
HARMONIC ANALYSIS AND THETA-FUNCTIONS 

BY 

J U N - I C H I  I G U S A  

The Johns Hopkins University, Baltimore, Md., U.S.A.(1) 

We know tha t  theta-functions have appeared in mathematics  in two different ways, 

one in the theory of polarized abelian varieties over C and another in the analytic theory 

of numbers. We shall give a definition of theta-functions which is general enough to cover 

both cases. This has been made possible by  a recent work of A. Weil tha t  has appeared in 

two papers [11], [12]. We shall also discuss a supplement to his work by  proving certain 

continuity theorems. The following is a more detailed explanation of this paper. 

I f  G is a locally compact abelian group, the regular representation of G and the Fourier 

transform of the regular representation of its dual satisfy a well-known commutat ion 

relation. Therefore, the images of G and its dual by  these representations generate a locally 

compact, two-step nilpotent subgroup A(G) of the full uni tary group Aut(L2(G)) with the 

strong operator topology. Consider the normalizer B(G) of A(G) in Aut(L2(G)). Then, if 

S(G) is the Schwarz-Bruhat  space of G, there exists a mapping B(G) • S(G)-~ S(G) defined 

by (s, O)-~sO. On the other hand, if F is a closed subgroup of G, every �9 in $(G) gives 

rise to a function F~ on B(G) by  the following integral 

 o(s) = fr (sO) ( )ge 

taken with respect to the Haar  measure d~ on F. Weil has shown tha t  sO depends con- 

tinuously on �9 and tha t  F r  has an invarianee property with respect to a certain subgroup 

of B(G) determined by  F. Then he has specialized to the arithmetic case, i.e., to the case 

when G is the localization or the adelization of a finite dimensional vector space over a 

field, which is either a number  field or a function field of one variable with a finite constant 

field. In  this case, he has introduced the metaplectic group Nip (G) and proved the con- 

t inuity of (s, O)-~ sO and s-~ Fr restricting s to Mp (G). We shall discuss these continuity 

properties in general, i.e., in the case when G is a locally compact abelian group satisfying 

(1) This work was partially supported by the National Science Foundation. 
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no further assumption. The mapping B(G)• S(G)~S(G) is separately continuous but  not 

continuous in general. However, if Z is a locally compact subset of B(G), the induced map- 

ping Z • $(G)-+ $(G) is continuous. Moreover, if (~-~Sp (G) is a continuous homomorphism 

of a locally compact group @ to the sympleetie group Sp (G) of G, the fiber-product 

B(G)r = B(G) • sp(a) q6 

is always locally compact. This will be shown by carefully analyzing the homomorphism 

B(G)-+Sp (G). I t  will be shown also that  the function F e  is always continuous on B(G). 

I t  appears that  these results settle basic continuity problems concerning the group B(G). 

This is the outline of Par t  I. In  Par t  If,  we shall introduce a dense subspace ~(G) of $(G) 

which is B(G)-stable. We then define theta-functions as functions of the form F e  with 

(I) in ~(G). Among other things, it will be shown that  there exists essentially but  one 

theta-function and that  every automorphic function can be uniformly approximated on 

a given compact set by a theta-funetion. At the end of Par t  II,  we shall discuss the case 

when G = R n and F is a lattice in R ~ as an example. 

I. The group B(G) and a continuity theorem 

1. We shall start by recalling some of the definitions and terminology in Weil's 

work cited in the introduction. We shall use the asterisk to denote the autodualization in 

the category of all locally compact abelian groups. If G is a locally compact abelian group, 

therefore, its dual is denoted by G*. We shall denote by T the multiplicative group of 

complex numbers t satisfying t i = l  and by (x, x*)-~<x, x*>=<x*, x> the bicharaeter of 

G • G* which puts G and G* into duality. We shall denote by F the bicharacter of 

(G • G*) x (G • G*) defined by 

F(wl, w2) = F((ul, u~), (u2, u*~)) = <ul, u~>. 

Also, we shall denote by A(G) the product space (G • G*) • T with the law of composition 

(wi, tl) (w2, t2) = (w 1 + w2, F(wl, w2)tl t~). 

Then A(G) is a locally compact, two-step nilpotent group with T as its center (if we identify 

t with (0, t)). We shall denote by B(G) the group of topological automorphisms of A(G) 

inducing the identity on T. We recall that  the group of topological automorphisms of an 

arbitrary locally compact group (~ forms a topological group. If C is a (non-empty) compact 

subset of (~ and V an open neighborhood of the identity in (~, the set W(C, V) consisting 

of all topological automorphisms a of q6 such that  the images by g-+(ga)g -1, (ga-1)9 -1 
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of C are both contained in V is a typical open neighborhood of the identity in Aut ((~). 

Because of this fact, Aut (A(G)) forms a topological group and B(G) is an open subgroup 

of Aut (A(G)) of index two. If  s is an element of B(G) and if (w, t) is an element of A(G), 

we have (w, t) s = (wa, ](w) t) with a topological automorphism a of G • G* and a continuous 

m a p p i n g / : G  • G*--> T. The necessary and sufficient condition for such pair (a,/) to define 

an element of B(G) as above is that  

/(wl +w~)/(w~)-~/(w~)-~ = F ( w ~ ,  w2~)F(w,  w2) -~ 

for every wl, w 2 in G • G*. I t  follows from this fact that  a is an element of the symplectie 

group Sp (G) of G and / ,  an element of the group of second degree characters X2(G • G*) 

of G • G*. We recall that  Sp (G) is the subgroup of Aut (G • G*) consisting of those (~ 

which keep (wl, w~)->F(Wl, w2)F(w2, wl) -1 invariant. I t  is clear that  Sp (G) is a closed 

subgroup of Aut (G • G*). We shall denote s by (a,/). 

Now, we shall use Haar measures on G and G* which are dual in the sense that  the 

Fourier transformation gives a (norm-preserving) isomorphism of L2(G) to Le(G*). If  (I) is 

an element of L2(G) and if we put 

(U(w, t) (P) (x) = t. r  + u) (x, u*) 

for w=(u, u*), we get a unitary representation U of A(G) in L~(G). That is to say, U is a 

continuous homomorphism of A(G) to the full unitary group Aut(Le(G)) considered as a 

topological group by the strong operator topology. 

LEMMA 1. The unitary representation U gives rise to a topological isomorphism o/ 

A(G) to its image group A(G). 

For the sake of completeness, we shall give a proof for this easy lemma. We have 

only to show that, if U(w, t) is close to the identity in Aut (L2(G)), (w, t) is close to the identity 

in A(G). We take a complex-valued continuous function CP on G with compact support 

C of norm one. Then the condition that  [[ U(w, t)O-~P[[ is less than 2 �89 implies that  u is 

a difference of two points of C. Therefore, if C is small, u is close to 0 in G. If  we pass to the 

equivalent representation of U in L2(G *) by the Fourier transformation, the roles of u 

and u* interchange. Therefore u* is close to 0 in G*. Consequently U(w, 1) is close to the 

identity in Aut (L2(G)), hence t in U(w, t) =t. U(w, l) is close to 1 in T. This proves the 

lemma. 

We shall denote by B(G) the normalizer of A(G) in Aut (Le(G)). We note that  both 

A(G) and B(G) are closed subgroups of Aut (L2(G)). In  fact, every locally compact subgroup 
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of a topological group is closed, and also the  normalizer of a closed subgroup of a topo- 

logical group is closed. I f  s is an element of B(G), there exists an element s of B(G) satisfying 

s-~Y(w, t)s  = U((w,  t)s)  

for every (w, t) in A(G). I f  we denote by  T the image of T in A(G), Theorem 1 i n [11] asserts 

tha t  the centralizer of A(G) in Aut (L~(G)) is T (i.e., the uni tary representation U is irre- 

ducible) and that  the homomorphism z:B(G)-~ B(G) defined by  s-> s is surjective with T as 

its kernel. We shall examine the homomorphism z closely. 

LEMMA 2. Let (~ denote an arbitrary topological group, H a Hilbert space and U a projec- 

tive unitary representation o] ~ in H. Then the corresponding homomorphism (~-~Aut (H)/T, 

in which T is the compact group o] scalar multiplications in H by elements o/ T, is continuous. 

Again, for the sake of completeness, we shall give a proof for this lemma. We recall 

tha t  a projective uni tary representation U of (~ in H is a mapping U: ~ - ~ A u t  (H) satis- 

fying 

U(g) U(g') =2(g, g') U(g) U(g') 

with ~(g, g') in T for every g, g' in (~ such that,  if K is a "Hilber t -Schmidt  operator"  

on H and x is in H, the correspondence g-> U(g)- lKU(g)x defines a continuous mapping 

(~-~H. By the first condition, we get a well-defined homomorphism (~-~Aut (H)/T. Now, 

if x is an arbi trary unit vector in H, we can modify U(g) by an element of T so tha t  we 

get (U(g)x, x)>~O. Then, taking the projection of H to the subspaee Cx as K, we get the 

following inequality 

I[ U(g)-I KU(g) x -xH~ = 1 - (U(g)x ,  x) ~ >~ 1 -  (U(g)x, x) = (�89 U(g)x " x[[ 2. 

This certainly implies the continuity of ( ~ A u t  (H)/T. 

Now, we shall prove the following result: 

P ~  oP o sIT I o ~ 1. The isomorphism B(G)/T-+ B(G) is topological. 

Proo/. First of all, if a locally compact group A is contained in a topological group B 

as a normal subgroup, the inner automorphisms of B give rise to topological automorphisms 

of A. In  this way, we get a homomorphism B-+Aut  (A). We can verify easily tha t  this 

homomorphism is continuous. Therefore, by  taking A =A(G) and B=B(G) ,  we get a con- 

tinuous homomorphism B(G)~Aut  (A(G)). Since B(G) is the image group by  the product  
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of this homomorphism and the topological isomorphism Aut (A(G))-*Aut (A(G)), we see 

that  ~ is continuous. Therefore B(G)/T~B(G) is a continuous isomorphism. We shall show 

that  its inverse is also continuous, We pick s arbitrarily from ~-l(s) for each s in B(G). 
Then, by Lemma 2 we have only to show that  the correspondence .s-*s defines a projective 

unitary representation of B(G) in L~(G). This has been proved by Segal [7] (in a slightly 

different case under the assumption that  x-~2x defines a topological automorphism of G). 

We shall briefly recall the key points of the proof: (i) If (~ is an arbitrary locally compact 

group, ~0 a complex-valued continuous function on (~ with a compact support, and e a po- 

sitive real number, the set W(~, e) of those a in Ant ((~) satisfying 

I1  - 111, I1r 

in which ~p~ is defined by ~0~(g)=~0(ga-1), contains W(C, V) for some C, V. (ii) If ~ is a 

complex-valued continuous function on G • G* with a compact support and 

U(rp) = fU(w, 1)qz(w)dw, 

in which dw=dudu* is the Haar  measure on G x G*, we get a I t i lbert-Sehmidt operator 

U(~) on L~(G). Moreover, the set of such U(~) is dense in the Hilbert space of all Hilbert-  

Schmidt operators on L2(G). (iii) If ~ is as in (ii) and if we put  Fe(w, t) =q)(w)l. we have 

(~e)~=(~s)~ with ~0 s defined by 

~vS(w) = l(wa-~) ~(w~ -1) 

for every s=((~, l)in B(G). Moreover, we have (~")"' =~v ""' and II~"ll~ = I1~111 for s, s' in B(G). 
(iv) If sl, s~ are elements of B(G) and sl, s~ are their u-images, we have 

lls  1 r < I1r  8'11 . 

If we combine (i)-(iv), we see that  the correspondence s-* s does define a projective unitary 

representation of B(G) in L~(G). This completes the proof. 

