ (ig) | mo,
for all i with i|n,=1,|n,. Then for i in I with i|ny,=1,|n, we have
VnFH <V NF (™ (i) =0,
as @ (1) | mo = @7 (ig) | my =17 | my.

Thus F is weakly semi-continuous.
When the representation (3) is disjoint the representation

B=F(1), F(i)= ﬁ FO (g (i)
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is disjoint (but is not a Souslin representation). It follows that the Souslin representation
provided by Theorem 2 is a disjoint Souslin representation. It is now clear that the frag-

ments satisfy our requirements.
This proof is only a minor modification of a standard proof that the intersection of a

countable sequence of analytic sets is analytic.

CoROLLARY. Given i* in I and an integer v >1, there is a J* in 1 with the property that

for each positive n there is an integer m with
F(lir)m) < B (Ije ).
Proof. Take i* =™ (i*).
Then, for any integer #»>1, we can choose m so large that

@7 @) |n=j*|n
for all i in Ijs)»n. Then we have

Flm= U Fi)= U N FO @) F I ),
ield*|m) feXld*{m) o=1

as required.

THEOREM 4. Let B be a descriptive Borel set of the form B=K(I) where K is a semi-
continuous function from Ito J and the seis K(i), i €1 are disjoint. Let E have a disjoint Souslin

representation

E~FE), F() =n61F(i |n),

the sets F(i|n) being closed. Then BN E has a descriptive Borel representation BN E=L(I), L
being a semi-continuous function from Ito J, the sets L(i), 1€1, being disjoint and each such set

being of the form K(j) N F(h) for some j, h in L

Proof. Let J and H be two copies of I Let ¢ be a homeomorphism mapping I onto the
cartesian product J x H. Write
(i) = j(i) x h(i),
with j(i)€J, h(i) €H. Define
L{i) = K(j() n F(hi)).

As in the proof of Theorem 3, it is clear that BN E =L(I) and that L maps I into K. So it

remains to prove that I is semi-continuous.
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Let i, be given in I and suppose that @ is an open set with

L{ig)=G.
Then K(j(iy)) 0 F(h(iy))<@.
So {K(i()\G} 0 F(h(ip) =2.

By the weak semi-continuity of F, for each point x of K(j(iy))\G we can choose an open set

V(x) containing = and an integer n(x) such that

V()0 F(h) =@
for all h with h|n(x) = h(iy) | n(z).

As K(j(iy))\@ is compact we can choose ;, &, ..., %, 50 that
T
K({\G= UV (w,). 5)
We can then choose m so large that
hi) | n(z,) = h(ig)|n(z,), 0=1,2,..,7,
for all i with i|m =i;|m. This ensures that
991 V(z,) N Fh(i)) =92,
for all i in I with i|m =iy|m. By (5) and the semicontinuity of K we can choose m’ so that
K@) <6V {0 Vi)
for all i in X with i|m’ =i,|m’. Taking m" =max {m, m'} we have
L) = K(ji)) n Fh(i)) =@,
for all i in I with i}m” =i;|m”. This proves the semi-continuity as required.

COROLLARY. Given i* in I there are j* in J and h* in H with the property that for each

n=1 there is an m=1 with
L m) = K(J3+ 12} ) F(Hns 0.

Proof. The corollary follows by the argument used to prove the Corollary to Theorem 3.

To justify one of the assertions of the Introduction we need
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THEOREM 5. If each open set in a space is an F,-set then each open set in the space has a

disjoint Souslin representation.

Proof. This theorem is merely a restatement of the result that is actually proved in the
first two paragraphs of Lemma 2 of Rogers [24].

We conclude this section on sets with disjoint Souslin representations with the remark
that, if each open set of X is a Souslin set, then each set 4 with a disjoint Souslin representa-
tion is bi-Souslin in the sense that both A and X\4 are Souslin. This result, due to K.
Kunugui [17], is established lJater as a Corollary to Theorem 16.

5. Fragmentation of a space

In this section we consider spaces with the property that each open set has a disjoint
Souslin. representation. We show that such a space has disjoint Souslin representations
whose fragments can be made sufficiently ‘small’ to ensure that certain sets are unions of

fragments.

TurorEM 6. Suppose that each open set in a toplogical space X has a disjoint Souslin
representation. Let F,, F,, ... be a countable sequence of closed sets in X. Then X has a disjoint

Souslin representation

X=F@), Fi)=NFi|n),
with the sets F(i|n) all closed, such that each set F,, r=1, 2, ..., is the union of those fragments
F(i) that it meets.

Proof. For each r, the set X\ F, has a disjoint Souslin representation
X\F,=E,(I), Er(i) =nDIEr(iln)’

with the sets B, (i|n) closed. Define closed sets Fy (i|n) by taking
FrQ)=F*1,)=F(Q1,1,1)=~...=F,
F¥, iy iy ovn s in) =B, (i, by ve i),
and Ffi|n)=0
for all other finite vectors i|n. Write
Fr ()= 0 PG| n).

n=1

2—~682901 Acta mathematica 120. Imprimé le 8 avril 1968
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It follows immediately that

X=FrD, Fr@)=0Fidln),

gives a disjoint Souslin representation of the space X. Further in this representation, de-
pending on 7, both F, and X \F, are unions of fragments.

The required result now follows immediately from Theorem 3 with B, =B,=...=X

COROLLARY. For each i in I and each r =1 there is an integer n with either

F(I”n)CFT
or

F(lij.) < X\F,.

Proof. This follows from the Corollary to Theorem 3 and the choice of the sets Fy(i|n)
in the proof of Theorem 6.

Theorem 6 generalizes to yield

THEOREM 7. Suppose that each open set in a topological space X has a disjoint Souslin

representation. Let A, A,, ... be a countable sequence of sets that are either Souslin sets or comple-
ments of Souslin sets. Then X has a disjoint Souslin representation

X=F), F{) =nﬁ:1F(i |n),

with the sets F(i|n) all closed, such that each set A, is the union of those of the fragments F (i) that
it meets.

Proof. We first remark that given a disjoint Souslin representation of X, a set will be

the union of those fragments that it meets if and only if its complement is the union of

those fragments that it (the complement) meets. Hence we may suppose that each of the
sets 4,, 4,, ... is a Souslin set,

Suppose 4,=F,0), F.6)=0Fq|n,
n=1

the sets F,(i|n) being closed. Let Fy, F,, ... be an enumeration of this countable system of
closed sets

Fi|n), r=1,2,.., i€, n=1,2, ... (6)
Let

X =

FA), Fi)=NFi|n),

nel
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with F(i|n) closed, be the disjoint Souslin representation provided by Theorem 6. Then each

set of the system (6) is the union of those fragments that it meets. Hence each set
F.(i), i€l r=1,2,..,

is the union of those fragments that it meets. Hence each set A, is the union of those frag-

ments that it meets.

CoROLLARY. In this construction each of the closed sets F involved in the Souslin represen-
tation of the Souslin sets of the sequence or in the Souslin representations of the complements of
the sets of the sequence that are complements of Souslin sets (i.e. the sets F,(i|n)) have the pro-
perty that for eack 1 in I there is an n=1 with either

F(Il' n) CF

or F(li)») < X\F.

Proof. This follows by the corollary to Theorem 6.

