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1. Introduection

Let & be a locally compact Abelian group and let x denote a regular probability
measure on &. If {£,, n>>1} is a sequence of independent & valued random variables
each having u for their probability law, then the random walk with initial point S, is the
Markov chain 8,=8,+& +...+&,. If @, is the minimal closed subgroup of & generated
by the support S(u) of u, then Py(S, €&, for all n>1)=1, where P,(-) denotes conditional
probability given S,=x. Henceforth we will assume that &,=@®. This entails no real loss
in generality and is essential for the proper formulation of our results. In addition, through-
out the first 13 sections of the paper we always assume that & is also noncompact. For
a compact & the corresponding results (where meaningful) are far easier to establish. We
will discuss these in our final § 14.

Basic notation and concepts used throughout the paper are listed in § 2. The reader
should refer to this section while reading the introduction as the need arises.

A random walk is said to be recurrent if for some compact neighborhood N of 0,
> 1Py(8,EN) = co. Otherwise the walk is called transient. It is a known fact (see Loynes
[7]) that for a recurrent walk > 5., P,(S, € N) = oo for all x and open sets N, while for a tran-
sient walk >4 P(S,€K) < co for all # and compact sets K. Moreover (Loynes [7]) in a re-
current walk, P (Vy<oo)=1 for all open sets N=+0. A random walk is nonsingular if
for some =1, u™ has a nonsingular component relative to the Haar measure on &.
For a nonsingular walk the sets N in the above statements may be taken to be Borel
sets of positive Haar measure.

Briefly, our main goals in this paper are five-fold. First, to establish the renewal
theorem for transient random walks on &. This will be done in § 4 and will be the only

place that transient walks are discussed. The remainder of the paper is devoted to recurrent
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walks. Our second main objective of this paper is to establish the existence and basic
limit properties of recurrent potentials and to use these recurrent potentials to establish
the asymptotic behavior of the hitting distribution and Green’s function for relatively
compact sets. This will be carried out in §§ 5-9. Our third goal is to find all solutions of the
“Poisson”’ equation Pf=f+¢ that are bounded from below. This will be done in § 10.
Our fourth goal, carried out in §§ 11 and 12, is to investigate the analytic properties of recur-
rent potentials. Our fifth and final goal is to investigate the behavior of P (V;>n) for
large . This will be carried out in § 13.

As in the Euclidian case our methods will be a mixture of Fourier-analytic and proba-
bilistic arguments. While for the groups R? the prerequisite Fourier analytic facts were
standard tools of the trade, this is not the case for arbitrary locally compact groups &
In § 3 we gather together those necessary preliminary facts which are needed to proceed
further. Some of these may be of intrinsic interest as, for example, the analogue of the well-
known fact that on R% 1—Re () >c¢|0|2

For a transient random walk the renewal measure »(4)=>2,P(S,€A4)< oo for all
relatively compact sets. A primary problem in the study of transient random walks on
Z® was the asymptotic behavior of »(4 +x) as z—o00. In § 4 we examine this problem for
transient walks on &. A transient walk is said to be type two if

(1) @=RoH or ZOH (where H is a compact group), and

(2) the random walk induced on R or Z has a finite non-zero mean m.

A transient walk is type one if it is not type two. The behavior of ¥(4 +z) is given by the
renewal theorem (Theorem 4.1) which asserts that (A4 +x)—0, x— oo except for a type two
walk. In that case if say m >0 and 4 € 4, then

lim v(4+z)=m™'|4| and Jii)moov(A+x)=0. (1.1

>t oo

Let Vz=min{n>0:8, € B} denote the first hitting time after time 0 of the Borel set B,
and let

UB(x,A)=E’|:§ lA(Sn—x)] (1.2)
n=1

be the expected number of visits to 4 starting from z on or before time V. The renewal
theorem easily yields the following facts about the behavior of Upg(z, 4) as 2— oo in the type
two case. Suppose m >0, BE®+, |0B| = 0. Then for any 4 € A,

T—>— 00

lim UB(x,A)=m“f P (Vy= o) da. (1.3)
A

In particular, if A< B we obtain the first hitting distribution of B from — oo. Sharper
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forms of the renewal theorems and of the behavior of Ug(z, 4) are available (see Theo-
rem 4.2) when the walk is non-singular.

The renewal theorem for discrete groups was obtained by Kesten and Spitzer [5]
and the present proof is patterned after theirs. When specialized to R?, d>2, the renewal
theorem gives the first complete proof that for an arbitrary d-dimensional transient
random walk lim,, »(x +A4)=0 for all relatively compact sets A. The first results in this
direction were obtained by Chung. Complete results in the lattice case were obtained
by Spitzer [13]. When specialized to d =1, the renewal theorem is, of course, the ordinary
renewal theorem proven in its final form in the general case by Feller and Orey [2] and
strengthened in the non-singular case by Stone [17].

The remainder of the paper is devoted to recurrent random walks on . For recurrent
walks a major problem is to find the asymptotic behavior of Ug(z, 4) as - oo and, dually,
the asymptotic behavior of Ug(z, 4 +y) as y— oo, when B is a relatively compact set. A
recurrent walk is said to be type two if

(1) ®=RO®H or Z® H, where H is a compact group, and

(2) the random walk induced on R or Z has mean 0 and finite variance ¢2.
Otherwise, the recurrent walk is called type one. In Theorems 5.5 and 5.7 we show that if
BE€ A, int B2, then for 4 € 4 there are functions Ly(x), Ly(x) such that

lim Ug(z, A+y)=|4| Lz(x) (1.4)
lim UB(x,A)=f Lp(t)dt (1.5)

for every type one walk. For every type two walk there are functions L (z), L (z), Li(x),
L3 (x) such that

lim Ug(z, A+y)=|4| L (x) (1.6)
y—>+oo
lim Ug(x, 4)= f L) dt. (1.7)

If A< B then Ug(x, A) is just the probability that the set B is first entered at some
point in 4. Thus the result in (1.4) shows that in every type one recurrent walk there is a
well defined first hitting distribution at infinity that is absolutely continuous. On the
other hand, if 4 < B° then Upg(x, 4)is the expected number of visits to A before hitting B.
The results in (1.4) and (1.5) show that for every type one walk there is a well defined
meaning to the expected number of visits to A before hitting B starting from infinity and

also a well defined meaning to the expected number of visits to infinity before hitting B
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starting from x. Of course, similar interpretations hold for the results in (1.6)—(1.7) for
type two recurrent walks.

To establish these results we follow roughly the same procedure that we did in the case
of vector groups. Let § be the class of continuous functions whose Fourier transforms have
compact support and satisfy several other technical requirements (see Section 5). Let
920, g€, J(g)=1. We show in Theorem 5.3 that for all f€ the potential

Df (z) = ilTHll E{ E;l AMI () 9(8n) — (S — x)]} (1.8)

exists and has the asymptotic behavior
Jim [Dftw—y)~ D~ y)1=0 (1.9)
for every type one walk while
Jlim [Dfz~y) ~ Di(~9)]= Fo*J(f) pla) (1.10)

for every type two walk.

As in the Euclidian case we show that (1.8)-(1.10) are equivalent to a certain problem
in Fourier analysis. In Theorem 5.2 this Fourier analysis problem is solved for a com-
pactly generated & by appealing to the basic structure theorem for such groups to reduce
the problem to the Euclidian case where the results of Port and Stone [11] apply. We then
assume that Theorem (5.2) holds in general to show that (1.8) to (1.10) are universally valid.
Having these results we proceed (as in the Euclidian case) to show that the fundamental

identity
Df(x) — Iz Df(z) = — Gpf(x) +J(f) L() (1.11)

holds for all BEB having non-empty interior and all f€5¥. The desired results (1.4)—(1.7)
then follow from (1.8)—(1.11) just as in the Euclidian case. The remainder of Section 5 is
devoted to establishing various additional properties of the potentials Df(x) and of the
behavior of G5 f(x) for f€F which are needed later.

The establishment of all these results then rests upon showing that Theorem 5.2 is
indeed valid in general. By using the methods of Stone [15] and some ideas from Kesten
and Spitzer [5] this is shown to be the case for all nonsingular walks on an arbitrary & in
§ 6. The singular case then follows at once by use of the approximation procedure spelled
out in Theorem 3.2.

A by-product of the investigations §§ 5 and 6 is the establishment of the conjecture of
Kesten and Spitzer stating that the random walk generated by y is recurrent if and only
if for a compact neighborhood N of 0
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1
fNReITIL:l(_G)- df = oo, (112)

For a discrete group this was done by Kesten and Spitzer in [5]. For the groups R this
was first done by Ornstein [8] and later by another method by Stone [15].

As was outlined above, potentials of functions in § suffice to establish the main proba-
bilistic results (1.4)-(1.7) for sets in 4. For a singular walk 4 is the most general class
of sets for which these results are universally valid. For many purposes (in particular,
for the establishment of a rich analytic theory) it is desirable to have potentials of func-
tions f having compact support. Counter-examples show however that for singular walks
there is no non-trivial class of these functions for which we can assure that the potential
Df exists. Thus we turn to consider nonsingular walks in § 7 where we show that all these
desired strengthenings are valid. These may all be summarized by saying that for a non-
singular walk all the results of § 5 are true when the class of set A4 is replaced with the
class B and the class of functions  is replaced with ®.

The operator Df was defined in the sense of Abel summability and it is natural to
inquire if this mode of convergence may be replaced by ordinary convergence. The pro-
cedure for doing this is outlined in § 8.

In § 9 we examine some further asymptotic properties of Af(x) and Lg(x). It is shown
that if J(f)>0 and f€ (or @ in the nonsingular case) then lim ., Af(x) = co except per-
haps if B is isomorphic to R'@H or Z'@H. In the exceptional case there is a unique
constant L, 0 <L < co, such that for f€% (or @ in the nonsingular case), J(f) >0, either

lim Af(x)=co and lim Af(z) =LJ(f)

T>+o0

or lim Af(z)=LJ(f) and lifn Af(x) = oo.

Similar results are shown to be valid for Lg(x). Results of this type were first given for
discrete groups by Kesten and Spitzer [5] and the method used here was patterned after
theirs.

Up until now we have focused our attention on mostly probabilistic matters. In
§§ 10-12 we consider some analytical questions connected with potentials for recurrent
random walks. We call a locally integrable function f#@Q, superregular if f is defined on
& — B, bounded from below, and @7 <fa.e. on & — B. In § 10 (Theorem 10.2) we show that
if BEA*, |B|>0, then when u generates a recurrent type one walk there is a unique
¢>0 such that f=cLp+Gp(f—@5 f) a.e., while if u generates a recurrent type two walk

there are unique constants ¢;, ¢, >0 such that f=c, Lk +¢,Lz+Gp(f—@sf) a.e.
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The operator (P — I) is the analogue of the Laplace operator so the equation (P —I)f=¢
a.e. can be considered a Poisson type equation. For potential theoretic matters the correct
recurrent potential operator is 4,¢=Dg—@+bJ(p) where b is & constant. Using this
operator we show that potentials A,p provide solutions of the Poisson equation for ¢ € ¥,
(or @+ in the nonsingular case) that are bounded from below. For nonsingular walks we
then show that the Poisson equation with g € or @ has a solution bounded from below
if and only if J(¢) >0, and that for a type one walk the only such solutions are f=Ag+f

a.e., while for a type two walk the only such solutions are
J
f=A<p+°‘—:fﬂ+,3 ae.,

where f is an arbitrary constant and « a constant such that |«| <1. Results in this direction
were found by Spitzer [13] for recurrent random walks on Z? and by Ornstein [8] for non-
singular walks on R?,

In the singular case our uniqueness results are not as general as those in the non-
singular case. If we let E be the direct sum space of the bounded measurable functions
with the one dimensional space of multiples of Ag (where g€, g0, J(g)=1) then for
@€, Ap€ E. In Theorem 10.4 we show that the only other solutions of Poisson’s equation
which are in E are f=Ap+§ a.e.

Quite a different kind of problem is the Poisson equation with boundary condition.
Given a set B, a bounded function ¢ on B, and a function f having support on B’ we seek
a funetion % bounded from below such that (P—I)h= —f a.e. on B and h=¢ a.e. on B.
We conclude § 10 by showing that for sets B€ 4* having nonempty interior the only lo-
cally integrable such solutions are h=cLz+Hzp+Gpf ae. in the type one case and
h=c¢,Ct+¢, L +Hpp+Ggf a.e. in the type two case.

Our purpose in § 11 is to investigate to what extent the basic principles of logarithmic
potentials have analogues for our potentials Ap. Naturally since many of these have to do
with charges having compact support we cannot expect that there are results of this type
in the singular case, so in the main, the section is devoted to the nonsingular case where
we show that such things as the minimum principle, domination principle, and Balyage
have their counterpart. Another basic principle is the equilibrium principle. In general,
for sets B€ 45, we define the Robin’s constant of B as k,(B)=1lim,[4,g(x) — Lxz(x)],
where J(g)=1, g€{. This is actually a fairly close analogue of one definition of this
constant in the case of logarithmic potentials. So defined, we show in Theorem 11.1 that
k(B), as a set function of B, has all the desired properties of such a constant. In the case of
a nonsingular walk we show that for B€ B, k(B) is the unique constant such that for some
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@, J(¢)=1, having support on B, Ap(z)=k(B) a.e. on B. It turns out that any such ¢
must coineide with Iz(x) a.e. We have thus an interesting hierarchy in the definitions of
k(B). For very nice symmetric walks (e.g. those having the operator Ap(z) = f a(y —z)p(y)dy
where a(z) is a continuous function) we can show that k(B)=sup,(p, Ap), where ¢ has
support on B and J(¢)=1. For these walks then there are three characterizations of k(B)
as in the classical case. For general nonsingular recurrent walks there are two, and for
arbitrary recurrent walks just one. This shows that the limit definition of k(B) is, at least
from our point of view, most intrinsic.

Potential theoretic facts of the above type were first given by Spitzer [13] for walks
on Z% The arguments used here are more or less patterned after those of Port [10] for the
stable processes.

Let Co(®) be the usual space of continuous functions vanishing at oo if the random
walk is of type one and the closed subspace of the fwo point compactification of & that is
the kernel of the linear functional, f—f(+ c0)+f(—o0), in the case of a type two walk.
Further, set y =Cy(®) @ {a( —=)}. Then for a nonsingular walk Ap€y if p €C (). The main
result of § 12 is to show that y is the correct range space of 4 on C,(®). More precisely, we
show that A[C(®)] is dense in y and that A[C ()N N] is dense in Cy(®) where N =
{p:J(p) =0}. Analogous facts were shown by Port [10] to be valid for potentials associated
with recurrent stable processe.

Assume | B| >0 and k,(B) +0. Let ®(B) be the Banach space of bounded measurable
functions on B with ess sup norm. Then another result of some interest in § 12 is that the
restriction of 4 to ®(B) is a topological isomorphism of ®(B) onto ®(B). This fact is an
extension to arbitrary & for a nonsingular walk of the fact (due to Spitzer [13]) that on
Z®, A restricted to a finite set B with k(B) =0 is an isomorphism of R? onto R®.

In § 13 we again return to probabilistic problems concerning recurrent random walks.
Here we are interested in several questions about the asymptotic behavior of the hitting
times. Let Ep(n) = [gP,(Vz<n)dz. (Two different interpretations of Ez(n) are given in the
body of the text.) Let B, A € 4*. Then for any type two walk,

lim Vo P, (Vy>n) = (i)* oLz (x)

n—>00

uniformly on compacts, and

lim [Ep(n) — B4 (n)] = (2 6% [k(B) — k(4)],

n—>c0

where k(-) is the Robin’s constant of B. For an arbitrary type one walk our results are
much more meager. In general, if 4, BE 4* | 4|, | B| >0, then, Egz(n)~ E4(n) and
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> f P (Vg>j)da
lim Z%2 =1, (1.18)
D) f P (V,>j)dx

j=0J 4

z PI(VB>7)dx

and lim 2%+ 4 = f Ly() de. (1.14)

) f P, (Vs>j)dx *

j=0JB

In the general nonsingular case we may improve (1.14) to

n

2 P.(Vs>7)
lim =2 = Ly() (1.15)
TR | Po(Vs>g)de

j=0JB

uniformly on compacts, for any BE€B, | B| >0. In addition, in the nonsingular case, for
A, B€B we can show that Egz(n)— E,(n) approximates k(B) —k(4) in the following sense.
Let FEB, | F| =1, and set g, = [ zP,(Vy>n)dz. Then

N
2. [Bs(n) — E4(n)]
lim =% =k(B) — k(4). (1.16)

For random walks on Z% or R far sharper results are known to be valid. It was shown
by Kesten and Spitzer [6] that in this case ratios of individual terms rather than partial
sums exist in (1.13) and (1.158) and by Port [9] that this is true also in {1.16). Ornstein [8]
showed that when 4, B are intervals, then limits of individual terms in (1.13) and (1.15)
also exist for all recurrent walks (singular or not) on B%. Whether all the strong facts known
to be valid on Z are true in general remains an open problem. Perhaps the methods of
Ornstein could be used to obtain results of this nature on an arbitrary &, but we have

made no attempt in this direction.

2. Notation

In this section we will introduce the notation that will be used throughout the paper.
& will be a fixed locally compact and, except in § 14, noncompact Abelian group. The
Borel sets of & are the elements of the minimal ¢-field generated by the open sets. Haar
measure on & will be denoted by | - | or dz. The phrase a.e. (almost everywhere) will always
be with respect to Haar measure, and the phrase essentially will mean except on a set of

Haar measure 0.



POTENTIAL THEORY OF RANDOM WALKS ON ABELIAN GROUPS 27

B will be the class of all relatively compact Borel sets, and 4 will be the subset of B
consisting of those sets B whose boundaries 0B have 0 Haar measure. Define the class
A* as A4 in the general case as B in the nonsingular case. The class ¥ is the class of all
functions f whose Fourier transforms have compact support and satisfy several other prop-
erties (see § 3). @ is the class of bounded measurable functions having compact support
and C () the continuous functions having compact support. If y is one of the above class
of functions y* will denote the nonnegative elements.

The complement of a set B will be denoted by B’ or B°. The nth power of the transition
operator is P", where P®=1 (identity) Pf= [sf(y +x)u(dy), and P"*'=PP". The hitting

times 7' and Vj are respectively
Ty=min{n>0:8,€B} (=0 if §,¢B for all n>0)
Vg=min{n>0:8,€B} (=<0 if no such =).

Tor a function f set f,(x) = f(x —y) and set J(f) = [gf(x)dx. For functions £, g set (f, g) =

Jof(@)g(x)do.
Let 0<A<1 and define operators on bounded measurable functions or nonnegative

measurable functions as follows:

Ul — ZlnPn

n=l
G=I1+T*

D*=U%0)J — U,
where g=>0 and J(g) =1, g€ F.

A =g(0)J— P =D"+g(0)J— T
sP"[(@) = E;[f(S,); Vp=>n], n>1
U? :n;l"BP"
1, f{@) = 15() f(=)
where 15 () is the indicator function of B.,
Nh=Ukls
Hy=Ip+15 %

Gh=I3(I+Ub)Is



28 SIDNEY C. PORT AND CHARLES J. STONE
Li(x)=(1-2) Ug(0) ZOPz(VB >n) A
S

Ch(x)=(1— 1) G*g(0) ZP, (Tg>mn) A"

When any of the above quantities have a finite limit as 4 1 1 we will denote that limit
by the same symbol without the A, e.g. lim;4, H% f = Hyf.

Of all the groups &, two particular compactly generated groups will play a distin-
guished role. These are, when & is isomorphic to either R*'@H or Z'® H, where H is a
compact group. In this case we will simply identify & with. either R*@H or Z'@® H. The
random walk on R!(Z') induced by u is the random walk generated by the measure u’,
where for a Borel set B of R!'(Z'), u'(B)=u(y(B)). Here y is the natural projection of
R'@ H (Z*® H) onto R!(Z!). The mean and variance of u' will be denoted by m and ¢2 re-
spectively, We set 8~ =y 1}(— oo, 0] and B* =y 71(0, oo).

By lim,_,, f(z}=f(c0) we mean that given any ¢>0 there is a compact set K such
that |f(x)—f(co)| <e for all ¢ K. When the group can be identified with either R'® H
or Z2@H we define im,,, o.f(x) =f(+ o) a8 lims e, zeg* f(r). We introduce the conven-
tion that Lim,f(x) is {f(+ o0) +f( — =)]/2 when @ is one of the distinguished groups. In all
other cases Lim,f(zx)=lim,_,, f(z).

The measure p{dz)— u(—dz) generates a random walk on §, recurrent or transient
according as the one generated by u is, which is called the dual random walk. Quantities
referring to the dual walk are denoted by ~, e.g. H is the quantity Hj for the dual walk.
It easily follows that for any f, g€® or any nonnegative measurable f, g (g, P"f) =(Pg, f)
and (g, zP"*f) = (3P, f). From these, other duality relations follow for the operators defined
above.

If ¥ is a bounded regular measure then the Fourier transform $(0) of y is $(6) =
f&<8, x>y (dx), where (, 2> is a character of &. For a function f€L,(®), the Fourier trans-
form f(6) is w0, *>f(x)dx. Haar measure on @ is chosen so that f(x)=j'@<ﬂ>f(0)d6
whenever f is continuous and f is integrable.

In future sections we will show that various limits exist. For ease in reference we
gather these together here;

Ly(x) = lim Lk (x).
at1
It turns out that Ly(x) is also given by
|A| Ly (z) =Lim Uz (z, 4 +y).
Yy

The function L} are defined for type two walks by
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L (o) = La@) 07 | Tlale, ) pa—2)
B
and for a type two walk
lim Ug(z, A +y)=|4|L% (x).

Y—>+o0o

The functions £z and L3 are slight modifications of the functions Ly and L%.

Lp(x) = Lg(2) 15 (2)
and for a type two walk

L) =LCx(x)+ 0"2J. Hy(x, dz) p(z —2).
B

Let g€, 9>0, J(g) =1. The Robbin’s constant k(B) is
KB) =1lim [49() — (@)

For a nonsingular recurrent walk the potential Df can be written as

Df(w) = f aly~ =) fy) dy — U f(e),

where a(x) is a continuous function and U,(z, dy) = U, (0, dy — x) is a bounded measure.