Now, if G, H are locally compact abelian groups, the group Mor (G, H) of continuous 

mappings from G to H forms a topological abelian group by  the compact open topology, 

and it contains Hom (G, H) as a closed subgroup. Moreover, the asterisk gives a topo- 

logical isomorphism Horn (G, H) -*Hom (H*, G*). This follows from the definition (and from 

the Pontrjagin duality). In the case when H=G*,  therefore, we get a topological auto- 

morphism of Horn (G, G*). We shall denote by Z(G) the closed subgroup of Horn (G, G*) 

of invariant or, more suggestively, symmetric elements of Hom (G, G*). We observe that  

an element ] of X~(G) gives rise to an element ~ =e(/) of N(G) by 

/(x § y)/(x)-l/(y) -1 = (X, YO)" 
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Also X~(G) is a closed subgroup of Mor (G, T), hence it is a topological abelian group 

(containing XI(G ) =G* as a closed subgroup). The point is tha t  the homomorphism 

X2(G)-~Z(G ) defined by/-+~(])  is continuous. On the other hand, if we consider the product 

space Aut (G • G*) • X2(G • G*) with the law of composition 

('~, I ) ( '~ ' ,  I ' )  = ((~'~', I " ) ,  

in which/"  is defined by/"(w) =/(w)/'(w(r), we get a topological group Br which contains 

B(G) as a closed subgroup. All these follow quite easily from the definitions. 

Now, the correspondence s = ( o ' , / ) ~ a  defines a homomorphism B(G)-+Aut (G• 

such tha t  the kernel is XI(G • G*) (if we identify 1 • XI(G • G*) with XI(G x G*)) and the 

image is contained in Sp (G). Moreover, since this is the product of the inclusion map 

B(G)~ Br and the projection Br (G x G*), it is continuous. Therefore the pro- 

duct of ~ and this homomorphism gives a continuous homomorphism B(G)~Sp  (G). 

On the other hand, we have 

(a, 1)-l(w, t)(a, 1) = (w, F(w, a)F(a, w)-lt) 

for every a in G • G*. This implies tha t  the kernel of B(G)-~Sp (G) is A(G). In  this way, 

we get the following situation 

B(a)/A(G)-~ B(G)/XI(G • a*)-~Sp (a), 

in which the first arrow is a topological isomorphism by  Proposition 1 and the second 

arrow, a continuous monomorphism. We shall see later tha t  it is also a topological iso- 

morphism. 

2. I f  G is a locally compact ahelian group, we shall denote by $(G) the Sehwarz- 

Bruhat  space of G. Since otherwise our later proofs may  become unintelligible, we shall 

briefly recall the definition and basic properties of S(G) at the same time fixing some nota- 

tions. We refer to [1], [6], [11] for the details. 

First of all, we shall recall structure theorems of locally compact  abelian groups (el. 

[5], [10]). The group G is the union of its "compact ly  generated" subgroups. A compactly 

generated abelian group H contains a unique maximal  compact subgroup K such tha t  

H/K is topologically isomorphic to R~• Z v and that  the extension splits. Moreover, the 

compact abelian group K is the inverse limit of K/H' topologically isomorphic to (R/Z) q • F,  

in which F denotes a finite abelian group. In  this way, the locally compact abelian group 

G is represented as a limit of elementary abelian groups E =H/H'. A topological abelian 

group is called "elementary" if it is topologically isomorphic to R n • Z v • (R/Z) q • F. We 
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observe that  a locally compact abelian group E is elementary if and only if both E and its 

dual E* are compactly generated. The class of compactly generated abelian groups and the 

class of elementary abelian groups have the property that, for a topological abelian group 

G and for its closed subgroup H, "H and G/H are in the class" implies "G is in the class", 

and conversely. 

Now, if E is an elementary abelian group, since the quotient of E by its maximal 

compact subgroup is topologically isomorphic to R ~ • Z ~, we can consider the coimage of a 

polynomial in n + p  letters with complex coefficients by the product of E-~Rnx Zv-+R n+p. 

In  this way, we get a function P on E which we call a polynomial function on E. In  the 

same way, the euclidean distance from the origin in R n+p gives rise to a distance function 

r on E. All non-negative even powers of r are polynomial functions on E. The concept 

of polynomial functions is intrinsic. On the other hand, since E is an abelian Lie group, 

we know what we mean by an invariant differential operator D on E. We shall denote by 

S(E) the vector space of complex-valued differentiable functions qP on E such that  

II P" D e  II ~ = sup I P(x)(Dr 
x e E  

is finite for every (P, D). The set of seminorms II P .  Dell ~ converts S(E) into a topological 

vector space over C. Since the set of seminorms [[P-D~P[[ m, in which P, D are "monomials", 

is countable and defines the same topology in S(E), the space is metrizable. We note also 

that  the set of seminorms [[r'n'D~Pl[m for m = 0 ,  l, ... defines the same topology in S(E). 
If  G is a general locally compact abelian group, we take a compactly generated sub- 

group H and its compact subgroup H'  such that  E =H/H' is elementary. For the sake of 

simplicity, we say that  such pairs (H, H')  are "admissible". If  we consider the coimage of 

~P in $(E) by the canonical homomorphism H-+E, we get a complex-valued function on 

G with its support contained in H. We shall denote by S(H, H') the set of all such functions 

and we introduce in $(H, H') the structure of a topological vector space by the C-linear 

bijection S(H, H')-+S(E). Then we take the union of all S(H, H') and introduce the in- 

ductive topology. In  this way, we get a locally convex topological vector space S(G) 
over C, and this is the Schwarz-Bruhat space of G. 

If  we denote by dh' the Haar measure on H' of total measure 1, we get a continuous 

C-linear mapping ~H.H" : $(G) ~ $(H, H')  by 

~H, ., (r (h) = fH,r  + h')dh'. 

Since the restriction of ~g.n. to $(H, H') is the identity, it is a projection of $(G)to $(H, H'). 

Therefore $(H, H')  is a direct factor of $(G) and, in particular, it is a closed subspace of 
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S(G). Consequently, the S(E) defined explicitly for the elementary abelian group E is the 

Schwarz-Bruhat space of E. A less obvious property of the Schwarz-Bruhat space is that  

any bounded subset, hence a for t io r i  any compact subset, of S(G) is contained in some 

$(H, H'). For the sake of completeness, we shall prove the following lemma: 

L~MMA 3. I /  F is a closed subgroup of G, the restriction to F gives a C-linear continuous 

mapping rest :  $(G)-+ S(F). 

Proo/. Suppose first tha t  G is elementary and denote it by E. If K is its maximal 

compact subgroup, K' = K  N F is the maximal compact subgroup of F. Therefore, the restric- 

tion to F gives an epimorphism of the ring of polynomial functions on E to that  of F. 

On the other hand, there exists a unique monomorphism of the ring of invariant differential 

operators on F to that  of E (extending the Lie algebra monomorphism associated with 

F-~E).  Suppose that  P '  is a polynomial function and D' an invariant differential operator 

on F. Let  P denote a polynomial function and D an invariant differential operator on E 

such that  P->P' and 1) '~D. Then, for every �9 in S(E), we have 

P ' .  D'(res r (I)) = resr (P. D(I)). 

This implies the continuity of rest :  S(E)-~ S(F). 

We shall consider the general case. We first observe that,  if (H, H') is an admissible 

pair for G, (H 0 F, H '  (1 F) is one for F. The point is that,  for any admissible pair (Hr, Hr)  

for F, there exists an admissible pair (H, H') for G satisfying HN F ~ H r  and H'N F c H r .  

We can certainly find a compactly generated subgroup H which contains Hr .  Then H N F 

is compactly generated, and hence (H N F) /Hr  is finitely generated. Therefore (H N F)/H' 

is elementary. Consider an admissible pair (H, H') for this H. Then ((H'N F ) + H r ) / H  r is 

a compact subgroup of the elementary abelian group (H N F)/H~. Since H '  can be taken 

arbitrarily small and since no elementary abelian group has a small subgroup, we can find 

H '  satisfying H '  fl F ~ H r. The rest follows from the following commutative diagram 

S(G) , S(F) 
t 

S(H, H') ~ S(H n F, H' n F') 

and from the continuity of the bottom arrow. This follows from the continuity of the two 

arrows in S(H/H')~S(((H (1 F) +H')/H')-+$((H N F)/(H' 6) F)). 

By definition, every element qb of S(G) is in /2(G)  for all p. In particular, if s is an 

element of the group B(G), sO is defined as an element of L~(G). The fact is that  it has a 

representative in S(G). If we denote this unique representative also by sO, the correspond- 
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ence r defines a continuous automorphism of $(G). This is proved by Well in [11]. 

On the other hand, since the group B(G) is a topological group, we can inquire on the 

continuity of s-+sdP. We shall first establish the following basic lemma: 

LEM~A 4. I/ E is an elementary abelian group, B(E) is a Lie group. Moreover, the 

mapping B(E) • S(E)-+ S(E) de]ined by (s, (I))->s(I) is continuous. 

Proo/. We shall show that  B(E) is a Lie group. Since it is an extension of B(E) by T, 

we have only to show that  B(E) is a Lie group. Since B(E) is a closed subgroup of B~(E) 

introduced before, which is an extension of Ant (E x E*) by X2(E • E*), and since E • E* 

is elementary, the problem is reduced to showing that  Aut (E) and X2(E ) are Lie groups. 

We may identify E with R n • Z p • (R/Z) q x F. Then an element ~ of Aut (E) can be expres- 

sed by the following matrix 

[ a  I 0 0.1a 0 ] 
l ~ 0 0.30"21 0*20 0"23 0*43 024 0"4 .~1" 

If  a is in a small neighborhood of the identity in Aut (E), we have 0.2=], 0.24=0, a3=l  , 

a43 =0, a4 = 1. The remaining submatrices al, 0.13, 0.21, a23 are in GLn(R), Mnq(R), i~n(R), 
Mpq(R/Z) respectively. If  we take the neighborhood small enough, 0*~a can be represented 

by an element of M~q(R) with coefficients less than i in absolute values. Restricting 0. to this 

neighborhood, we can easily convince ourselves that  0. is close to the identity in Aut (E) if 

and only if 0.1 is close to 1 in GLn(R ) and 0.13, 0.21, 0*23 are close to 0 in Mnq(R), Mvn(R), 

ipq(R) with respect to their standard topology. Therefore Ant (E) is locally isomorphic 

to a closed subgroup of GL,+~+q(R) of dimension (n +p)(n +q), hence it is a Lie group. We 

shall next examine X2(E ). More generally, suppose that  H is a compactly generated 

abelian group and K, its maximal compact subgroup. Then H/K is topologically isomorphic 

to R n x Z ~, and hence H* has no small subgroup. On the other hand, ~ =~(1) depends con- 

tinuously on / .  Therefore, if we take ] from a small neighborhood of the identity in X2(H), 

we get Q = 0 on K. Furthermore, since T has no small subgroup, if we take the neighborhood 

smull enough, / will become the coimage of an element of X2(H/K ) by the canonical homo- 

morphism H-+H/K. We observe that  the mapping X2(H/K)-->X2(H ) identifies X2(H/K ) 

with a closed subgroup of X2(H). Therefore, we may assume from the beginning that  

H =Rnx  Z ~. Then we get 

/(x) = e(�89 +xta) 

with a symmetric matrix h in Mn+p(R) and with an element a of R n+~. Furthermore, if / 

is close to the identity in X2(H), by  replacing some of the coefficients of h and a rood 1, 
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we see tha t  they all become close to 0 with respect to the standard topology. Since the 

converse is clear, we see tha t  X2(H ) is locally isomorphic to R N with _N = l(n +s (n + p  + 3), 

and hence it is a Lie group. We have thus shown tha t  B(E) is a Lie group. 

We shall show tha t  the mapping B(E) • S(E)-+ S(E) defined by  (s, (I))-+s4P is continu- 

ous. As we have said, Weil has shown (in the general case) tha t  sO depends continuously on 

(P. The proof is based on what  might be called a "five-step decomposition" of (I)-+s(I). 

