INDUCED REPRESENTATIONS OF LOCALLY COMPACT GROUPS

BY

ROGER RIGELHOF
McGill University, Monireal, Canada

1. Introduection

In this and in a subsequent paper we study locally convex spaces which are modules
over a topological algebra. These are introduced as the appropriate setting for the study of
two separate but related problems. The first of these is the subject of this paper and will
be described in more detail below, the second concerns the multiplier problem which arose
in classical Fourier analysis and has since been studied in various settings by a number
of authors. The second paper is an attempt to unify some of these results.

The subject of this paper concerns the analysis of representations of a locally compact
group in terms of representations of its subgroups. This problem has a long history. For
finite groups it was considered by Frobenius in his development of induced characters
and induced representations. Later work has been done by many people. Amongst these
Mackey in [8], succeeded in obtaining a rather complete solution to this problem. Central
to his work were three theorems which he has called the subgroup theorem, the tensor
product theorem and the intertwining number theorem. This last theorem easily yields
the classical Frobenius reciprocity theorem. Mackey then generalized this work to unitary
representations on separable Hilbert spaces of locally compact groups having a countable
basis for the open sets. This is the substance of [9] and [10]. Here the theorems take a
quite different form since decompositions into irreducible representations in the sense of
direct sums need not exist, and the notion of direct integral decompositions must be
employed. This latter is the cause of many measure theoretical difficulties. It appears
impossible to extend these results to representations acting in more general spaces. Indeed
very difficult problems arise in the attempt to generalize direct integral decompositions to
Hilbert spaces which are not separable. Thus if one wishes to establish analogues for the
theorems of Mackey for representations in locally convex spaces, one cannot hope for
results that are as meaningful as those of Mackey since one cannot reduce the study of

representations to the study of irreducible representations.
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There are as pointed out by Mackey in [11; Sect. 8] a number of reasons for studying
representations of locally compact groups in Banach spaces, and even in more general
spaces. In fact once one begins the study of induced representations in Banach spaces
(as is done in [11; Sect. 8] and in [14]), one is quickly lead to consider more general spaces
as we shall now show.

In [14] M. A. Rieffel has obtained a version of the Frobenius reciprocity theorem for
Banach space representations. His theorem may be stated in the following way. Let I
be a locally compact group and A an open (and therefore closed) subgroup of I'. Let 4 be
the category of I'-modules and B the category of A-modules (see [14] for the definitions).
The restriction functor E—E, which assigns to each I'-module the corresponding A-
module has an adjoint £—TE and a coadjoint E— E'; that is there are [-modules E' and
T'E such that

Homp (TE, F)=Hom, (E, F,)
and Homp (F, E¥)=Homy (Fa, E).

If A is a closed subgroup which is not open, then the restriction functor has a coadjoint
but not an adjoint [14; Theorem 7.1]. This raises the possibility that if we consider repre-
sentations in more general spaces, then we may be able to “find” an adjoint for the restric-
tion functor. That this is in fact the case is one of the main results of this paper.

Note that for finite groups Rieffel’s theorem yields the classical Frobenius reciprocity
theorem. However Rieffel’s theorem, as well as similar theorems obtained by Moore [13],
Kleppner [7] are quite different than Mackey’s theorems for (infinite) locally compact
groups, since if E is irreducible Homp (£, F)=:(0) only if F has E as a discrete irreducible
component (see [11] Appendix).

In this paper we consider representations acting on locally convex spaces. We begin
by introducing locally convex modules and tensor products of these. Using these as tools
we develop a theory of induced representations of locally convex algebras and locally
compact groups, which includes a Frobenius reciprocity theorem. These results are then
applied to the study of linear systems representations which were introduced by Mackey
in [11; § 8]. In establishing a Frobenius reciprocity theorem for these, use is made of the
fact that for locally convex modules the restriction functor has both an adjoint and coad-
joint. It would appear from our work that while we have only made a start on the problem
of analyzing linear systems representations of a locally compact group in terms of linear
systems representations of its subgroups, further work should be profitable.

The paper is organized as follows. Section 2 introduces locally convex modules and
tensor products of these. This section contains a number of our results which are used in
later sections. A number of our results can be worded in terms of representations of locally



INDUCED REPRESENTATIONS OF LOCALLY COMPACT GROUPS 157

convex algebras and this is done in section 3. Section 4 begins the study of representations
of locally compact groups on locally convex spaces. When dealing with representations of
locally compaet groups, various notions of continuity arise. In section 4 we investigate
these in terms of the representation module. Separately continuous representations are
reduced to the study in section 3, and in section 5 we give the main theorems for these
(Theorems 6, 7 and 8). Section 6 establishes a representation theorem for E'. Section 7
contains preliminary results for section 8 which is concerned with showing that in the
case of unitary representations our induced modules are Naimark-related to the induced
representations studied by Mackey. In section 9 we present a (not very satisfactory) repre-
sentation theorem for 'E. Section 10 is concerned with linear systems representations.
The final section of the paper extends the results of section 5 to continuous representations.

A word about part of the notation used throughout the paper is in order. When dealing
as we do with categories of topological spaces it is sometimes possible to define a Hom
functor from the given category to the category of sets and a hom functor from the category
into itself which ‘‘forgets” to the Hom functor. The former will be denoted by “Hom™
and the latter by “hom”.

Many of our results on locally convex modules are of course similar to results in homo-
logical algebra. Thus those parts of the proof which are purely algebraic are frequently
left to the reader, and we usually worry only about the topological aspects of the proof.
We use [1] and [12] as standard references for algebraic and categorical results.

One further convention,—all topological spaces are Hausdorff.

2. Locally convex modules

Let E, F be topological vector spaces. L(E, F) is the vector space of continuous linear
mappings of £ into F. We write L(E) in place of L(E, E). A topological algebra 4 is a linear
associative algebra over the complex field € which is a topological vector space in which
the maps a—ab and a~>ba are continuous for each b € 4. A locally convex algebra is a topo-
logical algebra which is a locally convex space.

Definition. Let A be a topological algebra. A locally convex left A-module E is a locally
convex space which is a left A-module such that the map (a, x)~>ax of A x E—~E also
satisfies:

LM 1. For each a€A, the map x—~ax is in L(E).

LM 2. For each z€ E, the map a—ax is in L(4, E).

A locally convex right 4-module is defined in the analogous fashion.

Let A be a topological algebra, E a locally convex right 4-module, F a locally convex
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left 4-module, and G a locally convex space. Recall that a bilinear map f of E x F into ¢
is called A-balanced if f(za, y)=f(z, ay) for any a€4, x€ E, y€F. B(E, F, () is the set of
all A-balanced bilinear maps. We shall write B(E, F) in place of B(E, F, C).

For each pair (z, y) € E x F, the map f—f(x, u) is a linear form on B(E, F) and hence
is an element x®y of the algebraic dual B(E, F)*. The map y: (z, y)>2®y for E x F into
B(E, F)* is bilinear and A-balanced. The linear span of y(E x F) in B(E, F)* is called the
tensor product of ¥ and F and is written E® , F.

We intend to study various topologies on £® 4 F. To do this we require a number of
definitions.

Let & (resp. T) be a family of bounded subsets of & (resp. F), and recall that a bilinear
map f of E x F into @ is said to be &-hypocontinuous if f is separately continuous and if
for each S €& and each neighbourhood W of 0 in @, there is a neighbourhood V of 0 in F
such that f(§ x V)< W. One defines T-hypocontinuity in the obvious analogous manner.
Let B&Y(E, F, G) be the set of all A-balanced (&, T)-hypocontinuous maps of E x F
into G. Let H be a subset of B&%(E, F, (). If for each neighbourhood W of 0 in @, and
each S in G, there is a neighbourhood V of 0 in F such that f(S x V)<= W for all fin H, then
H is said to be &-equihypocontinuous. T-equihypocontinuous and (&, ¥)-equihypocon-
tinuous sets are defined in a similar way.

Let m be a linear map of E® 4 F into G, then moy is a mapping of B x F into ¢ which
is A-balanced. Moreover the map ®: m—>moy is an algebraic isomorphism of the space of
all linear maps of E® 4 F into G onto the space of all A-balanced bilinear maps of E x F
into Q.

THEOREM 1. Let © (resp. T) be a set of bounded subsets of E (resp. F). There exists on
E® 4 F aunique topology v =1(S, X) such that for each locally convex space G, the isomorphism
D maps L((E® 4 F),,F) onto BEX(E, F,G). Moreover, a subset H of L(E® 4 F),, G) is equi-
continuous if and only if ®(H) is an (&, T)-equihypocontinuous subset of B&Y(E, F, G).

The proof is analogous to the case 4 = C (the complex field). For an indication of the
proof in this case see [6].

