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Introduetion

As a first step toward understanding the geometry of a riemannian homogeneous
space M =G/K it is natural to consider the case where K acts irreducibly on the tangent
space. This approach has been very useful in the study of riemannian symmetric spaces;
these spaces are now well understood, and .their understanding'is based on Cartan’s classi-
fication and structure theory for the irreducible case. Our Chapter I gives a structure theory
and classification for nonsymmetric coset spaces G/K where K acts irreducibly on the
tangent space. For K compact, this is done in §§1-10, then summarized and put into
global form in § 11. For K noncompact, we reduce to the compact case by means of Cartan
involutions (§ 12). The results are surprising, for there are a large number of nonsymmetric
“isotropy irreducible” coset spaces G/K, and only a few examples had been known before.
One of the more interesting classes is 80 (dim K)/ad(K) for an arbitrary compact simple
Lie group K. |

Chapter I1 concentrates on the study of complex and almost complex structures on
isotropy irreducible coset spaces, and § 13 is a definitive treatment of this matter. More
general structures are introduced and studied in § 14; the quaternionic structures are needed
in § 16, and I believe that the notion of éommuting structure will become important in
riemannian geometry.

Chapter I1I is the goal of this paper—the riemannian geometry of isotropy irreducible
coset spaces. The riemannian metric is unique up to a constant scalar factor; it is an Einstein
metric with sectional curvature of one sign. We determine the holonomy group, the full
group of isometries, and (in the almost complex case) the full group of almost hermitian
isometries. The chapter ends with an examination of riemannian manifolds in which the
local isometry group at a point is irreducible on the tangent space.

The de Rham decomposition shows that a riemannian manifold has parallel Ricci
tensor if and only if it is locally a product of Einstein manifolds. Our isotropy irreducible
riemannian manifolds have parallel Ricei tensor. Thus the classification results of Chapter I
provide new examples of Einstein manifolds, and those examples are neither symmetric
nor kaehlerian. I have hopes that those exaniples, especially the SO (dim K)/ad(K) which

show a clear pattern, will contribute toward an understanding of Einstein manifolds,

I wish to thank Lois B. Wolf for checking some of my caleulations on E, and E.

Chapter I. The structure and classification of nonsymmetric isotropy irreducible coset
spaces G/K

In this chapter we study and classify the coset spaces M =G/K which satisfy the
conditions
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(i) G is a connected Lie group and K is a closed subgroup,
(il) M =G/K is a reductive (1) coset space on which G acts effectively (2), and
(iii) the linear isotropy action (on the tangent space of M) of the identity component K,

of K is a representation which is irreducible over the real number field.

Conditions (ii) and (iii) together are equivalent to

[(ii) U (i)} Let y be the linear isbtropy representation of K on the tangent space of M.
Then y s a farthful representation of K and x| g, 1s srreducible over the real number field.

The general case can be transformed or reduced to the case where K is compact, by
means of Cartan involutions. This is done in § 12, For the next eleven sections, however,
we avoid technical difficulties by generally making the working hypothesis

(iv) K is compact.

The euclidean spaces and the irreducible riemannian symmetric spaces are the best
known spaces which satisfy (1)—(iv). So we avoid duplication of standard material with the
working hypothesis

(v) (G, K) is not a symmetric pair, t.e. K, is not the identity component of the fixed point

set of an involutive automorphism of G.

In this chapter we need a certain amount of notation. 4,, B,, C,, D,, Gy, F,, E,, E,,
and Eg refer to the Cartan classification types of simple Lie groups and algebras. We use

boldface to denote the compact simply connected groups. Thus

A, =8U(n +1), special unitary group,

B, =8pin(2n + 1), two sheeted covering of the rotation group SO(2n+1);

C,=Sp(n), unitary symplectic group;

D, =S8pin(2r), double covering of SO(2n);

G, is the automorphism group of the Cayley algebra; and so on. German letters denote
Lie algebras; thus 9, ©p(rn) and & are the Lie algebras of Lie groups A,, Sp(n) and G.
If K is a Lie subgroup of @, then { denotes the corresponding subalgebra of 6. If g€4,
then ad(g) denotes both the inner automorphism xz—gxg~! of @, and the corfesponding

automorphism of &; the latter is a representation which we usually denote adg.

Let & be a semisimple Lie algebra. Given a Cartan subalgebra § and an ordering of

the roots, we have a system {o,, ..., a;} of simple roots. If & is a linear representation of

() This means that the Lie algebra & =& + It where It is a vector space complement of & such
that adg (K)M=9I%.

{2)- Tn other words ‘the identity element 1€ @ is the only elément which acts'on'M as the ideritity:
transformation.
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® on a complex vector space, then every weight 1 satisfies the condition that 2{4, «;>/
(o, o> are integers; here { ,) denotes the inner product dual to the Killing form. If 7 is
absolutely irreducible and A is the highest weight, we generally denote z by 7, because 4
specifies 7 up to equivalence. In turn 1 is specified by the nonnegative integers 2{4, a;>/
{a;, a;>. Our notation for A and m; is the following: if the integer 2<4, oc;>/<et;, ;> =0,
then we write it next to the vertex of the Dynkin diagram of §° which speciﬂes ;. For

example

1 1 1 1 /O

0—...—0, O—..—0=@, o—..—8=0, o-—...—-o\
o)

denote the usual (“vector”) representations of A,_; as SU(ﬁ), B, as S0(2n +1), C, as Sp(n)

and D, as SO(2n), respectively. And the adjoint representations are given by

2 1
A, 0] G, =0
1 1 1
A4, n>1 0—0—...—0 F, ®—8=—0—0
1 0—0—0—0—0
B, n>2 | O—0—..—0=0 | K |
o1
2 1 0—0—0—0—0—0
C,, n>1 | e—eo—.—e=0 | E,
O
1 /O 0—0—0—0—0—0—0
D,, n>3 | O—0—...—0 By | 1
\O o]

Note that we are using the dot convention: if there are two lengths of roots, then the shorb

roots are black in the Dynkin diagram.

1. G is a compact simple Lie group

We will prove:

1.1. THEOREM. Let M = G/K satisfy conditions (i) through (v) above. Then G is a compact
simple Lie group.

The proof is divided into seveml steps, some of which are stated as fairly general

lemmas for purposes of reference when we come to the case of noncompact K.

1.2. LEMMA. Let M ~GQ/K be a reductive coset space of connected real Lie groups such
that Q acts effectively on M and the linear isotropy representation 7w of K is R-irreducible.
Suppose that G is not semisimple. Then either G is a circle group and K ={1}, so (&, K) is a
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symmetric pair with symmetry g—~g~1; or G is the semidirect product K x ,R™ with n=dim M
and (G, K) is a symmetric pair with symmetry (k, v)—(k, v™') [k€K and vER"].

Proof. Let & and & denote the Lie algebras of @ and K, and let & be the radical of &.
Let Y denote the last nonzero term in the derived series of ©. Then ¥ is an ideal in &.
We cannot have < & because G acts effectively on M, so § £ & +UA< ®. Now R-irreduci-
bility of m says & =R +U. As M =G/K is reductive we have an ad (K)-stable decomposition
G=8+I with N<A, and M is an abelian Lie algebra because A is abelian. Now
& =R+, N" semidirect sum where R"=IR is the Lie algebra of the real vector group of
dimension n=dim M.

Let 7 be the analytic subgroup of G with Lie algebra It =%". Then V =R"/D, quotient
of a vector group by a discrete additive subgroup. 7(K) acts on R” qua R" and preserves
D, and this linear action is irreducible. If n>1 it follows that D={1}, so V is the vector
group R" then K  V={1} and @ is the semidirect product K x ,R" as asserted; in that
case (k, v)—(k, v™1) is an involutive automorphism of & with fixed point set K so (G, K)
is a symmetric pair. If n =1 there is also the possibility that D <{1}. Then G=7V is a circle
group and K = {1}, and it is immediate that (&, K) is a symmetric pair under the involutive
automorphism g—>g' of &, q.e.d.

The relevant special case of Lemma 1.2 is

(1.3) Under conditions (i) through (v), G 1is semisimple.

1.4. LemMmA. Let M =G[K be a reductive coset space of connected real Lie groups such
that G acts effectively on M and the linear isotropy representation of K is R-irreducible. Suppose
that G is semisimple but not simple. Then K is simple, G is locally isomorphic to K x K with
K embedded diagonally, and (G, K) is a symmetric pair with symmetry (ky, k,)—(ky, ki)
[k, €EK].

Proof. We may divide out the center of &, assuming G =G, x ... x ¢, with G; centerless
and simple. Let §;: @—@G; denote the projection.

If B,(K) #@, for some index % then K< '8, K£@, so K=p;'8,K by irreducibility
of the linear isotropy representation. »>1 because G is not simple, so there is an index
j=+1; then G;< K so G is not effective on M. That contradiction shows that §,(K)=&,
for every index .

The Lie group K is reductive because the linear isotropy representation is faithful
and fully reducible. Let K" be the kernel of f, | z; now K =K'-K" local direct product,
and B;: K'=@,. In particular K’ is simple. If we have an index ¢ with §(K')+G; then
B«(K'y={1} so G, is in the centralizer of K'. But K" is the centralizer of K’ and G, ¢ K.
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Thus f;: K’ 2= @, for every index i. That shows that each §,(K")={1}, so K=K, K is
simple and each f§;: K ~@,.

Identify ¢, with K by f;. Then G=K x... x K (r times) with K embedded diagonally.
K\=-{(g1, v G EG gy =...=g,}. If r>2 then K $KG,$6, contradicting irreducibility of
the linear 'isotropy representation. As »>1 now G=K x K with K embedded diagonally.
Then (&, ko)~ (ky, k) is an involutive automorphism of G with fixed point set K and our
assertions are proved, q.e.d.

In view of (1.3), the relevant special case of Lemma 1.4 is
{1.5) Under conditions (i) through (v), G is simple.

Proof of Theorem 1.1. (1.5) says that G is a simple Lie group. If G is noncompact we
choose a maximal compactly embedded subalgebra £$® such that R< &, and then
K =R by irreducibility of the linear isotropy representation; it follows that (¢, K) is a sym-
metric pair. Thus ¢ is compact, q.c.d.

The analysis of coset spaces M =G/ K satisfying conditions (i) through (v) is now reduced

to a specific problem on compact simple Lie groups.

2. The case of equnal ranks
If rank G =rank K the result is

2.1. THEOREM. Let M =G/K be a coset space of compact connected Lie groups with G
acting effectively and rank G =rank K. Let y be the linear isotropy representation of K on the
tangent space of M. Then y is Reirreducible if and only if, either M =G/K is an irreducible
symmmetric coset space, or the center of K is the cyclic group of order 3. In the latter case there

are just six possibilities, as follows.

G K x
1 1
1 G, SU(3) O0—O®O—0
1 2 1 2
2 ¥, 8U(3)- SU(3) (O—0® 0—0)@®(0—O® O—0)
1 1 1 1 1 1
3 | EyZs | SU(3)-SU(3)-SU) (0—0 @ 0—0Q 0—0)P(0O—~0R O—0® 0—0)
1 1 1 1
4 | E,jZ, | [SU3)xSU(6)]/% (0—0 ® O—0—0—0—0)B (0O—O ® O—0O~—0~—0—0)
1 1
5 E, SU(9)/Zs (O—C~—0—0—0—0—0—0)B(O~—0—0—0—0—0—~—0—0)
o] O
‘ 1 1 f 1 } 1
6 Es [SU(8) x By]/Zg (0O—0® O~—0—0—0—0)@(0—~0 & O—0—0—0—0)
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Theorem 2.1 can be checked directly by computing the linear isotropy representation
for each of the nonsymmetric pairs (G, K) listed by Borel and de Siebenthal [4]. That
calculation is extremely unpleasant without a priori knowledge of irreducibility of ¥, so

we avoid the unpleasantness by using B. Kostant’s result ([20], Theorem 8.13.3, p. 296):

2.2. THEOREM. Let G be a connected reductive Lie group, let T be a Cartan subgroup,
and let A be o subgroup of T'. Let K be the identity component of the centralizer of A in G, let Z
be the center of K, and suppose Zy< A. Let & =8 +IR be the orthogonal decomposition under
the Killing form. Decompose NC =2 I, where ad (4) acts on IR; by a multiple of an irreducible
complex representation a; and where the o; are distinct characters on A. Then adg(K) preserves
M, acting there by an trreducible complex representation m;, and the 7, are mutually inequi-

valent.

Proof. ad (K) preserves Ii; because K centralizes 4. An equivalence r; ~ 7, would restrict
to an equivalence «; ~ o; and imply «;=o;; thus the z; are mutually inequivaleht. Now
we need only prove that eaqh 7; is irreducible.

Suppose 7; reducible and decompose ni%Z B. with B, irreducible. Then ;=% M,
where I, is the representation space of f,. Order the T%roots of & and let A, denote the
highest Weighﬁ of B, Let a =b be indices. Then A, and 2, coincide on 3° because Z,<= 4, so
they differ only on the intersection of ic with the semisimple part of the reductive Lie
algebra €. There all highest weights are in the closure of the positive Weyl chamber,
$0 Ay, Ap> >0.

Suppose {4y 4,5 >0. As 4, and A, are TC-roots of G&C it follows that v =1, —4, is a root.
Choose nonzero root vectors E,€®,, E,€®,, and E,€®,,. Then [E,, E,]=cE, for some
c+0. If g€A4 then c-oy(g) E,=c-ad(g) E,=ad(g)[E,, E,]=[ad(g) E,, ad(g) E,] =[ad(9) E,,
oi(g) B,], so ad(g) E, = E,. Thus E,€ °. Now E, €W, and B, =c¢ [ E,, B,] E[RKC, M= M,
80 a=>b. In other words @ ==b implies 4, 1 4,.

Decompose R°=X &,, direct sum of its center 3¢ and its simple ideals. Then each
Ba=®pa,, with §, . an irreducible complex representation of &,, and each A,=2> 4,
where 2, ,€Z° N K, is the highest weight of §, ,. If a=b then A, 1 4, says, for each index r,
that at most one of the 4, , can be nonzero. Now {°=Qf ® 2§ and & =&, ® L, where £f is
the sum of all &, for which 4, ,=0 and 2f is the sum of the remaining &,. This decomposes
7 =(T,1)®(1®7,) where 1:; represents &f and 1, represents 2f. Thus 7,®@1=pj, and
1®7q = Dpeaffs- Let Ly and L, be the analytic subgroups of K with respective Lie algebras
€, and &,. Let Z, and Z, be their centers so Z =Z,-Zj; let 4, and 4, denote the projections
of A on Z, and Z, so Ac A,-A,. Then 1®7, annihilates 4, because it annihilates L,. This
forces 7,® 1 to annihilate 4, because it and 1 @7, both represent on ;. Thus 7; annihilates
5 — 682901 Acta mathematica 120. Imprimé lo 9 avril 1968
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4,. Similarly 7,®1, thus also 1 ®7;, thus 7,, annihilates 4,. Now 7, annihilates 4< 4, 4,,
80 o;=1, which is absurd. This contradiction shows that we cannot have two distinct

summands f, and f, of 7,. In other words, x; is irreducible, g.e.d.

Proof of Theorem 2.1. Let Z be the center of K and let T be a maximal torus of & such
that Z< T'< K. The rank condition says ([4], Theoreme 5; or [20], Theorem 8.10.2, p. 276)
that X is the identity component of the centralizer of Z in G.. Assume y to be R-irreducible.
Then Schur’s Lemma says that Z is a circle group or a cyelic group of some finite order .
If Z has an element of order 2 then M =G/K is an irreducible symmetric coset space. If
not, Z is cyclic of odd finite order m >1. Then we apply Theorem 2.2 with 4 =Z to obtain
the decomposition IR =3 I, where ¢ runs through a set of m-th roots of 1 and where
we have chosen a generator z of Z such that «.(2) =¢. As z has order m we have a primitive
m-th root n of 1 such that M, +0. Then IN° =M, + M5 by R-irreducibility of y. If m>3
then [9)?,,, DVez1= &S, (M, M, 1= M2 =0 and [My, Wz]< M5s =0; that implies [, M]< R
so that M =G/K is an irreducible symmetric coset space. In other words, it M =G/K is
not an irreducible symmetric coset space then Z has order 3. Conversely if Z has order 3
then Theorem 2.2 shows that y is R-irreducible.

Consider the case where the center Z of K has order 3. The classification of all such
pairs (§, &) is given by Borel and de Siebenthal [4] (or see [20], Théorem 8.10.9, p. 280).
@ is centerless, thus of the listed gldbal form. y =@ B for some irreducible complex repre-
sentation 8 of K such that f(K) has center of order 3 and # has degree deg =2 dim M =
% [dim ¢ —dim K]. In these low degrees there is no choice; § and y are as listed because there

are no other possibilities. Now K has the listed globall form because f is faithful, q.e.d.

3. The case where G is exceptional and rank G > rank K
Here the classifiction is given by

3.1 TuroreM (E. B. Dynkin(Y). The following is a complete list of the coset spaces
G|K of compact connected Lie groups where (a) G acts effectively, (b) rank G >rank K,
(c) G is an exceptional group and (d) K acts irreducibly on the tangent space.

Eo/A; is the only ome for which the isotropy representation is not absolutely irreducible.’
E¢/Cy and By/F, are the only ones which are symmetric. In Gy/A,, the A, is the principal three

dimensional subgroup.

The result follows from Theorem 14.1 of E. B. Dynkin’s paper [7]. Dynkin writes & for

our R, G for our &, ¥ & for the representation of & on the complexification of the tangent

(*) ‘As will be'séen from the proof, the result is éssentially due to Dynkin.
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Isotropj} representation
Q K of K on tangent space
10
1 Gy A, ¢
4 1
2 F, A6y oQe=0
) 1 4 4 1
3 X, A, 0—0®HO—0
1 1
4 Eq Gy =0
1 1 1
5 E; A, Gy | 0—OR @=0C
1
6 E, C, *—e0—0—0
1
7 Es F4 ®e—0—=0—"0
| 4 . 4
8 E, A, 0—0
1 1
9 E, Gy Cy 0:=CQ 6—8=0
2 1
10 E, A,-F, oRe—e=0—0
1 1
11 E; G, F, =0 0—e—=0—0

space of G/K. Thus we are looking for Dynkin’s classification of paifs (@, @) consisting of a
complex exceptional simple Lie algebra and a complex subalgebra @ such that (a) &8
absolutely irreducible or (b) y;=p®f where f is absolutely irreducible and has no nonzero
symmetric bilinear invariant. G = §¢ will be a semisimple S-subalgebra in Dynkin’s termino-
logy because it is a maximal subalgebra which has lower rank. Following ([7], Theorem

14.1) now, the pair (G, K) is listed in our theorem under the number

1 if rank K =1;

3,4,6,7,8 if rank K>1 and K is simple;

2,5,9, 10,11 if K is not simple.
This completes the proof that G/K is one of the spaces that we have listed. On the other
hand, all the listed pairs (&, R°) exist, and given such a pair one can find a Cartan involu-

tion of G which preserves ®; then the pair (&, &) consists of the respective fixed point
sets, so (/K exists, q.e.d.
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4. The case where G is classical and K is not simple
The result is:

4.). THEOREM. The only nonsymmetric coset spaces G/K of compact connected Lie groups,
where (a) G acts effectively, (b) rank G >rank K, (¢) G is a classical group, (d) K is not simple,

and (e) K acts R-irreducibly on the tangent space, are the
SU(pg)/SU(p) xSU(g), »>1, ¢>1, pg>4,

with the action of SU(pgq) rendered effective.
Here the inclusion is the tensor product of the usual linear representations of SU(p) and
SU(q), and the isotropy representation is the tensor product of the adjoint representations of

SU(p) and SU(q). Let m be the least common multiple of p and q. Then globally
G =SU(p9)/2,, and K = {8U(p)/Z,} x {SU(g)/Zy}.

For the proof we first need some remarks on linear groups. Here * denotes dual repre-
sentation, ad; denotes the adjoint representation of a Lie group L, and 1; denotes the

trivial representation of degree 1.

(4.2) Let é: SL(n, C)—GL(n, C) denote the usual matriz representation of the complex special
(determinant 1) linear group. Then §@6* =1sLm. ¢) @ adsL(n, ).

For the Lie algebra &L(n, C) consists of all » x » complex matrices, so SL(», C) acts on
it by conjugation via d®dJ*. This action decomposes into the trivial action lstm. e on

scalar matrices and the adjoint representation on matrices of trace zero.

(4.3) Let §: Sp(n, C)—~GL(2n, C) denote the usual matrix representation of the complex
symplectic group. Then adsym, ¢) =8%3), second symmetrization, which is the action on poly-

nomials of degree 2.

Yor adsp. ¢y is an irreducible summand of degree dim Sp(n, €) =2n% +» in the repre-
sentation 6®* =60 on BL(2n, €), hence contained in the representation on symmetric
matrices or the representation on skew matrices. The latter has degree 2n2—n, which

excludes it. The former is §%9) and has degree 2#2 +n, which yields our assertion.

(4.4) Let 6: SO(n, C)—~GL(n, €) denote the usual matriz representation of the complex special
orthogonal group. Then adse . cy=AXS), second alternation, which is the action on dif-

ferential forms of degree 2.

For & maps ©D(n, €) onto the set of all antisymmetric n x » complex matrices, and

®06* =6®90.
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(4.5) Let K, be groups, let F be a field of characteristic =2, and let «;; K;—~GL{n,;, F) be

linear representations. Then

A2, ®oa,) = {Sz(%)@Az(“z)}@{Az(%)@’gz(%)} on  K; x Ky;
8o @ otp) = {S2(at;) @ 8%(05) } B {A%(ot)) ® A¥(ots)} om K; x K,.

For let f and ¢ be bilinear forms. Then so is f®g. If f and ¢ are both symmetric or both
antisymmetric, one checks that f®g is symmetric. If one of {f, g} is symmetric and the
other is antisymmetric, one checks that f®g¢ is antisymmetric. Now the assertion follows
from the decomposition A2(o; ® oy} + S2(0t; ® 0tg) = (0t @ o) ® (0t @ o) = (0, ® 01 ) D (X, R 0tp) =
(A%(0y) @ 8%(1)} @ {AX(03) & %01 ).

Proof of Theorem 4.1. According to Dynkin ([6], Theorems 1.3 and 1.4), K°<—G° is

one of the inclusions

(1) SL(py, O)@8L(p,, €)= SL(p, p,, C),
(2) Sp(p1; C)®S0(p,, €)= Sp(ppy; C),

(3)  Sp(p1, €)@ 8p(p,, €)= 80(4p; p,, C),
4) 80(p;, CY®80(p,, C)=SO(p,p,, C)-

Here K =K, - K, local direct product, Kf is a compléx simple classical group with usual
linear representation oy Kf—GL(n;, C) and K{®KS just denotes (o ® ) (Kf ® K§). The
cases are (1) n;=p,, (2) n,=2p, and ny=p,, (3) n,=2p;, (4) n;=p;.

Let 7 be the representation of K on the tangent space of G/K. Then the representation
p of K on & decomposes asp=ad;@®n={adg, ®1z,}®{lx,®adg,}@7. Now we check the
four cases.

. Case (1). Using (4.2) we have 10yp=(x®x)® (6 ®)*=(t; Q)@ (@ 3) =
(g, ®adg) @ (g, ®adg,) =1g,«x, @ {adg, ® 1g,} @ {1, @ adg,} @ {adg, ® adg,}. Thus 7=
adg, ®adg,, absolutely irreducible. This is the case of the theorem.

Case (2). Using (4.3), (4.4) and (4.5), we have p=52(0; ® o) ={8%ct,) ®S%(aty)} D
{A%(0) @ A¥ap)} ={adg, ® [1g, © 721} @ {[lx; @ n] ® adg,} ={adg, ® 1.} © {1l ® adg,} ®
{adg, ®n,} @ {n, ®adg,} for some representations 7; of K. Thus 7 =0 @t where ¢ =adg, ®7,
and 7=7,®adg, As z is irreducible over B we must have that (a) T=0* and (b) ¢ has no
symmetric bilinear invariant. But (a) says 53 =adg,, which violates (). Thus our case (2)
is excluded.

Case (3). Using (4.3), (4.4) and (4.5), we have p=A2(o; ® ;) = {S%(03) @ A2(05) } &
{A¥t)) @ 8%(0tg) } = {ad g; ® [1 g, @)} @ {[1 £, @] ®2dg,}. As in case (2), this violates irre-
ducibility of # over R; thus case (3) is excluded.

Case (4) is also excluded by the argument used for case (2).
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Finally, back in the admissible case (1), we have p;>1 so that K¢ =SL(p,, €) is semi-
simple, and we have p,;p,>4 hecause SU(4)/SU(2)®SU(2)=S8U(4)/S0(4), which is sym-
metric, q.e.d.

5. A problem in representation theory

Our classification problem for coset spaces G/K satiéfying conditions (i)—(v), is now
reduced to the case where ¢ is a compact simple classical group and X is simple. On the Lie
algebra level, & is GSI(N), Sp(N) or SO(N) for some integer N, and we view the inclusion
@ as a linear representation sv. If v is not absolutely irreducible it has image in a direct
sum £=¢,®%, of Lie algebras of classical groups, and our simplicity conditions give
RELEG, contradicting irreducibility of K on the tangent space. Now s is absolutely
irreducible, so it has a highest weight 1; thus n=x;. Let y denote the representation of &
on the tangent space of G/K, so adson;=ad,®y. We must express R-irreducibility of
x in terms of A.

Let I be the rank of K. The choice of highest weight 4 implied a choice of maximal
torus 7'< K and the choice of a system {«,, ..., o;} of simple TC-roots of K°. Let &, denote
the linear form on € specified by the conditions

'M=1 M:O for i+

oty ot ’ oy, 0>
Then the highest weights of absolutely irreducible representations of § are just the linear
forms 5=32 n,£;, n; integers, n,>0. The representation of highest weight 7 is denoted
7,- The weights and representations &, and 7rg, are called basic. The representation dual to
7,, which we denote 77/, has highest weight which we denote 7*. Note that (3 n,&,)* = n,&}.

5.1. ProrpositioN. If G=SU(N), then

(1) A=Fké&, for some integer k=1 and some basic weight &, +=£¥,
(2)  x =7, ;+, absolutely irreducible, and
(3) N=degm, satisfies (deg x;)?=deg m; ¢ +dim K 4-1

Proof. If 4 =2* then 7; maps K into a subgroup L =S80(N) or Sp(3N) of G. K does not
map onto the subgroup because G/K is not symmetric, so K £L £ @. That violates irreduci-
bility. Thus A= 2*.

(4.2) says 7, @m e =1z Dadg®y. 7w, 4+ is & summand of z; ®7;s, hence of adg or of y.
In the former case 7, ;« =adg. Let u be the highest root so that ady =m,. Now u=21+21*
As A+2%, this says u =3 n,&, with at least two of the n, nonzero. The only case is where
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1 1
A+ =u: 0—0—..—0. Then K=8SU(+1), 1 is & or &, and n,(K)=G. But K+G.

o, oy oy
Thus 77, )+ is & summand of 4. As y is R-irreducible and 7 ;« is real, now y =, ;s abso-
lutely irreducible. Thus (2) is proved. (3) {ollows by taking degrees.
Decompose A=> n,;&; and let m be the number of indices 4 with »;>0. Then m is the
multiplicity of adg in 5z, @7 ». We have just seen that ad, has multiplicity zero in y. Thus
m=1, so A has form k&, q.e.d.

The orthogonal case is more delicate:

5.2 ProrosiTioN. If G=80(N), then there are three cases:

(@) A=kE&, for some basic weight &, =&7, and y=m, 1—a,» absolutely irreducible;
(b) A=k(&,+E&) for some basic weight &, =&;, and y =my;_o D7y _%, not absolutely irre-
ducible;
1 1
(¢) K=Gyand G=80(7), my=X=mn; e=0, and Mas o =0dg=m; =0.