In  the general case, this consists of (a) a mapping of the form q)--> 4p | ~P0 with a fixed (I) 0 in 

S(G); (b) S(G • G)~ S(G • G*) given as a product of an automorphism of S(G • G), coming 

from a topological automorphism of G • G, and a partial Fourier transformation; (c) 

S(G x G*)---> S(G • G*) given by ~ -~ ~ for s = ~(s); (d) the inverse of (b); (e) a mapping of the 

form sqb | s(I)0-+s(I) , sO | s(I) o being the image of (P by (a)-(d). Since the continuity of other 

steps are known, we have only to make certain tha t  (c') (s, ~ ) - + ~  and (e) are continuous. 

Since ~_+~8 can be decomposed into ~ / ~ - ~  (/~)~ and since E • E* is elementary, the con- 

t inuity of (c') is reduced to showing tha t  the correspondence (0, (I))~ (I) r defines a continuous 

mapping Aut (E)• S(E)~S(E), and also tha t  the correspondence (/, (I))-~/~P defines a 

continuous mapping X2(E)• S(E)-+ S(E). We shall t reat  them separately. 

We shall use the same notations as before. For instance, we write E = R n •  Z~• 

(R/Z)q • F. Also, we shall denote by  r and D a distance function and an invariant  dif- 

ferential operator on E. We shall show tha t  d)" depends continuously on (0, (I)). I f  we write 

r . . . .  cg0 = ( ( r 1 7 6 1 7 6 1 7 6  r176 + ( r  - 0o)% 

then, because of the continuity of (I)-+(P ~~ we have only to show tha t  IIr m. D((I)r 

becomes uniformly small provided tha t  (I) satisfies a certain boundedness condition with 

respect to a finite number  of seminorms depending on D and on the non-negative integer m 

(in which upper bounds are arbitrary) and ~ is in a small neighborhood of the identity in 

Aut (E) the size of which depends on the said data. We may  replace ~ by  ~-1. We have 

seen that,  if we restrict o to a small neighborhood of the identity in Aut (E), we get 

Consequently, we have 

-o'~ 0 o'z3 

o21 1 cr~a 0 

- 0 0 

D((I) ~  - (I)) = E ( Q ~ ( a ) ( D ~  (I)) "-1 - Q~(1) (D~ (I))) 

= ~ R~(~)  (D~gP) "-' § ~ q~(1 )  ( (D~(P)  ~ - D ~ @ )  
r c~ 
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with Ra(a ) = Q~(a)-  Q~(1). We are denoting by  Q~(a)certain polynomials in the coefficients 

of a and by  D~ certain invariant differential operators on E. I f  we restrict a to a small com- 

pact  neighborhood C of 1, there exist two real numbers c and c' satisfying 0 < c < 1 < c' 

such tha t  we have 

C" r ~ r ~  r a ~  c ~ . r  

for every a in C, We may, in fact, take c and c' as close as possible to 1 by making C smal- 

ler. At any rate, we then get 

ik ~. R~(~). ( D ~ r  = I R~(~)I �9 II(,.~) m. (D~ r < (~')~. l R~((,)I. II rm. (D~ r 

and this approaches 0 uniformly in d) when a approaches 1 provided tha t  (P is restricted by  

lit m. (D~O)}}~ ~<M for any positive real number M. Restrict  �9 further by  Hr "+1. (D~O)}] ~ 

M '  for any positive real number M '  and put  D a r =~F. Then, for any positive real number  ~, 

we have I r(x)~F(x)l<~e/3 provided tha t  r(x)>Jr o ~3M' /e .  We shall also restrict qb by the 

condition tha t  all "first partial derivatives" of ~F are not greater than a fixed positive real 

number in absolute values. Then the family of ~F is equicontinuous, hence, by  making C 

smaller if necessary, we will have 

}('s ' - ~ ) ( x ) }  ~< d(2~o) m 

for every a in C and for every x in E satisfying r(x) <~ 2r 0. Consequently, we get I r(x)m( ~F~-' - 

~F)(x)l ~< s for the same a and x. Now, suppose tha t  r(x)~>2r 0. Then, at  any rate, we have 

i~(x) ,~(,r o , _ ,~ ) (~ ) }  < } ~ ( ~ ) " ~ ( ~ ) }  § } r (x)m'r (x)  I. 

We know tha t  [r(x)m~F(x)[ is at most equal to e/3 for r(x) >~ro, hence afor t ior i  for r(x) ~>2r 0. 

Since we have 

I r ( ~ ) ~ ' r ( ~ ) l  = (~(~)/~(x~))m. I r(x.)"'r(x,~)l, 

this will be at most equal to el2 for r(x)>~2r o provided tha t  r(xd)>~r o for r(x)>~2r 0 and 

(r(x)/r(xa)) m ~ 3/2. These conditions are satisfied if we have c >~ (2/3) l/re. As we have remarked, 

this can be achieved by  making C smaller. Therefore, putt ing them together, we get 

for every �9 in S(E) satisfying a certain boundedness condition tha t  we have made explicit 

and for every a in the compact neighborhood C of the identi ty in Aut (E). We have thus 

shown tha t  the mapping Aut (E) • $ ( E ) ~ $ ( E )  defined by (a, r is continuous. 

1 3 -  682902 Acta mathematica 120, Imprim6 le 19 juin 1968 
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We shall show that  lOP depends continuously on (1, OP). I f  we write 

/loop-/oopo= (/(loop)-loop)+lo(op-opo), 

then, because of the continuity of <~P-+/oop, we have only to show tha t  II~m.D(/OP-OP)II+ 
becomes uniformly small provided tha t  r satisfies a certain boundedness condition and 

I is in a small neighborhood of the identity in X2(E). We have seen that ,  if we restrict ] to a 

small neighborhood of the identity in X2(E), it depends only on the (R ~ • ZV)-coordinate 

x of a point u of E. Moreover, we have 

/(u)=e(�89 

with a symmetric matr ix  h in Mn+~(R) and with an element a of R ~+~. Consequently, we 

have 

D(/OP -OP ) = Zr /( Do~ OP ) + (1-1) DOP, 

in which P~ are polynomial functions on E and Q~(/) are certain polynomials in the coeffi- 

cients of h, a satisfying Q~(1)=0, i.e., Q~(])=0 for h=O, a=O. Moreover, D~ are invariant 

differential operators on E (many of which may  be identical), w e  then get 

I l r m ' P : ' Q : ( / ) I ( D : O P ) I I +  = IQ:(/)I" ItrmP:" (D:OP)]I+, 

and this approaches 0 uniformly in OP when ] approaches 1 provided tha t  OP is restricted by 

IlrmP~ �9 (DJb)II ~ < M  for any positive real number  M. Restrict OP further by  II rk. (DO)lifo ~< 

M '  for k = m ,  r e + l ,  in which M' is any positive real number, and put  DOP=~F. Then, for 

any positive real number  e, we have I r(u)mVir(u)l<~s/3 provided tha t  r(u)~ro=3M'/~. 

This implies [r(u)m(l(u)-1)~(u)] ~< 2~/3 for r(u)>Jr o. I f  we take the neighborhood small 

enough, we have ]/(u)-l[<~s/M' for r(u)<r o and for every / in this neighborhood. Then 

we get ]r(u)m(/(u) - 1)~F(u) [ ~< s for r(u) <r o. Therefore, putting them together, we get 

for every OP in S(E) satisfying a certain boundedness condition and for every / in the said 

neighborhood of the identity in X2(E ). We have thus shown tha t  the mapping X2(E ) • 

$(E)--->S(E) defined by  (/, O)-+]OP is continuous. 

By what  we have shown, if �9 0 is a fixed element of S(E), the mapping B(E) • S(E)--> 

S(E •  defined by  (s, O)-+sop| is continuous. Let  s o denote a fixed element of 
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B(E). Then, the mapping B(E) x $(E)-~ $(E) defined by (s, O)-~(s0dP 0, s(I)0)sq) is contin- 

uous. In  fact, this can be decomposed into (i) (s, (I))-+sO| (ii) multiplication by 

l| (iii) partial Fourier transformation, (iv) restriction to E • and each step is 

continuous. On the other hand, by the definition of the topology in B(E), the scalar factor 

(s0(I)o, s(P0) depends continuously on s. Therefore, its inverse depends continuously on s 

in some neighborhood of s o (provided tha t  (I) 0 40).  This implies tha t  sO depends continu- 

ously on (s, (I)) when s is in the said neighborhood of So, hence in general. We have thus 

completed the proof. 

In  the course of the proof of Lemma 4, we have obtained some further information, e.g. 

about Aut (E), which permits us to prove the following result: 

LEMMA 5. I] E is an elementary abelian group, the continuous homomorphism 

B ( E ) ~ S p  (E) has a continuous local cross-section in some neighborhood o] the identity in 

Sp (E). 

Proo]. We recall tha t  Sp (E) is a closed subgroup of Aut (E • E*). Since we are in- 

terested only in a small neighborhood of the identi ty in Sp (E), for an obvious reason, we 

may  assume tha t  E = R  n • Z ~ • (R/Z) q. I f  we write E • E* in the form (R n • (R/Z) q • Z p) • 

(R n • Z q • (R/Z) ~) so tha t  we have 

((x y z), (x* y* z*)} = e(xtx*+yty*+ztz*), 

we see tha t  Sp (E) is locally isomorphic to the closed subgroup of Sp2(n+~+q)(R ) consisting 

of matrices of the following form 

0 

0~31 

Y21 
0 

~1~ 0 fil 0 fila- 

1 0 0 0 0 

~3~ 1 fl31 0 f13 

Y12 0 ~1 0 ~13 

72 0 ~21 1 ~23 

0 0 0 0 1 

Now, we recall that ,  if G is a locally compact abelian group for which x--->2x defines a topo- 

logical automorphism, the continuous homomorphism B(G)-~Sp (G) has an explicitly de- 

fined continuous cross-section a~(a , / ) .  In  fact, if ~, fl, 7, 6 are the submatrices of a, we 

have only to take 

/(u, u*) = (u:r 2-1ufl} (ufl, u ' r }  (u*7, 2-1u*~}. 
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Therefore, taking G = R ~ + p + q, we get a continuous cross-section for B(R "+~+q) -~ Sp2(n+,+q) (It). 

The point is that ,  if we restrict this cross-section to the subgroup of matrices er of the above 

form, ](u, u*) for u = (x y z) and u* = (x* y* z*) does not contain the ambiguous coordinates 

y and z*. Therefore, the cross-section for B(Rn+P+q)~Sp2(~+~+q)(R) gives a local cross-section 

for B(E)-*Sp (E), which is certainly continuous. This proves the lemma. 

3. We shall consider the general case. We shall s tar t  by examining Aut (G) and X~(G), 
in which G is an arbi trary locally compact abelian group. Suppose tha t  (H, H ' )  is an admis- 

sible pair for G. We shall denote by  Aut (H, H ' ) = A u t  (G; H, H') the subset of Aut (G) 

consisting of those er with the property that  Her=H, H'er=H'. Then Aut (H, H' )  is an 

open subgroup of Aut (G). We have only to show that  it is open. Let C denote a compact  

neighborhood and V an open neighborhood of 0 in H. We take C large enough tha t  it 

generates H. Then W(C, V) is an open neighborhood of the identi ty in Aut (G). I f  we take 

er from W(C, V), we have C(~c V+C~H, hence HercH, and also Her-l~H. Therefore, 

we have Her=H. On the other hand, if H, ,  (H') ,  denote the annihilators of H, H '  in G*, 

we know that  ((H').,  H,)  is an admissible pair for G*. We define W(C', V') for this admis- 

sible pair in the same way as we have defined W(C, Y) for (H, H') .  I t  is well known (and 

easy to show) tha t  the asterisk gives a topological anti-isomorphism Aut (G)-*Aut (G*). 