3. Some Fourier Analysis

In this section we extend some of the basic properties of characteristic functions of

probability measures on Euclidean space to those on locally compact Abelian groups.
TrEOREM 3.1. Let u be a probability measure on & whose support S generates &. Then

1-R<z, 6>
1-Ra0)

18 bounded for x and 0 in compacts and 0 0.
We begin the proof with
LeMMma 3.1. Let n) and w be complex numbers such that |n| = |w| =1. Then

(1 =R +(1 —Ron) = (1 —RAw)/6. 3.1)
Proof. Note first that
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()2 =1—(Fn)*=(1 +Rn) (1 —Rn) <2(1 - R)
and similarly (Jw)?<2(1 --Rw). Thus

|330] <(¥9)?+ HBw)r <201 —Rn) + 31 — Ro).
Observe next that

(1 —9n) + (1 —FRam) =21 ~Rey) + (1 - Rw) + I — (1~ Fn) (1 — Rew)
> (1) (3 — (1 - Ry)).

If 1 — Rz <4, the result now follows immediately. If 1 —R»n >}, the conclusion of the lemma

is trivial.
CorOLLARY 3.1. Let U be a subset of &. Then for x, y€® and 0e®
inf (1-Rz, )+ inf (1-R<z,00)=3 inf (1-NRz, 0). (3.2)
y+U T+y+U z+U-U
LeMMA 3.2. Let u be as in Theorem 3.1. Then for every x €& and open neighborhood U
of the origin of @, there is a ¢ >0 such that
1-Ra@)>cinf (1-R<,05), €6, (3.3)
z+U
Proof. Choose z€@® and an open neighborhood U of the origin of &. Let U, be a neigh-

borhood of the origin of & such that U, — U, = U. Then there exist positive integers m
and n and a y€® such that

uPy+U0,)>0 and p™(x+y+U;)>0.
Thus there is a constant ¢ >0 such that for 06@

1-Ra"0) >12cn inf (1 - Rz, 0))
v+ Ux

and 1-Ram0)>12em inf (1—R<z, 0)).
z+y+Us
Consequently |1—a@)|=|1-4"@)|/n=>12¢ inf (1-R<{z,60)
y+Us
and similarly [1-a@)|=12¢ inf (1-%R<z, 0)).
z+y+ Us

Therefore, by Corollary 3.1,

[1-a@)|=c ini(l—iﬁ(z,@)).
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This proves the lemma if 4 is symmetric or, equivalently, if 4 is real. The general result
follows by looking at (i -+ f)/2 =R

Lemwma 3.3. Let V be a vector group and L a lattice group. Let 0 be a compact subset of

V@®L and C, a compact subset of V@L Then there is a constant 0 <c < oo and an open neigh-
borhood U, of the origin of V®L and there are n points x,, ..., x, in V®L such that
n

S inf (1-R<z,00)>c(1—R<y,05), yeC, and B€EC, (3.4)

j=1x;+U,
Proof. The proof follows easily from the form of ¥V @L and is left to the reader.

Proof of Theorem 3.1. Let C be a compact subset of &. Then there is an open compactly
generated subgroup &, of & containing C. We can write &, = VO®L® H, where V is a vector
group, L is a lattice group, and H is compact (see Hewitt and Ross [4] p. 90). Let C; be the
projection of C into V@ L. Then C, is a compact subset of V@L.

Let A denote the subgroup of ® which annihilates H. Then A is open and closed (for
@/A; His discrete). Let (5 be a compact subset of A.

Let M: 6~ V/GL)\L be the map which takes 9€@® into its restriction to V@®L. Then M
is a continuous map ([4], p. 377) and, in particular, the image C, of C3 under M is compact.
Alsoif €A and x=y +h€®,, where y€E VDL and hE€H, then (x, 0> =y, M(0)>.

With V, L, C,, and szas just defined, let ¢, Uy, and «,, ..., z, be as in Lemma 3.3.
Set U=U, +H.

By Lemma 3.2 there is a constant ¢, >0 such that for €A and 1<j<n

1-Ra0) =c,c'n inf (1-R<z,0)) =c;c7'n inf (1-R{z, M(0)))

i+ Uy i+ U,

and hence for 6€ A
1-Ra@)=c,c' Y inf (1—Rz, M©0))).

i1 2+ 0,
Thus by equation (3.4) (since § €C, if and only if M(0)€C,)
1-Ra0) = 6,(1 —NR<y, M(0))), 0€C; and yeCl,.
Consequently for §€C; and x=y+h€C (yeVO L and h€ H),
1-Ra(0) > ¢4(1 - Ny, M(0))) =y (1 - Rz, 67).

Now A is open and hence C; can be assumed to contain a neighborhood of 6=0.
Since 1 —Ra(0) is continuous and vanishes only at 6 =0, the proof of the theorem is now

complete.
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THEOREM 3.2, Let  be a probability measure on & which defines a recurrent random
walk on &. Then there is a nonsingular probability measure v on & which defines a recurrent

random walk on & and is such that for some compact subset C of &, some open neighborhood

P of the origin of ® and some 0<c < oo

|(6) ~ 50)| < c[max (1~ R <z, 0>)], 6€P. (3.5)

H V=~ R™ is a vector group and L=Z" is a lattice group, the dimension of V®L is
defined to be d, +d,. Note that every closed subgroup of V@L is of the same form and
hence has a well defined dimension.

We begin the proof of Theorem 3.2 with

Lemma 34. Let O, be a compactly generated open subgroup of & written as &, =
VOL®H, where V=R* Lx~Z", d,+dy,=d, and H is compact. Let a €&, and let &, bea
closed subgroup of & such that U (na+®,) is dense in &. Then the projection of &,0 &,
wnto VoL is a d-dimenstonal closed subgroup of VL.

Proof. Note first that @, =,n &, is a closed subgroup of &, and that [J*(no+ &s)
is dense in &,. Let 8 denote the projection of « on ¥ ®L and let (§, denote the projection of
®; on V@L. Then @, is a closed subgroup of V&L and U (nf+@,) is dense in VOL.
This clearly implies that &, is of the same dimension as V®L, as desired.

Let ¢, &y, ..., b, be elements of &. Their span S(t, ..., t,) is defined to consist of all
t€® for which there exists a compact subset C of & and integer valued functions m(n),

ey My(R), — o0 <n < oo, such that
bt —my(n)t; —... —my(n),€C, —oo<n<oo,
Lemma 3.5. 8(¢y, ..., &) is a closed subgroup of &.

Proof. The result clearly holds if & is the direct sum of a vector group and a lattice
group.

It is obvious, in general, that & is a group. To prove it is closed, let s be in the closure
of S(ty, ..., ). Let &, be the group generated by ¢, ..., , and a compact neighborhood of s.
Then &, =VOL®H, as usual. Let W be the subgroup of V@®L spanned by the projection
of ¢, ..., t, into V@ L. Then by the first part of this proof, W is a closed subgroup of V@L.
The points in &, NS, ..., &) are those which, when projected into ¥ @L, are mapped
into W. Thus &, N8, ..., &) is a closed subset of &, and hence s€S(¢, ..., t,). Thus

S(t,, ..., &) is closed, as desired.



POTENTIAL THEORY OF RANDOM WALKS ON ABELIAN GROUPS 33

LeMMA 3.6. Let & be such that there is a finite bound to the dimension of lattice subgroups
of &. Let T denote a closed subset of & and &, the subgroup of & generated by T. Let €@
and suppose that U (na+®,) is dense in &. Then there is a compactly generated open sub-
group &, of & of the form &, =VOL® H, where V=R*, L=Z°% and H is compact, and
such that the projection of TN &, into VO L generates a d-dimensional subgroup of VL.

Proof. By the assumption on &, there are nonnegative integers d, and d >d, and there
is a compactly generated subgroup &, of & such that if &, is a compactly generated sub-
group of & containing ©,, then &, = VO LD H, where V= R*, L=Z* % and H is compact.

Suppose that for all such &, the projection of 7'N @, into V@ L generates at most a
k-dimensional subgroup, where k <d. Then we can find k elements £, ..., ;€ T such that
8(t, ..., &) 2 &, by Lemma 3.5. Let &, be a compactly generated subgroup of & containing
o, &, t,, ..., t, and decomposed as @&, =VOLDH, as above. Then S(f, ..., )2, N &,
and hence the projection of &, N &, on V@ L is at most k <d-dimensional, which contradicts
Lemma 3.4.

LeMMA 3.7. Let g be a finite measure on R*DZ%, where 0<d, +d,=d <2, with finite
third moment and nonsingular covariance matriz. Then there is a finite measure y on R"®Z*
which is nonsingular with respect to Haar measure on R*®Z* and whose momenis of orders

zero through three agree with those of .

Proof. The result is rather straightforward and depends on the version of the Schwarz
inequality involving strict inequality. The details will be omitted.

Proof of Theorem 3.2. Since u defines a recurrent random walk on &, it follows that
if VL isa closed subgroup of &, where V= R* and L=Z%, then 0 <d, +d,<2.

Let S denote the support of u, choose €8 and set 7' =8 —o.. Let ¢, denote the sub-
group of & generated by 7. Then by the definition of recurrence, U {°(n«+ &,) is dense in &.

Lemma 3.6 is now applicable. There is a compactly generated open subgroup &, of ¢
of the form &, =V®L® H, where V= R% L=~Z%% H is compact, and the projection of
Tn®, into VO L generates a d-dimensional subgroup of V@ L. Note that 0 <d <2.

There is a compact subset C' of &, such that the projection of 7N (int C) into VO L
generates a d-dimensional closed subgroup of V@ L. Let 2p, denote the restriction of u to C,
and let o denote the measure induced on V@ L by the projection of g;. Then g satisfies the
assumptions of Lemma 3.7.

Let 4 be as in the conclusion of Lemma 3.7. Let y, be the measure on &, which is the

direct product of ¥y on V@®L and Haar measure on H (normalized to be a probability
3 - 692905 Acta mathematica 122. Imprimé le 19 mars 1969
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measure on H). Set v =u 4y, —p,. Then » is a nonsingular probability measure on & whose
support contains that of 4 and hence generates all of &. Also #—g=7%, —§,.
Let A denote the annihilator of H. Then A is an open closed subgroup of ®. Let

~ T ~
M:&B—~VDL be the map which takes an element in & into its restriction to VOL. If
O€EA and x=y-+h€WG,, where y€ VDL and REH, then {0, x> =<{M(H), y>. Consequently

#(60) —a(6) = Z(M(6)) —6(M(6)),

where # and § are functions on V/@\L

Let P< A denote an open relatively compact neighborhood of the origin of @. Since
the moments of y and g of orders zero through three agree, and since they both have finite
fourth moments, there is a constant ¢, 0 <c¢< oo, and a compact subset C, of V@L such that

| £(M(0)) — §MB)|<c (max (1~ Ry, MO))T, 0€P.
Let C, denote the compact subset of &, which is projected onto C;. Then
|$(6) ~ 2(6)| < [max (1—R<z, 05)1%, 6€P.
zeC

It remains only to show that » defines a recurrent random walk. Note first that for
0<i<l1
|1—44a(6)| = A|1—-(0)], 0€G, (3.6)

and the same result holds with g replaced by #. Since

11 | |#0)—a0)
1=2a(6) 1-280)| [1—a®)][1-50)]

is uniformly bounded for } <A<1 and 6 in some open neighborhood of the origin of @, the
recurrence of v follows from the recurrence of u and the Chung—Fuchs criterion (Loynes
{7, p. 453]). This completes the proof of Theorem 3.2.

Let &, be a compactly generated subgroup of &. Then &, = V@L®H. where ¥V = R%,
L=2Z" and H is compact. The numbers d, and d, and hence also d =d, +d, depend only on
&,, not on the choice of V or L. This justifies calling &, d-dimensional. '

The next result is obvious but will be useful in a number of places later on.

THEOREM 3.3. Let &, be a d-dimensional compactly generated subgroup of &, let H
be the group of compact elements of &, and let A denote the annihilator of H. Then there are
functions y:®,~ R and (p:@—)R" such that: (i) p is a continuous homomorphism which
maps G, onto a closed d-dimensional subgroup of R®; (ii) ¢ is a Borel function which is con-
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tinuous near the origin, maps compact sets into relatively compact sets, and maps every neigh-
borhood of the origin of ® onto a neighborhood of the origin of R®; and (iii) for x€®, and GEA
(x, 9> — V@) 9@
Let & denote the collection of functions f(x), € ®, such that

(1) fis a continuous, nonnegative, and integrable function with integral

() = f fa) da

(il) fis supported by a compactly generated subgroup of &;
(iii) f has compact support; and
(iv) there is a compact subset C of &, a constant ¢ such that 0<<¢<co, and an open

neighborhood P of the origin of & such that
J(f)— RiO) < cmax (1 — Rz, 0), O€P. (3.7
TeC
Let §§, denote the collection of symmetric functions in .

TaroreM 3.4. Given £ >0 and an open neighborhood U of the origin of &, there is an
[€Fs such that

f fle)de>1—¢. (3.8)
v

We begin the proof of Theorem 3.4 with

LeMMmA 3.8. Given £¢>0 and an open neighborhood U of the origin of @, there is @ con-

tinuous symmetric probability density function f on & such that f has com}iact support and
(3.8) holds.

Proof. Let TS U be a relatively compact open neighborhood of the origin of & and
set g=17/|T|. Then |g|/,=|lgt{l=1. Let 8, 0<8<1, be a number to be chosen later.
Choose (by Plancherel’s theorem) k€ L, such that A is continuous, & has compact support
and ||h—gt||;<d Then ||a]|,<1+8<2. Also |k|? is continuous and in L, and its Fourier
transform has compact support. Moreover,

llg— 2] 2], = |lg(g* — k) + h(g* — k||, <36.

Set fy = |k|?/|||2|?||;- Then f, is a continuous probability density, f, has compact support
and
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ffl(x)dx>(1—36)/(l+35)>l—s
T

if d is sufficiently small. Define f by f(z) = (f,(x) + f,( —))/2. Then f{ is the desired function.

LemmaA 3.9. Let &, be an open closed subgroup of & and let {€ L,(&) have support on
&,. Let g denote the Fourier transform of f as a function on @1. If g has compact support, then
f has compact support.

Proof. Let M : G @1 map 0 €@ into the restriction of 6 to ®,. Then M is a continuous
open map onto @1 ({4, p. 377]). Furthermore g(M(8)) =f(6), 0€®. Let C, be a compact set
supporting g. Since M is open, there is a compact subset C of ® such that M (C)=0;. Let

A denote the annihilator of &,. Then Az@/@l is compact, since &, is open. Choose
9€® such that f(6) 0. Then M(0)€C,. Thus there is a 0, €C such that M(6,)=M(6) and
hence § —6, €A or €C + A. Thus f is supported by the compact set C+ A, as desired.

We next define a collection ¥, of functions f on & as all functions which can be con-
structed in a particular way.

Let &, be a compactly generated open subgroup of & which can be written as &, =
V®H, where V is a vector group and H is compact. Let dv and dk be Haar measures on V
and H respectively such that, on ®,, dg =dv-dh. Let f, be a continuous symmetric proba-
bility density function on V having finite second moment and whose Fourier transform
(as a function on V) has compact support. Let f, be a continuous symmetric probability
density function on H whose Fourier transform (as a function on #) has compact support.
Let f(g), g€®, be defined by f(g) =f,(v)/,(h) for g=v+h€®, with v€V and AEH, and
flg)=0 for g¢®,. Finally let I, denote the collection of all functions f that can be
constructed in this manner.

If f€%,, then f is a continuous symmetric probability density function. Also its Fourier

transform, as a function on ,, has compact support. Therefore, by Lemma 3.9, f(6),
0€®, has compact support.

LeEMMA 3.10. Let £>0 and U an open neighborhood of the origin of &. Then there is an
€2 such that (3.8) holds.

Proof. Let W be an open subset of & containing the origin and such that W+ W< U.
Consider the construction used in the definition of ,. The function f, can be chosen so
that

f f)dv>1—=
vnw 2



POTENTIAL THEORY OF RANDOM WALKS ON ABELIAN GROUPS 37

and the function f, can be chosen so that

f fah)dh>1—2.
HNW 2

Then for the corresponding f

f f(x)dx>f flyde>1—e,
v W+ W

as desired

In order to complete the proof of Theorem 3.4 we need only prove

LeMMa 3.11. For f€F, there is a compact subset C of &, a constant ¢ such that 0 <¢ < oo,
and an open neighborhood P of the origin of & such that

1-%Rf0) <c max (1 —Rz,6>), O€P.

Proof. Let &,, V, H, etc. be as in the construction used in defining {¥,. Let A denote
the annihilator of H. Then @/A is isomorphic to the dual of H and hence diserete. Thus A

is open and hence is an open closed subgroup of &. Clearly (v+h, 0>={v,0)> for vEV,
hEH, and G€EA.
We can endow V with a dot product. Then for every 0 €@ there is a unique M(0)€ ¥

such that .
{0, 0> =€ MO eV,
Thus for 8 A

1-%/(6) = f (1—cos v+ M(6)) /y(v) dv < § | M(6) f |o]2f, (v) do=c, | M (B) %,

where 0< ¢, < oo, Also 1—%7(6) <2 and hence
1—Rf(6) <min (2, ¢, | M(6) %) (3.9)

There is a constant ¢,, 0 < ¢, < oo, such that

max (1—cos v- M(8)) = cy | MO)[2, |M(B)|< g

lvl<1

Then for 6€ A
max (1 - R (v, 0)) =max (1 —cos v- M(0)) >c, | M(H) %, IM(0)|<g,

lvl<1 i<l
and max (1 ~R<w,00) =1, |M(O)| >g,
In particular max (1—R<v,0>) >min (1, ¢, | M (6)[?). (3.10)

lvI<1
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It follows from equations (3.9) and (3.10) that for some constant ¢, 0 <c¢< oo,

1 —ERf(0)<0fnax (1-R<w,0>), BEA.
vl

Since A is an open neighborhood of the origin of ®, and since {v, |[v] <1} is a compact sub-
set of &, this completes the proof of the lemma and hence of Theorem 3.4.

Let f€F and let &, be a compactly generated subgroup of ¢ containing the support
of . Let @, 9, and A be as in Theorem 3.3. Then

1-Rf0) = f . (1— cos w(z) - p(0)) f(x)dz, OEA.
From this we can easily get

THEOREM 3.5. Let f€F and let &, be a compactly generated subgroup of & containing
the support of f. Then if p is as in Theorem 3.3,

f@ [p(z) Pf(z)dz< o. (3.11)

It is also easy to obtain from Theorems 3.3 and 3.5 and the fact that A is open

THEOREM 3.6. Let fEF, let O, be a compactly generated subgroup of & containing the
support of f, let v and @ be as in Theorem 3.3, and set

K() - [ yto) )

Then there is an open neighborhood P of the origin of @5, a compact subset C of &, and a
0<c<oo such that

|1376) ~ 90)- K(f)| <o max (1~ Ry, 6)), O€P. (3.12)

4. Renewal theory for transient random walks

In this section we consider probability measures u which define a transient random

walk, so that the renewal measure

-

Il
oM &
-=f\

2

assigns finite measure to compact sets.
We say that the transient random walk is of Type I if the renewal muasure vanishes

at infinity, i.e., if
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lim »(z+ C) =0 (4.1)

=0

for all compact subsets C' of @. Otherwise the transient random walk is referred to as of
Type II.

This nomenclature is justified by Theorem 4.1 below. In this theorem & will be of the
form R® H or Z® H, where H is compact. The Haar measures are assumed to be of the form
dg =dx dh, where dh assigns unit probability to H and dz is either Lebesgue measure on
R or counting measure on Z. The function y:&— R or $—Z is defined by p(x+ k) ==.

We set G+ ={z€@|yp(x) >0}
and &~ = (€6 p(x) <0}.

By “@— 400" or “z— —c0” we mean that z—> oo and z€@+ or x€ G~ respectively.

TaHEOREM 4.1. Let u define a Type II transient random walk. Then &~ EDH or
& ~Z®H, where H is compact. Suppose & =RD H or 8 =Z & H, the Haar measure being
chosen as indicated above. Then

m= fw(w) u(dzx)
18 finite and nonzero. Let +m>0. Then for A€ A4

Lim y(z+ A)=|m|™*|4| and lim v(z+A4)=0 (4.2)
2>+ 00 z>Fo0

If some iterate of u is nonsingular, then stronger results are possible.

TaroREM 4.2. Let u define a nonsingular transient random walk. Then its renewal
measure v can be written as v=v' +v", v’ being a finite measure and v" being an absolutely con-

tinuous measure having a continuous density p such that for any A€B
Lim (v(x+ A4) — p(z) |4])=0. 4.3)
T-»0

In particular, in Theorem 4.1, A can be replaced by B.

CoroLLARY 4.1. Let u and p be as in Theorem 4.2. If the random walk is of Type I,

then
lim p(x)=0. (4.4)

>0

If the random walk is of Type II and m is as in Theorem 4.1, then for +=m>0

lim p(x)=|m|™ and }m p(z)=0. (4.5)
z->+00 Z>F oo
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Theorem 4.1 can be used to derive results concerning the asymptotic hitting distribu-
tions in the Type II case. Let D denote the collection of Borel subsets B of &+ such that
|@B| =0 or some iterate of y is nonsingular. For BED set

Lyx) =P,(8,¢B for all n>1),

where P, refers to the random walk with transition distribution p(dy)=u(—dy). The proof
of the next result will be omitted since the basic ideas of the proof can be found in Theorem
4 of Stone [16].