In all cases, A=2* with 7, real, and N =deg m; satisfies 4 (degm;)?=deg y+4 degm,+
dim K.

Proof. By (4.4), A¥n;)=adx®y. As m; is orthogonal, this proves the last statement.
Now y=p,®...®8, with §; absolutely irreducible. As y is R-irreducible, either p=1, or
p=2 with B, +8,=p1, or p=2 with B, =p1=p8, symplectic. Let o; be a simple root not
orthogonal to A. Let ¥ be the representation space of z; and choose weight vectors v,
V34, Then v;_, A v, €AXV) is a weight vector of weight 24 —«; for A%(z;) which is anni-
hilated by every positive root space of &, 50 71,_,, is a summand of A¥(z,).

If 7, o, —adg then «; is a terminal vertex on the Dynkin diagram of &°. For other-
wise we have two different simple roots «’, «” not orthogonal to oy, so the highest root

U=2A—a; is not orthogonal to &’ nor to a”. That implies K€ of type 4;, and then «’ and &”

1
are terminal so !=3. Thus : o—o0—o so m; maps =Gl (4) isomorphically onto
G =80(6). As & +® this is impossible. Thus «, is terminal.

Let m,,_,,=adg. Now «, is terminal; let &’ be the unique simple root not orthogonal

to it. Then we have

7 n' 2n,—2 n'+e
A © O,<- and w=2) o0y O~~~ o’<
o o o o
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1 o
where e is 1, 2 or 3. If o' is not terminal, then u: O—o—...——o——(—o:o or ——O< ),
o
1
so K is an orthogonal group and A: o—o—.... But then z,(K)=G, which is excluded.

Thus a' is terminal. In other words, K has rank 2 with simple roots «; and «'. The possi-

bilites are ,
o=e o=e

(a) o—o (b) o o (¢) o o
o o =0 =0

11 2 1
In case (a), u: o—o, so 2r,—2 is odd. In case (b), u: o=e, so i o=e and

K=80(5)=G. In case (c), u: cl)zo, 80 A: OE:; then we are in alternative (c) of the
proposition.

Now we may assume 7,,_,, F+ady for every simple root not orthogonal to 1. Let 2=#§,
for some r. Then A=1* says &,=¢&;. Now @, 7—a, 18 & summand of y. 1f they are not equal
then y=m,; o ®(Fa1-a)" =M2)—a, ONz1-y, 80 24— o, has multiplicity >2 in A%(m;). That
being impossible, now y =7,,_, . Now suppose 1 not of the form k¢,. Then we have 1=£k&, +
t&;, and y=myy_, ®Mzy,. The summands of y must be dual, so £, =&F. They must be
distinet because 21 — o, has multiplicity 1 in A2%(nr,); so &, &5 Now A =A* says A =k(&, +&),
and we have y=m_, ®ny; ,* q.e.d.

The symplectic case is more delicate:

5.3 ProrositioN. If G=Sp(N), then

(1) A=kE, for some basic weight £, =&, and 7, is not real on K;
(2) =y, absolutely irreducible; and
(8) 2N =degm; satisfies 1{(deg 7;)*>+degx;}=degm,; +dim K.

Proof. (4.3) says S%(7;) =ad, Dy, 80 my; is & summand of ady or of . If 7, ; =ad, then

7y
the highest root u =24, so there is a simple root o; with y: ~ 0~ and #,>2. That occurs
o

only for K =8p(l), and then u: z—...——o:o, s0 A: :—...——ozo and 7z;(K)=G. That
is excluded. Now 7, is'a summand of y. As 7,, is real and y is R-irreducible, this shows
y =7y, absolutely irreducible.

Suppose that 1 is not a multiple of a basic weight. Then we have distincet simple roots
o’ and «" not orthogonal to 1. Let ¥V be the representation space of #;; choose nonzero
weight vectors u€V,, v€V, . and w€V, ,.; let {z;, ..., ;} be a basisof V,_, .. Let
Y denote the weight space of weight 24— o' —«" for ;®m; on V@ V; now ¥ N A%(V) has
basis {vAw; wAwy, ...,uAx}, so it has dimension ¢+1. B. Kostant’s method for de-

composing a tensor product shows that szy;_,-,» is 8 summand of multiplicity ¢ in 7, @ ;.
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Its multiplicty in A%;) is at most ¢t —1 because each of the subrepresentations n,,_,- and
Ttoy_o OF A%(m;) has 24 —o’ —«” for a weight. Now my;_,_,~ is a subrepresentation of
S2(7 ;) =7y, +adyg. This shows\ that adg =753 oo

Now the highest root u 2o —o" T aisa simple root adjacent to ' or «” in the
Dynkin diagram of &, it follows that u is not orthogonal to «, so —pu is joined to « in the
extended Dynkin diagram. If K is not of type A4;, then there is a unique simple root «,
joined to —py in the extended diagran.ll o 18 the only simple root adjacent to o or o

now it is adjacent to both, so it is interior to the diagram and satisfies 2{u, ag>/{ g, og> 2.

1 1

Those two properties contradict each other; thus K is of type 4; and u: o—...—~0. As
‘ 1 1 2 2 ) 1 1

p=24—o —o", now I=2 and pu: 0——0. Thus 2A=p+a'+a" 0——0. Now A: o—o0

’

o o”
80 7, is orthogonal. That is absurd. We have proved that A4 is a multiple k&, of a basic
weight.
&, =¢&F because 1=2*%, and (3) comes from 8%(x;) =7,, Dady by taking degrees, q.e.d.
Propositions 5.1, 5.2 and 5.3 do several things. They identify y in terms of 4, giving a
formula for deg 7z;. And they limit the possibilities for 2.
Recall the H. Weyl degree formula:

rtg,0 1
deg m,= || ——, whe == . 54
g, = I =y o where g =5 2 a (65.4)

We need a modification involving some new notation. We have the system of simple roots
{oq, ..., 2;}. Given any positive root e, there is a unique expression a =2 a,x; where a;,>0

are integers. Recall the level l(x) =2 a;. Now define
4= a, ||ol|?; Uw) =2, d;, modified level. (5.5)

We calculate for v=2n,; &;

2 s O 2
20,8y =3 @ a) =3 T ol < Smd,

2 . ”
200, 0> =3 240, ) s = 3 L [P = 3y = L),

<‘xi? “i>
<v+g,oc>:<v,<x> =znidi =z(“)+znidi
Ga> e T T @

Substituting back into (5.4) we now have
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deg 7, = H z(“)J‘_and;

I i where »=> n, &,. (5.6)

The next five sections consist of applying (5.6) to Propositions 5.1, 5.2 and 5.3, obtaining
the classification of pairs (G, K) with @ classical and K simple.

6. The case where G is unitary and K is simple

The result is:
6.1. THEOREM. Let G be a special unitary group and let K be a compact connected non-
symmetric subgroup. Let y denote the representation of K on the tangent space of G/K. Then

7 ts wrreducible over the real number field, if and only if (G, K) is one of the following

Q K 7T X

SU n{n —1) SU(n) 1 1 1
2 )| (»=zs | 0—0—0—..—0 | 0—O—..—0—0
SU n(n+1) 8U(n) 2 2 2
2 (n=3) 0—0—...—0 0—0—...—0—0
0—0—0—0—0 | 0—0—0—0—0
sU(27) E, 1 I 1 | 1

o) 0

o1 o1
su16) | spin (10) | o—o—o0f o—o0—0{

\O \O 1

where the inclusion K@ is the absolutely trreducible representation 7, of highest weight A.
In each case y =, , s, absolutely irreducible.

In each of the cases listed, y is irreducible.

Now assume y irreducible. Proposition 5.1 says that the inclusion K —@ is an abso-

lutely irreducible representation 7, for some basic weight &, &7, and that
(deg muxe )* = deg My, + e+ dim K + 1. (6.2)
To compute these degree we denote sets of positive roots by
P,={a=3a,0,>0:a,+0=a.} and S,={ax=>a,0,>0:a,+0+a.},
where 7* is the integer ¢ such that oy = «,. Now define

_ 1 ) + &, _ 1 )+ kd, o Uy + d, + Kediye
pr.k H z(“) 3 Sr ke H Z‘(a) > tr.k - H Z(OC) .

Pr Sr 'Sy

(6.3)
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We compute from (5.6)

[(or) + k.
d L S
eg e, go fa) " PreSn

No) + kd, + kd,e
deg nk(§,+§:) ZH ‘(_# = pr.?c ° tr,k-

=0 I(e)
Now (6.2) becomes P58t —tiy=1+dim K. (6.4)
To limit k, we need a growth estimate:
6.5. LEMMA. If 1<h<k, then p,5{s.%—t w}<piis;% —trr}

Proof. As p, %< p, } visibly, it suffices to show that 0 <s, 3 —t, , <s,.% —t, 5. From a
glance at (6.3) we see that s, , and ¢, , are smooth functions of x for >0. Thus we

need only prove d/dx (s, 21, ,) >0 for #>1. For every root =2 b;«;€ S, we define

b, + z(ﬂ)} _ 22a@2+2xd, I(a) + [(a)?
1pr | ss l()?

b+ b Ha) + 2d, + 24,
z(ﬁ ) Sr—f z(a)

sp(x) =2 b, {

tp()
so that d/dx(s, 2)=2sss(x) and d/dx(t,,)=2sts(x). Now we must prove s s5(x)
> 2s,t5(x). For this it suffices to prove:

(A) if §=p*, then sg(x) > 1t4(x) for z>1;
(B) if g+ %, then sp(x) -+ sp« (x) = tg(x) +tge(2) for x> 1.

To prove (A) and (B) we first observe that

2@+ 2ad, [ (o) + [(o)? - 2d, + 24, -+ [(a)

1()? - () if a=at, (6.6)

22 + 24, o) +I(a)® 2PaE + 26,0 1(0*) + I(art)?
(o) lfa)?

_ @, + @l t+ Uew) 2dye+ad, +I(a*)

I(a) I(e*)

if aFa* (6.7)

Inequality (6.6) is elear. For (6.7), observe that I(x)=[(a*) and expand. If § = f* we also

have
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N x5,+f(5)} 26, 1(8) _ b, + by
? b’{ T R T 1170

with (6.6), this proves (A). Using (6.6) and (6.7), the proof of (B) reduces to checking that

03 {x5,+i ,3)} {xzf)f*+2x5r*i(ﬂ*)+i(ﬂ*)2} Iy {%,&Z‘(@} {x23§+2x8,i(ﬁ)+i(ﬁ)2}
LIy ("> s Up®

- {(3, + (3,*} {i(,f}*) + &b, + xl?,*} N {z‘;,* + 13,} {2(,3) + abyx + x@,}
“1up 1(p*) 16*) is) '

That inequality is checked by expanding out and using I(8) = {(5*), q.e.d.
We reformulate Lemma 6.5 as follows.

6.8. LEMMA. m; 18 among the following representations;

2

K=8Un+1),n=>2, and A: 0—0—..—O
oy O o,
+ 1
K=8Ur+1),1<r< n_l’ and A o0—..—0—...—O
2 ooy o, o,
/O 1
K=8pin(2»), n=2m+1>=5, and i: o—o—...——o\
o)
0—0—0—0—0 0O—0—0~—0—0
K=K, and A: 1 | or A 1]
o o)

Proof. As A+/*, K must be of type 4, (n>2), D, (n=2m+1=5) or Ey. If m; @my*=

1,@®adg, then K is of type 4, and &, é—o——...—-o. Then Lemma 6.5 says p, 3{s, 3 +t, 3} >
1+dim K, so k=2 by (6.4) and Lemma 6.5. This is the first possibility listed in Lemma 6.8.
Now suppose 7m; ®m;*+1z®adg. Then the latter is a proper summand of 7, @n,* and
we have p, ,{s, 1—t,,}>1+dim K. Then (6.4) and Lemma 6.5 say that A=¢,, basic
weight which is not self dual. These are the remaining possibilities listed in Lemma 6.8,
g.e.d.

We now run through the cases of Lemma 6.8.

: ) 2
6.9. Lemma. The representation m; given by A: 0—~—0—...—0, n2=2 maps SU(n+1)
o, o o,
+ +
into SU ((_72_1)2&_3) ) and satisfies (deg 71;)* = deg 7y se +dim SU(r +1) +1.
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Proof. The roots of SU(n+1) are the roots =+ («;+ o,y +...+o), 1 <¢<j<n, where
{ocl, .. %, } are the simple roots. We have =1 and observe that
Py ={oy, oty +otg, ..., oty +0tp+0t, 1} and Sy ={oy +...+ 01, }.

All roots have the same length, which we normalize to be 1, so J(e; +... +a,) =g and

d;=a, Now
142 242 342 n—1+2 am+l)

L™y Ty T T e 2
n+2 n+4
81,2=—2— and t1,2=—2—
n+2¥® (nt+4
Thus P35t ) =10 (n+ 1) {("“nz—)— (—n‘)}

=lnP(n-+ 1)2-%= (n+1P2=dim SUr+1)+1, q.ed.

1
6.10. Lemma. The representation my of SU(n+1) given by A: 0—..—0—...—0,

oy o, @,

1<r<mn/2, satisfies (deg m;)> =deg w1 1+ +dim SU(n + 1)+ 1 if and only if r=2.

Proof. We go by induction on r. First let r=2. Then P, consists of

i
' oy -+ Oty oy + oL+ ot oyt ...+ op-3
root oy o+ ..+ op-2
oty + Oty Oy + Oty + 0ty Oy + vs +Up -2
level 1 "2 3 n—3 n—2

2 (3 4 n—2\*n—-1 (n—2 *n—1 (n—2)(n—1)
’ 3n3) ) - .

50 Pea=7e n-2 “\2 ) n-2 2
And S,={ay+t ... Fotu 1, 04 o T, e F oy, o el T} 0 that

n+1\*n+2 n+2 0+ 1\
n—1 )

s _n=1( n \Vnt+tl_  nn+l) I
21op—2\n—1 n (n—=2)(n—1) L n n—2\n—1

Thus pz,% (32,% —ty,1)

w(n+ 1 (n+2)(n+ 1)2}
(n—=2P (=1 (n—2)(n—1)>

_ B _ i n+ 12— (n—2) (n+2) (n+1)?

=3{4n*+8n+4}=(n+1)?=dim SU(m + 1).

~ -2 (n—lf{

This proves the assertion for r = 2.
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Suppose r >3 and suppose the lemma known for » —1 and all n>2r —2.-We decompose
P, into the subset P; given by @,=0 and the complementary subset P; ={x; +...+a,

O F oo F gy ooy O+ +0t, o). Then we have the factorization

, ” , r+1 r+2 n—r+1 , nmn—r—+1
Pra=Pr1"Pra=Pra r o rrl m—r =pr.1‘“T“-

Similarly S, consists of the set S, given by a, =a,=0 and the complementary set

S:={(x1+...+ankr+1, “r+"'+“n; e “1+---+“n—1; “2+-~'+an; “1+"'+“n}'
Thus oo g JrTrt2 mmrt3  m |fadl
- 8. 4= = . .
A A N P | n

- n(n+ 1)
" (m—r+ 1)

n—r+3 n+1}2n+2_ , n(n+ 1)% (n+2)

d b=t b=t — L —— = . .
an 1o il {n—r-i—l n—1 n U e—r+1)72 (n—r+2)

Now g=n—r+1<n satisfies n(g + 1) > (n +2) ¢%, s0

n*(n+ 1) n(n+ 1) (n+2)
m—r+12% (m—r+ 1) (n—r+2)
. , , . ni(n+ 1)
This shows (Sr,%—tr.l) > (sr.%—tr,l) (n—r—l— 1)1‘

The induction hypothesis, applied to the §U(n — 1) with simple roots {e, ..., 0,1}, says

that p, 3(s;.3—1.1) > (n—1)%. Now we have

n—r+ 1)2 nin+17%  nin—1)

TR e AR

pr.l(sr.%—tr,1)>(n*1)2( ,

>(n+12=dim SUR+1)+1, qed.

6.11. LemMmA. The representation m; of Spin(2n), n=2m+1=5, given by A:

o1 \ ,
o—o—...—o< s satisfies (deg ;)% = deg 71z, 4» -+ dim Spin (2x) + 1 if and only if n=>5.
o]
‘ /O oy
Proof. We label the simple roots ©—0-—...—0 , then A=§, and m; is the half

o, o4 oz,\O Oy
spin representation, deg m1=2""'. The usual repreéentation T, : Spin (2n) = 80 (2n)

satisfies

2n
A" Moy ) =70, =masze, degree (n _ -1) .
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2
Thus our degree equation is 2272 = (n —nl) +(2nt-n)+1, ie,

n+2)(n+3)...(2n)
(n—1)!
where n>5 is an odd integer. 5 is a solution, and one checks that the left side grows

22”‘2—( =2nt—n+1,

more than the right side when # -+ 2 replaces ». Thus 5 is the only solution, g.e.d.
0—0—0—0—0
6.12. LeMma. The representation m;: Eq—8U(27) given by A: 1 | satis-
o)
fies (deg m)® =deg myax +dim Eq-+ 1. The representation 7;:Eq—~SU (351) given by A:
0—0—0—0—0 '
1| does not satisfy (deg m;)? = deg 73,2+ + dim Eg + 1.
o]

Oy *y Oy 0y Op

Proof. We label the simple roots O—O_?—O_O. Then &,=£7 and a calculation

O o
shows that deg 7s, =27 and deg mg &t =650, so that (deg 7g,)* = 27*= 729 =650+ 78 +
1=deg m; .2 +dim Eg+ 1. Also, & =& and a calculation shows that deg ms, = 351 and
deg g, . & = 70 070, so that (degm,)®=123 201>70 070+ 78+ 1 =degm,, .t + dimEg+ 1,
q.e.d.
Theorem 6.1 now follows from Lemmas 6.8, 6.9, 6.10, and 6.11.

7. The case where G is symplectic and K is simple

Here we have the classification:

7.1. TEEOREM. Let G be a unitary symplectic group and let K be a compact connected
simple subgroup. Then the representation y of K on the tangent space of GJK s irreducible
over the real number field, if and only if (G, K) is one of the following.

e K 72 x
3 6
Sp (2) SU (2) e} e}
1: 2
Sp (7) Sp (3) —0=—0 —0—0
1 2
Sp (10) SU (6) 0—0—0—0—0 0—0—0—0—0
. /O 1 /O 2
Sp (16) Spin (12) O0—0—0—0 0—0—0—0
' ) No o
Sp (28) E, 0—0—0—0—0—0 0—0—0—0—0—0
‘ ‘ 1 | 2
O O
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where the inclusion K-G=8p(n)=GL(2n, C) is the absolutely irreducible representation
7y of K, of highest weight A and degree 2n. In each case y =, ,, absolutely irreducible.

In each of the cases listed, y is irreducible.

Now assume y irreducible. Proposition 5.3 shows that the inclusion K-—+G=S8p(N)
is an absolutely irreducible representation 7, for some basic weight &, = ¥, that 2N =

deg 7y ¢, that y =y , and that
¥ (deg e )* + § deg 7xe = deg mp s +dim K. (7.2)

The fact that m, is symplectic can be reformulated as follows using results of A. I.

Mal’cev ([11], § 6); the details are carried out by E. B. Dynkin in Table 12 of [6].

7.3 LEMMA. The positive integer k is odd and the basic weight &, s one of the following.

Type of K &, Conditions.
1
4, O0—0—...—0O—...—0O n=4s+1, r=2s+1
oy Oy o, o,
1
B, 0—0—...—0=—® n=4s+1 or 4s+2
1
a, o—@—..—¢—...—8—=0 r>1, r odd
oy o o, w1 0,
/O 1
D, O0—Q0—...—0O n=4s+2, s>l
No
O—0—0—0—0—0 o—0—0—0—0—0 O—0—0—0—0—0
E, 1 | or 1| or [
O O 10

This lemma is used with a precise growth estimate:

7.4. LeMMA. Bither k=1 0rk=3.1f k=3 and rank K > 1, then dim K > % (deg augr)2 +
§ deg me . ’

Proof. Define f(x)= Ho @z(i“l)ﬁz_) where the product runs over the positive roots
o= a;0; of K. Then (5.6) and (7.2) say % f(k)? + 3} f(k)=f(2k) + dim K.

Let x>2; we will prove that F(z)=1 f(x)?+1 f(xz)—f(2x) is a strictly increasing
function of x. As the second term is increasing, it suffices to show that d/dz {} f(z)? —

f(22)} >0, ie., that
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xd,+2(a))2 {B, .x8,+2(,3)} 2xd,+ l(a) {2 B,}
2 {:gg( Ua) } R R {:Elg Ua) } ug)

We will prove this inequality term by term. Dividing the g-term by b,/ [(B), that amounts

b, + U(@)\? {%,H(ﬁ)} 2 ad, + (o) (1.5)
{31:{0( T )} @) 22;%( )

to showing

for every root f>0.
Let B be a fixed positive root and let S be any set of positive roots which does not

contain §. We define

o (xd, T (@)\? _ab,+1(B) o 228, + ()
A~ (M), metp? eao-a g

If x¢S U {B} is a positive root, then

(xd, + i(oc))2 _ 2d, + ()
I(a) le)

Thus, in order to prove (7.5) it suffices to find a set S such that 44 Bs> Cs.

If f=u, we take § empty. Then As=1, By=x+1>2 and Cs=2, so 43Bs>Cs.
Now suppose f=+a,. Then rank K>1. Let «, be a simple root adjacent to e, in the
Dynkin diagram of K, and consider y =2 ¢; «; defined as follows:

av_c‘;,-%—i(y):w-i- 2
Iy 2’

(1) ““r“=”“3”’ y=a,tos,

zé, + Z(y)=x—|- 2

2 _ 2 —
@ ol =2,y =20, P2

, s o1z o wb Yy xt2

3) 2lll®=loxll®s y=20a+a, T 2

It f=y we take S={a,}; then As=(x+1)?, Bs=1%(x+2) and Cs=4z+2; x>2 says
As>9 s0 Ag BS‘>§¢+ 9>42+2=0Cs Now we may assume a,+ B+ and take S ={«,, v}
then Ag=%}(x+1)? (x+2)% Bs>1and Cs=(22+1) (22 +2),80 As Bs > Ag >} (x+ 1)°42=
42 +8r+4>42*+6x+2=Cs This completes the proof that dF(z)/dx >0 for x> 2.
6 — 682901 Acta mathematica 120, Imprimé le 9 avril 1968
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3¢, is symplectic because mys is symplectic, and mse (K) S Sp (4 deg mws¢). Thus
F(3)=deg 8* (3¢ ) —deg 7es, >dim K. As F(z) is increasing for > 2, as F(k)=dim K,
and as k is an odd positive integer, it follows that £ is 1 or 3. This proves the first
statement.

Suppose rank K >1. Then we have «, and y as defined above. Let V be the set of

all positive roots except for o, and y. Now

2 4 Z(OC)
3 2kd, + I(«)
deg Take, = 2k+1)(E+ 1)1;1 ————i(“)

and we have termwise inequalities for the factors corresponding to roots « €V. Thus
4(2k+1) (k+ 1) (deg 7xe ) = (k -+ 1)* (k + 2)* deg maxe, (7.6)

Suppose k=1, ie., k=3. Then (7.6) says g (deg 7'635)2 >deg mee, so the identity
F(3)=dim K gives us

dim K =} (deg ;3¢ )* + } deg mse — deg mpe >4 (deg w5 )* + § deg mze .

Suppose further that rank K >1. Looking at the o,-term and the y-term in the degree
formula, we notice

3+1 3+2
deg n35>m.1—+—2 deg we =% deg ¢ .
Thus 56 (deg 7wse )* + § deg 75 >% (deg e )* +5 deg s .

This proves the second statement, q.e.d.

Now we can run through cases.

k
7.7. LEMMA. The representation 7; of SU(n+1) given by A: 0—0—...—0—...—0,
oy Oy o, «,
n=4s+1, r=2s+1, k=1 or 3, satisfies } (degm)®+ } degm;=degmz; +dimSU (n + 1),
if and only if A: é or A; o—o—é——o——O'

Proof. First suppose k=3. If s=0, then n =1 and deg ¢, =m + 1. Thus } (deg ;)% +
ldeg ;=314 +14=10="T+3=deg 7z, +dim SU(2), which is our case X g. " Now we
prove by induction on s that § (deg ms; )+ 4 deg mze > deg mge, +dim SU(n +1) fors>1.
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By Lemma 7.4 it suffices to prove dim SU(n+ 1) <2 (deg yzfr)z for s=1. For s=1 this
says 35 <% -20% which is clear. The induction hypothesis is

45+ 2\? 2 r\?
g2 ’< .
(4s+2) 9(2s+1)’ ie., 367 22(7)

We write this in the form (1-2... «7)?-3677<22{(r+1) (r +2)... (27)}%. If we raise s to

(r+2)* (r + 1)
2

s+1, r goes to r+2, and we multiply the left side by , and the right

2r+1)2(2r+2)°(2r+3)2(2r+4)

side by rFIE (r+2)F

. The factor for the right side is larger, so the

inequality persists.
We may now assume k=1, s0 1=¢, and s>1. If s=1 then } (deg 7z)*+ 3 deg m; =

1-20*+%-20=210 =175+ 35 = deg 71 + dim SU(n + 1). That is our case A: o—o—é—o—o'
Now we prove by induction on s that 1 (deg 7z57)2 +§ deg e, >deg mp¢ +dim SU(27) for
s =2, It suffices to show that §(deg yzfr)2 >deg m¢ +dim SU(27). For s=2, deg 7, =
252, deg my; =19404, and dim SU(2r) =99, so the inequality is clear. Let s>2, let S be
the set of all roots >0 where a,+0, and divide S into the set 7' ={x€: a;=0=a,}
and its complement U = {0t +... +ot,, 0t + ... 0y oo 0 oo+ 0y, g+ .. 4 Gy A ST N
Let L be the subgroup SU(n—1) of SUn+1) with simple root system {a,, ..., a, ,}. By
induction on », }(deg 7 )?>deg Ty +(2r—2)°—1 where 7, is the representation of L

with highest weight y. Now degm, —u-deg 7g, and deg 7y, =v-deg ;m; Where

B 1-|-l(oc)*_{r+1 27—1}2 2r  4r—2

v Uo) r U 2r—23f 27—1 T
2+ lex) [rt+2 2r * 2r+1 (2r—1)(2r+1)
and T e _{ r "'27—2} 2r—1_ (r+ 1y

Now u”>v shows that % (deg m¢)* grows more than degr 7z, When 7, hence when s, is
2r)E—1
@r—2y-1

when s, is raised. Thus our inequalities persist when s is raised, q.ed.

raised. Also u?> 80 } (deg 7z57)2 grows faster than dim SU (2r) when 7, hence

3
7.8 LeMMA. The group K is of type B, or D,, if and only if A is given by @ or by

/Ol
No

O—0—0—0



84 JOSEPH A. WOLF

k
Proof. Let K be of type B,. Then Lemma 7.3 says : o—o—...—o—e and n=4s+1
o, O, g Oy 0

or 4s+2, and Lemma 7.4 says that k=1 or 3. Suppose k=3 and »>1. Then Lemma 7.4
says that 2n2+n=dim K >2 (deg ;)2 +§ deg 7, =%-2"" +-§-2". That inequality has no

3
integral solution n>1. Thus k=3 implies n=1; that is the case : e which occurs as

3
A: 0 in Lemma 7.7. We may now assume k=1, so A =£,; and »>1. 7,,, can be obtained by

composition of the inclusion B,=802n+1)<=8U(2n+1)=A;, with the representation
2n+1 2n+1
mg, of Agy; thus deg myg, = ( nn+ ) .As deg 7m;, =2", our equation is 227 21— ( nn—l— ) +

2n2 4-n. There are no integral solutions n>1.
E

ox
Let K be of type D,. Then Lemma 7.3 says that i: o000l n=4s+2,s>1;

Ay Oy—1 Oy NO
and Lemma 7.4 says that & is 1 or 3. If k=3, then Lemma 7.4 and deg s, =2""! say
that 2n% —n=dim K >%-2%""215.97-1 There are no integral solutions n=>6. Thus k=1

and our equation is 2¥-34+2"-2—deg my;, +2n2—n. If n =6 then degm,,, = 462 =294

o1
2% 726, so we have the solution A: o—o—o—o/ . Now we will prove by induc-

No

tion on % that, for n>6, the representation sy, of D, satisfies

deg 7y, <2°" 724272 —2n 4 m,

ie., that 22278 > deg myg, — 2" 2+ 202 — 1.