The topology 7(S, ¥) is the topology of uniform convergence on the (&, T)-equihypo-
continuous subsets of B(E, F).

Definition. Let A and B be topological algebras. A locally convex (4, B)-bimodule £

is a loeally convex left A-module which is also a locally convex right B-module and satisfies

a(xh) = (ax)b for a€A,b€EB and x€E.
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Prorositrox 1. Let E be a locally convex (B, A)-bimodule, and F a locally convex left
A-module. Let & (resp. T) be a set of bounded subsets of B (resp. F) and suppose that for
bEB, b+0, SES implies bSES. Then (E® 4 F), is a locally convex left B-module.

Proof. For b€ B, the map (x, y)>bxr®y is easily seen to be A-balanced, (S, T)-hypo-
continuous, and bilinear. By Theorem 1, there is a continuous linear map ¢, of (E® ,.F),
into itself such that @,(r®y)=bx®y. We define b(Zz,®y,;) =¢,(Zx,®y;) and it follows
that (E® 4 F), is a left B-module. To complete the proof we show LM 2 is satisfied. Let
u=2712;®y; and let H be an (&, T)-equihypocontinuous subset of B(E, F). There is a.
neighbourhod W of 0 in £ such that

|(W,y)] <1/n fori=1,2,..,mandfin H.

There is a neighbourhood ¥V of 0 in B such that Vx,= W for ¢=1, 2, ..., n. It follows that.
Vu< HO. This completes the proof.

Definition. Let E and F be locally convex left A-modules. Hom, (Z, F) is the set of
continuous 4-module homomorphisms E—F. Let & be a set of bounded subsets of E.

Then Hom§ (E, F) is Hom, (E, F) with the topology of uniform convergence on subsets.
in &.

ProrosiTIiON 2. Let m: E—F and n: G— H be continuous A-module homomorphisms
where B and F are locally convex right A-modules and G and H are locally convex left A-
modules. Let © (resp. T) be a set of bounded subsets of B (resp. F), and suppose that for each
S€S, m(8)ET. Then there is a unique continuous linear map m®n of (E® ,G)«(e) into

(F® 4 H)wz) such that
(m®@n) (x®y) = m(x) @n(y).

1f, in addition, E and F are locally convex (B, A)-bimodules and m is also a B-module homo-

morphism then m®@n is a B-module homomorphism.

Proof. The map (z, y)>m(x) ®n(y) is 4-balanced and S-hypocontinuous so the exist-
ence and uniqueness of the continuous linear map m®n is immediate from Theorem 1.

The proof of the second statement is an easy calculation.

Prorositron 3. Let E be a locally convex (A, B)-bimodule and F a locally convex left
A-module. Let © be a set of bounded subsets of E, covering E and such that bE B and SES
imply SbES. If the map (b, x)—xb is S-hypocontinuous then Hom€ (B, F) is a locally convex
left B-module.
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Proof. For m€Hom® (E, F) and b in B, define bm by bm(z) =m(xb). Then bm is an
A-module homomorphism and the continuity of the map x— b implies that bm is continuous.
To show that LM 1 holds, let € B and let ¥ be a 0-neighbourhood in Hom$ (E, F) of the
form {m: m(S)<= W} where S isin & and W is a 0-neighbourhood in F. Let U = {m: m(Sb)<=
W}, then U is a 0-neighbourhood in Hom§ (E, F) and bU< V. To show that LM 2 holds,
let m€Hom, (B, F)and ¥, S and W be as above. There is a 0-neighbourhood U in E such
that m(U)= W. Since the map (b, z)—zb is S-hypocontinuous, there is a 0-neighbourhood
V' in B such that SV'< U. It follows that V'm< V and this completes the proof.

ProPOSITION 4. Let E be a locally convex (B, A)-bimodule, S a set of bounded subsets
of E and F and G locally convex left B-modules. For n€Homg (F, G) define a map ny:
Hom§€ (E, F)—~Hom€ (K, G) by ny(m)=nom. Then n, is a continuous A-module homo-

morphism.

Proof. 1t is clear that n, is an A-module homomorphism. To show continuity let U
be a 0-neighbourhood in Homy (¥, &) of the form {m: m(S)< W} where S is in & and W
is a O-neighbourhood in @. There is a 0-neighbourhood W’ in F such that n(W" )< W.
Then ¥ ={m: m(S)<= W'} is a 0-neighbourhood in Homy (¥, F) and n. (V)< U.

Let 4 (resp. B) be the category of locally convex left A-modules (resp. B-modules)
and continuous 4-module (resp. B-module) homomorphisms. Let E be a locally convex
(B, 4)-bimodule and & a set of subsets of E such that for b€ B, a€4 and SE€S; bSES
and Se€©. Suppose also that the map (a, z) >za is S-hypocontinuous. Propositions 14
tell us that we can define functors E®, —: A4~ B and homg (E, —): B~ A4 as follows. For
objects F, @ in 4 and mE€Hom, (F, G) define

(E@4—)(F)=(BE® 4 F)ue)
and (E®4~)(m)=Iz®m,
where I is the identity map E—~ E.
For objects H, K in B and n€Homy {H, K) define
homy (E, —)(H) =Hom$ (E, H) and homg (E, —)(n) =n,.

THEOREM 2. E® , — 18 the adjoint of homy (K, —). That is: for each locally convex
left A-module F and for each locally convex left B-module G, there is a natural isomorphism

@rg: Homy (E® 4 F, G) = Hom, (F, homy (E, G))

Proof. For m€Homg (EQ 4 F, @), define @rem by grem(y)(x)=m(xQy), *€H, yeF.
Let y be the canonical map E x F+E®F. Then gpem(y)(®)=moy(x,y) and moy is
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&-hypocontinuous (Theorem 1). It follows easily that gpem(y)€hom; (E, @). To show
that @gem is continuous let U be a 0-neighbourhood in homy (£, &) of the form U=
{u: w(S)< W} where S€S and W is a 0-neighbourhood in @. Since moy is S-hypocon-
tinuous there is 0-neighbourhood V in F such that moy(8 x V)< W. Then ¢pem(V)< U,
which shows that ggem is continuous.

Let m’ €Hom, (F, homp (E, ?)), and define a bilinear map m¥: E x F—@ by m*(z,y) =
m'(y)(x). It is easy to see that m* is A-balanced. The separate continuity of m* follows from
the continuity of m’. Let SES and V a 0-neighbourhood in @. Since m' is continuous, there
is a 0-neighbourhood W in F such that m/'(W)< {u: u(S)< V}. It follows that m*(Sx W)< V
so that m* is &-hypocontinuous. By Theorem 1 there is an m€L(E® , F, G) such that
mo) =m*. It follows easily that g,om=m’ and that m €Hom, (E® 4, F, G). The remainder
of the proof is the same as the algebraic case.

Let A be a locally convex algebra with a unit  and consider 4 as a locally convex
(B, A)-bimodule where B is a unitary subalgebra of 4. Let & be a set of bounded subsets
of 4 and suppose that for bEB, a €4, and SES we have bSES and Sa€S. Suppose also
that the map (a, c)—>ca of AxV into 4 is S-hypocontinuous. Under these hypotheses

we have:

ProrosiTioN 5. Let E be a locally convex left A-module and suppose that the map
(a, x)—~ax s an S-hypocontinuous map A x E-E. There is a bicontinuous B-module iso-

morphism @z AQE—~E.

Proof. Let @5 be the unique continuous linear map such that gg(a, ) =ax (Theorem 1).
It follows as in the algebraic case that ¢y is an isomorphism. To show that ¢z is bicon-
tinuous we show that if pz(H) is an equicontinuous subset of (4 ® ,E)’ then H is an equicon-
tinuous subset of £’. (£’ is the dual of £ and ¢ the transpose of gz). Let y be the canonical
map 4 x BE—~>AQ 4B, then {pz(h)oy: hEH} is an S-equihypocontinuous subset of B(4, E).
Let u be the unit of A, then there is a 0-neighbourhood V in E such that for x€V, h€H

we have
|Bl2)} = l(p;-(h)ox(u, z)| <L
This completes the proof.

In the next proposition we consider A4 as a locally convex (4, B)-bimodule.

Prorosiriox 6. Let E be as in Proposition 5. There is a bicontinuous B-module
isomorphism @g: E—~hom, (4, E).
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Proof. For € E let gg(x) be defined by

() (@) = ax.
Since the map (a, x)—>ax is S-hypocontinuous we may conclude that gg(x) is continuous.
1t is easily seen that ¢z(x) Ehom,(A4, E) and that @y is a B-module homomorphism. Let V
be a 0-neighbourhood in hom, (4, E) of the form V={m: m(S)= W} where W is a 0-
neighbourhood in E and S€&. There is then a 0-neighbourhood U in E such that a €S
and x€ U imply ax€ W. Thus ¢z(U)< W. Now define ¥'z: hom, (4, E)-E by

We(m) = miu), |
where u is the unit of 4. Since the &-topology of hom, (4, E) is finer than the topology of

pointwise convergence, ¥'; is continuous. It is straightforward to conclude that ¥y is a
B-module homomorphism and the gzo¥'z and ¥ ;o are identity maps. This completes the
proof.