THEOREM 4.3. Le u define a transient Type 11 random walk and suppose that m>0.
Then for A€ A* and BED

lim Ug(z, A)=m™'| Lg(x)dx.
4

-0

We now will prove the results of this section. In doing so we will assume without
further mention that x4 defines a transient random walk on &. We begin the proof of The-

orem 4.1 with

LeMMA 4.1, There is a constant L, 0 <L < oo such that if P is a relatively compact open
neighborhood of the origin of ®, then

. 1 L 1
i [ 9% (=0a) @~ 5+ [ 2 (=) (*6)

Also f R ( (0)) 0 < oo. (4.7)

Proof. Equation (4.7) and also the fact that if P is relatively compact,

lim supf?R( (0)) df < oo (4.8)

are part of the Chung-Fuchs criterion (see Loynes [7, p. 4563]). Choose f€{,. Then for
0<r<l1

S f 12) ™ (dz) = f f(e)m( (e)) . (4.9)

It follows from (4.8), Theorem 3.1, and the nonnegativity of f that both sides of (4.9) have
finite limits as r + 1. From this (4.6) follows as desired

LEMMaA 4.2. For f€,
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sup J.f(x—l— 2)v(dz) < oo, (4.10)
ze®
lim |(flx+2)+f(—x+2)v(dz)=1L, (4.11)
and lim |(fx+2y+2)—2f(x+y+2)+ fx+2)v(dz)=0 (4.12)

T—=0
untformly for y in compacts.

Proof. Tt follows easily from Lemma 4.1 and Theorem 3.1 that for f€F, and z€®

f(f(x-k 2)+ f(—x+ 2)) v(dz) =€+ f?ﬁ Lz, 0> fO)R (l—:—‘lﬁ(@—)) do 4.13)

ro | =

and the Riemann-Lebesgue Lemma yields (4.10) and (4.11). We also have that for
f€EF, €6, and ye®

1
1- 4(0)

ff(x+ 2y+2) = 2f(x+y+2) +flw+2)) v(de) = f@ 0> (<y, 0> —1)*f(0)

and (4.12) now follows by Theorem 3.1 and the Riemann-Lebesgue lemma.

LeMMmaA 4.3. For f€,

lim | (f(z+y+2)— f(z+2)) w(dz) =0 (4.14)

uniformly for y in compacis.

Proof. Otherwise, by (4.12), for some ¢>0 and compact set C and any positive in-
teger N, we can find z€® and y € C such that for I<a<N

f(f(x+ny+z)—f(x+ (=D y+2)v(dz)=¢

and hence f(]‘(x + Ny +2) — f(x + 2)) »(dz) = Ne,

which contradicts (4.10).
LeMMA 4.4. For A€ A4 such that A= — A and |4|>0

sup vz + A4) < oo, (4.15)
ze®
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lim (w(x+ A)+v(—x+ A))=L|4|, (4.16)
and lim (wz+y+A)— v+ A4)=0 (4.17)

T—>00

uniformly for y in compacis.

Proof. Equation (4.15) follows easily from the fact that u defines a transient random
walk. Choose k€, and define f€ ¥, by

flx) =14 I“flA(z- y) k(y) dy.
Then ff(x +2) v(dz) = fv(z —z+ A) k(z) dz.
Thus by (4.11) we have that

lim |(Mz+z+A)+v(—z+2+ 4))k(z)dz=L|A|. (4.18)

I—>o0

The proof of (4.16) now follows along the lines of the proof of Theorem 2.1 of Stone [14]
by using (4.15), (4.18), and Theorem 3.4.
From (4.16) we obtain easily that

lim sup v(x+ A)<L|A4|, A€A4 and 4= —A. (4.19)

From (4.14) we see that for symmetric 4 € 4 and k€,

lim |(w(z+y+z+A)—v(x+2z+ A4)k(z)dz=0 (4.20)

T—»00Q

uniformly for ¥ in compacts. Choose ¢>0. There is a symmetric open neighborhood P of
the origin of & such that if

B=[4°N(4+P)]JU[4n(4°+P)],

then B is symmetric and |cl B|<e&/L. It follows easily from (4.19) that

lim sup »(x+ B)<e. (4.21)
I—>0
Consequently lim sup sup |v(x+w+ 4)—v(x+ 4)|<e. (4.22)
I—>00 weP

Equation (4.17) now follows from (4.15), (4.20), (4.22), and Theorem 3.4.
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Levma 4.5. If C is compact, then

im »(x+ C)v(— 2+ C)=0. (4.23)

T—>00

Proof. This follows by an easy probabilistic argument which asserts that if D is com-
pact, then the probability that the random walk defined by x will hit z+C and thereafter
hit D approaches zero as xz— oo.

Lemma 4.6. Suppose & has a compactly generated open subgroup &, such that &, is
noncompact and &S, is infinite. Then y defines a Type I random walk.

Proof. Let A€ 4 be symmetric and such that | 4| >0. If z, + &, are disjoint for n>1,

then z,— oo as n—>oco. The z,’s can be chosen so that

lim »(z, + A)=L|A|.

This follows from Lemmas 4.4 and 4.5.
Since &, is compactly generated, but not compact, we can choose 2€(®, such that

nr—oo as n—>oo, By Lemmas 4.4 and 4.5 we can assume that « is also such that

lim y(nx+ 4)=0.

n—>0

Now z,+kx— oo as n->co uniformly in k. Suppose L >0. Then there is an ny,>0 such
that for all » >n, there is a k, >0 such that

v(z,+k,x+A)>L|A|/[2

and vz, + (k,+1)x+A)<L|A4|/2.
By Lemma 4.4. lim »(z, + k,x+ A)=L|4]|/2,
n=->o00

which contradicts Lemmas 4.4 and 4.5. Thus L=0 and (4.16) yields (4.1) as desired.

LemMma 4.7. Suppose & has a closed subgroup &, = R*®Z%, where d, +dy>1. Then u
defines a Type I random walk.

Proof. We can choose elements z and y in &, such that nax +ky—> o0 as n+k->oc0 and

then use the proof of Lemma 4.6.
Lemma 4.8. Let H be a compact subgroup of &. Then
viz+H)<v»(H), z€® (4.24)

and v+ Hywy+H) <vxz+y+ HwH), =z y€G. (4.25)
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Proof. This result follows by an easy probabilistic argument based on the first passage
into the set z+ H and the fact that H=H +H=H - H.

LevMwma 4.9. Suppose that every element of & is a compact element. Then p defines a
Type I random walk.

Proof. We suppose that L>0 in Lemma 4.4 and will arrive at a contradiction. Let H
be an open compactly generated subgroup of &. Then H is compact. Without loss of
generality we can assume that |H|=1. The remainder of the proof is exactly the same as
that of the eorresponding result in the discrete case (Kesten and Spitzer [5, pp. 259-260])
upon replacing their g(z) by our »(z+H) and using Lemma 4.8 (note that since &/H is

infinite there exist z, €® with z,—> o).

LemMMA 4.10. Suppose that & = RO H or 8 =Z® H, where H is compact, and that

fw(x) p(dz)

is either infinite or undefined. Then p defines a Type I random walk.

Proof. This result reduces immediately to the corresponding one-dimensional result
of Feller and Orey [2].

Proof of Theorem 4.1. Let u define a Type II transient random walk. Then, by Lemmas
4.6, 47, and 4.9, 8RO H or §~ZPH, where H is compact. Suppose &=RDH or
& =Z®H, the Haar measures being chosen as indicated just prior to the statement of
Theorem 4.1. Then

m= [ we )

is finite and nonzero. This follows by Lemma 4.10 and the fact that if the integral vanished,
the random walk would be recurrent.

It now follows by Blackwell’s renewal theorem that if A =A4,+ H, where 4, is a rela-
tively compact subset of R or Z whose boundary has measure zero (in R or Z), then 4 € 4
and equation (4.2) holds for this 4. From this it follows that for 4 € 4

lim »(z+ 4)=0. (4.26)

z=>t o0
In order to complete the proof of (4.2) it suffices to show that for 4 €4
lim ((z+ A)+v(—x+4))=L|A4|. (4.27)
T—>0
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For this it suffices to show that for f €

lim |(f(x+2)+ f(—z+2))v(dz)=L. (4.28)

But we have the formula

1
1-4(0)

f (fle+2)+H(—x+2)v(dz)=L+2 f (R<z, 0>) () do. (4.29)

Since f(1/(1 — 4(0))) is integrable on compacts the Riemann—Lebesgue lemma implies that

1

Ilin; Rz, 0> RGN (W)) de=0.

In order to complete the proof of (4.28) it suffices to show that

1
303 ()

is absolutely integrable. Write & =©,® H where 0, =R or Z. Since H is discrete, it suf-

fices to show that the above term is integrable on @;. This is true because

376,) =0(|6:])

(% 1 -1
and \s(%)=0(|01| )

This completes the proof of Theorem 4.1.

Proof of Theorem 4.2 and Corollary 4.1. The proof of these results follows from Theorem
4.1 and the arguments found in Stone [17, pp. 271-272]. Note that for present purposes
the assumption in [17] that “p has a twice continuously differentiable density” can be

replaced by the assumption that ¢ has a continuous density.

5. The general recurrent case

Throughout this section it will be assumed that u defines a recurrent random walk on
&. We will state in this section those results which hold in general. The proofs will not be
given completely in this section, however. In particular Theorem 5.1, which is not needed
for any other results of this section follows from Theorem 3.1, Theorem 3.7 and Theorem

6.1 of the following section (the proof of Theorem 6.1 is independent of the results of
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Section 5). Theorem 5.2 will be proven in this section only in the compactly generated case.
The remainder of the results of this section, through Corollary 5.3, will be proven in general,
given that Theorem 5.2 holds. Theorem 5.2 itself follows in general immediately from
Theorem 3.1, Theorem 3.2 and Theorem 6.3. Since Theorem 6.3 depends on Theorem 5.2
and its consequences only in the compactly generated case, there is no danger of circular
reasoning.

Theorem 5.13 and the results which follow depend on Section 6. This is permissible,
however, since Section 6 depends on Section 5 only through Corollary 5.1.

Suppose & is compactly generated. Then we ean assume that & =&,®H, where H
is compact and &, =R, Z, R& R, R®Z, or Z&Z. In this case Haar measure on H is nor-
malized to be a probability measure, while the Haar measures on R and Z are Lebesgue
measure and counting measure respectively. The function y denotes the projection of
& onto &; and u, denotes the probability measure induced on &, by u and y. If &, is one-
dimensional, then z-> 1 oo is taken to mean that y(zx)— + co. If ¢, is one-dimensional,
then ¢% denotes the variance of u,. The random walk is said to be of Type II if &, is one-
dimensional and ¢% < co. Otherwise the random walk is of Type I.

If & is not compactly generated, the random walk is always considered to be of Type I.

THEOREM 5.1. Let P be an open neighborhood of the origin on &. Then

1
———— |} df = co, 5.1
fpm(l“ﬂ(a)) G-

Proof. This result follows as indicated above.

THEOREM 5.2. Let P be a relatively compact open neighborhood of the origin of &. Then

. e, 0> — 1
1 ——— df 5.2
AlTrr; J.P 1—24(0) G2
exists and is finite. In the Type I case
lim lim f @, 6> (<x 6> D ap-o0. (5.3)
y—>o0 At 1l
In the Type II case
N
lim lim f @O@HZ) gy 12, (5.4)
y—>to0 411 1-2p (6
where ot = fyﬁ dpu.

The convergence in these limits is uniform for x in compacts.
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Proof in the compactly generated case. We can assume that P is a subset of ’(:351. Suppose

first that &, is one-dimensional. Then

(x,0>-1 f v — 1
——— df= | —— db,.
Pl—lﬂ(@) Pl—lﬂl(el) !

In order to prove (5.2) it suffices to show that

10
lim —1 df
2ty Jp 1- ll%(el)
exists and is finite. But this is Theorem 3.1” of Port and Stone [11]. The proof there de-
pended on results of Ornstein [8]. For a selfcontained proof see Theorem 1 of Stone [15].

Similarly

d0,.

f<?/, 6> ( <x, 9> dﬁ J‘ ionww(etoxwz) 1)
1= 2 01)

Thus to complete the proof of Theorem 5.2 in this case it suffices to show that in the Type I
case
O ;g
lim lim | —————% df,=0, 5.5
Y—>00 }»Tl P 1—‘21121(01) 1 ( )
while in the Type II case
eienw(y) ,'(6
lim lim | ———21 d6,=F¢ 2 5.6
Yt o0 171fp1_lﬂ1(01) ' ¢9
Again for a proof see either Theorem 3.1” of [11] or Theorem 1 of [15].
If ©, is two-dimensional then |6|/|1—4(0,)| is integrable on compact subsets of
@1 and the theorem follows trivially from the Riemann-Lebesgue lemma.
Choose g€ such that g is symmetric and nonnegative and J(g)=1. Define D* for

f€Fand z€E by
Df(x) = J(f) U%g(0) — U*f(x)

TueEoREM 5.3. For f€F and z€®
lim D*f(z) = Df(x) (5.7)
a1
exists and ts finite. In the Type I case

lim (Df, (=) — Df,(0)) = 0 (5.8)
and in the Type 11 case
ykl;:clx: (Dfy (x) = Df, (0)) = F p(x) =2 (f). (5.9)
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Proof. Observe that

DM(z) =2 f (;’( ) J({)—_Az}}? f(=0) (6)d6 (5.10)
B [ @0 (1<%, 00)f(—0)
and D, (x)— DM, (0)=4 f 5 T=2400) £(0) do.

Theorem 5.3 now follows immediately from Theorem 5.2 and Theorem 3.1.

ProrosiTioN 5.1. Let BEB with int B+Q. Let f(x), x€®, be a nonnegative Borel-
function such that for some open neighborhood @ of the origin of & the function fq(x), x€S,
defined by

fo(z) = sup f,(z)
is integrable on &. Then
m Uifz)=Ugf(x), z€G (5.11)

exists and is finite and the convergence is uniform for x in compacts.

Proof. Since f is nonnegative the limit in (5.11) clearly exists. We next prove it is
finite. Let A be a nonempty open subset of & and R a relatively compact symmetric
open neighborhood of the origin of & such that R+ RS Q and 4+ RS B. For 7,€® and
r€x,+ R

|R|UBf(x)=|R|fUB(x, dz)f(z)=|R]fU,,+B(z+ y,dz) f,(2)

- Ldy U,eahi@ty)< Ldy Ustalz+y)< f dyUsfa ()

ro+R+R
= f@fn(y)dy Usly, g+ R+ R) < oo

since x,+ R + R is relatively compact and consequently, U ,(, o+ R + R) is bounded in y.
This proves that the limit in (5.11) is finite and, in faet, bounded uniformly on compacts.
In particular for f as in the statement of the proposition and A4 as in the proof.

U, fr(z) <oo, zE®, and hence for z,€®

lim P (g, d2)U 4 fr(2) =0.

n—o0 JA

For z€x,+ R
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J‘ sPMx, d2)Up f(z) < f 4P (20, d2) U 2 + 2 — 2,)
Be Btz
< fAP”(xo, dz)U,fa(z)>0 as n—>oco,
4
From this it follows that

lim P (%, dz)Ug f(z)=0
n—o0 J B¢
uniformly for x in compacts and hence that (5.11) holds uniformly for z in compacts.
This completes the proof of Proposition 5.1.

Let B€B and int B+@. Then P (Vyz<oo)=1, x€®. As in [11] we have the funda-

mental identity
D (a)— T3 D*f(x) = — Udf(a) + Lz (@) J(f) (5.12)

for 0<A<1, f€F, and z€®. It is easy to find an f€F satisfying the conditions of Proposi-
tion 5.1 and such that J(f)>0. As a consequence of Theorem 5.3 and Proposition 5.1 we
now have

THEOREM 5.4. Let BEB and int B+D and let f€F. Then

lim L% (x) = Ly (x) (5.13)
at1

and liTm U4 f(x) = Up f(z) (5.14)
Atl

exist and are finite and the convergence is uniform for x in compact subsets of &. Also
Df(x) — g Df(x) = — Upf(x) + Lp(z) I (f). (5.15)

From Theorems 5.1 and 5.2 we see that in the Type I case

ylinolo Usfy(x) = Lg(x) J(f) (5.16)
and in the Type II case

lim Ugf,(x)=Lx(x) J(f), (6.17)
where L3 (x) = Lp(x) £ 07 (p(x) — [Tz p(x)).

From these results we will obtain

TEEOREM 5.5. Let BEB and int B+Q and let A€ 4. In the Type I case

lim Up(x, y+ 4) =Ly (z) | 4], (5.18)
Y=>00

4— 692905 Acta mathematica 122. Imprimé le 19 mars 1969
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and in the Type II case
lim Ug(z,y+ A)=Li(x)|A4|. (5.19)

y—>t o0

The convergence in these limits is uniform for x in compact subsets of .

Proof. This result uses Theorem 3.4 and is otherwise essentially that of Theorem 3.3
of [11].
Using Theorem 5.5 and duality, we have

THEOREM 5.6. Let BEB and int B+D. Let C € 4 and let A€ B. In the Type I case

lim | Ug(z+z 4)dz=|C| f Lg(x)dx (5.20)
2> Jo 4
and in the Type I case
lim Ug(ztz, A)dz= Ile L} (z)da. (5.21)
r—>to0 JC A

By following the proof of Theorem 3.5 of [11] we obtain

THEOREM 5.7. Let A€ 4, BEA, and int B+O. In the Type I case

lim Uy (x, A) = f Ly (x) dz. (5.22)
I->00 A
and in the Type II case
lim Uz(x, 4)= f Li(v)de. (5.23)
I+ 0 A

We rephrase this result in a form more useful for application in Section 6.

CoROLLARY 5.1. Let BE€ 4 and int B+@D. Let the random walk start at x. In the Type 1
case as x—oo the hitting distribution of B has a limit which is absolutely continuous with
density Ly(x)15(x). In the Type 11 case as x— + oo the hitting distribution of B has a limit

which is absolutely continuous with density L(z) 15(x).

In the Type II case let
K(h= f p(#) f(z) de.

THEOREM 5.8. Let f €F with J(f)=0. Then

liTm U'f(x)=Uf(x), =€, (5.24)
itl
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exists and is finite and the convergence is uniform for x in compacts. In the Type I case

lim Uf(z)=0 (5.25)

>0

and in the Type II case lim Uf(x)= + o 2K(f). (5.26)

T—>+00

COROLLARY 5.2. Let f, {,€F. In the Type I case

lim J(f,) Df(z) - J(f) Dfy (x) =0 (5.27)
and in the Type 11 case
I_l)lfl; (J(f,) Dftw) — J(f) Dfr (=) = F o~ (J () K(f) — K(f) J(f)). (5.28)

Proof of Theorem 5.8. Let &, be an open compactly generated subgroup of & con-
taining the support of f. Let H, p, ¢, and A be as in Theorem 3.3. We have easily

LemMA 5.1. There is a relatively compact open neighborhood P of the origin of @, a
compact subset C of & and a 0 <c¢ < co such that for €&, and G €P

|3 <@, 05— y(@) - ¢(O)| < o] p(@)[* max (1-R<y, 7).
From Lemma 5.1 and Theorem 5.2 we have

LeMmMA 5.2. Let P be a relatively compact open neighborhood of the origin of ®. Then

: ip(6)
1 —r=_ 5.29
Att f 1= 2(6) 2
exists and is finite. In the Type I case
o <z, 0> ip(0)
lim 1 =L df=0 5.30
Jm i | a0 ¢ (6:30)
and in the Type 11 case
lim Tim | 292090) 45 2 (5.31)

s>z 211 Jp 1= 20(0)
Theorem 5.8 follows from Lemma 5.2 and Theorems 3.1 and 3.6.

THEOREM 5.9. Let &, be a compactly generated open subgroup of & of the form &, =
VOL®H where V=R" L~Z% d=d,+d,, and H is compact. Let p be a continuous homo-
morphism of &, onto a closed d-dimensional subgroup of R®. Let B € B have a nonempty interior
and let A€A. In the Type I case
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lim Us(x,z+ 4)/p)=0 (5.32)

T—>00,2€ @,

and in the Type II case (setting &, =)

lim Uy (z, 2+ 4)/|p@)| =207%|4]. (5-33)

Proof. Choose f€{. Then from 5.15
Usf.(x) = Df(x)+ Df(—x) — Df(0) + (I1 s Df () — Df (0)) — 1 3 Df(x) + Upf(x).
Now — Df(0) + (I1 s Df () — Df(0)) — 1 Df(x) + U f(x)

is bounded in x since the individual terms are bounded. It now follows from Theorem 5.3

that in the Type I case
lim Ugf,(2)/p(x)=0 (5.34)

z—>00,7€®,
and in the Type II case
Jthnolc Uzt (@)/|p(x)| =0 2T (f). (5.35)

It is easy to go from (5.34) to (5.32). To go from (5.35) to (5.33) one need only use an
“unsmoothing” argument, noting firstly that (5.35) implies that

Uglz, t+A) =O0(|p(x)|) as z->oco.

The main role of the functions in §§ is to act as smoothing functions. For some results
the class §§ is too large to be easily useful. One possible out is to further restrict {§. Another
is provided by

ProprosiTIiON 5.2. Let k, €5 be supported on an open compactly generated subgroup
&, of &, uniformly bounded, let
lim k,(x)=1, 2€®,,

n->0

the convergence being uniform on compact subsets of &,, and let k, be nonnegative and supported

on a compact subset C' of &. For fET supported by &, define f, by f.(x)=f(x)k,(x), z€S.

Then f,€% and
lim Df,(x) =Df(z), z€® (5.36)

uniformly for x in compacts.

Proof. Note first that J(f,) = J(f). Also

fn(o) = J‘f(e -1) icn(T) dr
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and hence f,, f are supported by a compact set CIS@, where C, is independent of =.
Moreover

() =1 (0) = f H— 1) by (1) d

and f,(6)—f(6) uniformly on C,.
Let g, ¢, and A be as in Theorem 3.3. It follows that there is an 0 <M < oo and a
compact subset C, of & such that

lp@)P<M max (1-R<=,0)), 6eCinA.

Note that f k(v dv f ip(0) - p(x) { — 7, %) f(z) de=ip(8) - K(f,)

and that K(f,)—= K(f) as n—> oo.
For 0eC,nA

12(0)— I (1) — ip(0) - K(f,) = fﬁn (v) drf(ei'”"""’("’ —1-ip(0) - p(@)) (— 7, 2) f(x) dz.