Consequently W(C', V')* is an open neighborhood of the identity in Aut (G). I f  we take er 

from W(C', V')*, we have (H'),er*=(H'),, and hence H'er=H'. Therefore, the intersection 

of W(C, V) and W(C', V')* is contained in Aut (H, H'), and this shows tha t  Aut (H, H ' )  

is open. On the other hand, it is clear tha t  every element of Aut (H, H ' )  gives rise to a 

topological automorphism of H/H'. In  this way, we get a homomorphism Aut (H, H')-> 

Aut  (H/H'). This homomorphism is continuous. We leave it as an exercise to show tha t  

the kernel of this homomorphism becomes arbitrarily small in Aut (G) by  making H 

larger and H '  smaller. 

We shall examine X~(G). We take an admissible pair (H, H ' )  and denote by X~(H, H') = 
X2(G; H, H') the subset of X~(G) consisting of those / with the property t h a t / ( h  +h')=/(h) 
for every h, h' in H, H '  respectively. Then X~(H, H') is an open subgroup of X~(G). As 

we have seen in the proof of Lemma 4, this follows from the fact tha t  H* and T have no 

small subgroups. On the other hand, every element of X2(H, H') gives rise to a second degree 

character of H/H'. In  this way, we get a homomorphism X~(H, H')--->X~(H/H'), and this is 

continuous. Moreover, a remark similar to the one before applies to its kernel. 

Now, we know tha t  there exists a mapping B(G) • S(G)-+S(G) defined by  (s, O)-+sO 

�9 and  tha t  there exists a C-linear topological isomorphism S(H, H')~ S(H/H'). After recalling 

this, we shall prove the following "continuity theorem": 
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TH~OI~EM 1. 1] G is a locally compact abelian group and (H, H') an admissible pair, 

there exists an open subgroup B(H, H')=B(G; H, H') o/ B(G) with elements s satis/ying 

sS(H, H')= $(H, 14'). The corresponding mapping B(H, H ' ) -~Aut  (L2(H/H')) gives a con- 

tinuous homomorphism B(H, tt')--->B(H/H') such that the ]ollowing diagram 

B(H, 14') • S(H, H') ~ $(14, H') 

B(H/It') • S(H/H') ~ S(H/H') 

is commutative. Moreover, the bottom arrow is continuous. 

Proo/. We first observe tha t  (H • (H'), ,  H'• H,) is an admissible pair for G • G*. 

For the sake of simplicity, we put  Aut = A u t  (H • (H').,  H" • H.)  and X 2 =X~(H • (H'). ,  

H ' •  H.) .  Then, as we have seen, Aut and X e are open subgroups of Aut (G • G*) and 

X~(G • G*). Moreover, Aut • X 2 is an open subgroup of B~(G), hence 

B(H, H')  = ~-I(B(G) N (Aut • X2) ) 

is an open subgroup of B(G). On the other hand, the five-step decomposition of (P-~s(I) 

shows tha t  a sufficient condition for an element s of B(G) to keep S(H, H') stable is tha t  the 

step (c), i.e., the correspondence ~-+~ '  defined by 

~(w) =/(w:-:)~(w:-:) 

for ~ ( s ) = s = ( a , / ) ,  keep S(H• H' •  stable. We shall show tha t  every element 

of B(H, H ' )  has this property.  Since B(H, H')  is a group, this will imply s$(H, H') = $(H,H') 

for every s in B(H, H') .  We observe tha t  the dual of E=H/H'  can be identified with 

(H')./H.. Moreover, if a and / are in Aut and X2, respectively, they determine unique 

elements as and ]E of Aut (E • E*) and Xe(E • E*). Furthermore, the pair SE = (as, ]E) 

is an element of B(E). Let ~E denote the element of $(E • E*) which corresponds to an 

element 9 of $(H • (H'). ,  H '  • H.) .  Then, it is clear tha t  ~ and (~E) ~E are the corresponding 

elements of S(H • (H'). ,  H '  • H,)  and $(E x E*). This proves the assertion, hence the first 

par t  of the theorem. 

As for the second part ,  suppose tha t  (I) and (PE are the corresponding elements of 

$(H, H')  and $(E). Then, for every s in B(H, H') ,  s(I) is in S(H, H') ,  hence it determines a 

unique element SEqbE of S(E). Moreover, if we take the restriction to H of the Haar  measure 

dx on G as dh and decompose it into the Haar  measures dhE and dh' on E and H' respectively 

such tha t  the total  measure of H '  is 1, we have [[(I)]] = [[(I)Ell, and hence [[ss(I)~H = [[(I)EI[. 

Since $(E) is dense in L~(E), this  determines ss uniquely as an element of Ant (L2(E)): 

On the other hand, the five-step decompositions of dP-+s(I) and (I)E->Ss(P s are compatible. 
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Namely, each step commutes with the C-linear bijection of the form "S(H, H')-~ S(H/H')". 

In  fact, we see tha t  SE iS an element of B(E) satisfying 7r~(s~)=s~=(~E,/E). Therefore, the 

correspondence s~s~  gives a homomorphism B(H, H')->B(E).  Furthermore, because o t  

11r = 11r this homomorphism is continuous. The said compatibili ty implies, finally~ 

that  the diagram in question is commutative.  The continuity of the bot tom arrow has been 

proved in Lamina 4. 

We observe tha t  the kernel of the homomorphism B(H, H')-->B(H/H') becomes arbi- 

trarily small in B(G) by  making H larger and H '  smaller. In  fact, we have only to use the 

fact that  any finite subset of S(G) is contained in some $(H, H') (and the fact tha t  S(G) 

is dense in L~(G)) for the proof of this supplement. 

Before we star t  deriving corollaries of Theorem 1, which are suitable for applications, 

we shall analyze the homomorphism B(G)-~Sp (G). We need the following lemma: 

Lv.M~A 6. Suppose that H is a closed subgroup o/ G and ~ an element o/X(G). Then 

every element/o o/X2(H ) satis/ying [o(h +h')=/o(h)[o(h')(h, h'e) /or every h, h' in H can be 

extended to an element / o/X2(G ) satis[ying ~(/) =~. Moreover, i / / i s  one o/them, all possible 

extensions are o/ the [orm x ~  (x, x*) [(x) with x* in the annihilator H, o /H in G*. 

Pro@ Since the second par t  of the lemma is obvious, we shall prove only the first part.  

The proof consists of three steps: We shall first consider the case when H is an open sub- 

group of G. In  this case, if we can extend [0 to a mapping [:G-§ s a t i s f y i n g / ( x + y ) =  

/(x)/(y) <x, y@} for every x, y in G, the continuity of/0 implies the continuity of/ ,  and hence 

1' will be an element of Xa(G) satisfying @(/) =~. Moreover, a standard application of Zorn's 

lemma reduces the problem to the extendability o f /o  to Zz + H  for any given element z 

of G. Now, if the image of z in G/H is free, we put  m = 0 .  Otherwise, we shall denote by m 

the order of the image of z in G/H. Then we choose t arbitrarily from T subject to the 

condition 

and we put  

for every n in Z and h in H. I t  is easy to verify tha t / '  is well defined on Zz + H and satisfies 

/(x+y) = /(x) /(y) <x, Ye) for every x, y in Zz+H. This settles the ease when H is open. 

We shall next show that  the continuous homomorphism X~(G)~Y~(G) is surjective. 

Suppose that  ~ is an element of F.(G). We take a compactly generated subgroup H of G 

and then a compactly generated subgroup of G* which contains H~ + H , .  Let  H '  denote 
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its annihilator in G. Then (H, H') is an admissible pair for G and we have (h@, h'} = 1 

for every h in H and h' in H' .  Consequently, we have H@ ~ (H') ,  and H'@ c H,. Put  E = H/H'. 

Then we can identify E* with (H'),/H, in an obvious manner. By what we have said~ 

@ determines an element @E of E(E). Suppose tha t  the surjectivity in question is proved for 

an elementary abelian group. Then, there exists an element ]E of X~(E) satisfying @(/E) =@E: 

Let /0  denote the coimage of/E by  the canonical homomorphism H-+E. Then/0  is an ele- 

ment  of X~(H) satisfying/o(X +y)=/o(X)/o(y)(x, y@} for every x, y in H. Since H is an open 

subgroup of G, we can extend/0 to an element / of X~(G) satisfying @(/)=@. We shall now 

consider the case when G is elementary. We shall denote it by  E. As we have seen, we can 

replace E by any one of its open subgroups, and hence by  its connected component. There- 

fore, we may  assume tha t  E = R "  • (R/Z) q. Then we have E* = R  n • Z q with <(x y), (x* y*)} = 

e(xtx, +yty,), and 9 has the following form: 

in which @1 is a symmetric matr ix  in Mn(R). Hence, if we p u t / ( x  y)=e(2-1x@ltx), we get 

an element / of X2(E ) satisfying @(/)=@. 

We shall complete the proof of Lemma 6. We take an element/1 of X~(G) satisfying 

9(/1) =9 '  Then h-'./o(h)/l(h) -1 defines an element of XI(H ). Since H is a closed subgroup of 

G, it can be extended to an element, say Z, of XI(G ). Then /=Z/1 is an extension of/0 to 

an element of X2(G ) satisfying O(/)=@. 

P R 0 P 0 S I T I 0 N 2. I /  e i s  a locally compact a b e l i a n  g r o u p ,  the  c o n t i n u o u s  homomorphism 
B(G)-+Sp (G) is surjeetive. Moreover, B(G) contains a local subgroup U s, which we can take 

arbitrarily small, such that its image, say U, by the homomorphism B(G)-+Sp (G) is open and 

that the induced mapping p:U ~-+ U is open and proper. There/ore, the homomorphism 

B(G)-+Sp (G) is open and B(G)/A(G) is topologically isomorphic to Sp (G). 

Proo/. We first observe that  the surjectivity of B(G)->Sp (G) is a simple consequence 

of the surjectivity of X~(G • G*)--~-Z(G • G*). Therefore, we have only to prove the second 

statement in Proposition 2. 

Let  W denote an open neighborhood of the identity in Aut (G x G*); C, a compact 

subset of G • G*; and V, an open neighborhood of 1 in T. Let  M(C, V) denote the set of 

those / in Xe(G • G*) which map C to V. Then (W • M(C, V))N B(G) is an open neighbor- 

hood of the identity in B(G), and it becomes arbitrarily small by  making W, V smaller and 

C larger. We choose an admissible pair (H, H ' )  for G such tha t  H • (H') ,  contains C. 

We have only to take, as H, a compactly generated subgroup of G containing the 
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projection of C to G and take, as H' ,  the annihilator in G of a compactly generated 

subgroup of G* containing H.  and the projection of C to G*. (We can further show 

that  ithe set of admissible pairs of the form (H • (H')., H' • H.) is "cofinal" in the set 

of all admissible pairs for G• As before, we put A u t = A u t  (H• H'•  

and E=H/H'.  Also, we shall denote by CE the image of C under the canonical homomor- 

phism H • (H').-->E • E*. Then CE is a compact subset of E • E*. We know, on the other 

hand, that  Sp (G) N Aut is an open subgroup of Sp (G) and that  there exists a continuous 

homomorphism Sp (G) N Aut-~Sp (E). We take an element a of this open subgroup and put 

Then # is an element of E(G • G*). Let U denote an open neighborhood of the identity in 

Sp (G) contained in Aut • W. If we choose U sufficiently small and take (r from U, its 

image ~ in Sp (E) can be lifted to an element (aE, IE) of B(E) by Lemma 5. Furthermore, 

since ~E-~ (at,/F) defines a continuous cross-section over some neighborhood of the identity 

in Sp (E), we may assume that  U has been taken so small that  the image of Ca, by 1~ is con- 

tained in V for every a in U. Let 10 denote the coimage of/E by the canonical homomorphism 

H•215 Then /0 is an element of X2(H• ) satisfying ]O(wl+w~)= 

/o(Wl)/o(w2)(wl, w2~ ~ for every wl, w 2 in H • (H'),. Therefore, we can extend/0 to an ele- 

ment ] of X2(G • G*) satisfying ~(/) =~ by Lemma 6. Then s = (a, 1) is an element of B(G). 