We now wish to prove an associativity theorem for our tensor products. In this we
take & to be the set of finite subsets so the topology on our tensor products is the topology

of uniform convergence on the separately equicontinuous subsets of bilinear forms.

ProrosiTioN 7. Let E be a locally convex (A, B)-bimodule, F a locally convex right
A-module, and G a locally convex left B-module. Then there is a unique natural bicontinuous

isomorphism
re: (FRAE)®@pG2 FR(E®5G)

such that @ra((x®@Y)®z2) = 2@ (Y @2).

Proof. For each 2€G, n,: y—>y®z is a continuous 4-module homomorphism of E->
E®pG. Put n,=1,@mn,, then m, is a continuous linear map of FQ ,F into FQ (E® zG)
(Proposition 2). The map (z, z2)—>m,(z) of (F®,E)xG into FR (E®zG) is A-balanced
bilinear and separately continuous, thus by Theorem 1 there is a unique continuous linear
map

ore: (FRLE)®pG ~ FR (E®506)
such that gp(rx®2)=m,(x) which immediately gives @z ((x®@¥)®2)=r®(y®z). In an

analogous manner one can define a continuous linear map

Vit FRAE®F) > (FR4E)®50G
such that Wirs(z®(y®2)) = (*Qy)®z. 1t follows that ¢rgoWVre and Wreo@pe are identity
maps. The remainder of the proof is straightforward.

We close this section with a result which will be used later. Let 4 be a locally convex

".algebra, i.e. 4 is a locally convex algebra having a continuous map a—~a" satisfying
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(") =a; (aa+pb)” =&a~ +Bb”; and (ab)” =b"a". Let E be a locally convex left A-
module. For 2’ € B’ and a €4 we define az’ by az'(x)=z'(a" x). It follows that B’ is a left
A-module which we write as E°. Let © be a set of bounded subsets of E such that
U&=E. Let E° be E° with the topology of uniform convergence on sets in &.

Prorosition 8. If SE€E& implies aSES for each a in A, and if the map (a, x)—>ax
s S-hypocontinuous, then E° is a locally convex left A-module.

Proof. Let SES, and a€A4; then ¢ " S€S and afa” S)°<8° so that the map =’ —ax’
is continuous. Let 2’ € B¢, then {«’}¢ is a 0-neighbourhood in ¥ so there is a 0-neighbourhood
V in 4 such that V.S< {2'}°. Since the map a—~a" is continuous there is a 0-neighbourhood
W in A such that W™ < V. For €W, and 2€S we have |«’(a” )| <1. This means that

Wa' < 8% so that a—ax’ is a continuous map.

3. Induced representations of locally convex algebras

In this section, 4 is a locally convex algebra having a unit %, and B is a unitary sub-
algebra of 4.

Let E be a locally convex left A-module, then by restricting the map (e, z)—>ax to
B x E, E is alocally convex left B-module which we shall write as E. In this way we obtain
a functor from the category of locally convex left 4-modules to the category of locally
convex left B-modules which we shall call the restriction functor. We apply the results of
section 2 to show that the restriction functor has both an adjoint and a coadjoint. The
adjoint is the functor 4®z — and the coadjoint is homy (4, —), defined in § 2. (Here we
take & to be the set of finite subsets of 4, and we consider 4 as an (4, B)-bimodule in the
first case, and as an (B, 4)-bimodule in the second).

THEOREM 3. The functor A® g — ts the adjoint of the restriction functor, and the functor

homg (4, ~) is the coadjoint.
Proof. By Theorem 2, we have
Hom, (A®3 E, F)= Homy (B, hom, (4, F)).

By Proposition 6, hom, (4, F) is topologically isomorphic to Fy and it is easy to see that
this isomorphism is natural. This shows that A ® z — is the adjoint of the restriction funec-
tor. Again by Theorem 2, we have

Homy (A®, E, Fy=~Hom, (¥, homy (4, F)).
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By Proposition 5, A® ,F is topologically isomorphic to Ej and it is seen that this iso-
morphism is natural. Thus homg (4, —) is the coadjoint of the restriction functor.
In future we shall write 4E in place of A®zE and B4 in place of homy (4, E). In

this notation the results of Theorem 3 can be written
Hom, (“E, F) ~ Homg (E, Fp)
and Hom, (F, E*) =~ Homg (F;, E).

COROLLARY. Let A be a locally convex algebra and B, C unitary subalgebras of A. Let
E be a locally convex left B-module and F a locally convex left C-module. Then

Homg, (“E)g, F) = Homg (E, (F4)g).
This next theorem concerns induction in stages.
THEOREM 4. Let C be a unitary subalgebra of B. Then
4E ~4(®E) and E*=(EP)*
for any locally convex left C-module E, and the tsomorphism is natural.

Proof. Viewing B as a locally convex (B, C)-module we have

A(BE) = A®p(BRE)
> (A®B)®cE (Proposition 7)
2 AQ.E (Proposition 5)

and this proves the first assertion. For the second assertion define a map
@z E4 =hom (4, E) > homy (4, hom, (B, E)) = (E?)*
by pzm(a) (b) =m(ba) mEE4, a€d, bEB.

Since multiplication is continuous it is immediate that ¢zm(a) Ehom, (B, E). To show that
@zm is continuous let U be a 0-neighbourhood in hom, (B, E) of the form U = {u: u(b)E W}
where b€B and W is a 0.neighbourhood of E. There is then a 0-neighbourhood V in 4
such that m(bV)< W. Then ggm(V)< U which shows that zm is continuous. We now show
that @z is continuous. Let U be a 0-neighbourhood in (EB)4 of the form {u: u(a)(d)€ W}
where W is a 0-neighbourhood in F and a€4, b€ B. Let V={m€E*: m(ba)EW}, then V
is a 0-neighbourhood in E4 and ¢g(V)< U.

Now define a map ¥y (BB~ E4
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by Yem(a) = m(a)(u), mE(E®), a€Ad,

and v is the unit of 4. It is clear that the map is well defined. Let U be a 0-neighbourhood
in E4 of the form V={u:u(a)€W} where W is a O-neighbourhood in E. Then V=
{m€(E®)*: m(a)(w)EW} is a O-neighbourhood in (E?)* and W(V)< U. Thus ¥ is con-
tinuous. Observe that W o@; and @zo¥; are identity maps and the remainder of the
proof is algebraic.

Let A be a locally convex " -algebra and E a locally convex left A-module. The contra-
gradient module E° of E is the module E* (see § 2) given the o(E’, E)-topology. By Proposi-

tion 8, E° is a locally convex left A-module.

ProrosiTION 9. Let A be a locally convex ~ -algebra having a unit, and B a unitary
" -subalgebra of A. Considering A as a left B-module via the map (b,a)—~ab™ ,and as a right
B-module via the map (@, b)—ab, we have for any locally convex left B-module E

( Ec)A ~ (A E)c
the isomorphism being natural and bicontinuous.

Proof. For a€A4, € E and m' € (4R E)°, put
Dym'(a) (z) = m'(a®x).

It follows by methods analogous to the proof of Theorem 3 that @ is a natural algebraic
isomorphism of (4®zE)° onto homy (4, E°). To show that @ is continuous let ¥V be a
O-neighbourhood in hom (4, E°) of the form

V = {m: m(S,) < (8,)°},

where S, 4 and S, E are finite sets. Then 8=8,®8, is a finite set and ®x(SH)<=V.
To show that @y is open, let § be a finite set in A® 5K, then there are finite sets Sy, S,

such that
8= 8, = {Za;,®@z;: a,€8,, x,€8,}.

For w€S8 let r(u) be the minimal number of summands a;®w, such that u=2Xa,@x, Let
n=sup {r(u): w€8}. Since S is finite, so is 1, moreover

[n(S,®8;)]0<= 8
and it follows that

{m: m(nSy) = 8§} = DL(S)

so that @y is open.
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Definition. Let A be a locally convex ~-algebra and let E, F be locally convex left
A-modules. An intertwining form for E and F is a bilinear form f on E x F such that

f(ax: y) = f(x’ a” ?/)

Let J(E, F) be the set of all separately continuous intertwining forms on £ x F. For
fEJ(E, F)let m: F— E° be defined by

&, my) = f(x, y).

It follows easily that m is a continuous module homomorphism. Conversely every
mEHom, (F, E°) is of this form. It then follows that

J(E, F) =~ Hom, (F, E).