In particular |Rf,(0) — J(f,)| =0 (max,cc, (1—R<x,0))) as 0->0 and hence f,€F. The

conclusion of the proposition now follows easily from the formula

_ g(_ 0) J(fn)— <x’ 0> fn(—e)
Df, (x) —f 1 =2400) do.

ProrosiTion 5.3. Let &, and y be as in Theorem 5.9. Let B€ 4 with int B+Q.
Let feF be supported by &, and suppose that f(x)=O0(|p(x)|™*) as x— oo in @,. In the
Type I case

lim Ugf(z) = fZB (z) f(=) dz (6.37)
and in the Type II case
lim Ugf(z)= fﬂ}? () f(x) dz. (5.38)

The right sides of (5.37) and (5.38) are finite.

Proof. Write Ugf(x)= fUB (=, dy) [(y).

The desired result now follows easily from Theorem 5.7, Theorem 5.9 and the fact that
d<2.
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THEOREM 5.10. Let BE 4 with int B+OD. In the Type I case there is a finite constant
k(B) such that for f€F
lim (Df(x) = Lp () J(f)) =J(f) K(B). (5.39)

In the Type II case there exist finite constants k* (B) such that for f€ ¥
Jim (Df@)~ La@) J(1) = J(f)k* (B) F o 2K(f). (5.40)

Proof. One can easily find an f, €5} of the form of Proposition 5.3 and with J(f)=1.
It can also be assumed that in the Type II case K(f,) =0. Recall the identity

Df(x) — T3 Df(x) = — Upf(x) + Lg(x}J(f). (5.41)

In the Type I case it follows from Theorem 5.7 and Proposition 5.3 that for some

finite constant k(B)
lim (Df, (x) — Ls(x)) = k(B),

and (5.39) now follows from Corollary 5.2.
In the Type II case it follows from Theorem 5.7 and Proposition 5.3 that for some

finite constants kt(B)
. lif:° (Dfy(x) — Lg (%)) = k* (B),

and (5.40) now follows from Corollary 5.2.
From Theorem 5.7, Theorem 5.10, and equation (5.41) we have

THEOREM 5.11. Let BE 4 with int B+D and let f€F. In the Type I case
lim Uy f(z) = — k(B)J(f) + f L, (2) Df(x) d (5.42)
T->00 B

and in the Type II case

lim Upfie)= k(B0 KD+ | Lie) Dife)d (5.43)
THEOREM 5.12. Let B€ 4 with int B+=Q and let f€F. In the Type I case
[ L@ @ ds= ~ kB I+ [ Late) Do) 20 (5.44)
and in the Type 1I case

f L5 (@) f(z) do = — k* (B) J(f) + o 2K(f) + f L5 (z) Df(x) da. (5.45)
B
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Proof. If f satisfies the conditions of Proposition 5.3 the result follows from Proposition
5.3 and Theorem 5.11. The general case can be reduced to this special case by an applica-
tion of Proposition 5.2, since it is always possible to choose &, as in Proposition 5.2 and such
that each k,(x) =0(|p(x)| %) as £~ oo.

From Theorem 5.11 and Theorem 5.12 we obtain immediately

CoROLLARY 5.3. Let BE 4 with int B+D and let f€F. In the Type I case

lim Up f(x) = f Ly (x) f(x) dx (5.46)
and in the Type I case
lim Uyf(z)= fzw) f(z) de. (5.47)
I—> 00

The remainder of the results of this section depend on the results of Section 6. There
is no danger of circular reasoning since the results of Section 6 depend on Section 5 only
to Corollary 5.1.

TrEOREM 5.13. Let C be a compact subset of & and P a relatively compact open neighbor-
hood of the origin of ®. Then there is an 0 <M < oo such that

{y,0) (Kz,0)—1)
L 0 db|<M (5.48)

for y€®, x€C, and 0<i<1.
Proof. Let some u™ be nonsingular. Let f€, be nonnegative with J(f)>0 and let ¢

be a compact subset of &. Then by Corollary 7.1 and the arguments leading up to Lemma
6.4 we see that there is an 0 <M < oo such that for y€@®, x€C, and 0 <A <1

| DA(2) - DA, (0)| < M. (5.49)

When expressed in terms of Fourier analysis and used with Theorem 3.2, (5.49) yields
Theorem 5.13.

From Theorem 5.13 we easily get

COROLLARY 5.4. Let f€F and C be a compact subset of &. Then there is an 0 <M < co

such that
[ DAf(x) — DA (0)| < M (5.50)
for y€@®, x€C, and 0 <A<,

From Corollary 5.4 and the identity
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15 Df, (=) — Df,(0) = fﬂa(x, dz) (Df, (z) — Df,(0)),
we get
COROLLARY 5.5. Let BE€ 4 with int B0 and let f€F. Then

HBD,fy(x) - ny(O)
ts bounded uniformly for z, y€®.

By exchanging the roles of x and y we also get as a consequence of Theorem 5.13

COoROLLARY 5.6. Let C be a compact subset of & and P a relatively compact open neigh-
borhood of the origin of ®. Then there is an 0<M < oo such that for x€Q, y€C, and 0<A<1

(&%
(=, 0> 3<y, 6 a0 l<m

R T (5.51)

THEOREM 5.14. Let P be a relatively compact open neighborhood of the origin of @
Then there is an 0 <M < oo such that

1_<x5 0> _
L__l—/lﬂ(ﬂ) 9> - M, z€® and 0<A<l. (5.52)

Proof. Using Corollary 7.1 and the proof of Lemma 6.6 we can find an f €} such that
J(f) >0 and for some 0 <M < oo

Difx)y > — M, z€® and 0<A<]1. (5.53)

When expressed in terms of Fourier analysis and used with Theorem 3.2, (5.53) yields
Theorem 5.14.

THEOREM 5.15. Let f €F with J(f) 0. Then there is an 0 <M < oo such that

Dfx)> — M, z€® and 0<A<I. (5.54)
CorOLLARY 5.7. Let € with J(f) =0. Then there is an 0 <M < oo such that

|Utf(z)| < M, 2€® and 0<A<I. (5.55)

Proof of Theorem 5.15. Let &; be an open compactly generated subgroup of & con-
taining the support of f. Let y, ¢, and A be as in Theorem 3.3.
From Theorem 3.1, Lemma 5.1 and Corollary 5.6 it follows that there is an 0 <M < oo

such that if P< A is a relatively compact open neighborhood of the origin of ®
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I TT7a0) '<M, 2z€® and 0<i<]. (5.56)

From Theorem 3.1, Theorem 3.6, and equation (5.56) it follows that there is an 0 <M < oo
such that
X f(—
@0OIN=0) 40
»  1-24(0)

I<M, 266, (5.57)

Theorem 5.15 follows from Theorem 5.15 and equation (5.57).

6. The nonsingular case

In this section we prove those results in the nonsingular case which are necessary to
complete the proof of Theorems 5.1 and 5.2. Further results for the nonsingular case will
be given in Section 7.

Throughout this section it will be assumed that u defines a recurrent random walk on
& and that some iterate of u is nonsingular.

Let §, denote the collection of continuous functions on & having compact support
and integrable Fourier transform. Let {J,, denote the symmetric functions in ;. Let
&1 and i, denote respectively the nonnegative functions in , and ;.

Let g be an element of Fy, with J(g)=1 and let D? be defined for f€, and z€S by

Dif(x) = J(f) U*g(0) - U*f(=).
We have first

ProrosiTioN 6.1. For f€,,
1111111 (D*(y) + D*H(—y)) (6.1)
exusts and is finite and the convergence is uniform for y in compacts.
Proof. For 0<A<1

D‘f(y)+D1f(—y)=2,1f!7(—9)J(f)—9‘?<y,0>f(—0)

1-4(0)

f(0) 6.

By Theorem 3.1 we need only prove that if P is a relatively compact neighborhood of the

) 1-R<y, 6>
1 —=7q
llﬁ fp 1 —/1/2(0) o

origin of @, then

exists and is finite and the convergence is uniform for y in compacts. But this result also

follows easily from Theorem 3.1, as desired.
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Let &; be an open compactly generated subgroup of &. Let 9, ¢, and A be as in
Theorem 3.3. Let C'< A be a compact neighborhood of the origin of ®.

Set d‘:lf l—f’;%ﬂ(e)do, 0<i<l.
(o]

Also for 0<1<1 and f€ {, define the function D}f(x), z€®,, by
Djf(z) =D (z) + (y(2) - &) J(f).
ProPosITION 6.2. For f€F,,

}li?} DA f(x) = Dyf(x), x€@,, (6.2)

exists and is finite and the convergence is uniform for x in compact subsets of &,.

Proof. We have that for x€@®,

§(=6)J(H)— <=, 0> [(— 0)
1-2a(0)

DI IO ivt) 090
#] I=7a(0) AOYD.

The first term causes no problems. To study the second term it suffices to study

. 9O
fc (1 e f"ﬁ’wf ) A(6)do.

Let E be a compact subset of &;. There is an M, 0 <M < co such that for € F and 6 € C
]e"”""”’("’ —1—1dyp(x) - pl0)| <M1~ Rev@ o0 = (1 - R<x, 0)).

It now follows from Theorem 2.1 that

. 1+ () @(0) e‘w(r)-qz(ti)) A
i [, (S ) 0

exists and is finite and the convergence is uniform for € E. This completes the proof of
Proposition 6.2.

Let B be relatively compact subset of &, having a nonempty interior. Then (5.12)
holds and consequently for 0<A1<1, f€,, and 2€®,
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Dif(w) — T Dif(w) = — Usf() +J(f) (L’};(x) +d* f(w(x) —y(2) Ma(z, dZ))-
Since we can choose f€{; such that J(f) =0, we get immediately from Proposition 6.2

ProrosIiTION 6.3. For x€®,

lim (LAB (x)+d*- f('lp(x) —p(z)) Mk (=, dz)) 6

i1
exists and is finite. Also the convergence s uniform for x in compact subsets of &,.
Next we will obtain
ProrosiTioN 6.4. d* is bounded in 4, 0<A<1.

Proof. There is an M, 0 <M < oo, such that

|L¢(z)m(x,dz) <M, 0<i<l,z€@®,.

Suppose d* is unbounded. Then there exist 1, + 1 as n—> oo such that |d*|— co and

dn
‘_dlj‘_—)d’ ldl—_—l.

We can choose € &, such that p(x)-d>M. Then

n—>00

lim !—;—l"i (zp(x) “din— . Ly;(z) h(y, dz)) >0

and hence lim d* - f (w(x) — p(2)) T% (2, dz) = + oo,

n—>oQ

Sinee Lk (x) >0 for 0<A<1 and x€®,, this contradicts Proposition 6.3.
Choose A, 1 1 and d such that
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.3)

lm d*=d. (6.4)

n=>00

Clearly d is finite. By Proposition 6.3

T}EL’};'(x):LB(x), z€®,.

exists and is finite and the convergence is uniform on compact subsets of &,.

Next we will obtain
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LeMMA 6.1. For feg,,

lim D™f,(2)=Df,(x), =,y€G, (6.5)

exists and is finite and the convergence is uniform for x and y in compacts.

Proof. Since D3f (x)=D3f(x—y), it suffices to prove the result for y=0. This result
follows from the definition of D}, Proposition 6.2, equation (6.4) and the fact that & is

g-compact since g defines a recurrent random walk on (.

LeEMMA 6.2. For x€®
lim Ly (x) = Lp(x) (6.6)

exisis and is finite and the convergence ts uniform for x in compacts. For f€F,,, €S, and

yE®
Df,(x) — 115 Df,(x) = — Ugf,(x) + L) J(f). (6.7)

Proof. The first statement follows from equation (5.12) and Lemma 6.1, since f€,,
can be chosen so that J(f) +0. The remainder of the lemma now follows immediately.
Let f€5, be supported by a compact set € having a nonempty interior. Then for

0<il
U f(y) = E, 27 (f(Sv,) + U*(Sy,)). (6.8)

LeMMA 6.3. Let f€F,y,, C, a compact subset of & and C a compact subset of & having a
nonempty interior and containing the support of {(—y), y€G, and of f(x—y), y€C,. Then

Df,(x) — Df,(0) = E, (f(8v,) — f(x + Sy,)) + B, (Df(x + Sy,) — Df(Sy,)). (6.9)

Proof. By (6.8) for x€C,
Dy (@) = DM, (0)= U f(—y) — U f(z—g)
=E_,A7°(f(Sy,) — f@+ 8y,) + B_, A7 (U*{(Sy,) — U f(x + 8y,))
=B_, A" (f(Sv,) — f(x+ 8y,)) + B_, 2 (D*f(x+ Sv,) — D'f (Sv,));
and the desired result now follows from Lemma 6.1.
LEMMA 6.4. For f€,, and C, a compact subset of & there is an M, 0 <M < oo, such that
| Dfy(x) — Df(0)| <M, y€S and z€C,. {6.10)

Proof. The result follows immediately from Lemmas 6.1 and 6.3.
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LemMaA 6.5. For fE€F,,
11 Df () — Df,(0)

is bounded uniformly for x€® and y€®.
Proof. Since

1, D}, () — Df, (0) = f 1, (=, d2) (Df, (2) - Df, (0)),

the desired result follows from Lemma. 6.4.
From (6.7) we see that for f€F,,, €, and y€S

Df,(x) — Df(z) — Df,(0) = I Df,(x) — Df,(0) — 15 Df(x) — U f,() + Unf(x).
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(6.11)

We study now the right side of (6.11). It follows from Lemma 6.4 that I Df,(x)—
Df,(0) is bounded uniformly for € and y€@®. Also 11 Df(x) is bounded for x€®, since
B is relatively compact and Df is bounded on compacts. Clearly Uzf(x) is bounded for

2€®.

ProrosiTion 6.4.1. If €T and J(f)>0, then

lim Uy, (y) = oo
Proof. Note that

Ve Ve VB—y
Uny(y) =Ey;fu(sn) zEygf(Sn_y) =K, 21: 1(85).
With probability one lim Vp_, = co.
Yy—>00

If fedt and J(f) >0, then with probability one

=8
~n

(8,)=co.
Proposition 6.4.1 follows from (6.13)—(6.15).
ProrositioN 6.5. If fEFT, and J(f) >0, then
lim lim (Dfy) + Df(— ) = oo.

Proof. From (6.11) we have that

Df(y) + Df(— y) = Df(0) — (11 Df,(y) — Df, (0)) + I1a Df(y) + Usf, () — Us f(y)-

(6.12)

(6.13)

(6.14)

(6.15)

(6.16)



62 SIDNEY C. PORT AND CHARLES J. STONE
From the discussion following (6.11) and from Proposition 6.4.1 we have that

lim (Df(y)+ Df(~y)) = o. (6.17)

The desired result now follows from Proposition 6.1 and Lemma 6.1.

THEOREM 6.1. Let P be a neighborhood of the origin of &. Then

1
T = oo, 6.1
fp?ﬁ (1 ‘(0)) do (6.18)

Proof. By the proof of Proposition 6.1 it suffices to find f€,, with J(f) >0 such that
(6.16) holds. The desired result now follows from Proposition 6.5, since there exist f €,
with J(f)>0.

Lemma 6.6. If f€F, then Df(x), €S, is bounded from below.

Proof. Let C be a compact set having a nonempty interior and containing the support
of f. Then by Lemma 6.1 there is a finite constant M such that

Uinf(0) — Uf(y) > —M, n=1 and y€C. (6.19)
We can also assume that ) <M, ye@®. (6.20)
Then by (6.8), (6.19), and (6.20) for x€®

US{(0) = Uhf(z) = Uf(0) — B2 Ay {(Sv,) — B4 °U™f(Sy,)
> B A (Uf(0) — UM f(Sy,)) ~M > -2 M.
Thus by Lemma 6.1 Df(x) — Df(0) = —2M, z€®,
from which the desired result follows.
LEMMA 6.7. Suppose all elements of & are compact elements. Then for f €y,

lim (Df,(z) — Df,(0)) =0, z€®, (6.21)

and the convergence is uniform for x in compacts.

Proof. Let O be a compact subset of (. Let C' be an open compactly generated sub-
group of & containing €, and the support of f. Then C is compact and Lemma 6.3 is appli-
cable. Note that for x€C, and y€®
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B, fa+ 8y,) = B.fly+Svy,,, )=Efly+Sy, ).

For y large, the random walk starting at x will, with probability close to one, hit any given

neighborhood of the origin before hitting €' — y. For this reason, since f is continuous,

lim B, (f(z+ Sv,) — f(Sy,)) =0

uniformly for # in compacts Similarly

lim B, (Df(z+ Sy,)— Df(Sy,) =0

Y—>o0

uniformly for = in compacts. The desired result now follows from Lemma 6.3.

ProOPOSITION 6.6. Suppose that &, is a noncompact open compactly generated subgroup
of & and that C is a compact subset of &,. Then
lim g, (y, C)=0. (6.22)

y—=>oo

Proof. The result says that for y large the hitting distribution of &, for a random walk
starting at y should be concentrated near infinity. If &/®, is finite the result is obvious
(and not needed). Suppose &/®; is infinite so that

Cs

@: (an+@1),

n=1

{t

where o, + ®&,,n>1, are disjoint subsets of &. Let N be a positive integer. If y— oo
within

N

LIJ (“n + @1) H
the result is again obvious.

On the other hand, choose z, ..., z, in B, and P< @, an open neighborhood of the

origin such that the sets
C,x,+C+P, .., z+C+P

are disjoint. Then N can be chosen large enough so that if y€ Uy (o, +®,), then for
1 <j <k the probability that a random walk starting from y will hit y +x,+ P before hitting
&, is at least 1. We will then have that for such y for 1 <j<k

H@ﬁl(y: 0)<2 H@x(y3 xf+P+0)

so that Ne, (¥, 0)<2/k, ye U (a, + ).
N+1

Since k can be made arbitrarily small, this completes the proof of (6.22).
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ProrosiTiON 6.7. Suppose & has noncompact elements. Then there exist s, and s,
in the support S of u such that s, — s, is not a compact element.

Proof. Let x be a noncompact element of &. It follows easily from the structure theorem
that nx— oo ag 2— co. Let ¢, be compact elements of &. Then nx +c¢,— o as n->co. Other-
wise we could find n,— oo as j— co and a compact set € such that n,x+¢,€C, n>1. Let
&, be a compactly generated subgroup of @ containing « and C. Then ¢, and @,. Thus
the ¢y, lie in the compact set H of compact elements of &,. Consequently the n,z lie in the
compact set C — H, which contradicts the fact that nx— co as n—> oo,

If all elements of § were compact, then S would lie in the proper closed subgroup
consisting of the compact elements of &. Thus § has noncompact elements.

Suppose all elements in S are of the form z+c¢ where ¢ is a compact element and z
is a fixed noncompact element. If §, is the random walk, then with probability one S, =
nx+c,, where ¢, is compact and S,—co as n—> co. But this contradicts the fact that the
random walk is recurrent. Thus we have eliminated all possibilities other than the conclusion

of Proposition 6.7.

PrROPOSITION 6.8. Let &, be an open compactly generated subgroup of & which is iso-
morphic to either RO H or Z® H, with H compact, and which contains elements s, and s,
in the support S of u such that s, —s, is not compact. Also let &/, be infinite. Let £, be the
embedded random walk on &,. Then the one-dimensional random walk y(&,) has infinite vari-

ance.

Proof. As observed by Kesten and Spitzer [5], this result depends on the fact that the
projection of the random walk on &/®, is nullrecurrent, and hence has infinite mean re-
currence time. It follows that the number 7 of jumps having values in &, before the first
return to &, has infinite mean. Let o} denote the conditional variance of y(S;) given that
S, € &, (starting at the origin). Then 0 <¢3< oo,

It is clear that for a random walk starting at the origin
Var [p(&)| T]1 > 01 T.
Since ET = oo, it follows that Var y(£,)=cc, as desired.
PROPOSITION 6.9. Let & be neither compactly generated nor consisting exclusively of

compact elements. Then for an A€ A having a nonempty interior the hitting distribution of A
for a random walk starting at y has a limit as y— oo,

Proof. Let 3, be an open compactly generated subgroup of &, containing 4 and con-
taining points s, and s, in § such that s, —s, is not compact. This is possible by Proposi-
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tion 6.7. Now &/@, is infinite. By Proposition 6.8 the embedded random walk on &, is of
Type I and hence for this embedded random walk by Corollary 5.1, the hitting distribution
of A has a limit distribution as the starting point y approaches infinity. Proposition 6.9

now follows immediately from Proposition 6.6.
LEMMA 6.8. Suppose & is not compactly generated. Then for [ €y,
l}gg (Dfy(x)— Df,(0) =0, z€®, (6.23)
and the convergence is uniform for x in compacts.

Proof. We can suppose that & has noncompact elements, for otherwise Lemma 6.7
is applicable. From Lemma 6.3 and Proposition 6.9 it follows that for f €,

lim (Df, () - Df,(0)) =g(x), x=€@, (6.24)

and the convergence is uniform for = in compacts,
To complete the proof of Lemma 6.8, we will show that g(x)=0, £ €®. Suppose first
that x is a compact element. Then there is a compact set C such that nz€C forn>=1. It

follows from (6.24) that
lim (D, (nz) ~ Df, (0)) =ng (@)

Lemma 6.4 yields that g(x) =0.

Suppose now that z is noncompact. Then nz—oo as |n|— oo and by (6.4),

I lim (Df ((r + 1) z) — Df(nz)) = c(x).
n|—»>o0
Lemma 6.6 now yields that c(x) =0.
LeEMMA 6.9. Suppose & is not compactly generated. Then for € Ty,

lim Uyf, () =Ly(x)J(f), z€®, (6.25)

and the convergence is uniform for x in compacts.
Proof. From Lemma 6.2 we have that
Df,(x) — Df,(0) —HB(ny_ny(O)) (x) = — Ugfy(x) +Lg(2)J ()

and the desired result now follows from Lemma 6.8.
It follows from Lemma 6.9 that the value of Ly(x) is independent of the choice of 4,,.

