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Section 1

A presentation of deficiency zero (on » symbols and » defining relations) of a group G
may define the trivial group, G=1.

The present work is a contribution to the decision problem: when does the presentation

P: (av (3487 an; rl(a)’ seey rn(a,))

of @ give the trivial group?

It can be decided at once whether the r, freely generate the free group F,=F(a)
(see [12]). The question is how to reduce P to this case if G=1.

The next simplest case is that all but one of the r; form a set of associated generators
(one that can be completed to a free generating set of F,) [8]. The simple fact that the
consequence of such a set (ry, ..., 7,_,) contains the commutator subgroup ¥’ of F, motivates
the introduction of what I will call root-extraction. For example if (a,, ay; a,, 7,)=1 then
there is a word s, such that a; and s, generate F,= F(a) and r,=a, modulo a, and r,=s,
modulo s,. (See Sections 4 and 5.)

The introduction of Nielsen transformations (automorphisms of free groups) combined
with conjugations—I will call these @-transformations—hardly needs motivating in this
context. Root-extraction on ¢-tuples r = (r,(a), ..., r,(a)) in F, = F(a) will consist of replacing
a proper subset of r by another set without changing normal closure and deficiency of
presentation.

For n-tuples r for which the presentation P above is that of the trivial group, the fol-

(1) The support of the National Science Foundation under GP-3204 and GP-6497 is gratefully
acknowledged.
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lowing facts will emerge. @-transformations form the largest group of mappings that can
transform two such n-tuples into each other. Modulo this group a single root-extraction R
can be found that takes a given r into a given r*. While certain of these pairs of n-tuples
are Q-transforms of each other, * =Q(r), it may happen that also *= R(r) modulo @-trans-
formations and R is not a @-transformation. Examples will be given for which @-equiva-
lence seems to be an open question. Thus it remains to be decided whether any two n-tuples
rendering P a presentation of the trivial group are equal modulo ¢. The remaining results
of this paper, properties of presentations of =1 of deficiency zero, were found during my
study of this problem.

The first five sections set up the machinery for the study and give some labor-saving
devices.

Section 6 gives a set of generators of the mappings between any two presentations
on n generators (and so on # defining relations) and gives two basic properties. These
lead—naturally, as it were—to remarks on unsolvable problems in group theory (Section
7) and, via examples, to algorithmic posers (Section 11).

Sections 8 and 10 lead off with examples, to illustrate what had gone before and to
motivate the next step.

Section 9 draws on the literature for devices to change or manufacture presentations
for study. '

All the examples are contained in Sections 8, 10, and 11.

Theorems comparing two presentations which share some defining relations are akin
to a problem posed by Magnus: if the consequence in F, of (ry, ..., r,) is F,, can r; be
replaced by some free generator of F, without loss of the property?

Numbers in brackets refer to the reference list.

T am indebted to Tekla Taylor for helpful critical remarks. Above all it is hoped that the
work done here suggests methods of attacking this difficult problem.

Section 2

A presentation of a group @ consists of two sets of elements written as (a;, ...; 7, ...),
of which the first is a set of symbols @ = (a,, ...) that freely generate the free group F = F(a),
the second a set r of elements (words) in F, given in terms of the a-symbols. The presenta-
tion is finite if both sets are. G is the factor group F/r of F by the normal closure {r} of

rin F.

F, = F(q) is the free group generated by the n-tuple a={(a, ..., @,).

w = abbreviates w1
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w® =Zwz; for example & =w", W Fuwt? @ = (W) =w—-%, and (W)l =w®..
Here x, y, z are elements of F,.

|w| is the length of w< F(a); that is, the number of a-symbols in w.

P is a polynomial in the “integral group ring” of F with neither operation com-
mutative. Thus, w—>+% =u?, with @, z, win F, P= —z2+&+& —=2.

W is said here to be cyclically reduced if w is both freely reduced and cyclically
reduced.

G is the commutator subgroup of G.

A is an automorphism of F acting on the given generating symbols (a,, ...,);
thus Aw(a) =w(4a,, ..., 4a, ...).
The Aa, are a-words s,=s,(a), abbreviated to s, where no misunderstanding

arises from doing so.
Small Greek letters are units; thus

e =41

{r} ={ry, ...} is the normal closure of the elements r— (ry, ...) in F(a).

N(t)= N is a Nielsen transformation acting on a ¢-tuple of elements (¢ fixed) regarded
as symbols.
The generators of choice for the group of Nielsen transformations will be the set of

mappings
Niwlwy, oo, W)= (W, oo, W1, ¥, Wi 1, .., wy) with v=w,w} or whw,; k=+h.

In NNy, N;; acts on the ¢-tuple Ny, (w) (cf. [8], p. 125 £f.). While N(¢) is isomorphic
to the automorphism group of F,, the manner of action just defined will not be referred to
as an automorphism but as a Nielsen transformation, even if w(a) freely generates F,(a).
My reason for defining A and N differently will appear later. 4 is so defined that direct
length-reductions be possible for “reducible” words (words whose length can be reduced
by some automorphism of the group) [12]. The distinction is indispensable (cf. Section 11).
{T,T(w)=v is & direct reduction if T';(w) has fewer a-symbols than w, and » fewer than
Ty(w).]

Section 3

For the purpose at hand a combinatorial definition of invertibility is needed. It is
given below. Invertible transformations, @ =Q(f), acting on a {-tuple in F,, form a group,

with Nielsen transformations a subgroup. A set of generators is found in Section 5. The
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other transformation I need, root-extraction, R = R(t), is not going to be invertible, but
A, N, Q(n), B(n) share the property of taking an n-tuple in F, whose normal closure is
F, into another such.

Let r be a t-tuple of elements r;,=r,(a) in F, =F(a), #, some one of the r;, 2, some one
of the r,, possibly the same as z,, and so on. Finally let K, =x{'z5* ... xn™, so that K, is
consequence of » written in fixed fashion in terms of r-conjugates in F,.

That is, K, designates not just that word in F, which it represents but also the par-
ticular way here given of writing it as an r-consequence.

If K,, ..., K, are similarly defined, let K be the t-tuple (K, ..., K,). Furthermore, let
K* be a t-tuple defined exactly like K except that the symbols z, signify elements K;, of
K rather than elements 7,. of r.

Suppose that for a given i-tuple K = (K, ..., K,) there is a ¢-tuple K* of consequences
of K in F, such that upon cancelling segments 7*#° formally, each K} reduced to r;,. Then
the mapping that takes r into K is snvertible.

For integral exponents P this defines K as a Nielsen transform of 7; if then the set r
freely generates F,, the mapping that takes r into K is an automorphism of F,. Else K
merely generates the same normal subgroup in F as r does.

Let t=n, and {r} = F,. Then there are endless ways of writing the r; as power-products
of the a-symbols; r will be an invertible transform of the latter if at least one such is in-
vertible. For example, the pair r, =@%bab, r,=b%ba is not invertible consequence of the
pair (a,b) in Fy=F(a, b) under Nielsen transformations, or automorphisms of F,; but
there is a K, and a K* that inverts it, such that K(r(a, b)) =(a, b) in F, (Example 3).