THEOREM 5. Let A be a locally convex ~ -algebra with unit u, and B a unitary ~ -sub-
algebra of A. If E is a locally convex left B-module and F a locally convex left A-module,

then
JAE, F)xJ(E, Fy)

Proof. This is immediate from Theorem 3 and Proposition 9.

4. Representation modules

Definition. Let I" be a locally compact group and E a locally convex space. A linear

representation g (i.e. a homomorphism of I' into a multiplicative group in L(E)) is said to be

(a) continuous if the map (y, x)—>n(y)x of I' x E into E is continuous

(b) separately continuous if for each x in E the map y—n(y)z is continuous

{c) weakly continuous if the map y—<{z(y)x, ") is continuous for each x in E and
in E'.

Note that if F is barreled then (a) and (b) are equivalent [4; Chapitre 8, § 2, Proposi-
tion 1] and if E is a Banach space then (a), (b) and (c) are equivalent [Anonymous].

In the sequel we will be concerned only with continuous and separately continuous
representations. Note that the study of separately continuous representations on locally
convex spaces includes the study of weakly continuous representations.

Let C(I') be the space of continuous complex-valued functions on I" with the topology
of uniform convergence on compact subsets of I". Let M (I') = C(T")’; M (") is the space of
regular Borel measures on I' having compact support. Throughout the following we shall

take M (T") with the topology of uniform convergence on the compact subsets of C(I').
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Let E be a locally convex space and suppose that for any compact subset K of E, the
closed convex hull of K is compact. If = is a continuous representation of I' on E then E
can be given the structure of a locally convex left M (I')-module in the following way.
For pin M (I} and z in E, define yx in E"* by

uw,x’y = f<n(y) @,z du(y) (*)

then yr€E and the map (u, x)~>ux is hypocontinuous relative to the equicontinuous
subsets of M (") and the compact subsets of E [4; Chapitre 6, § 1, Remarque 2 following
Proposition 14 and Proposition 16]. This motivates the following.

Definition. A locally convex left M (I")-module E is called a locally convex continuous
I"-module if the map (u,x)—ux is hypocontinuous relative to the equicontinuous subsets
of M (T).

We will show later that the map (u, #) - pux is also hypocontinuous with respect to the
compact subsets of M(I").

A locally convex left M (I')-module will be called a locally convex I'-module. We shall
write homy in place of hom, ), and a similar convention applies to tensor products ete.

For y€I', let &, be the Dirac measure at y; i.e. &,(f)=fy) for f in C’({‘), and let T
be the subset of M (I') of all Dirac measures. It is known [4; Chapitre 6, § 1, Remarques
1 following Proposition 14] that the map y-—e¢, is a homeomorphism of I' onto I'* and
that I'¢ is total in M (I"). Thus if E is a locally convex I'-module, then the continuity of
the map p—>uzx of M (I') into E implies that the formula (*) holds [¢hid.]. We now show
the connections between locally convex (continuous) I'-modules and separately continuous

(continuous) representations having “integrated forms”.

Definition. A linear representation 7 of a locally compact group I' on a locally convex
space F is said to have an integrated form if for each p € M (") there is a linear map x—>ux
of E into itself such that for x€ K, v’ € E’

{ua, o’y = L<n(y) x,%"y du(y).

PRrOPOSITION 10. Let m be a separately continuous representation of I" in a locally convex
space B and suppose that 7 has an integrated form, and that the map x—ux is continuous for
each p€ M (1'). Then E is a locally convex T'-module.

Proof. We need to show that the map u—uz is continuous for each x in E. Give L(E)
the topology of simple convergence, then x is a continuous map of I into L{ E). For 2’ € L(E)’
and u € M (T') let § wdu be the element of L(E)'* defined by
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&, fndw = f 2’ o mdp.
r

We first show that [ nwdu€L(E). Now E®cE’ is algebraically isomorphic to L(E)' via
the map x®x'~2’ where for m€L(E), (m, 2"y ={mz, ') [3; Chapitre IV, §2, No.9, cor.
de la prop. 11]. Thus

{2, fndy} = fz' ondy = f(n(y) z, 2"y du= <z, z".

Therefore §mdy is the map x—ux and it follows that [ zwdu€L(E). The proof is now
completed by Remarque 2 following Proposition 14 of [4; Chapitre 6, § 1].
A stronger assertion for continuous representations will follow from the next proposi-

tion.

ProPOSITION 11. Let E be a locally convex T-module. The following conditiois on E

are equivalent.

(a) E is a locally convex continuous T'-module.

(b) The map (e, x)~>e,x of I'e x E into E is continuous.

(c) For epch compact subset K of T', the set of maps {x—>&,x: y €K} is an equicontinuous
subset of L(E).

Proof. Suppose (a) holds and let K be any compact subset of I', then K¢={e,: yEK}
is an equicontinuous subset of M (I') and the map (e, x)—>¢,x is continuous as a map of
K& x E into E. Since I is homeomorphic to I' and T is locally compact this proves (b).

For each 0-neighbourhood V in E, and each y in K, there is by (b) a neighbourhood
V, in I'* and a O-neighbourhood W, in E such that &, €V, and z€ W, implies ¢, z€ V.
Cover K*={e,: yEK} by a finite number of neighbourhoods V,, and let W=N_, W,,
Then &,x€V whenever y €K and x€W. This shows (b) implies (c).

Let V be a convex circled closed 0-neighbourhood in E and let H be an equicontinuous
subset of M(I'); we may suppose H =(® where C={f€C(T): |f(y)| <1, y€K} and K is a
compact subset of I'. Now (c) implies that {x—>¢,: yEK} is equicontinuous, so there is a
0-neighbourhood W in E such that y €K and x€ W imply &,#€ V. Thus if x€ W and «' € V°,
then y—<e,x, 2") is in C, and consequently for y€H

(5] | [ ey dut| < 1.

This shows that (c) implies (a). The proof is complete.
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COROLLARY. Let 7w be a continuous representation of I' on a locally convex space E
and suppose that 7t has an integrated form. Then E is a locally convex continuous T'-module.

Proof. This is an immediate consequence of the above Proposition and No. 7, of
Chapitre 6, § 1 of [4].

ProrosiTioN 12. Let E be a locally convex continuous I'-module. Then the map (u, x)—
px of M (T} x E into E is hypocontinuous relative to the compact subsets of E.

Proof. Let C be a compact subset of E and V a convex circled closed 0-neighbourhood
in E; it is sufficient to find a relatively compact subset L= C(1") such that y€L®, x€C
and 2’ € V9 imply |<{uz, )| <1. For this we show that

L={y—>{eyz, 2> 2€C, 2’ €V}

is relatively compact in C(I'). Given y €L, {¢,2: 2€C} is a compact subset of K, hence
absorbed by V and consequently

L(y) = {{eyz, a"): x€0, 2’ €V}

is relatively compact subset of C. Thus by Ascoli’s theorem, to show L is relatively compact
it is sufficient to show that L is equicontinuous. For any y €T let zz(y) be the map z—¢,, .
Then by (c) of Proposition 11, for any compact set K< T, {m(y): y €K} is an equicontinuous
subset of L(E). By the definition of a locally convex module the map y—=(y) is continuous
when one gives L(E) the topology of simple convergence. Since this topology coincides
with the topology of compact convergence on equicontinuous sets [3: Chapitre 3, § 3,
Proposition 5] the local compactness of I' implies, that y—n(y) is continuous into L(E)
given this latter topology. Thus given y,€I' and § >0 there is a neighbourhood U of 9,
such that y€U and xz€C implies

8,2 — g, €LV
Thus y€U, z€C and z'€ V° imply
|<s,, €, 2> ~ ey, 2,4 )| <0

so that L is equicontinuous. This proves the Proposition since
f(ay z, 2"y du(y) = uz, 2.

CoRrROLLARY. Let f be any I'-balanced bilinear form on M (T') x E which ts hypocontinuous
relative to the equicontinuous subsets of M (I"). Then | is hypocontinuous relative to the compact
subsets of E.
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Proof. Since f is separately continuous there is a O-neighbourhood V in £ such that
x€V implies |f(e, z)| <1. Given any compact C E, there is by the above proposition a
0-neighbourhood W in M (I') such that WC< V. Thus € W and x€C imply

| Hu, ) = | f(e, p)| <1.

We now turn our attention towards C(I') and M (I'). We show that if A, A’ are closed
subgroups of I, then M (T) is a locally convex, continuous (A, A’)-bimodule. We begin with
some preliminary results.

For fin C(T') and y in T', we define {, and ,f by £,(y') =f(y"y) and ,f(y")=f(yy"). It is
clear that f, and ,f are in C(I').

LemMma 1. The maps (y, f)—,f and (y, f)—f, are continuous maps of I' x O(T') into C(I').

