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Intreduction

In his work [14] I, G. Shimura raised a question of the existence of a canonical system
for a reductive Q-group. Our purpose in this paper is to construct a canonical system for a
reductive Q-group which is obtained from a simple algebra over € with a positive involution
of the second kind.
To be more specific, let B be such a simple algebra over (), and take an involution
0 of B which coincides with the positive one on the center of B. Then using a rational
representation of B, we have a reductive Q-group & and a semi-simple Q-subgroup G* of
G defined by
G = {«€ B |ax? = v(a) Ecenter of B};
% ={a€B*|aa? =1 and N{x) =1}.

where N denotes the reduced norm of B over its center. The group G* has the following
properties:

(BSD) The homogeneous space

3 = G} /(s maximal compact subgroup)

defines a bounded symmetric domain;

(SL) G% is isomorphic to a direct product of copies of SL{n, C).

It is known that an almost-simple algebraic Q-group satisfying the conditions (BSD)
and (SLj) is isogenous (ab least over R) to our G* for suitable B and 8. For a somewhat more
definite characterization of our group G, or of B and &, see 1.1-2.

If G} is compact, then ¥ is the space consisting of only one point. Here we exclude this
case.

It bas been shown by Baily and Borel [3] that, for every arithmetic subgroup I' of G%,
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the quotient space '\  is embeddable in a projective variety as a Zariski open subset.
Our aim in this paper is, roughly speaking, to construct a model (Vr, ¢r) of I'\ # defined
over an algebraic number field & of finite degree for every arithmetic congruence sub-
group I' of G*, and to determine the relations between the models. Here we understand
by a model of I'\ # defined over kr a couple (Vr, ¢r) formed by a Zariski open subset V-
of a projective variety rational over kr, and a holomorphic mapping ¢ of H onto Vr
which induces a biregular isomorphism of '\ # onto Vr. '

There are densely many special points called ‘isolated fixed points’ on . We deter-
mine certain very important properties of the point pr(z) on Vr for every isolated fixed
point z and every I, with which we can organize all of the model {(Vr, ¢r) of I\ ¥ simul-
taneously in a canonical system. It is important to construct a canonical system, partly
because it allows us to describe a group of automorphisms of a certain field of auto-
morphic functions on } with respect to the arithmetic congruence subgroups of G* by a
certain subgroup of the adelization G4 of the reductive group @, as was doge by Shimura
in [14]1 T and II.

A canonical system depends on the choice of the complex structure of # that makes
H a hermitian symmetric space. Let us fix such a complex structure of H. Then there is an
algebraic number field K’ of finite degree such that the field &, indicated above is a finite
abelian extension of K’ for every I'. We construct K’ starting from the center K of B, and
choose a certain (infinite) abelian extension { of K’ which contains every kr. Actually
& contains the maximal abelian extension Qap of Q. Now let G, (resp. Gi) be the archi-
median (resp. non-archimedian) part of Ga. We identify G, with Ggr, denote the connected
component of the identity element of Gg by Gr;, and put Go, =GN GiGr,. We takea
certain closed subgroup (G, of G4 which contains Gq, and @, the adelization of G%, and
define an open, continuous and surjective homomorphism ¢ of G, to Gal (R K’), whose
kernel is Gg, G K*Gr,. Here K* is the closure of K*K, in the idele group K of K.The
center K™ of Qq, coincides with Gg, N K*Gr,. We put A°= G, /K*Gr,. The projection of
the subgroup G, of G, to A° is naturally identified with the quotient group 4% =Gq, /K.
‘We denote the open, continuous and surjective homomorphism of U° to Gal (f/K’) induced
by ¢ again by ¢. Then for any open compact subgroup X of 9° wehave a properly discon-
tinuous group 'y =X N A% of transformations on } on the one hand, and, on the other, a
finite abelian extension ky of K’ contained in &, which is determined by the open subgroup
o(X) of Gal (R/K’). Let us denote the family of all the open compact subgroups of A°
by 8. Then the family {I'yx| X € 8} covers every arithmetic congruence subgroup of G' as
a group of transformations on .

Now our main theorem states:



MODELS OF CERTAIN AUTOMORPHIC FUNCTION FIELDS 247

There exists a system {Vg, @z, Jyx(u), (X, YEB; u€ A} consisting of the objects
satisfying the following conditions.

(I) For each X €3, the couple (Vg, px) is @ model of '\ H.

(IT) Vx is rational over k.