Thus from Proposition 6.3 the value of d is independent of the choice of 4,, and hence by
5— 692905 Acta mathematica 122. Imprimé le 19 mars 1969
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Proposition 6.2 for f€F,, the value of Df(x), z€®, is independent of the choice of 4,.
In other words we have

THEOREM 6.2. Suppose & is not compactly generated. Then

lim d*=d (6.26)
it1
exists and s finite. Also lim L4 (x)=Ly(x), z€® (6.27)
it
exists and is finite. If f €y, then
lim D*f,(z)=Df,(z), z,y€® (6.28)
it
exists and is finite and
lim (Df,(z) - Df,(0))=0, z€G. {6.29)
Y—»00

The limits in (6.27)—(6.29) hold uniformly on compacts.

We finish this section with the main result.

THEOREM 6.3. Suppose & is not compactly generated. Let C be a relatively compact
neighborhood of the origin of &. Then for x€®

[ @1
1 7 df 6.30
a -2 (6:30)

exists and is finite and

[ 05,05 1)
di=0. 6.31
Jm Jm J o 1-ia0) (6:31)

The convergence in both limits is uniform for x in compacts.

Proof. This theorem follows from Theorem 3.1, Theorem 6.2 and the formulas for
D4f(x) and D*f (x) — D*,(0) given in the proof of Theorem 5.1.

7. Further results in the nonsingular case

We continue the assumptions of § 6, namely that u defines a recurrent random walk

on & and that some iterate of p is nonsingular. The operator D’ can be written as

Dif(z) = fD‘ (=, dy) f(y)

in the obvious way.
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THEOREM 7.1. The measures D*(x, dy) can be written as
D (z, dy) =a’ (y — z) dy — U(z, dy), (7.1)

where Uj(x, dy) = ub(dy — ), us being a finite positive measure that increases as A 11 to a

finite positive measure u,,

lm a*(x) = a(x) (7.2)
Atl

exists and s finite, in the Type I case

Jim (aly —2) —a(y)) =0, (7.3)
and in the Type II case
lim (ay—2) ~ aly) = Fo~yla). (7.4)

The convergence in (7.2)~(7.4) is uniform for x in compacts.

Proof. We can find an n, and probability measures ¢ and y such that 4™ = (¢ +y)/2
and @ has compact support, absolutely integrable characteristic function and continuous
density. The remainder of the proof is, with obvious modifications, that of Theorem 4.1
of [11].

Recall that @ denotes the collection of bounded Borel functions. We have immediately

from the above theorem (in the nonsingular case)

CoroLLARY 7.1. Theorem 5.3, Theorem 5.8, and Corollary 5.2 hold when $§ is replaced
by @.

ProrosiTIioN 7.1. Let BE B have positive measure. Then

lim P,(Vy>n)=0 (7.5)

uniformly for x in compacts.
Proof. It suffices to find a nonempty open set P, a positive integer » and a ¢ > 0 such that
u™(B—z)>c, z€P. (7.6)

To this end, we can find a positive integer », an 2, €@, a nonempty open neighborhood
R of the origin of &, and an « >0 such that

u* P(dy) > ady, yEx,+R.

Let @ be a nonempty open set such that @ —Q < R. Since
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f@u(B—y)dy=lBl >0
there is an z, € ® such that

L+Qu(3—y)dy=ﬂ>0-

Set P=x, —2,+ @ and c=af. Then for x€ P

,u""(B—x)?f M("‘”(dy—x)”(B—y)?aJ‘ wB—y)dy=af=c

n+Q 1+ Q

and (7.6) holds, as desired.

CorROLLARY 7.2, Let B€B have positive measure. Then for A€B

lim U (x, 4) = Us (x, 4)
at1

(7.7
exists and is finite and the convergence is uniform for x in compacts.
Let B€B have positive measure. Then as before we have the identity
D (z,dy) ~ JH‘B(w, dz) D*(z, dy) = — U (x, dy) + L (2) dy. (7.8)
From (7.8), Theorem 7.1 and Corollary 7.2 we have
CoROLLARY 7.3. Let B€B have positive measure. Then
lim L4 (x)= Ly(x), =€, (7.9
it
exists and is finite and the convergence is uniform on compacts.
Set wh(x, y) =L () —a*(y— ) + f % (x, dz) o’ (y — 2) (7.10)
and Uh(@, dy) = Uh(z, dy) - f T (2, d2) Uz, dy). (7.11)
Then U (z, dy) = v (z, y) dy + U (x, dy). (7.12)

Clearly we have that, as 1 1 1, ,U% (=, dy) approaches

2Us (2, dy) = U, (z, dy) — fﬂa(x, dz) U, (z, dy) (7.13)



POTENTIAL THEORY OF RANDOM WALKS ON ABELIAN GROUPS 69

in the sense that for A€ B
lim ,U%(x, A)=,Up (x, 4) (7.14)
at1

and the convergence is uniform for # in compacts. Moreover, from (7.10)

lim (2, y) = up (2, y), (7.15)
At1

the convergence being uniform for x and y in compacts, where
aly— )~ fﬂs(x: dz) aly — z) = up(@, y) + Lp (). (7.16)
Thus from Theorem 7.1 we get

THEOREM 7.2. Let B€B have positive measure. Then

UB (.’l?, d?/) = uB(xJ y) dy + ZUB (x: dy)’

where for A€EB lim yUg(z,y+A4)=0, (7.17)
Y>>0
in the Type I case lim ug(z, y) = Lg(x), (7.18)
Y=r00
and in the Type II case lim wug(z,y) = Li(z). (7.19)
y->t 00

The convergence in (7.17) — (7.19) is uniform for x in compacts.

CoRrRoLLARY 7.4. Let A€B, BEB and B have positive measure. Then the conclusion of
Theorem 5.5 holds.

Next we will prove

THEOREM 7.3. Let A€B, BEB and B have positive measure. Then the conclusion of
Theorem 5.7 holds.

Proof. We give the proof in the Type I case, the proof in the Type II case being es-
sentially the same. Applying duality to Theorem 7.3 we get that if 4, B, C€EB and B
has positive measure, then

lim | Uy (x+z,A)dz=|C|f Ly (x) de. (7.20)
C A

T—>00

Let (3, be the group generated by S —.8. Since some iterate of u is nonsingular, it follows
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that |®,| >0. Let C be a relatively compact subset of &, having positive measure. It is

casily seen that for any positive integer n

lim (fy(") (dy—x)Usg(y, A)— Ugla, A)) =0. (7.21)

r->00

There is a 0 <M < oo such that

Usly, A<M, y€®.
Thus

p®(dy —2)— p™(dy)|. (7.22)

I fﬂ‘")(dy—x— 2)Usly, 4)— ~[/4‘"’((1.1/—96) Us(y, 4) ‘ < Mf
By the methods of Stone [18] it follows that
lim f]y"" (dy—2)— ™ (dy)|=0, 2€@,, (7.23)

and that the convergence holds uniformly for z in compact subsets of &,. It follows from

(7.21)—(7.23) that
lim (Ug(x+2, A)— Ug(z, 4))=0 (7.24)

uniformly for z in compact subsets of &, and hence in particular uniformly for z € C. From
(7.20) and (7.24) we have that

lim Uy (2, 4) = J Ly (%) dz
A

I->00

as desired.

From Theorem 7.2 and Theorem 7.3 we get

THEOREM 7.4. Let B€ B have positive measure and f€D. In the Type I case

lim U f, () = Ly (x) J(f) (7.25)
and lim Uy f(x) = f Ly () f(x) da. (7.26)
In the Type II case

lim Usf, (&)=L (@) J(f) (7.27)
and lim Ugf(x) =fL§ (z) f(z) de. (7.28)

The limits in (7.25) and (7.27) hold uniformly for x in compacts.
The proof:of Theorem 5.10 now yields
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THEOREM 7.5. Let B€ B have positive measure. In the Type I case there is a finite con-
stant k(B) such that for fED

lim (Df(x) ~ Lp () I (f)) = I (f) k( B)- (7.29)

>0
In the Type II case there exist finite constants k% such that for f€ @

lim (Df(x) — Lg(x) J(f)) = J(f) k* (B) F o *K(f). (7.30)

ZT=>+t 00
Extending Theorems 5.11 and 5.12, we have

THEOREM 7.6 Let B€B have positive measure and let f€D. In the Type I case

lim U f(x) = J Ly(x) flw) dx = — K(B)J(f) + LZB(z) Df(x) dx (7.31)

T—>0

and in the Type 11 case

lim Uzf(x)= f L3 (2) f(z) de= — k* (B) J(f) £ 0 2K(f) + f Ly (x) Df(zx) dz.  (7.32)

T—>+ 00

From Theorem 5.13 and the definition of a*(x) in Port and Stone [11], we easily get
THEOREM 7.7. Let C be a compact subset of &. Then there is an 0 <M < oo such that
|a*(y—z)—a*(y)| <M, y€@®, 2€C, and 0<A<L. (7.33)

COROLLARY 7.5. Let f€® and let C be a compact subset of &. Then there is an

0< M < oo such that
| D*f, (%) — Df, (0)| < M (7.34)

for y€®, z€C, and 0<A<1.
CorROLLARY 7.6. Let f€D and let BE Bwith | B| >0. Then

H Df,(x) — Df,(0)
ts bounded uniformly for x, y€@.

Using the formula for a*(z) given in [11] together with the arguments that led up to
Theorem 5.15 we get

THEOREM 7.8. There is an 0 <M < oo such that

arz) = —M, z€@® and 0<A<L]. (7.35)
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COROLLARY 7.7, Let f€® with J(f) =0. Then there is an 0 <M < co such that

D)= - M, xz€Q and 0<A<L (7.36)
Proof. Note that

[tu-21wa=a =270+ [@u-2-2a 1w
The result now follows from Theorems 7.1, 7.7, and 7.8.

COROLLARY 7.8. Let f€ED with J(f)=0. Then there is an 0 <M < oo such that

|Usf(z)| < M, 2€® and 0<A<I. (7.37)

8. On replacing Abel summability by ordinary convergence
Set U,=3 pr
k=1

and for suitable ¢ set ¢, = U, ¢(0). Let D, be defined for suitable f by

D,f=au(f) = Unf= 3 (J(f) Pg(0) = P*P.

k=1

This should be compared with
Dif= 3 2+ (f) Pg(0)— P¥).

Since Abel summability is weaker than ordinary convergence, convergence of D4f doesn’t
immediately imply convergence of D,f. Even though this sharpening is not needed in
applications it is interesting enough to be worth while.

The key to such results, and what we will confine our attention to, is the following
strengthening of the first part of Theorem 5.2.

THEOREM 8.1. Let u define a recurrent random walk on & and let P be a relatively com-

pact open neighborhood of the origin of &. Then

((x 0>—1 (1 £"0)) .o (8.1)

n—~>00 )
exists and is finite and the convergence is uniform for x in compacts.

In proving this result we let v be the probability measure given by Theorem 3.2. We

will first prove
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LemMmA 8.1, Let P be a relatively compact neighborhood of the origin of ®. Then

f [ (@0 =1 (@"0)=9"0) _

n>o0 Jp 1—-9(6) 0 ®:2)

uniformly for x in compacts.

Proof. Let &, be a compactly generated subgroup of &. Then &, =V®L®H, where
V=R%, L~Z%, and H is compact. Let d=d, +d,. We can assume that P is contained in
the annihilator of H. Then there exist continuous functions ¢ from &, to R* and M from

& to R? such that
(2,0) =¥ MO 1e@, and H€P.

By Lemma 3.6 we can assume that ®, is large enough so that if §; < R? is the image
under p of the restriction of the support of u to &,, then 8, —8; generates a d-dimensional
closed subgroup of R’ It follows that for some 0<¢< oo

|a(0)| < e~c1MOF  gep. (8.3)
Similarly we can assume that
|7(0)|<e MO geP. (8.4)
Then for 6€ P
|a™1(0)— 711 (0)| < (n+ 1) | @(0) — $(B) | e~ eI ML, (8.5)

We can also assume that P and &, are such that for some compact subset C, of &,
and some 0 < K, < oo

|4(0) — #(6)| < K, (max (1— Rz, 6)))%, O€P.
zeCy
Thus we can find a 0 < K < oo such that

’ﬂ(e —#06)
1—-9(0)

‘ <K|M@®)?, 6eP. (8.6)
Let C be a compact subset of ;. Then we can find an 0 <L < oo such that
|[<z,0>—1| <L|M(@)|, x€C and HEP. (8.7)
Then by (8.5)—(8.7), for x€C and EP

Kz, 05— 1) (a2 (6) — 570 (6))
1-4(0)

<(+1)KL|M©O)P exp (—nc|M©O)[2).  (8.8)
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It is easily seen from elementary calculus that

lim sup (n+1) | M(6)] exp (—nc|M(6)[}) =0

n—>o00 e
and (8.8) now yields the conclusion of Lemma 8.1.
By Lemma 8.1 in order to prove Theorem 8.1 it suffices to prove

Lemma 8.2. Theorem 8.1 holds under the additional hypothesis that u be nonsingular.

Proof. The proof of Lemma 8.2 is similar to the methods used in Section 6. We start
with the identity ‘

n
Pr=3 ,II*P"*4 B™
k=1

and sum on # to get U,= i sII¥U, _ + 5U,.
k=1
Then D, f(x) —kgl sI1*Dy i f(x) = — U, f(x) + LS () I (f), (8.9)
where L™ (x)= i ¢n_z sl1¥(x, B).
k=1

The remainder of the proof will be omitted since it follows along the lines of Section 6
with (8.9) being used instead of (5.12).

9. Asymptotic behavior of the recurrent potential operator

In this section we study the asymptotic behavior of Af(x) as z— oo, This subject was
initiated by Kesten and Spitzer in [5]. The results in the recurrent case are analogous
to those in the transient case, only less complete.

Throughout this section it will be assumed that x defines a recurrent random walk on
&. Then the results of §§ 5-7 are applicable.

TEEOREMI.1. If = RO H or =Z® H, where H is compact, then there is an 0 <L < oo
such that for { € with J(f) >0 either

lim Df(z)=LJ(f) and lifn Df(x) = o0 9.1)
or lim Df(x)=c and lix_n Df(x) = LJ(f). (9.2)

If @ is not of the above type then for f€F with J(f)>0
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lim Df(x) = oo. (9.3)

I—>0

The next result depends on the decomposition of Theorem 7.1.

THEOREM 9.2. Let some u™ be nonsingular. If 8RO H or 8 =Z@ H, where H is
compact, there is an 0 <L < oo such that either

lim a(z)=L and lim a(z)= oo (9.4)
or lim a(z)=oco and lim a(x)=L. (9.5)
) T->+ 00

If & in not of the above type then
lim a(z) = oo. (9.6)

T—» 00

CorOLLARY 9.1. Let some u™ be nonsingular. Then Theorem 9.1 holds with ¥ replaced
by ©.

TuroREM 9.3. Let BEB be such that | B| >0 and either |0B| =0 or some u™ is non-
singular. If 8RO H or S =Z® H, where H is compact, there is an 0<L, < oo such that
etther

lim Lyz(x)=L, and lim Lg(x)= oo (9.7)
>+ 00 >0

or lim Lg(z)=o0 and lim Lg(x)=L,. (9.8)
T=>+00 £—>—00

If & is not of the above type then
lim Ly (x) = oo. (9.9)
>0
Remark. Even if ®=R®H or =Z@H, but provided that the random walk is of
Type 11, then L = co in Theorems 9.1 and 9.2 and Corollary 9.1 and L, = oo in Theorem 9.3.

LemMma 9.1. Suppose u defines a Type I recurrent random walk and that some ™ is
nonsingular. Let f be continuous, nonnegative and have compact support and J(f) > 0. Choose
b such that inf,cq Af(y) >0 where Af=Df—f+bJ(f). Then for all 0<e<infy.g Af(y), there
is a compact set C and an 0 <M < oo such that for x€® and y€C*°
(Af(?/) —¢

e — ) — N Af(y)+ ¢ 3

Proof. We start with the identity (see Theorem 10.1)
PAf = Af+f.
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Let B be a compact set including the support of f. Let ;@5 be the subtransition probability
operator on B¢ given by

P(x,dy) Af(y)

IQB (xs d?/)= Af(x) s x,yeBC.
Note that 1@z (z, B%) <Pj}i(g) =1, zeB.

Let ;Q% denote the nth power of Q. It is easily seen that

sP" (x, dy) Af(y)

ng (x’ dy)': Af(x) ’
Set ,G=27 1Q%. Then
_ Gs(z, dy) Af(y)

1GB($,d?/)——Zf(—x)——, z,y€ B

z,y€E B

Note that for y € ®, f, is supported by y+ B. It is probabilistically evident that

1Gsf, (®)< sup Ggf,(2), z€B’,y€@. (9.11)
2eB4(y+ B)
For y€® and z€ B°
1

1G5fy(2) = 1@ Jsoso Gy (2, du) Af(u) f, ().

By Theorem 5.3 and Corollary 7.1

Af(u) = Af(y) +0,(1), u€y+C,

and hence 106, (2)= (1;%/‘5(———2(;"(1)) Gs(1pef,) (2). (9.12)
It follows from (6.11) that
Os(lpefy (*)) = Af(@) + Af(—y) —~ Af( ~y) + O(1) (9.13)

for z€® and y €®. From (9.11)—(9.13) we get that for z€ B°, ye®

Af(y) +0,(1) N _
A @+ Af(—9) — Afta—y)+ 0(1)
<(——~Af(y) [4f(y)+ 4/(—y)+ 0(1)]. (9.14)

It is obvious that (9.14) holds also for z € B, since B is compact. The conclusion of the
lemma follows easily from (9.14).
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LemmA 9.2. Let y and f be as in Lemma 9.1. Then either

lim Af(x)= oo (9.15)
or there is an 0 < L < oo having the property that for all N >0 there is a compact set C such

that for x ¢ C either
|Af(x)— L|<N~* or Af(x)>N. (9.16)

Proof. Suppose (9.15) doesn’t hold. Let

L=lim inf Af(x). (9.17)

Then 0 < L < oo, Choose y€®. We can find a sequence z, such that, as n— oo, Af(x,) > L,
Af(—x,) > oo, and Af(x,) — Af(x, — y)—0. Substituting = x, in (9.10) and letting n— oo,
wet get that for y € C°

Af@) e (Af(y) - a) el 018
7 Ay —-M)< 4/(®) (Af(y) + Af(—y) + M). (9.18)

Choose 0 <N < oo, There is a compact set ¢, 2 C such that if y ¢ C; and Af(y)<N,
then Af(—y)— M >0 and

Afy)+4j[(—y)+ M
Af(—y)— M <l+e

(1+¢&)(4f(y)+¢)
Af(y) '

and hence (Afy)—e)<L (9.19)

Since ¢ can be made arbitrarily small, Lemma 9.2 follows from (9.17)—(9.19).

Lemma 9.3. Let u and f be as in Lemma 9.1, suppose that (9.15) doesn’t hold, and
let L be as in Lemma 9.2. If If =2 R®H or 8= Z® H, where H is compact, then either

lim Af(x)=L and lim Af(z)= oo (9.20)
>+ 00 Z—>— 00
or lim Af(x)=occ and lim Af(x)=L. (9.21)
T->+ 00 T>—0

Proof. This result follows easily from Lemma 9.2 and the facts that

lim (Af(x) + Af(— 2)) = o, (9.22)
and lim (Af(z—y)— Af(2)) =0, y€®, (9.23)

uniformly for y in compacts.
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LEMMA 9.4. Let u and f be as in Lemma 9.1 and suppose that & has an open noncompact
compoactly generated subgroup &, such that &|S, is infinite. Then (9.15) holds.

Proof. Suppose that (9.15) doesn’t hold and let L be as in Lemma 9.2. Let z, + &, be
disjoint for n>1. Then z,— oo as n—>oco. It follows from (9.18) and Lemma 9.2 that the

z,,’s can be chosen so that
lim Af(z,) = L.

Since &, is compactly generated but not compact, we can choose x€@®,; such that
nx—>oo as n—>oco. By (9.18), (9.22) and (9.23), we can suppose x is such that
lim Af(nz)= oco.
Now 2z, +kx—co as n—> oo uniformly in k. There is an ny>0 such that for all n>n,

there is a k,>0 such that
Afn+kax) <L+1

and Af(z, + (k,+1)x) 2 L+1.
By (9.23) lim Af(z+ k,z)=L+1,

which contradicts Lemma, 9.2.

LeMMA 9.5. Let 4 and f be as in Lemma 9.1 and suppose that & has a closed subgroup
&, 2 R*@®Z*" where d; +dy=2. Then (9.15) holds.

Proof. We can choose elements z and y in &, such that nx + ky— co as n+k— o0 and

use the proof of Lemma 9.4.

LEMMA 9.6. Let y and f be as in Lemma 9.1 and suppose that every element of & is a
compact element. Then (9.15) holds.

Proof. Suppose (9.15) doesn’t hold. Let L be as in Lemma 9.2. Let C be an open compact
subgroup of & which contains the support of f. Then &/C is infinite.
Let 2z, €@ N C° be such that z, +C are disjoint and Af(z,) L. Necessarily z,—~ oo and

Af(—2,)>oo. Let
k, =min{m >1|mz,€H}.

Then k,>1. Also (h,—1)z,€ —2,+H and hence Af((k,—1)z,)—cc as n—>oco. Thus h,>2
for n sufficiently large.

For n sufficiently large we can choose k, to be the largest positive integer less than
h,—1 such that Af(k,z,) <2L+2. Then for n sufficiently large
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Af(k,z,) <L +2 < Af(ly 2, +2,).

We have the identity (see equation (10.1))

Af(x) - Ho Af(X) = —Gof(x) + Lo(x) I (f).
It follows that

Af(x+y) - Af(x) — Af(y) = Af (%) — Af(x) — Af_,(0)
= HoAf_(x)— Af_(0) — Ho Af(%) — Gef (%) + Gof(x)-

Since f is supported by C, G,f(x)=0. Since f_, and Af are nonnegative, H,Af(x) >0 and
Gof_y(x) 20. Since u defines a Type I recurrent random walk

HoAf_(x)—-Af_,(0) = 0,(1) as y— oo

uniformly in z. Consequently

Af(x+y)— Af(x) - Af(y) < o,(1).