Section 4

Though it is not essential to take ¢ =, let r=r(a) be an n-tuple in F,, and {r}=F,.
Then there is at least one n-tuple of consequences, K’, of the a-words r that freely reduces
to (ay, ..., @,), so that @,K;(r(a))=1 for ¢: 1, ..., n.

Turning this process around, pick an n-tuple E(a) of (unreduced) words in ¥, such
that each Z(a) reduces to the empty word. Form the (unreduced) words E,a, and mark
out each into segments. Let v;, ... be those segments, and v,, ... the result of reducing
them. If the v, are conjugates or inverses of conjugates of just n distinct ones among them,
8ay 7y, ..., T, then K (r) =a, for certain consequences K, of the set. If one calls r=(ry, ..., r,))
a set of roots of a=(a,, ..., @,), though trivial, it is true that {r}=F, if and only if (the
n-tuple) r is a set of roots of the n-tuple a. Similarly, if {r}=F, and r,= {r;}, then {r'} = F,.
The following definition suggests itself:
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If r is a t-tuple, {ry, ..., ,}<{r1, ..., 7x}, and either k=t=1 or 0 <k <{¢, then the set
' = (71, «ev, Ty Tiyp1s --o» 73) 18 & 700t of 7. In symbols: #' = R(r). Tt will be convenient to assume
that a conjugate, or inverse of a conjugate, is not a root of a word. With this restriction
and for arbitrary ¢, R, will be called a root-extraction in a ¢-tuple. If t =n, the subscript will
be omitted.

Section 5

Let r=(ry, ..., ,) be a set of fixed cyclically reduced words 7,(a) in F,= F(a), x or —=z,
y or —y, ... reduced words ranging over F,, x=x(a), y=y(a), e= +1. Let r,r5 =yvy, with
v =1v(a) cyclically reduced. Then v and y may be chosen in more than one way; let (v, r§)¥ =
#1 stand for a fixed choice of y (and v) for given r; and z. For example, uzwi = (Fw)* =
uZ-wZ-zi = (wZ)™ and so y may be chosen as u or as uZ depending on which cyclically
reduced conjugate of Zw is to be rf: wz or zw.

The proof of Theorem 1 hinges on the formalism embodied in this definition. For
example, r,r, =r,(F;7,r;) in a group, but ry(7, r,7;) will not be taken as r,75 even if x =x(a)
ts ry(a). The point and the reason for it should become clear from the context in which,
later on, » new symbols will be introduced as new generators to replace a, ..., va,,, in the
exponents (and only there).

If x or —2 is an element of F,, and the same holds for y, let Q,(r;)=(r,73), and
Qre(r;)) =7, for i>1. Let Q,; be similarly defined for each pair (¢, j) with ¢4j and given
t-tuple r=(r,, ..., r;) in F, = F(a). If =1, write @(r) =r*. These mappings will be multiplied
as follows.

If Q(r)=r* then

Qe @is(r) = Quu(r*) = (7;‘, - Thow, [”:(rlt)z*]”*, rzﬂ, cesy "’?)-

For fixed ¢-tuple r and F,, the set of these mappings as the exponents vary generates a
group, @ =Q(t). @ will also mean any element of the group when the meaning is clear from
the context.

It may be noted that images under @ are taken cyclically reduced, so that conjugation
alone, to be effected by @, is limited to cyclically reduced images. This is done to avoid
clutter and trivia. Merely dropping the requirement that @, (r;) be a eyclically reduced
word allows one to generate any conjugation. Thus one gets bab by letting a—~ab be fol-
lowed by (ab)->[(ab)b]o. All conjugations yielding cyclically reduced words can be effected
in this way by the @,;.

THEOREM 1. Q(f) is the set of all invertible transformations of the t-tuple r=r(a) in
F, = F(a) into t-tuples of cyclically reduced words.

8*} — 682903 Acta mathematica. 121. Imprimé le 18 septembre 1968,
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Proof. Let @ be an element. of Q(t). To prove @ invertible it suffices to find @ for
Q@=Q,, when t=2. Let Q(r)=p with Q(r,)=(r,73)", Q(ry)=rs then @*(p,)= (1, 75y,
Q*(ps) = ps gives

Q*Qry) = [ 3V HP = ryrifi=ry,
Q*Q(rz) =Ty

identically in the r-conjugates: that is, regardless of the expression of the r; as a-words.
Thus @*=0Q.

Note that in this necessarily formal definition of “identical”, r* is not identically r
for w=r; rather, ¥*#=7*"1 and this is 1 only for w=1.

To prove the converse, let r and p be {-tuples in F,= F(a), with p invertible conse-
quence of r.

To show that p =Q(r), I will introduce a set b=(b,, ..., b,) of new symbols and convert
the (n+t)-tuple (py, ..., Py, by, -5 by) into a Nielsen transform N(r, b) of the (n+t)-tuple
(715 oos 75, By, o0, By) i F,HA':F(rI, vees Tgy by, ..., b,). This N will become a @-transformation
on the ¢-tuple r(a) when the b-symbols are eliminated.

Since p is invertible consequence of r, the following holds.

Q). =1, (@) Pr (@)D .. .1 (a)* Y with similar expressions for p,, ..., ps

Yu(a) pYsa)

(2). 7 =pl @ pix®...ps¥® with similar expressions for 1y, ...r;;

(3). If (1) is substituted in (2) then r-conjugates cancel in pairs to yield identi-

ties r,=r, for each .

Now replace in (1) the exponents x(a) by the corresponding words x(b) and replace
each a-word r{a) by the symbol r,4:1,...,¢. Call the resulting words (1') gy, ..., g
Replace the a-words y(a) in (2) by the b-words y(b) and call the result (2') sy, ..,
Thus, in Fuye=F(ry, ..., by, 0.0, 0,),

). qi=qulr,b)=rxPrl® 3O = F, (byrf, £2,(b)-.-,
2'). rn= 8,(g,b)= qﬁ’:‘"’. .., ete.

Because x may be —w for an element w of the group, so that —x< F but x4 F, the
three ¢-symbols take on the value —1 if this is the case, and +1 otherwise.

If follows from the definition of invertibility that (g, ...; ¢s. by, -.., b,) freely generate
(ry, ..., 7 by, ..., By), ie. the free group F, ,=F(r, b).



GROUPS OF ORDER 1 133

Finally set gq.,=by, ..., qun=bn, ¢=(qy, ..., ¢tsn) a0d 8,1 =by, ..., 8, =b,, s=(5y,
.:s 8¢45)- Then both (n +t)-tuples generate F,_, and if the right sides in (1) are substituted
in (2) for the g¢;, 1:1, ..., ¢, the result freely reduces to identities. Therefore, ¢=N(r, b),
8§=N(r, b) for some N of F,, ..