(III) For u€ A, Jyx (1) is @ morphism of Vy onto VEY, which is defined if and only if
uXu1c Y, is rational over ky, and has the following properties;

(TI1a) Jxx (u) i8 the identity mapping of Vy of w€X;

(IIIb) Jyx (4)"Po J yyp (8) = yip (ut);

(IIIc) Jyx ()@x(z)]=@y(a(z)) for every a€A% and every €W tf aXal=7Y.

(IV) A4 certain reciprocity law holds at every isolated fixed point on .

This is a somewhat weaker statement than what we shall actually prove. In the
text, we shall take an extension 9 of ° by a certain (finite) group of automorphisms of the
center K of the algebra B in place of 9°.

Now let us make the property (IV) clear. For a point z of #, put ©(2) ={y €Gq, |p(2) =
z}. We say that z is an isolated fixed point on J{ if 2 is the only point on  that is fixed by
every y of &(z). At an isolated fixed point z on }, we have a finite algebraic extension
P(z)" of K’ and a homomorphism 7, of P(z)'* to &(z), with which we construct a continuous
homomorphism 7} of the idele group P(z)}* of P(z)’ to A°. Let us denote the maximal
abelian extension of P(z)’ by P(z)'ap and the canonical homomorphism of P(z), onto
Gal (P(2)an/P(2)') by [-, P(2)’]. Then (IV) can be stated as follows:

For every X €8, the point gx(z) on Vx is rational over P(z)an and

Pr(a) T =T yx(nZ (@) ™) [@x(2)]
for every a€ P(z)' § where Y =n}(a)"' Xn¥(a).

Again this is a weaker statement than what we shall prove.

By the class field theory, every finite abelian extension of P{z)’ corresponds to an open
subgroup of the idele group P(z)}* containing P(z)'*. Now we have:

The open subgroup of P(z)'x corresponding to the finite abelian exlension P(2) ky(py(2))
of P(z)' is

PR)*{a€P(R)y |n (@) En(S(z)) Y}
It should be noted that, for any given finite algebraic extension L of K’, there exists

an isolated fixed point z on H such that the field P(z)’ determined by z is linearly disjoint
with L over K.
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The main theorem allows us to describe Y°= G, /K*Gr, as a group of automorphisms
of a field & of automorphic functions on Y. Let &5 be the field of all the meromorphic
functions on 3 of the form, fop,, with some rational function f of Vy defined on kg, and

put
L= UXESQX'

For u€ 9%, define a mapping o(u) of & onto itself by

(fo ‘Px)g(u) = fa(u) o J xw(u) o @y

for fopz€Ly< &, where W =u-1Xu. We furnish Aut (8/K’) with the topology defined by
taking all the subgroups of the form,

{v€ Aut (Y/K')[A=hy, ..., B =hy)}

for a finite subset {Ay,...,h,} of & as a basis of the neighbourhoods of the identity
element. Then we have:

The mapping o is an open, continuous and injective homomorphism of A to Aut (L/K’),
and has the following properties:

(i) o(u)=0(u) on & for w€Y°;

(i) K'={h€L|h=h for every u€A};

(iil) o(X)=0al (2/R%) for X€3;

(iv) B2y =h{x(z)) for €A%, hEQ and 2€H;

(v) Let 2 be an isolated fized point on W, and P(z)’ and 7; as above. Then h(z) is rational
over P(z)ap for every hE€Q defined at z. Furthermore, if we put v=[a, P(z)'] and u=n%(a)™
for a€P(2)'x, then k%™ is defined at z if h is so, and h(z)" =h2™(2).

(vi) If Dx\ M is compact for some X € B, then o(A°) is a subgroup of Aut (¥/K') of finite
index.

As for (vi), we shall give stronger and more precise results in the text.

After certain reduction processes, the proof of our majn theorem will be done with
the help of the theory of modulus-varieties of abelian varieties, which was developed by
Shimura in his works [9], [10] and [11].

This paper is based on the author’s doctoral dissertation submitted to Princeton

University in 1969. I should like to express my deep gratitude to my teacher, Professor
G. Shimura, for his guidance.
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Notation and terminolog

As is usual, Z, Q, R, and € denote respectively the ring of rational integers, and the
fields of rational, real, and complex numbers. The ring of » x n matrices with entries in C
is denoted by M(n, C), and the groups of the elements of M(n, €) with non-zero deter-
minants and with determinant 1 respectively by GL(»n, C) and by SL(n, C). The identity
element of GL(n, C) is written as 1,.