Moreover, we have /(C)=Io(C)=/E(CE)~ V, and hence s is contained in W • V). 

We observe that  ] is obtained from a by the following four steps: 

a-~a~/E-~/0~/, 

in which the first three steps are unique (and continuous) when we fix (H, H'). We shall 

consider all possible ] for every ~ in U and denote by U ~ the set of all such s = (0,/). Then 

U r is contained in (W x M(C, V))N B(G) and the homomorphism B(G)-~Sp (G) induces a 

continuous surjection p : U r -+ U. Moreover, if s = (~,/), s' = (~', 1') are in U r and aa '  is in U, 

then ss' is in U ~. Similarly, if s = (0, 1) is in U ~ and r is in U, then s -1 is in U #. I t  follows 

from these facts that  U ~ forms a local subgroup of B(G) and that  p is a homomorphism 

of the local groups. Furthermore, the kernel of p is topologically isomorphic to the compact 

group H. x H' by Lemma 6. We shall show that  p is an open mapping. We have only to 

show that  the image of every neighborhood of the identity in U r contains a neighborhood 

of the identity in U. 

We take new data W1, C1, VI similar to W, C, V. Also, we shall denote by U 1 an open 

neighborhood of the identity in U. Then it will be sufficient to show that, for some choice 
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of U1, the  intersection (Wi xM(Ci ,  V1))Np-I(0") is not  e m p t y  for every a in U i. At  any  

rate, we have to assume tha t  U i is contained in W r We put  N = H  x (H'), and take a 

compact ly  generated subgroup N i of G x G* containing both  N and C 1. Then N1/N is a 

finitely generated abelian group, and hence it is a product  of a finite number,  say t, of cyclic 

groups. We shall denote  by  wl, ..., w~ representatives in N i of the  generators  of these cyclic 

groups. Since N is open and C i is compact,  we can find a finite set, say I ,  of linear combina- 

tions of w 1 .. . .  , w~ with integer coefficients such tha t  the union of N + w  for w in I contains 

C r We shall denote by  C~ the union of ( C i s w )  N N for w in I .  Since N is closed, C 2 is a 

compact  subset of N. Moreover, the union of C2 § w for w in I contains C r Now, we choose 

an open neighborhood V~ of 1 in T satisfying (V2)3c Vi. Then, by  taking U 1 sufficiently 

small, we can cause /0(w0) and (w0, w~} to be contained in V 2 for every w 0 in C~ and w 

in I provided tha t  a is in U 1. On the other  hand, we observe t h a t / ( w )  for w in I can be 

expressed as a monomial  in/(w~) t i  and (w~, +_ wj~> for i, i = 1 ..... t. Therefore, if we choose 

an open neighborhood V a of 1 in T sufficiently small and, at  the same time, make  U 1 

smaller, /(w) will be in V2 when/(w~) are in Va and  a is in U i for every w in I .  We observe 

also that ,  if m is an integer, the mapping  U~-+ T defined by  

is continuous (and takes the  value 1 at  the identity). We take m = 0 if the  image of w~ in 

_hT1/N is free. Otherwise, we take as m the order of the image of w~ in 2Vi/1V. Then, by  making 

U 1 still smaller, we m a y  assume tha t  the image of U 1 in T is contained in Va for i = 1, ..., t. 

We recall that ,  to  extend I0 t o / ,  we m a y  choose/(w~) arbitrari ly subject to the  condition 

m \ f(w Im = 'o(mW,)(w,, -- ( 2 ) w Q/" 

Therefore, if V a is connected, we can find an extension / o f / 0  such that / (w~) are in V a. 

T h e n / ( w  o + w ) =  [0(w0) /(w) (w 0, wQ) is in (V2)ac Vi for every w o in C2 and w in I provided 

tha t  ~ is in U i. This impl i e s / (C i )~  V1, and hence (W1 • M(Ci, Vi))N p- i (a)  is not  emp ty  

for every (~ in U i. 

We have thus shown tha t  p : U ~ ~ U is an open surjection of the local groups with the  

following properties: (i) if s, s '  are in U ~ and p(s)p(s') is defined, ss' is defined and 

p(ss') =p(s)p(s'); (ii) if s is in U ~ and p(s) -1 is defined, s - i  is defined and p(s -i) =p(s) - l ;  

(iii) the  kernel of p is compact .  This implies t h a t  p is proper. I n  fact,  the  proof is entirely 

similar to  the one in the case when U is a group (cf. [10], pp. 16-18). This completes the proof. 

COROLLARY 1. The mapping B(G) • S(G)~ S(G) is separately continuous. Moreover, i / Z  

is an arbitrary locally compact subset o/ B( G), the induced mapping ~, • S( G)-~ S( G) is continuous. 
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The first par t  follows immediately from Theorem 1. As for the second part ,  since the 

continuity is a local property,  we may  assume tha t  Z is compact. Let  (H, H' )  denote an 

arbi trary admissible pair. Then we can find a finite number  of elements (s,)iE~ of B(G) 

satisfying 

E c Us~B(H, H'). 

Theorem 1 implies tha t  the restriction of B(G) • S(G)-+S(G) to each s~B(H, H') • S(H, H') 

is continuous. Therefore, its restriction to ~, • S(H, H') is continuous. Now, we recall tha t  a 

subset X of $(G) is open in $(G) if and only if it is locally convex and if X fl S(H, H t) is 

open in $(H, H') for every S(H, H'). Let (So, (I)0) denote an arbi trary element of • • S(G). 

Also, let X denote an open convex neighborhood of s0(1) o in $(G). Since sd) 0 depends con- 

tinuously on s, we can find a compact neighborhood Y'0 of So in Z such tha t  ~0(I)0 is contained 

in X. Consider the set :Y of those elements (I) in S(G) such tha t  Z0(I) is contained in X. Then 

Y is a convex subset of S(G) containing (I) 0. We shall show tha t  Yfl S(H, H') is open in 

$(H, H ' )  for every $(H, H'). Suppose that  gPl is an element of Y O S(H, H'). Then (1) 1 

is in S(H, H') and Z0(b 1 is contained in X. Since Z o is compact and since we have seen 

tha t  the mapping Z • $(H, Ht)->S(G) is continuous, there exists a neighborhood of dP 1 

in S(H, H') which is contained in Y. This proves the assertion. Therefore Y is open in 

S(G), and hence the mapping Z • $(G)-~S(G) is continuous. 

There is an important  process by  which we can construct various groups out of B(G). 

Suppose tha t  (~ is a topological group and (~-~Sp (G), a continuous homomorphism. We 

shall consider the fiber-product 

B(G)r = B(G) • sp(G)~. 

This is the closed subgroup of the product B(G) • (~ consisting of those pairs (s, g) which 

project down to the same elements of Sp (G). 

COROLLARr 2. 1/ ~3 is a locally compact group, B(G)~ is also a locally compact group. 

Moreover, the mapping B(G)$ • S(G)-+ S(G) defined by ((s, g), (I))-*saP is continuous. 

Let W denote a neighborhood of the identity in B(G) such tha t  XI(G • G*) N W has a 

compact closure in XI(G • G*) ~ 1 • Xt(G • G*). Choose a smaller neighborhood W' of the 

identity in B(G) such tha t  W'(W') -1 is contained in W. On the other hand, let ~ denote 

a compact neighborhood of the identity in (~ and denote its image in Sp (G) by  K. I f  we 

take ~ sufficiently small, we can find a compact subset F of B(G) contained in W' such 

tha t  the homomorphism B(G)-~Sp (G) induces a surjeetion F ~ K .  The existence of F 

follows from Proposition 2. Then XI(G • G*) F N W' has a compact closure in XI(G • G*) F, 
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and hence XI(G • G*)F is locally compact. We observe that  this is the inverse image of 

K under the homomorphism B(G)-~Sp (G). On the other hand, the kernel of the homo- 

morphism ~ : B(G)-~ B(G) is compact. Therefore ~-I(XI(G • G*) F) is a locally compact subset 

of B(G). We have thus shown that  the set of those s in B(G) such that  (s, g) is in B(G)~ 

for some g in the small compact neighhorhood ~ of the identity in ~ is locally compact. 

This implies the local compactness of B(G)~ and, by Corollary 1, the continuity of the 

mapping B(G)~ • $(G)---> $(G) defined by ((s, g), (I))-~s(I). 

We note that,  if we have a continuous homomorphism (~-> B(G), we can consider the 

fiber-product of B(G) and (~ over B(G). This fiber-product is a closed subgroup of the fiber- 

product B(G)~ defined by  the product homomorphism (~-~B(G)-~Sp (G). Therefore, if 

(~ is locally compact, the fiber-product over B(G) will have the same properties as B(G)~. 

We can prove these properties directly, i.e., without going through B(G)~, and the proof 

is simpler. At any rate, if we take G to be the localization or the adelization of a finite 

dimensional vector space over an algebraic number field or a function field of one variable 

with a finite constant field, and if we take (~ to be the localization or the adelization of 

the corresponding pseudosympleetie group, the fiber-product over B(G) will become the 

metaplectic group in the terminology of Well [11]. In other words, the weaker version of 

Corollary 2 implies the continuity property for the metaplectic group. 

COrOLLArY 3. I /  G is a locally compact abelian group and F is a closed subgroup with 

the Haar measure d~, every element eb o/ S(G) gives rise to a continuous/unction Fv on B(G) as 

Fc(s) = f r  (s(I)) (~) d~. 

We have shown, in Lemma 3, tha t  the restriction to F gives a continuous mapping 

$(G)---> $(F). Therefore, the integral for Fr is absolutely convergent. We next observe 

that,  because of the obvious formula Fs0r162 we have only to prove the con- 

t inuity of F v  at the identity of B(G). We take an admissible pair (H, H') such that  (I) is 

contained in $(H, H'). We shall use the same notations as in the proof of Theorem 1. 

We identify Fz=( (F  ~ H)§  with (F N H)/(F N H' )  and denote the image in FE of an 

element ~ of F N H by ~E. Also, we decompose the restriction of d~ to F (7 H into the Haar  

measures d~s and d~' on FE and F n H '  respectively such that  the total measure of F N H'  

is 1. Then, for every s in B(H, H') we have 

Fr = /r~  (s~r = Fr 



2 0 8  JUN-ICHI  IGUSA 

This reduces the problem to the case when G = E and ]7 ~ Fz. We take a distance function 

r on E such tha t  its restriction to F gives its distance function. This is possible. On the 

other hand, we choose a positive integer m satisfying m~>dim ( F * ) + I .  Then, for any 

positive real number  s, we can find a neighborhood of the identity in B(E) such tha t  we 

have IIr~.(sCp-@)[Io0<e for /c=0, m and for every s in this neighborhood. This implies 

] Fr  - Fr ] < c . e  

for the same s, in which 1 is the identity element of B(E) and c is a constant depending only 

on F (and on the choice of r). This completes the proof. 

We note tha t  Corollary 3 is a generalization of Theorem 6 in [11]. What  seems to be 

quite remarkable is the fact that,  in the general case, the continuous ]unction F~ on B(G) 

can be considered locally everywhere as a coimage o/continuous ]unctions on Lie groups. 