I will show that N can be expressed as a product N7, ... N7 of Nielsen transformations
N} each of which leaves the b-symbols fixed and for the rest turns into a product of some
@we(r) when the x(b) are replaced by the z(a), the y(b) by the y(a), and the r, by the r,(a).
Then the same will be true of N so that ¢ =Q(r) will result. '

If w=(w,, wy), denote |w,| + |w,| by |w].

It is well known (see e.g., [2]) that if | N(w)| < |w] for a finite set of elements w =w(z)
in F(z), then N can be written as a product of generators N,; none of which increases
z-length. Since in terms of (r, b)-length |[r]+|b| <|¢] and N(g¢)=(r, ), N has such a
representation: N =N, ... N,. This will now be changed into the Ny, ... N} described above.

N, leaves all but a single g, fixed, and 7 <¢ since otherwise N, would increase (r, b)-
length. Suppose N,(q,) #+¢,. Then N, multiplies q; by ¢; on the left, or else on the right. It
may be assumed that N,(g,) =g, ¢,. Similarly, each N, multiplies some (r, b)-word by another
or by some b-symbol (or its inverse). I will express N as a product

N =N, ..N;

of generators NV,; such that if N; multiplies a word by some b5, say N{(w,)=>b,w,, then
Ny N{(w)=b,w, b, or w,=®,6=N;_1(,). Setting N*=N;, N, in the first case and
N*=N;N;_, in the second, and assigning a suitable subscript to N* will then result in the
desired expression.

It remains then to show that N =N, ... Nj exists. If N}, acting on the (n +¢)-tuple w,
changes w;, it may be assumed that N;(w;)=w;w;.. Then §' <t, as w;,, =b,, ..., w, ,=b,
for each N,

For transformations of the type N =N, ... N, under consideration here, let k be the
number of factors N, for which j” <#. If k=0 then the effect of N is the removal of the b-
symbols from (g;, ..., ¢;). Since N(g,) =r,; contains no b-symbol for ¢ <t and the ¢, are con-
jugates of the ry, it is easy to see that in this case N=N, ... N{=N, ... N; with each N
an N,. (See the remark before Theorem 1.)

Suppose now that the value of k is %, >0. The proof will be completed by reducing the
case to one with k=k,—1.

Let j be the least subscript in N=XN,... N, for which N;(w,)=w;w;. has j"<t.If
j=1 there is nothing to prove since N, is a @-transformation and so only N, ... N,, with
k=Fky—1, remains.
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If j>1, I will express N in a form N,... N,y N*N,N*N,_, ... N, with the follow-
ing property: N;N*N; ;... N, can be rewritten as a product N'=Nj ... Ny, while for
N,...N;j . N** the value of k is k,—1.

Let N,.y...Ny(¢)=w, so that N(q)=N....N,(w). Let N,(w,)=w,w,, and suppose
that w arose from ¢ by the removal of some b-symbols from (gy, ..., q,). It is no loss
of generality to assume further that only ¢, and ¢, were changed by N,_, ... N,, since
any other action of this transformation can be postponed until after N, is applied
(without affecting the value of k). It follows that

q1 = uy (D)w, v1(b), g2 = uy(b)w, v,(b).
Let

N*(w,) = v,(b)u, (b)w,, N*(w,) = wy vy(b)ug(b), N*w,)=w, for m>2.
Setting v;(b) =u,(b) =1 for ¢ >2, and (v,¢,5,, v39:0,, ...) =v(b)¢gH(D) gives
N*(w) = N*N;_, ... Ny(q) = v(b)g#(b).

Thus N*(w) is a @-transform of ¢. Therefore N*N,_, ... N, can be rewritten as required.
If now N, acts on N*(w) one gets

N, N*(w,) = 0,(b) uy(b) wy wyv,(b) uy(b),
N, N*(wg) = wavy(b) us(b),
N,N¥w,,) =w, for m=>2.

If N** is the transformation that removes the wu,(b) and v,b) displayed here then
N*N;N*(w)=N,(w)=N,;N,_, ... Ny(g). Therefore

N(@)=N,.. N, ,N*N,N*N, , ... Ny(q)

and, as NV, is also a Q-transformation, only N, ... N, , N** remains to be considered. By its
definition, N** contributes nothing to the value of k for N, ... N;,, N**, so that value is
ky—1.

This concludes the proof of Theorem 1.

TrEOREM 2. Two t-tuples, 7 and r* of F,=F(a), are Q-transforms of each other, Qr)=r*
for some Q= Q(t) if and only if for every automorphism A of F,: Ar*=Q*(Ar) for some Q*
depending on A.
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Proof. Let. ri=Q(r;)=ri*rf*..., A(x)=y; for A any automorphism of F(a) and
2, =z(a), y,= y(a). Then Ari= (Ar,)"(Ar,)**... and I will show that Ar} is Q-trans-
form of Ar, under a mapping @Q* that takes (Ar,, ..., Ar,) into A(r3, ...; 7). Let p(r*)
be a t-tuple in {r*}, and let Q(r)=r* To show that Ar-Ar* is a Q-transformation,
let p(r*) reduce to r when r* is replaced by the r-consequences given for it above;
then #*—p(r*) inverts @: r—r* and

Pi(r) = () ()
with similar ‘expressions for p,, ..., p,. Let
Ba(r®) = ()=l

so that Ap, (r*) = p,(4r¥), ete. for Py, ..., §;. Then 4Ar*—~P(Ar*) is a map that inverts Ar—> Ar*.
By virtue of Theorem 1, the latter is then a @-transformation.
To show the converse, let 4 be an automorphism of F, and suppose the two ¢-tuples

Ar and Ar* connected by a Q-transformation, @Q*: Ar—Ar*. To prove that, for some @,
r*=()(r), one need only apply the argument given above to Ar*=@*(Ar), using the auto-
morphism A:

A(Ar*)= A[Q*(Ar)], with

A(Ar*)=r*, and

A[Q*(Ar)]= @™(44r);

therefore 7* =@**(r), as claimed. (See in this connection Example 7, Section 11 below.)

This proves Theorem 2.

Remark. It does not follow that, for given A, A(r)=Q(r) for some @. For example,
if H={r} and AH+ H then {4} +{r}={Q(r)}. (Cf. Example 1, Section 8.) However,
when G =1=(a; r) and the presentation has deficiency zero, the following holds.

THEOREM 3. If r is an n-tuple in F,=F(a) and Q(r)=a, then, for every A of F,,
A(r) =Q*(r) for some @*.

Proof. r =Q(a) and A(a)=s give A(r) = AQ(a) =Q(A(a)) =@(s). I will show that s =Q’(a)
and this will give A(r)=0QQ'(a)=QQ'Q(r).
It is clear from the definition of @-transformation at the beginning of this section

that when all exponents z, y that occur in the product Q' =@,, ,, @;,, are integers, then
9 — 682903, Acta mathematica. 121, Tmprimé le 18 septembre 1968,
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Q'(a) is a Nielsen transform N(a) of a; and vice versa. Since the n-tuple s generates F,,
8=N(a) and so s=0Q'(a), for some @-transformation @'.