Letting y =z, and z=Fk,z, we get that

Af((kn+1)2,) — Af (kp2s) < Af(20) +04(1) = L+ 04(1).
Thus for n sufficiently large
L+1<Af(kyz,) <2L+2 < Af((k,+1)z,) <3L+3.

Since either k,z, or (k,+1)z, has a subsequence which converges to infinity we have
a contradiction to Lemma 9.1.

Proof of Corollary 9.1. In the Type II case the result follows from Corollary 7.1 (the

extension of Theorem 5.3). In the Type I case the result follows from Corollary 7.1 (the
extension of Corollary 5.2) and Lemmas 9.2 to 9.5.

From Theorem 3.2 and Corollary 9.1 we get immediately

THEOREM 9.4. Let P be a relatively compact open neighborhood of the origin of ®. Bither

. . 1—<x, 0>
1 _
I e | 1T 2200)

df= o (9.24)

or =2 R®H or Z® H, where H is compact and there is an 0 < L < oo such that either
. 1— <z, 0> {L as z—> + oo,
1 ——~ df—~ 9.25
211 e 1-2a(0) (9:29)

o ag x—> — oo,
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: 1—<:L‘,0> - o as x—> + oo
7 s Ll—mw)d(’ {L as 2o — oo, (9.26)

Proof of Theorem 9.1. Write

(TG —0)—<x, 6> f(—6)
D f(x) = f T=7a0) df.

We need only consider the Type I case. By Theorem 9.4 we need only prove that

o [ OFH=0)
L O R

But this follows from the arguments used in proving Theorem 5.8.

Proof of Theorem 9.2. The proof of this result is similar to that of Theorem 9.1, except

that the inversion formula for a*(z) (as in [117) is used.

Proof of Theorem 9.3. This result follows immediately from Theorem 5.10 and
Theorem 7.5.

10. Poisson’s equation

Throughout this section we will assume that u generates a recurrent random walk on
&. Our main purpose is to investigate the Poisson equation (P — I) f =¢ a.e., and some closely
allied facts. In the investigation of potential theoretic matters the operator Df is not the
correct potential operator since Dg fails to yield a solution of the Poisson equation. How-

ever a simple modification of Df is correct. Define A3, 0 <A <1 as
A% = G*g(0)(f) — G*f = DX +9(0)J (f) —f
and let Af=1lim A*f=Df+g(0)J(H)—f.
at1
This operator possesses all of the properties that the operator Df was shown to possess in

§ 5. A simple computation shows that the basic identity (5.15) translated into terms of

Af becomes the following relation:
Af-HpAf = —Gaf+J(f) L, (10.1)
where Hy(z, 4) = Linp(®) + 1Ly @)Lz, A),

Gp(x, A) =15 (x) Ug(x, AN B') +1pn4(x),
La(x) = 1p(x) Ly(x).
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All of the limiting relations established in § 5 are immediately translatable into limit rela-
tions for the above quantities. In the sequel we will just refer to the original relations in
§ 5 and leave their trivial translation to the present quantities to the reader.
Our first task is to show that potentials are solutions of Poisson’s equation.
TuarorEM 10.1. Take f€F, or if the walk is nonsingular, then we may also take f€®.

Then
PAf = Af+1.

Proof. By replacing f with —f if necessary we may assume that J(f) >0. It then follows
from (7.36) if f€® in the nonsingular case or from (5.54) if f€ in the general case, that
there is an M, 0 <M < oo such that 4f(x)= — M. Now

P4 =A%+ S A (Prf~ P,
n=0
and for f€5F (or ®) P*f—~0,n—> oo, s0

lim PA*f= Af+f,
itl

Fatou’s lemma then yields that PAf= Af+ f—g, where

g(x)= liTm PA*(x)— PAf(x)=0.
it
Then 9@ —y)=g,(x)= liTm PA*f(x—y)~ PAfx—y)= li?a PA*, (x)— PAf, (x).
At1 Atl
Hence gy (@) — g(x) = }iﬁl PAMf,— ) (@) — PA(f,— f) ().

But by (7.34) and (5.50), for fixed y, | 4*(f,~f)| <K < oo and thus bounded convergence
yields
gy (%) —g(x) = 0.

Hence g(x)=g,>0. However as Af> — M,
; n+1[‘4f 'M] 14j M 2:01 if “90’
=

n+1 .
s0 0<lim£——%£=—g‘,,

n

thus g, <0. Hence g,=0 and the theorem is proved.

Let BEB, |B| >0, |éB| =0, or in the nonsingular case just | B| >0, BEB. Take
Qp(x, dy) to be the transition function of the random walk killed on B, i.e., @z(x, dy) =
u(dy —zx) for z, y€® — B and Qz(x, dy) =0 elsewhere.

6 — 692905 Acta mathematica 122. Tmprimé le 19 mars 1969
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TuroreM 10.2. For any type one random walk the only locally integrable nonnegative
solutions of the equation Qzf =f a.e. are multiples of Lgx(x). For any iype two random walk the
only such solutions are appropriate linear combinations of Lh(x) and Lz(x), where

Lh(x)=Lx(x) +:71_2fBHB (z, dz) p(z —2) (10.2)

and La(x)= Lz(x)— ol'z fBHB (z, dz) p(z— 2). (10.3)

We shall divide the proof into several lemmas.

LeMmMa 10.1. For any type one random walk Ly(x) is a locally integrable nonnegative
solution of Qgzf=f.

Proof. Let p €F+, J(¢)>0. The basic identity (10.1) and the fact that Gz < oo shows

that
Ap—~PAp =PHgAp—Hz Ap+J(9)[Lp—PLs] —[Gpp —PGsop].

But if x¢ B then PHy=Hj, and PGrp =Gz —¢. By Theorem 10.1, Ap —PAp=—¢ so
we see that for x¢ B Lz=PL;. Since Lz(x)=0 on B it follows that @z Lz=L;. The non-
negativity is clear and the local integrability follows from the fact that Ls(x) is bounded

on compacts.

LemmaA 10.2. For any type two random walk Ci(x) and Lx(x) are nonnegative, locally

integrable solutions of Qzf=f.

Proof. As with Lg(x) all that needs to be verified is the fact that these are solutions of
the equation. The same argument as used in the preceeding lemma shows that Lg(x) is a

solution. The function
o0)= [ Hale, o) pa=2)=910) - [ Hate eyt
B B
vanishes for € B and for z ¢ B,

Pj(z)= JP(% dy) p(y) — LPHB (x, dz) p(2)

= — fB Hpg(x, dz) p(z) + f,u(dz) P+ x)= — fBHB(w, dz) p(z) + p (z) = 8 ().

Thus £} and L3 are solutions.
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LeMma 10.3. Let b be a locally integrable, essentially nonnegative solution of Qgh=h
a.e. Then for a type one random walk, h=cCy, a.e. where ¢ =0.

Proof. The potential kernel of the Markov process @y is just
3 Qs/=Gsf,

where Q% f(z) =f(z)1 (x). Let {E,}, int E,+D be an increasing family of compacts with
union @, and define functions k,(z) as follows:

h,(x) =min {h(x), nGx(x, E,)}.
Then h,(z) t A(x), and
k(%) < nGgx, E,). (10.4)

A simple computation shows that if g>>0 a.e. then Q;9>0 a.e. Then, a.e. Qph, <min {Q;5,
Qs(nG5lE,)} <h,, and thus setting 6, =h, —Qph, we see that §,>0 a.e. But

Q0,=

2. @5 (b~ Qohy) = by~ Q5" by, 2., (10.5)

IR
M=

j

and then by (10.4)

o0
2. <n Y Qslx,E,)>0 ae. as m->oo.
j=m+1

Hence @24, | 0 a.e. Thus (10.5) shows that
k(%) = Ggd,(), a.e.
Let f be any function in CF. Since & is locally integrable (k,, f) <(h, f} <oo. But

(hn’ f) = (GB(Sm /) = (6n! ng)

Since by (5.22) Gpe(x)—>(Ls @) as x—>oo, and by Theorem 9.3 Cy(x)+ Lz(—x)—> 00 we
see that there is a p €CY and a compact set D such that (g, ¢) >0 and @Bq)(x) >0, x¢D.
Thus B

Gsf(x)

(s f) = fD@Bﬂx) 8u(z) da + L [W ~ a] Yu(de) + ay, (D), (10.6)

where the measures y,(dz) are defined by
yaldz) = Gz p(x) 8,(x) de,

cB: f)

and a= B

(CB’ (P).
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Now observe that y,(®) = (Gz@, 8,) = (h,, ¢) < (h, p) < oo. Moreover, since k,(x) is locally

integrable, we see that for any compact K,

f 6,(x) dx=f h(x) dx—f Qzh, (z)dz.
K K K

Since A, t b a.e. and Qgh="F a.e. we see that

lim f d,(x)dz=0. (10.7}
Hence lim y,(K) < [sup @B(p(x):l lim f 8,(x)dz=0. (10.8)
n zeK n K

We will now show that for some constant y, 0 <y < oo,

Indeed, given ¢>0, choose the compact set K such that

Gsf@)
@pr(x)

o|<e

for x¢ K. Then the second integral in (10.6) may be written as

Jone® Lone:
D'NK D'NK’

f <ey, (D' N K')<elh, ),
D'NK’

Jonel=0 029

Since the first integral on the right in (10.6) is O(fpd,(z)dx), and (k,, f) 1 (h, f) we see that
y.(D’) converges to some number y and that (10.9) holds. Now (10.9) asserts for any f€CS

and

while

f h(2) flz) dx=c f L5 (@) f(z) dz,
& )

where c=v/(Cg, @), and thus h(x)=cLp(x) a.e. This completes the proof.

Lumma 104. Let h =0 a.e. be a locally integrable solution of Qzh=h, a.e. Then for any
type two random walk
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h(z) = ¢, L5(x) + ¢y La(),
where ¢, >0, ¢, >0 are constants, and Lh(z), La(x) are given by (10.2) and (10.3) respectively.

Proof. We know that £ and Lz are > 0. Suppose £(x)=0 a.e. Then

Lplx)= a‘zf Hy(z,dz) p(z—2) ae.,

and thus La(x)+ Lp{—x)= G“zf [Hp(x, dz) plz) + Hp(— x,dz) p(2)], a.e.

However, as the left-hand side tends to co as x— co while the right-hand side is bounded,
we see that this is impossible. Thus £3(x)> 0 on a set of positive measure. A similar argu-
ment shows that £3(x)>0 on a set of positive measure. Using Urysohn’s lemma we may
then find a p €07 such that (L}, ¢) > 0. Since

xgljlwgg(p(x) = (Cg’ <P),

we see that there is a compact set .D such that @Bq)(x) >0 for 2¢ D.
Let &,, 6,, and y,, be as in the proof of Lemma 10.3. Then we may write

(219 —c,] yatan

)= [ Gat@bseraas [ [

D'NnG™

éB]‘(x) , _ , .
* fp'n@-i» [gg(p(x) - cz] yn(dx) +¢ )’n(D ﬂ_@ }te }/n(D n &+).

oo Gal(=20) _ (L5,0)
! GB(p( - oo) (EE, (P)

where

oo Gaf(+ ) _ (L5 )
* Gap(+ ) (G5, 9)

Arguing as in the preceeding proof we may conclude that

(b, f)=1lim [¢; y,(D' N @)+ ¢, 7,(D N G*]. (10.10)

There is a subsequence n’ such that y, (D' N G~)>y1, y, (D' N G*)—>y; and thus (k, f)=
Y161 +72C,. As fECT was arbitrary, it follows that A =y, C§ 4+, L3 a.e. This completes the
proof.

Theorem 10.2 now follows from the preceeding lemmas. We will now establish an

extension of this theorem which will prove useful later. First: we introduce a definition.
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Definition. Let h be a locally integrable function defined on B’ that is bounded from
below. Let B€ 4*, | B| >0. Then & is called Q; superregular provided @zh<h a.e. on B’
It is called Qg regular if Qgh=h a.e. on B'.

CoroLLARY 10.1. Let b be a Qg superregular function, and let 6 =h —Qgh a.e. Then ina
type one walk there is a unique constant ¢ >0 such that

h(z) = cCa(x) +Gd a.e.
while in a type two walk there are unique constants c,, c; >0 such that
h(x)=c, L5 (z)+c, La(x)+ Gpd ace.

Moreover, the only Qg reqular functions are the above with § =0, a.e.
Proof. Clearly, Qs h=h—3 Qalh— Qsh).
=0

By definition there is an M, 0 < M < oo such that
- M<Qh<Qih<...<h ae.

Thus Q3 h=lim Q3h
n

exists a.e. and thus-so does lim, > /o @% (h — @sh). Moreover,
Fh=h—Gg(h—Qgh) a.e.
Also (by monotone convergence) @z Q% h= Q% a.e. and Q5 h> — M. However a.e.,

Q% hz)=lm Q3 (QFh+ M) () — M lim P, (T >n)=1lim Q3(QFh+ M) () > 0.

Thus by Theorem 10.2 we see that for a type one walk Q% h(z) =cLz(x) a.e. while for a type
two walk Q% h(z) =c, Li(x) +c¢, Ca(x) a.e. Since the functions L3, L3 are linearly independ-
ent the constants ¢; and ¢, are unique, This completes the proof.

Consider now a nonsingular walk. We already know that potentials of functions
@ €D, J(p)>0 provide solutions of Poisson’s equation that are bounded from below. We

will now exhibit all such solutions.

THEOREM 10.3. Let u generate a nonsingular recurrent random walk, and let g €®.
Consider the equation Pf=f-+¢@ a.e. In order that there be a solution which is bounded from
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below it is necessary that J(p)=0. In that case, for a type one walk, the only such solutions

are f =A@+ a.e., B a constant. For a type two walk the only such solutions are

j= A+ 2P ya) 4 p

a.e., where B is an arbitrary constant and |a| <1.

We shall divide the proof into several lemmas. Our first task is to show that an f

satisfying Pf=f+ ¢ for a nonsingular walk must be locally integrable.

LemMMA 10.5. If Pf=f+¢ a.e. and {=0 then f is locally integrable.

Proof. It follows from the equation that for any n>1, P"f <o, a.e. But since the walk
is nonsingular there is an 7 such that 4™ has a component with a density k(z) € L,(®), and
thus £ % £ must be bounded away from 0 on some relatively compact open set I. Thus there

is a measure y, and a constant y >0 such that

Pt lf(z) = fm(dy) fly + =)+ fk *k(y) fly + x)dy > yflf(y + ) dy.

Since P™*!f < oo a.e. it follows that f is locally integrable.

Next we establish a simple fact which will be needed during the uniqueness proof.
LeEMMA 10.6. For any measurable function f that is bounded on B,

lim P**H  f(x) = (I, f). (10.11)

Proof. Consider a type one random walk. Then lim,_.., Hpf(y) = (I3, f). Now

P = f P, d2) UL 2) — O 1+ (B

Equation (10.11) now follows by using the fact that |Hzf(2) — (Iz, f)| < ¢ if z is outside of
some compact set K and P"1g(x)—>0 as n— co. The proof for a type two random walk is
similar. We write

Py = [ P @ o)~ Hof(+ o))+ [ P(e,de) Hafle)— Haf = )

+ P x, §7) Hpf(+ o0) + P'(x, §7) Hp f(— o).

The central limit theorem for the induced random walk on R! or Z! implies that
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lim,,_, . P*(x, §*) =lim,P"(z, &)=4, and the desired result follows.

We may now show that the theorem is true.
LEmMma 10.7. The assertions of Theorem 10.3 hold for any nonsingular type one walk.

Proof. Set §(z) = [z P(x, dy) f(y). Since f+c satisfies the Poisson equation with charge
@ if fdoes and fis bounded from below we may assume that f >0. Let B contain the support
of ¢, | B| >0, BEB. Then for z¢ B, Qzf(x) +5(x)=f(x) a.e. Since f>0 we see that §=>0,
and thus f restricted to B’ is a @ superregular function. It follows from Corollary 10.1
then that there is a ¢>0 such that

f(x) = cLy(x) +Gpd(x) a.e. x¢B.
However, for ¢ B, G36(x) = Hyf(x) so
f(x) = cLp(x) + Hpf(x) a.e. x¢B. (10.12)

Suppose J (@) +0. Then it follows from (10.12) and (10.1) applied to ¢(Gzp =0) that

f=Hpf+——[Ap—HgAp] a.e.

J( )
and thus prHif= P"“HBf—l- @) [P"*'Adp —P*"'Hp Ag).
By Theorem 10.1 however, P"14p=Agp +1=Zno Py
while Prif= f+l§lP’<p a.e.
Thus | f+é0P’<p T [A<p+ > Plg—P"H A(p] +P"Hyf, ae.
or i+ (1 ——(%) jﬁo P _7(—) Ag + P! [HBf—J( ] HBA(p] ae  (1013)

Now as n—> oo the right-hand side above has a finite limit, and thus so must the left-hand
side. An appeal to the Chacon-Ornstein ergodic theorem shows that for any set K of
positive measure,

2P )

lim %——=|—,—, a.e.

n—o00 Z Pj ]-K
=1
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Thus unless J(p) =c the left-hand side in (10.13) is infinite a.e. Consequently J(¢p)=c and
by letting n— co in (10.13) and using Lemma 10.6 we see that f =Ap + «, a.e. We have thus
shown that if J(p)=0 and Pf=f-+¢, a.e., f bounded from below, then it must be that
J(@)>0 and f=Ap+a a.e. Consider now the case when J(p)=0. Let y €D+ be such that
J(x)>0. Then Theorem 10.1 shows that f+ Ay is a solution of Pg=g +y +¢ that is bounded
from below. Since J(y-+¢)=J(y)>0 it follows from what has already been shown that
f+A4y=A4(x+¢)+« a.e. Thus f=Agp+« a.e. This establishes the lemma.

LeEvwmA 10.8. In order that Pf=f+¢, a.e. have a solution f bounded from below for a type
two random walk it is necessary that J(@) =0. In thai case f=Agp +ap(x)+b a.e. for suitable
constants a and b.

Proof. As before we need only consider solutions f>0. Arguing as in the proof of the
preceeding lemma we find that if Pf=f+¢, a.e. f >0 then

f=cLh+c, Lo+ Hpf ae.,

where L3, L3 are given by (10.2) and (10.3) respectively. Thus

’ c
J0)= () Ea@)+ OS2 e,y o) - OS5 o) +
Consequently if J(@) =0, then a.e.
n+1 c1_|_62 n+1 Co n+1 n+1
P f(x) = T P [Ap— HBA??]“" P** " Hpy(x)— )+ P Hgf
or
¢+ o\ Z ¢ +c ¢ +c
+{1 -2 2) P! 12 Ag 2 PPl Ag+ P HH
/ ( T ) 277" T A? " R e of
+cl—;26—2 P Hpy( 2 y(z), a.e.

Since the left-hand side has a finite limit as #— co we must have ¢, +¢,=J(¢) and thus it
is necessary that J(¢)>0 (since c,, ¢, are > 0) and

f(x) = Ap(x) +ayp(x) +b. (10.14)

If J(p)=0 the same argument used in the preceeding proof shows that f must again be of
this form. This establishes the lemma.

Our final lemma is to establish the values of ¢ and b.
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LeMMaA 10.9. In order that
Ag(x)+ap(x) +b

be bounded from below it is necessary and sufficient that

a=“']0(f)

where |a|<1.

Proof. Suppose there is a positive M < co such that

Ag(z)+ ”2(2‘”) p@)+b> — M.
It follows from (5.9) that
lim 9@ _ iJ(;p).
I—>+ 00 'lp(x) g
Consequently, % + sgn () 9‘_{7@ =0,

so || <1 is necessary. On the other hand,

O g+ b+ o)~ [ Hola,d0) [ 496+ 22 o)+

+J(p) [Cg(x)+g§ JBHB(x, dz) w(x-—z)].
The first term on the right is bounded in z. Since

Ca(x)iol_z fBHB(x, dz) p(x—2) >0

we see that |a| <1 is sufficient. (The proof is that of Spitzer [13].)
Theorem 10.3 now follows from the preceeding three lemmas.

There are some immediate consequences of Theorem 10.3 which are of interest.

CoroLLARY 10.2. Let u generate a nonsingular recurrent random walk. Then the only
superregular functions for P (i.e. functions f, bounded from below, such that Pf<f a.c.) are

f(x) = a.e. for « a constant.

Proof. By choosing ¢ =0 we see that the only solutions of Pf=f a.e., f bounded from
below, are f(x) =« a.e. But if Pf<f a.e.and f(x) > — M, 0< M < oo then as Do Pi(f—Pf)=
f—P"*'f a.e. we see that lim,_,, > 7o P/(f —Pf) (z) < 0. But by the Chacon-Ornstein ergodic
theorem this can only be the case if J(f—Pf)=0. Hence f=Pf a.e. and the assertion is

proved.
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Remark. Suppose Pf(x)=f(x) for all z and f(z) >0. It follows from the above that if
uldz) <<dz, then f(z)=« for all x. It might be suspected that this should hold in the
general nonsingular case. Simple counter-examples however show that this is false, so that
in the general nonsingular case the most we can conclude from Pf(x)=f(x) all z, f(x) >0 is
that f(z)=« a.e. In turn, this implies that for g €D, J(p) >0 even if we assume Pf(x)=
f(x) +@(x) for all  we still can only conclude in the general nonsingular case that solutions

permissible by Theorem 10.3 hold a.e. However, for bounded solutions things are different.

CoROLLARY 10.3. Let u generate a nonsingular recurrent random walk. In order that
the equation Pf(x)={f(x)+q@(x) have a bounded solution it is necessary that J(p)=0. In that
case the only bounded solutions are f=Agp + 8 for some constant f3.