Proof. This is an immediate consequence of [4; Chapitre 8, § 2, Lemma 3].

For feC(I') and u€ M (I') we define a function j(f) on I' by j(f) (y) =u(,f)-

LeMMA 2. Let C be a compact subset of C{T') and u € M(T), then {(f): f€C} is a compact
subset of C(I').

Proof. First note that it follows from Lemma 1 that g(f) is continuous. To show that
{@(f): 1€C} is compact we show that the map f—/(f) is continuous. Let K=Supp (u),
given £ >0 and a compact set K, there is by Lemma 1 for each y’ € K U K, a neighbourhood
V, of ', and a neighbourhood W,. of f such that for y € V,. and g€ W, we have

ly10") =907 | <el2lp]
for all y" €K, U K. It follows that g€ W,, and y € V,. imply

|2(h (') — ) (7)) <ef2.
Since K U K, is compact there is a finite set py, s, ..., ¥, such that KU K, UL, V,,.
Let W=NL, W,,. For y€K, and g€ W we have

| (v) - ag) ()] <e.
This completes the proof.

For feC(T), let f* be the function defined by f*(y)=f(y~')~ (— means complex conju-
gate). It is clear that f*€C(I"). For u€ M (T), define u~ by u” (f) =pu(f*)~. The map p—>u"

is an involution in M (I").

Prorositiox 14. M (') is a locally convex algebra with a continuous involution

® H.
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Proof. We first show that the map v—v xu is continuous. Let C be a compact subset
of C(I") and let ¢’ = {ji(f): f€C}. By Lemma 2, (' is compact and C"® xpu< C since v x u(f) =
v(fi(f)). To show that the map v—pu % is continuous it suffices to show that the map u—u"
is continuous since y—>u % can be written asv—>»~ >v” xu” =(uxv)" —u %». To show that
u—>u~ is continuous, we show that if ¢ is a compact subset of O(I') then C*={f*: f€C}
is compact. For this it is enough to show that the map f—f* is continuous. Given feC(T),
£>0and a compact set K<T', K-1is compact, and |f(y)] <eforally € K-implies |f*(y)| <e.

ProrosiTioN 15. Lei A be a closed subgroup of I'. The subspace M (I, A) of M(I')
of measures whose support is in A s closed in M (I').

Proof. It is sufficient to show that M (T, A) is o(M,(I"), C(I"))-closed. For f€ C(I"),
let A;={u€MI): u(f)=0}. Then 4, is o(M (), C(I")-closed and M, (T, A)y=N{4;
Supp (f) N A=®}.

Let A, A’ be closed subgroups of I". Then A, A’ are locally compact groups and we can
identify M (A) and M (A’) with closed subalgebras of M (I'). Propositions 14 and 15 then
yield that M (T") is a locally convex (A, A’)-bimodule. More is true.

ProrosiTioN 16. Let A, A’ be closed subgroups of I'. Then M (T") is a locally convex
continuous (A, A’)-bimodule.

Proof. By the above remarks, and Proposition 11, it is sufficient to show that for each
compact subset K of A, the set of maps {u—~¢, %u: y €K}, is equicontinuous; and for each
compact subset K’ of A’, the set of maps {u—uxe,: y €K'} is equicontinuous. Let C be a
compact subset of C(I"), then KC={,f:y€K, f€C0} and CK’'={f,: y€K’, f€C} are compact
by Lemma 1. Since ¢, % (KC)°< C? for all y€K and (CK')® %, < C° for all y €K, the proof
is complete.

5. Induced separately continuous representations

Let I be a locally compact group and A a closed subgroup of I'. Then M (A) is a unitary
subalgebra of M ('), so we can immediately apply the results of § 3 to the categories of
locally convex I'-modules and locally convex A-modules.

TrEOREM 6. Let A be a closed subgroup of the locally compact group T then the restriction
functor from the category of locally convex I'-modules to the category of locally convex A-modules

has an adjoint and coadjoint. The adjoint is the functor M (L)@, — and the coadjoint is the
functor homy (M (), —).

Proof. This is a consequence of Theorem 3 and Proposition 14.

12 — 702903 Acte mathematica. 125. Imprimé le 22 Octobre 1970.
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COoBROLLARY. Let A, A’ be closed subgroups of I'. Then
Homy, ((CE)s, F) = Homy (B, (FT),)

for any locally convex A’-module F and any locally convex A-module E.

THEOREM 7. Let A’ be a closed subgroup of A. Then
YE~TAE) and EF = (EAT
for any locally convex A'-module E.

In terms of intertwining forms, we have the following:

THEOREM 8. Let A be a closed subgroup of I'. For any locally convex A-module E and

any locally convex T-module F we have
JEE, F)xJ(E, F,).

Proof. This is immediate from Theorem 5 and Proposition 14.

6. The representation of EF

Having established our principal results for locally convex I'-modules, we devote this
section to the representation of the locally convex I'-module E'. Our purpose in doing this
is to display the connection of our results with the more classical results in this area.

Let A be a closed subgroup of the locally compact group I' and let E be a locally convex
A-module. Let C(T', A, E) be the space of continuous maps f of I' into £ which satisfy

f(0y) =06[f(y)] for €A and y€T.

We define a topology on C(I', A, E) as follows. For each 0-neighbourhood V in E and
each u in ML), let p,, v(f)=sup{| f<f(y), 2> du(y)|: =’ €V°} and we give C(I', A, E) the
topology generated by these seminorms. Observe that if ffdu€E for each fEC(T, A, E)
then this topology is the coarsest such that the map f— {fdu is continuous for each u in
M T,

In order to define a I'-module structure on E we shall have to impose some restriction
on E.

Definition. A locally convex space E is said to satisfy condition (K) if the closed convex

hull of each compact subset of E is compact.



INDUCED REPRESENTATIONS OF LOCALLY COMPACT GROUPS 173

Note that if £ is complete, or quasicomplete, then E satisfies condition (K).
Whenever E satisfies condition (K) then for each f€C(T, A, E) and each u€M(T")
we define a map uf: I'=E by

Sufy), &'y = fr LHyy'), " duly).

[4; Chapitre 6, § 1, Proposition 8]. (In Bourbaki’s notation uf(y)= {,fdu.)

ProrosiTron 17. Let A be a closed subgroup of the locally compact group T, and let B
be a locally convex A-module which satisfies condition (K). For fEC(T, A, E) and u€M(T),
uf€C, A, E), and C(T', A, E) is a locally convex T'-module.

Proof. We first show uf is continuous whenever fEC(T, A, E) and u€M,T). Let
K =Supp (u). Given a convex circled 0-neighbourhood U in E and a y, in T, the continuity
of f, gives for each y in K a neighbourhood W, of the unit ¢ in I such that y’ €y, W, implies

fy"y) —flyey) €2 ] U.

There are symmetric neighbourhoods ¥, such that V,V,=W,. Since K is compact there

is a finite subset y,, v,, ..., p, of K such that
Kc _L=J1V},1§ Vi
Let V=N7V,, Let y'€y,V and y€ K. Then there is an i such that y€V,, y, and hence

Y vy €pV Yy S pW,,.

It follows that &' ») = Hyey) € (1/2|ul)) U.
Moreover, YoV € o V'y‘?’i <%0 Wy; Vi
so that f(vey) = Hyoyd) € (1/2]|ul)) U

Tt follows that for y'€ .V and any y€ K we have

') — e €|l U.

Then for 2’ € U°, y€ 9,V we have

|<uf(y) = pfye), 25| < f|<f(w') ~fyey), 2> d | ul () < L.
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Hence uf(y)€ uf(y,) + U. This shows that uf is continuous. To show that uf isin C(T', A, E)
let 6€ A and p€T". Then

uf(dy), 2’y = fr {fopy'), > du(y’) = f<f(w’), 871"y du(y’)

= uf(y), 612"y = (8[uf(y)], «™>.

To show that the maps f— uf and yu— uf are continuous, note that

L<m‘(7),w'> dv(y) = fr<f<y), 2 dv % uly). *)

It follows immediately from () that the map f—puf is continuous. To show that the map
p—~uf is continuous it suffices in virtue of (+) and of the continuity of the map u—vxpu
[Proposition 14], to show that for any given O-neighbourhood V in E, the set of maps
H={y->{f(y), z'>: '€V} is relatively compact in C(I'). Clearly for each v, H(y)
={{f(y), 2">: x€V®} is relatively compact since V is absorbing. Since f is continuous it
follows that H is equicontinuous. Thus by Ascoli’s theorem H is relatively compact. The
remainder of the proof is straightforward.