The following lemmas will shorten proofs in the sequel.

LEMMa 1. Let A be any automorphism of F,=F(a), A(a)=s, R a root-extraction,
r a t-tuple in F,, R*[w(a)]=R[w(s)], and Q* the map defined in the proof of Theorem 2.
Then RQ(r)=AR*Q*A(r).

The proof is the same as for Theorem 2.

LeEMMaA 2. If r is an n-tuple in F,=F(a) then {r}=1F, tmplies that r;=s,Cy; for O,

in F', and a set (sq, ..., 8;) of free generators of F,.

Proof. r generates F|F’ and so the matrix (n;;), with n;; the exponent sum of a; in
r;, has determinant +1. Hence [8] for some C; in F', (r,Cj, ..., r,Cy) freely generate F,,.

Setting r, 0/ =s; and C,=C, gives r;=s,C, as claimed.

LeMMa 3. If (sq, ..., 8,) freely generate F, = F(a) then (s,C, s,, ..., 5,)=@Q(a) for any C
m F'.
For F' is in the consequence of (s, ..., $,).

Section 6
Let r* be an n-tuple and F,=F(a)={r*} with f =a,C;, C, in F,. Let C,,, ..., , <
{ay, ..., @} with k minimal in the sense that no n —k+1 of the C,; vanish modulo that subset
of the a; not associated with them in r*. If r* =a, set k =0.

Replace 77, ...,7% by a;, ..., a, to get
* *
B (r*) =1 = (G, - e Qs Tit1y +++5 T )+

Then {r**} = F(a). Note that R, need not be a root-extraction even if k <n, as for example

when 15, .., 75 ¢ {ay, .., @)

THEOREM 4. Let r be an n-tuple and F,=F(a)={r}. Let C, designate an element of the
commutator subgroup F' of F,. Then there exists three Q-transformations Q,, Qs, @ and a root-
extraction R such that Q,(r)=(a,C,, ..., a,C,) =r*, RQ,Q,(r) = R,(r*) with k<n in the defini-
tion of R,, and Q4 R (r*)=a.

Proof. By Lemma 2, there is a set of free generators s=(s,, ..., 8,) of F, for which
r,=s,C}, and the C; are in F’. As in the preceding proof, s = N(a) for some Nielsen trans-

formation N, and the formal application of N to r is a @-transformation, @,. Thus @,(r;) =
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N(s5,0)=N(s;) N(C}) =a,C,=r{, for each ¢. Since F’ is contained in the consequence of
@y, ..., Gy_q, 8t most n —1 of the C; need be dropped from r* to get a set of the form R, (r*)
whose normal closure is again F(a). Thus B (r*) exists with & <n. This allows the following
procedure which effects R, by a root-extraction R acting on a @-transform Q,Q,(r) of
@,(r). Having chosen k as small as possible and having so renumbered the 7] =s,C, that
Cirys - Cn<={ay, ..., 4}, multiplication of r{(a) by suitable conjugates of @, C,,,, will
replace all @, ., symbols in r3(a) by Cy,;. It is not hard to see that such steps are @-trans-
formations and that r,(a) can, by steps of this sort, be cleared of all @, and d,,. Similarly
for k+2, ...,n and 73 (a), ..., ri(a). Let @,, acting on @,(r) =r* accomplish all this. Then the
mapping Qy(r*)— (@1, s By Tht1s s ) = Ro(r*) is a root-extraction B on Qy(r*) =@Q,Q,(r)
and so R, (r*)=RQ,Q,(r).

Finally, the resulting n-tuple R@,Q,(r) is reduced to the n-tuple a by sending
Tit1s ooor P INBO @yq, oo, @y Since 7,1 =aj41Cyyq and Oy, vanishes modulo ay, ..., a,, the
mapping that sends B (r*) into itself except that rj,, a1 is a @-transformation. Similarly
for 1oy, ..., To—>ay.

The main point here is that if {r,, ..., r,} = F(a) then modulo @-transformations a single
root-extraction takes r into a: @' BQ(r) =a. It will be seen in the examples that at the same
time r inay be a @-transform Q*(r) of @ even though @’ RQ is not a @-transformation. Next,
Theorem 5 takes, similarly, a into r and Theorem 6 gives a substitute for the non-existent

inverse of R.

THEOREM 5. If F,=F(a)={r} for the n-tuple r, then either r =Q(a) or r =@, RQ,(a):

r 18 Q-transform of a modulo at most one root-extraction.

Proof. Again, the r, can be changed to the form o,C,, C;< F' by a @-transfor-
mation, so assume aC = (a,C,, ..., a,C,)=r. Let Cy.1, ..., C,<{a,, ..., .}, so that F(a)=
{al, ooy O, T, +oos Tt Apply any @Q-transformation to aC that reduces k as much as
possible but retains this form of r; call the result r*. Since {r{,...,r5}=F(a) modulo
the remaining r', there exist words vy, ..., v, <{r}, ..., 7%} and words wy, ..., w, < {rk.1,
.., 7n} such that v,w,=ay, i:1,..., k. Set

"o * *
= (0 Wy, oo, Ve Wi, Tt 1y oovs Tr)
r_ * *
and 7 =(V1, eoes Vps Tt1y o o5 Tn)-

Then ' =@Q’'(r"), and since rj.;=ay.1C0%q, with Ci,;=1 mod (a,, ..., a)= (v, w,, ...,
v, wy), one gets ' =@Q'(r')=Q"(a). This in turn gives r'=Q'Q"(a). Together with r*=
R(r'), then r=Q*R(r')=Q*RQ(a).
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Remark. Here v,, ..., v, may be replaced by a,, ..., a; in 7’ and that would be a mapping
R, with {R.(r"}} = F(a), but R, can be done as a @-transformation in the present case.

In prepara,tioﬁ for the examples, these results will now be spelled out for F, (cf.
[14]) in two corollaries. They are followed by two easy consequences of Theorem 3 for

F, in general.

CorOLLARY 5.1. In Fy=F(a,b), for any C in F', {aC, b}=F(a,b) and any pair r
such.that {r}=F(a, b) ts Q-transform of a pair RQ(aC), Q(b).

CoroLLARY 5.2. If K,<{s,C,}, K, {5,C,} in F(a)=Fy=F(s,, s,), and K, K,=s,,
then (K, $,05) =Q(a).

Proof. As (sy, s,) is a free generating set for F(a), the normal closure of either s; con-

tains the commutator subgroup F' of F(a) and so the following are @-transformations:
(K, 8,05) = (K Ky, 5,05) = (81, 52Cs),
(81, 82C5) = (81, 8a)

By definition, (s;, s,) =A4(a,, a;) and so by Theorem 3, (s, s,) > (a,, @,) is a Q-transforma-

tion.

COROLLARY 5.3. If the set s=(sy, ..., 8,) freely generates F, = F(a) and if C is in the
commutator subgroup F' of F(a) then any root of s,C has a completion to an n-tuple RQ(a).
In particular, any root of s,C has the form &% C*.