6. A mapping from XxY to XxI

In this section we discuss circumstances when a certain map can be set up from X x ¥
to X x I with the property that it and its inverse take certain Souslin sets into Souslin sets.
Clearly such a result is potentially useful in reducing Theorem 19 to Theorem 17, we

discuss this in more detail in some remarks after we have stated

THEOREM 8. Let Y be a descriptive Borel space of the form ¥ = K(J) where K is semi-
continuous from § to K (Y) and the sets K(j), j €J are disjoint. Suppose that the space X x ¥

has a disjoint Souslin representation

XxT=F1, Fl)= '611«"(1{%),

the sets F(i{n) being closed. Suppose that for each i in 1 there is a j in I such that for each
integer m=1 there is an integer n with
F(lijn) <{X x EJFjim)}
Let the map w: X x Y->X x1 be defined by
e xy) =z X1,

where 1=i(x xy) is the unique i in I with xx y € F(i)
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If A is a closed set in X x Y that is the union of those fragments F(i) that it meets, then w A
1s closed in X x 1.

If A vs a Souslin set in X x Y with a representation

D8

A=A, Af@)=NAl|n),

n=1

the sets A(i|n) being such closed sets (that are the unions of those fragments F(i) that they meet),
then wA is o Souslin set in X x 1.
Further, if B in X x1is Souslin, then w™'B is Souslin in X x Y.

Remarks. Our plans for the reduction of Theorem 19 about X x ¥ to the more special
Theorem 17 about X x I should now be becoming clearer. We shall be able to apply Theorem
8 to the situation of Theorem 19 provided we can introduce an appropriate disjoint Souslin
representation for X x ¥. To obtain such a representation we need to apply Theorem 7
and Theorem 4 and its Corollary. This explains why we need the condition on X x Y in
Theorem 19 asserting that each open set has a disjoint Souslin representation.

The proof of this mapping theorem is based on a recent result [25] of ours on the projec-

tion of Souslin sets.

Proof. Let A be a closed set in X x ¥ that is the union of those fragments F(i) that it

meets. Consider any point = x i* of X xI that is not in wA. Then
AN({z} xY)Nn F(i*) =D.
We can choose j* in § with the property that, for each m >1, there is an integer n with
Flis o) < X x K(3o|m).
By the semi-continuity of K we have

(%)= 0 K1)
50 that F(i*) =n61F(I“‘") cmrjl{X x K@ 1m)} = X x K(j¥). (8)

As D=({x}xY)NF{i*) = ({=} x K(§*) 0 F(i*)

is the intersection of a compact set and a closed set, it is compact. By (7) this compact set D
is contained in the open set X\A. By the definition of the product topology, the set D is

covered by & union of open rectangles not meeting 4. So D is covered by a finite system, say

U,xV, 0=1,2,..,7,
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with U, openin X and V,openin Y forg=1, 2, ..., r. If D50, we have r>>1, and we may

suppose that none of the rectangles forming the covering are redundant. Then, taking

U=NU, V=UV,
P

e=1

we obtain open sets, U, V in X and Y satisfying the conditions

z€U,
DUV,
(UxV)NA=0. &)

When D=0, we satisfy these three conditions trivially by taking
U=X, V=0.

Now ({2} x KGF*)O\(U x V)< ({z} x K(F*)\D

=({z} x KFP\[({=} x Y) N F(i*)]

(X x TI\F(@*).
So E = ({2} xK{FN\U x V)
is a compact set that does not meet F(i*). Hence, by the weak semicontinuity of F, we can
for each e in E choose open sets U(e) and V(e) in X and Y and an integer n(e) so that

e€U(e) x Vi(e),
{U(e) X V(C)} n F(Ii‘ l"(e)) =.

When the compact sebt & is non-empty we can reduce this cover of the separate points e of E

to a non-redundant finite cover and as before we can construct open sets U*, V*in X, ¥ and

choose an integer n* to ensure that
€ U™,
EcU*x V¥,
{U*%x V*} N F(ljo|ne) =D. (10)

When E is empty we satisfy these conditions by taking

U*=X, V*=0, n*=1.
We now have
{£} x KGN B U (U x VY= (U x VYU (U* x V*).
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Hence K(*)<=Vur~
By the semi-continuity of K we can choose an integer M so that
K(Jpn)=V U T~
Hence we can choose an integer N =>n* so that
FIp )= X x KJjoim) <X x (VU V*). (11)
Now consider any point p x i in the open set
(UnU*) xLw
in X x I containing the original point z x i*, We have
A n ({p} x Y)n F()
CAN{UNTY x YN Flixn)
cAN[UNTH<{V U VU (Y\(V U VNN Flis|n)
{40 (U x M)} ULU* V) 0 Flie1a)} U {(X x {T\(V U 7¥)}) 0 Fllie 1)}
=0,
on using (9), (10) and (11). Thus the open set
(U N U*) x Iy

does not meet wA. As z x i* was any point, not in w4, this proves that w4 is closed.

We note, in particular, that w(X x Y) is a closed set in X xI. Now, as
o(FiN<c X x {i},
the sets wF{), i€l

are all disjoint and together form the closed set w(X x ¥). So as long as we take unions or
intersections of sets that are made up as unions of the fragments F(i), i€l of X x ¥, the
mapping w will commute with the union and intersection operators. It follows that if w is

applied to any set 4 in X x ¥ that has a Souslin representation
A=AD), A@)=N A(i|n),
n=1

the sets A(i|n) being closed sets that are the unions of those fragments F(i) that they meet,
then wA has the Souslin representation

wAd=A41), A*(i)= ﬁ wA(i|n)

n=1

the sets wA(i|n) being closed in X x L
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Now suppose that B is a Souslin set in X xI. We prove that w—1B is a Souslin set in
X x Y. As w(X x Y) is closed, the set BN w(X x ¥) is Souslin in X xI. Since

1B =w- BN (X x 1),

it is clear that we may suppose that B< (X x Y). Using Theorem 3 and its Corollary, we

may suppose that B has a Souslin representation
B=BH), B(h)=NBh|n)
n=1

the sets B(h|n) being closed in X x I, with the property that, for each h* in H, there is an
i(h*) in T with
B{m*)= X x {i(h*)},

and for each positive » there is an integer m with

BHp+n) =X xLin|n. (12)
We define sets A(h) =w-1B(h)
in X x Y for each h in H. Since
Bh)c X x {i(h)},

it follows that
A(h) =2 B(h) = F(i(h)) N [{nx B(h)} x Y.

Thus A(h) is closed for each h in H.

Since w 'B={ A(h),
heH

the required conclusion that. w18 is a Souslin set in X x ¥ will follow from Theorem 2,
provided. we prove that 4 is a weakly semi-continuous function.
Suppose h*€H and e¢ A(h*). If e ¢ F(i(h*)), by the weak semi-continuity of F, we can

choose an open rectangle U x V in X x Y and an integer n>1 with
eeUxY,
(UxV)n Flimsy|2) =2.
By (12), we can choose m so that

B(Hh.,,,,) c X 'x Il(h‘)|n-
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Then e€UxV
and (Ux V)N AHns1m) < (U x V) 0 {FTiney|n) N [{nx BHne|m)} x Y1} =D.