For an algebraic matrix group @ defined over @, Ga denotes the adelization of G
(over Q), Gy the non-archimedian (or finite) part of Gg, G, the archimedian (or infinite)
part of G4, so that we have G4 =G1(,, and G, the connected component of 1 of :G’w.We
put Ga; =GrG .. By Gq, Gr, and G¢, we denote respectively the groups of the elements of
@ rational over Q, R, and C. Naturally Gy is identified with G, and so, Gr.. =G, isthe con-
nected component of 1 of Gr. The group Gq is diagonally embedded in (a as a discrete
subgroup. We put Gg.=Gg N Ga;. In sections 1 and 2 where the adelizations does not
appear, we identify Gq¢ with its projection to G, =Gr, and consider it as a subgroup of Gg,
so that Glg, =GN Gr..

If P is an algebraic number field of finite degree, we regard the multiplicative group
P* of P as an algebraic linear group defined over Q (for example, by means of the
regular representation), and use the notation P}, Pr, P%, P%, and Pj,. But wesimply
write P* for Pq. Therefore P is the group of totally positive elements of P. We say that an
idele a €P is totally positive if a €P},. For a Galois extension @ of P, the Galoisgroup of
Q over P is denoted by Gal (Q/P). After Weil [17), we understand by Pap the maximalabelian
extension of P in its algebraic closure. For a €P), we denote by [a, P] the image of a in
Gal (Pap/P) under the canonical homomorphism of class field theory. The closure of P* Py,
in Py is written as P*. The canonical homomorphism [+, P] induces the isomorphism of
PA/P* onto Gal (Pay/P).
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For a simple algebra B overQ, B> denotes the multiplicative group of the invertible
elements of B, and is sometimes considered as an algebraic linear group. An involution §
of Bis an anti-automorphism of B of order 2, i.e. a Q-linear automorphism of B as a vector
space over @ such that (ab)®=0%? and (af)? =a for @, b€ B. An involution of B is of the
first kind or of the second kind according as it is trivial or not on the center of B. A positive
tnvolution 6 of B is an involution of B such that tr (ea®) >0 for ¢ € B unless ¢ =0, where
tr denotes the reduced trace of B over Q.

1. Algebras with positive involutions of the second kind and bounded symmetric domains

1.1, Let B be a simple algebra over Q with an involution §. We include the case that 6
is the identity mapping. Taking a rational representation of B, we define a simply con-
nected (-almost simple algebraic matrix group G* by

G ={y€B*|N(y) =1, and py® =1 if 6 +identity},

where N denotes the reduced norm of B over its center.

It is known that every Q-almost simple algebraic linear group is isogenous over
Q to such G"* with a suitable B and J, excluding certain exceptional cases. (See Weil [16],
and J. Tits, Classification of algebraic semi-simple groups, [1], pp. 33-62.)

Let us consider the condition:

(BSD) The homogeneous space
# = Gy, /(a maximal compact subgroup)

defines a bounded symmetric domain.

Put Bg=B®¢R, and extend § R-linearly to the involution of Bgr. The reduced norm
N can also be extended to a multiplicative mapping of By to its center in the natural way.
Then the group G is considered as

Gr = {x€Bgr|N(#) =1, and za? =1 if § =+ identity}.

Hence the condition (BSD) is considered as a condition on B and d. Let Bg=B,®...® B,
be the decomposition of the semi-simple algebra Bg over R into the direct sum of its simple
components B;, A=1, ..., ¢. Since § is involutive, either 4 maps a simple component onto
itself, or permutes two isomorphic simple components. As is well known, it is necessary
and sufficient for the condition (BSD) to be satisfied that the simple components B; with
0 belong to the following cases:
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(I) B;=M(2, R), and ¢ is the identity mapping;

(II) B;=B,=M(2, R), and ¢ permutes B, and B, (1u);

(III) B;~M(n, C), and % =h'Zh-! for x€ B,; where h€GL(n, C) and % =h;

(IV) B;=M(n, R), and 2% =hizh- for € B, where hEGL(n, R), b =h and thesigna-
ture of 4 is (n, 0), (0, »), (n—2, 2), or (2, n—2);

(V)  B;=M(n, R), and % =h'zh?! for € B; where hE€GL(n, R) and h= —h;

(VI) B;=M(n, H), and z¢ =h*th~1 for € B, where = is the main involution of the
Hamilton quaternion algebra H, k€GL(n, H), *h=h and tram(wh'®)>0 for
every non-zero n-dimensional row vector w with components in H;

(VII) B,=M(n, H), and 2% =h'Zh—! for € B; where ~ is the main involution of the
Hamilton quaternion algebra H, A€GL(n, H) and %A= —h.