CoroLLARY 54. If {r}=F,=F(a), the subset (ry, ..., ) of the n-tuple r may be
replaced by the subset (sy, ..., 8,) of a free generating set s of F(a) without diminishing the normal
closure it and only of {riq, ..., 7,} cONBAINS Spyq, ... S, modulo (Sy, ..., 8). If k=n—1 the

condition is always satisfied.

Proof. Let s;Cc{rf} so that r{ is root of s,C. Then (r],s,, ...,3,) = R(5,0, sy, ...,

s;) and since C is in the consequence of (s, ...,s,), the set (s,C,s,, ...s;) is @Q-trans-
form Q(s) of (s, ...,s,). As s=A(a), by Theorem 3, Q(s) = Q(4(a)) = Q(a). Now it fol-
lows that {r],s,, ...,s,} = F(a), whence, with Lemma 2, one gets r} =s} CF.

Section 7

The question whether the n-tuple r is always Q-transform of the n-tuple ¢ when

F(a)={r} depends then on the nature of root-extractions: can every R be effected by a
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Q-transformation? (This in turn depends on the nature of the identities the r,(a) satisfy.)
It was remarked already that some can; thus in Example 3 below r,< {a;} for each ¢ and
r=@(a). To my knowledge Examples 1 and 4, in F, and F, respectively, leave the question
open. One may well recall here that there is a growing list of undecidable group-theoretic
problems [11]. ‘

Suppose that it is undecidable whether all root, extractions can be written as @-trans-.
formations. Then it is useless to study examples: if faced with root-extractions E not
negotiable by a @-transformation, the fact cannot be proven, while if all are so negotiable
examples are pointless.

This came to the fore when I had to scrap what looked like a proof that the set (R, ¢)
is larger than the set (@) (The abstract announcing it was withdrawn before presentation

to the American Mathematical Society but unfortunately not before printing {15].)

THEOREM 6. If R’ is a root-extraction on the n-tuple r in F,=F(a)={r} and R'(r)=r',

then modulo Q-transformations at most two further root-extractions take ' back to r.

Proof. Let Ty(r)=a in Theorem 4, so that 7',is an B mod Q. Let T'; (¢) = r in Theorem
5, so that T isan R mod Q. The choice of 7' depends on 7. Then the diagram below contains
Theorems 4 and 5. An arrow. is reversible there only if the mapping involved can be effected
by some .

If v =Q(r), @ takes r' back to r; otherwise 7’5 T; does, with each 7' containing at most
one root-extraction: if ¥ =@(a) then T, if r =@Q(a) then Ty is the identity transformation
modulo @. Accordingly, the effect of R’ is undone by at most two successive root-extrac-
tions separated by @-transformations.

So it is possible to reverse the effect of a root-extraction by further such steps, but the
latter do not constitute an inversion in the combinatorial sense (as given above in the
definition of invertibility).

This is just what Theorem 1 says. On the other hand, it can happen that » =@Q(r),
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while also #' = R(7). In this case @ inverts @ and not R, since inversion is a formal pro-
cedure by definition.

If not every R can be effected by some @, then the set of all n-tuples r with conse-
quence F, = F(a) in F(a) falls into several subsets, S;, ... such that each subset is closed
under the group Q(n), each is connected to the one containing a =(a,, .... a,) by a single R,

and each pair of subsets is connected by at most two R’s.

Section 8

In the proof of Theorem 1, the expression under (1) gives the a-word p, as a conse-
quence of the n-tuple r of a-words. It is chosen so as to make statement (3) there correct
for each p; in p=(p,, ..., p,). By going over to the expression (1’) the machinery to deal with
Nielsen transformations (in Fj, though) is made available [12, 8]. This will be utilized
to study n-tuples r whose consequence is all of F,,.

In the expression (2) replace p; by a, for each ¢ and drop the requirement (3) for it.
That is, for a given n-tuple of a-words r, consider any expression of r as a-consequence.
It will represent a Q-transformation if a matching n-tuple of expressions of the type (1)
exists making statement (3) true. A necessary condition is that the corresponding expres-
sions (2') reduce to the n-tuple ¢ under an automorphism of F,,. The condition is not
generally sufficient since only certain automorphisms of F,, correspond to @-transforma-
tions of F,,.

For example, in F,, on the pair of (single) symbols a and b, let r = (a2bab, b) be written
as (ab*b=1, b). Then Q,,(r) =(ab?, b), Q12Q,.(r) =(a, b) for the obvious choice of §;;. In this
sense the expression (ab®b~1, b) of r in terms of (a, b)-conjugates represents r as @-transform
of (a, b):

r=Q(a,b) for Q=[Q12Qpl".

Now if r=(a%bab, b%aba) is written as (ab®b—1, ba®a—1), then no such @ exists even though
this 7 is @-transform of the pair (a, b). The latter fact is shown in Example 3 below, the
former is seen as follows. Replace the a-symbols in the exponents by ¢, and the b-symbols
by d, to get (ab°b~1, ba%a~1). Write this as the pair of elements (acbéb, bdada) in F,=
Fla, b, c, d). It can be shown [12, 8] that this pair is not reducible in terms of (a, b, ¢, d)-
length by automorphisms of F,.

The foregoing is geared to certain generators @;; of the group @(n). For example, each
Q; in the @ given above reduces the number of conjugates of @ and b in the pair of words

it acts on. {Of course this statement is meaningful only when the words are given as products
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of specific conjugates of @ and b.) Thus @ effects here a “direct”” reduction of the length
in question. In special cases an element of @(n) can be so written on the generators @,
defined in Section 5 that it reduces a-length directly (that is, @ =), ... @, each @, some
@:; and each shortens @,_; ... Q,(r)). In other cases another set of generators @;; may do
this and the @y needed can actually be found. For each of these cases an example will be

given along with another for which the method fails. (See also [14].)

Example 1: G =(a, b, c; b2be, &?dca, a%bab)=(a, b, c; r,, 75, 75). Conjugation and sending
the generators into their inverses take r into the triple known [10] (see also [13]) to give
a presentation of the trivial group and so G=1.

It remains undecided whether r=Q(a, b, ¢); the problem will now be reduced to a
presentation of the trivial group on two generators.

Let

A(a,b,¢)=(a,ch,c), Aya,b,c)=(a,b, cbaba),

Ql(Tr W’ Z) = (Tr WF’ Zﬁ), Qz(T, W7 Z) = (T’ W: ZW):

and let §); remove every ¢-symbol from the (a, b, ¢)-words T, W: Qy(T(a, b, ¢), W(a, b, ¢), ¢) =
(T(a, b, 1), W(a, b, 1), c).

Then @,Q, 4,(r) = ((b¢)2be, éacaé, babac), and if one sets T(a, b, 1) =Ula, b), W(a, b, 1) =
V(a, b), then @Q;A4,Q, 4,(ry=(U(a, b), V(a, b), c). The words U and V will be explicitly
needed only in Example 4 below, so these two long words are not given here.