On the other hand, if ¢€ F(i(h*)) then the point (mye) x i(h*) in X x1 is not in B(h*), as
otherwise ¢ would be in 4(h*). By the weak semi-continuity of B we can choose an open

rectangle U xIjn+)|» and an m> 1, with
e€ U, i(h*) € Il(h‘) [ns
(U xTign»y|z) N B(Hys|m) =D. (13)

Here it is clear that m may be chosen so large that

B(Hgs ) < X X Linsy | n. (14)
Combining (13) and (14) U N (mx BMns|n)) =D,
so that e€UxY
and (UxY)n AHnsim)=0.

This shows that the criterion for weak semi-continuity is satistied in each case. The result

follows. This completes the proof.

7. Preperties of sieves

In this section we develop those properties of sieves that will be essential for our uni-
formization theorems. Although the methods we use are very similar to the classical meth-
ods we give the proofs in some detail to make the section accessible to those not already
familiar with the subject.

If X is a space, a sieve is a set in a space X x ¥ where Y is a space ordered by a rela-
tion ‘<. The set sifted by the sieve C'in X x Y is the set & of those points « in X for which
the set O, of those points y in ¥, with 2 x4 €0, contains an infinite strictly decreasing
sequence. The complementary set £ determined by C is the set of those points z for which
the set 0} in Y is well-ordered by <. We shall only consider such sieves when Y is taken
to be either the real line R, or the set @ of rational numbers lying strictly between 0 and 1.

Although we shall not change the accepted terminology, we have not found the analogy
with the sieves used by gardeners and cooks very helpful. It may help to think in terms of a
game to be played by the points z of X. At each of a countable sequence of turns each
player x is forced to choose a point y of his set O™ that is strictly smaller than any of his
previous choices or to loose if he can make no such choice. Then assuming that all players
play to their best advantage, £ is the set of winners and % is the set of loosers.
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TaroREM 9. If A is a Souslin set in X there is an F,-set C in X x Q whose sifted set is A.
Proof. We may suppose that

A=F®), Fi)=NFi|n)

the sets F(i|n) being closed in X. We suppose as we may that each sequence F(i|n),

n=1,2, ..., is monotonic decreasing. Define rationals (i|n) in @ by taking
ri|n)=1-~2"0—270" — | —g-hrhmhy

for all i€I and n>1. Take
C= lliJn [F(i|n) x {r(i|n)}].

Clearly C is an J_-set in X x Q. It is easy to verify that A is the set sifted by C.

CoroLLARY. Let H be any class of sets that is closed under finite intersections. If A is a
Souslin-H set in X there is a set C of the form

0=U H,x{g.},
with H, € and q,€Q for n=1, 2, ..., whose sifted set is A.

Proof. This follows by the same method.
The next result is essentially due to Kunugui [17]; he took X to be a T';-space and used

his ‘projection’ theorem 4 in place of our more general result [25].
THEOREM 10. If C is a Souslin set in X x R, the set sifted by C is a Souslin set in X.

Proof. As we can map R, by a continuous order preserving map into the open interval

{0, 1) it is clear that we may suppose that C is contained in the cylinder
X x(0,1).
Let r(1), 7(2), ...,

be an enumeration of the rational numbers strictly between 0 and 1. Define a system of half-

open half-closed intervals R(i|n) by taking R(i|n) to be the set of all y with
(1) 7(lg) ... 7(0,) SY<r(ig)7(tg) ... (),
with the natural convention

r(i)r(lg) ... r(l,_y) =1 when n=1.
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Write Afi|n) =75[C N {X x R(i|n)}].
By [25] this set A(i|n) is a Souslin set in X. Hence
o
A(I), where A(i)=N A(i|n),
n=1

is a Souslin—~Souslin set and so is a Souslin set. Thus it remains to show that A(I) is the set A
sifted by C.

If € A we can choose first an infinite decreasing sequence ¥, ¥s, ..., in C*? and then a
sequence of positive integers 4,, 4, ..., defining a vector i with

. €R({|n), n=12,... (15)

This ensures that 2€A(i|n), n=1,2, .., (16)

so that € A(i)< A(I). On the other hand, if z€ A(I) we can first choose i in I with € A4(i)
so that (16) holds and then choose points ¥, ¥y, ... in O so that (15) holds. Then y,, y,, ...
is strictly decreasing and xz € 4. This proves that 4 =A(I) as required.

Our next result is essentially the main lemma that Lusin {19] uses in the proof of his
second separation principle. We follow the proof given by Kuratowski [18] rather than that
of Lusin. We recall that two sets of real numbers are said to be similar if there is a one-one

order-preserving map from one set onto the other.
THEOREM 11. Let A and B be two sets in X x Q. Suppose that the sets
(XxQ\4 and B
are Souslin sets tn X x Q. Then the set C of points x in X with
A® similar to a subset of B

15 @& Souslin set i1n X.

Proof. Let (1), 7(2), ... and s(1), s(2), ... be enumerations of the points of @. Let J be
a copy of I

With each i in I we associate the sequence
RO): 7(y), (i), ..,
and with each j in J we associate the sequence

8(3): (), 8Ga)s -
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We ask the nature of the set 7 in kx' J of those pairs i, j such that the sequences R(i) and
S8(j) are similar: Let 7' be the set of all pairs i, j in I x J with the properties:

for all integers =, m with n ==m we have either
(a) 7(i) <r(i,) and s(j,) <s(jn), or
(b) 1) >1(i,) and  s(j,) >s(j).

Let L be the set of those sets of positive integers 4, ¢*, §, j* with either

(8) r(i)<r(i*) and s(j)<s(*), or
(b) #()>r(i* and s(j)>s(").

For each set of positive integers . *, §, j* let H,, (¢, ¢*, §, /*) denote the set of those points
ixj of IxJ with

=17 In=15 Jx=1 In=7.

Then H,, (4, ¢%, §, 7*) is a closed set in I x J. So the set

H,, (0, 4%, 7, 5%)

i,i%,j,j%eL
is an F,-set in I x J. ‘So the set

T=N U H,ulii*h )
nEm i.i%j,j%¥eL
is an Fy5-set in Ix J.
Now consider the set U of points # xi in X x I for which 4®< {R(i)}. Let A" denote
the set of points « in X with « xr€ 4. Then z xi belongs to U, if and only if, for all r in @

either

r€X\A4M
or re{R()}.
Let W, be the set of i in 1 with

r€{R(i)},

i.e. the set of i'in I with »(i,) =7 for some n.
This set W, is clearly a J,-set in L.

Further U=n {X\A} x I U [X % W,]L.

As \A = [(X % @\AI",

in the obvious notation, the set X\ A is a Souslin set in X and so U is a Souslin set in X x I.
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Let V be the set of points zxj in X xJ with {S(j)}< B®. Let B* denote the set of
points « in X with x xs€B. Then « ><3 is in ¥, if and only if, for each positive integer m,
there is an s in @ with

2€B® and s(j,,) = s.

Let Y,,, be the set of all points j of J with s(j,) =s. Then Y, is a closed set in J, and
V=n u {B® x I} n{X x Y}
m=1seQ

As BY is a Souslin set in X, for each s in Q, it follows that V is a Souslin set in X x J.
Now put
TF=XxT, U=Ux1J,

and let Y be the set of all points  xixjin X xIx J with
zxjeV, i€l

This last set U is, of course, a Cartesian product like J and U, but our notation does not

enable us to define it so simply. Then the set

InUNY
is a Souslin set in X xIx J.