For when % is raised to n + 1, the new roots a >0 with a, + 0 are {o; + g + oty + ... T oty 413
ot oyt gy g togt2utoyt T oy o Toat2agt... + 20, + &y 1}, SO

n+2 n+3 2n+1_22n+1
n -nt+tl "7 2n—1 n+1

and 272 —n is multiplied by a factor less than 4. But 2°"~% is multiplied by 4. Thus our

deg 7s¢, is multiplied by < 4. Similarly 2" 2 is doubled

equality for n =6 becomes strict inequality for »>6, q.e.d.

E
7.9. LEMMA. The representation x; of Sp(n) given by e—e—...—e—...—8=0, n—r+1
Oy Oy —1 oy oy o
and k odd, 1<r<n, satisfies i(deg m,)2-+1 deg m;=deg m,; +dim Sp(n) if and only if
1
A: e—e=0

2n

Proof. As before, k is 1 or 3. Let s=n —r+ 1; then deg ns = (2:) - <s o

) with the
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usual convention that (”S) =1 and (_ml) =0. Thus deg 7z >2n. If k=3 then Lemma
7.4 says 2n® +n=dim 8p (n) > % (deg 7 )*>% - 4n*>8n*>2n" +n. Thus k=1.
Given an integer b with 1 <b <n we define

P(n,b)=1 (deg m,)* —deg m;, and Q(n,b)=} deg m, —dim Sp ().

Then our degree equation is P(n, ) +@(n, r)=0. Suppose b<n. Let 7, denote the repre-
sentation of highest weight » for the subgroup Sp(n—1) with simple root system
{og; -y #yq}. Then degz, =u-deg 7, and degm,, =v-deg Ty, Where

= (db_‘_ Z(“))Z - 24, +i(oc)=

I() ey
an 40 an=EQ
Thus: if b<mn then P(n,b)>P(n-1,b). (7.10)
We observe dim Sp (r)=w-dim Sp (n —1) where w= 2*n2~ln_ We compute %=
P P MY P P

2n(2n+1)
(m—=b+1)(n+b+5)

b=1 this says n>4; if b=2 it says n>4; if b> 3 it is automatic.

Thus the condition for w>w is 3n2—12n—3+4b+0*>0. If

Thus: if b<m, and if n=4 or b=3, then Q(n,b) > Q(n—1,d). (7.11)

7g, maps Sp(n) onto Sp(} deg g ); thus r<n. Let L denote the subgroup Sp(r+2)
of Sp(n) with simple root system {o,, ..., &,,5}, and let v denote its representation of highest
weight £,. Then 7 maps L onto a proper subgroup of Sp(4 deg); thus P(r+2, r)+
Q(r+2,r)=0. 1f r+2 <n then (7.10) and (7.11) say that P(n, r)+Q(n, r) >0. Thus r =n—2.
Suppose n==5. Then Q(n,n—2)>0. Define U={x, o 041+ %,_ 5 Cn_g+0, 3
Oyt 0y g+ 0y _gy Oy + 0y g+ 00y g5 Oyt 0ty g + 0, o+, 3} and let' V be the complementary

set of positive roots. As V contains the highest root, we define (recall r =n —2)

- dr+?<a>)2 26+ 1)
v IJ( 70 and 02—];1 7

and have v, >v,. We also define

B 4, + l(a)\2 24, +1(a)
wetll (P ?)  ma weE

so that P(n,n —2)=u, v; —u, v,. But
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=—1.2.2.3.8.3.8.4.4.4.4.5.5—

w;=%%%33-4-4-444533=50 and
—3.4,4,5,.5,.8— =

Up=1'3'3"3'3°2=950=1u

Thus P(n, n—2)>0. As Q(n, n—2)>0, that contradicts P(n, n—2)+@Q(n, n—2)=0. Thus

7 <5. As n=3 now » must be 3 or 4.

Let n=4. Then 4: o—o—::o, so deg ;=48 and deg m,; =825, so %(deg 7))+
L(deg ;) =1176 > 825 + 36 =deg 715, -+ dim Sp(4). Thus » +4.
Nown=3s0 A .—.:é. Here deg 7w, —14 and deg 7y, =84, s0 } (deg 7;)* + % degm; =
105 =84+ 21 =deg 7, ; +dim Sp(3), q.e.d. ‘
0—0—0—0—0—

o
7.12 LeMMA. If K=E, then 1 is given by 1 | , degree 56.
o

oy Oy O Xy K Oy
Proof. We number the simple roots of E; by O—O—O‘-‘[O—O~O. Then Lemmas

Ooy
7.3 and 7.4 say that A=%k&,; ris 1, 3 or 7; and k is 1 or 3. We compute deg 7z, =56;
deg 7, =27 664; degm,,=912; degm,,,=1463; degm,,, —109 120 648; deg 7,;, =84 645.
Now dim E,=133 and we have
22(27664)2 > 22 (912)* > 2 (56)? >133.
Thus Lemma 7.4 says k=1. Finally we compute

3 (dog )2 +} (deg y,) — 1 596 — dog g, +dim By
3 (deg m,,)?+% (deg vy,) =382 662 280 >deg. y, +dim E;;
3 (deg 7,,)2 + 4 (deg 7r;,) =416 328 >deg 7y, +dim E,.

Thus 1=£,, q.e.d.
Theorem 7.1 now follows from Lemmas 7.3, 7.7, 7.8, 7.9 and 7.12.

8. The case where G is orthogonal and y reduces
As the first step in the classification for ¢ orthogonal and K simple, we prove:
8.1. THEOREM. Let G be a simple(l) special orthogonal group and let K be a proper

compact connected simple subgroup. Let y be the representation of K on the tangent space of

G/K. Then y is irreducible over the real number field but not absolutely irreducible, if and only

(*) This means G'= S0 (n), n>2, n=4.
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1 1
if the inclusion K—@G 1is given by o—...—o, adjoint representation of SU(n+1), n>2,
oy o,
L 3 3 1 2 2 1 .
In that case y is given by o—o@o—o if n=2, by 0—o0—...—0®O—...—0—0 if n>2.

Note that the adjoint representation of SU(2) simply maps SU(2) onto 80(3), and thus
is not interesting in the context of the theorem.

Proposition 5.2 says that the inclusion K—G=80(N) is an absolutely irreducible
representation . .4 for some basic weight E EF, that N=degm, £+, that
X =Tt £)—ar, DTkt + £ —? > AN that § (deg w1 ¢%)? —§ deg my(g 4 =deg y +-dim K. We

write the latter in the form
} (deg 7w, +n)* = & deg T+ 1 2 dog o pee +£H-o, T dim K. (8.2)

We now make a growth estimate on k, proving:

8.3 LEmma. The integer k-is equal to 1.

Proof. For each integer m >0 we define

Un=1(deg ne,+5n)’s Vm=%degangseh and Wn=2degmn ¢ eh-a,
We also define multipliers by
Upr=%,Up, Vppu=v,V, and W, ,=w,W,.

&, =& shows that K is of type 4,, Dy, or E,. Thus all simple roots have the same norm.
Now a glance at (5.6) shows that
U= [JUn(®), Vm=TlVm(x) and w,= [Twn (),

>0 x>0 a>0

where () = 0, (o) = 2N PN ang

_2(m+ l)a,*+2ma;+2ai+l@
2Mmae +2(m—1)a,+ > a;+ ()

Wy ()

and the summation Y a; is extended over all simple roots adjacent to a, in the Dynkin
diagram of XK.

m-+2 2m+1 2m+3

Observe U (OCT) = m——l-i =Un (OCTt). Also Wy, (OCT) = m, Wy, (OC,*) = m if A L oy,

m-+2
m-+1

and w,, (o) = if o+ and o, are adjacent. Now (m+2)2(2m—1)2m~+1)=4m®+
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32 m® + 95 m* + 120 m® + 40m? — 32m — 16 > 4m® + 24m® + 59 m* + 76 m® + 54 m> + 20m +

_ ’ m+2\* 2m+1 2m+3 2m+1 m+2 .
3=(m+1) (2m+1)(2m+3). Thus (m+1) >2m—1 Smil >2m—1 ot This
proves

U (0tr) * Ui () > Wiy (02y) * Wiy (). (8.4)

Let « be a positive root, &, +a = o,+. Denote a=a,+ a,+, s= a, and I = («). Then

@2m+1)a®+2al nd w(@)=1+ 2a
(ma+ 1) & m % 2m—1)a+2a.tsti

(o) =1+

We will prove that u,,(x) > w, (), i.e., that
*) {@m+1)a*+2al} {2m—1)a+2a,, +s+1} > 2a(ma+1)%

For m=1 this inequality is (3a2+2al)(2a,4+s+1)>2a3 +4a% +2al?, ie., 6aa.+
3a%s + dlaa,s +2las > 1la? +2a3. If a, =0, then a,» =a and the inequality follows; if a,>1 then
0—0—0—0-—0
& 1] 80 s=a, and the inequality follows; now suppose a,=1. If a,.>0
o]

then 20,.>a and the inequality follows, so suppose a,»=0. Then the inequality says
3s+2ls=1+2; as =+, we have s=1 and 122 so this is clear. Now (*) is proved for m=1.

To prove (*) for m>1 we let m range as a real variable and we differentiate. Thus we
must prove 20%{2(m —1)a+ 2 +s+1} +{(2m +1)a%+2al} 20 >4ma® + 202! which is clear
by inspection. This completes the proof of

Uplet) Z wy(a) for «>0, o,FaFo. (8.5)
Combining (8.4) and (8.5) we have u,,>w,,. And v, >1 shows «,,>wv,,. This says
Unii—{Vp1+ Wp+dim K} > U, —{V,+ W, +dim K}. (8.6)

Let y=&,+&7. Then 7, is orthogonal and 7,(K) £ S0 (deg ,). As 7y, and 7y, , .
are summands of A2(z;), this shows that U, >V, + W, 4+dim K. If k> 1 then repetition of
(8.6) says U,>V,+ W, +dim K. But (8.2) says U,=V,+ W, +dim K. This proves k=1,
g.ed.

8.7. LeMmA. K is of type A,, 1<r<n/2.

Proof. Suppose that K is not of type A,; then &, & implies that £, is given by

1 1
0—0—0—0—0 0—0—0—0—0 0
1 [ -or | or O—...—0O

(n.odd, n=5).
o) o) No '
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o, Oy Oy Oy O
O0—0—0—0—0

Suppose K =E;. We number the simple roots l as before. Ifr=1,
QO o
0—0~~0—0—0 0—0—0—0—0
then A=E+E: 1 | 1 and 24—y =&, +2&;: 1| 2.
o o

Then we calculate degm;=650 and deg sy, ,, =78 975. Thus } (degn,;)?—1degm; =
210 925 >158 028 =2 deg 715;_,, -+dim K. Now r=:1. If r=2, then

1 1 1 1 2
A=E& 4+ O—O—(IJ—O—O and 21 —ay =&, + & +2&,: o—o—?—o#o
© o

We then caleulate degs,=70070 and degm,,; , =252 808 452. Thus } (degm;)2—
1 deg 7, =2 454 867 415 >505 616 982 =2 deg m,;_,,+dim K. We conclude K +E,.
/O o

Now suppose K=D,, n>>5. We number the simple roots ©—0—..—0
“n “n*l aa Oag

, and
will prove by induction on » that

(*) % (deg n51+§z)2 >% deg T+ 8, +2 deg T28+26~u +dim Dﬂ‘

For n=5 we have degsmy; ;=210 and deg Tagirofi-an =0 930; thus & (degm,, .. )*=
22050>14 010 =4 deg 7, + ¢, +2 deg og, 5z, o, +dim D,. Now suppose 2>5. Let 7, denote
the representation of highest weight » for the subgroup D, , with simple root system

{otg, %9, ..y 00,1} Then we have multipliers defined by

% (deg ﬂ51+51)2 =t % (deg T§1+52)2’ deg T+ — U deg Te+&s

2 deg T2t +28—0; = U 2 deg T26+28-o

and dim D, =w-dim D,.1. From zg e, =A"""(), 7e46,= A" *(zs,,) and dim D, =

2¢®—q, we have

Lt _ 2n(2n-1) and e 202 —n
’ n+1)(n—1) O o Bn+3

The positive roots of D, which contribute to v are (a) those with a, >0, @; >0 and a,=0,

1 0
and (b) those with ¢, >0 and a,>0. As 2§, +2&,—o;: O—O—...—O< » those satisfy-
02

. 1 n n—1 n
ing (@) form a system O—O—...—0—0 and contribute a factor of 9 =

o, Gna Oy O 2 n—2

to v. The roots « >0 which satisfy (b) are {aty +atg+:.. + o, oy Fog+ ... Fot, 0g +agt
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Qo+ oyt oo totyy e, @y tast205+...+2a, 1+ a,}. They contribute to v a factor of

n+2 n+3[nt+s 2n+1] 4@n—1)@n+1)
n—=1 =n |n+172n-3 (n+1)(n+4)
dn(4n*—1)

Thus T2 mt ) (nt4)

Notice n{2n—1)=2n2—n>2n2—n—1=(2n+1) (n—1), and (n—2)(n+4)=n*+2n—-8>
n2—1 as n>5; now this shows ¢>v». And ¢>u and t>w are clear. Thus, using the
induction hypothesis on D, ,, we have } (degmg, ;,)>=0t3 (deg Ty ) >t § deg 74 6+
t2 deg Tog 1ap, oy +E-dim D,y >4 deg g, g, +2 deg og, 1oz, o, +dim D,. Now (*) is proved.
This shows K =+D,, completing the proof of the lemma, q.e.d.

8.8. LEmmA. A representation m,; of SUn-1), L=E +EF with & +E&F, satisfies

1 1
% (deg )2 =% deg m; +2 deg 75, + dim SU(n+1) if and only if A: o—.—o0.
Proof. We label the simple roots 0—0—...—0 . Now & =§&,,,_,, S0 we may assume
oy Oy e,
1<r<in.

First suppose r=1. If n=2 then degn,=8 and degm,; ,,=10; thus } (degm,;)*=
32=4+2-10+8=}degm, +2 deg 7y;_,, +dim A,. Now let »n>2. 7, is the adjoint repre-

sentation, ‘
deg 7r; =n2+2n = dim SU(n+1).

20 —oy =&+ 2£,; we compute degm,; o, =3n—1)n(n+2)(n+3). Thus }(degm,;)*=
In¥(n+22=in(n+2) {1 +{n—1}{(n+3)+2} =1 deg n; + 2 deg my;_,, --dim SU(n+1). This
proves the equality for r=1.

Suppose r>1 and let SU(r—1) denote the subgroup of that type with simple root
system {a, ..., &t,_s}. Let 7, denote the representation of SU(n —1) with highest weight ».
Finally define multipliers by

degm;—x-deg T,, degmy; o =¥y -deg 1y, , and dim SU(n+1)=z-dim SU(rn—1). (8.9)

Let r=4n. If r=2 then A: o—é—é—o and 24 —a,: o—é—g—o. For that case we
calculate § (degs;)2=135(75)2>1(75)+2(700) +24=1 deg s, +2 degmy;_,, +dim SU(n+1).
Now suppose r>2. The roots of SU(rn+1) which are not roots of SU(rn—1) are the
o+ ...+ o, and the e;+... +o,. Thus
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and

. r+1 r+3 744 27417 2742 (r+1)(2r+1)°
r r+1l r+2 77271 2r r(r+ 2)*

[ r r+1 r+5|[r+3 r+4|[r+6 r+7 2r+3|22r+4
Y=l =1""7 Trrif T rviflrr2 e 2e—1f 27

rel (2r+1)(2r+3)

R T R Yy ey

By expanding we check (r—1)(r+3) (r+4)=r(r+2)2 and (2r+12(+5) (c+1)>
r(r+2) (2r+3)% it follows that 2®> >y. That 2> >z and 2® >z are clear.

Now suppose 1< r<n/2. Then we compute

o — r+1 r+2 n—r+ 12 (n—r+3 n—r+4 n+112 n+2 nn+1)P(n+2)
r r+1 7 n—r n—r+1 a—r+2 "7 p—-1 n r¥(n—r+2)?

and

y_{ r r+1 r+3 r+4 n—r+2 n—r+5}{r+2 r+3 n—r+1 n—r+3

r—1 7 r+1 7427 m—r n—r+1 r ortl U m—r—1 m—r

n—r—|—4} {n~r+6 n—r-+7 n+3}2 n+ 4

w—r+1f n—r+2n-r+3 " a-1 n

nn+1)2(n+2)%(n+3)% (n+4)
(r=Lrr+1)(r+2)(n—r+2)(n—r+3)(n—r+4)(n—r+5)

An extremely unpleasant expansion shows a® >y. Again 2* >2 and 2® >z are clear. We

have proved:
22>y, x>z and 22>z for 2<r<in. (8.10)

We have proved § (degt;)*=}deg7;+2deg7y; , +dim SU(n—1) for r=2. By
induction, we have § (deg 7;)*>} deg7;+2 deg1y;_4 +dim SU(n—1) for r>2. Now
(8.9) and (8.10) give us { (deg7;)2>} degm, +2 deg T4—q,+dim SU(n +1) for r>1, q.e.d.

Theorem 8.1 is immediate from Lemmas 8.3, 8.7 and 8.8.

9. The estimate for the case where G is orthogonal with y absolutely irreducible

The estimate is:

9.1 ProProsiTIoN. Let &, be a basic weight of a compact. connected simple Lie group K.
For every integer m =1, define

Up=1%(degmy)? V,=}deg Tomg, ond W, =deg moms 4.
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If m22 then Uy = Vi =Wy > U= Vo= W If 71, (K) £80 (deg ;) in case o, is a
terminal vertex () on the Dynkin diagram of K, then Uy—V,—W,>U, ~V,—W,.

Proof. We define multipliers by
Unii=uUp Vypsr=9,V, and W, . =w,W,.
Given a root a >0 we define a=d, and I={(x). Let S be the set of all simple roots

2 (o, 2mE, —
adjacent to «, in the Dynkin diagram of K, and let «;€S8. Then ni=—Lm—£~—a'—>

0 . Y
- 2w is 1if [[o[[*> |||, and is ”“'”2 otherwise. Observe k&, —o,=(k—2)&,+
oy 0t feef
>sn &. For our given « we define s = >¢n,d;. Now a glance at (5.6) shows
2ma+s+1 2a
wn = Twn(a), “n() = o —Tatstl T am-lyatsi?
. _{m+Ha+l
Uy = OI;IOv,,.(oc) Vpla) = Tl and

_ BCIR CL Y Ltk 2.
Un aljoum(o‘): um(“) 'U,,,(OC) 1+ (ma+l)2 .

If m>2 then {{(2m+1)a*+2la}{2(m—1)a+s+1} >2a(ma+1)? with strict ine-
quality when a >0. Thus w,,(«) > w, (), and u,,{«) >w,(«) in case ¢ >0. Now
if m=2 then uy, > w,. (9.2)
Now let m=1. We compute

3a°+ 21 2a
W and wl(zx)—1+s—+—l

uy o) =1+
Suppose a>0. If s>3%a, then 3as+2ls>al+2a% so (3a*4-2la)(s +1)>2a(a+1)% Thus
if s2%a>0 then wy(o)>w(e). (9.3)

Suppose s < %a. If ,>3 then « must be one of a few roots of exceptional groups, and
one easily checks that
% &y
a=30+oa, for K=6G, e=0 and r=1 (9.4)

is the only possibility. Now suppose a,=2. If a, is a terminal vertex of the Dynkin diagram

(*) In other words, there is no condition if &, is interior to the Dynkin diagram. But if e« is
not interior, then m; must be orthogonal with image = 80 (deg e, )-
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and o, denotes the unique adjacent root, then s<3a says noao| o)l <4|o ||z If | f|2=
[l o|2 then 7, is the quotient so @, <%. As @, +0 because 2, is not a root, now a,=1 and
@y +2a, is a root, which contradicts [t [|2> ||oq]|% Now | o ||2<||o]|?% s0 me=1 and
@y <4[ % [|?/]| «[|2<3. That says a,=0, contradicting the fact that 2u, is not a root. Thus
o, must be interior to the Dynkin diagram of K, and by the argument for terminal vertices
we have o and a, in § with a; >0 and ¢,>0. I |let[|2> o, |2 then oo, ||2=nd, <s<
$)lo]l2 so a;=1. If also ||a,||2>||oy||? then a,=1 and s>2|a,[|>> %a; thus |ef|2<| el
and now ||a||2=2]||,]|2 because rank K >3.. We calculate |[o,||2 +2a,||oc,||2 =y d; +nyd, <
5<%/ a||% that is impossible. Thus [lo||2<|[oc |2 Similarly [|oc,||2< ||ocs|2 But e
cannot be contained in a Dynkin diagram. We have proved a, 2. Finally shppose a,=1.
Then s<32a says s<}|a[|2 Let og€S. If |lo]|2=]|tg||? then nydy=ay| || <s <3| ||%

thus ag=0. If ||a,||?<||oto||? then nydy>ay||«, || so again a¢,=0. We have proved:
if s<%a, then either a=w, or a is given by (9.4). (9.5)

We eliminate the odd case (9.4). There degm,, =7 and deg sy, =27, so u; =729/49.
Also 2§, —a; =&, and degm,, =14, and 4& —oy =2, +&, and 7y, ¢, has degree 189, so
w; =189/14. As 729-14 =10 206 >9 261 =49-189, this shows:

. * %
if K=6G, e=c and r =1, then u,>w,. (9.6)
Now we need roots to overcome a,. We look for a set I' of positive roots such that

o, €T and 111%1(“) >Iljw1(oc). 9.7)

If rank K >4 and a, is not a terminal vertex on the Dynkin diagram of K, then we choose
a subdiagram A of rank 4 with o, interior to A. We run through the possibilities for A.
oy Gy O(T oy .
(1) A: o—o0—o0—0. Here we define I'={a,, oty+o, o, +ay, dy+o,+0y, o +0y+
o, +a,} and caleulate [[ru,(x)=16>140/9=]Trw,(x).

& 24 [24 .
(2) A: contains o—o—e. Define I'= {ot;, ot,+0tg, o, +20ty, 0t +0t,, 0ty + 0+ 0y, 0+
o+ 205, 0y ++ 20, + 2065 }. Then [T wy(or) =49 >286/7 =] T w ().

& “T L. .
(3) A: contains e—e—o. Define T={et,, o+, o, +0tg, 200+ 0ty 0y + o1y, 0 +
20,4 o, 200 + 20,4y}, Then []pu,(a)=2025/49 >286/7 =] T w,(«).

% Gy % Oy .. ..
(4) A: e==0—0—0. Here we imitate case.(1), defining I' ={a,, oty + 0t 0ty +0tg, 03+

@+ oty 204 + 0+, +a,) and caleulating [Jpw,(c) =16 >140/9 =] Trw ()
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o Xy &, Oy . . ..
(5) A: 0—e—e—e. Again we imitate case (1), defining I'={a,, ozt o +a,
oty + 0ty + 0y, 0y + 206+ 20, + 20, and caloulating [Tpu, (o) =16 >140/9 =] [ wy(«).

O o,
(6) A: O—O< . Define I'={ua,; oy +,, g+, otz Tt o5+ aytay, ogt+agto,
o

agtFoy +ay; o+ o+ o+ o). Then [Tpu, («) =625/9 >49=]]r w, ().

This covers all possibilities for A. We have proved: if rank K >4 and «, is interior to
the Dynkin diagram of K, then there exists a set I" satisfying (9.7). In fact, in considering
cases (2) and (3), we also proved this for K of type B; or C3. As 4, is the only other type
of rank 3, and as the rank must be at least 3 if there is to be a root interior to the diagram

we summarize as follows.
If K=+A; and «, is interior to the diagram, then a set I exists satisfying (9.7). (9.8)

Now let o, be a terminal vertex on the Dynkin diagram of K. We examine some pos-
sibilities ¥ for a subdiagram containing «,; the numbering is continued from the cases for
A listed above.

o, O\ocs oy Oy .
/O—O—O . Here we define I'={a,, o, o5, o+ 0+ 0tg, 04 0tp+ 03+ 0y,
o, O

Oty + Ot + 2005 -+ 00y, Oy~ Oty - Ol + 0ty + 0, 0 0ty + D0t -+ 0ty 0l Oty 0y + 2065+ 20t + x5} Then
TTrw, () =441/16 > 55/2 =T, (@).

URE

O0—0—0—0—0
8 ¥: «

. | . In this case we define I' to be all positive roots on the

system ¥ which involve «,. Then [[pw,(ax)=169>154=][rw,(a).

[24 <4 o
9) I e—0—0. We define I'= {o, g 2040y X oy, 204Fopto,
20, -+ 20+, and caleulate [T, (o) =1225/64>18 =] [ w;(«).

o [+4 o
(10) ¥: 0—e—e. We define D={a, o, +otg, ot +og+ay, o220, o +20p+a,
o, +20,+2a;} and caleulate [[ru (o) =36>273/10 =] [rw,(«).

9%-11¢ 1287
(11) ¥ O;T_.:O_O. Then M= T 10 Y
‘ 6561 _ 26163
(12) ¥ o—o:o——agr Then u1=_1_6—>W=w1‘
121 221

(13) ¥': e=o0a,. Theg U=y T
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O0—0—0—0—0—0—0
(14) W o, ‘ i . Then Uy =156>T?2—_
e}

3°-5%-13-23

=w;.

If the terminal vetex «, is not contained as shown in one of the configurations V" just
considered, then the position of a, in the Dynkin diagram of K must (by classification) be

one of the following

(u) é’___“_o , rank K >1
(f) gf_.___O:., rank K >1
{fa) g’— ~O/O rank K>3
. .—0( , ran >
O
(s4) ‘:f___”_.zo, rank K >1
(82) 0(;,- . H I'&Ilk K== 1

O—0—0—0—0—0
(s3) | x,
Q

except for the case which is settled by (9.6). In case (u), 7, is unitary, not self dual, hence
not orthogonal. In cases (f,), ¢ (K) is the full 8O (deg 7;). In cases (s,), 7, is symplectic,
hence not orthogonal. Thus those cases are excluded by hypothesis in considering the

inequality of Proposition 9.1 for m=1. We summarize as follows.
(9.9) If «, is a terminal vertex with st¢ (K) £ 80 (deg 7 ), then a set I ewists satisfying (9.7).

Combine (9.3), (9.5), (9.8) and (9.9), using the fact that w,(x)=1=w,(x) whenever a=0.
This gives:

9.10) If &+, L, and if e, (K)< SO (deg mz) in case «, is terminal, then u, >wy.

We also notice

©.01) If &= [ 5, then U= Vy=Wy=15>0=U, -V, — W,.