Proof. Tt follows from Theorem 10.3 that J(p) =0 is necessary, and it is clear that Ag
is a bounded solution of the equation. Since the difference of two bounded solutions is
bounded the desired conclusion will follow provided we can show that the only bounded
solution of Pf(x) =f(z), x€® is f(z)={(0). To establish this fact we may proceed as follows.
We already know (from Corollary 10.2) that f(x)=p a.e. x€@®, for some f. Let F =
{x:f(x)=p}. Then as | E| >0, P,(Vz<co)=1. But then for any n >0,

H) =B fSy)= 3 | Po(Ve=r,8,€dz) P "fe) + féP,(Vpn, S, €dz) /2).
=0 JE

The second term on the right is bounded in absolute value by ||f||P-(VE>n) § 0 as n—> oo
while the first term is just P,(Vz<n)8 1 B as n— co. Thus f(x)=p, as desired.
For functions ¢ €5} there is a similar uniqueness result in the nonsingular case to that

for functions p €.

COoROLLARY 10.4. Let u generate a nonsingular recurrent random walk, and let ¢ €.
In order that Pf=f -+ a.e. have a solution bounded from below it is necessary that J(@)=0.
In that case for a type one walk f=Ag+f a.e. while for a type two walk

f=A<p-I-J(Z#C p(@)+ B ae., |a|<L

Proof. Let g have compact support B, J(g)=1. Then Agp(zx)-—-J(p)Ag(x) is bounded,
and by Theorem 10.1, h(z) =f(z) +J(p) Ag — Ap is a solution of Ph=h+J(p)g a.e. which by
Theorem 10.3 is bounded from below if and only if J(p)>0. It follows that f is bounded
from below if and only if J(p)>0. In that case Theorem 10.3 shows that Ph=h+J(p)g
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a.e., b bounded from below, has only the solutions & =J(p) Ag+p a.e. in the type one case
and

h=J((p)Ag+J(<p);w(x)+ﬂ

a.e., in the type two case. This establishes the result.

We now turn our attention to the question of uniqueness in the case of a singular
recurrent walk. Here we have only been able to establish uniqueness in a smaller class of
functions. Let g >0, J{g)=1 and g€ be fixed. For any ¢ €F, Ap —J(p)Ag is a bounded
continuous function. Let E be the direct sum space of the Banach space of bounded
measurable functions with the one dimensional space generated by multiples of Ag, let
E ={feE:(P—1I)f=g¢ a.e. for some p€F}, and let E, be the subspace of elements of E

such that for some «, f —adg is a bounded continuous function.

THEOREM 10.4. Let u generate a recurrent random walk, and let ¢ €¥. Then the equation
Pf=f+¢p a.e., fEE has only the solutions f=Ap+p a.e. Moreover, if fEE then f=Ap+f
for oll z€.

Proof. Suppose f=f,+xAg€ K’ and let m,(f) =« and n,(f) =J((P — I)f). Both of these
are homomorphisms of £’ onto the reals. Suppose f€ker ,, i.e. «=0. Then as { is bounded

and
P~ f=>P(P-1)f

we see that >jo P/(P—1I)f is also bounded. Let B€ 4, |B|>0. Then >} o P/1(x)~> oo
a.e. and the Chacon—Ornstein theorem shows that

g 2L EDIE _gqp—np
n->00 ji Pj ]-B (x) |Bl
o

Thus J[(P—1)f]=0, so f€ker ,. It follows that there is a homomorphism 7 of the reals
onto themselves such that m(m,(f})) =7,(f). Hence for some real y, ya=J{(P—1I)f]. By
Theorem 10.1, (P—I)Ap=¢ and the « for Ag is J(p). Thus y=1 and we see that a=
J[(P—1I)f]. Now suppose f is a solution of (P—I)f=¢ a.e., f€E. Then it must be that
f=fo+J(p)Ag. Thus f — Agp is bounded and satisfies the equation Pk =} a.e. It follows from
a theorem of Choquet—Deny [1] that A(x) =8 a.e. for some constant . Finally if f is required
to be in E, then since both f and Ap -+ are continuous the equality must hold everywhere.
This completes the proof.
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Remark. We know that lim,_,oo[Ag(x) +Ag(~x)]=co. Theorem 10.4 then shows that
a function f satisfying the Poisson equation that grows like a potential must in fact differ
from a potential by an additive constant.

If we examine the Poisson equation in the nonsingular case in the class E then we

always have 4p +f as the solutions.

CorROLLARY 10.5. Let u generate a nonsingular walk and let ¢ €5 or ®. Suppose f€E
and Pf(x)=f(x) +p(x) for all €®. Then f(x)=Agp(x)+p for some constant B.

Proof. The same proof as in Theorem 10.4 shows that f — Ag is bounded, and P(f — Agp) =
f—Ag. Corollary 10.3 then shows that f — Agp=p for some .

Our final results in this section concern the Poisson equation with boundary conditions.

TurorEM 10.5. Assume u generates a monsingular recurrent walk. Let BEB, | B| >0
and let €D have support on B and f €D have support on B'. Then the solutions of the equation
(P—I)h= —f a.e. on B’ subject to the boundary condition h=¢ a.e. on B that are bounded
from below are as follows: In a type one walk

h=Hpp+Gpf+cLsy ae. c=0. (10.15)
In a type two walk

h=Hyzp+ Gpf+c,LE+c L3, ae. ¢,>0,¢,20. (10.16)

Proof. 1t is clear that h(x)=¢(x) a.e. on B and a simple computation plus Lemma’s
10.1 and 10.2 shows that right-hand sides of (10.15) and (10.16) satisfy (P —I)k(z)=
—f(x), x€B’. Now consider a type one walk and assume that A satisfies the require-
ments of the theorem. Set &(z)=[(P—I)h{zx)]1g(x). Then (P —I)h(zx)=08(z)—f(z) a.e. &,
8(x) —f(x) €D and h is bounded from below on &. Thus by Theorem 10.3 h=A4(5 —f)+5,
a.e. and J(6 —f) =0. Setting ¢ =J(6 —f) we see from the basic identity that a.e.

h=Hgh—Gg(d—f)+cLs=Hpp+Gzf+cLyp

as desired. The proof of (10.16) for the type two walk is similar. This completes the proof.

There is also an analogue of this result valid in the singular case.

TaEOREM 10.6. Let BE A, | B| >0. Assume ¢ €D has support on B and f€D has sup-
port on B’. Then the only locally integrable solutions of the Poisson equation (P—IYh= —f
a.e. on B’ subject to the boundary condition h=¢ a.e. on B that are bounded from below are as
follows. In a type one walk

h=Ggf+Hzgp+cLy ae c=0,
while in a type two walk
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h=0Gsf+Hgp+c,Li+¢,Lp ae. ¢y,¢,20.

Proof. A simple computation shows that the right-hand sides satisfy the equation
with the boundary value @. Also it is clear that h, = G5f + Hze is a bounded solution. Sup-
pose that % is a solution that is bounded from below. Then g=»A—», is locally integrable,
bounded from below, and satisfies the equation Pg=g a.e. on B’ and ¢=0 a.e. on B. Since
g=0 a.e. on B this equation is the same as )39 =g a.e. Then g is @y regular and it follows
from Corollary 10.1 g=cLy a.e. in the type one case and g=c, L3 +¢, L5 in the type two
case. This completes the proof.

By the same type of argument we may establish the following.

TaeorEM 10.7. Let BE€ B have nonempty interior (or in the nonsingular case | B| >0).
Then the only bounded solution of (P — I)h(x) =0 for all x € B’ and h(x) =¢(x) on B is Hzp(x).

Proof. Suppose % is a solution. Set §(x) = { 3 P(x, dy)h(y). Then for x ¢ B
Q3" h=h—> Q.

But | Q3 A(x)| < sup, |A(x)| P.(V>n) | 0 as n—> oo, and thus k(z)= D2 Q%5 6 = Hgh(z) =
Hpp(x), as desired.

11. Recurrent potential theory

Throughout this section we will assume that u generates a recurrent random walk.
Our purpose here is to show that analogues of some of the basic principles of classical
logarithmie potential theory are valid for our potentials. Naturally one cannot hope for
too much in the singular case, but for the nonsingular case most of the familiar principles
have their counterpart. A nice treatment of classical potential theory can be found in the
lecture notes of Fuchs [3].

The potential operator 4 was defined a bit arbitrarily. It is clear that all of the results
established for 4 up till now also hold for the operators 4, defined by A,f=Af+bJ(f), b

a fixed constant. In particular we still have the basic identity
Ay f(x)—Hp A, f(x) = —Gpf(2) +J(f) La(®)- (1L.1)

Let g€, g=0, J(g) =1 be fixed. By Corollaries 5.2 and 7.1 we then see that for fE (or
f€® in the nonsingular case)
Lim {4,f~ J(f) Apg(x)]=0 (11.2)
T

and by (11.1), Theorems 5.10 and 7.6, and Corollary 5.3
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(B Auf) = —(Ca ) +7(f) lim[ Cal@) — Ayg(z)] (11.3)
where Io(y)dy = La(y) 1sy) dy = lim Hy(z, dy).
The constant
Li;n [4,9(x) — Lp(2)]= Lim [4g(z) — Lplx)]+ b=k, (B) (11.4)

is independent of g since if g, ¢’€F (or @ in the nonsingular case) and J(g)=1, then
lim,[A,g9(x) — 4,9 (x)] =0. The constant k,(B) is called the b-Robin’s constant of B. For
b =0 the constant k(B) is called the Eobin’s constant of B. If the walk is nonsingular then
(I3, 4,f) = (4,15, f) and we may rewrite (11.3) as

(A0, f) = (La ) +I () o B).
It follows that in this case

A l(x) = Lh(x) +ky(B) ace. (11.5)
Applying these results to the dual walk we see that for f € § (or f €D in the nonsingular case)
Lim £5(2) ~ dg(2)] = ~K(B)

and in the nonsingular case
A,ly(x) = Ca(x) +E,(B)  ae. (11.8)
Also in the nonsingular case
ko B) = (1g, AyT5) = (A1, 1) = ko(B).
[In the singular case, for BE 4, | B| >0, it is also true that lc,,(B):l;b(B). See Theorem
11.1(e) below.]

In the nonsingular case we have thus established

ProrosiTioN 11.1. Let BEB, | B| >0, and let I(B) denote the collection of all p €D*
having support on B such that J(p)=1. Assume the walk is nonsingular. Then 1€ B)
and Aylg(x)=k,(B) a.e. x€B.

Before proceeding further we pause to establish some properties of the Robin’s con-
stant k(B).

TueorEM 11.1. Let sets {B;: i=21}€ 4%, | B;| >0.

(a) If B, B, then k(B,) <k(B,).
(b)y If B=N{1B, then

k(B) <

i

k(B) =2 k(B;UB)+...+(—1)"""k(B, U ... U B,).

iF7

its
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(c) If |B| >0, and B,1> B, and an—B[ ~0, n—> oo then k(B,)—>k(B).
(d) If |B,| >0 and B,C B,.1 and | B— B,| 0, n—>oo then k(B,)~>k(B).
(¢) k(B)=k(B) =k(—B).

Remark. Properties (a)~(d) show that k(B) satisfies the axioms of a Choquet capacity
on the sets B€ 4*.

Proof. By definition, k(B)=lim,[dg(x)—Lyx)] and |A|Ly(x)=lim,Gyx, 4 +y),
A€ A4* | 4] >0. To see that (a) holds note that if B, B, then Gy, (z, 4)>Gp,(z, A) and
thus Ly; (x) > Lg,(x) and thus &(B,) < k(B,). Similarly if B= /. B, then

GB (x) A) >¢ZlGB‘(x’ A) - ‘Z]GB‘UBI (x, A) ...+ ( - 1)n+1GBxu...UBn(x’ A)’

because the left-hand side is just the mean number of visits to 4 before hitting B while the
right-hand side is the mean number of visits to 4 before time max(7Tp;:1<i<n)<T5.
To establish (¢) note that

GBn(x’A)=GB(x’A)—f HB”(Z, dZ)GB(z’A):
Ba—B

and thus L (x)=Lp(x)— J'HB,.(x, dz) Ly (z).
Hence k(B,)=k(B)+ f Ip.(2) Cpl2) dz < f I5(2)Cp(z) dz
Bn-B Bn—B

and the result follows. The proof of (d) is similar.

To establish (¢) we may proceed as follows. Since the dual walk is generated by u( — dx),
it is clear that Ga(x, 4)=G_5(— 2, — A) and thus Ly(x)=L_p(—z). Also it is quite easy
to see that Ag(z) = Ag(— x) where §(x) =g(—z). By definition of &(B),

~

k(B) =1im [Ag(x) — Ly ()] =1im [4§(— ) — L_p(—2)]= k(= B).

In the nonsingular case () now follows from the fact that k(B)= I::(B). To establish this
in the singular case requires a different argument. If we knew that k(B)—k(4)= z(B) -
IE(A) for 4, B€ 4*, then choosing say A symmetric (and using k(B)= l;( — B)) would yield

the desired result, That this is so is the content of our next

Lemuma 11.1. Let A, BE A*, A< B, |A4|, |B|>0. Then
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f da Ly (x) L, (x) = k(B) — k(A4) (11.7)
B~ A

and for any two sels A, B€ A*
k(B)— k(A) =k (B)— k(A). (11.8)

Proof. Let K€ A, and let A< B.

Us(@, K+y)=Uy(e, K+y)— J Mgz, d2) Us(z, K+ y) (11.9)
B-A
so taking lim, we obtain

L= L@~ [ Tl d) Lyt

Thus k(B)—k(4)= f Ly (2) Ly (2) dz.

On the other hand, taking lim on z in (11.9) yields

f [Ls(2) — La(2)]dz= — f Li) Ul(z, K +y) d.
K+y B—-A

Now take lim, to obtain

k(B) — k(4)= f B_AEB (z) Ly (2) dz.

Thus k(B) —k(A)=l;(B) —IZ(A) if A< B. Since 4 U BE 4* if A, B€ A* (11.8) follows. This
completes the proof.

For the remainder of this section we will always be dealing with a nonsingular walk.
We already know via Theorem 10.1 that for any ¢ €® the potential 4,¢p determines ¢.

We will now show that a stronger uniqueness principle is available.

TuEOREM 11.2. Let u generate a nonsingular walk. Let €D have support on BEB,
| B| >0. If ky(B)=+0 then the value of A,f a.e. on B determines A,f a.e. on &, and con-
sequently f a.e.

Proof. Suppose E< B, and |E|=0. Then [Pz, E)dx=|E|=0, so PYz, E)=0,
a.e., and thus P {S,€F for some 2>0}=0 a.e. z.

To demonstrate the theorem we need to show that if 4,f=0 a.e. on B=support (f),
then f=0 a.e. Set £ ={x:4,f(x)+0}. Then as Gpf(x)=0,
7692905 Acta mathematica 122. Imprimé le 20 mars 1969
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Apf(2) = LHB(% dz) Ay f(2) + J(f) La(2). (11.10)

Since Hy(x, E)=0 a.e. on B’ we see that
Apf(z) = J(f) Lalz) a.e., (11.11)
and thus (Iy, 4,f) =J(f)(ls, £5)=0. Consequently
0 =J(f) ke(B),

and thus J(f)=0. It follows from (11.10) that A4,f(z)=0 a.e., and thus by Theorem 10.1
f=0a.e.
Examples show that if k,(B)=0 then the above uniqueness principle fails. However,

since we may always choose b so that k,(B) 40 we always have the following

CorOLLARY 11.1. Assume B€B, | B| >0. If ¢, and @, have support on B and Ap, =
Ap, a.e. on B and J(@,)=J(p,) then Ap,=Ap, a.e. on & and ¢, =@, a.e.

We may now establish the analogue of equilibrium principle.

THeOREM 11.3. Assume u generates a nonsingular walk. Then 1y is the essentially unique
element of IM(B) whose potential Aly is essentially constant on B. The constant is the Robin’s
constant k(B) of B.

Proof. In view of Proposition 11.1, where JR(B) is defined, we need only establish
uniqueness. Suppose then that ¢ €( B) and Ap =c¢, a.e. on B. Then

c= (ZB: A‘P) = (JZB’ ‘P) = k(B)

80 ¢ =k(B). Since J(p) =J(I3) the result now follows from Corollary 11.1.

We will next establish an analogue of the minimum principle.

ProrositioN 11.2. Let u generate a nonsingular walk. Let f€® have support on B,
| B| >0, and assume J(f)=0. If A,f >« a.e. on Bthen A,f>a a.e.on &.

Proof. Let E ={x:A4,f(x) <w}. Since
Ayf = Hg 4, f +J(f) Lp()
and Hy(z, E)=0 a.e. we see that

A f(x) 2 a+J(f)Lp(x) 2« ae z€G.
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Another basic principle is the principle of domination, the analogue of which is the
following

THEOREM 11.4. Let fED have support on B, and assume b such that k,(B)>0. Let
hED+, If for some o =0,
AyfzAh+o a.e. on B, (11.12)
then J(f)=J(h) and
AyfzAh+o ae. on ®. (11.13)

Proof. To begin, observe that it follows easily from (11.12) that
ky(BYI(f) = (Ig, Apf) = (L5, Aph)+a = ky(B)J(h)
and thus J(f) =2 J(h). Next observe that’
Ah = Hp Ayh+J(h) Lg—Gph < Hg Ayh+J(h) Ly
while Ayf =HpgAyf+J(f) Lp.

Thus setting E = {x: 4, f(x) <d4,h(x)+ o} we see that
Af—Ayh—az f Hpy(x, dz) [4,/(2) — Aph(z) —x] =0 ae.
E

since Hg(z, B) =0 a.e. Thus (11.13) holds.

Remark. It is clear from the proof of Proposition 11.2 that if we know that Af > « every-
where on B=support (f), then we may conclude that Af>« everywhere on (8. Likewise,

if in Theorem 11.4 we know that (11.12) holds everywhere on B we may conclude that
(11.13) holds everywhere on &.

ProrositioN 11.3. Let u generate a nonsingular walk. Assume BEB, | B| >0. Then
k(B) is the unique constant ¢ such that for any f€® having support on B such that J{f)=1,

ess inf Af(x) <c < ess sup Af(x). (11.14)
xeB

reB

Proof. If there is a ¢ satisfying (11.14) then choosing f =1 shows that ¢ =k(B). Suppose
ess inf, .z Af(x) > k(B). Since J(f)=1 we then see that ess inf, .z A,f(x) >k,(B). Choosing b
such that k,(B) >0 we see that there is a ¢, 0 <t <1 such that t4,f>k,(B).a.e. on B. Hence
t(lg, Ayf) =ky(B). But (Iz, Aof) =(Ayly, f)=ky(B)J(f) and thus ¢>1, a contradiction. The
other inequality is proved similarly.

Our final result in this section will be to establish an analogue of the Balyage principle.
Another proof of this fact will be given as a corollary to Theorem 12.2.
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THEOREM 11.5. Assume BEB, | B| >0 and ky(B)>0. Let f€®+. Then there is an es-
sentially unique p €@+ having support on B whose potential A,¢(x)=A,f(x) a.e. on B. More-
over, Ay,p = A,f a.e. on &. The charge ¢ may be computed by

e ip el
p=f+(P~1) { i Cot GBf}
and the corresponding potential is
Ayp=A,f+ %’(’7;—)) LCp+ Gyf. (11.15)

Proof. Since we will give another proof in the next section we will only establish the
result here for a type one walk although a similar argument would also work in the type
two case. A simple computation shows that ¢ >0 and has support on B. What needs to be
proved is that the potential of g is given by the right-hand side of (11.15). Setc = (ﬁ 5 )] ko( B).
Then ¢Lp+Gpf>0 is a solution of (P—I)h=¢ —f and it follows from Theorem 10.1 and
(10.3) that A=A, (@p—f)+B a.e. so

cLp+Gsf =Ap—)+f ae.
Let ge®+, J(g)=1. Then

o[Lp—Agl+Gsf—[A(p—f) ~J@—NAgl = [Jlg—/) —clAg +f, ae.
Since the left-hand side converges to
—ck(B) +(Ls y~bJ (g —1)
as x-> oo it must be that J(¢ —f) =c and thus

B = —cky(B)+ (L5, /) = 0.
This completes the proof.

12. Approximations by potentials

Throughout this section we will assume that the random walk generated by u is recur-
rent and nonsingular. Let N ={f€C ():J(f) =0}. Define the space C,(®) as the collection
of all continuous functions f on & such that lim f(z)=0. For a type one random walk,
C,(®) is then just the usual space of continuous functions vanishing at co. For a type two
walk Cy(®) is the.closed subspace of the continuous functions on the two point compacti-
fication of & which is the kernel of the linear functional f—f(+ oo)+f(—o0). Let 4=
Cyo(®)®{a(—x)} denote the direct sum space of the space Cy(®) with the one dimensional

space of multiples of a( —x), where a(x) is the function defined in § 7.
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Consider the Poisson equation (P—I)f=g¢. It follows from Theorem 10.3 that if
@ €C () then the potential Ay is the unique solution of this equation in the space .
Moreover, if also J(¢) =0 then Ag is the unique solution in Cy(®). The main result of this

section is to show that y is in fact the correct range space of potentials of functions in

C(S).

THEOREM 12.1. The set {Ap:p€C (&)} is dense in y. The subset {Ap:@p €N} is dense
in the closed subspace Cy(®).

A continuous linear functional y* on Cy(®) can be identified with a bounded signed
measure ¥ on (& in the type one case and with a pair (y, «) in the type two case, where in

the type two case,
0D~ [ fo ido) + i+ o). (12.1)

Henceforth we will carry out the proof only for the type two case. The proof for the type
one case can be carried out by following the same argument and just omitting all terms

involving a. To proceed we will need the following
Lemwma 12.1. If (y*, Ap) =0 for all p EN then (v*, Ah)=0 for all h €D such that J(h)=0.