Now a point x belongs to C if and only if there is an i in T and a j in J such that:

(a) the sequences R(i) and 5(j) are similar;
(b) A“<{R@}
() {8G)}=B=.

Hence C=mz{TOUNV}

and so is a Souslin set, as required by [25] or by [17].

We now associate an ordinal 7R with each subset R of Q. Let Q be the first uncountable
ordinal. If R contains an infinite descending sequence we write TR =(2, otherwise R is well-
ordered and we take 7R to be the ordinal similar to R. Here we allow 0 as the ordinal similar
to the empty set. Thus either TR<Q or tE=Q and R contains an infinite descending
sequence. We also define g R by

oR=tR+1, if TR<Q,
ocR=1R, if TR=Q.
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We recall that a set is said to be bi-Souslin if both it and its complement are Souslin
sets. Clearly the class of bi-Souslin sets is closed under the operations of complementation,
countable union and countable intersection. This class always contains the empty set and
the whole space, but it need not necessarily contain any other set (consider, for example,
the case of any uncountable space where the open sets are taken to be the complements

of countable sets). We prove

THEOREM 12. Let A and B be bi-Souslin sets in X x Q. Then the four subsets of X
defined respectively by the conditions:

C: TA® =7 B,
D: TA® =7 B®),
E: TA® =gB®,
F: 0 AW =7 B®,

are Souslin sets.

Proof. By Theorem 11 the set G of points x with
B® similar to a subset of 4

is a Souslin set. Further the set H of points sifted by 4 is a Souslin set by Theorem 10. Hence
the set @ U I is a Souslin set. We prove that O =G U H. If z€C, and z ¢ H, then 74™ <(, so

that
TB® <14 <,

which implies that B is necessarily similar to an initial segment of 4) and x€@. Hence
C< @G U H. On the other hand, if x€G U H then, when x€ H we have

7B <Q =749,
and when €@, x ¢ H we have B® gimilar to a subset of the well-ordered set 4!* so that
TB® <749 <.

In either case x€C. Thus C =G U H and is a Souslin set.
Similarly the set C’ of x with
TB® =74®

is a Souslin set so that the set D= N ¢’ is also a Souslin set.

Now let B, be the set of all points z x g with # x¢ in B, and write

B,=B,U[X x {%}]
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Then for all # in X we have ¢B® =1B§.

Thus £ is the set of points x with
TA® = 7B,
and so is a Souslin set, as B, is clearly bi-Souslin in X x Q.
Defining A,, 4, in the same way we see that F is the set of points  with

AP > TB®
and so is a Souslin set.

COROLLARY. Let A be a bi-Souslin set in X xQ. If T is a countable ordinal, the set 4,

of points x of X with
TA® =7
s @ bi-Souslin set in X.

Proof. If 7 is a countable ordinal we can choose a countable set 7' in @ similar to 7.

Then the set
B=XxT

is a bi-Souslin set in X x Q. Applying the theorem to the sets 4 and B we see that 4 is a
Souslin set. Further the set B, of all points x with

APzt +1

is a Souslin set. So the set U 4,=X\B:+1

oe<T

is a bi-Souslin set. for each countable ordinal 7. So the set

A =TU AU {U 4.}],

T B<t kB

being the difference of two bi-Souslin sets, is a bi-Souslin set.

Our next result is one of the key lemmas used in the proof of the uniformization
theorem. It is a generalization of lemmas 1 and 2 of Sampei’s paper [26]. Its relevance can
perhaps be seen most clearly at this stage by considéering the special case when k=1; in this
case it enables us to find in the complement of a Souslin set determined by the sieve A4, in

X xIx@ asmaller complement, 6’1, of & Souslin set having the same projection on X.

TuroreM 13. Let A, 1=1, 2, ..., k, be bi-Souslin sieves in X x I x Q. Let Cy=X x 1, and
let 6’1, e dk be defined inductively, by writing
a(z)= min 74D

iel
X teCr—-1.
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with the convention that a minimum taken over @ is given the value Q, and by taking ¢ 1 to be
the set of points x x1i in C~’,_1 with
TATD = g (2) < Q,

all for 1=1, 2, ..., k. Then é’k ts the complement of a Souslin set in X x 1.

Proof. Suppose that for some A with 1 <A <k we know that éh_l is the complement of a

Souslin set (,_;, in X xI. Now C,, is the set of all points x x i satisfying the condition
TX1€ é h-1°
the condition AP <Q,

and the condition that for all j in J with
T X j € éh—l:

we have TA(;‘Xj)>T)4§;’t><D.

Now, given that z x i€ ¢ n—1 the condition that x x j€ c n—1 is equivalent to the condition
that = xj satisfies
TATY — e 450, 1=1,2,..., h—1.

Further, given that TATD < Q,

the condition that x x j satisfies )
TA;LIX]) > TA;::XI)

is equivalent to the condition that # x j satisfies

AT > 7 4ED,
Hence éh is the set of points z x i satisfying the condition

zxi€l he1»
the condition TATD < Q.
and the condition that for all j in J with
TATD =g 4@ [=1,2,... h—1,

we have AT > g 4@,

The third condition here is that for all j in J we have either

TA;xxj) :FTA?CXD

for some ! with 1 <I<kh—1 or OAGD > 4D,
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Hence dh is the complement of the set (), of points z x i satisfying either the condition

xxi€ Oh—l,
or the condition TATDY =Q,

or the condition that for some j in J we have
TATD =g 4D [=1,2,...,h—1,
and CATD ST AFD,

Thus 0,=Ch 104, NmxaD, (17)
where A, is the set sifted by the sieve A,, and D is the set of points 2 x i x jin X x I > J with
TATD =7 4&D - 1=1,2, ..., h—1,

and | AT KT AP,

Now let &, F,, 1=1,2,...,,}h, be the sets of points zxixjxgqg in X xIxJIx@

satisfying the conditions
& zxjxq€A, i€l
F.: rXixqgeA, jeT,

1=1,2,...,h. Then & and F are two different cartesian products of 4, with I and are
both bi-Souslin sets in X xIxJ x @, for I=1,2,...,h. Now D is the set of points x x i x j
in X xIxJ with the properties

TEF D =g Fextxb - [=1,2,... b1,
GEEH XD < pFexixd,
By Theorem 12, the set D is a Souslin set in X x I x J. Hence by [25], or by [17], the set
wxx1D

is a Souslin set in X x I. Now, it follows from (17) and our inductive hypothesis that C, is a

Souslin set in X x 1. So the required result follows by induction.

Remark. No very special properties of the space I are used in this proof; the result
would clearly hold with I replaced by any analytic space as the results of [25] hold for such

spaces.
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8. Separatiom Theorems

In this section we digress from the main purpose of this paper to use the results
obtained in the last section to prove two separation theorems due to Kunugui [17] and
Kond6 {16] and to establish a result on sets having disjoint Souslin representations due to
Kunugui [17]. The first result [Kunugui] generalizes Lusin’s second separation principle,
the proof follows his closely. As it is no more difficult, we state the result in terms of the
class of Souslin-(bi-Souslin) sets (i.e. the class of sets obtained by applying the Souslin
operation to the bi-Souslin sets); we remark that, if we know that each open set of a space
is a Souslin set, then every closed set is bi-Souslin, so that every Souslin set is a Souslin-
(bi-Souslin) set.