Finally, we shall discuss the example of a locally compact abelian group mentioned 

in the introduction. Let  Fq denote a finite field with q elements and consider the quotient 

field of the ring of formal power-series in one variable, say t, with coefficients in Fq. We 

shall denote by  Hm the subset of this field consisting of elements of the form a m t m +.. .  for 

every m in Z. Then the additive group of this field with (Hn)n>~0 as a fundamental  system of 

neighborhoods of 0 forms a locally compact abelian group. We shall show tha t  this will give 

an example of G for which the mapping B(G) • $(G)-~ $(G) is not continuous. 

We observe tha t  (H_n, Hn) forms an admissible pair for G and tha t  the sequence 

((H_n, Hn))n~>0 is cofinal in the set of all admissible pairs. Therefore $(G) is the inductive 

limit of $(H-n, Hn) and this is topologically isomorphic to (~qn in an obvious manner.  After 

this remark, we take a null sequence (Nn)n~>0 of positive real numbers. We then consider 

the subset X of $(G} consisting of those �9 with the property tha t  IO(x) l <Nn  for every 

x in H , - H - n + r  Then X is an open neighborhood of 0 in $(G). We shall show that ,  if F. 

is a neighborhood of the identi ty in B(G) and :Y is a neighborhood of 0 in $(G), the image 

Z Y  of E • Y by  the mapping B(G) • S(G)-~S(G) is never contained in X. I f  we take a 

positive integer k sufficiently large, the element of B(G) defined by  O(x)~  I~1�89 is 

contained in E for every ~ in W(H_k, Hk). We then take a positive real number (~ sufficiently 

small such tha t  dp~ =(~-times the characteristic function of H k_ 1 is contained in Y. Since 

we have Nn-+0 for n - + ~ ,  we can find an integer m larger than k + l  for which /Y~<~. 

We put 

{ t n z t = t  ~ n - - ~ - k - 1 ,  - m  

Then ~ can be extended uniquely to an element of Aut (G). I f  we denote this extension also 
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by ~, it is in W(H~, Ilk) and we have l al =1.  Therefore, the function x ~ ( x o : )  is in EY. 

However, because of 

r = r -k- l )  = ~ >//V~, 

it is not in X. This proves the assertion. We observe tha t  B(G) is not locally bounded and 

this is responsible for the discontinuity of the mapping B(G) • $(G)?+ S(G). 

II. Theta-functions on the group B ( G )  

4. We shall denote by  P a closed subgroup of a locally compact abelian group G. 

Then, by  Corollary 3 of Theorem l, every element (I) of S(G) gives rise to a continuous 

function F r  on B(G). On the other hand, let B(G, F) denote the set of those elements s = 

(a,/)  of B(G) satisfying (F • F , ) a  = F  • F ,  and / =1  on F • F, .  Then B(G, F) forms a closed 

subgroup of B(G). The point is tha t  the homomorphism z :B(G)~B(G)has a continuous 

cross-section over B(G, F) and tha t  the function Fr  possesses a remarkable semi-invarianee 

property with respect to the image group. We shall briefly recall this par t  of the Weil 

theory. 

The said cross-section over B(G, F) is not constructed directly but  in terms of another 

realization of B(G). We take dual measures d~ and d&* on F and G*/F, and dual measures 

d& and d~* on G/P and F,.  Then dx =d~d~ and dx* =d&*d~* are dual measures on G and 

G*. We put  Q= (G • G*)/(F • P,). Let  L(G, F) denote the vector space of those complex- 

valued, continuous functions | on G • G* satisfying the functional equation 

O(x-~,  x*-~*) = <~; x*). O(x, x*) 

for every ~, ~* in F, F ,  and with the property tha t  the functions on Q well defined by 

(5, :~*)~ ]O(x, x*)] have compact supports. Then L(G, F) forms a pre-Hilbert  space with 

ff (| | = @(X, x*)@'(x, x*)d:~d:~* 
Q 

as its scalar product. Let  H(G, F) denote its completion. Then, there exists a (norm- 

preserving) isomorphism Z of L2(G) to H(G, F). I f  we take (I) from $(G), its image is repre- 

sented by  a continuous function. I f  we denote this unique representative also by Z(I), we 

h a v e  

(zr (x, x,) = f r r  + x,> a s  

On the other hand, if s = (0, [) is an element of B(G, F) and if we put  

(rr(s) @) (z) = ] a [~ @(za)/(z) 
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with [a[ Q denoting the module of the topological automorphism of Q determined by  a, 

we get a homomorphism r r :B(G,  F)-~Aut  (H(G, F)). Moreover, it is easy to show tha t  

r r  is continuous. I f  we consider Z - l r r Z ,  which we shall denote also by  r r  as in [ l l ] ,  we get 

a continuous cross-section for :~ :B(G)~B(G) with the property 

Fr = [a I~F~(s) 

for every s in B(G, •) and s in B(G). This is (the corollary of) Theorem 4 in [11]. The module 

[ ~ I Q is not, in general, equal to 1. However, in the important  special cases when Q is either 

compact or discrete, it is certainly equal to 1, hence we have the invariance instead of the 

semi-invariance. At any rate, we m a y  call F r  an automorphic ]unction on B(G) belonging 

to r r  (B(G, F)) or simply to F. We sh~ll introduce a theta-function on B(G). 

The idea is simply to introduce a suitable subspace of S(G) and to consider the cor- 

responding vector subspace of the space of M1 automorphie functions on B(G). I f  E is an 

elementary abelian group, we consider a complex-valued function with its support  contained 

in the union of a finite number  of cosets of the connected component Eo=Rn• (R/Z) q 

of E = R  ~ • Z ~ • (R/Z) ~ • F.  I f  x, y denote the coordinates on R ~, (R/Z) q, we assume that ,  

on each one of these cosets, it is a finite linear combination (with complex coefficients) 

of functions of the following form 

e(�89 + xta + ytb), 

in which ~ is a symmetric matr ix  in M=(C) with a positive non-degenerate imaginary par t  

and a, b are in C n, Z q respectively. We shall denote the complex vector space of all such 

functions by ~(E). We see immediately tha t  a topological isomorphism E ~ E '  gives a 

C-linear bijection ~(E')--> ~(E).  In  particular, ~(E)  is intrinsically defined and, clearly, it is 

contained in S(E). :Now, if G is a general locMly compact abelian group and (H, H') ,  an 

admissible pair, we define (~(H, H')  as the image of O(H/H') under the C-linear bijection 

$(H/H')-~S(H, H'). Then we define ~(G) as the union of all O(H, H') .  I t  is clear tha t  

(~(G) forms a complex vector space (contained in S(G)). We shall prove the following lemma: 

LEMM~t 7. I[ G' is a compact subgroup o/G, the coimage o] O(G/G') under the canonical 

homomorphism G~G/G' is contained in Q(G); if G' is an open subgroup o/G, the image o/ 

O(G') under the "extension by 0" is contained in ~(G); O(G I x G~) contains ~(G~)| O(G~); 

the Fourier trans]ormation gives a G-linear bijection O(G)-->O(G*); if f is in X2(G ) and 

cb is in O(G), /dp is in ~(G); i] G is compact, ~(G) contains all finite linear combinations o/ 

elements o/XI(G); i] x denotes the coordinate on R, the ]unction x-+exp ( - ~ x  ~) is in ~(R). 

Moreover, i/~(G) is an intrinsically defined complex vector space o] functions on G with these 

seven properties,/or every G, Y(G) contains O(G). 
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Proof. Among the seven properties, only the fourth and the fifth need proofs. Instead 

of the fourth property, we shall prove a stronger statement to the effect that, if G de- 

composes into G 1 z G~, the partial Fourier transformation, say on the second factor, gives 

a @-linear bijection ~(G 1 • G~)--> ~(G 1 • G~). We have only to show that  it maps ~(G t • G2) 

to Q(G1 z G*). The verification of this fact is reduced immediately to the case when G 1 

and G 2 are elementary. We shall denote them by E 1 and E 2. Since the Fourier transforma- 

tion decomposes into a product when E~ decomposes into a product, we may assume that  

E 2 is one of the four types of "simple" factors. Then, only the case when E~ = R  ~ is not 

obvious. In  this case, because of the particular form of elements of Q(E~ • Ee), we may 

m E~, that  we have assume that  E~ = R ".  We may also assume, by a change of coordinates " * 

(xi,  x~} = e(x~tx~). Then the partial Fourier transform O* of an element (I) of ~(E~ • Ee) 

defined by 

dP(X~, x~) = e( �89 x~)'~t(x~ x~) + (x~ x,~) t (a~ a~) ) 

T21 T2 1 

is given by 

with 

(I)*(xl, x~) = det (i-iv2) -~ e( - �89 1 ta2)e(�89 § (xlx*)t(a* a~)) 

-~ I~ I  _~i / 

a~=al--a2~;1T~l,  a~-- - a ~ v ;  1. 

We observe that  ~* is also a symmetric matrix with a positive non-degenerate imaginary 

part. Therefore (P* is an element of (~(E 1 • E*). We shall prove the fifth property. We 

recall that, for any / in X2(G ) and for any compactly generated subgroup H of G, there 

exists an admissible pair (H, H") such t h a t / ( h + h " )  =/(h) for every h, h" in H, H" respec- 

tively. Therefore, if r is in ~(H, H'), by taking a smaller H '  if necessary and putting 

E = H / H ' ,  the problem is reduced to showing that, if / is in X2(E ) and qb is in ~(E), then 

f(P is also in ~(E). We recall that, if E = R  n • Z ~ • (R/Z) q • F and if (x, y) denote coordi- 

nates on E 0 = R n • (R/Z) q, the restriction of / to each coset of E 0 is given by t. e(�89 y) 

with t in T and Z in XI(Eo) , depending on the coset, and with a symmetric matrix h in 

M.(R). Therefore /qb is certainly an element of ~(E). We leave the verification of the 

additional remark as an exercise. 

T ~ E o ~  2. I f  G is a locally compact abelian group, the vector subspace ~(G) of 

$(G) is dense in S(G). Moreover, every element o /B(G)  gives an automorphism o /~ (G) .  
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Proof. We shall prove the first part .  We m a y  assume tha t  G is elementary.  Let  (P 

denote an arb i t rary  element of $(E) for E = R ~ •  Z ' •  (R/Z)q • F .  We shall show tha t  (I) 

can be approximated  by  an element of O(E). I t  is well known t h a t  (I) can be approximated  

by  an element of $(E) with a compact  support  (cf. [6], [1]), Therefore, we m a y  assume tha t  

dp has a compact  support.  Then we have only to  approximate  (I) by  an element of ~(E)  

on each one of the finite number  of cosets of E 0 = R  n • (R/Z) q where r is different f rom the  

constant  0. This reduces the  problem to the case when E = E 0. I n  this case, if (I)* is the 

l~ourier t ransform of (I), we have only to approximate  alp* by  an element of ~(E*). Since 

we have E * = R ~  • Z q, by  wha t  we have said, we m a y  assume tha t  q = 0 .  I n  this way, the 

problem is finally reduced to the case when E = R L  This is, perhaps, a classically known 

ease. However,  for the sake of completeness, we shall give a proof. The funct ion (I) in S(R n) 

is assumed to  have a compact  support ,  say C. We shall introduce a function (I)x depending 

on a positive real number  ~ by  the following integral 

q)~(x) = A~ fR~ dp(y) exp ( - ~r)~2r(x - y)~)dy, 

in which r is the distance funct ion on R n. Then, for any  invariant  differential operator  D 

o n  R n, w e  h a v e  

= A" fR-  (I)(y) (D~ exp ( - z)3r(x - y)2)) dy (/)r (x) 

= ~ fR-  (D(I)) (y) exp ( - z22r(x - y)~)dy. 