We complete the proof of Proposition 9.1. Let m =1 be an integer. If m =1, suppose

1
§,% 0—0—0, and further assume 7¢ (K) £80 (deg me) it o if & terminal vertex. Then
u,,>w, by (9.2) and (9.10). Notice also u,>v,>1. Now U, — Vo — Waar=u,Up—
VO V=W Wo>uy Uy =V, — W, )> Uy —V,y— W, With (9.11), this proves our asser-

tions, g.e.d.
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10. The classification for the case where G is orthogonal with y absolutely irreducible

The classification is:

10.1 TerOREM. Let G be o simple special orthogonal group and let K be a proper compact

connected simple subgroup. Then the representation y of K on the tangent space of G/K is

absolutely irreducible, if and only if (G, K) is one of the following

G K 7, X
4 6
S0 (5) SU(2)/Z, o o}
2 1 2 1
$0 (20) SU4)/Z, O0—0—0 0—0—0
1 1 1
80 (70) SU(8)/Z, 0—0—~0—0—0—0—0 0—0—0~—~0—0-—0—0
2 1 2
O=—e@ if n=2 o=@ if n=2
1 1 2
S0 (2n%+n) S0(2n+1) O0—0—...—0=@ if n>2 Oo—O0—@ if n=3
2 1
(adjoint) O0—0—0—...—0=@ if n>3
2 2
2 o=@ if n=2
.80 (2n%+3n) S0 (2n+1) O—...—0=@ n>2
2 1
O0—0—...—0=@ if n>2
1 1 .
$0(16) Spin (9) 0—0—0=e 0—O0—0=0
1 1
0—0—=0 if n=3
1 1 1
80 (2rt—n—1) | Sp(n)/Z, e—0—.—0=0 n>3 o—0—0—...—0=0 if n>3
2 2 1
80 (212 +n) 8p (n)/Z, *—0—..—0=0 n>3 e—90—..—0=0 n>3
(adjoint)
1 2
50 (42) Sp (4)/Z, *—0—0=0 e—90—0=0
1 /O /O 1
80 (2n% —n) 80 (2n)/Z, 0—~0—...—0O n>4 10—0 if n=4
o No No1
(adjoint) 1 1 o
O—0—0— —o it n>a
No
, 2 A© 2 1 /°
80(2n2+n—1) | SO(2n)/Z, 0—0—...—0 n>4 O0—0~—...—0 n>4
o No
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G K 7, x
1
/O l/O
80 (128) Spin (16)/Z, O0—0—0—0—0—0 O—0O0—0—0—0—0
No No
1 1
80 (7) G, =0 e=0
1 3
$0(14) Gy ©=0 =0
(adjoint)
1 1
S0 (26) ¥, e—e—0—0 ¢—e—=0—0C
S0 (52) ¥, ®—e—0—0 ©o—e—=0—C
(adjoint)
1
80 (78) Eq/Zs O0—0—0—0—0 O—O—(ID—O—O
l
o1 9]
(adjoint)
1
80 (133) E,[Zs 0—0—0—0—0—0 o—o—?—o—o—o
1
o o
{adjoint)
1
$0 (248) E, 0—0—0—0—0—0—0 o—o—ol—o—o—o—o
[ 1
O O
(adjoint)

where the inclusion K—~G=80(N)<GL(N, C) is the absolutely irreducible representation
7; of K with highest weight 2 indicated in the chart.

Remark. S0(5)/{SUQ)/Z,} = {8p(2)/2,}/{SUR)/L,}.

If K is not of type 4, then we notice that the adjoint representation of K is one of
the possibilities for 7z;,. Combining this with Theorem 8.1 and with the fact that dim K +4
for K simple, we have the following.

10.2 CoroLLARY. Let K be a compact connected simple Lie group, n=dim K. Let

7t K—80(n) denote the adjoint representation and let y denote the representation of K on the
tangent space of SQ(n)/r(K). Then y is irreducible over the real number ficld, and y is absolutely
srreducible if and only if K s not of type A, for122.

We go on to prove Theorem 10.1.

7 — 682901 Acta mathematica 120. Imprimé le 9 avril 1968
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Let 4 be absolutely irreducible. We will eliminate all possibilities for sz, except those
listed in the theorem, and in the process we will check that y is absolutely irreducible for
the listed ;.

For the moment we set aside the case where K =G, and @=S80(7). Then Proposition
5.2 says that the inclusion K—@ is an absolutely irreducible representation 7, for some
basic weight &, =£; of K, and that

} (deg myg )2 = } deg iy +deg Moy, s, +dim K. (10.3)

If 7, (K) %S0 (deg 7y ), then } (degz, )+ deg 7y >degmye , +dim K, so Proposition
9.1 says k=1. If either m, (K)=80(degn;) or m; (K)d S0 (degz;), then we still have
g (K) £ 80 (deg o) because &, =&, so Proposition 9.1 says k=2. We now run through

cases. 4 denotes k£,.

4 2
10.4 Lemma. If K is of type A,, then (1) n=1withi: o ,or 2)n=3withA: 0—0—0

1
or (3) n=T with .: 0—0—0—0—0—0—0.

Remark. In case (1), G/K =80(5)/(SU(2)/{+ I})=8p(2)/SU(2); in the latter, A;~>C, is
given by g.

Proof. &,=&F says that n=2r—1 and K has diagram O—O——...—~0-—...—0O, Now or-

oy oy o, o,

thogonality of m,, is equivalent to kr=0 (modulo 2).

Let r=1 so n=1. The representation with highest weight g has degree m+1. Now
(10.3) becomes L(k+1)2=3k+1)+(2k—1)+3, which has solutions 4 and —1. Thus

4
k=4, 1: o.

1 1 /O
Let r=2 so n=3. Then &: 0—0—0 =o< 50 7; (K)=80(6). Thus k=2, and we
. S ,

check for 4: ~o—g—o that 1 (deg 7,;)2=200=10+1756+15=1 (deg x;)+deg my3 4 +
dim A,

If r=3 then =5 and k=0 (mod 2) says k=2. But for i: o—o—g—o+o we
compute % (deg ;)2 =4(175)2>}(175) + 11 340+ 35 = § deg 3 +-deg mp;_,, +dim Ay

1
If r=4 theh n=7 and k=1. We check for 1 o=0—0—0—0—0--0 that
3 (deg ;)% — 1 deg 7, =2415=2352 + 63 =deg'7t;,_,, +dim A,
Let r>4; we will prove } (deg 7z )2> 4 (deg 7 ) +deg myg _, +dim Ay, Let 7, denote

the representation of highest weight » for the subgroup  As,_3 with simple root system
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{og, @5, ..., ay_5}. By induction if »>5, and as just seen if =5, we have § (deg 7, )?>

} deg 7, +deg Tz, -+dim A,,_;. Now define multipliers by
deg e, =T deg 7z, deg mee o =y -deg 72¢ -, and dim Ay, .=z -dim A,,_.

a, 1 l(e)], i gl n+l 4r—2
a;>1;[=a/n l(a) }{angzal Z(OC) } nor

To calculate y we note 2&, —o, =&,_; +&,.,. The roots involving «;, and just one of {a,_,,

We compute x= {

i1} Are oy +...+o,_; and a +...+«,; those involving «, and just one of {«,;, o}
are o, +...+ o, and oty + ... + &,

[ r+1) (2204207 2241 4r%(2r—1)(27+1)
y= 27r—1  (r— 1R (r+2)

r—1 r 1=re1 L

Observe (check for' r =5 and differentiate; iterate three times) that (2r —1)(r —1)2(r +2)% —
r4(2r+1)=2r*— 83 —5r2+12r—4 is positive for r=5. It follows that 22>y, ‘And 2>1
gives 22>x>1. Finally notice that' z=(4r2—1)/(472—8r+3)<2? Now §{(degm;)?—
} degm, —degmyg,, — dim Ay, > 22{} (deg 7 )2 — § deg 7 —deg 7y, —dim Ay, 5} >0
which proves our -assertion. Proposition 9.1 shows that we may replace &, by any

multiple and retain the inequality. Thus we cannot have r>4, g.e.d.

10.5. Lemma. If K is of type B,, n>2, then

o A 2 . 1
(1) o, ts the adjoint representation, given by A: o=e for n=2 and by A’ 0—o—...—0=@e
for n>2, or
2
(2) m; has degree 2n%4-3n, given by A:, 0—0-—...—0=®, oOr

1
(3) m=4 and 7, is the spin representation, 2: O0—o—0=e.

Proof. We first examine B,: Ooclr;o(‘)g. It /"L:lcé‘l'then k=2 because 7;, is symplectic; we
check % (deg m,y;,)? =50 =5 + 35 +10=1% (deg 7,,) +deg 74z, ,, +dim B,. TIf ' A=Fk&, then
k=2 because ngz(Bz);;—~ SO(5); 'we check % (degmyg,)? — 98— 7+ 81+ 10 = §'deg mye, +
deg n4§2_“; +dim B,. Our assertions are proved for 7 =2.

Now assume »>2. We number the simple roots by o.clzgﬂ__m_gn. Suppose 1=§.
2n+1

n=1 ‘)r so. -(10.3) _says; %{227;_2,”}_

Then deg m;=2" and deg ey, = deg me, = (

2n+1 ’
{( nnjl ) + 202+ n}: 0. The .only ‘solution is » =4, giving case (3) of the lemma. Now

suppose A=2¢,. Let 7, denote the representation of highest weight » for the subgroup
B,_, with simple root system {a,, &y, ..., %, 1}. Define multipliers by
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deg mos, =2 - deg 1os, deg i o, =y deg Tig-—n and dimB,=z-dim B, ;.

The roots involving «, and o, are {og +... -+, 204 + 0ty + ... + %y, ooy 2ocl+...+2ocn_1+ocn}.

And o ... +ot,_, is the only root involving «,; and «,_, but not.«,. Thus

2n+1[2n+42n+6 4n | Z2n+1
YT on—1) 2n 2n+2 " dn—4| T ar1’

2n  2n+3 2n+6{2n+ 10 2n+ 12 4n+4}_ n(2n+1)(2n+ 3)

Y= on—2"20n—1" 2n |20+2 2n+4 '~ dn—4 (n—1) (n+2) (n+4)
if n>5;
ns 54,
Y= 63 if n=35, y—ll{ if n=4, y= 5 if n=3.

If n>5 then (n—1)(n+4)>mn+1)? and (n+2)(2n +1)>n(2r +3), implying 2 >y. If n=>5
then 22 =121/9>715/63 =y; if n =4 then 22 =324/25 > 11 =y; if n=3 then 22 =49/4 >54/5=y.
Thus we have 22>y. Note that 2>1 so 22>x>1 and that z=(2n2+2)/(2n?*—3n +1)<3
<z<z% By induction if n>3, and as we proved if n=2, }(deg1,,)?> 3 deg Ty, +
deg 7z, o, +dimB,_,. Now § (degm,;,)? — { deg m,,, +deg myy, g, +dim B, } >22{} (deg 7,4,)% —
$ deg 75, —deg T4, ,,—dim B, ,}>0, violating (10.3). Thus 442§, for n>2.

Suppose A=k&,. Then k=2 because n; (B,)=80(2n +1). Now we compute deg 7y =
2n? +3n and deg myz, _, =3n(2n —1)(n+1)(2n +5). Thus § (degrmyg ) =3(4n* +12n° +9n?) =
3(2n +3n) + §(4n* + 120° + 3n? —5n) + §{4n? + 2n) = deg 7y +deg 7y _, +dim B,

Suppose A=k§, ;. Then k=1 because z; (B,)F80(2n%+n), so 7, is the adjoint

1 2
representation z; . Calculating separately for n=3 (2§, —a,;: o—o=e) and

1 1
n>3(28, 1 —Upgi O—0—O—..—0=0), deg @p¢ o ,=3%(n—1)(2n+3)n(2n+1). Thus

3 (deg my P =3(4nt + 40> + 0% =§(2n2 + n) + §(4nt 4+ 4n® - 5n® — 3n) + $(4n? + 2n) =
tdegmy,  +degmy _,  +dimB,.

We summarize the last four paragraphs as follows: Lemma 10.5 gives precisely those
cages for which A=Fk&, with r=1, n—-1, or =. Thus we need only show that 2<r<n—2
violates (10.3).

Suppose r=2<n—2.ThenA= &,. We retain the notation that 7, denotes the representa-
tion of highest weight » for the B,_, with simple root system.{o, ..., ot,_,}. If n=4 we
check } (degm,,)?=3528>42 42772436 =1 (deg m,,) +deg 7y, o, +dim B,. Now assume
n>4; by induction we have 3 (deg 7.,)>—{} deg v, +-deg 754, 4, +dim B, ;}>0. Define
multipliers . by

deg my, =u-deg vy, and degmy, o, = deg Tog oy
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Then we calculate

yo 2r@ntl) o 4n@et1l)@n+3)

n+2) (n—1) - T =) (m+2) (n+5)

As u2>u> (dim B,)/(dim B,_,) >0, we now have
% (deg mg,)? — {4 deg 7y, +deg 7y, 4, +dim B, }
>u?[} (deg 7,,)? — 1} deg 7,, +deg To,_q, +dim B, _;11>0,
violating (10.3). Thus# &2 for n>4. Now we need only show that 3 <r <n —2 violates (10.3).
Suppose 3 <r<n—2. Then #>5 and 1 =£,. As before we define multipliers by

degme =s-degt; and degm, £-a,=tdeg Toz 4.

Now we compute

(2n+1
_ n-r+1)ﬁ(n+r+1)...(2’n+1) (n—n)! _ 22(2a+t1) d
o= (2n—1 T m—r+ 1)l (mtn)..@n—-1) (utr)m-r+1)
)
2n(2n+1)(2n+2)(2n+3) 2

T m—r)mtr) m—r+3)(mtr+3)

If 7 <n—2 we use induction, and if r=n—2 we use our verification for the adjoint repre-
sentation of B, ;, concluding that }(deg m;)* — {} deg m +deg m, £,-a,Tdim B, }>
8%} (deg 7¢ )% — {} deg 7¢ +deg Ty _, +dim B,_;}]>0. This violates (10.3). Thus we cannot
have 3<r<n-2, q.e.d.

10.6 Lemma. If K is of type C,, n >3, then
2
(1) 7, is the adjoint representation, given by A: e—e—..—e=0, or

1
(2) 7, has degree 2n2 —n -1, given by A: @—o—...—0—=0, or
1
3) n=4andl e—e—e=0.
Remark. Here the similarity between type B, and C, is striking. It suggests the pos-
sibility of a cohomological treatment of our results on representations.

229 [~

Proof. We number the simple roots o__o— —e .. Suppose A=k&,. Then

k=2 because 7; is symplectic, so A=2, and 7 is the adjoint representation. We check
3 (deg mg; )% =§(4dnt+4nd 4 n?) = 1(2n% 4 n) + L(4nt + 4n® —5n% —3n) + 3(4n24-2n) =} deg Mg,
+deg 7y, +dim C,.
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Suppose A=#%&, ;. Then k=1 because 7y (C,) £ S0(2n*— n—1) = 80(deg 77z, ). Now
we check f(degm; )?=}(4n?—4n®—3n®+2n+1)=§(2n—n—1)+}(4n —4n® —In? +n+2)
+3(4n?+2n) ={deg my  +degmy,.  _,  -+dim €,

Let 7, denote the representation of highest weight » for the subgroup C,_; with simple
root system {o,..,0, ;). If n=4 we compute %(deg m,)?=882=21+825+36=
3 deg m;, +deg 7y, _,, +dim C,; this gives case (3) of the lemma. Now let n>4. As just seen
for n =5, and by induction for n>5, we have § (deg 7;,)?>% deg 7, +deg 7y, _,, +dim C,_;.

Define multipliers by

deg mg, =a-deg7;, and deg 7, fian =0 dOg Tog, 4.

. 2n+1 n+1)2n+1)(2n +3
We compute a =2 iz and b=4 ﬁ;—ﬁ;ﬁ;—))
before, it follows that } (degm,)?>4 degm,, +degmy, o, +dim C,. If A=Fk&, then this
shows k=1 by case (10) for ¥ in the proof of Proposition 9.1, and the latter violates (10.3).
Thus A +k&, for n=>5.

"Let 2=Fk&,. As just seen, this implies n<4,sonis 3 or 4. If n=3 then k=2 because

. One checks a2>b for n>5. As

1
o=e—e is symplectic, and we calculate } (degs,,)?=3528>42+1638 +21 = (degm,;,) +

1
deg 7y, o, +dim Cy; thus n=4. If n—=4 then k=1 because oc—e—e—e is orthogonal,
and we have already checked (10.3) for 1=§, with n=4:

The proof of Lemma 10.6 is now reduced to showing that we cannot have 2 <r<n —2.

Let r=2 <n — 2 and define multipliers by
deg m;,=c-deg7;, and degmg, o, =d deg Tas—a,.

2n(2n+1) n(2n+1)(2n+3) 2
_— > — - N 7 .
We compute ¢ n—1)(nt3) If »>6 we calculate d 4~(n—2) (3t 6)< ¢

n=15 then d=195/18<3025/256=c” if n=4 then d=396/35< 576/49=c% now ¢’ >d
for n>4. And trivially ¢® >¢ > (dim (,)/(dim C,_;) >0. As has been checked when n— 4,
and by induction if n>4,} (deg 7:)® >} deg 7s, + deg Tag, o, + dim°C,>y; it follows that
% (deg7,)* > § deg oz, + deg mag, o, + dim C,. Now Proposition 9.1 shows that A= k&,
n >4, would cohtradi_ct»(lO.‘i%). The proof of Lemma 10.6 is thus reduced to showing that

we cannot have 3 <r<mn—2. As before, we define multipliers by

if

deg s =u-deg s and degmes. o =v-deg Ty o;
we compute-
" 2n(2n+1) and o 2n(2n+1) (2n+2) (2n+ 3)
(n—r+1)(n+r+2) m—rYm—r+3)(n+r+2)y(n+r+5)
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and we check «2>v and ¥?>u>(dim C,)/(dim C,.,)>1. As we saw for r=n—2, and by
induction on n—r if r<n-2, we have }(degt;)*>} degr, +degty, o +dimC,_;.
It follows that A=¢, violates (10.3). Now Proposition 9.1 says A=¢, if 1=k&,. Thus we

cannot have 3<r<n—2, q.e.d.

10.7 Lemma. If K is of type D, n>4, then

1 o)
(1) 7, is the adjoint representation, given by A: o——o-—...——o< , or
e}

. 2 /O

(2) , has degree 2n2+n +1; given by A: o-—o‘——...—‘—o\ , or
o]
. . L 01
(3) m=8 and m; is the half spin representation given by A: o—o—o—o—o—o\
o]
. o O\ocs o «,
Proof. We label the simple roots by /o—o—...—o and let 7, denote the repre-
o6, O

sentation of highest weight » for the subgroup D, _, with simple root system {ay, o, ...,
Ay )

It A=k&, then k=2 because 7y (D,)=80(2n). And we check } (degmy; )2 =4(4n*+
4n® —3n*—2n+1) =320 +n—1) +{(4n* +4n*—9n? — n+2) + (40?2 —2n) = f deg my, +
deg my; _, +dim D,

If A=kE, , then k=1 because 7y (D,)$80(2n? —n). Then 7;=n; _, adjoint repre-
representation, and we check 3 (degm;)?=73(4n*—4n3+n?)=1(2n%—n)+1(4nt—4nd—
5n% +3n) +$(4n?—2n) =} deg 7, +deg 7y, _, _, +dim D,.
2n
-2

and 7, s orthogonal for n =8; this gives case (3) of the lemma.

If 2=¢&, then (10.3) says 2% =224 (n ) + (2n2—n); n=8 is the only solution,

Define multipliers by deg mse, =p-deg 72, and deg mie,_o, = deg Tse,—o,. Then
n—1 n{2n—1)(2n+1)

nd g =4+
n TR T et 1) (nr 4) \
(dim D,)/(dim D, 1)>1, we have % (deg'mye)*—{} deg msg, + deg mae,_ o+ dim D,} >

P} (deg 72¢,)® — {} deg Ta¢, + deg Tag, o, + dim D, _;}] >0, thelast inequality having checked
2 /O /O 2
on 0—o = for n=>5, and being the induction hypothesis of #>5. Now
\o \o ’

(10.3) shows A=+=2¢, if n>4.

We have just seen that 1="Fk&, implies n =8 and k=1, or n =4 and k=2; the latter is
included in case (2) of the lemma: If 4 =£k&, we change notation, coming back to the case
A=kE,. If A=%&;; 3<r<m—2; thenk=1 because 7y, = A"z, ) maps D, onto a proper

for n=>5. .So p®>q for n=5. As p?>p>

2
p=2

O0—0O

subgroup of S0 (deg ;). Now we need only check that 1 +£, whenever 3<r<n—2.
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Let A=¢,, 3<r<n—2. Define multipliers by deg 7, =u-deg vy, and degmy; _, =
v-deg Ty _, - Then, calculating separately for »=3 and r>3,

v 2n(2n—1) and p— dnn+1)(2n—1)(2n+ 1)

n+r—1)(n—r+1) (n—r)yn—r+3)(n+r—1)(n+r+2)

Ttfollows thatw® >v. Now § (degaz ) — {} deg sz + deg mz¢ —, +dim D, } >u? [} (deg 7: )* —
{1 deg 7e,+ deg T2¢ , + dim D, ;}] >0, where the last inequality was checked

1 0
(o—o—...—o< ) for n —r=2 and is the induction hypothesis if » —r >2. This con-
o
tradicts (10.3). Thus A+&, for 3<r<n-—2, q.e.d.

We finally come to the easy case.

10.8. Lemma. If K is an exceptional group, then
1 1
(1) K=6G, and A: e=0c or A: e=o0; or
1 1
(2) K=F, and }: e—e=0—0 or A: @—e=0—0; Or
0—0—0—0—0

(3) K=E; and A | s or
o1

(4) K=E, and i: 1 | s or
o

0—0—0—0—0—0—0

() K=E; and A | 1
o)

In each case, the first-mentioned possibility for A is the case where 7, is the adjoint representa-
tion.
% %

Proof. Let K=G,: e=o. We compute } (deg,,)?=98=7+77+14 =i degm,, +
deg 7y, ,, +~dim G,. Thus 1=¢, is admissible. 1 =£, is case (c) of Proposition 5.2, and

$ (deg 7,,,)2 = $(729) > 1(27) + 189 +- 14 =} deg myp, -+ deg 7y, o, -+ dim Gy,

Now 4 is &, or &, by Proposition 9.1.

Xy Ky %y O L
Let K=F,;: e—e=0—0. We comptite

4 (deg 7;,)2 =1352 =26 1274 -+ 52 =} deg m;, +-deg 7t,;, ,, +dim F,,
1 (deg 7,,)% = 831 538 >637 +420 147 + 52 = § deg m;, + deg ma, o, +dim Fy,
2 £ £ £
1 (deg m,,)? = 1(74 529) > 1(273) 419 278 +52 = L deg 71, + deg 7oz, o+ dim Fyy
b & 2 2 & &
£ (deg 74,)? = 338 = 13 +-273 452 = § deg 7, + deg 7y, 4, -+dim Fy.

Now Proposition 9.1 says that 4 is &, or &,.
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o %y O3 Xy 0

Let K=Eg: O—O—?—O—O . Then A=Fké&,, &, =&/, says r=3 or r=6. We calculate
O o
% (deg 7g,)> — 4 deg m,, —4 276 350 >2 453 814 + 78 = deg 7y¢, o, +dim Eg
}(deg me,)* — 1 deg 7y, = 3003 =2925+ 78 = deg 7p¢, o, + dim Eg.
Now Proposition 9.1 says 1=&,.

a, oy Ay oy oy O
Let K=E; 0—0—0—0—0—0. Then n,, m, and m,, are symplectic while 7,

O a,

g, g, and 7, are orthogonal. We compute

% (deg 7y,,)2 — % deg 7y, = 1 069 453 >915 705 + 133 = deg 7,y +dim E,,
% (deg my,)? —% deg 7z, = 1 183 491 > 980 343 + 133 = deg 7y, ,, +dim E,,
1 (deg 7,,)* — 1 deg 7y, = 382 634 616 > 209 868 813 +-133 — deg 7z, o, +dim E,,
1 (deg 7, ) —} deg 7., = 66 886 348 375 > 19 903 763 880 +133 = deg 7y, ,, +dim E,,
% (deg 7g,)2 —§ deg 7, =37 363 690 > 24 386 670 4 133 = deg 7y, _,, +dim Ey;
} (deg 7y,)2 — % deg 7y, — 8778 = 8645 +133 = deg 7y, ,, +dim E,,
3 (degm; ) —4 deg g, = 415 416 > 365 750 +133 = deg 7y¢, ,, +dim E,.

Now Proposition 9.1, together with case (7) of ¥ in its proof, shows that A =&;.

o Gy X3 Xy Ky Gy Xy
Let K=E; 0—0—0—0—0—0—0, Then we calculate (!)

fo XA
deg g, = 248; degmy, =30 380; degu;, =2 450 240; deg 7, = 146 325 270;
deg 7, = 6 899 079 264; degm,, =6 696 000; degm,, = 3875; degm,, =147 250.
Now we compute
1 (deg 7,)? — 4 deg 71z, = 30 628 = 30 380 +248 = deg 7y, ,, +dim Ej,
3 (deg 7;,) —} deg 7z, — 461 457 010 > 344 452 500 + 248 = dog my, o, +dim Eq

1 (deg 7,,)® — % deg 7, = 3 001 836 803 680 ;
> 1 283 242 632 840 - 248 — deg 7y, _y, +dim B,

4 (deg 7g,)2 —} deg 7, = 10 705 542 247 123 815
> 2118 568 836 696 000 + 248 — deg ¢, +dim Ey,

(}) Note that this does not agree with Dynkin’s table 30 in [6], which is incorrect for Eg.
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3 (deg 7y, — 4 deg 7y, — 23 798 647 342 027 851 216
> 1704 723 757 359 480 000 + 248 — deg my,_,, -+dim By,

1 (deg 7g,)2 — } deg 7y, — 22 418 204 652 000
> 17723 951 192 125 + 248 = deg 7y, _,, +dim Eg,

3 (deg 7g,)? — 1 deg g, = 7 505 875 > 6 696 000 + 248 = deg 7y, ,, +dim By,
% (deg 7, )2 —§ deg g, = 10 841 207 625 > 6 899 079 264 + 248 = deg 7z, _,, +dim Eq.

Now Proposition 9.1 says A =§;, q.e.d.
Theorem 10.1 now follows from Lemmas 10.4, 10.5, 10.6, 10.7 and 10.8.

11. Summary and global formulation

We summarize and reformulate the results of Chapter I as follows.

11.1 THEOREM. The table on pages 107-110 gives a complete list of the nonsymmetric
simply connected coset spaces M =G/K, where (1) G is a connected Lie group acting effectively
on M and (2) K is a compact subgroup whose linear isotropy action y on the tangent space of
M is irreducible over the real number field. (Explanation of table: 7 denotes the inclusion
K—G; if G is locally isomorphic to a classical linear group, then st is listed as a linear re-
presentation of .@; if @ is exceptional, then 7 zs given as a linear representation o« of & and a
linear representation § of & such that B(K)< u(®). The center of G is denoted Z, and N (K)
is the normalizer of K in G.)

Let M'=G"|K' be an effective coset space of a connected Lie group by a compact subgroup,
where the identity component K acts irreducibly on the tangent space of M'. Then there is an
entry M =G|K in the table, a central subgroup Q<Z of G, and a subgroup K< Ng(K) with
K =Kq=Ng(K),, such that @ =G|Q and K’ =(Q-K")/Q.

Proof. Theorems 1.1, 2.1, 3.1, 4.1, 6.1, 7.1 and 8.1 give us all the information in the
chart except for (@) the global isomorphism classes of ¢ and K within their respective local
isomorphism classes (b) Z and (c) Ny(K)/Z. As Z is specified (and‘ so listed) by @, we need
only check items (a) and (c).