TrEOREM 14. Let A and B be Souslin-(bi-Souslin) sets. Then there are sets C, D that are
complements of Souslin sets in X and that satisfy

A\B<C, B\A<D, CnD=20.

Proof. By Theorem 9 we can construct bi-Souslin sets 4 and Bin X x @ so that 4 and B
are the sets sifted by 4 and B respectively.
By Theorem 12, the set C of points 2 with

TA® > 7B, (18)
and the set D of points « with TB® > 1 4® (19)
are complements of Souslin sets. Further for each z in 4\B we have
TA® = Q> 7B,

so that A\B<C. Similarly B\A< D. Finally 0N D =@ as the conditions (18) and (19) are
incompatible.

We now prove Kond6’s result in [16] which is in some ways a substitute for the first
separation principle, by use of the methods usually reserved for the proof of the second

separation theorem.

THEOREM 15. Let A, A,, ... be a sequence of pairwise disjoint Sousiin-(bi-Souslin) sets.
Then there is a sequence By, B,, ... of pairwise disjoint bi-Souslin sets with A;< B, 1=1, 2;....

Proof. By Theorem 9, we can construet bi-Souslin sets 4,, :=1, 2, ..., in X x @) so that
A, is the set sifted by A4, for =1, 2, .... For each ¢ we define a set B, by taking B; to be the

set of all points

xXx3q
3— 682901 Acta mathematica 120. Imprimé le 8 avril 1968
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with zX g€ A,

together with all points - wx{}—-27"%

with #€ X and § a positive integer, together with all points
ax{l— 2—]0—2}

with € X and & positive integer not exceeding i. This ensures that A4, is the set sifted by
B, as well as by A; and that for each z in X

B

is of the form ¢ ¢ with ¢ a limit ordinal, or is the ordinal Q.

As the sets A; are pairwise disjoint we cannot have

B =0, BP=Q
with 7= 7. Hence, when 77,
TB® + 7B,

Let B, be defined to be the set of all # in X with
BP >+B forall j+i.
Then, in fact, B; is the set of all  in X with
B > 1B{® for all j=+i.

It follows immediately that
B,o4,
and that the sets B, are pairwise disjoint. Further, by Theorem 12, the sets B, are bi-Souslin,
as required.
By use of one of the standard techniques that leads from the first separation theorem
to a proof that a continuous one-one image of the irrationals in a metric space is a Bdrel set,

we use the last theorem to prove

TueorEM 16. Suppose that a set A in a space X has a disjoint representation as a

Souslin-(bi-Souslin) set. Then A is bi-Souslin itself.
Proof. We know that 4 has a representation
A=A@; A@)=0NAG]n),
n=1

where each set A(i[n) is a bi-Souslin set, and where the sets A(i), i€I are all mutually

disjoint.
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For each fixed n>1, the system of sets
A(Iil n) 3 i e I7

form a countable family of disjoint Souslin-(bi-Souslin) sets. By Theorem 15 we can choose

a corresponding family
B(i|n), i€l,

of mutually disjoint bi-Souslin sets with
A(ljjn)< B(i|n), forall i€L (20)
We suppose such sets chosen for each n>1. We define sets C(i|n) inductively by taking
c(i]0) =X,
and C(i|n) = B(i|n) n A(i|n) n C(i|n —1), (21)

for n>1. Then for all i and  the set C(i|n) is a bi-Souslin set, and so is the set

C=N[UCG|n).
n=l iel
Thus to prove that A4 is a bi-Souslin set it will suffice to prove that 4 =C.
Now if @€ 4 there is an i with a€A(i|n) for n=1, 2, ... It follows by induction, using
(20) and (21) that a€C(i|n) for n=1, 2, .... Hence a €C. Thus A< (. On the other hand,
if ¢c€C it follows from the properties of disjointness and inclusion of the sets C(i|n) that a

sequence of integers 7;, iy, ... is determined uniquely by the condition
c€C(iln), n=1,2, ..,

the integers being determined one at a time, 7, being fixed by the relation ¢ € C(i[n). Then
c€A(l)= A. Thus C< 4 and C=A as required.

CorovrrarY. (Kunugui, Theorem 11) If each open set in X is a Souslin set then each

set in X having a disjoint Souslin representation is a bi-Souslin set.

9. Uniformization on X xI

‘We can now state our uniformization for the complement of a Souslin set in a space of
the form X xI. After the first stage, showing that a Souslin set in X xI can be expressed
as a Souslin- R set the proof is closely modeléd on Sampei’s [26] simplified form of Kond6’s

proof.
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TaEorEM 17. Suppose that each open set in a topological space X is a Souslin set. Let E
be the complement of a Souslin set in X x1. Then there is a set U, that is a complement of a
Souslin set in X x1 and that satisfies:
(a) U< E;
0 nyU=nxk; and
(c) for each x in myx E the set
({z}xHn U

consists of a single point.

Proof. Let R denote the system of rectangles in X xI of the form F x J where F is
closed in X and J is a Baire interval in I. Qur first aim is to show that the Souslin set
A =(X xI)\ E belongs to the system of Souslin-R sets.

We have

A=F®), F@)=F@)=0FG|n,
the sets F(i|n) being all closed in X xI. We may further suppose that

F(ijm)< F(i|n)
whenever i€l and m>n21.
For each n>1, let J,(1), J,.(2), ... be an enumeration of the Baire intervals

Lijn, i€l
of order n.
We define a system of sets R(i|n) of R by taking, for each iin I,
R(|1) = B(E|2) = X x J,(6y),
and

R(i|2n—1)=R(i|27)=Cl [mx{F(ig, iy, .- , b2n—2) N (X X Jon(t20-1))}] X Fon (B20-1),
for n=1,2,.... It is clear that these sets belong to R so that the set

B=U 0 Riln)

iel n=

is a Souslin-R set. Thus we will have achieved our first aim it we can show that 4 =B.

First consider any point ¢ x a in 4. Then for some i* in I and some j* in I we have

a€F(i*) = ﬁlF(i* | n),
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and {a} = nlJZ" (7m)-
ne
Write h* = jf, i,lk, 7.;7 i;: ere e

Then, for each n>1 we have
aEF(h;s I: saey ;n—Z)’

ac J'2 n(h;n—l),

so that axa€N Rh*|n)<B.
n=1

Thus 4 < B.
Now suppose that b x b€ B. Then there is an i* in I with

b x b€ N R(i*|n).
. n=1

Suppose that b x b does not lie in the corrésponding set

N F(i7, 05, ..., 520).

n=1
Then for some positive integer N we have

bx B¢ F(is,i5, .., 0n)

As F(i3,14%, ..., i2y) is closed there are open sets G and G in X and I with €@, b€ & and

F(i3, 45, ..., an) 0 (G x G)=0.