Proof. Let (dx)=dz+ |yU,|(dz), where U, is the measure defined in §7. Let ¢>0
be given. By Lusin’s theorem there is an &' €C (@) such that k(z)=h'(x) except on a set
D, ||#|lo<||?|le and 5(D)<e. Observe that

|J(h’)|<f |W (z) — h(z)| dxe < K, | D|< K, e, (12.2)

where here and in the following, K, will denote constants. Choose g €0} (&) such that J(g)=1
and set f=h'—J(h')g. Then f€N and for x ¢ D,

| k() — ()| = | h{z) — k' (z) + T (R)g(@)| = | T(B)]|g(@)| < Ke. (12.3)
Since y* also acts on Ak we may write

" Ab) = (", A= )+ " Af) = (y*, AR~ })) = f@A(h =N (@) y(dx) + ad(h— f) (+ o).

From results in §7 we know that lim,,, a(y —2)—a(—2z)=F (p(y))/o?, uniformly on
compacts, and thus as a(x) is continuous, we see that for any compact set E there is a
constant K (dependent on E in general) such that |a(y-—-x)—a(—2)| <K, z€®, y€E.
It follows from Urysohn’s lemma that we may assume that the supports of the &’ are all
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contained in some: fixed compact set. Let E be the union of the supports of f, A and the b’.
Then

[A(B—f) (+ o0)] #.lr}jinw f@ [a(y — x) — a( — 2)] [B(y) — f(¥)] dy—;li’f’w Uy(h—f) ()

1 1 1
= f@ v(y) [My) — f(y)]‘ dy < ;L lo@)| |2(y) — fy)| dy + 3 L_Dlw(y)l [h(y) — f(y)| dy.

In view of (12.2) and (12.3) we then see that

[A(h—f)(+00)| < Ky| D| + K4e < Kge. (12.4)

In a similar way,

l f (@4 - (o)< \ f ) y(dx)fp la(y — 2) — a( - =)] (M) — f) ] dy

- f YU (dy) [b(y) — f(9)] I + \ f y(dx)f [a(y — =) — a( — )] [A(y) — f(y)]dy
D ] E-D

- f __ YUsdy) (hy) ~ 1) ‘ <Kgn(D)+ Kre< Kqge. (12.5)

The lemma now follows from (12.4) and (12.5).
We may now establish the theorem.

Proof of theorem. We will establish the second assertion of the theorem first. Suppose
then that 4* annihilates Af for all f€ N. Choose g €C;(®) such that J(g)=1. Then for any
@€, p—J(p)g is a null function and the lemma shows (y*, A(p —J(¢)g)) =0. Thus for

any p€®,
0=(y* Alp—J(p)g)) = (y*, HgAp —Gprp+J (@) (Lz— Ag)) (12.6)

= (y*, Hg Ap) —(v*, Gsp) +J (@) (y*, Ls—A4g).

For any measurable function f and compact set B, let I f(x)=15(x)f(z), and set P3f(x)=
15(x) PHyf(x). Then if f is bounded on B,

PHBf =HBf+(PB—IB)f

and by iteration P Hyf=Hyf+ > P(P2—Ip)f,
1=0
and thus by Lemma 10.6 (Is, f) =Hgf — A(PB—I)f. (12.7)

Since (P? —1;)f is a null function with support B, it follows from (12.7) with f=Ag that
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(®) +«l(ls, Ap) = (v*, Hp Ag).
Thus we may write (12.6) as
0 =[Y(®) +al (s, Ap) —(y*, Gop) +J (@) (v*, L5—Ag). (12.8)

Let B be compact and | B| >0. Choose ¢ €® so that ¢ has support on B and J(¢) +0.
Then from (12.8) we see that

0 = [9(®) +al(ls, ) +J(@)(y*, Ls—Ag).
Since (I, Ag) = (Al5, ) =k(B)J(p) +(Cs, @), we see that as ¢ has support on B,
[Y(®) + ] k(B) + (y*, L —Ag) = 0.

Thus for an arbitrary g €D equation (12.8) and the above shows that

[(®) + a] (L5, ) = (*, Gp) = f@ G () y(dx) + aGpe(+ o).

Now y@5 is a well-defined signed measure on compacts and
Gap(+o0) = (L5, 9).
Thus (7®) +a] L5~ aL3, @) = (¥G5, ).
Hence {Y(®) + o] Lole) — aL(x)} dx = y@y(da). (12.9)

Theorem 10.2 and a simple duality argument shows that for y€® — B, on the one hand,
[t @ota. o= Eatira,

and ft;(x) Qs(z, dy)dx= ﬁg(y) dy.
On the other hand, on & — B,
yQ@pQp = yGp—y.
Operating on both sides of (12.9) by @5 then yields the relation
{[7(®) + o] C5(2) —aL ()} dz = y@y(dz) —y(da), z¢B.

Thus by (12.9) we see that y must be the 0 measure on & — B. Owing to the arbitrariness
of B, y must be 0. Then for €N
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0=(y*, Ag)=adep(— )=~ f:z f@w(y) o(y) dy.

Taking ¢ such that [ y(y)@(y) =0 we see that «=0, and thus y*=0. This establishes the
second assertion of the theorem.

To establish the first assertion of the theorem we can proceed as follows. A continuous
linear functional y* on g is a pair (y* b), where y* is a continuous linear functional on
Cy(®) and b is a real number, such that for f=(f,, $)€x, fo€Co(®), (¥* f)=(*, fo) +sb.
Thus if y* annihilates {dg:p€C(®)}, then

0 = (y*, Ag) = (y*, Ap—J(g)a(—=)) +J(p)b.

In particular for p €N, (y*, Ap)=(y*, Ap)=0. Hence by what has already been proved
y*=0. Choosing ¢ such that J(p) -0 then shows b=0. Thus * =0. This completes the proof.

We will now examine the potential operator restricted to a relatively compact set.
Theorem 12.2 given below will be extension to arbitrary & of the fundamental fact that
for the groups Z% A restricted to a finite set B is a bijection of R® onto R?, whenever
k(B)=+0.

Let BEB, | B| >0 and let ®(B) denote the collection of all bounded measurable
functions on B with the essential sup as norm. (Two functions equal a.e. on B are identi-
fied.) Define the mapping 7'5: ®(B)—>®(B) by T zp(x) =A,¢(z).

TaroreM 12.2. Assume ky(B) +0. Then Ty i3 a topological isomorphism of ®(B) onto
O(B) having inverse K defined by

(IBv (P)
Kpp=(PP— I+t I 12.10
Proof. The fact that T is a bounded linear map of ®(B) into ®(B) follows from the
fact that

Ty p(a)| < Lla(y—x)w(wldw|U2¢<x)l+le(sv)l,

and the fact that a(z) is continuous and U, a bounded measure on &. That K is a bounded
linear operator is clear. Suppose that 7'z =0. Then J(¢) k,(B) =0, so J(p) =0, and it follows
from the uniqueness principle that ¢ =0 a.e. on &. Hence T’z is 1 -1. By (12.7) we see that

for x€ B,
Ay(P? — I) () = () — (I, 9)-

Since A,l5(x)=Fk,(B) a.e. on B we see that for any ¢ €D, T K p=¢. Setting ¢ =Ty for
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pED(B) we see that Tz Kz Tzp=Tpy so it must be that Kz Tzp=y. Thus K is a two-

sided inverse. This completes the proof.

Remark. If k,(B)=0 then it is clear that T, is not a bijection. It is neither 1-1 nor
onto for I is annihilated by 7', and I annihilates the closure of the range of T's.

Using Theorem 12.2 we may easily give another proof of the Balyage principle. Indeed
from the theorem we know that

(ZB’ Af)
ky(B)

y=Kpd,f=(P?—I3) A,f+ ls

is the essentially unique element of @ having support on B whose potential 4,y =4,f a.e.

on B. What needs to be demonstrated is that >0 a.e. To see that this is true let h€D+
be arbitrary and note (12.7) applied to the dual walk yields

(s ) I (f)=(f, Hoh) = (f, 4, (Pp— I5) b) > Lf(x) h(x) = (P? — I5) Ay, ).

Thus a.e. on B (PB—Ig)Apf=f—J(f) 5.
(£, 1)
But then KpgA,f=f+ i(B) >f a.. on B.

Since >0, we have the desired result. An easy computation then shows that 4,y is given
by the right-hand side of (11.15).

13. Time dependent behavior

Throughout this section we will assume that x4 generates a recurrent random walk on
@®. Define the class B* as B if the walk is nonsingular and as the subset { BE B: int B +0}

in general. Set

E’B(n)=f®P_.,(VB<n)dx.

We start our investigation with the following

THEOREM 13.1. Assume A, BEB*, |4|,|B|>0. Then Ez(n)~E (n),n—>oco.

Proof. 1t suffices to establish the result for 4 c B. Set ¢h(z)=P,(V,>n)1lp_4(2).
Then
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n

Ba0) =Byt~ [ dz | 3 P, g 0= Bato)= 3 (P97, 1)

Bi=
=Ea)~ 3 @5 oD lo) = Bym) -3 | PuVa>n—i) Pu(Va>i)ds (13)

Set a, =sup,ep P,(V,>n) and b, = {5 P,(V;>n)dz. Then

n-1
z dez(VA>n—f) PZ(VB>j) gl_zoan—l—]bi'

i=1 Jp-a
Since a,—~0 and

Ep(n)=(sP" 13, lg) = (15, BP" 1@5)=f Pz(VB>n“ 1)dz="5,_,, (13.2)

a simple summability argument shows that

1 n
lim -> P (Vyi>n—§)P(Vp=j)dx=0.
HmEs(n)EJB_d (Va>n—35) P, (Vg =9)

This establishes the result.
Using (13.2) and taking duals we obtain the following

CoroLrARY 13.1. Let A, BEB*, |A|,|B|>0. Then

M=

f P, (Vg>j)dx

lim 1 B

e J P (V,>{)dx
A

i=0

il
<

=1. (13.3)

I

The quantity Eg(n) has several different interpretations. Let By ={z:2€8,;+ B for some
7, 1<j<n}. Then E| B} | = Ep(n) so that Ey(n) is the expect volume swept out by time » in
translating the set B by the random walk. This interpretation was introduced by Spitzer
[13]. A second interpretation of Egz(n) was given by Port [9]. Distribute particles in &
according to a point process with rate dz, and allow each particle to move independently
according to the random walk. Then Ejg(n) is the expected number of distinct particles to
visit B by time n. It will be shown subsequently that Ey(n) is connected in a natural way
with the Robin’s constant k(B). For the moment however we return to the study of
P (Vg>n).

We will now show how the passage times to B are linked with the recurrence times to B.

THEOREM 13.2. Let BEA*, | B| >0, and let A€B be such that |0A| =0. Then in any

type one random walk
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2 | PAVs>j)dz
lim 75024 = f Ly(z) dz. (13.4)
ﬂ‘->°°2 PI(VB>7)dx 4

i=0J 8B

If the walk is also nonsingular we may improve this to

Z P:(VB>7')
j=0

lim — = Ly (), (13.5)
I | P(Ve>j)dx

j=0JB

uniformly tn x on compacts.

The proof of this fact is the same as that of Theorem 5.4 and 5.5 in [11] and will
therefore be omitted.

Remark. If the stronger limits

Lim — Pz(VB>n)

”*“f P,(Vy>n)da

B

f PI(VB>7I;) dx
and lim <% —

""“f P.(V,>n)dx
A

exist, then the above theorems show that their values must be Lg(x) and 1 respectively.
For random walks on Z! or Z2 the existence of such limits were demonstrated by Kesten
and Spitzer [6]. In a far reaching extension of this result Ornstein [8] demonstrated the
existence of such limits for all recurrent random walks on R! or R? when B and A are inter-
vals. The existence of such limits for an arbitrary recurrent random walk on a locally com-
pact group is one of the remaining major open problems of the theory.

If we have some regularity properties then we can assert that these stronger limits
exist. Choose F€ 4* | F| >0, and set ¢, =[zP,(Vy>n)dz.

ProrosiTIoN 13.1. Suppose for some g in F,

vy ~1-27 ({5), at1 13.6)

for some slowly varying function H and constant o, 0< a>1. Then
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—a

n
qn~ m, n—oo, (137)
and tim 22 V=) p o (13.8)

n—>00 n

Proof. If such a g exists, then choosing it to be the g in the definition of D* yields
li;n (1=2)U%g(0) 3 P, (Vs>n) 2" = Ly(2)
at: n=

uniformly in « on compacts. The monotonicity of the ¢, and Karamata’s theorem then
shows that uniformly in # on compacts,

Lp(x) n™*
I'l—a) H(n)

P, (Va>n)~

For a type two walk we always have very strong results,

TeEEOREM 13.3. Let B€ B*,|B|>0. Then in any type two random walk

lim P,(Vy>n)Vn= (%) ! oLy (x) (13.9)

n—>0

uniformly in x on compacts.

Proof. Since the random walk is of type two we may identify & with either R*@H
or Z*@H. A character ¢ is then of the form 6, +0, where 6, €Edual (R} and 0,€dual (H).
Choose g on & such that §(6) =f(6,)6(0,, 0) where f is a symmetric function on R or Z1,
J(f)=1, and f(6,) has support on [ —4, §] where #'(0,) +0, 0, €[ -0, 6]—{0}. Here y’ is the
measure induced on R! or Z! by p. Then

af* _f8)d8
400y — 1 1) W,
é
~2(2n)_1(1——l)‘1f —ﬁezﬂ%{zquazr*(lwz)'*.
3 +m§ 0%

Thus U?q(0) satisfies the requirement of Proposition 13.1 and applying that proposition
we find that (13.9) holds.

The above result admits an immediate extension.

CoROLLARY 13.2. Let N, (B)= 2,<.15(Sx), and let BEB*. Then in any type two random
walk, for any k>1,
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3
PNy (B)= k)~ (2 ) on=H (o) Ly ().

T

Proof. Let Hi@)=3 I"P,(N,(B)=k).

=0

Then Hi(x)=I1% H:_,(x), and an easy induction argument shows that
g
li]fn (1~ 2) G*(0) Hi(x) = (1)L (x).
1

k

Thus S PL(N,(B)<k) 2"~ [ 3 (TT5)] Ly (2) [Gg(0) (1~ )]

n=0 j=0
~ ;zo (oY) La(2) (2 0% (1 — ).

Monotonicity of P (N,(B)< k%) in » and Karamata’s theorem now yields

k 27-%
PN, B <H ~ (3 (M) L@ 2] o,

and the result follows.

Let EB(n;A)=JP,(VB<n; Sy,€4) dx
then Egn; A)=> f P, (V=) dy.
i-1JB

It follows from Theorems 13.2 and 13.3 that the following holds

CorROLLARY 13.3. Let A, BE 4%, | B| >0. Then

Ep(n; 4) ~ Uja(y) dy] Ep(n), n—>oo.

We will now return to the study of Ejz(n) and show there is a very interesting connec-
tion between Ez(n) and the Robin’s constant k(B).

THEOREM 13.4. Let A and BE A*, |A|, | B| >0, and assume pu generates a type two
random walk. Then

lim [Ej(n) — B, (n)] = [k(B) — k(4)] 2 6 (13.10)

Proof. Tt suffices to establish the result for A < B. By (13.1)
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(13.11)

By =Ea) =3, [ PuVa>n—1-j) BulVs>i)

Theorem 13.3 and a simple Abelian argument shows that

P,,(V,4>n—1—7')I‘ES,(VB>7')d:z:=2<72j~
B-4

B-A

lim Z L, (x) Ly () de,

n—>00 f=

uniformly on compacts. Hence
lim [Ez(n)— E (n)]=2¢ f L,(x)Ly(x)de.

n—oQ

It follows from Lemma 11.1 that the right-hand side is just [k(B) — %(A4)]2¢2. This completes

the proof.
THEOREM 13.5. In any nonsingular type one random walk for any two sets A, BEB

having monzero measure,
S [Ea(m)— Eu(m)]
= k(B) — k(A). (13.12)

hm n-1,m

= 5 (2,00-)

Moreover, if for some g, Ug satisfies the condition in Proposition 13.1, then
. Epgn)y—E4(n
lim f—_(l)——L) k(B)— k(4), (13.13)

n—> o0
D GiGn-1-;
i=o

n-1 n—2a+1

and 2 V0~ BT e —2a)

Proof. It suffices to consider the case 4 < B. Then from (13.11)

%[Ea(m —E4(m)]= f dx[5_::}§opz(VB>?')Pz(VA>m—j)]- (13.14)

By Corollary 13.1 and Theorem 13.2 we know that uniformly on B

P (Ve>7)~ Ly (x)Zq,

“ME

§P,<Vd>f)~LA(x)§qr
0 §=0
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An Abelian type argument (see Lemma 3.2 of [9] for details) then shows that the right-
hand side of (13.14) is asymptotic to

l:f zB (@) Ly(x) dx] Z % Im-59;

and (13.12) follows from this fact and the identification of the integral as k(B)-—k(4)
given in Lemma 11.1. Finally if U%g(0) satisfies the condition of Proposition 13.1, then by
(13.8), (13.11) and a familiar Abelian theorem we see that

S| P PaVasn—iyde (3 g0n) BB~ k)

j=04JB-4
n—2a+l 1

and (13.13) follows.

Remark. The stronger form (13.13) was shown to be valid by Port [9] for every recurrent
random walk on Z' or Z2. A similar argument and the strong result of Ornstein on the
behavior of P,(Vz>mn) will show that (13.13) also holds for every recurrent random walk
on R! or R? at least when 4 and B are intervals. The behavior of Eg(n) is also of interest
for transient random walks. Here the behavior is quite different and the analysis of Eg(n)
in that case can be found in our joint paper [12].‘

For a general singular walk we can only establish a weaker version of the above result.

ProprosiTioN 13.2. Let A, BE A%, |A|, | B| >0. Then
}iTHll (1—2)* Ug(0) Ulg(o)éol" [Eg(n)~ E,(n)]=k(B) — k(A4). (13.15)
Proof. It suffices to consider the case when 4 < B. From (13.11) we see that
Srmw-mw- [ %o de

and it follows that the limit on the left in (13.15) is f_,Lp(x)L,(x)dz. The desired result
now follows from Lemma 11.1.

14. The compact case
In this final section we will consider a random walk on a compact group & and discuss
the analogues of the preceeding results for it. Of course, all the limit theorems are out
(since there is no infinity) so the bulk of the difficult portions of the noncompact theory
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evaporate. Still, there are some of the potential theoretic results which are of interest
but here too things are far simpler than before. We will not state any theorems as such in
the compact case but merely sketch the pertinent facts.

The main difference in the compact case is that for any f€C(®), n 121, P/f—=J(f)
uniformly on &. (This well-known fact is an easy consequence of the ratio limit theorem
of Stone [18]). The first thing to establish is the existence of a potential operator. Since
the group & is diserete in this case it easily follows from the Fourier analysis that if F is
the class of all f such that f is compact, then for g€ F and §(0) =é(x, 0)

Af(x) =lim A*f=1im [G*¢(0) J(f) — G*f] (14.1)
it att

exists and the convergence is uniform on &. In the nonsingular case it easily follows
from the ratio theorem of Stone [18] and Doeblin’s condition that the limit in [14.1] also
exists for all bounded f when say g=1. [In the nonsingular case we will take g=1 in the
definition of 4. Note however that unless $(u) — $(u) generates & these Abel limits cannot
be replaced with ordinary convergence.]

Using the identity
A~ Hp AH = — @3 +J(f) Ch(x) (14.2)

and the fact that for B having nonempty interior, or in the nonsingular case, just positive

measure
lim C4(2)=E, T,
it

we find that for f€F (or @ in the nonsingular case) that
Af—HpAf = —Gpf+J() E, T, (14.3)

which is what the basic identity becomes in the present context.

For a singular walk on & there is very little more that can be said so from now on we
will consider a nonsingular walk.

Let I5(x)dx = [ H3(y, dz)dy. Then it follows from (14.3) and an easy duality argument
that

Aly(x) =Gy 1(z) - f@ (B, Tp)dx ae.

Setting BTy = f&(E, T3)dx we see from the above that
Al, = E,T,—ET, ae. (14.4)

and, in particular, Aly(x)= —ETjy a.e. on B. Thus — ETy is the dual Robin’s constant
k(B) of B. Since ET ,— ETj we see that IE(B) =k(B) and
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Aly(x) =E,T,—ET, a.e. (14.5)

If we use the operator 4, = Agp +bJ(¢), then I, Iy are still the equilibrium charges,
but now the equilibrium potential is

Alg(x) =E, Ty—(ETz~b) a.e.

so that the b-Robin’s constant is k,(B)=6—ET.
It easily follows from (14.2) that

(P— 1) 4yp = AP~ Do = p—J(p), (14.6)
from which it can easily be deduced that if 4,¢,=4,¢, a.e. and J(¢,) =J(g,), then ¢; =@,
a.e. The analogue of the uniqueness, minimum, and domination principles then easily
follow from this fact and (14.3) just as in § 11.

The mapping 4, of the bounded measurable functions on & into themselves is a bi-
jection for b+0. Indeed by (14.6) given any ¢ the function (P—I)p+(J(¢))/b=y has
potential Ay =g, so that for 4,, b +0 the range of 4, is the entire space. This is a sharper
version of Theorem 12.1. To see that it is 1-1 note that if 4,f=4,9 a.e., then bJ(f) =
(1, 4,/ =(1, 4,9)=bJ(g), so J(f)=J(g) and the conclusion follows from the uniqueness
principle stated above. Both of these facts are clearly false if b5=0 because then 41=0
and 1 annihilates the range of 4.

Let B be such that | B| >0 and k,(B) +0. Then Theorem 12.2 is valid for functions in
®(B). The proof is the same as in the noncompact case. Using the second proof of the Balyage
principle following Theorem 12.2 we see that this principle is also valid in the compact case.

Finally, consider the Poisson equation

(P—D)f=vy. (14.7)
Then P"“f=f+jf01”w

and as 1/n D7 o P’f->J(f) it follows that lim, 3, G4y exists. But that is only possibleif J(y) = 0.
Thus in order that there exist a solution of (14.7) at all it is necessary that v be a null
function. It follows at once from (14.6) that in that case Ay is a solution and that the
only other solutions are of the form Ay + 8 for constants . Since all our functions are

bounded we see that this result is the same as in the case of a noncompact &.

8 — 692905 Acta mathematica 122. Imprimé le 20 mars 1969
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