Let rank G'=rank K. Then G is centerless and X ‘has center of order 3. This specifies
the listed forms of & and K.

Let rank G'>rank K. Then K js centerless. Let- G denote the simply connected group
with. Lie algebra. &, let £ be the subgroup generated by &, and let @ denote the center
of K. Then G=G/Q, K = K/Q and Z = Z|Q where Z is the center of .



(¥ pour)

£€=% JI 0—0QO—0 (L—zu) 0§ oyur 0sulog=uCZ | uwero u {1} uoae u (1 —z%) 08
= g€ & u
g<u e<u 1 — Z/ (%) 08
O—0—""+—0@0—"—0—0 Oo—'""—0 o 1=u {1} |[ppou g x° 7 ppo u (1 - zw)mds
T 14 14 T T x4
— 0—0—0—0—0—0—0 0—0—0—0—0—0—0 i/ {1} *z/(8)ns *z/(0L) 08
T T T
— 0—0—0 0—0—0 *z 5/ WAL T (0z) 08
T 4 T K
o) o)
— 3 | T | {1} {1} A | *z/(83) dg
0—0—0—0—0—0 0—0~~0—0—0—0
o o)
— /ofololo /oioiol_o {1} {1} *Z/(31) 08 *z/(91)dg
zo” 10/
— 0—0—0—0—0 0—0—0—0~-0 A {1} °7/(9) 08 *z/(o1) ds
2 T
— o—e—e O—0—@ {1} {1} dz/(g)ds *z/(L)ds
14 1
— o) o {1} {1} (g)os °z/(3) 48
9 g
o o—"'—0—0 O—"""—0—0 - w 4
0AOQB 88 W ‘C<U . 2 z {1} w g [ (T+uug Yz /(u) 08 N\A:+5§V ns
o g
U=ut Ppo % 0—0—"""—0—0 0—0—""—0—0 o u w B}
glu=w wer0 U GzU T T 1 s wgfn-ng z/(w)0s N\A:!S:v as
o) o)
- T | T | T {1} 'z Sz/°1 *7/(L3) 08
0—0—0—0—0 0—0—0—0—0 .
10 o)
— /ololo /ololo {1} i/ ®z/(01) 08 *z/(91) aS
10/ 10"
g=b gy oQo—"—0 2/ B)s)
{bd} woy=w 31 1 0—O0—""—0Q®O—"""—0—0 ba Z/(B)ns} x ol (Bd
b<bd g<b<d B<b Jl O—" - O®O—""—0 1 1 {1} w™y, (z)(d)ns) z/(b4) nS
T 1 T T
X x VA x 9

SUOBIPUO)

3z 1N




— o=e (LYos oy o=e {1} i/ 9 (L)ywmds
T T
(1—u-+5ug)os oyur
O\, N PPo ¥ {1 —u-+7%3) 08
p<u 0—"""—0—0 o—""'—0—0 {1} *Z S ACEIN uose u (1 — % + ;ug) widg
o/ T 3 o/ 3
O
F<u It Vol —0—0—0 .
o T T {(u—zug) 0§ orur ppo w “7 ppo u {1}
1O\ O . g=ug PPO u {(u—ug) 08
y<u P=u g 0—O 1 o—'""—0—0 uone u {1} 0=u g x %7 37,/ (uZ) 08 uese U ‘(u— ;ug)uldy
10/ o/ 1 ]
(821) 0§ our
N\ N\
— \olololololo \oloiolololo {1} 'z *z/{(91) 08 ((8g1) 08 =+) *z/(83T) wids
o1 10
g=u g (¥ powr) g=u 10
{#+5ug) 0§ oyum ‘1=w {1} T=u ‘(u+5u3) 08
g U o=e—"—0e—e o—=e—""—e—e {1} ‘g =u 10 g /(w) dg (¥ pow) ¢ = io
T 3 3 0=u?Z x 7 0= “(u + gug)uidg
E<U J 0—6—""—0—0—8
1 T (1—%—cug) 0§ oyur g=u‘sg (¥ powr) g =u 10
g<U g=u JI O—=0—e O=—"—@—@ {1} g=w 1} g [(u)dg g=u (I—u—zug)Qs
1 1 T I=u®g x?g ( powr) T=u a0
o=utyg 0=u (1 —u—zug)udg
— (4 (z%) 0§ o3ur ‘
0O=0—0—@ 10—0—e—e {1} vy °z/(¥)ds (3%) wids
Z<U¥ J @=0—""—0—0
T 3 uoAe u ‘%z
g<u g=u J1 @=0 ®—0—""--0 {1} ppo u {1} (1+%3g) 08 (ug+ug)os
g G 4
g<% Jl @=0—"—0—0—0
T T
£=% JI @=0—0 Z<u J1 @=0—"""—0—0 CRRL
G T T
g<u Z=u Jl =0 g=u J1 =0 {1} pro v {1} (1+43g)os (v +343) 08
g T 4
(91) 0§ ogur
— e—=0—0—0 0—0—0—0 {1} *7 (6) 08 (91} 08 +)*%Z/(91) widg
T T
SUOYIPUO)) 4 z qzZ/00°N z b4 19




(0—0R®0—0®0—0)®

T 1
o (0—0®0—0®0—0)® (0—0®0—0®0—0)®
1 _ 1 I 1 1 T
O0—0—0—0—0 {(0—0®0—0R®0—0) (0—0®0—0®0—0) {1} {1} AN *z/°d
I 1 [ 1 1 (e)as = (g)as x (8)as
0=0R0-—0 (0=0®0—0)B(0=0®0—0) {1} {1} ®y x {*Z/(¢) 0S8} tz/°a
1 T T 14 T T
£q
o=e o=e {1} i/ 9 b |
T T K4
(Ltz)ns>a 0—0@0—0 0—0 {1} i/ tz/(e)ns T
T ¥ k4 T 1 K4
(0—0®0—0)®
T T
0—0=6—0 (0—0®0—0)B(0—0®0—0) | (0—0RO0—0)B(0—0®O0—0) i/ {1} tz/{(g)ns = (€)as} "a
1 k4 T 14 1 T T T T
£q (92) 08 D a O0=0e®0 (0=e®0)B(0=e®0) {1} {1} ¥ x (¢£) 08 &
T ¥ ¥ T 3
o=e 0—0®0o—0 0—0@0—o0 g {1} (e)ns 9
T T T T T
£q (L) os % o] o { {1} () 08 9
o1 9
o (8%3) 0§ ojur o
1 | 1 |
— 0—0—0—0—0—0—0 0—0—0~~0—0—0—0 {1} SZx B (8%7) wdg
o) o
| [ I
— 0—0~~0—0—0—0 0—0—0—0—0—0 {1} {1} /AR (eg1) 08
m_v (8L)o§ o1ur n_u 1
— 0—0—0—0—0 0—0—0—0—0 {1} A *z./%d (84) widg
T
— O—0=0—@ (zg)os 0w O—O=0—® {1} L%y g (3g) mdy
T T
T
— o0—0—e—@ (92) 0§ ot O—0O—0—@ {1} /1 £ (92) wdg
T
— o=e (}1)08 our o=e {1} i/ 9 (F1) wdg
4 T
SUOTIPUO) b4 ) HZ/(°N /4 b’ 4 B




(0—0—0—0—0®0—0)®

_

10
(0—0—0—0—0R0—0)®
_ LI
o)
n_u Aolofn_u.!olo ®0—0O)D Aololm_vlolo Q0—0)®
T T T 1
0—0—0—0—0~—0—0 o o)
! Aolo|m_ulo|o ®0—0) Aololﬁ_ulolo ®0—0) i/ {1} o7/ {°a x (g) 0§} oy
1 1 1 T
o) o)
| o—o—0—0—0—0—0—0@®
1 T
0—0—0—0—0—0—0—0® |[0—0—0—0—0—0—0—0®
T T
£q 0—0—0—0—0—0—0—0 | 0—0—0—0—0—0—0—0 *7 {1} tz/(6)ns S
T T
(0—0=—0—e0R0=e)D
1
(0—0o=0—eR0=e)D
T
(8%2) 08 > *q 0—0=—0—eQ0=—e (0—o=e0—eQ0=6e) {1} {1} ) 8y
’ T T T T
(0—0—0—0—0®0—0)®
T
o (0—0—0—0—0Q®0—0)® (0—0—0—0—0Q0—0)®
1 1 1 I 1
olololn_v\olo (0—0—0—0—0®0—0) (0—0—0—0—0®0—0) *Z {1} °71{(9) 08 x {§) NS} z/hd
1 1 1 I
O—0=0—eR®0 O0—0=—0—e R0 {1} {1} "I (g)os 7/t
T 2 T T
£
4 (c=eQ0—0—0)T
T
—eR0—0—6 (0=e®0=—0—8) {1} {1} *y x {*z/(g)ds} Ak
T T T 1
(99)ns > (828 > 0—0 o0—o@®o—0s 2y ey sy/(e)ns g
¥ ¥ 9 9
SUOJTPUO)) X @ xz/0DPN z q b




GEOMETRY AND STRUCTURE OF ISOTROPY TRREDUCIBLE HOMOGENEOUS SPACES 111

Suppose that @ is of type 4,, ¢, Gy, F,, By, E, or Ey. Then we have ( realized as a
simply connected linear group and the inclusion s: K@ is given as a linear representation
7 ;. Now @ is eyclic of some order ¢. Let L,; be the root lattice of &€ and let L,; be the weight
lattice. Then the class [A] of 1 in A= =Ly,/Ly; has order g in the finite abelian group A
which is lsomorphlc to the center of the simply connected version of K. This spemfles the
listed forms of ¢ and K.

Suppose that G is of type D, or B, locally isomorphic to 80(m) with m being 21 or 27 +1.
In order to repeat the trick used above, we must replace SO(m) by its two-sheeted covering
G =Spin(m). As a Lie algebra inclusion, 7 is given as an absolutely. irreducible representa.-
tion 7;: 8—ED(m). Now we compose 7, with the spin representation o-of D, or B, looking
at the highest summand 7z, of -7 ;. If 6, > ... >4§,, are the weights of the usual representation
of @D(m), then § >1 6, is the highest weight of 6. Now let A=A, >1,>...>1,, be the
weights of z;; it follows that

=3+ A+ HAy).
If y is any weight of o7y, theny =1(+ 4, + ... + 1)) for some choice of signs, so =y modulo
the lattice generated by the 4,. If 7z, has a zero weight, i.e., if 7,(K) is centerless, then it
follows that [y]=[»]in A, so the projection o7 ,(&)—x,(R) is an isomorphism on the group
level. In that case we will usually use 7,(R) rather than o-7,;(®) to find the order ¢ of the
center ¢ of K. Note there that ¢ is cyeclic. »

Let K’ denote the subgroup of SO(m) generated by 7,(R) and let @’ be its center. The
orders ¢ and ¢’ of @ and ¢ are related by ¢=¢ if [¥] =[] or by ¢=2¢"if [2v]=[1], and we
can read off ¢’ from the diagram of 1. Thus we need only check which of the two situations
apply.

If K is of type 4, ({+1 odd), G,, F,, E; or Eg, then the simply connected group with
Lie algebra & has center of odd order. Thus ¢ and ¢’ are odd, so ¢=¢  because ¢=2¢’ is
impossible. Now we need only ‘check the cases where K is of type 4,, ;, B,, C;, D;or E,.

Suppose that x;is the adjoint representation. Then ¢’ =1, 1 is the highest root and
24w, apy

>

Xy O

» is half the sum of the positive roots. As noted in § 5, this implies =1 for every

simple root &;. Thus v=73 &, sum of the basic weights.
[+4 o,
Type A, 4: o—0—.. —o Then A={z}=Z;, and [£,]=2". Thus [»]=[&]=2"s0¢=2.
«
Type B; o—o—..—o—e. Then A ={z} = %y, [£] =1 for k<l and [£,]=2. Thus [»]=
[]1=2 s0 ¢=2.

Xy Oy o1

oG
Type O o:—o—..e=0 . Then A={2)>Z, and [§]=7" If =47 or [=4r+3 then
[v]=1 so g=1; if I=4r31 or l=4r+2 then [r]=2s0 g=2.-
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& o /O Olor—1 %
Type D, 00— . Then A ={z} x {25} = Zy x Zy, [£;] =27 for k<2r—1,
O oyy
[Egri]l=212; and [£]=2,. If r=2¢ then [v]=1 so ¢=1;if r=2¢+1 then [r]=2 so ¢g=2.
o R
Type E.: 01'_0_0—?——0-0 . We compute 2v =27, + >4 n;o; thus [v]+1in A = Z,

o]
so g=2.

We extend the method:

11.2 Lemma. If «, is a simple root of K let b, be the non-negative integer defined by:
{0,.0;, ..., byo;} are weights of 7, but (hy+1)o; ts not. Then v=7, {3hi(h;+1)}&,

Proof of lemma. Let {yp—po,, ..., p+qa;} be a maximal o;-string of weights of ;.
Let &, be the simple three dimensional subalgebra of & with positive root a;. 7,(®;) has
trace 0 on the sum of the weight spaces of the string; thus (> ¢__, ¢ +7jo;, a;)> =0. If >0,
% not a multiple of «;, then each p+jx;>0. Now the positive weight system decomposes
into SyU Uj_; 8;, where S;={(0), «;, ..., b;o;} and the S, are strings. Thus

h y 5
2oy oy, oy 1 hi(hi+1). Q.ed.

<ai5 “i> ji=0 <ai7 (xi> 2

2 1
If z; is given by o—o—o0 or by e—e—e=0 then we calculate that b, =1 for each
1, 80 v=_ &;. Thus

2 1
ifm;: o—o—0 then ¢g=2=2¢; ifm;: e—e—e=0 then ¢=1=¢".

2 ‘ 1
~Let @;; o—..—o0=e. The usual matrix representation z,: o—..—o=e of B, as
SL(2n+1) has weights y,>9,> . >%50 00 Va1 =0, VY5 +V2nse-i=0, {y1, ..., Yu} linearly
independent. A%(z,) is the adjoint representation, so {X v, T v;+t¥h<i, j<m i+, aT€ the
VW=V Y2 Vs ?’n—l_ﬁ Vn

roots, and the simple roots are given by o o—=e. S¥m,)=m®dl, so
i oy 223 ’ Op~1 Oy

{Ey1, Tvi£yh<i j<n are the weights of n;. Thus {ey, ..., o, 20, } are weights of 7, while
{204, ..., 20,1} are not. Now »=£& +... +&,_, +3&,. Thus [¥]+1€A, so g=2¢"=2.

2 /O . R 1 /O N
Let m;: o—..—0{ . The usual matrix representation 7,: o—...—0 has weights

\o \o
V1> > Van, ViFVont1-5=0, {y1s ..., v} linearly independent. A%(r,) is the adjoint repre-

sentation, so { £ ;%< scn 44 are the roots and the simple roots are given by
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V1i—Y2 Yn-2—Yn-1 Yn-1—Vn
O O O

%, %n —2\ %n-1

on O Yn—-1+¥n

S m,)=m,®1, 50 {£y:+y;h<i j<n are the weights of ;. Thus {e, ..., a,} are weights
of 7, while {2u, ..., 20, } are not. Now y=> &,. Thus [v]=1 and g=1=¢ if n is even, [v]+1

and ¢=2=2¢" if n is odd.
1 1
Let 7;: @—e—...—e=0. The usual matrix representation 7,: e—e—..—e=0 of €,

has weights v, > ... > Yo, 75+ Vanta—5=0, {y1, .- ¥} linearly independent. S(x,) is the ad-
joint representation, so {+ ;% 9;}1<;, j<» are the roots together with +y,%Fy,=0, and the

. . V1=V Y2=Ys Ya-1=Va 27
simple roots aregivenby e e

*—...—@® O . A2(7Zy') =m,®1, so {i'}}ii'yj}léi.isn.i:f:j
oy &y %y -1 %n
are the nonzero weights of z,. Thus {«j, ..., %,_,} are weights of m; while {2, ...,

2e,_y, &} are not. Now v=Z{“1 &,. If n has form 4r or 4741 then [»]=1 and ¢=1=¢’;
if » has form 4r+2 or 47 +3, then [v] =1 so ¢=2=2¢".
There remain only the three cases in which 7z, has no zero weight, i.e., in which K’ has

nontrivial center.

1
Let m;: o—o—o=e. Then K’ is simply connected, so ¢ >¢’ is impossible. Thus ¢g—g'.

1 .

Let 7;: 0—0—0—0—0—0—0. Then K’ =8U(8)/Z, in G =80(70). Let g generate the
center of G = Spin(70). Then z has order 4 and 2€K. If 24 K, then @={1,2%},s0 G¢=GiQ=
80(70) > K = K /Q =SU(8)/Zs. That inclusion contradicts the original setup. Thus z€K
and ¢g=2¢"=4.

. 01 . .

Finally let 7,: o—o_o—o——o—o\ , half spin representation of Dg. Let m,:

o :

1 /O . . .
o—o—o—o——o—o\O denote the usual representation as SD(16) and let y;>...>yy,
denote its weights. Then 1 = 1(y; + ... + ). Now let 1=1, > ... > 4, denote the positive weights
of 7 ;; they are just the 4(y, £y, ... & ), where the number of minus signs is even. Let S, ;
consist of those of the form }(y;+&ys+e&3ys+... +&7s), €=+ 1, &= £ 1, in which just j of
the signs ¢ are —1; let >, ; be the sum of the elements of S, ;; note that 8, ;is empty for

j odd and S_ , is empty for § even. Now y= A, is given by
v=(2s0t2r6)t et Zr )t 21t 25t 2
Given 4, =3} (yi+y.+ D387, € S+, « we have ‘A, =1 (y; +y,— 256,75 € 8+ 6-1, and
"(A)y=4; and A, +'A;=y,+7y, As S, o has just oneelement 4 and as 8 ;has (g) =15

elements, this shows
8 — 682901 Acta mathematica 120. Imprimé le 9 avril 1968
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ot 2i6) (2t 24 0)=16p,+ 16y,

8. ; has ((;)) elements. The coefficient of y; is —1 for ( 5

j— 1) of them, + 1 for the others.
Thus

2-1=3y1 =3y, +2(p3+ ... +y8), 2_.3=10y,— 10y, and
24,5=3y1~3y2—2(y3—|— oo+ ys).

This shows »=382y,. Let L be the lattice spanned by the 4,. o is the spin representation of
©D(128 =deg 7,); the weights of o7, are the 1(+ 4, % ...+ Aq,), 50 any two of them differ
by an element of L. Let L, be the root lattice. 2y, is an integral linear combination of
roots; thus »=32y,€L,, <L, so L contains every. weight. of ¢-7;. This shows that K and
K’ are isomorphic, so g=g¢'.

This completes the verification of the material in the first three columns of the chart.

The description of normalizers is based on a simple remark:

11.83 LEMMA. Let A be the group of all automorphisms of K which extend to inner auto-
morphisms of G. Then A, consists of the inner automorphisms of K, and g—ad(g)|x maps
NAK)ZK isomorphically onto A[Ag. If rank K <rank @, then Z is-the centralizer of K in G,
and g—ad(g) ] & maps N (K)/Z isomorphically onto A.

Proof. Let § denote the map g—>ad (g)| . Then § is a homomorphism of N(K) onto 4,
and the kernel of § is the centralizer of K in G. If ¢ is in that centralizer but g ¢Z, then K
is the connected centralizer of g in @, so g€ K. Thus ker < ZK. As f(ZK)=A,, this shows
p: NAK)/ZK = A|A,. Now if:rank K <rank @ then K is not a connected centralizer, so
Z=ker fand f: No(K)/Z== A4, q.ed.

Now suppose rank K <rank ¢ until we state the contrary.

If K has no outer automorphism, then Lemma 11.3 says N (K)/ZK={1}.

Let K have a central element z of orderm > 2. Let o be an antomorphism of G which is
outer on K. Then o lifts to G-and o(z) =z"1=z. Asiz is central in G, now u is outer on G.
Thus ¢ is outer on G‘and N (K)/ZK ={1}.

Let K be of type D,, n>4, where x is the half spin representation. Let « be an auto-
morphism of G which-is outer on K. Then o interchanges the two half spin representations,
80 it is not defined on =m(K). If « were inner on G it would be defined on 7(K). Thus
N{EKVZKE ={1}.

Let 7: K—@ come from the adjoint representation of K, ad: K—80(p); where p=
dim K. Let « €0(p) be any outer automorphism of X. Then «€4 if and only if det =1,
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Let ¢ be the number of positive roots of K and let I==rank K, so p=1-2¢. If « is not the
triality automorphism of D,, we may multiply it by an inner automorphism and assume
that o is —I on the Cartan subalgebra and simple interchange E,«<>E_,, of root vectors.
Then det «=(—1)""9, so No(K)/ZK is {1} if I +q is even, Z, if I+q is odd. Now we notice

-1
Apqt I=n—1, p=w’—1, g=— ", l+q=@j"2~)2(ni);
Dy l=n, p=2n2—n, g=n2—n, l+q=n%

Bg: 1=6, p="18, ¢=36, l+q=42.

Finally, for D,, triality now has determinant 1 because its cube has determinant 1.

1
Let m: o—..—~0—..—0. . Then #(8U(2q)) preserves the bilinear form on A%(C29)

o, o, Oog—1
given by (v, A ... A v&, wi A Awg)=vy A A v  Awg AL A w, where A29(0%9) s identified
with C, and the linear version of ¢ is in the symplectic or special orthogonai group of that
form. Let ¢ denote complex conjugation of (2? and C; it extends to the outer automorphism
« of K. Note that @ preserves the form. In the symplectic case (g odd), this puts ¢ in the
linear version of @, so No(K)/ZK = Z,. In the orthogonal case (¢ even), @ acts on the real

1
form of €¢ with determinant (—1)?2. In the case 0—0—0—0—0—0—0 we have ¢=4, so

2
N, (K)/ZK =1, Now look at c—o—o. There ¢=2 so we have g €80(6), and ¢ persists
1 2
from o0—o0—0 to 0—0—0, 80 again Ny(K)/ZK ~ Z,.

1 o
In the usual representation o_o—...—o< of 80(2n), the outer automorphism is
o
conjugation « by g=diag {—1; 1, ..., 1}€0(2n), using a basis {vy, ..., vs,} of R?". In
S%(R*") the (—1)-eigenvectors of S2(a) are {v, vy, v,7s, ..., v,0y,}; there are 2n—1 of them,
2 o
50 S%(g) ¢ S0(2n2 —n). Thus N(K)/ZK ={1} for 7: o——o—~...—o< .
o
Let G =K, and K=8U(3)/Z;, and let a=ad(g) be an inner automorphism of G which
is outer on K. An outer automorphism f of @ is induced by a complex-antilinear map of
0—0—0—0—0 0—C—0—0—0
C?7, sending | 1 to 1 | © ; it preserves (2)_(; 80 we may assume
o o
B(K)=K. If § is inner on K, then we may assume 8|, =1, so K is in the fixed point set F
of . Then K=Fj But the fixed point set of an outer automorphism of E, has rank 4.
Thus f is outer on K. Similarly f~1a is outer on K. Now =8-S« is inner on K. That is
absurd, so o cannot exist.
Let G=E; and K=S8U(3)/Z;. Let v denote the complex conjugation automorphism
8% — 682901 Acta mathematica 120. Imprimé le 9 avril 1968
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of SU(56) with fixed point set SG(56). We may assume embeddings chosen so that » pre-
serves each of Sp(28) o > K. v is necessarily inner on @, but it interchanges the summands

6—0 and o—o of K-»SU(56), so it is outer on K. Thus N4(K)/ZK = Z,

This completes the determination of N (K)/ZK for the cases rank K <rank @.

Let G=E4/Z, and K =(SU(3))3/(Z,)%. Then Z={1, z, 271} is the center of K. Let «
be an automorphism, inner on G and outer on K. Then «(z) =2z*. Choose a maximal torus
T containing z and let § be the outer automorphism of ¢ which is given on 7' by 2—a~. Then
B(K)=K and § is outer on K. Now (af})(z) =2, so aff is inner on K, whence «f is trivial on
a maximal torus S K. Thus «f is inner on G. 1t follows that § is inner on G. Now
N (K)JZK ={1}.

Finally let rank K =rank ¢ with G +Eg/Z,. Then —1I is in the Weyl group of @, so
every element is conjugate to its inverse. Let {1, 2, 271} =Z; there exists g €G with gzg—1=
271, and so ad(g) is outer on Z. Thus N(K)/ZK = Z,.

This completes the proof of Theorem 11.1, q.e.d.

12. Extension to noncompact isotropy subgroup

The extension per se is

12.1 TarorEM. Let M,=G,/H, be an effective reductive coset space where H, is a
compact connected group with R-irreducible linear isotropy representation x,. Let ¢ be an
involutive automorphism of &, which preserves §.,. Decompose &,=5F,+ B, into (£1)-
eigenspaces of o, and define &=, +V —1B, and = (9., N F) + VZ1(9, 0 B). Let HE@
and HS< G denote the connected Lie groups with Lie algebras H<©& and H5< &S, respec-
tively, such that M=G/H and M5 =G5 HS are simply comnected effective coset spaces. (1)
Let y and y5, denote their respective linear isotropy representations. Then there are only three

possibilities, as follows.

1. y, and y are absolutely irreducible while S is R-irreducible but not absolutely irreducible.

2. yu=P®B with B+ B, x5 is not R-irreducible, and y is R-irreducible if and only if
pro~p.

3. yu=B®P, G, is not semisimple, y is R-irreducible, and 53 is not R-trreducible.

Proof. First suppose y,, absolutely irreducible. As y has the same extension to a complex
representation of §5, it too is absolutely irreducible. If ¥ reduces over R then the complex

extension of y, reduces over C; thus 4 is R-irreducible.

(1) For example G=G'|Z and H =H’|Z, where G’ is the connected simply connected Lie group
with Lie algebra &, H’ is the analytic subgroup with Lie algebra §, and Z is the kernel of the ac-
tion of G" on M =G'|H =G|H.
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Now suppose 7, not absolutely irreducible. Then it has form f®f. Decompose
G, =H,+M, and G=H+I; T =M =" +IN", where B has representation space I’
and f has representation space IN”. Let v and 7, be the respective conjugations of G° =@
over & and ®,. Now 7, interchanges " and X" and v=7,0. If § + B then oI’ is I’ or M".
In the first case 7 interchanges I’ and IN” so y is R-irreducible. In the second case T pre-
serves both ' and M” so y reduces over R. If § ~f then we can choose M’ and " to be
o-stable, so 7 interchanges them and y is R-irreducible. This proves the statements on y.
On the other hand reduction of y, over € amounts to reduction of x5 over R, so the state-
ments on y$ are immediate, q.e.d.

In order to use the extension to reduce enumeration problems to the compact case

we need its converse.

12.2 THEOREM. Let M =G/H be an effective reductive coset space of connected Lie groups,
where H has R-irreducible linear isotropy representation y.

If G is not semisimple then it is the semidirect product H x ,V, where w ¢s a faithful
R-irreducible linear representation of H on a vector group V or H == {1} and G is a circle group.

If G is semisimple then it has an involutive automorphism o, unique up to ady(H)-con-

jugacy in the automorphism group of G, such that

(i) the fized point set F of o is a maximal compactly embedded subgroup (*) of @,
(i) o(H)=H, and
(iii) the fized point set F N H of o|y is a maximal compact subgroup of H.
Decompose & =% + B into (+ 1)-eigenspaces of 6. Define &, =F + V~—15,]3 and $,=(H N F)+
l/'~_l(3§ N $B). Let H, =@, denote the connected Lie groups with Lie algebras §,< &, such that
the “‘compact version” M,=G,/H, of M is a simply connected effective coset space. Then

G, H, and M, are compact and there are only two posstbilities, as follows.