As bxhe€ nR(i*I’n)
n=1
we have b€ N Iz, (i3 n-1)-
n=1

Since ¥, (i3,-1) is a Baire interval of order 27, we can choose a positive integer M with
b €Jop (124-1) < G. Write L=max {N+1, M}. Then

F(i;,if: cos ,i;L—2)CF(i;?ir? cee y'i;N)

and, as Ior(22-1) N Jon (iFw—1) > {b}+ 2,
we have T2z (i32-1) S Top (2-1) < G-
Hence F(i;’ 'I;Z’ sess 1;2L—2) n [G X J2L (i,ZkL—l)] = @,

so that [x {F(i5,3f, ..., iap_2) N (X x Jor (132-1))}1 N G=12.



38 C. A. ROGERS AND R. C. WILLMOTT
Since b€ G, and G is open, it follows that

F& ol fox {F G5, if, . i%02) 0 (X x Far(ifa- )},
so that bxb¢ R(i*|2L),

contrary to our supposition. This shows that  x b must lie in the set
oo

ﬂlF(i;",'iZ‘, e o)
n=

and so must lie in 4. Hence B< A. As we have already A< B it follows that 4 =5 and
that 4 is a Souslin-R set. ‘

Now the system R of rectangles of the form F x J with ¥ closed in X and J a Baire
interval in I is closed under finite intersections. Hence, by the corollary to Theorem 9,
we can choose a sequence of sets R, R,, in R and a sequence of points g, g5, ... in @ s0
that A is the set sifted by the sieve € in X xIx @ given by

0= lJan x {gn}-

We need to modify this sieve to ensure that it has certain special properties. We form a
sieve (" from C by taking x xix ¢ to be in C" if either « x i x (2¢) is in C or ¢ has one of the

values 4, £, §, ..., 1-27", .... Then (" can be expressed in the same form
C¢'=UR; x{g:},
n=1
with R,€R and ¢, €Q for n=1, 2, ..., and 4 is still the set sifted by ¢’. This ensures that
for each « xiin X x I the set
OV = 7[00 ({w x 1} X Q)],
has infinitely many elements.

Now, for each n, R,=F,x1J,

for some closed set F, in X and for some Baire interval J, in I,. Let k(n) be the order of
the Baire interval J,. Write

k"(n)=n+ max {k(r)}.

1grgn

Then J,, can be expressed as a disjoint union

Jn = U Hnm:
n=1
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where each set H,,, is a Baire interval of order k*(n). As the unions are disjoint, it follows

that if K;, K,, ..., K, are Baire intervals choosen from the system
H,,6£ »7nm=12 ..,

so that each pair has at least one point in common, then they must be sets H,,, correspond-
ing to different values of n and so at least one is a Baire interval of order at least 7. Now the

system of triples

Fn7Hnm1 q;l’ n’m=]’92!“')
is countable; let Fy Y qn, =12 ...,
be an enumeration of these triples. Put

R,=F,xJ, n=12 ...,
and o =‘nf=°le; <AL}
Then cr=C,
so that 4 remains the set sifted by C”. All the sets

[{zxi}x@InC”

are infinite. Further, if J,4), 3.5, ... is any subsequence of the sequence of Baire intervals,
with the property that
J’,’,G)HJ;(;)#Q, ’I:,?‘,=1,2,...,

then the order of J,, tends to infinity with ¢. These are the properties we will require. We
shall in the remainder of this proof work with this sieve C” but, for convenience, we shall
drop the double dashes (double primes).

Since each open set in X is a Souslin set, the closed sets in X are bi-Souslin sets. Simi-

larly each Baire interval in I is a bi-Souslin set in I. Hence each set
B, x{g}=FoxJ3,x{gs}, n=12, ..,
is a bi-Souslin set in X x I x @, so that the sieve
0= U Fox 3, x {g.}] (22)

is a bi-Souslin set in X xIxQ.
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We now introduce two sequences of sieves. We write
Cy=0,
and we define O, for n>1, by taking
Co=0n{XxJ,xQ,}, (23)

where we take @, to be the set of rationals ¢ in @ with 0<g<g,.
For each n>1 we take

Knszn-Hn—l\ U d, m=12,..., (24)

ngl<n+m—-1

and define D, to be the set of all points of the form z x i X ¢ with

. 1,1 1
xGX, IEKnm, q=§+2—2+.+§,
with m=>1 and 1 <I<m. Then D, is a bi-Souslin set in X xI x@ and mxx1D, =X x1I for all

n>1, as the sequence J,, J,, ... covers I infinitely often.

We define sets Hy, H, H,, ...,
E, E, E,, ..,
integral valued functions dy, dy, ...y

on X, and ordinal valued functions

yo, 71, )}27 ve>
on X, inductively as follows:

Hy=XxI;
ya (@)= min 0P 2=0,1,2,...; (25)
wxlieeIHn
E,={zxi|zxi€H, and 10V =y (2)<Q}, 2=0,1,2,...; (26)
d,(x)= min DD n=12 .. (27)
lei:EIn—l
H,={xxi|xxi€E, , and tDEV=d,(z)}, »=12,.... (28)

This ensures that the sequence
E, H,, E,, H,, ...
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is a non-increasing sequence of sets that coincides with the sequence of sets generated, as

in the definition in the statement of Theorem 13, from the sequence of sieves
C=0,, D, C, D,, ...
As all these sieves are bi-Souslin sets, it follows from Theorem 13, that all the sets
E, H,, B, H,, ...
are complements of Souslin sets. Hence the set
o0
U=NE,

n=0
is a complement of a Souslin set.

Our aim will be to show that the set U defined in this way is a set uniformizing E. As £
is the complementary set determined by the sieve C'=C, it is clear from (25) and (26) that
E,cE. Hence U< E. So it will suffice to prove that, for each point x of 7, E, the set
U® is a one point set.

For the remainder of this proof we can regard « as a given point of 7y E. Where no
confusion can arise we shall not show explicitly the dependence of our parameters on .

As 2€my B, it follows from (25) and (26) that E® +@. Once we know that B , - for some

n =1, the minimum

s @ x 1)
min D¢
fel
zxieEp—1

is necessarily attained for some i in B, so that HY + O on using (27) and (28). Given
that H® @ for some »>1, the minimum

: (zx 1)
min 705"
jel

rxieH,

is a countable ordinal, as HY’ < E®, and is necessarily attained for some iin H, so that
E + 3 on using (25) and (26). It follows inductively that all the sets

() FO g e
EP,HP, B, HP, ...,
are non-empty.

Now for each integer n>1, the set H is the set of all i in B, with
D& =g, ().
By the construction of the sieve D, the points i satisfying this condition, are those in the set

Kndn(z)=Jn+dﬂ(r)~1\ U Ji,
n<l<n+d,(r)—-1
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i.e. those in the set J,,; that lie in none of the sets

Jn» JTH—I’ ey Jd(n)—l’

where we write d(n) =n +d,(x)—1.
Thus for n>>1, EPcHP <BP 0 Jawm, (29)
HPnI, =0, n<l<dx). (30)

Comparing (30) with the formula
G+HP 1 =HD N T a0 SHP 0 Faman,

which follows from (29), and noting that d(n-4-1)=n+1, we see that we must have
d(n+1)=d(n) for n=>1.

Now, for any positive integers m, n, there is an integer [ with [>m, [>n, so that
) g
EP cEP <3imy, B CER <Ioom.

Since Bf” <+ @ this implies that
Jd(n) n Jd(m)# @.