I f  m is a non-negat ive integer, the funct ion x ~ r ( x ) m e x p ( - y ~ ) 3 r ( x - y )  ~) is uniformly 

bounded when y is restr icted to C. Therefore ]] r m. (DdPa) I{~ is finite for every  2. We shall 

show tha t  we have 

lira ap~ = ap. 
~--~oo 

We take a large sphere of radius r 0 which contains C. Then we have 

I r(x)m(Ddp~ -Ddp)  (x)]~ H 1)r  II ~(2ro) n" ~-m-lrp~x) '~+~+1 exp ( - �88 ~) < cons t .  ,~-1, 

provided tha t  r(x)>~2r 0 >~ 1 and 2 ~> 1. On the other  hand,  if r(x)~<2ro, for any  positive real 

number  e, we choose another  positive real number  ~ so tha t  r ( x - y )  <3 implies [(D(D)(x) - 

(Dep) (Y)I <~. Then, integrat ing over the sphere of radius ~ centered at x and over its exterior, 

we get 

Jr(x) m ( Dr  - D(I)) (x) I 4 const,  e + const-A-1. 



HARMONIC ANALYSIS AND THETA-FUNCTIO~r 213 

The constants are certain positive real numbers tha t  are independent of x and 4. Therefore 

(I)~ converges to (I) for ~t-+ oo in S(R~). Now, we take a large hypercube with vertices in 

Z ~ which contains C and we subdivide it into hypercubes 6~ with vertices in (1//c)Z n for 

some positive integer/c. :For each i, we shall denote by  y~ the smallest vertex of (~ with 

respect to the lexicographie ordering, say, in R ~ and introduce a function Sk by  

Sk(x) = ( 2 / k )  ~ ~ q)(y~) e x p  ( - -  z ~ 2 r ( x  --  y~)2). 
i 

Then Sk(x) is a Riemann sum for the integral defining (P~(x) and (DSk) (x) is one for the first 

integral for (D(I)z)(x). We take a large sphere of radius r~ which contains the hypercube. 

We observe that,  if we write 

D~ exp ( - z ~ 2 r ( x - y ) 2 )  = P(x ,  y, 4) exp ( - z l ~ 2 r ( x - y ) ~ ) ,  

we have IP(x,  y, 4) 1 < c. (~r(x)) ~' for some positive integer m'  and for some positive real 

number c depending only on D, when r(x) >~ 2rl, y in C and ~ ~> 1. Therefore, we get 

] r(x)m(DSk -- DO~) (x)] < 2c 1] (I)II oo (2r0 n" 2-m-lr(2x),~ + m'+ ~ +~ exp ( -- ~r( ,~x)  2 ) < const �9 k -I, 

provided tha t  r(x) >~ 2r 1 ~> 1 and ~t >~ 1. On the other hand, if ~ is fixed, the family of functions 

y--->2nO(y)(D, e x p ( - ~ ( 2 r ( x - y ) ~ ) )  indexed by  x satisfying r (x)<2r  1 is certainly equi- 

continuous. Therefore, for any positive real number  s, we have 

I r(x)m(DS~ -- D(1)~) (x)[ • e, 

provided tha t  k is sufficiently large. Consequently, if we take )~ and then /c sufficiently 

large, the Riemann sum Sk approximates (I) as closely as possible in $(Rn). We have only 

to observe, finally, tha t  the said Riemann sum is an element of ~(Rn). This completes the 

proof of the first part.  As for the second part,  we have only to show tha t  every element 

s of B(G) keeps ~(G) stable. We shall use the five-step decomposition of (I)-~s(I). Since 

Q(G) is kept stable by  the complex conjugation as well as by any topological automor- 

phism of G, the third, the fourth (generalized to a partial Fourier transformation) and the 

fifth properties of O(G) in Lemma 7 imply that ,  for (I) and (I) 0 in O(G) and s in B(G), 

s(])| 0 is in ~(G x G). Therefore, we have only to remark that,  if (I), are elements of 

S(G,) for i = l ,  2 such tha t  (I)1| 2 is in ~(G 1 • G2), (1), are necessarily in O(G~) (provided 

that  (I)t40). This completes the proof. 

We shall prove a supplement to Theorem 2 as its first corollary. We recall that,  if G 

is a locally compact abelian group, it is topologically isomorphic to a product R ~ • Go, 

in which G o is a closed subgroup of G with compact open subgroups. In  fact, we have only 

14-682902  A c t a  ma themat i ca  120. Imprim6 le 19 juin 1968 
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to  take  an open subgroup H topologically isomorphic to  R ~ • K with K compact ,  extend 

the  projection H - ~ R  n to a homomorphism G-+R ", and take its kernel as G 0. We shall 

identify G with R ~ • G 0. Al though this decomposit ion is no t  intrinsic (except when G o is the  

union of to ta l ly  disconnected compact  open subgroups), the dimension n is unique and 

G o contains all compact  subgroups of G. 

COROLLARY I. Let G = R  n • G o denote a decomposition o/ a locally compact abelian group 

G such that G o has compact open subgroups. We consider a/unction (~ = ( ~ |  on G de/ined by 

~ ~(x) = e( ( �89 ) ixtx) = exp ( - ~xtx) 

�9 o = the characteristic/unction o /a  compact open subgroup o /G  o. 

Then ~(G) is the complex vector space o//inite linear combinations o/ elements o/ B(Rn) ~)~| 

A(ao)r 

We observe that ,  for the said decomposition G = R n • G 0, ~(G) coincides with the ten- 

sor product  ~(Rn)| Therefore, we have only to  show tha t  B(Rn)(I)~ and A(G~ 

respectively generate ~(R n) and ~(G0). We shall examine the  two cases when G = R  n 

and G=Go. I n  the case when G = R  n and (x, x*~ =e(xtx*), for any  (I) in S(G), B(G) contains 

(I)(x)-~ I det  (~) 1�89 @(x~) e(�89 § xta) and the Fourier  t ransformat ion (I) -~ (I)*, in which 

is in GLn(R), h is a symmetr ic  matr ix  in Mn(R) and a is in R n. (We shall review this p roper ty  

of B(G) more generally in the  next  section.) Therefore, applying the two elements of 

B(G) in t ha t  order to  (I)~ and then applying (~(x)-~(~(x)e(xtb) with b in R n, we will get  

(~(x)=e(lx~tx+xta), in which ~ is a symmetr ic  matr ix  in M~(C) with a positive non-de- 

generate imaginary  par t  and a is in C n. This settles the first case. We shall consider the case 

when G = G 0. Suppose tha t  K,  K '  are compact  open subgroups of G and p, ~0' are their 

characteristic functions. We take  a set of representatives ul, u~, ... of the finite group 

( K + K ' ) / K  and a set of representatives u~, u~, ... of the  finite group (K ' ) . / (K+K' ) . .  

Then we have 

p' =[K + K'  : K']-I. .~. U((ui, u~), 1)p. 

We observe t h a t  the  r ight -hand side is a finite linear combinat ion of elements of A(G)~0. 

On the other  hand,  we know tha t  ~(G) consists of finite linear combinations of functions of 

the  form U((u, u*), 1)q0, in which ~0 is the  characteristic funct ion of a compact  open sub- 

group of G. Pu t t ing  them together,  we see tha t  every element of ~(G) is a finite linear 

combinat ion of elements of A(G)(I)~ 

We shall derive a significant consequence from wha t  we have shown. Le t  R~ denote 
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the multiplieative group of positive real numbers and consider the product space (R~) • R n 

with the law of composition 

(~1, al)(A2, a2) = (;tl)~2, al A2 +a2)" 

Then we get a connected solvable Lie group. If G = R ~ • Go is the decomposition in Corollary 

I, we shall denote by A(G) the product of this solvable group and A(Go). We observe that  

r  -~ ; ~  q)(x;~ + a) 

defines a unitary representation of (R~) • R n (with the above defined law of composition) 

in L2(R n) and that  the image group is contained in B(Rn). In this way, we get a continuous 

homomorphism A(G)-~B(R ~) • A(G0). If  we combine this homomorphism with the obvious 

homomorphism B(R ~) • we get a continuous homomorphism A(G)->B(G). 

COROLLARY 2. I /  I is a tempered distribution on G = R n •  G o and ~ is an element o/ 

$(G), we get a continuous/unction Ir  on the locally compact solvable group A(G). Moreover, 

if (I) is the particular/unction introduced in Corollary 1, I r  =0 implies I=O. 

The continuous function I~  on A(G) is defined as the product of A(G)-+B(G), the 

mapping B(G)-~$(G) defined by s-~sqb, and the C-linear mapping I:$(G)->C. The first 

mapping is continuous by what we have said; the second mapping is continuous by Corol- 

lary 1 of Theorem 1; the third mapping is continuous by definition. Now, if (I)=(I)~| 0 

is the function in Corollary 1, the proof of Theorem 2 shows that  functions of the form 

x~CPoo(x~+a) for (~, a) in (R~)•  ~ generate a dense subspace of $(R~). Therefore, if we 

have I r  =0, Corollary 1 shows that  we have I =0. 

We fix a closed subgroup r of G and define a theta-/unction as an automorphic function 

F~ on B(G) belonging to F in which (I) is an element of ~(G). We note tha t  there is "essenti- 

ally" but one theta-function. In -fact, every theta-function is a finite linear combination 

of Fsr in which r is the function in Corollary 1 and s is in the image group of B(R n) • A(G0) 

by the homomorphism B(R n) • ). The set of theta-functions forms a vector 

subspace of the complex vector space of all automorphie functions. This subspace is fairly 

large. In fact, we have the following result: 

COROLLARY 3. On any compact subset o/ B(G), every automorphie /unction can be 

uni/ormly approximated by a theta-/unction. 

Suppose that  (I) is an arbitrary element of $(G). Then (I) is in $(H, H') for some admis- 

sible pair (H, H'). Since $(H, H') is metrizable and ~(H, H') is dense in $(H, H'), we can 

find a sequence of elements (I)1, 02 .. . .  of ~(H, H') converging to (I) in $(H, H'). Let  Z 

denote a compact subset of B(G). Then the union of Z(I)I, ZCP 2 ..... Z(I) is a compact subset 
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of $(G) by Corollary 1 of Theorem 1. Hence, by making H larger and H '  smaller, we may 

assume that  it is contained in $(H, H'). We shall show that  the convergence of s@l, sO 2, ... 

to sO in S(H, H') is uniform with respect to s in Z. We note that  this implies the corollary. 

In fact, we have only to proceed as in the proof of Corollary 3 of Theorem 1. :Now, since E 

can be covered by a finite number of cosets B(H, H')s~ with st in E, it  is enough to show 

that,  for each i, the convergence of sstO1, ss~O 2 . . . .  to ss~O in S(H, H') is uniform with 

respect to s in Z~=B(H, H')N Es~ -1. Since B(H, H') is an open subgroup of B(G), it is 

closed, and hence E~ is a compact subset of B(H, H'). If we replace the sequence s~O 1, 

s~O 2 .. . .  and siO by �9 1, �9 2 .... and O, and F~ by ~], we are in the case where ~] is contained 

in B(H, H'). Pu t  E =H/H'. Then, by Theorem 1, the problem is finally reduced to showing 

that,  if a sequence 0I)1, o])2, ... converges to �9 in the metrizable space S(E), for any 

compact subset F. of B(E), the convergence of sO 1, sO2, ... to sO in $(E) is uniform with 

respect to s in ~]. However, since B(E) is a Lie group, E is sequentially compact. Therefore, 

this is certainly the case. 

We note that  Corollary 2 of Theorem 1 permits us to consider the restrictions of auto- 

morphie and theta-functions on B(G) to 

B(G)~ = B(G) • sp<a)@ 

for any locally compact group (~ and continuous homomorphism (~-~ Sp (G). We shall call 

them automorphic and theta.functions on B(G)$. I t  seems that  all complex-valued theta- 

functions can be obtained by this process. In this connection, we observe that  the Siegel 

/ormula (for the orthogonal group) as formulated and proved by Well in [11], [12] and the 

classical Siegel formula by Siegel involving theta-series and Eieenstein series (cf. [8], [9]) are 

equivalent (once both sides of the Siegel formula are shown to be tempered distributions). 