1. The linear isotropy representation y, of H, is R-irreducible.

2. There is a simply connected effective coset space A|B of compact connected Lie groups
such that B has absolutely irreducible linear isotropy representation, G,=A x A, H,= B x B,
M,=(A4/B)x(4/B), ®=UA° and $H=B°.

Proof. If G is not semisimple then the assertion is contained in Lemma 1.2.

We now assume G semisimple. H is a reductive subgroup of & because its linear iso-
tropy representation is faithful and fully reducible. Now a result of Mostow on Cartan

involutions [12] gives the existence of o satisfying (i), (i) and (iii). Compactness of G,

and thus of H, and M, is immediate.

(1) This means F' —ad”? (F’) for some maximal compact subgroup F’ of ad (G).
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Assume R-reducibility of y,; we must check the statements of (2). Lemma 1.4 shows
that ¢ is simple. If G, is not simple then & must be a complex Lie group gua real Lie group.
In that case the inclusion §->@® defines a homomorphism over C, ¢: H—>©. Let & =¢(H°);
R-irreducibility of y says that either H = or L=@. If Q=@ it follows that § is a real
form of & and that y, is absolutely irreducible; thus §)=&. Now H< @& is an inclusion of
complex Lie algebras, &, =UADA, where A is the compact real form of &, and §,=BD DB,
where 8 is a subalgebra of 9. The assertions of (2) follow from simple connectivity of M,,.
Now the proof is reduced to the demonstration that (f, cannot be simple when y, is
R-reducible.

If @, was simple with y, reducible over R, and if we decomposed ¥, =8®y, the real
representations f and y would be equivalent. On the other hand, H, would be a maximal
subgroup of &, because of R-irreducibility of ¥, so we could not have &,/H, = Spin(8)/G,.

Thus the following lemma would give a contradiction, q.e.d. modulo lemma.

12.3 LEMMA. Let M, =G, /H, be a simply connected effective coset space of connected
compact Lie groups. Suppose that H, has linear isotropy representation y,=f; B, with f;
absolutely irreducible and i~ B,. Then G,=Spin(8), H,=G,, M, is the product §7 x 87 of

1 1
spheres, and y,: e=o@e=0; or G,=M,=T? and H,={1}.

Proof. If rank @, =rank H, then H, is the connected centralizer of its center, and
Theorem 2.2 says 8, + f;. Now rank H, <rank G,. If H, has a central element z =1 then
Bi(z)=Ps(2) =1 so H, is the connected centralizer of z; that violates the rank condition.
Now H, is centerless.

Suppose that £, is a maximal subalgebra of &,. The rank condition says that &,
is semisimple. Now Lemma 1.4 says that , is simple. As §,< @, does not appear on
Dynkin’s list ([7], page 231), now §, is classical simple, so (2) &, =SU(N), (b) &, =SO(N),
or (¢) &,=Cp(N). We view the inclusion $,~®, as a linear representation z. If it is not
absolutely irreducible then maximality of §, shows M, irreducible symmetric with ¥,
absolutely irreducible. Now 7=z, for some highest weight 1 of §,. Let ¢ denote adg -z,
so y=ady ®f; D, We go by cases.

(@) &, =SU(N). Then p@ lg, =7 @7 se, 80 775, 5 18 @ summand of y. 141* because
GO(N)+6,+Cp(N/2). If 7, ;» is one of the f,, say B, then p, ~ B, says that 1 +1* is a
weight of multiplicity > 2 in 7,®7;s. Now 7, 3+ is a summand of ady , 50 §, =©,. That is
impossible.

() &, =CSO(N). Then p=A%,), so 7, i-e, i8 & summand of y for each simple root
a; not orthogonal to.A. Every weight of the form 21— a«; has multiplicity 1 in A%(%;), so
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My, FP5 thus each z, i-ay 18 & summand of ad, . If £, is not simple it has form
Sp(n) DEp(ny), 4myng=N, or SO(n,) ®SD(n,), n,n, =N, as in the proof of Theorem 4.1.
Then 7; is the tensor product of usual vector representations of the summands and each
21— «; has nonzero values on both summands. That prevents 7,;_, from being a summand
of ady . Now §), is simple, 1 is a multiple k&, of a basic weight, and ady =myg o - Thus
9. has highest root 2k, — o, and the second and third paragraphs of the proof of Proposi-
tion 5.2 show @, /H,=S8pin(7)/G,. That implies absolute irreducibility of y,, which is
impossible.

(¢) &,=Sp(N). Then y=5%z;), which has 7,, as a summand. As 21 is a weight of
multiplicity 1 in 8%(7;), 7., cannot be one of the f§;, so 7, is a summand of adg . Asa; is
faithful this shows that H, is simple and ady =,,. Now 21 is the highest root of I, and it

2 2
follows from classification that either 24: o or 24: e—e—...—e—0. That says that either

2o ork: o—o—..—o—0. Now $.=®,. That is impossible.

For purposes of Theorem 12.2 we could stop at this point. But we continue because
the lemma is relevant to the results of § 14,

We have proved that §, is not a maximal subalgebra of &,. Thus we have &, =
Du+ Iy +9,, where IN; is the representation space of f, and L=, +IN, is an algebra.
Let y denote the representation of & on I, s0 B, =7|gu; thus y is absolutely irreducible
and Theorem 2.2 shows rank € <rank . Similarly Theorem 2.2 and absolute irreducibility
of #, shows rank §), <rank &. If §), contains a nonzero ideal of £ then that ideal is killed
by f;, hence also by §,, contradicting effectiveness of G, on M,; now L/H,, is effective and
isotropy irreducible.

If L is not simple then Lemma 1.4 says that = §, 0§, with §, simple and embedded
diagonally, so f; is the adjoint representation of H,. Then pz~ady, and Corollary 10.2
says that p(L) is the full SO(,). As y is faithful on the diagonal H, of L , it is faithful on L;
thus L=80(m), m=dim M;, and G,/L is effective. That says G,=80(m +1). Note that
m =4 because L is semisimple but not simple. Now H,c L< G, is given by SU(2)< S0(4)<
80(5), so m=4 is equal to dim SU(2)=3. That is absurd. Thus L is simple. If G, is not
simple then &, ={¢® ¢ and dim M, =dim L>dim IN;; thus G, is also simple.

Suppose that I7, is not simple. Then Theorem 11.1 and the classification of symmetric
spaces 4/B (A simple, rank B<rank A) show that L/H, is one of

(@) SU(pq)/SU(p)-SU(g), p>2, ¢>2 N=(p*-1)(g>—1).
(b) F,/80(3)xGy; N=35.
(¢) Eg¢/SUB) x Gy N=46.
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(d) E,/Sp(3) x Gy N =98.
(e) E,/SU@2)xF,; N=178.
() Byf6yxF,; N—182.

Here N is the dimension. Note that N =dim i, =dim G,/L. SU(m) (m=>4), E,, E; and E,
cannot be symmetric subgroups of lower rank in a simple group. If ¢, /L is symmetric, now
it must be E4/F,, which has dimension 26 (= 35). Thus G, /L is not symmetric, so it is listed
in Theorem 11.1. Now L +E, because dim 80(248)/E;=30 132>182. And L +E, because
dim S0(133)/E,=8645>dim Sp(28)/E,=1463 >98 >78. Similarly L<E; because
dim SO(78)/E,=2925 >dim SU(27)/E;=705>46, and L=+F, because dim SO(52)/F, =
1274 >dim S0(26)/F,=283>35. Thus L=8U(m), m=pg not prime, with N=(p?—1)
(g2 —1)<m?2. Asm+3 and rank L <rank G, now G,/Lis (a;) 80(20)/SU(4), (a,) SO(70)/8U(8),
(a5) SO(m2—1)/SU(m), (a,) Sp(10)/SU(6) or (a;) SU(: m(m 1 1))/SU(m). Each case is elimina-
ted because it has dimension >m?2. Thus H, is simple.

Now H,, L and G, are all simple, and we have 8,(H,) $y(L)<=80(I,). Suppose

y(Ly+80(I,). Then (Dynkin [6], pages 253 and 364) y is given

k k
by e=0 with k>1, by e&=0—...—0 with n>1 and k> 1 and k(n -+ 1) odd,

6 1 1 1 1 2
by o, by c—0—0—0-—0, by e=0—0—0, by o=e—e,

1 0 1
by o~o—o—o<o, by o-o—<|>—o—o—~o, or by 0—0—0—0—0—0.
1
o) o

If @,/L is not symmetric then it is listed in Theorem 11.1 with X =1y; the only cases
3 1 6
are SO(1’4)/G2 with y; e=o, 80(7)/@, with y: e==0, Sp(2)/SU(2) with y: o, and

SU(15)/8U (6) with y: o—c1>~o—(1)—o; If L is of type G, then L/H, has dimension
11; this eliminates the first two cases. It L is of type 4, then H, is {1}; this eliminates
the third case. If Lis of type 4, then dim L/H,< dim L=35< deg y; this eliminates the
last case. Now @,/L is symmetric. A simple symmetric subgroup of lower rank is a
simple group is of classical type or Fy; this eliminates the possibilities

k 1
=0, o——o——ol;o—o—o and 0—0—0—0—0—0
1
o o
for y. If L is of type 4, then G,/L=S8U(3)/80(3), so H,={1}; that is impossible. If L

is of type B, then G,/Lis SU(2n+ 1)/80(2n+1) or 80(27n+2)/80 (27 + 1); the first

2
has isotropy representation 0—o—...—o=e and the second has o—o—...—o=e; those
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are not possibilities for y. If L is of type C,(n >2) then G,/L=S8U(27)/Sp(n) which has

isotropy representation o—:——.,,—ozo not among the choices of y. If L is of type D,
0
No
which is not a possibility for . Now y does not exist. This contradicts the assumption
y(L) G SO (IRy).

Now H,, L and @, are simple with y(L)=S0(IR,). Thus G,/L is of the form SO(2m)/
S0(2m —1) with deg 8,=2m —1. As B,_, has no outer automorphism, L/H, is listed in
Theorem 11.1 with L=80(2m —1) or L=S8pin(2m—1), and dim H,=(2m—1)(m—2).
The latter says dim H,=[(m —2)/(m —1)]dim L. That shows L/H ,=S8pin(7)/G, and G,/L =
Spin(8)/Spin(7), so M, =G, /H,=Spin(8)/6,=8" x §7, q.e.d.

2
then @,/L and the isotropy representations are SU(2x)/S0(2») and 0—0—...—0

12.4 Remark. The proof of Lemma 12.3 actually shows: If M,=G,/H, is an effective
coset space of compact connected Lie groups, and if H, is a maximal proper connected subgroup
of G, and has linear isotropy representation which is a sum of copies of the same irreducible
complex representation, then the linear isotropy representation of H, is absolutely irreducible.

The clagsification of simply connected isotropy irreducible reductive coset spaces

M =G/H, G connected and effective on M, now splits into three parts.

1. The case where ¢ is not semisimple. Here all spaces M are constructed as follows.
Let £ be a faithful irreducible complex representation of a reductive Lie algebra . If
is equivalent to a real representation, define w=f, n=deg §, and let H be the analytic
subgroup of GL{n, R) with Lie algebra (). Otherwise, define 7z =y @B, n=2deg f, and
let H be the analytic subgroup of GL(n, R) with Lie algebra (8®p) (). Then H is a closed
subgroup of GL(n, R) and G =H x ,R". The various possibilities for the pair (8, ) are known
from E. Cartan’s theory of representations of real semisimple Lie algebras.

2. The case where G js semisimple and y js absolutely irreducible. These are the spaces
M =G[H constructed as follows. M, =G,/H, either is an arbitrary nonhermitian compact
simply connected irreducible symmetric space, or is any space listed in Theorem 11.1
with linear isotropy representation y, absolutely irreducible. For each such M, one must
find all ad(H,)-conjugacy classes of involutive automorphisms ¢ of &, which preserve
$,. For each such triple (§,, $,, o) one has the space M =G/H constructed in Theorem
12.1. All possible M =G/H are constructed this way:

3. The case where G is semisimple and y is not absolutely irreducible. All such spaces
M =G/H are constructed; as in Theorems 12.1 and 12.2, from the compact version M, =

G,/H, and an involutive automorphism ¢ of &, which preserves §,, as follows.
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(3a) G is a complex simple Lie group, 4 is a compact real form (hence a maximal
compact subgroup), M,=G,/H,=(4A x A)/(Bx B)=(A/B) x(4/B), and ¢ is interchange
of the two compact simple factors of G, =4 x A. Here A/B either is an arbitrary non-
hermitian compact simply connected irreducible symmetric space or is any of the spaces

listed in Theorem 11.1 with absolutely irreducible linear isotropy representation.

(3b) M,=G,/H, is an irreducible hefmitian symmetric space and ¢ is any involutive
automorphism of &, which preserves §, and does not interchange the two inequivalent

irreducible summands of y,.

(3¢) M, =G, /H, is any space listed in Theorem 11.1 with linear isotropy representation
Z« Which is not absolutely irreducible, and o is any involutive automorphism of @, which
preserves H, and does not interchange the two summands of y,.

Problem 1 was settled by . Cartan, as mentioned above. Problem 2 is straightforward
and quite tedious. The techniques relevant to problem 2 are all needed for problem 3,

which we will settle in § 13 in the context of invariant almost complex structures.

Chapter II. Invariant structures on isotropy irreducible coset spaces

In this chapter we study complex and quaternionic structures on isotropy irreducible
coset spaces. Complex structures are considered in § 13. There we see that an isotropy
irreducible coset space G/H carries an invariant complex structure if and only if either it
is hermitian symmetric or @ and H are complex Lie groups. We see that G/H carries an
invariant almost complex structure if and only if the linear isotropy representation is not
absolutely irreducible, and it then turns out that H must be connected, except when G
and H are complex groups. These characterizations lead to an easy classification. Quater-
nionic structures are considered in § 14, partly because they are needed later in our descrip-
tion of linear holonomy groups, and partly to illustrate the general notions of invariant
structure and commuting structure. Invariant quaternionic structures turn out to exist
only on those isotropy irreducible coset spaces which are the quaternionic symmetric

spaces of [18] and their noncompact versions.

13. Complex structures

We first settle the case of compact isotropy subgroup:

13.1 TurorEM. Let M =Q/K, where G is a connected Lie group acting effectively, K is
compact, and the linear isotropy representation of the ideniity component K, is R-irreducible.
Then M has a G-invariant complex structure if and only if it is a hermitian symmelric space.

1f M is not euclidean then the following conditions are equivalent.
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1. M has a G-invariant almost complex structure.

2. M has precisely two G-invariant almost complex structures.
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3. K is connected and its linear isotropy representation is not absolutely irreducible (so

necessarily y=L@P, B irreducible complex, §+ b).

13.2 CoroLLARY. Let M =G|K where G is a connecled Lie group acting effectively,
K is compact, and the identity component K, has R-irreducible linear isotropy representation y.
Suppose that M has a G-invariant almost complex structure but that M is not hermitian sym-
metric. Then G—G|E and K =I~(E’/ E where E is an arbitrary central subgroup of G and all

possibilities are given as follows.

¢ K Center of G X
3 3
Spin (n2—1) SU()/Z, Z,x 7, 0—0@0—0 if n=3
n odd, n>2
1 2 2 1
80 (n2—1) SU(n)/Z,, {1} 0—0—...—0@B0—...—0—0
n even, >3 if n>3
1 1
G, sU(3) {1} O0—0@0—0
1 2 1 2
F, {SU(3) x SU(3)}/Z, {1} (0—O0® 0—0)B(O0—OR0—O0)
1 4 4 1
E,; SU(3)/Z, Z, 0—0@®O0—0
1 1 1
Eg/Z, {SU(8) x SU(3) x BU(3)}/{Zs x Zs} {1} (O—0®O—0®0—0)
1 1 1
BO—O0RO0—0® 0—0)
1 1
E,/Z, {SU(3) x [SU(6)/Z,1}/2, {1} (0—0® 0—0—0—0—0)
1 1
B(0—0 R 0O—O0—0—0—0)
1
E; SU(9)/Z, {1} 0—0—0—0—0—0—0—0
1
P»o—0—0—0—0—0—0—0C
o)
ot l
Eq {SU(3) x Eg}/Z4 {1} 0—0® 0—0—0—0—0
o
@( 1 | 1)
0—0®0—0—0—0—0
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Proof. We first check equivalence of the three conditions listed in the theorem. First
assume (3). Decomposing y =f®f and glancing through Theorem 11.1 we see that 8+ .
Thus the commuting algebra of y (the algebra of linear transformations of 3, which
commute with every element of y(K)) is C, which has precisely two elements of square —1.
Thus (3) implies (2).

(2) implies (1) at a glance.

Assume (1). If y were absolutely irreducible its commuting algebra would be R, which
has no element of square —1, so (1) would fail; thus y is not absolutely irreducible. Suppose
that K isnot connected. Then M is not simply connected, so G/K is not hermitian symmetric.
If rank G =rank K it follows that the center of K, is generated by an element z of order
3 and, replacing z by 271 if necessary, the almost complex structure J satisfies x(z) =
cos (271/3) I +sin (27/3)J. If k€K then stability of J under k implies kz=zk. Pre-images of
k and z in the universal covering group of @ still commute; as the pre-image of K, there is
the full centralizer of any pre-image of z, and is connected, it follows that k€K, Thus
disconnectedness of K implies rank G >rank K. If k€K, k¢ K,, now ad(k) gives an outer
automorphism of K, because K, is a maximal connected subgroup of lower rank. K, is
simple by Theorem 11.1; it follows that §-ad(k) ~B +p, so K has commuting algebra R,
which is ridiculous. This contradiction proves K connected, completing the proof that (1)
implies (3).

We have proved equivalence of the three conditions of the theorem. If M had a G-
invariant complex structure it would be a C-space in the sencse of H.-C. Wang [14] and
K would be contained in the centralizer of a toral subgroup of @. Thus K could not be
semisimple, so M would be hermitian symmetric. The theorem is proved.

The corollary follows from the theorem and a glance at Theorem 11.1, g.e.d.

In the case of equal ranks, passage to noncompact isotropy is based on

13.3 TueoREM. Let M =GQ/K where G is a compact connected Lie group acting effectively
and K is a closed connected subgroup of maximal rank. Let o be an automorphism of G which
preserves K, thus acts on M, and which preserves some G-invariant almost complex structure
J on M.

1. The following conditions are equivalent, and each implies that o preserves every G-
invariant almost complex structure on M.

(la) o is an inner automorphism of G.

(18) «| is an inner automorphism of K.

(Ac) « is conjugation ad, (k) by some element k€K,
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2. If G is simple and « s an outer automorphism of G, then

(2a) G=8U(2n)/Z,,, K=S8(U(n) xU(n)), x| interchanging the two U(n); or

(2b) G=8012n)/Z,, K ={U(ny) x...xU(n,) xSO2m)}/Zy, n+...4+n+m=n, m>2,
o conjugation by diag {P, ..., P;; @}, P;€U(n;), Q€0(2m), det Q= —1; or

(2¢) G=E4/Zs, K={SU3)xSUB)YxL;}/{ZsxZy}, 1<¢<3, a exchanging the two
SU@3), a(L;)=L;, where Ly L,< L, s T*< §(U(1) x U(2))< SU(3).

Proof. We first prove (1). Let x| be an inner automorphism of K. Then «| is the
identity for some maximal torus 7' of K. As T is a maximal torus of @, now « is an inner
automorphism of ¢. So a=ad(g) for some g €& which centralizes 7. Thus g€ T< K. We
have just seen that (15) implies (1a) and (1¢). As (1¢) visibly implies (1), we now need only
check that (l1a) implies (1b).

Let Z be the center of K. If z€Z has odd order then «(J) =J and Theorem 2.2 show that
a(z)=z. Let Z, be the identity component of Z, central toral subgroup of K; now «|, =1.
Let L be the centralizer of Z, in @. As « is inner now a=ad(g) for some g€L. Decompose
L=¢®F and K=K'® 3 into the derived algebras and the centers; the semisimple parts
{'= &, this reduces the proof that (1a) implies (1b) to the case where K is semisimple.

Now K is semisimple and Z is finite. If K were not maximal among the connected
subgroups of maximal rank in @, say K<L<@, induction on codimension would prove
|, inner on L and then o] inner on K. Now we may assume K maximal among the
connected subgroups of G. If Z had even order, K would be a nonhermitian symmetric
subgroup of @, contradicting the existence of the invariant almost complex structure.
Thus Z has odd order and |, =1. This proves g€ K, so «| is inner.

Part (1) of the theorem is proved.

We now assume @ simple and o outer. Again, Z is the center of K, Z, the identity
component of Z, and L the centralizer of Z; in G. If L=( then Z is finite and K is semi-
simple; [9] shows that @ is an exceptional group and then G must be E4/Z, because it is
centerless simple and admits an outer automorphism. Then it is immediate [9] that
K ={SU(3) x SU(3) x SU(3)}/{Z; x Z3} with o interchanging the first two factors and pre-
serving the third. If K &L, so G has a connected subgroup of maximal rank which is not
the centralizer of a torus, then [4] G is exceptional, hence again of type E;, and it follows
[9] that L =@. In the proof of part (2) of the theorem, now, we may assume K =L, so that
K is the centralizer of the torus Z,.

If z€Z has odd order then «(J)=J and Theorem 2.2 show w(z)=z; thus o|g=1.
Decompose =8+, K=7+> &, M= IX;, where the R, are the simple ideals of
& and where & acts on I, by an irreducible representation 7;. Theorem 2.2 and the existence
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of the almost complex structure show that the 7, are mutually inequivalent and that each
gt; + #1;. Triviality of « on § now shows that m;-a~x; and «(IR,)=M,;. Decompose =;=
0,®(®;s) where 0, represents § and 7, represents &,. If a(§;) = & then 7~ oc ~ 77,

Choose a maximal torus 7' of @ such that Z,< 7< K; choose a system B={f,, ..., f,}
of simple roots of @ such that § has equation §,=...=8,=0in T. Then B’ ={8,, ..., f;} is a
simple root system for the derived algebra & =2 ;. These choices of simple root systems
B’ B amount to choices of positive Weyl chambers D' =D 0V ~13'<D, T =T n &' Let
w be an element of the Weyl group of & which carries (') back to D’. Then we is the identity
on §, permutes B’ and preserves T'. Let #€D), say =z +& with 26V ~1 3 and ' €Y/ -1«
regular, §,(z) >> B,(«’) for ¢ >¢. Then it is immediate that every B,(wozx) > 0. Thus wo(D) =D.
As « is outer, now wa is a nontrivial automorphism of the Dynkin diagram of ; it pre-
serves the diagram of K, which is obtained from that of ¢ by deleting the vertices 8, with
i>>t, and induces a nontrivial automorphism there. If i>1f, so 8, is not a root of K, then
wo leaves §; fixed; for if {#;} is a dual basis of V' —1 T relative to the Killing form and the
basis {£;}, so that 3 has basis consisting of the V=1, for t<j<r, then triviality of wa
on § shows wa (]/jx,»)zl/-—-lxi. In other words, B’ contains every root of B which is
moved by wa.

We run through the list of simple groups G which admit outer automorphisms. If ¢

& &

&g », O—0O

is of type By 0—0( I 1 wa then B’ contains g, ¢, ¢, and g;, for those are the roots
&g AN o0—0
& &

moved by we. If B’ also contains &, then B’ =+ B shows that K' = 8U(6)/Z, globally, so
n-a~7#+n. Thus e;¢ B'. Now B’ is {&,, &5, £, 85} OF {&y, €3, &4, &, £}, and both possibili-

ties occur.
£ &
O—O0—...—0— [—0 —O_
Let G be of type 4,, r>1 §  wa I I) or | >o|. ‘Then B + B says
O0—0—...—O0— \—0 -3/
& &y

that r=2v4land B' ={e,, ..., &, €ps2, ..., &} for the latter are the roots moved by wa.
This case occurs geometrically as orthocomplementation on the grassmannian of (v+ 1)-

planes in C?*2,

(OF:}
Let @ be of type D,, r>3 O—O——...~—O/I " wa. Then B’ contains &1 and g,.

& & 8,42\0 &1
Thus G=80(2r)/Z, and K={U(r,) x U(ry) x ... x U(r,) x 80 (2u)}/Zy, where r,+ ...+
rytu=rand u>2. x preserves each of the U(r,), inducing inner automorphisms on them
because 7, a ~7;,. Thus « is conjugation by an orthogonal matrix diag {P;, ..., P,, @},
where P,€U(r,) is a 27, x 27, block and Q€ 0(2u) has determinant —1, g.e.d.
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Now we can settle the case of noncompact isotropy subgroup.

13.4 TuroREM. Let M =G/H be an effective reductive coset space in which G is a con-
nected semisimple Lie group and the linear isotropy representation y of the identity component
H, is R-irreducible.

1. M has a G-invariant complex structure if and only if

(1a) M =G/K is a hermition symmetric coset space, or

(1b) G is a complex Lie group and H is a complex subgroup.

2. If @ is a complex Lie group, then H is a complex subgroup, & =AC and § =B, where
A|B is a coset space of compact connected Lie groups which either is an irreducible nonher-
mitian symmetric coset space, or is listed in Theorem 11.1 with absolutely irreducible linear
isotropy representation . @ has ieal linear isotropy representation y =P @B (conjugation over
&) with commuting algebra C, and M carries just two G-invariant almost complex structu-
res, both of which are integrable.

3. If G is not a complex Lie group then the jollowing conditions are equivalent.

(3a) M has a G-invariont almost complex structure.

(83b) M has precisely two G-invariant almost complex structures.

(3¢) H is connected and y is not absolutely irreducible (so necessarily y =B ®B with B
complex irreducible, f + B).

(8d) H is connected, the compact version M, =G, /H, either is hermitian symmetric or
is listed in Corollary 13.2, and (&, §) is defined from (®,, 9,) [as in Theorem 12.1] by an
involutive automorphism o of &, which preserves both £, and the two Gy -tnvariant almost
complex structures on M.

(3e) G/H is listed in Table 13.5, 13.6 or 13.7 with the following convention. A second
subscript (e.g. the Dg in Eg p,) denotes Cartan classification type of the mawimal compact
subgroup, and then (in contrast to the compact case, where it means the simply connected group)
boldface means the centerless group if it stands alone as in Eg 4, 4,, or the group with cyclic
center of order m if it occurs in an expression of the type [Be, 4,4, x TY1/Z,,; in that type of

expression the T, is diagonal between the circle group and the center of the simple group.