As d(n)— oo, as n— oo, we have an infinite sequence of Baire intervals
Jd(n), n = 1, 2, vaey (31)

with the property that any two have at least one point in common. By our original choice
of the sequence J,, J,, ..., it follows that the orders of the Baire intervals of this sequence
(31) tend to infinity. Hence the set

o0
n Jd(n.)
n=1

consists of a single point. Let n=u(r) denote this point. As

(-] -]
U® =0 E®c ﬂle(n),
=

n=0

it follows that either U = {u(z)} or U® =@.
It remains to prove that u(z) € U®. To this end we first study the set of integers d with
u€d &
By the definition of u we have

llGJd(n), n‘—fl, 2, aev e



ON THE UNIFORMIZATION OF SETS IN. TOPOLOGICAL SPACES 43
Suppose we -had u€d,, for some m>1 not in the sequence {d(n)}. Then we would have
n* <d(n*) <m<d(n*+1)

for some #n*>0, on writing d(0) —0. As u€d,, and u€dy,, for all n, and as the order of

dany tends to infinity as n— oo, we can choose n=>n*+1, so that

Jam < I
Hence BEP Yy, EP<HR.,,
so that HRund,+9,
contrary to (30) as
n*+1<m<d(n*+1).

Thus we have u€J, if, and only if m belongs to the sequence {d(n)}.
We now study the order relations between the rational numbers ¢,,,, #=1, 2, ... and
between the ordinals yu) =Yem(%), n=1, 2, .... Suppose n, m are integers with 1<n <m.

Choose a point i in E§,,. Then, using (29),
i€ Esiz()m) < E(,',,Z) [ Jd(m)-
Similarly i€ J4¢,). Also i€ E§®. Thus, using (25) and (26)

TO(IXD = yl) (x))

i_ .
’L'OEf(;)) = Yam (), 1 G Jd(n):

1 — .
rC’ff(;,)’ =Yam) (x): 1€ Jd(m)'

Comparing the definitions of the sieves C, Cyny, Caimy, see (22) and (23), it follows that

Yam <Y

and that. y,0,) <Vatmys Yamy=Vaem OF Vam) ™ Paemy according as gy <awm»> Jan) =%atm OF
Qan) = Qagmy-

Hence SUp Yamy S Vo
n .

Further, the order equivalence, implies that the set of all rationals gy, n=1,2, ... is well
ordered. As this set coincides with C**W jt, follows that x x u belongs to E.
Also, for each n>1, the ordinal

(T x WY
L1050
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is the ordinal of the set of rationals, of the form g,y With ggm, <¢gn), & set which is order-

isomorphic to the set of ordinals of the form vy With y4(m) <74y Hence

1O <yqmy, for n=1,2,.... (33)
Similarly TC&w
is the ordinal of the set of all rationals of the form g4, so that

S0 W K up Yamy < Yo (34)
n
by (32).
We now prove inductively that u belongs to each set of the sequence

z) z) ) ()
EP, HP, BP, HP, ...

Combining (25) and (34) we have
O W =y (2) < Q,

so that u€E® by (26). If u€ B, for some n=>1, then by the definition (27) of d,(x)

we have
du(2) <TDEW,

and, by the construction of D, and the result u € J,,), we have

DEW <d, (),

so that DV =d, (x)
and ueH®,

‘Now, if ue€ HY for some n>1, by the definition (25) of y,(2),

Va () STCEW,

I n is not a member of the sequence {d(m)} then u¢J, and so y, () =7C¢*™ =0. In
this case u€ B by (26). But if » =d(m), for some m>1, then u €, so that

TCGAY <yaom (%)
by (33).- Since u€ HY, it follows from the definition (25) of v, (), that

Vn (x) < TO;LIX u).

Hence TCFW =y, ()
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and u € E® by (26). Thus it follows by induction that u lies in each set of the sequence
HY, B, HP, B, HY, ...,

and so to U, This completes the proof.

10. Uniformizatiow in XxY, when Y is a complete separable metric space

Our aim in this section is to use the mapping technique explained in the Introduction
to extend our uniformization Theorem 17 to a corresponding theorem that applies in a space
X x Y where Y is a complete separable metric space. The proof depends on the well-known
result that a complete separable metric space is a continuous one-one image of a closed
subset of I, see, for example, C. Kuratowski [18] page 443. As it is no more difficult, we
state and prove the result for any Hausdorff space ¥ that is a one-one continuous image

of a closed subset of 1.

TrEOREM 18. Suppose that each open set in a topological space X is a Souslin set. Let ¥
be a Hausdorff space that is a continuous one-one image of some closed subset of I (for example,
any complete separable metric space). Let E be the complement of a Souslin set in X x Y. Then

there is a set U, that is a complement of a Souslin set tn X x Y, and that satisfies:
(@) U<H;
(b) nxU=nxH; and
(¢) for each x in wx E the set ({x} x Y)N U consists of a single point.

Proof. Let f be a function, defined on a closed set H of I that maps H one-one onto Y.
Define a function ¢ on X x H by taking

pla x1) =2 x f(i),
for all i in H. Then ¢ maps X x H one-one onto X x Y. As the inverse image of any open
rectangle in X x Y is an open rectangle in X x H, it follows that ¢ is continuous from X x H

to X x Y. Thus the inverse image of any closed set in X x Y is closed in X xH and so
closed in X xI. Hence the set 4*=¢p~1(4), where 4 is the Souslin set

A= (XxY)\E,
is a Souslin set in X x I. Write
B*= (X xH)\4*.
As I\H is a Souslin set in I
B* = (X xD\[(X x {INE}) U 4*]

is a complement of & Souslin set in X x 1.
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Now, by Theorem 17, we can choose a complement U* of a Souslin set in X x1 that

uniformizes E* in X x1. As
Utc E*< X xH,

and ¢ is a one-one map from X x H to X x Y it follows immediately that the set
U =¢(U")

uniformizes £ in X x ¥. It remains to prove that U is the complement of a Souslin set in
XxY.

We introduce some notation to facilitate an applicatidn of Theorem 8. We note that Y
has the descriptive Borel representation ¥ = K(I) where K is the semi-continuous function
from ¥ to X (Y) defined by: '

K(§)=1{fi)}, it jeH;
KG§) =9, it jeH.

Further the sets K(j), j €J are disjoint. Similarly the space X x ¥ has the disjoint Souslin
representation
XxY=F®), F@)=NFGifn),
n=1

where we take F*(i) = X x K(i)

for each i in I and define F(i|n) by
F(i|n) =cl F¥Tijn).

By the Corollary to Theorem 2, this yields the formula
F(i) = F*(i) = X x K(i).
Hence for each i in I and each integer m=>1 we have
Flyjm)< X x K(Jijm).
Further the map w: X x Y-+X x I that takes  xy in X x ¥ to the point
oz xy) =z x1i,

where i =i(x x y) is the unique i in Y with x x y € F(i) clearly coincides with the map ¢~1. Now

all the preliminary conditions of Theorem 8 are satisfied. Further

(X xD\U*
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is a Souslin set in X x 1. So, by the last assertion of Theorem 8,
o (X XD\UH] = () [(X xI\U*] = p[(X x H)\U*] = (X x T\U

is a Souslin set in X x Y. Hence U is the complement of a Souslin set in X x Y as required.