The 4; are automorphisms of F,= F(a, b, ¢) and the Q, are clearly @-transformations.
It can be shown that the product 4,4,0,4,0,Q, 4, is a Q-transformation, but the product
that is of interest here is ©, 4,0,Q, 4,. Tt differs from the former by an automorphism of
F,. The situation is as follows. Since Theorem 3 is applicable only when r=Q(a, b, c), and
I have been unable to decide whether or not it is in the present example, it is clear only
that 3 4,0,0, A, takes r into a triple that gives a presentation of the trivial group and
that (@, b; Ula, b), V(a, b)) =1.

It may be noted that while r=@(a, b, ¢) would follow from (U, V) =é(a, b), whether
the converse is true remains an open question.

Computation shows further that the, subgroup H generated by ry,r¢, and ric con-
tains the element ba%bcad =rberg which is a free generator of F(a,b,c). While this
word generates F(a,b,c) with @ and éb, it generates H with », and 5.

What follows is a general statement for which this is an example and a few related

facts.
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TuEOREM 7. If the t-tuple w in F, generates a subgroup, H, containing a free generator

8, of F,, then there is a Q-transform of w that contains s, and generates H.

Proof. Let A(s,)=a, and A(w)=v. Then v generates H*=A4H, a, is in H*, and [2] there
is a Nielsen transformation N such that N(v) contains a,. Of course N(v) generates H*,
and N(w)=DN[4(v)]=AN(v). Hence N(w) contains A(a,)=s, and generates H. N is a Q-

transformation, so that the proof is complete.
CoROLLARY 7. Ift=n and {w}=F(a), then s, of Theorem 7 is contained in w modulo Q.

TarorEM 8. If, for arbitrary n, w=(w,, ..., w,) and F,=F(a)={w} imply that the sub-
group H generated by w contains a free generator of F(a), then a =Q(w).

Proof. Let s =s(a) = A(a) and s, = A(a,) the free generator contained in H. Then Theorem
7 applies. Form the Q(w) of Corollary 7 that contains s; and set Q(w,)=s,. Rewrite the
remaining Gw,} in terms of the generators s(a) of F(a) and drop all the s,(a) occurring in
them. This results in a Q-transform Q,(w) consisting of s; and Q,(ws,, ..., w,). The (n—1)-
tuple Q,(w,, ..., w,) is written on the (n—1)-tuple s,(a), ..., s,(a) and its normal closure in
the free group F,_; =F(sy(@), ..., 8,(a)) is F(sy(@), ..., s,(a)). Since F(a) is the free product
of this F,_, with the free cyclic group generated by s,(a), the element s,(a) completes any
full set of free generators of this F,_; to a full set of free generators of F(a). Thus, if the
theorem holds for.n —1, it holds for »n. Since the case n=1 is trivial (for then w=a®), the
proof if complete.

THEOREM 9. Let r=(ry, ..., 1), r*=(r}, 73 ..., 1) in F,. Then r and r* are conse-
quences of each other if and only if either 1) r* = RQ(r) and r = R*Q*(r*) with Q and Q* pro-
ducts of Q; which leave r,, ..., r, fixed or 2) r* =Q(r).

Proof. Let, K(X) mean a consequence of X in F,. The sufficiency of either condition
is clear. To prove their necessity, let {r}={r*}. Then 7} =K,(r,)K(rs, ..., ;) and r =
LK *(ry, ..., 7,). If now r*+Q(r), then r* may be constructed from r (or vice versa) as
follows: the mapping that takes r, into Ki(r}) and leaves r,, ..., r; fixed is the product ¢
of certain Q,, with j>2, each of which leaves 7, ..., 7, fixed. In the resulting ¢-tuple
Qr)=(K1(r}), 14, ..., 1), Q(r))< {11} so r¥ =RQ(r,) and RQ(r)=r* with R(r;)=r, for j>1.
It may be noted that when #*=¢(r), then  may not possess the property stated
under 1),

Remark. Both 1) and 2) may be true, as in Example 2 below. Whether some ¢
can be effected by root-extractions when {r} +F(a)=F, seems to be an open question.
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Also this: under what conditions is {R(r)}={r}=F(a) possible. F,/R(r)~ F,[/r=G may
be another matter, as indeed it is when {r} is proper subgroup of {R(r)} (and G is non-
Hopfian).

The following is easily verified.

THEOREM 10. Let r=(ry, ..., 1), r*=(8y, T3, ..., Tn), and 81 1] for any © n F,=F(a)=
{r}. If s=(sy, ..., 84) freely generates F(a) then each of the following four conditions vs necessary
and sufficient for {r*}=F(a).

1. r, and s, are roots of one another modulo r,, ..., 7,.
The consequence modulo s, of 1, ..., T, cONIAINS Sy, ..., 8.
If r, sf modulo r,, ..., 7, for any ex in F(a) then it can be replaced by some conse-
quence K(s,) +si of s, without altering {r}.

4. r, is consequence of 1y, ..., T, modulo s,.

Example 2. If r,=a,Cy, r3=a,0y and {ry, r,} = F(ay, a,) = F,, then a, is a root of a,C,
and (a,, ;) =Q(ay, @) (Lemma 3). For n=2 Theorem 10 says just this. A narrower

generalization of this observation is the following direct consequence of Lemma 3.

TueoreM 11. If {r,, .., r,} =F,=F(a) then any n—1 of the r, may be replaced by a

suttable subset of some free generators s,, ..., s, of F(a).

Example 3. If X =a’hab, Y =0b%ba, then b=R(Y), and @Q*(X,b)=(a,b). Thus,
R(X)=X, Q*R(X, Y)=(a,b). While this does not prove that {X, Y}=F(a,b), finding
a @ to replace B would. Such a @' can be constructed from the @, given below.
For @=0,0,0,, QX,Y)=(a, b), and since Q,(a, b)=R(X, Y), one gets @, Q(X,7Y)
=R(X,Y). Thus Q' =@Q,Q;Q,Q,. The @, are as follows:

QV, W)=(VW", W),
QuV, W)= (V, WV'?),
QuV, W)= (VW, W),
QuV, W)= (VW1 W).

In this example Q,Q(X) reduces to X in terms of the symbols (a, b) but not in terms of
the (X, Y)-conjugates that define it. In contrast, an automorphism A that leaves the symbol
a fixed, changing only b, can be carried out (as a product of generating automorphisms)
so the symbol @ never changes. For in this case the set A(a, b)=(s;, s,) has the form
(@, ab%a™) [2, 12].
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Example 4. Let X =a2bab serve as an abbreviation to write U and V of Example 1.
Then U =bX"%, V =X'-22* and R(U, V)= (U, X) =Q(a, b). This Q has the effect of stripping
U of X°* and then reducing X =d-b “*! to . Can the work of the root-extraction R be
done in an invertible manner? My many attempts to decide this, only some fortuitous,
revealed nothing. For example Marshall Hall’s commutator caleculus [5] stumbles over
identities, while an algorithm involving length-arguments stumbles over the necessity to
distinguish between relative and absolute minima [12]: if |r| is the sum of the lengths
|7;| (the number of a-sumbols in 7, cyclically reduced), then the shortest Q(r) for all @
may be shorter than minima relative to direct reductions, whether under the generators
@y; or some others. This is true even if one allows |Q;,(r)| <|r| instead of strict inequality.
That |U| + | V| is minimal with respect to the @,; follows by inspection from the next
theorem. It is readily (if a little messily) established that this pair is minimal under auto-
morphisms of F(a, b). That all this is not decisive will be seen from further examples.