13.5. Table. M, hermitian symmetric.

M @ K Conditions
SU(p +4)/S[U(p) x Ulg)] SUY(p -‘f—q)/zp#-q S[U¥(p) x U¥(q)] 0<2u<p<q, 0<w<q
8T(2n)/8[U(n) x U(n)] SL(n, Q)/Z, or [SL(n, C) x T\)/Z, n>1
SL(2n, R)]Z2
80(2n)[U(n) SOzT('2n)/Z2 .
$0*(2n)/Z, U'(n)]Z, 0<2r<n, n>3
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M, q X Conditions
Sp(n)/U(n) Sp'(n)/Z, U'(n)|Z, 0<2r<n
S0(2m + 2)/S0(2m) x SO(2) SO7(2m + 2)/Z, {S07(2m) x SO(2)}/Z, o<r<m

SO"*2(2m + 2)/Z, | {807(2m) x SO(2)}/Z, 0<r<m
SO*(2m +2)/Z, | {SO*(2m) x $0(2)}/Z, —
S0(2m +3)/S0(2m + 1) x S0(2)]  S07(2m + 3)

S0+ %(2m + 3) 807(2m + 1) x S0(2) 0<r<m
[Eo/Z;1/[{80(10) x 80(2}{Z;] | Eo/Z, {80(10) x S0(2)}/Z, -
Ee, 4,4, {80*(10) x SO(2)}/Z, —
{80%(10) x 80(2)}/Z, —
Es p. {80(10) x $0(2)}/2, —
{80*(10) x 80(2)}/Z, -
{SOX(10) x SO(2) }/Z, —
[Eo/Z,]/[{Eq x 1"} Zy] E;|Z, {Bs x T}/ 2, _
E7,4, {E6, 4,4, x T}/ Z, —
E7,4, 1, {Be, 4,4, x T}y —
{Ee,p,m x T'}/Z, —
E']’ By T {EQ’DS 1 X Tl}fZZ —_—

{Bp x TU}/Z, -

13.6. Table. rank H =rank G, but M, not hermitian symmetric.

M, Qq H
6,/8U(3) G, 8U(3)
Go, 4, 4, SUY(3)
¥,/SU(3)-SU(3) ¥, [SU(3) x SU(3))/Zs
Fuz, [SUY3) x SU(3))/Z,

Fiooo, | [SUB) x SUYBYZ, and [SUYS) x SUYS)YZ,
E/SU(3)-SU(S)-SUB) | EyfZ, [SU(3) x ST(3) x ST(B) /[ 25 x Zy)

Eo s, | [SUNS) x SU(B) x SU(3)]/[Z, x Z;] and

[SUL3) x SUS) x SUL3)]/[Zs x Zs)

Ee,p, | [BUL(3) x SUX3) x SU(3}1/[Z; x Zs]

Eor, | [SL(3, €) x SU3)|/Z,
Es, ¢, [SL(3, C) x SUY3)1/Z,
E,/SU(3)- 8U(6) EZ, | [SU(3) % SU(B)/Z
Er, 4, [SU(3) x SUL6)]/Zs and [SUL3) x SU(6)]/Z,

Er 4,0, | [SUY3) x SU(6))/Zg, [SU(3) x SU*6)]/Z,, and
[SUY(3) x SUX6)]/Z¢
Erzm | [SUY3) x SUY6)]/Z; and [SU(3) x SUN(6)]/Z,

Eg/SU(3)-E, E, [SU(3) x E)/Z,

Es, p, [SU(3) x Bg, p, 711/Zgs and [SUY3B) x Bs. 4,4,1/Zs

Es, iz | [SUY3) xBgl/Zs, " [SUY(3) x Be,p, )2y, [SU(3) x Es,4,4,1/Z4
Eg/[SU(9)/Z,] E;g 8U(9)/Z,

Eg, p, SUY9)/Z, and SU49)/Z,

Es, 4,5, SU%9)/Z, and SU39)/Z,
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13.7. Table. rank G >rank H. Then G=G/Z and H=HZ/Z,where Z is an arbitrary

central subgroup of G and where G and H are given as follows.

_ Center of _
M, G G H Conditions
Spin (n? - 1)/ad SU (n) Spin (n*~1) ZyxZy |SUn)/Z,| nodd, n>2
8027(n=1) (n2 1) Z, SU"(n)/Z,| n odd, n>2,
0<2r<n
80 (n2 ~1)/ad SU(n) §02r(n=1) (»2 — 1) 1 SU(n)/Z,, | n even, n>3,
0<2r<n
Eq/[SU(3)/Z3)] simply connected Zg SU(3)/Zg —
(six-sheeted)
covering group of
Eg 454
E, Z, |SU(3)/Z —

Proof. We first dispose of the case where ¢ is a complex Lie group. There Theorem
12.2 tells us that H,, is a complex analytic subgroup and that & =€ and § =B where
(i) B<Y are the compact real forms of H< G, (i) @, =AU and H,=BOB, and (iii) B
has absolutely irreducible linear isotropy representation (say 8) in A/B. Let T denote
the real tangent space of M, so T°=T"'®T”, where 7" is the holomorphic tangent space
and T”=7" is the antiholomorphic tangent space. Now H, acts on T’ by §, on 1" by
B. But H is a complex subgroup of @, so its linear isotropy action preserves 7" and 7",
and we may view 8 and B as inequivalent (one is holomorphic, the other antiholomorphic)
representations of H. Let A denote the commuting algebra of H on 7T, real division algebra
by Schur’s Lemma, =R because the complex structure gives it an element of square —1,
and =@ because § and f are inequivalent on H. Then A =C by elimination of all other
possibilities. Thus M carries precisely two G-invariant almost complex structures, and
these must be the ones defined by the natural complex structure and its conjugate. We
have proved all our assertions for the case of a complex group G.

From now on, @ is not a complex Lie group.

Suppose that y is not absolutely irreducible. Then y =@ and a glance at Theorem
11.1 shows § +f; in particular y has commuting algebra € so there are precisely two G-
invariant almost complex structures on ¢/H,. On the other hand, if M carries a G-invariant
almost complex structure than ¥ has commuting algebra +R, so y cannot be absolutely
irreducible. This shows equivalence of (3a), (36) and (3¢), except that it remains to show

that (3a) implies connectivity of H.
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Let M carry a G-invariant almost complex structure. Then & =§+M and IN°=
I + 90" where, M =IN', H acts irreducibly (say by £) on M’ and by B on M, and y =
B®B with f + B. Let o be the involutive automorphism of @, preserving §, which defines
® and § as in Theorem 12.1. Theorem 12.1(2) shows that o preserves I’ and M. Let
h€H. Then ad(h) induces an automorphism of &5 preserving $°¢ I’ and IN”, the latter
two because the almost complex structure of M is preserved. Glancing through the cases
of Corollary 13.2 we see that ad(h)|g is an inner automorphism because ad(k) preserves
P and M”. Thus we may replace » by an element of hH, and assume ad(h)|g=1. Now
ad(h) has eigenvalues 1 on §, and ad(k)|y and ad(k)|y- are in the commuting algebras
of § and f respectively. Thus there is a complex number ¢ +0 such that ad(h) is multiplica-
tion by ¢ on N’ and by ¢ on IM". If rank K =rank G then Theorem 2.2 implies [, M"] =
$° so [, M"1+0 and it follows that cé=1. If rank K <rank G we check from Corollary
13.2 that [, M"1=+0 and it follows that [cé| is |c| or 1. In either case, now, |¢| =1, so
h is contained in a maximal compact subgroup of H. Extending ¢ to & and ¢ we now have
o(h) =h. On the group level now we have h€@G,, viewing both ¢ and ¢, as R-analytic sub-
groups of a complex group with Lie algebra &°. G,/(H, U h-H,) has an invariant almost
complex structure; now h€H, by Theorem 13.1, and so ad(h)|g=1 implies that & is
central in H,. If rank K <rank G it follows that A=1. If rank K =rank ¢ and ¢ is inner,
o=ad(k) for some k€H, by Theorem 13.3, % is contained in any maximal torus 7' of H,
containing k, so h€ T< H,,. If rank K =rank G and ¢ is outer then in each of the three cases
of Theorem 13.3(2) h is contained in a toral subgroup 7' of H, which is fixed by g, so
he€T<H, In any case we have shown that H is connected. This completes the proof
of equivalence of (3a), (3b) and (3c), which are clearly equivalent to (3d) by means of
Theorem 12.1.

If M has a G-invariant complex structure then [8] G°=2+ & where & is a complex
subalgebra with §$°=8n &. Then we may take £=§°+ 9" and L=H°+ M’ in the nota-
tion above, and we have a map f: M,—G°/L given by f(gH,)=g¢L. { is G,-equivariant and
maps IR isomorphically onto &¢/; thus f is a nonsingular differentiable map with open
image. As M, and thus f(M,), is compact, f must be surjective. Now f is a complex analytic
covering. Theorem 13.1 shows M, hermitian symmetric. Thus M is (indefinite) hermitian
symmetric.

Now we need only check the. listing in Tables 13.5, 13.6 and 13.7. If G and H have the
same rank, the same is true (see Theorem 13.3) for their maximal compact subgroups, so
@ is centerless and G/H is simply connected. Now we need only check the equal rank case
(Tables 13.5 and 13.6) on the Lie algebra level. We use the notation ¢=ad (s), s€ H,, s*=1,

in the case where ¢ is inner.
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M, =8SU(p+q)/S[U(p) x U(q)]. If ¢ is inner then the matrix s’ representing s has square
¢l where ¢*?=1. Thus &' is a scalar multiple of diag [ — 1, I, ,, —I,, I,_,] with2u<p
and 2v <g. Then @& =GU**"(p+q) and H=S[U%p) x U¥(g)]. If o is outer then Theorem
13.3 says.that p and ¢ have a common value » and that ¢ interchanges the two local U(n)
factors of H,. Thus. §=EL(n, €)- 8,, where its connected center Z, is a cirele group be-
cause it is common to H,, and @ is either ©L(n, Q) or &&(2n, R) according to whether
tg= —g or ‘g=g, where 6= ad(g) and « is complex conjugation; see [21].

M,=80(2n)/U(n). Theorem 13.3 says that ¢ is inner. The matrix s’ representing s

has square I or — I and is in U(n), so0.it is U(n)-conjugate to

—I,, 0 -J, 0
<
( 0 IZn—Zr) o ( 0 Jn—r), 2r ™

where J, is the 2¢'x 2¢ matrix with 2 x 2 blocks ((1) B (1)) down the diagonal and zéros

elsewhere. Thus @ = S0 (2n) [resp. S0*(27)] and § =" ().
M,=8p(n)/U(n). Theorem- 3.3 says that ¢ is inner. The matrix s’ is diagonable

-1
0’ (I) ) and. then & =Sy (n) and H=1U"(n).
M,=80(n+2)/80(n) x'80(2), n>2, n=+4. If ¢is inner then s’ is I or — I, so we

may conjugate s in H, and assume that's’ is given by

over (), so we may take it to be (

SIS

(0 I"‘“O) i o o 1}
NS

0 0 £ 0 0 —1 0

Then B =&D""*%(n +2) and §— SO™n)®SO(2) with 2m <n and m=2r or m=n—2r;
or n=2m with & =&0*(n+2) and =SO*(n)@SD(2). If a is outer we are in case (2b)
of Theorem 13.3 with s =1 and n,=1; that is the same as the first of the two cases directly
above except that 2r is replaced by an odd number.

If G is exceptional and rank K =rank @, the possibilities for ¢ are quickly listed up to
ad(H,)-conjugacy by means of Theorem 13.3; given such a ¢, one Jooks at its action on a
Weyl basis of §° and calculates the dimension of the fixed point set; the local form of
@ is specified by that dimension. These calculations are carried out in a somewhat more
general context in [21]and the results are as recorded in Tables 13.5 and 13.6. This completes
our checking for the case of equal ranks.

Now suppose rank H <rank G. Then Corollary 13.2 says that M, =G, /H, is Spin(n? -1}/
adSU(n) with n>2 odd, 80(n*—1)/adSU(n) with n>3 even, or E¢/[SU(3)/Z;]. 0|y, is



132 JOSEPH A. WOLF

inner because it does not interchange the two summands of the linear isotropy representa-
tion. Thus there exists s€H, such that ad(s) o acts trivially on H,. If G,=E, and ¢ is
outer, then the fixed point set {§, of ad(s)-o on &, has rank 4, so it properly contains the
maximal subalgebra $,; thus ¢ is inner if G=E;. If G,=80(n?—1) with n even, n=2m,
then G, is of type B,,._; and so necessarily ¢ is inner. If G, =Spin(n?—1) with »>2 odd
and if g is outer, then % =2m +1 and the fixed point set {§, of ad (s) o on &, has rank equal
to rank G, —1=4(n?—1)—-1=2m?+2m -1 and contains the maximal subalgebra §, of
rank n—1=2m. Then 2m? 4 2m —1 =2m, so 2m2=1, which is ridiculous. Thus ¢ is inner.
Now we have verified that ¢ and o‘]Hu are inner. So ¢=ad(g) for some g€@,, and o| H,=
ad(s)| g, for some s€H,. Thus gs~! centralizes H, and consequently is central in G,. It fol-
lows that ¢=ad(s), s€H,, s2=1.

M, =[Spin or 80](n®—1)/adSU(n). As we work first on the Lie algebra level we may
first assume M, =80(n?—1)/adSU(n), n>2 even or odd. s is ad(H,)-conjugate to an ele-
' -1, 0

0 I
©W'(n). H is centerless so it must be SU'(n)/Z, globally. The inclusion z: §,~ @, is the
adjoint representation. The (+1)-eigenspace of m(s’) is S[U(r) x U(n—r)] which has

ment of H, represented by the matrix s'=(—1)" ( ) €8U(n), 2r<n. Thus H=

n—r,

dimension 72-++(n—r)?—1, so the (—1)-eigenspace of z(s’) has dimension n2—1—{r2+
(n—7)2—1]=2r(n—r). Thus G =ED¥"" (52 _1).

Let §: GG be a covering group, H =6-1(H), and M =G/H, such that G acts effectively
on M and M is simply connected. Then G=G/Z and H =(HZ)|Z, where Z is an arbitrary
central subgroup of @ which is characterized up to isomorphism by Z =z, (M). To find @
we start with the existence of a central Z' in @ such that G’ =G/Z’ is 807" ~"(n2—1) and
H'=(HZ')|%' is the linear group ad SU"(n). Then Z'=n,(G'/H')=n,(K/L), where Lc K
are the maximal compact subgroups of H'<@'. Now L=S[U(r) x Un—r)}/Z, and K=
K, x Ky, where K;=80(r2+(n—r)>—1) and K,=80(2r(n—r)). As a linear representation,
the inclusion L< K is w, ® w,, where w, =ad; maps into K, and w, = [, ®&,_,]D[& Q cty_,]
(where «, is the usual vector representation of degree m of U(m)) maps into K,. If r =0
we know G and K; now assume r>0 5o o, is faithful. m,(K,)=7Z, because n>2, so
Spin(2r(n —r))—> K, is the universal covering. If K,/w,(L) is not simply connected, now w,
lifts to a Spin(2r(n —r))-valued representation. Then if b, is a 1-parameter subgroup of
L, b,=1if and only if ¢ is an integer, the lift of w,(b;) to the Clifford algebra is 1 if and only
if ¢ is an integer. We test this with the 1-parameter subgroup b, =diag (e, ..., &], & =2/~ 1t,
of the subgroup U(r)= L. In an orthonormal basis {v;} of R"™™" «,(b,) has matrix diag

cos (272t) sin (27t
[Et’ cesy Et]’ Et"’( ( ) ( 7!)

: : 2r(n—r) 3
_sin (2n8) oos ( 2yzt))' Thus the lift to the Clifford algebra on R is
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given by b,—] [ v,;_; - (cos 7ttv,; +sin mtvy, ;) where j ranges from 1 to r(n —r) in the product.
Thus bl—wl-vz-...-vzr(n_t,)_l-vzr(nk,). In other words, the representation w, does not lift.
If G'/H’ is not simply connected, then G=Spin* ™ "(n2—1) with maximal compact sub-
group K=K, K, K,=Spin(m) covering K;=80(m), so w, lifts. That proves G'/H’
simply connected. Thus G@= G’ = 80" "(n?—1) for r>1.

M, =Ey/[SUB)/Z,]. If ¢+1, so o=ad(s) with s€ H, of order 2, we may conjugate and

-1 0 0

assume that s is represented by s = ( 0 —1 0) €8U(3). Then H ==8SUY(3)/Z,. Let «
0 o 1

denote complex conjugation on SU(27); we view G, =E; as an a-stable subgroup of SU(27)

2 2
The inclusion H,—@, is given by the real representation o—o so any element of the

image may be conjugated and assumed fixed under «. Thus we may assume of(s)=s. Then
o and ¢ commute, so a preserves the fixed point set K of ¢, and o preserves the fixed point
set F of o. For convenience let L=F n K. Now K is of type D; 1" or A;A,, F is of type
F,or C4, and L is a group of rank 4 which is a symmetric subgroup in both K and F. Recall

the symmetric subgroups of rank 4 in those groups.
Oy AT, C,C, and C,0,. F,: Byand 0,0,
A Ay DyA,, DT, O34, and C, T, DyT': B, Dy, By D, and By D,.

Here note Dy=A4;3, B,=C,, Dy=A4,4,, D;=T" and 4,=B,=C,. Despite this, D;T" is
eliminated as a possibility for K. Thus & is of type Eg, 4, 4,-

As before G/H =M is the simply connected covering group of M and G —G|%Z, H=HZ|Z
where Z is an arbitrary central subgroup of &. We start on the matrix level with G' =G/Z’
which has maximal compact subgroup K =[SU(2) x SU(6)}/Z, embedded in G'< SL(27, )

by the representation (é@é—o—o—o—o)@(o®o'—<1>—o—'-0—o). Then the fundamental
group 7,(G')=mn;(K)=2Z,. Let G'—~G be the universal 2-fold covering, H” the identity
component of the inverse image of H'=HZ'|Z'. H' is centerless so H" has center of order
1 or 2. But H'=SU%3)/Z; does not have a covering group with center of order 2. Thus
G"[H" is simply connected and effective. We k’have now proved that G” =@ is the simply
connected group of type Eg 4.4, that it has center Z;, and that H”=H =SU(3)/Z,,
q.e.d.

14. Invariant division algebras
Let A be an associative algebra of linear transformations of a real véctor space V.
By an A-structure on a differentiable manifold M, we mean a family {4,}; y, where 4, is

an algebra of linear transformations of the tangent space M,, and there exist linear iso-
9 — 682901 Acta mathematica 120. Imprimé le 10 avril 1968
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morphisms V—M, carrying 4 to A,. If F is a division algebra R (reals), € (complex num-
bers) or Q (guaternions), then we view F" as a real vector space of dimension 7 - (dimg F');
this realizes F' as an associative algebra of linear transformations of a real vector space and
allows us to speak of an F-structure. Note that a C-structure is more general than an almost
complex structure, but that locally it defines an almost complex structure up-to sign.

Let @ be a differentiable transformation group on M. Then an A-structure {4, };en
is called G-invariant if x€ M and g €@ imply that ¢ carries 4, to A,).

Suppose that G is transitive on M, so M =G/H where H={g€G: g(x,) =xo}. I {4, }scnr

i8 & G-invariant A-structure on M, then A, satisfies

(i) if hEH, then h A, h;'=A,,
and A, defines the structure by means of

(i) Ay, is the image of 4., under g.

Conversely, if A4,, is an algebra of linear transformations of M, then it defines an 4, -
structure if and only if it satisfies (i), and in that case a G-invariant structure is defined

by (ii). In particular:
14.1 LEMMmaA. Let M be a coset space G/H, where H is the isotropy subgroup at a point x.

Then M has a G-invariant C-structure if and only of M, has a complex vector space structure
for which every tangent map he,, hEH, is either C-linear or C-antilinear. M has o G-invariant
Q-structure if and only if M, has a quaternionic vector space structure for which every hs,,

hE€H, is the product of a Q-linear map and a Q-scalar map.

Now let M =G/H be an effective reductive coset space such that the linear isotropy
action of Hyis an R-irreducible representation y. If y is not absolutely irreducible Theorem
13.4 shows that its commuting algebra A4 is a complex number field; 4 is normalized by
the non-identity components of H and thus extends to a G-invariant C-structure on M.
That is the unique G-invariant C-structure on M. If y is absolutely irredueible,‘ so A=R,

then Theorem 13.4 shows that there is no G-invariant C-structure on M. In other Words

14.2 THEOREM. Let M —G/H be an effective reductive coset space, where G is a connected
Lie group, H is a closed subgroup, and H, has R-irreducible linear isotropy representation y.
Suppose that M is not euclidean. Then M has a G-invariant C-structure if and only if y is

not absolutely irreducible, and in that case the structure is unique.

It is known [18] that certain compact riemannian symmetric spaces have invariant
Q-structures. Essentially they are the ones which are base spaces of 2-sphere fibrations of
compact complex homogeneous contact manifolds.- We say ‘essentially’ because there is a

mild- complication which involves the notion of scalar part, which we now define.-
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Let M =G/H be an effective reductive coset space with a G-invariant Q-structure
{A.}:em- Then the linear isotropy group H at z is a local direct product, Hy=H'-H”",
where the linear isotropy representation sends H’ into transformations which commute
with every element of 4, and sends H” into A4,. H' is the Q-linear part of H, and H" is
the Q-scalar part of H. These parts are well defined because G/H is effective and reductive.
We use the notation that R*, C* and Q* are the multiplicative groups of nonzero reals,
complex numbers and quaternions, respectively; that R’, C" and Q' are the respective sub-
groups consisting of elements of absolute value 1; and that RY and R’ are the respective
subgroups of R* and R’ consisting of positive numbers. Now there are three types of pos-

sibilities for the analytic subgroup H” of H, which we name and list as follows.

(i) The linear isotropy representation maps H” into R*. Then H" is isomorphic to

R: ={1} or to R% , and we say that H has real scalar part.

(ii) The linear isotropy representation maps H” into C* but not into a real subfield.
Then H” is isomorphic to €¢'=T! or to C*=C’' xR%, and we say that H has complex scalar
part.

(iii) The linear isotropy representation maps H” into Q* but not into a complex sub-
algebra. Then H” is isomorphic to Q' =S8p(1) or to Q*=Q’ xR}, and we say that H has

quaternionic scalar part.

14.3 TaEOREM. Let M =G|/H be an effective reductive coset space, where G is a connected
Lie group, H is a closed subgroup, and H, has R-irreducible linear isotropy representation y.

Suppose that M is not euclidean.
1. M has no G-invariant Q-structure for which H has real scalar part.

2. M has a G-invariant Q-structure for which H has complex scalar part, if and only f

the compact version M, =G [H, is the complex projective plane.

3. M has a G-invariant Q-structure for which H has quaternionic scalar part, if and only
if 3a) M,=G,[H, is one of the compact quaternionic symmetric spaces classified in [18,
Theorem 5.4] and the involutive adtomorpﬁism o of G, which gives the Cartan involution of @
is trivial on the subgroup of H, corresponding to the Q-scalar part of H, or (3b) & =C, § ~BC,
G,=AxA, H=BxB and M,=(4/B)x(4/B), where A|B is a nonhermitian compact

quaternionic symmetric space listed in [18, Theorem 5.4].

Proof. We may assume H connected. (1) is immediate from Theorem 12.1, which
shows that y cannot have commuting algebra €.
Let ‘M have a G-invariant §-structure with complex scalar part. Then Theorem 13.4
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shows that H" is a circle group ¢’ =T, so M, is hermitian symmetric, and (18, Theorem
3.7] says that M, is the complex projective plane. On the other hand, if M, is the complex
projective plane, then G, =8SU(3)/Z; and H,=S8[U(1) xU(2)]/Z; = U(2), and the first line
of Table 13.5 shows that either ¢=Q, and H=H,, or G¢=8UY3)/Z, and H=S8[U(1) x
UY(2)}/Z, = U'(2); in both cases M has a G-invariant Q-structure for which H has complex
scalar part.

Let M have a G-invariant Q-structure for which H has quaternionic scalar part. If H

is not semisimple then Theorem 12.1(2) says that the center of H is a circle group; thus

1
H” is Sp(1)=@Q’, represented by o in y. Now suppose that G/H is not symmetric. Then a
glance through the list of Theorem 11.1 eliminates the possibility that ¢ and H are complex
groups, so G,/H, is listed in Theorem 11.1. Then either y is absolutely irreducible with

x=x|z®@yx|g and x|H~=é, or y=B®B with =]z ®p|x and ﬂ]ané; no such spaces
are listed in Theorem 11.1. In other words, G/H is symmetric. Theorems 12.1 and 12.2,
with Theorem 5.4 of [18], now show that either @,/H,, is one of the symmetric spaces listed
in {18, Theorem 5.4] which have quaternionic structure such that H, has quaternionic
scalar part, or there is a nonhermitian quaternionic symmetric space A/B listed in [18,
Theorem 5.4] such that & =9°, $ =B, ¢, =4 x4, H,=BxB and M,=(4/B)x(4/B),
q.e.d.

The commuting structure on a coset space G/H is the G-invariant structure {4 },cqm
where 4, is the commuting algebra of the linear isotropy group at . Theorems 14.2 and 14.3
say, for a simply connected noneuclidean reductive isotropy irreducible coset space G/H,
that the commuting structure is an R-structure if the linear isotropy representation is
absolutely irreducible, is a C-structure otherwise, and cannot be a Q-structure.

Note that the commuting structure is the structure of the algebra of n x n real matrices
if and only if y=8,®...@8, with §, absolutely irreducible real and all the f§; equivalent.
In this context see Lemma 12.3 and Remark 12.4. v

Chapter III. Riemannian geometry on isotropy irreducible coset spaces

An isotropy irreducible coset space M =G/K, with K compact, has a riemannian metric
which is unique up to a constant scalar factor. In § 15 we see that M is an Einstein mani-
fold and that sectional curvature keeps its sign, and we determine when two such rie-
mannian manifolds are isometric. In § 16 we determine the linear holonomy group of M.
§ 17 contains the determination of the full group of isometries; if M has invariant almost
complex structure we also determine the full group of almost hermitian isometries and

study. the group of almost-analytic diffeomorphisms. Finally, in § 18, we study locally
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isotropy irreducible riemannian manifolds and their relations to isotropy irreducible coset
spaces.

Most of the results extend immediately to indefinite metric.

15. Curvature and equivalence
The elementary properties of isotropy irreducible riemannian homogeneous spaces

are given by the following theorem.

15.1 TaroreM. Let M be an effective coset space G/K of a connected Lie group by o
compact subgroup, where K is R-irreducibile on the tangent space.

1. If ds? and do® are G-invariant riemannian metrics on M, then ds*=c-do® for some
constant ¢>0. In particular dst and do® have the same Levi-Civite connection.

2. Choose a G-invariant riemannion metric ds® on M, let v denote the Ricci tensor, and let

r denote the scalar curvature. Then (M, ds?) s an Einstein space, r= % ds? with r constant and
n=dim M.

3. If the identity component K, is R-irreducible on the tangent space, then

(8a) r<0, (M, ds?) is a riemannian symmelric space of noncompact type, and every
sectional curvature satisfies x<0; or

(3b) r=0 and (M, ds?) is a euclidean space; or

(8¢) r>0, M is compact, and (M, ds®) has every sectional curvature »=0.

Remark. Now Theorem 11.1 gives many new examples of Einstein spaces which are

neither symmetric nor kaehlerian.

Remark. By uniqueness, the Levi-Civitd connection on M must be the first canonical
connection for G/K.

Proof. K is the isotropy subgroup at some point € M. Let y be the representation of
K on M,. As y is R-irreducible, any nonzero y(K)-invariant symmetric bilinear form
on M, is definite and any two are proportional. Thus ds? =c¢-do> for some ¢>0. If z€M,
z=g (), then ds?=g*ds? =c- g*do® = ¢ - do>. This proves (1). Similarly r=f-ds® for some
constant f, and f=r/n by definition of r; this proves (2).