By the above Proposition we can define a functor f from the category of locally convex
A-modules satisfying condition (K) to the category of locally convex I'-modules by

f(B)=C(I',A, E) and f{(m)(f) =mof

for m€hom,(E, F)and f€C(T, A, E). The functor hom, (M (I"), —) can be considered as a
functor between these categories. For each locally convex A-module E satisfying condition
(K), define a map @z: E'—>C(T, A, E) by gzm(y)=m(e,) for y €.

THEOREM 9. Let A be a closed subgroup of the locally compact group U'. Let E be a locally
convex A-module satisfying condition (K). Then the map gg:

op: BT 2C(T, A, E)
18 a natural bicontinuous isomorphism.

Proof. We first demonstrate the continuity of ¢g. Let p,, v be a seminorm on C(I', A, E),
then W ={m: m(u) < V} is a O-neighbourhood in ET and m € W implies p,, y(pzm)<1. Now
define Wy:

¥y C(T, A, E)—~ET
by Wzf(p) =pf(€). The continuity of the maps f-uf and f— f(e) imply that ¥ is continuous.
Straightforward calculations yield that ¢z and Wy are I'-module homomorphisms and that
pzo¥; and Wrogg are identity maps. It is straightforward to show that g is natural.
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7. Density theorems

We present in this section some results which we shall need in the sequel.

Let T' be a locally compact group and A a closed subgroup of I'. Let A be the right
invariant Haar measure on A. For a locally convex A-module E, let X(I', E) be the space
of continuous functions I'> & which have compact support taken with the inductive topo-
logy [4: Chapitre 3, § 1]. We write X(I') in place of (T, €). Let X(T, A, E) be the
subset of C(I', A, E) consisting of functions f whose support is contained in the saturant
of some compact subset K of I' (i.e. Supp (/)= AK).

ProrositIonN 18. Let f€ (T, E), and define f*(y) € E'* by

Pty = f 09,2 )

If E satisfies condition (K), then fo(y)€E. If in addition E is a locally convex continuous
A-module then fPEC(T, A, E), and f* vanishes outside AS where S =Supp (f).

Proof. If E satisfies condition (K) then f5(y)€ E by [4: Chapitre 3, § 3, Proposition 7]
since the map 6—>8-1f(dy) is in K(A, E). To show that f% is continuous let U be any convex
circled closed 0-neighbourhood of E, and let ¥’ be a compact symmetric neighbourhood of
the unit of I". Given y,€I'if y €4V’ and f(dy)=0. then

€I NASSV et N AS(S N Ay V) Viyst =K

and K is compact since K is the product of two compact subsets of I'. By Proposition 11
(c) of § 4 there is a 0-neighbourhood W in E such that

ANKY'We (/MK nA)U.

Since f is uniformly continuous there is a compact neighbourhood V< V' of the identity
of I' such that y€ 9,V and §€ A imply

f(dy) = Hdyo) €W

and thus 2’ €U°, y€ 9,V imply
[P )= P (yo)s | < L <67 [£(dy) — fByo)]. 2" | dAB) < L.

Therefore f5(y) —f®(y,) € U. The remainder of the proof is straightforward.
In the preceding we needed to know that F was a continuous A-module in order to
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conclude that /% was continuous. For certain other A-modules we can also make this con-

clusion.

ProrosiTiON 19. Let E be a barreled locally convex A-module. Then f€ K(T', E°)
implies PEC(T, A, E°).

Proof. First note that E° is quasicomplete so that f5(y)€ E°. Let 2 € E be given. Let
U={x}®and let V', 8, y, and K be as in Proposition 18. There is a ¢ >0 such that

(AN K)z<c{x}®.
Now choose V = V' such that y€ 5V and 6€ A imply

167 — f(Oyo)€ (Lo M) (&}
Then fA|<ax, 1(69) — Gy | dAB) <1

which demonstrates the continuity of f°.
ProrosiTION 20. Let E be a locally convex A-module and suppose that f€ X(I', E)
implies PEC(T, A, E). Then X(T, A, E) is the image of X(I', E) by the map f—f°.

Proof. Let g€ X(I', A, ) and choose K such that Supp (9)<AK. Let u€ J() be
such that u(y) >0 and u(y) >0 for y €K. Let ' be defined by

ul(y) = Lu(ay) dA(d)

then %’ is continuous by Proposition 18 and u’(dy) =u(y). Define f€ (T, E) by

f(y)=u(y) g(y)/u’ (y)
for y€ AK and f(y)=0 if y€I™\NAK. (Observe that y€ AK implies w/(y) >0.) Now:

)= fA u(dy) 67" g(dy)/u’ (y) dA(S) = g(y)fu(ﬁy)/u’ (y) () =g(y).

This proves the Proposition.

Prorosition 21. Let E be a locally convex A-module. Then K(T, A, E) is dense in
Cl, A, E).

Proof. Given f€C(I', A, E), and a seminorm p, v, choose a %€ X(I') with %>0,
u(y)=1 for y €Supp (u). Then u’f€ H(T, A, E) where v/ is as in the proof of the preceding
proposition. Then for y € Supp (u), wf(y)=f(y) and so p,, y(Wf)=p, v(f). This completes
the proof.
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Remarks. The above propositions show that whenever E is a locally convex A-module
which is barreled and (quasi-complete, there are lots of functions in C(T', A, E) and in
O, A, E°). We also note that when E is one-dimensional Proposition 19 is in [4: Chapitre
7, §§, No. 1] and when E is a Hilbert space and x—dz a unitary map, in Mackey [9: § 3].

8. Mackey’s induced representations

The purpose of this section is to make precise the relationship between our induced
representation ET and the unitary induced representations of Mackey.

The following definition was proposed by Naimark as an extension of the notion of
unitary equivalence to nonunitary representations on Banach spaces. It has been used
by Mackey in [11] and Fell in [5].

Definition. Let E and F be locally convex I'-modules. E and F are said to be Naimark
related if there is a module isomorphism from a dense submodule of E onto a dense sub-
module of ¥ whose graph is closed in E x F.

Let E be a locally convex I'-module. Z is called a unitary I'-module if & is a Hilbert
space and if for each y €I" the map #~>yx is unitary.

Let A be a closed subgroup of the locally compact group I' and let E be a unitary
A-module. The induced unitary representation EV is defined in the following way:

Let ¢ be a continuous positive function on I' such that

A
mwviﬁgmw

(here A is the modular function of A and T" the modular function of I'. See [4: Chapitre 7,
§ 2, Théoréme 2] for the existence of such a function).
Let # be the right Haar measure of A and A the right Haar measure of I', then the

measure

p=(0oA)p

is a positive quasi-invariant measure on T'/A [ibid.].
Let EV be the set of all functions f: ' E such that

i) y— {f{y), %> is a Borel function
(i)  Hdy)=4éf(y)

(i) f N dpe< oo
T/A
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(Notice that y— ||f()||® is constant on the right cosets of A and hence defines a function
on I'/A.) Define yf by
n_ s 1/e®'9)
I =1") o)

Mackey has shown [9] that with these definitions, BV is a unitary A-module.
TarorEM 10. Let E be a unitary A-module, then EV and E* are Naimark related.

Proof. Let @ be the subspace of EUY consisting of continuous functions. Then
X(T, A, E)= @ so by Lemma 3.3 of [9], G is dense in EY, and moreover it is easily seen that
@ is a submodule. By Theorem 9, ET ~C(I", A, E) and thus we can define a mapm: G— E* by

mi(y) = f)VP(y).

It is clear that K(I', A, B)< m(G) and thus m(@) is a dense submodule of £ (Proposition
20). We now show that m is closed. Let (f, g) be in the closure of m. By the Riesz—Fischer
Theorem [4, Chapitre 4, 3, No. 4, Corcllaire 1] there is a sequence (f,)< @ such that f,—f
in EY and f,(y)—f(y) for all y outside some set N <T' with u((V)) =0 where 7 is the natural
map ['>T/A. Since mf,(y)—>g(y) for every y it follows that f(y) Vé(—y—)=g(y) for all y¢N
and hence that f= VZ) in EY and therefore f€G and mf=g. A straightforward calculation
shows that m is a module homomorphism and this completes the proof.

9. The representation of TE

Let I be a locally compact group and A a closed subgroup. Let E be a locally convex
A-module which is barreled. Using Proposition 9 of § 3 together with the fact that there is

a natural continuous isomorphism F = F* where F is a locally convex I'-module we have:
Vg M(T)® B = (MT)® pB)° = [homy (M), E))F =[O, A, E).

(We use the fact that E barreled implies £’ quasicomplete.) Moreover 'z is continuous and

‘FE(Z’ w®) (f)= Z f(xu f) duy(y).
Let 7 be the topology on [C(T', A, E°)T° of uniform convergence on the relatively com-
pact equicontinuous subsets of C(I', A, E°).