To simplify some statements, I will call conjugates w® of w in F(a) short conjugates
if |w®| =|w|. Thus w=abc has the short conjugates abc, bca, cab and their inverses. The
cyclic word w will mean some one of these, chosen in advance.

In the definition Q,,(r;)=(r;75)’ the word sy was chosen to make the image-word
cyclically reduced once it is reduced. Thus (r,73)* would be at least as long for any element
z (or —z) of F,.

In (ryr3)Y =1 r5" the factors, »{ and 7§, need not reduce to short conjugates. If #{,
ry do, {73 need not reduce to a short conjugate. To avoid the verbal complications this
would cause the theorem below does not mention @-transformations. A rough but simple
way of putting it is: reductions by @-transformations can be effected by using only short

conjugates.

TurEorREM 12. In F(a), let A,B be cyclically reduced words and neither the empty word;
let AY, B? and all words appearing in exponents be reduced, and A*, B®, A B* cyclically reduced
when reduced. If |AYB*| <|A| then there is an A" and a B’ such that | A" B®| <|AY B?|
and (A" BY)Y =AY B

Proof. Suppose first that B? is a short conjugate. Assume B?= B (this will be cor-
rected for). So |A*B| < |4 |. 4Y can be taken reduced as written, for if it is not then 4
can be replaced by a short conjugate 4¥ and y replaced by wy (this too will be corrected
for).

If y=+1 there is nothing to prove. Otherwise some segment of B, and some of ¥,
certainly cancels in 4YB: y=Uw, B=®C. Then A*B=wUAUw-%C, AU=4"", |4""| <
| 47|, | B®| =| B|, and AY” B® = (A B)®. This process reduces the length of y, until a short
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conjugate, A% of A and a short conjugate, B, of B give a conjugate A*B* of AYB®.
Clearly |A“B’| <|A4YB?|. To effect the promised corrections one need only replace A
respectively B by a suitable short conjugate.

It remains to reduce B* to a short conjugate. Again take B* reduced as written. Since
| 4vB*| < |A], at least half of B? and so of B, must cancel; hence all of Z does: 4YB*=
Uz ZBz. Then A% B=(AYB?*f, | A¥* | <|A4*|, and Bis cyclically reduced. The necessary cor-
rection now consists of replacing B in A% B with a short conjugate BY. This concludes the
proof.

Let @ =IT @, with the @, chosen from a fixed set of generators of the group of -
transformations of n-tuples in F,=F(a), and X =][_1Q,(r)=X(a). If |Q«X)| <|X]| for
each i: 1, ..., k, then @ is said to be semidirect on these generators (cf. [2] and [12]). That
semidirect reductions take the presentation (a,, ..., @,; 7y, -.., 7,) of the trivial group into

the trivial presentation (ay, ..., @; sy, ..., 8,) only in some cases will be seen in Section 10.

Section 9

The machinery gotten so far generates all presentations of zero deficiency of /=1
for fixed n. In the process of applying it, new, often interesting, presentations arise. This
can be most helpful with the work on the decision problem: when is a presentation that of
G=1.

Two further methods of generating presentations of deficiency zero of G'=1 follow.
They are essentially Tietze-transformations (see for example [8]) and do not keep n fixed.
One is a construction from (a; r) when r=Q(a). It is a by-product of a result on @-trans-
formations (Theorem 13). The other uses the method of Magnus [6] and is tied to my next
example.

Let r and Q(r) be two n-tuples in F,= F(a). Let Fy, = F(b,, ..., b,, ¢, ..., ¢;). Fix the
manner in which the Q(r;) are written as products of r-conjugates (in case this is not uni-
que) by setting Q(rl)zKl(r)zrflf rilk ..., and so on for each r,, using fixed short con-
jugates of each r; throughout (Section 8), and reduced a-words in the exponents.

Next replace the exponents x(a) by the exponents z(b), and the words r;(a) by the
symbols ¢,. This turns the K ,(r) into (b, ¢)-words K (b, ¢) = K;. On setting @(b;) =5, for each
1, § turns into an element Q' of Q(2n): Q'(b, ¢)= (b, K'). Clearly, Q'(b, ¢) generates F(b, ¢)
freely so @' is an automorphism of F,,. The inverse, written as a combination of the 2n
symbols b,, ..., K7, ... freely reduces to (b, c) when Kj(b, c) is substituted for each symbol
Kj;. Combinatorially then one may put@'(b, ¢) =A(b, ¢) =(by, --., by, w,(b, C), ..., w,(b, ¢)) =

(b, w(b, ¢)). They are associated free generators of F(b, ¢).



146 ELVIRA STRASSER RAPAPORT

Suppose now that Q(r) =a. Then the n words K;(b, ¢) reduce to the » symbols a; when
the c-symbols are replaced by the words r(a) and b-symbols by a-symbols, subscripts
matching. It follows that the n-tuple w(d, @) (gotten from w(b, ¢) by writing a, in place
of ¢, for each ¢) generates F(a, b) with the n-tuple b: F(a, b) is a free product

F(a'a b) = Fn(w(bs a)) * Fn(b)s

while the w(a, a) freely reduce to the r;(a). To get w(a, @) from w(b, a) the substitution
b=qa was made. This amounts to setting b@ equal to 1. Let A* be the automorphism that
takes b; into b;a; for each 4, and let A*(a, ..., a,, by, ..., b)) =(ay, ..., @y, byay, ..., bya,) =
(a, ba), A*(w(b, a)) =v(b, a). To get the n-tuple w(a, a) from the n-tuple v(b, a), one must
set A*(ba)=b equal to 1, since v(d, a)=w(ba, a). Thus, v(1, a)=r(a) identically in F(a).

This gives (cf. [13])

TaEOREM 13. If Q(r) =a then by using dummy symbols by, ..., b,, the n-tuple r(a) can
be written as an n-tuple v(b, a) such that the 2n-tuple (v(b, a), ba) freely generates the 2n-tuple
(a, b), and v(1, a)=r(a) tdentically.

The converse is of course not true: if by, ..., b, are dummy symbols and the r,(a) can
be written as words s,(a, b) that freely generate F(a, b) with b, a,, ..., b,a,, it does not follow
that Q(r) =a; not even if s(a, 1) =a. For this to happen the n-tuple s(a, b) must be a special
kind. But when Q(r) =a, the n-tuple r =r(a) may now be said to arise from a free generating
set in ¥y, by dropping half the symbols in half of the set.