Let y(K,) be R-irreducible on M,. If G is not semisimple then Lemma 1.2 shows
(M, ds?) isometric to euclidean space; in particular r=0. If G is noncompact and semi-
simple then K is a maximal compact subgroup, so (M, ds?) is a riemannian s‘ymmetric'
space of noncompact type; in particular r <0 and every sectional curvature » <0. If G is
compact and semisimple then M is compact. By uniqueness, ds> is the restriction of a
negative multiple of ‘the Killing form of & to the orthocomplement of &; in particular

every sectional curvature » =0 and some x >0; it follows that »>0, q.e.d.
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Distinct coset spaces may give isometric. manifolds. For example, we have euclidean
(2n)-space given as SO0(2n) R*/S0(2n), SU(n)-R**/SU(n) and U(n)-R**/U(n). This is not
a phenomenon restricted to euclidean spaces, for Spin(7)/G, is isometric to the 7-sphere

§". Thus we need the uniqueness theorem:

15.2 TuEOoREM. Let G/K and A|B be simply connected effective coset spaces of connected
Lie groups by compact subgroups with R-trreducible linear isotropy representations. Let each

carry an invariant riemannian metric and suppose that they are isometric. Then

(i) there is an isomorphism of G onto A which carries K onto B; or

(i) G/K and A|B are euclidean spaces of the same dimension; or
(i) G/K and A|B are the two presentations Spin(7)/G, and SO(8)/SO(7) of the sphere §7; or
(iv) G/K and A|B are the two presentations Gy/SU(3) and SO(7)/SO(6) of the sphere S°.

Proof. If one (thus both) of G/K and A/B is a euclidean space then we are in case (ii).
If G/K and A/B are both noneuclidean symmetric coset spaces then we are in case (i).
Now we may assume that 4/B is a nonsymmetric coset space, so it is listed in Theorem 11.1,
and that G/K either is a compact irreducible symmetric coset space or is listed in Theorem
11.1.

Let M be the common riemannian manifold of G/K and A/B and write M =U/V,
where U is the largest connected group of isometries. Then G< U and A< U, and we may
assume K< V and B< V. It suffices to prove our assertion in the case where U is & or 4;
for then G+U 44 implies that either M =8" with G and 4 as conjugates of Spin(7) in
80(8), or M =$° with G and 4 as conjugates of G, in S0(7), and we are in case (i). Thus we
are reduced to considering the case 4 $G@ with B=A4 N K. These situations are classified
by A.L. Oniséik ([22], Table 7, p. 219 [p. 29 in the translation], except that Oni&dik writes:
G’ for K and G" for A, or @' for A and G” for K), U for B, and Sp(2n) for Sp(n), 4
and ¢ are simple and B is semisimple. Thus my(4/B) =m,(G/K) is finite, so K is semisimple.
Now we need only run through the entries on Oni%éik’s list which have G” and U semisimple,
checking for isotropy irreducibility. Doing that, we find that we are in case (iii) or case (iv)

of the theorem, q.e.d.

16. Holonomy

Let M be a riemannian manifold. If €M, then O(M,) denotes the orthogonal group
of the tangent space and SO(M,) is the subgroup consisting of proper rotations. If ¢ is a
sectionally smooth curve in M with both endpoints at x, then the parallel translation
about o is an element v} €0(M,). All such transformations 7% compose the linear holonomy
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group H(M, z) at x. H(M, x) carries the subspace topology from its inclusion in 0(M,);
the arc component of I is a closed Lie subgroup Hy(M, )< SQ(M,) which is called the
restricted linear holonomy group of M at x. Hy(M, z) consists of all 7% for which ¢ is homotopie
(with fixed endpoints) to the trivial curve at x. If ¢: M'—M is a riemannian covering,
@(x') =z, then v¥ -7 defines an injection g.: H(M', 2')—~H(M, x) which is equivariant
with the tangent map @.: M, —M,. Thus restricted linear holonomy is invariant under
riemannian coverings.

The holonomy of symmetric spaces is well known, although I cannot find the global

statement in the literature:

16.1 ProprositioN. Let M =G/K be an effective symmetric coset space with a G-invari-
ant riemannian metric, where G is a connected Lie group and K is a compact subgroup. Let y
be the linear isotropy action of K on M,. Decompose M ~ M° x M’ locally as the product of a
euclidean space M and a product M' of wrreducible spaces, so x=(x°, «') and M, =M% ®M -
Then K =K° x K’ and y =y° @y where y°(K°) acts on MS,, y'(K') acts on M .,and H(M, x) =
X (K).

The proof is immediate, by means of the universal riemannian covering, from ([17],
§7) and ([16], § 3).

By way of contrast, the holonomy of isotropy irreducible nonsymmetric coset spaces

s much less complicated:
i

16.2 TuEOREM. Let M =G/K be a nonsymmetric effective coset space with a G-invariant
riemannian metric, where G is a connected Lie group and K is a compact subgroup. Suppose

that the linear isotropy action vx of K, on M, is R-irreducible. Then

H(M, x) =80(M,) if M is orientable,
H(M, x) =0(M,) if M is not orientable.

An immediate consequence is:

16.3 CorROLLARY. If W is a nonzero parallel differential form on M, then either V' is

@ scalar constant, or M is orientable and ¥ is a constant multiple of the volume element.

Proof of theorem. M is orientable if and only if H(M, )< SO(M,). Thus we need only
prove Hy(M, z)=80(M,), and for this we may assume M simply connected. The de Rham
decomposition of M as a product of a euclidean space and some irreducible riemannian
manifolds, decomposes the largest connected group of isometries; thus R-irreducibility of

x implies that M is an irreducible riemannian manifold. Now ([1] or [13]) either M is iso-



140 JOSEFPH A. WOLF

metric to an irreducible riemannian symmetric space, or H(M, x) is transitive on the
unit sphere in M,.

Let M be isometric to an irreducible riemannian symmetric space. Then Theorem
15.2 says that M is isometric to a sphere 8”=80(n+1)/80(n), and Proposition 16.1 now
implies that (M, x)=80(M,).

Let H(M, x) be transitive on the unit sphere 8" in M,. Then H(M, x) must be

@ 80(=s0ar,), ) su(3). @ v(3). (3] o sa(3)- 1 o se(f) - son,

(vii) G, with »="7, (viil) Spin(7) with n=28; or (ix) Spin(9) with »=16.

If the commuting algebra of H(M, x) on M, has an element J of square —.1, then J
defines a kaehlerian structure on M. By compactness, the cohomology H2(M; R)=-0, so
7t,(M) is infinite by the Hurewicz Theorem. The exact homotopy sequence of G—G/K =M
then shows 7, (K) infinite, contradicting semisimplicity of K. This excludes the possibilities
(i), (i), (iv) and (v) for H(M, x). ‘

In the possibilities remaining, H(M, x) is its own connected normalizer in SO(M ).
Thus y(K)c H(M, x).

If M, has an H(M, x)-stable structure as a quaternionic vector space, then we have a
G-invariant Q-structure on M, contradicting Theorem 14.3. This excludes the possibility
(vi) for H(M, x). \

If M has dimension 7 and K is isomorphic to a subgroup of G, then Theorem 11.1
says G/K =8pin(7)/G,, so H(M, z)=80(M,). This excludes possibility (vii) for H(M, z).

Following Dynkin ([6], Table 5), a connected semisimple subgroup of Spin(Zm +-1)

1 1
absolutely irreducible on R*" must be all of Spin(2m+1). As o—o=e and o—o—o=e

are not among the possibilities for y listed in Theorem 11.1, this excludes possibilities (viii)
and (ix) for H{M, x) in the case where y is absolutely irreducible. But if y is not absolutely
irreducible, Theorem 11.1 shows that M cannot have dimension 8 or 16. This excludes the

possibilities (viii) and (ix) for H(M, z), q.e.d.

17. Isometries

Let M be a riemannian manifold. Then I{(#) denotes the group of all isometries of
M onto itself. As is now standard, we let I{(}{) carry the compact-open topology, and then
I(M) is a Lie transformation group on M. The identity component is denoted y(M).

Given an effective coset space M =@/K with a G-invariant. riemannian metric, one
knows G<I(M). But in general one does not know how to determine I(M), or even I (M),

and this can be troublesome.
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The determination of I(HM) is reduced to the simply connected case as follows. Let
¢: M'—M be the universal riemannian covering. Then M = M'[T', where I'<I(M’) is the
group of deck transformations of the covering. Every g €I(M) lifts to a ¢-fibre preserving
map ¢’ €I(M’), and the ¢-fibre maps in I(M’) induce isometries of M. An element g’ €I(M")
maps a g-fibre I'(z") to another (necessarily I'(g'2")) if and only if (¢'T") (x") = (I'g") («"). Let
Ny be the normalizer of T in I(M’), so its identity component N} is the centralizer of T'.
It follows that

I(M)=Np/T' and I(M)=("-Np)T.

If M =G/K is a simply connected symmetric coset space, then the determination of
1,(M) and I(M) from (G, K) is due to Cartan (see [16, § 21); in the irreducible case Gy =1,(M),
80 Kg=K n1(M), and I(M) is constructed from the pair (G, K,} by examining automor-
phisms of K, which extend to G,. It turns out that Cartan’s idea works for isotropy ir-

reducible spaces:

17.1 TrrorEM. Let M =G|K be a noneuclidean simply connected effective coset space
with o G-invariant riemannidn metric, where @ is a connected Lie group and K is a (neces-
sarily connected) compact subgroup. Suppose that the linear isotropy action y of K on M is
R-irreducible. Suppose G,/SU(3) +=G/K +=8pin(7)/G,. Then G =1 (M).

Let Aut(K)® denote the group of all automorphisms of K which extend to G, and let
Inn(K)% denote the normal subgroup of finite index consisting of inner automorphisms of K;
let Aut(K)% = Ui-1 k;-Inn(K)% be the coset decomposition. Define

G=GUs-Gand K=KUs-K if rank G>rank K and G/K is symmetric with symmetry s,

G =G and K =K otherwise.

1f Go/SU(3) +G/K == 8pin(7)/@,, then
()= lTJ k-G, and lj k- K is the isotropy subgroup at x.
=1 <1

Remark. Tt G/K =6,/S8U(3), then M ~$§° must be rewritten as SO(7)/S0(6) to apply
the theorem. If G/K = Spin(7)/G, then M =87 must be re-written as SO(8)/S0(7).

Proof. Let A=I(M) and let B be the isotropy subgroup at x. Then M =A4/B, and
K< B shows B to be R-irreducible on M,. If 4 @, then Theorem 15.2 says that either
G|K =G,/SU3) with A/B=80(7)/S0(6), or G/K==8pin(7)/G, with A4/B~=80(8)/S0(7).
Thus 6,/SU(3) +G/K +=8pin(7)/6G, implies G =I,(M).

Now we must prove:

(17.2)  Suppose G =X(M). Let K’ be the isotropy subgroup of I(M) at x. Let k' €K'. Then
k' €K if and only if ad(k') |  is an inner automorphism of K.
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(17.2). is meaningful because K< K’ and K is the identity component of K'. If ¥’ €K,
then either &’ € K, or k's € K, where s is the symmetry. In the latter case ad(k's)| x =ad(k') | ¢.
Thus ad (%) | ¢ is inner.

- Conversely let ad (k)| be inner. Then K has an element % such that ad(k'k)| is
trivial. Let y’ be the isotropy representation of K’ on M, and let 4 be the commuting
algebra of y. Then y'(k'k)€A. If y'(k'k)~ I then 'k ~1 and k' €K. If y'(k'k)= — I then M
is symmetric and k'k=s€K, so k' €K.

Now suppose y'(k'k)== 1 I. Then 4 % R, so y is not absolutely irreducible and 4 = €;
%' (k'k) €A corresponds to a non-real element ¢€C of norm 1. Let Z be the center of K.
If M is symmetric, it is hermitian symmetric and y(Z)< A4 corresponds to the set of all
elements of norm 1 in C; thus ¥'%4€Z and so k' €X.

Now assume M nonsymmetric. Let & =R+, K=, and =M.+ Mz, where
ad(k'k) is scalar multiplication by « on IR,. Note that ad(k'k) is scalar multiplication
by «f on [M,, M ]. Thus [IM,, M:]< K and [N, M. J< M. As 2 4¢, and as [N, WO ¢ &C°
by nonsymmetry, now &2 =z. Thus ¢ =e***%3, If rank G =rank K, then Z has order 3 and
so x'(k'k)€Ey(Z); thus k'k€Z and k' €K.

Finally suppose rank ¢ >rank K. G/K is B4/{SU(3)/Zs} or {(Spin or 80) (n2 —1)}/adSU(n).
If 7 is an outer automorphism of order 3 on @, it follows that G/K =Spin(8)/adSU(3)
and 7 is triality; then 7 has fixed point set &, which does not contain the centerless version
of SU(3). Ask'k has order 3 it follows that ad(k'k)|, is an inner automorphism. Let g€
such that ad(k'k)|s=ad(g) and let L be the connected centralizer of g. Then K<L and
rank L=rank G>rank K; thus L=G. Now ad(k'k)|, =y (k'k)=1, so K'k=1 and k' €XK.
This completes the proof of (17.2).

Now K< K'< Ul k;- K. Re-ordering the k;, it follows that

v _ —
K'=U#k K, and thus I(M)=U k;- G,
=1 i

Define groups K”=Ul_1k;-K and @"=U}_1k;-G. Then G is transitive on G”/K"
and K=G N K". Thus we identify M with G"/K". Let V be the kernel of the action of G"
on M. Then V< K" is normalized by K, and V is finite because V'n K=V n Kg={1}.
As K is connected it follows that V centralizes K. Now Ve K< K’, so V={1}. Thus G" is
effective on M. As K" is compact, M has a G’-invariant riemannian metrie. That metric
is G-invariant, hence proportional to the original one. Thus G"<I(M). But we just saw
I(M)=@G”, so now {M}=G" and K'=K", qed.

A similar result holds for isometries which preserve an almost-complex structure.

The symmetric case is due to Cartan.
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17.3 TaEOREM. Let M =G/K be a noneuclidean simply connected effective coset space,
with a G-invariant riemannian metric ds? and a G-invariant almost complex structure J.
Suppose that G is a connected Lie group and K is a compact subgroup whose linear isotropy
action 15 R-irreducible. Given z€M and tangent vectors X, YEM,, define w, (X, Y)=
ds¥(X,J,Y) and define h,—ds>+iw,. Then h is an almost-hermitian metric on M.

Let H(M) be the group of all almost-hermitian isometries of M and let Hy(M) be the identity
component. Then G=HyM). If G/K =ad(Ee)/Ay-Ay- Ay, then G=H(M). If G/K =ad (Eg)/
Ay Ay Ay, then H(M)=GU@-G, where ad (¢)|s is an involutive outer automorphism with
fized point set Fy. M has an isometry A which sends J to —J. If G/K +Gy/SU(3), then Y M) =
H(M)UA-H(M).

Proof. Let y be the representation of K on M,. Then the commuting algebra of y is
€ and J, is one of its two elements of square —I. The unimodular elements of € are in
SO(M,). Thus &, is a hermitian inner product on M,. Now A is an almost-hermitian metric
on M.

Let H(M) be the group of all almost-hermitian isometries of M. Then G H(M)<I(M).
If G/K +G6,/SU3), then G@=I(M) and so G=H(M). If G/K=G,/SU(3), then I (M)=
80(7) has G =G, as a maximal connected subgroup, and I (M) d H(M); it follows that G =
Hy(M). Now G =H(M) in general.

Let L be the isotropy subgroup of H(M) at . Then K =L,. If k' €L, then k, commutes
with J,, so ad(k')|x does not interchange the two irreducible summands of y. If G/K =
ad(Eg)/A, Ay A,, assume further that ad(k')|s is inner. Then a case by case check shows
that ad(k')| 5 is inner. Let k€K so that ad(k'k)|x is trivial. As in the proof of Theorem
17.1, it follows that 'k is central in K, so ¥’ € K. On the other hand, as noted in the proof
of Theorem 13.6, ad(Eg)/A,-A,-A, has an almost complex involutive automorphism ¢
such that ad(g) is outer on E;. Thus G=H(M) for G/K +ad(Eg)/A,-A,- A, and H(M)=
G'U -G in the exceptional case.

We find 1. First suppose G compact with rank G >rank K. If G/K =E¢/ad SU(3) then
A is the outer automorphism of G which preserves K. If G/K =80(n?—1)/ad SU(n), then
A is the outer automorphism of Sll(n) viewed as an element of GL(n2 —1, R) which normalizes
S0(n?—1). Now suppose G compact with rank G=rank K. Embed the center Z of K in a
maximal torus T'< K, and let A be the automorphism of order 2 on G which is —7 on .
A preserves K because K is the connected centralizer of Z. Finally suppose G noncompact.
Then G/K is hermitian symmetric of noncompact type, and we have an automorphism
A, of the compact form G, which preserves K and is inversion on Z. Extend 2, from &,
to G° by linearity and let A be its restriction to .
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Finally suppose G/K +G,/SU(3). If k is in the isotropy subgroup of I(M) at z, then
k. either commutes or anticommutes with JJ,, for k. Jkz' is another almost complex strue-
ture on M. In the commuting case, k€ H(M). In the anticommuting case, kA€ H(M). Thus
I(My=HM)UA-H(HM), qed.

The analysis of H(M) allows us to study the group A(M) of all almost-complex diffeo-

morphisms of M:

17.4 TarorREM. Let M =G/K be a noneuclidean effective coset space with a G-invariant
almost-complex structure, where G is a connected Lie group and K is a compact subgroup whose
tdentity component is R-irreducible on the tangent space. Choose a G-invariant riemannion

metric on M. Then:

1. If G/K is noncompact then A(M)=H(M)=I,(M)=G.

2. If G/K is compact, then A(M) is a stmple Lie group with maximal compact subgroup
H(M), and Ay M) is a simple Lie group with finite center and maximal compact subgroup
G =Hy(M).

3. If GQ/K is compact with rank G=rank K, then either G|K is hermitian symmetric
with A(M)=H(M)° =G, or G/K is nonsymmetric with A(M)=H(M) and Aj(M)=G.

Proof. If G/K is noncompact it is a hermitian symmetric space of noncompact type.
Then, in the Harish-Chandra realization as a bounded domain with Bergman metric,
every analytic automorphism is an isometry; so A(M)=H(HM) and our assertions follow
from Theorem 17.3

Now assume G/K compact. Let 4 denote Ay(M) and let B denote the isotropy subgroup;
so G4 and K =6 n B. A(M) is a Lie group [2]; now H(M) must be a maximal compact
subgroup. In particular & is a maximal compact subgroup of 4. Whenever Sis a closed
connectéd subgroup of A normalized by @, we have G/K=(G-8)/(K-8); if @& .S then
simplicity of ¢ and effectiveness of 4 show that §={1}. Take S to be the connected
radical of A4; now A is semisimple. If 4 has two simple factors take S to be one which
does not contain @; now 4 is simple. If 4 has infinite center take © to be the one dimen-
sional vector group orthogonal to & in a maximal compactly embedded subalgebra of
U; now A has finite center. Thus 4 is a simple linear group with ¢ as maximal compact
subgroup.

Suppose rank K =rank G. As & is its own normalizer in &, it is an algebraic subalgebra
of &; thus 4 has an Iwasawa decomposition GSN for some maximal R-split algebraic
torus S, such that B=KSN. If 4 =G°, then 4 has a complex Cartan subgroup H such that
H 0 K is a maximal torus 7' K and H=7T-S. Now B contains the Borel subgroup 7'SN
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of 4, so B is a parabolic subgroup of A and M =A/B has a natural A-invariant complex
structure. Of course this structure is G-invariant. Now Theorem 13.1 says that G/K is
hermitian symmetric. Conversely G°< A(M) if M =G/K is hermitian symmetric. Thus M
is (hermitian) symmetric if and only if 4 =G6°

Let G/K be GyfA,, BefA, A, Ay, E./A, A, Eg/A, or Eg/A,E; Then A4 4G and there is
no noncompact absolutely simple group with ¢ as maximal compact subgroup. Thus 4 is
compact. Now 4 =G.

Let G/K =F,/A,A,. Then E, p, is the only noncompact absolutely simple group with
G as maximal compact subgroup. Suppose 4 =%, r, and let ¢ be the involutive auto-
morphism with fixed point set G. Then L=(BnoB), is reductive in A with maximal
compact subgroup K. If L is almost effective on L/K, it follows that the semisimple part

L' =K°¢, sorank L>8 in contradiction to L& A. Now L =1L, - A,, where A, is the second factor
in K=A,-A,, and L/K =L,/A,, where the A, is the first factor. If L' =K then L=K-S=
K x 8 in the notation of the Iwasawa decomposition 4 =GSN, and K is the semisimple
part of the centralizer of S. That is false.(!) Thus L =A°:A,. Now A4/L is the noncompact
almost complex isotropy irreducible space derived from Eg/A,A; A, by the involution o.
Thus L is irreducible on the orthocomplement of & in . As L< B normalizes B, and as
B==A, that says L = B; but then dim 4/B=>54>36 =dim G/K contradicts 4/B~ M =~ (/K.
This proves 4 +£8; r,. As A +G° we conclude 4 =G, q.e.d.

Remark. The method shows that A (Es/ad SU@3)) is E, or E§, and that
Ay(80(n?—1)/ad SU(n)) is S8O(r2—1), 80(n*-1,C), SLxn>—1,R) or SO0 n?). It seems
probable that Ay (G/K)=G in both cases, just as for the non-integrable almost complex

spaces of equal rank.

18. Local structure
Let M be a riemannian manifold. If x€ M, then K denotes the group of all isometries
of neighborhoods of z which fix z, where we identify two isometries if they coincide on a

neighborhood of x. K is called the group of local isometries at x. K™ is a compact Lie

G Oy X3 Oy O
() E; has simple roots O—0—0—0—0, F, has simple roots {} (o, + o), 3 (0t + %), 05, %},

O o
and § is spanned by {&, —;, @, —,}. Thus the centralizer of S in E, has positive roots {0, o, ot + o,
Oy + Ot + Oty Oty + Oy + 0ty + O, Oy - 2 0 -+ 00y + 0Ly, Oy + Oty - OLg + 0ty + Oy, 06, + Oy + Olg + Oy + 065 + O, 0y + 0y + 2065 +
Oty + Oty Otg, 06+ 206y + 2 0ty + 2 0ty + 0t + 0ty Oy 206+ B0ty + 200, + ot + 0, O 206+ 30t + 20+ 0t + 20},
/O 0oty + 0ty + 0ty -+ Oy o+ Oy
so it has semisimple part of type D, with simple roots O-——O\
: oy otg NO &ty + 0ty + 0t
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group, for its linear isotropy representation y on M, is faithful, and y(K®) consists of all
the orthogonal linear transformations of M, which preserve all covariant differentials
(V™"R),, m =0, of the curvature tensor at x. We say that M is locally isotropy irreducible at
x if y(K§P) is R-irreducible on M,. M is said to be locally isotropy irreducible if it is locally
isotropy irreducible at each of its points.

Let ) denote the Lie algebra of germs of Killing vector fields at x. Then §® is
naturally identified with the subalgebra consisting of all elements of & which vanish at
x. If @ is a local isometry carrying x to z, then ¢ sends & isomorphically onto & and
carries K to K. If M is locally homogeneous, it follows that the isomorphism classes

of the pair ($*, §*) and the group K* do not depend on the choice of .

18.1 THEOREM. Let M be a connected locally isotropy irreducible riemannian mani fold.
Then M is locally homogeneous.

Choose x€ M. Let G/K be the simply connected effective coset space with & =E®, =K@
and G connected. Then K is R-irreducible on the tangent space of QK. For X €& near 0,
define flexp, (X)K)=expy (X)-z. Then there is a G-invariant riemannian metric on G/K
such that f is an isometry of a neighborkood of K €G/K onto a neighborhood of x€M. If M is

complete, then [ extends to a riemannian covering.

Before proving this theorem we note some consequences.

18.2 CorovrLLaRY. Let M be a complete connected simply connected locally isotropy
irreducible riemannian manifold. Then M is homogeneous, so M =G[K with G=I(M), and

(i) M is a euclidean space; or

(i) M is an irreducible riemannian symmetric space; or
(iii) G/K is listed in Theorem 11.1.
For G/K coincides with the coset space of Theorem 18.1.

18.3 CoroLLARY. Let M, and M, be complete connected locally isotropy irreducible
riemanmian manifolds, with M, simply connected. Let f: U;—~U, be an isometry, where U, is
a connected simply connected open submanifold of M ,. Then f extends to a riemannian covering

fr My~ M,. If M, is simply connected then [ is an isometry.

For let v: M5~ M, be the universal riemannian covering and let f: U,—~U;=f(U,)<
M be a lift of f. Then f’ is an isometry. Let M, =G, /K, and M;~=GQ,/K, as in Corollary 18.2;
now f* induces an isomorphism of @; onto G, which carries K, to K,, and thus f induces

an isometry f': M,— M. Define f = - and the assertions follow.
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Proof of theorem. If z€ M, then V,={X,; X€®®} is a K®-stable subspace of M,.
By local isotropy irreducibility, either V,=0 or V,=M, If V,=0 we choose w€M such
that z=w but z is in a normal neighborhood of w. Let {w;}o<:c; be the unique minimizing
geodesic from w to z, and let W €M, be its tangent vector at w. If K{”(z) =2 then K{*
fixes W, contradicting isotropy irreducibility at w. Now K{” has a one parameter subgroup
exp (tX), X € R®, which moves z, and 50 0+X,€V,. This proves V,=M, for every z€ M.

Let xg, 2, € M. Let {x,} be a smooth curve in M from z, to z,. Given 0<i<1, every
element of M, is the value of some Killing vector field on a neighborhood of ,, so there is
an open set U;3x, consisting of images of z, under local isometries. The Heine—Borel
Theorem gives 0=t,<...<f,=1 such thatU}f, U,, contains the curve {z,}. Now a com-
position of k local isometries carries x, to #,. This proves that M is locally homogeneous.

G®=Q® 19N where M is an ad (K®)-stable subspace identified with M, under
X—>X,. As K§ is R-irreducible on M,, now {* is R-irreducible on 9, and thus K is
R-irreducible on the tangent space of G/K. Lift the metric from M, to IN; then it defines
a G-invariant riemannian metric on G/K. Choose a convex open neighborhood & of 0 in
&) such that expy(— ¥,) is defined at expy(Y,;)-x whenever Y,, Y,€S. Then we have

linear isometries
expo(—Y) €xp,, (V)

I
(G/K)expg(y).x (G/K)K_"JI/II—‘_’MQXDM(Y)nT

and f,: (G/K )exp&,(y).K — Mexp,r).2 is their composition. Thus f fs an isometry on neigh-
borhoods.

Let M be complete and let =: M’—M denote the universal riemannian covering. We
cut f down to an isometry g: U~V of simply connected neighborhoods and then lift it
to an isometry g": U—g(U)=V'cM’'. As G@=I(G/K) we can develope g’ along smooth
curves. As (/K is real analytic it follows that M is real analytic. Now ([10], p. 256) ¢’ extends
to an isometry g, and n-7 is a riemannian covering. 7z § agrees with f on the domain of ¢,

so they agree on the domain of f by analyticity. Thus z - § extends f, q.e.d.

Added in Proof

On 8 August 1967, Professor C. T. C. Wall informed me of the following generalization of
Corollary 10.2. Let S=A/B be a compact simply connected irreducible symmetric space,
n=dim S and 4 =I(S), § not a real or quaternionic Grassmann manifold. 8, B— SO0(n) is the
linear isotropy representation. Decompose B=K 'L, f=a®w, n: K~ G where (¢) S is neither
hermitian nor quaternionic [18], B=K and G'=80(n); or (&) S is hermitian, L is a circle,

K=[B,B] and G=8U(n/2); or (i) S is quaternionic, L=8U(2) with w: C1> and G =8p(n/4).
Then G/n(K) is a nonsymmetric isotropy irreducible coset space, G.. classical, SO(7) /G,
G /n(K)+80(20)/[SU(4)/Z,]; and conversely every nonsymmetric isotropy irreducible coset
space G/n(K), G classical, 80(7)/6G,+G/n(K)=+80(20)/[8U(4)/Z,], is constructed as above
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from a compact irreducible symmetric space S which is not a real or quaternionic grassman-
nian. This observation is checked by classification. An @ priori proof will be valuable, but it
will also be difficult because of the exceptions.
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