This follows from Corollary 2. 

5. The locally compact abelian group G has been arbitrary. We shall now discuss that  

part  of the Well theory where further assumptions are necessary. We consider the group 

B(G, F) for F =0.  I t  is clear tha t  this group consists of elements 

of B(G), in which ~, =0  and f is in X2(G ). Moreover, if we put  rr(s) =p(s) for F =0, we have 

(p(s) OI (x/= I ~1 ~l(xl O(x~/, 

in which I~l is the module of the topological automorphism ~ of G. According to the 

general property of r r ,  the correspondence s~p(s)  defines a continuous cross-section for 

~::B(G)-~B(G) over the subgroup P(G) of B(G) defined by ~, =0  and [ in X2(G). 
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On the other hand, we consider the subset ~(G) of B(G) defined by the condition 

tha t  ~ is in Is  (G*, G), i.e., in the subset of Horn (G*, G) consisting of topological iso- 

morphisms. We note tha t  ~(G) is empty  unless G is autodual, i.e., topologically isomorphic 

to G*. Althot~gh ~(G) is not a subgroup, we have ~(G) -1 = ~ ( G ) a n d P ( G ) ~ ( G ) =  ~(G)P(G)= 
~(G). More precisely, if we put  

for any ~ in Is  (G*, G), we have ~(G) =P(G)d'(~)P(G). In  fact, if s is an arbi trary element 

of ~(G), we can write it in the form s =Sld'(y)s ~ with sl, s 2 in P(G) such tha t  "g  = 1" in one 

of them. :Now, if s = (a,/)  is in ~(G), we put  

(r(s)O)(x) = l y I ~ fO(x~  + x*~)/(x, x*)g~* 

for every q) in S(G). Then, by  a completely formal verification, we get r(s) -1 U(w, t)r(s) 

U((w,t)s), (r(s)(P, @')=((I),r(s-1)(I)'), and p(s)r(s')=r(ss'), r(s')p(s)=r(s's). Moreover, 

if (I)* denotes the Fourier transform of 4p, we have 

(r(X(r)) r = [r [-~r 

Therefore r defines a continuous cross-section for 7e:B(G)~B(G) over ~(G) satisfying 

r(s -1) = r(s)- 1. 

Now, if s is an element of ~(G) and if / is an element of X2(G) which is non-degenerate 

in the sense tha t  ~ =0(]) is in Is  (G, G*), the element s' of B(G) defined by  

is also in ~(G). Therefore, we get a relation of the form 

in B(G) with some ~(/) in Y. We choose an arbi trary ~ from Is (G*, G) and write s in the form 

Sld'(~)s 2 with sl, s~ in P(G) and " ~ = 1 "  in s r Then we will get a similar relation in which s 

is replaced by  d'(y) and y([) remains the same. Consequently y([) is independent of the 

element s of ~(G). Moreover, if we consider [ as a tempered distribution on G, its Fourier 

transform [* is given by  

/*(x*) - -  r([) le l-~/(x*e-1)-~. 
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This is Theorem 2 in [11]. As a consequence, if we replace / by x*/, i.e., by x-~(x, x*)/(x), 

we get ~(x*/)=/(X*~--1)--1~(/). We also remark that,  if s=(a,/) ,  s' =(a',/'), ss' ~ s " =  (a", f") 

are in ~(G) and if we put  

/o(X) = 1(0, xT-~) /'(x, - x~'7'-~), 

we have r(s)r(s') =$(/o)r(s"). This is Theorem 3 in [lI].  We shall show that, under a certain 

general condition, the constant ~(f) can be expressed by an integral over a compact group 

which is, in a certain sense, a generalization of Gaussian sums. 

Suppose the 1 ~ is a closed subgroup of G. We say that  the pair (G, F) is autodual if 

there exists a topological isomorphism from G to G* mapping 17 isomorphically to its 

annihilator F.  in G*. Also a complex number z =~0 can be decomposed uniquely into a 

product of a positive real number and an element t of T. We call t the T-part  of z. We shall 

first prove the following lemma: 

L ~ A  8. Suppose that s = ( a , / )  is an element o] ~(G) f) B(G, F) with the property that 

F/F .~  is compact. Then we have rr(s)=~(s)r(s) with 2(s) given by 

[ ,  
1(8) = T-part  of JrJr , , / (0 ,  ~r-1)-ld$, 

in which d~ is the Haar measure on F/F,1,. 

Proo/. We observe that  F,~ is contained in F by the condition that  s is in B(G, F). 

By the definition of r r ,  if (I) is an element of S(G), we have 

(rr(s)~)(x)=[a[~ f ( f r  ~)(~,xfl+x*~)d~)/(x,x*)g~* 

provided that  the second integral over G*/I~, is absolutely convergent. We are denoting 

by  d~ and d&* the Haar  measures on F and g*/F,  respectively. We observe that,  if we put  

g(x)=[(O, x~-l) -1, we have 

(~, x~ +x*~)l(x, x*) =/(x, x* +~,-1)g(~). 

We observe also that  we have g(~ § =g(~) for every ~ in F and ~* in F.. Now, the integral 

over F can be decomposed into an integral over F,  7 and an integral over l~/F,7 with 

respect to their Haar  measures. Since F/F ,7  is compact, the triple integral is absolutely 

convergent. Therefore, the expression for rr(s)~P is legitimate for every (I) in S(G). More- 

over, we can change the order of the second integration over F/F,~ and the third integra- 

tion over G*/F,. In  this way, we get 
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= c. (r(s)r fg(~)d~-, 

in which c = I cr I~1~' 1-�89 Therefore, we have 

~(s) = c. frJr~ /(0, 
~,-1)-ld~. 

This completes the proof of Lemma 8. 

THEOREM 3. Suppose that (G, P) is autodual. Then, ]or every non-degenerate element 

f of X2(G ) such that ] = 1 on P,q-1 and F/F,q-~ is compact, we have 

= T-part  of fr/r,~_l f(~)d$ 7(]) 

in which ~ =~(f) and the integral is taken with respect to the Haar measure d~ on F/F,Q -1. 

Actually, the group F/F,  e-1 is [inite. 

Proof. We observe that  F,~ -1 is contained in F because of the condition that  ] = 1 

on F,~ -1. Moreover, if we introduce the following element 

of fl(G), this condition is equivalent to the condition that  s is in B(G, P). In this case, both 

r(s) and rr(s) are defined. We shall show that  they are related as rr(s) =y([)r(s). In  order to 

save some printing space, we put  

Then, by definition, we have 

r(d'(~-~))-I  p(t([))r(d'(~)-l))  ~ ~(])r(s) .  

We shall show that  ~he left-hand side is rr(s). Since (G, P) is autodual by assumption, there 

exists an element y of Is (G*, G) mapping F,  isomorphically to P. We then have 

r(d'(q-1)) -1 p(t(/))r(d'(e -1)) = r(d'(y)) -1 p(t([')) r(d'(?)) 

with ]'(x)=](x(~9,*)-1 ). The point is that  d'(y) and t(f) are in B(G, F). As a special case of 

Lemma 8, we have r(d'(y)) =rr(d'(y)).  Also the verification of p(t(]')) =r r ( t ( f ) )  is immediate. 
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Since r r  is a cross-section and since the z- image of the left-hand side is s, the right-hand 

side is rr(s). This proves the assertion. Therefore, by Lemma 8 we get the "T-part repre- 

sentation" for 7(/). The fact that  the compact group F/F,~ -~ is actually finite can be 

proved, e.g. by  integrating (~, ~)_~/(~+~)f(~)-i over the product of F/F,~ -I. This com- 

pletes the proof. 

We note tha t  Theorem 3 implies Theorem 5 in [11]. We leave it as an exercise to calcu- 

late 7(/) in various cases using Theorem 3. We shall, as an example, prove the following 

result in [11]: 

COROL~AgY. Suppose that we take <x, x*> =e(xtx *) ]or x in R n and x* in its dual. Then, 

/or /(x)=e(�89 with a symmetric, non-degenerate matrix h in M~(R) o/signature sgn (h), 

we have 7(/)=e((1/8) sgn (h)). 

We choose an element u of GL~(R) so tha t  we have 

=!{1~ 0 ) (p+q=n). 
u h t u  2 ~0 --  lq  

Then we can apply Theorem 3 to F = Z~u, and we get 

(1 ( l O)tm)=2-�89 y( / )=2- �89 ~ ~ e ~m 
m mod2 0 - -  

This is clearly equal to e((1/8)(p-q))=e((1/8)  sgn (h)), and the corollary is proved. 

We shall now obtain an explicit local expression for our theta-function in the case 

when G = R  ~ and F is a lattice in R ~. I f  we denote coordinates in G • G* by (x, x*), we have 

(x, x*> =e(xhtx *) with a symmetric non-degenerate matr ix  h in Mn(R ). Therefore, by  using 

either xh or x*h as new coordinates in G or G*, we may  assume tha t  h = 1. Then Sp (G) 

becomes Spa n (It). According to Corollary 1 of Theorem 2, we have only to calculate F v  for 

@(x) =e((�89 (-~xtx).  

We take a point s = ( a , / )  of ~(G), a point (w, 1) of A(G) and put  s =  U(w, 1)r(s). I f  x, fl, 7, 3 

are the submatrices of a, we have 

/(x, x*) = (xa, 2-1xfl> <xfl, x*7) <x*7, 2-1x*(~> <x, m*)<m, -x*> 

with (m, m*) in G • G*. Therefore, if we put  

0mm~(T, z) = Y e(�89 + m)T~(~ + m} + (~ + m)t(z + m*)), 
~eF 
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by using a formula in the proof of Lemma 7, we get 

Fr = (sgn (det (7)) det ( i - i (? i  + ~)))-~ e(�89 + u~m * - u*tm - mtm* - �89 

�9 Omm* (T, UT -~ U*), 

in which T=(~i  + ~ ) ( y i  +~)-1. We have thus shown that  the theta-functiou Fr  coincides, 

except for an elementary factor, with the classical theta-function. 

We shall examine the invariance property of F~. Since we shall have to use s for a 

different meaning, we shall denote the previous s by s ' =  (a', ]') keeping m, m* and other 

notations; for instance, we have s=U(w,  1)r(s') and T = ( o ~ ' i + ~ ' ) ( ? ' i + 8 ' )  -1. Now, if 

s = (or, ]) is an element of B(G,  P), we have 

As before, we have 

Fr s) =Fr 

/(X, X*) = <XO~, 2-1X~> <X~, X*~> <x*~', 2-1x*~> <X, Ct*> <a, --X*> 

with some (a, a*) in G • G*. We shall assume that  s is in ~2(G), i.e. that  ~ is non-degenerate. 

Then, changing the variable point s' slightly, we may assume that  ss'  is also contained in 

~(G). Then, using some of the results that  we have either recalled or proved, we can trans- 

late the invariance property of F~ into 

= • e(~0mm,(~)) det (yv + 6)�89189 + ~ ) - l y t z ) .  Omm*@, z), 

in which z = u~ + u*. Furthermore, u(a) and ~mm~(a) are giver by 

u(a) = (i -n sgn (det (y)))�89189 + ata *) 

of Z e(~y ~-~y-lta)) (T-part 1 -1 t 
s e rood F.y 

r = - -  ( � 8 9  (mt~(~tm + m * t ~ t m  * -- 2mtt~ztm * -- 2a*t(mt(~ -- m*tz)  ). 

This is one of the forms in which we express the functional equation of the classical theta- 

functions (cf. [3], pp. 180-182). We can, of course, use <x, x*> =e(xh tx  *) without making 

the normalization h = 1. Then the formulas have to be modified accordingly. We also note 

that, if we use the five-step decomposition instead of r, although the calculations become 

more involved, we get other local expressions for F r  especially in the case when det (~) = 0. 
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