This may be compared with the following situation. Let G be any group having a

presentation on 7+ 1 generators and » defining relations
’ ’
P':(g,ay, i, @p} T1y ooy Tn)

for which G/g=1. Knot groups are the most studied among these. (See [¢] for example.)
Thus, droppping all g-symbols in P’ gives

P:(ayg, ooy Qp; 17y, ooy 7o) =1.

Conversely, the insertion of powers of a new symbol in any way into the 7, in P gives some
presentation P',

But knot groups are small comfort here: the topologist manufactures his presentations
from knots [3] or braids [1] and then the resulting P has the form (a; s) for a set of free
generators s=s(a) of F,. Every known presentation of knot groups seems to be derived
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from these. So the shoe may be on the other foot: one must first decide iow to make P
into-a presentation of a knot group [3].

Replacing the r; of Example 1 (Section 8) by @276a’b, b%bc, i*dca gives a presentation
of type P’. (This is no knot group as its Alexander polynomial is 2¢% g2 —4g 1 2. [4]).

Section 10
Example 5. This starts out with a variant [9] of Example 1:
r,=bab@®, ry=cbib?, rz=acac’.
Let Q=0;0,0,, Ala,b,c)={ac,b,c),
QU V,W)=(UV*, ¥V, W),
QU, V, W)= (U, UsVU ", W),
QU V, Wy=(U,V,UWU-ca-3a),
Use w=>b%iba as an abbreviatton to write Q(Ar)= (c, w?~", aw’), P=ab— b*— b%i. Set
u(a, b) = w2=%"= Q(Ar,),
v(a, b) = aw” = Q(Ar,).
Then wu(a, b)=bC,, v(a,b)=abC,, with C, in F', and |u|=15, |»|=16. Of course,

P*: (a,b;u,v)=1.

The pair (u,v) is minimal with respect to automorphisms of F(a,b) and the Q.
Let b*ab*=ay, k:0, +1,.... When rewritten in terms of these symbols and powers
of b, the Q-transform (u?,u%v%) of (u,v) becomes

U0: ub = Edoa_l dl (lod_z a_i,
Vo=ubv"=aya_1a,G_1050_28ya_13;%0_20_1.

Set U= f(a_s, a1, ay, ay, b) and define Uy .to be flay_2, @r—_1, t, @x+1,b) for every inte-
ger k. Similarly for V,, and any other word W,=g(a,, @1, ..., a;b). This gives a

presentation

P': (b, ay; Uy, Vi, @ bag 11 6, %: 0, +1,...)=1.
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Let Wy=adoa_13, 6,0 2a_, so that Wy=>bU,. Then the relation U,=1 can be written
as b=W, and the relation U,=1 as b= W,. It follows that the U, may be replaced
by the W,Wy.1, for every k, in P’ and the symbol b by any W,. Choosing W, to
replace b changes P’ to

P (ay; Vi G Wottiess Wo, W Wisa, £:0, +1,..)=1.
Since ¥V, and W, contain only a_», a_, ay, a;,
.H0= (a_g, a1, &y, A5 VO’ di Wnaxﬂ.l WO’ ’b.l —2, "‘1,0)

is a group. If there are no further relations between these symbols in the presenta-
tion P" then Hy=1 (and conversely). By introducing the symbol b and the relation
b= W, and replacing W, with b in the @ Woa;11 W, H,, gets the new presentation

P (b,a_s, a_1, a4, ay; Vo, Ug, @;bay11 5, i: —2, —1,0).

Eliminating @_s,a_;, and a, in the obvious way reduces P** to (a,, b; u(ay, b), v(ay, b)),
which is just P*. Thus P** and H, are presentations of the trivial group.

Note that in P** the last four words are free generators in Fy= F(a_s, a_1, @y, @, b),
though not associated. In particular U, is a way of writing the word u(a,b) of P* as

a free generator on five symbols.

Section 11

Concerhing a-length of words, absolute minima and minima obtained by random
semi-direct reductions relative to given generators of the group @(n), may not coincide. If
they do then r=@(a) only if any semi-direct reduction of r yields @, and so one has an
algorithm to decide whether r =@(a) or not. Naturally, the generating set of @-transforma-
tions must be a reasonable set, in the sense that if [@Q'(r)| <|r| for some member @’ of
the set (for the r in question), one ean actually find @". The following examples show that

the two minima in question do not coincide for any reasonable choice of generators (cf.

[11]).

Example 6. Let u=02dbc, v=¢*c%h. To simplify the notation allow Qy,(u) to take the
form u's™ as well as v¥u¥. The transformation @ given below reduces |u|+ |v| =(5+9)
to (1+8). Let Q,(u)=u, @Q(v)=uPvuP*=V, P,=—b—bchb—bcbch, Py=—2b% —b%®. Let
Qo(u)=TVuP* Vo =U, Qy(V)=V. Then @, is the product of @, -transformations, ¢, that of
Q,»-transformations, and Q@ =Q,@Q, takes (u, v) into (b, éb"). As |Q,(u, v)| =(5+8), @, is a
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reduction on (u, v) and @, a reduction on Q,(u, v); but the @;; that make them up produce
fluctuations of length which cannot be avoided; that is, the transformation is not semi-
direct.

@, and @, above are instances of a transformation of the type
QX, Y) = ([X*Y"]", Y).

If z is an arbitrary monomial, P an arbitrary polynomial in the group ring of ¥, X and Y
elements of F,, then these transformations include all Q;;. Thus they generate but are not
a reasonable choice of generators in terms of which length-reductions might be made
semi-direct. For there is no way of saying what z and P will reduce the length of a given X.
For example we do not know whether X has a conjugate X? equivalent modulo ¥ to some
given word W; if we did, we could check through all the W that are shorter than X. As
Theorem 12 does not apply here, the arbitrariness of z is already a stumbling block.

Example 7. This will show that for an n-tuple which is minimal with respect to the
@;; but not minimal ¢, Theorem 2 may provide an algorithm for finding the ¢-minimum.
Let u=>b%bé, v=cb’. Then if @ =Q,Q,@,, then Q(u, v)=(b, c) for

Q(X, )= (X"Y", Y),
Q2(X3 Y)= (XcY_c, Y):
(X, Y)=(X,YX").

Let A(b, ¢)=(b, cb), so that A(b, c)=(b, cb). As Q,(u, v)=(cb®, cb"), @, is not direct; in fact
there is no direct reduction here on the generators Q,;. How was  found then? First one
notes that A”(u, v) is direct for each application of A, and that @, 47(u, v) = (b, c) is direct.
Then @ is found by converting this into a @-transformation as follows. @, 4"(u, v) = (b, c)
implies @, (u, v) =A"(b, c); this is used to find Q,(u, v). Then A" is converted into a Nielsen
transformation and is applied to @,(u, v). Nielsen transformations are Q-transformations
and this one turns out to be Q;Q,. The reason for the appearance of Q, is that an auto-
morphism, such as A, changes both words of a pair while a Nielsen transformation N

changes only one.
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