TrEOREM 11. Suppose that E is a barreled locally convex A-module. There is a natural

bicontinuous tsomorphism

Ve M. T)@2E=[CT, A, E):.
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Proof. Let @ be the map C(I', A, E°)~ B(M, ("), E) defined by

f(u, x)= f<w, () duly).

To show that ¥ is bicontinuous it suffices to show that ¢(H) is a separately equicontinuous
of B(MT'), E) if and only if H is relatively compact and equicontinuous. Given #,, x,,
«e» X, in E, there is a compact subset ' in C(I') such that 4 €V =C° and f€H imply

lpf(u, z)| <1, i=1,2,...,%.

Thus for each f€H and ¢, the map y—{x;, f(y)> is in V=%, Now O is compact in C(I')
since the closed convex hull of a compact subset of a complete space is compact and this
closure is the same for all topologies consistent with the duality (C(I'), M(I')). Conse-
quently the set of maps

D={y > (@, fy)>:f€H,i=1,2,...,n}

is a relatively compact subset of C(I'). By the Ascoli theorem D is equicontinuous so given
o€ there is a neighbourhood W of y, such that ¥ € W and f€ H implies

f(V) - f()’o) e {xli -'”2, ey xn}o

and we conclude that H is equicontinuous. To show that H is relatively compact, it suffices
to show that for each y,in I', H(y,) is relatively compact, since the Ascoli theorem implies
that H is relatively compact in C(T", A, E°). Let U be a 0-neighbourhood in E such that

2€U implies
lof(ey,, 2)| <1 for fEH.

Then H(yy,)< U° and U is equicontinuous as a subset of E° and therefore relatively com-
pact by the Alaoglu-Bourbaki theorem [3: Chapitre 4, § 2, Proposition 2].
Now suppose that H is relatively compact and equicontinuous. Given u in M), let

K =Supp (u). Then H(K) = U g H(y) is relatively compact [2: Chapitre 10, §3, Remarques3,
P- 46] and since FE is barreled, H(K)?=V is a 0-neighbourhood in E. Thus

|pf(u, )| <1 for x€(1/|[u]) V and fEH.

Now given € E, since H is relatively compact and equicontinuous it follows that map
@z H~>C(I') defined by
@A) = <=, ()

is continuous since the topology of uniform convergence on compact sets coincides with the
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topology of C(I', A, E°) on equicontinuous sets [2: Chapitre 10, § 2, Théoréme 1]. Thus
@,(H) is relatively compact and W =[g,(H)]° is a 0-neighbourhood in M (I"), and

|@f(u, )| <1 for u€U and f€H.

10. Linear systems representations

In this section we prove a Frobenius reciprocity theorem for linear systems repre-
sentations. The following definition is a modification of the definition used by J. M. G.
Fellin [5].

Let A4 be a topological algebra, E an (4, C)-bimodule, F a (C, A)-bimodule and let f
be an A-balanced bilinear form on E x F. The triple (E, F, f) is called a linear systems
representation of 4 provided that f satisfies

1° flz,y)=0forall yin F impliesx =0
2° f(x,y) =0for all z in E implies =0

3° the map a— f(ax, y) is continuous for every 2 in E and y in F.

We shall write {(x, ) in place of f(x, y) and (&, F) in place of the triple (E, F, f).

The category A; of linear systems representations of 4 is defined in the following way.
The objects of A4; are the linear systems representations, and the morphisms of 4; are maps
m: {E, Fy—->{G, Hy where m is an (4, C)-bimodule homomorphism E-G such that
m*(H)< F (here m* is the algebraic adjoint and we identify H (resp. F) with a subset
of G* (resp. E*).

Given a linear systems representation (E, F), E,,‘(o'=a(E, F) is a locally convex
space which is a left A-module. The continuity of the map a—>ax is a consequence of 3°.
Moreover since {az, ¥>={x, ya), the map z—ax has an adjoint so by [3: Chapitre 4, § 4,
Proposition 1] it follows that x—ax is a continuous map of E, into itself. Thus E; is a locally
convex left 4-module. Similarly it follows that F, (¢ =0(F, E)) is a locally convex right
A-module. Now observe that if a=(H, F) and §=<G, H) are linear systems representa-
tions of A4, and m: «—~f a morphism then m: E,~>G, is continuous [ibid.]. Moreover if
m: B,—Gy is continuous then m is a morphism of A4;. Thus one can define a functor from

Ay to A the category of locally convex left 4-modules, and this functor is full. Summarizing
we have:

ProrosiTioN 22. Let (E, F) be a linear systems representation of A. Then Eq is a
locally convex left A-module and the functor | taking (E, F) to E, is full: i.e. Hom,, (a, f)=
Hom, (f«, fB).
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Now given a locally convex left A-module E, one defines the action of 4 on E’ by
{z, x'a) = (ax, ")
and B’ is a right 4-module and the map a—{axz, "> is continuous. Thus <{Z, E') is a

linear systems representation of A. Moreover if m: E— F is continuous, then m*(F')< B’
so that m defines a morphism <{E, B'>—~(F, F'>.

ProrosiTioN 23. The functor § which takes E to {E, E") is the adjoint of the funcior §.
Proof. Let M and « be objects of 4 and A4; respectively. We shall show
Hom,, (DM, &) = Hom, (M, for).

Let m€Hom, (HM, «), then as we have seen, m: M,—> E, (a={E, F)) is continuous and
hence m: M—~E, is continuous, since the initial topology of M is finer than o(M, M’).
Conversely if m € Hom (M, jo) then m: M,~ E, is continuous and this completes the proof.

For the remainder of this section we shall suppose that 4 is a locally convex algebra
having a unit, and that B ig a unitary subalgebra of 4. B; is the category of linear systems
representations of B and B is the category of locally convex left B-modules. In order to use
our previous results on inducing representations, we note that if (&, F) is a linear systems
representation of 4, then F, is a locally convex left A*-module where 4* is the algebra
“opposite’” to 4;i.e. A* has the same linear and topological structure as 4, with multiplica-

. tion defined by (ab) 4+ = (ba),.
Let §={(G, H) be a linear systems representation of B. We define the induced system

B by
Aﬁ = '@(A ®BG0')7

where §) is the functor which takes E to <E, E">. Observe that one has
(*Go) = (G)*

(see the proof of Proposition 9 of §3) so that
“4B=<46, H*,

where H** =Homg (A%, H,).

If x=(H, F) is a linear systems representation of A4, then az={E,, F;)> is a linear
systems representation of B and the functor which takes to « to aj is called the restriction
functor.

THEOREM 12. The restriction functor a— oy has an adjoint f—~*p. That is, if «={E, F)
18 a linear systems representation of A and B=<{G, H) is a linear systems representation of B,
then there is a natural isomorphism.:
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Hom, (“f, «) = Homj (B, og)
Proof. By Proposition 22 and Theorem 3 we have
Homy, (8, «g) = Homy, (G, (E,)a) = Hom 4 (“Go, Eo).
\To complete the proof we show that
Hom, (“8, ) = Hom, (“Gy, E,).

If m€ Hom,(*8, ) then m*: F— H*" = (G,)'4" = (*G,)’ so that m:4G,— E, is continuous.

On the other hand, if m € Hom (*G,, E,) then
m* ((Bq)') =m*(F) < (*G,) = H*

so that m €Hom, (8, «). This completes the proof.

For linear systems representations of locally compact groups we leave it to the reader
to formulate the appropriate results. Note however that as a consequence of Proposition
10 and [3: Chapitre 4, § 4, Proposition 1] we have the following:

ProrosiTION 24. Let I’ be a locally compact group, E a (M(I), C)-bimodule, F o
(C, M (I"))-bimodule and (z, y) >z, y> an M (I')-balanced bilinear form on E x F. If the map

Y > y2 )
is continuous for each (x, yY€ E x F then (B, F) is a linear systems representation of M (I').

Thus for locally compact groups, our definition of linear systems representations

coincides precisely with that used by Fell in [5].

11. Induced continuous representations

Our purpose in this section is to develop results analogous to those of section 5
for locally convex continuous I'-modules. We begin by showing that we can define
homy (M(T"), —) and M (I')®, — functors in such a way that hom, (M (I'), £) and
M (I"Y®AE are locally convex continuous I'-modules whenever Z is a locally convex con-
tinuous A-module. To do this we first establish some technical lemmata which will enable

us to use the results of section 2.

LemMa 3. Let H be an equicontinuous subset of M (U'). Then for u€ M (T'); uxH and
H xu are equicontinuous.
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Proof. Consider the map ®: C(I')~>C(T") defined by ®(f) (y) = ul(f,). We first show that
® is continuous. By Lemma 1, § 4 the map (y, f)—,f is continuous as a map I' x C(I') > C(T').
By [4: Chapitre 6, §1, Proposition 16] the map (4, f)—>A-f where A-f(p)=A(f}) is sep-
arately continuous since C(I') is complete. Observe that u-f=®(f). Thus ® is continuous
and therefore the adjoint @’ of ® maps equicontinuous sets to equicontinuous sets. Thus
@'(H) is equicontinuous. Since for v in M (T") we have

D'0) (f) = @(f)) = f 1" 9) duly’) dv(y) = pxv(f)

it follows that yxH is equicontinuous. A similar argument using the continuity of
(y, /)—=f, shows that Hxu is equicontinuous.