11. Partial uniformization in XxY, when Y is a descriptive Borel space

In this section we use the mapping Theorem 8 together with the uniformization Theorem

17 to prove the partial uniformization Theorem 19 stated in the Introduction.

Proof of Theorem 19. Let the complement A4 of E in X x Y have the Souslin representa-
tion

A=A, A@)= AG]|»)

the sets A(i|n) being closed.
As each open set in X x Y has a disjoint Souslin representation, it follows from Theorem

7 that X x Y has a disjoint Souslin representation
XxY=F(), Fi =hDIF1(i|n),

with the sets. F';(i|n) all closed, such that each set A(j]|m) is the union of those of the frag-
ments F,(i) that it meets..

As Y has the representation ¥ = K(I) as a descriptive Borel set it has the repesentation
Y=K®), K(i)=NY(i|n),
n=1.
where Y(i|n)=cl K(Iijn),
by the corollary to Theorem 2. Hence X x Y has the disjoint Souslin representation

XxY=XxK(), XxEK@{=0I[XxY(i|n)].

n=1

Applying Theorem 3 to these two disjoint Souslin representations of X x ¥ we obtain

a disjoint Souslin representation of X x Y as
XxY=F{I), F({i)=NFdiln),
n=1

the sets F(i|n) being closed, so that each set Flk(j) and each set X x K(k) is the union of those
fragments F(i) that it meets. This ensures that each set A(j|») is the union of these sets
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F(i) that it meets. Further, by the corollary to Theorem 3, we can ensure that, for each i

in I there is a j in J such that for each integer m =1, there is an integer n with
Flyyn) < X x K(Jj(m). (35)
We now define a map w: X x Y- X xI by taking
w(xxg) =z X1,
where i=i(x x y) is the unique i in I with
x Xy € F(i).

We note that all the conditions of Theorem 8 are satisfied by the sets and mappings that
we have introduced in this proof. It follows from Theorem 8 that wA is a Souslin set in
X x1, and that o(X x Y) is closed in X xI.

Now, given an open set ‘G in X, the set G x Y is open in X x Y and has a disjoint

Souslin representation, and is in particular a Souslin set in X x Y. It follows by [25] that

is a Souslin set in X, 80 that & xIis a Souslin set in X xI. As I has a countable basis for its

open sets it follows that each open set in X x 1 is a Souslin set. Hence
[(X x Y)]\[wA]
is the complement in X x I of the Souslin set
[wATU {(X xID\w(X x Y)}.

Thus the conditions of Theorem 17 are satisfied and there is a set W, that is the com-
plement of a Souslin set B in X x I and that satisfies:

(a) WX x Y)Nwdl;
(b) 7x W =nxo(X x Y)\w4];
(¢) for each x in mx W the set ({x} xI) N W consists of a single point.

By Theorem 8 the set 1B is a Souslin set in X x ¥. Then
U= XxY\wlB=w1W

is & complement of a Souslin set in X x'Y.
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By (a) we have
B=[XxI\W>owd

so that w1B> A4 and U< E. This implies that

axUcng B
Now, if 2€ny E, then
2E€xxwE =n{[o(X x Y)\[wA]}.

Hence, by (b) we have x €z, W. So there is a point w in I with z x win W, and soin o(X x ¥)
but not in wA4. Hence there is a point y of ¥ with # xy in @-1W =U. Thus

nxEcnxU,
and iyl =mxU.
Now, for each x in 7, F, we have 2 €7, W from the last paragraph, and so by (c), the set
{x}xDowW
consists of a single point, w(z) say, and
(=} x Y)NU=[{z} x Y]n F(w(x)).
So, by (35), there is j in J with
({x} x Y)n Uc {a} x K(j).
Thus myfra'(®) 0 U =my{({} x (i) 0 F(w@)],

and so is a compact subset of K(j). This completes the proof.

12. Uniformizing functions

In this section we use some of the arguments of Sion [28] in conjunction with a trans-

finite application of Theorem 19 to prove Theorem 20, stated in the introduction.

Proof of Theorem 20. Let {G,},<q be a base for the open sets of ¥. For each ordinal ¢
with ¢ <<€, the sets G, Y\G, are F,-sets.

By Lemma 2 of [24], it follows, from the suppositions that ¥ is descriptive Borel and
that each open set of Y is an J,-set, that each F,-set of ¥ is descriptive Borel. Hence G,

and Y\G, are disjoint descriptive Borel sets and ¥ has a representation

Y =Ka(1)’
4— 682901 Acta mathematica 120. Imprimé le 8 avril 1968
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where K, is a semi-continuous map from I to ¥ (T), with
K, (i) N K,(j) =2

whenever i, j are distinct points of I, and both @, and Y\G,, are unions of the fragments
K,(i), with i€1, that they meet.

Write U, =E. For each ordinal «, with 1<a<Q, let U,., be the set obtained from
U,, by appliction of Theorem 19 with the descriptive Borel representation

Y = K, (1.
For each limit ordinal x with a<Q, let

U= N Up.
B<a
This provides an inductive definition of U, for 1 <a<Q.
It follows inductively that the sequence U,, 1 <« <€ is a decreasing sequence and that
the sets U,, 1 <a<(Q are complements of Souslin sets in X x Y.

Now for each z in 7y E, Theorem 19 ensures that U§” is compact and non-empty. Simi-
larly, given that U$ is compact and non-empty, Theorem 19 ensures that US?; is compact
and non-empty. Further if « is a limit ordinal with & <Q, knowledge that the sets U, f< «,
are compact and non-empty, ensures that U is compact and nonempty. It follows, by
transtinite induction, that U$ is compact and non-empty for all « with 2 <« <Q and for
all z in n, E.

We now prove that for each x in myx E the set U consists of a single point. Suppose

we had
rxy€Uq, xxz€Uq

with y=2. Then we can choose ordinals «, § with

yEGu, ZGGﬂ, GunG,g=®.

By Theorem 19, UR, < K1)
for some iin I. So yeUP c UG < K. (i), yEGQ..

Thus, G, N K,(i)+ @ and, by the choice of K, we have
K, (i) cd,.
Hence U@ cUR =q,

Similarly U < Ui < Gy,
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contrary to the results US +@, G, N G3=2. This shows that U consists of a single

point for each x of mx B and enables us to define a function f on 7y E by the requirement

{f@)}=UE

for all x in mx E.

Clearly f is a uniformizing function from sy E to Y with the property x x f(x) € E for all
zin g H.

Let V be any open set in Y. By hypothesis, ¥ is the union of a eountable sequence, say

Goc(l) s Goc(z), cee
of elements of the basis for Y. So

F V)= 2d(X % 7)1 Ugl = Usnel(X G N Ul

Hence to prove that f1[V] is the projection on X of the complement of a Souslin set in
X x Y it suffices to prove that each set

(X xG)NUgpl, 1<a<l,
is of this form.

But, given an ordinal ¢ with 1 €a<£Q it is clear that

7x[(X x Go) N Ugl e ax[(X X Go) N Usa].

On the other hand, if 2E€mx[(X X Gy) N Ugy1]

we have G.NUPL+0.

As before this implies U U <q,

8o that , 2€mx[(X x G,) N Ugql.

Thus 25[(X X G) 0 Ugl =7 [(X % G2) N Ussr]

and so is the projection on X of the complement of a Souslin set in X x Y. This completes

the proof.
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