LemMMmA 4. Let H be an equicontinuous subset of M (I') and let K be a compact subset of T'.
Then KH={e, % p: y€K, u€H} and HK ={uxe,: yEK, u€H} are equicontinuous subsets
of MT").

Proof. Let V = H°, then V is a 0-neighbourhood in C(T'). For y €K there is a neighbour-
hood V,, of y and a 0-neighbourhocd W, in C(T') such that g(V,, x W,)< V where g is the
map g(y, f)=f, (Lemma 1, § 4). Let y,, p,, ..., ¥, €K such that K< U}, V,, and let W=
N1 Wy, Then g(K x W)= V. If f€W and y €K then f,€H® so that u € H implies

ey *ah)| = uf)) | <1L.
Thus f€(KH)® so that KH is equicontinuous. The proof of HK is similar.

ProrosiTion 25. Let A be a closed subgroup of T’ and let E be a locally convex con-
tinuous A-module. Then M (I")@E given the topology of uniform convergence on the subsets
of B(M.T), E) that are equihypocontinuous relative to the equicontinuous subsets of M (T")
and the compact subsets of E is a locally convex continuous I'-module.

Proof. By Proposition 16, § 4, M (') is a locally convex continuous (I', A)-bimodule.
Lemma 3 shows that the hypotheses of Propcsition 1, § 2, are satisfied so we conclude that
M (T)®AE with the given topology is a locally convex L-module. To show that it is a
continuous I'-module we show that condition (c) of Proposition 11, § 4, is satisfied. Let K
be a compact subset of I and let M be an equihypocontinuous subset of B(M (), E).
To show that the set of maps {z—>e,x: y EK} is an equicontinuous subset of L(M(I') ® o E)
it is sufficient to show that KM is equihypocontinuous since K(KM)°< MO, (Here KM =
{e,f: yEK, f€M} and ¢, f is defined by ey f(u, ) =f{e, 4, 2).) Given a compact set N in K
there is a compaet set C in O(I") such that x €C? implies |f(u, )| <1 for any f in M and
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xz in N. Since KC={,qg: y€K,geV} is compact (a consequence of Lemma 1) and
K(KC)*< (° it follows that u € (KC)® implies |e,f(u, #)| <1 for any fin M and y in K and
xin H. Now given an equicontinuous subset H of M (I'), KH is equicontinuous (Lemma 4)
so there is a 0-neighbourhood U in E such that x in U and u in H implies |sy flu, x)=
| /e, % p, x)] <1 whenever €K and f€ M. This completes the proof.

ProrosiTioN 26. Let A be a closed subgroup of I' and E a locally convex continuous
A-module. Then homy (M (T), E) given the topology of uniform convergence on the equicon-

tinuous subsets of M (T") is a locally convex continuous I'-module.

Proof. By Proposition 16, § 4, M (I") is a locally convex continuous (A, I')-bimodule,
and this together with Lemma 3 proves that M (I') satisfies the hypotheses of Proposition
3, § 2. Thus hom, (M I"), E) with the given topology is a locally convex I'-module. To
complete the proof we show that (c¢) of Proposition 11, § 4, is satisfied. Let K be any com-
pact subset of I', H an equicontinuous subset of M (I'), V a 0-neighbourhood in E and
W ={m€hom, (M), E): m(H)< V}. By Lemma 4, HK is equicontinuous so that V=
{m: m(HK)<=V} is a 0-neighbourhood of hom, (M), E). Now if y€K and m€U then

&,m€ W, thus the set of maps {m—¢,m: y € K} is equicontinuous.

TeEOREM 14. Let A and A’ be closed subgroups of the locally compact group U'. There
15 a natural isomorphism Vg

Wt Homa(("E) s, F) = Homy(E, (FF),),

where E is a locally convex continuous A-module, I‘E=M DYRAE and F a locally convex
continuous A-module, F¥ =hom,, (M (I), F).

Proof. By looking at the proof of Theorem 2 it is seen that if we define

Werm(z) (u) = mp@z)

then the only point that requires attention is to show that mo is hypocontinuous relative

to the compact subsets of E. For this let C be a compact subset of & and W a 0-neighbour-

hood in F, then
V={meFT: me)eEW}

is a 0-neighbourhood in FT. By Proposition 26 there is a 0-neighbourhood U in M (T")
such that U¥zzm(C)< V. Thus if z€C and u €U we have

pm(e®@x)EW
and so moX(UxC)cW.
This completes the proof.
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THEOREM 15. Let A be a closed subgroup of the locally compact group I'; then the restric-
tion functor from the categroy of locally convex continuous I'-modules to the category of locally
convex continuous A-modules has an adjoint and a coadjoint. The adjoint is the functor
M (TY® 4 — and the coadjoint is the functor homy (M), —).

Proof. For the first assertion take A’=I" in Theorem 14. For the second take A=T
and A'=A.

TaeorEM 16. Let A’ be a closed subgroup of A. There are natural continuous tso-

morphisms ¥ and ¢, -
¥, TE=T(2E)

and @z (BT~ ET,
where E is any locally convex continuous I'-module.

Proof. We first remark that we know from Theorem 7, that W', @y defined by

Ye(u®2)=pu®e®z
and pgm(u) =m(u) (s),

where 4 € M, (I'), € E and ¢ is the unit of M (A) are natural isomorphisms, and we now want
to demonstrate their continuity. To show that ¥'; is continuous it suffices by Theorem 1
to show that the bilinear map WzoX (where y: M (T') x E—~TE is the natural map) is
hypocontinuous. For this let W be a 0-neighbourhood in T'(*E), and H an equicontinuous
subset of M (T"). There is a 0-neighbourhood V in 2E such that H® V< W and there is a
0-neighbourhood V of E such that e@ U< V. It follows that

Weox(Hx U)c W.

Now given a compact set C of E there is a O-neighbourhood V of M (I') such that

Vee® C< W. Thus
Weox(VxC)yc W.

This proves that ¥ is continuous.
To show that ¢ is continuous, let W be a 0-neighbourhood in ET of the form
W={m: m(H)=V},
where V is a 0-neighbourhood in & and H an equicontinuous subset of M (I"). Then
U={meE? m(e)< V}

is a 0-neighbourhood in E and thus
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X = {m€(B*: m(H)< U}

is a 0-neighbourhood in (E2)' and

pe(X)< W.
This completes the proof.

ProrositioN 27. Let E be a locally convex continuous I'-module, then E° given the

topology of uniform convergence on the compact subsets of E is a continuous I'-module.

Proof. This is an immediate consequence of Proposition 3 of § 2 and Proposition 3 (ii)
of [4: Chapitre 8, §2].

TuroREM 17. There is a natural continuous isomorphism V'
¥ CEP = (B,
where E is a locally convex continuous I'-module.

Proof. Define for '€ (YE)°, u€ M (I') and z€ E

Voo () (2) = (u @ ).
The proof now is similar to that of Theorem 14, and is omitted.

There is a representation theorem for ET similar to the theorem of § 6.

ProrosiTION 28. Let E be a locally convex continuous A-module and suppose E satisfies
condition (K). Then C(I', A, E) given the topology of uniform convergence on compact sets

is a locally convex continuous I'-module.

Proof. We know from the results of § 6 that C(I', A, E) is a M (I')-module, so we need
only show the continuity properties of the map (u, f)~uf. The continuity of the map f—uf
is an easy consequence of the fact that u has compact support. We now show that (c) of
Proposition 11, § 4, is satistied. Given a compact set K<TI' and a 0-neighbourhood V in

CT, A, E) of the form
V={fH{K)=U},

where K’'< L is compact and U is a 0-neighbourhood in E, let
W ={f: (K'K)=U}

then W is a 0-neighbourhood in E and KW < V. This shows that the set of maps {f—e¢, f:
y €K} is equicontinuous, and thus completes the proof.
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As in section 6, we define a map ¢z E¥'—Cy (T, A, E) where C(T', A, E) is C(T, A, E)

given the topology of uniform convergence on compact sets.

THEOREM 18. Let E be a locally convex continuous A-module satisfying condition (K).

Then the map ¢

/48 EI‘ = Ou(P’ A: E)

13 @ natural bicontinuous isomorphism.

We shall omit the proof—it involves no new ideas.

The results of sections 7, 8, 9 also can be established for the case of continuous modules.

We leave this to the ambitious reader.
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