1.2. A simple algebra over @ with a positive involution of the second kind is charac-
terized as follows.

ProrositronN 1. Let B be a simple algebra over Q with an involution 8. Then the fol-

lowing three assertions are equivalent.

(i) The condition (BSD) is satisfied, and B and & involve only Case (III) of 1.1;
(ii) B has a positive involution of the second kind which coincides with 8 on the center of B;
(iii) B 18 a central simple algebra over a CM-field, and § is an involution of the second

kind which is the complex conjugation on the center of B.

Here a CM-field is o totally imaginary quadratic extension of a totally real algebraic
number field of finite degree.

The equivalence of (i) and (ii) is easily seen. For the proof of the equivalence of (ii)
and (iii), see 1.2 and 1.4 of Shimura [9] and [13] respectively.

Note that, if B has a positive involution of the second kind, then B is a central simple
algebra over a CM-field, and the involution coincides with the complex conjugation on
the center of B.

Now let B be a simple algebra over Q, and 6 an involution of B of the second kind. If
B and ¢ satisfy the condition (BSD), then B and é involve only Cases (II) and (ITI)
of 1.1. As was seen above, the algebra B must have a positive involution which coincides
with 6 on the center of B, if only Case (III) is involved. If Case (II) is involved, then B has
no positive involution of the second kind. But we may say that this case is covered by
Shimura, in the sense indicated in the following observation, since B is now a quaternion
algebra over its center.

Let B be a quaternion algebra over an algebraic number field K of finite degree. We
include the case where B=M(2, K). Suppose that B has an involution § of the second kind,
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and that B and ¢ satisfy the condition (BSD). Then we see easily by the list of 1.1 that the
center K of B is a quadratic extension of a totally real algebraic number field ¥ which
consists of all the elements of K fixed by 4. Let G and G' be the algebraic Q-groups
defined by

Go = {2 € B |aa? =v(x) EF*},
6o = {2€B*|aa? =1 and N(a) =1},
where N denotes the reduced norm of B over K. Let ¢ denote the main involution of B,

and put
(1.2.1) By = {a€B|a® = ot}.

Then B, is a subalgebra of B which contains F but does not contain K. Obviously, B,
is stable under both § and ¢. Since aat=N(ex) for «€ B, we have

(1.2.2) &, = {BEB; |pp =1}

(Note that $2=p-1=f for B€Gy.) Therefore, especially, B, is a non-commutative
algebra over F, and hence, must be a quaternion algebra over F such that

(1.2.3) B=B,®K.

Now define a Q-subgroup G, of G by

(1.2.4) Goq = Bi = {BE€B; B> = pp = N(EF*}.

It is obvious that G, is a reductive Q-group containing G*. Let us show that

(1.2.5) Go=K*Goq.

Take an element { € K* such that {#= —(. Then we have B=B,+{B,. For «€Gq, choose
elements @ and b of B, so that a=a+{b. Since aa® =(a +b) (a* —(b*) =aa* —{2bb* + {(ba’ —
ab’) =N(a)—2N(b) +((ba* —ab*) and it belongs to F*, we have ba‘—ab*=0. Then ba’=
1(ba* +ab') =1(ba' +(ba*)') =} tr (ba') and it is an element of F. Here tr denotes the
reduced trace of B over K. Put ¢ =ba‘€ F. Then ca =ba'a =bN(a). If N(a) =0, then we have
¢=0 or a=0 since c€F. Furthermore, b must be invertible since N(b)= —(2ac?€F".
Therefore the relation ¢ =ba‘ implies that ¢ =0 if and only if @ =0. Hence, anyway, we have
o =Cb with €KX and b€ B§ if N(a)=0. If N(a)+0, then b=cN(a)la, and x=a+{b=
(1+cN(@))a with 1+cN(@)*{€K* and a€B;. This shows that Gq <K Gyq. Since
the opposite inclusion is trivial, we get (1.2.5).

It can be shown that the subalgebra B, of B is spanned by the elements of G§ over
Q. Note that B, depends essentially upon 6, and is not determined by the condition (1.2.3).
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After the structures of B with §, G and G* are thus clarified, this case is reduced to the
case of a quaternion algebra B, over a totally real algebraic number field F of finite
degree with the reductive group G, and the semi-simple group G* defined by (1.2.4) and
(1.2.2) respectively, which is included, as a special case, in Shimura [14] I and II, where B
with J involving Cases (V) and (VI) of 1.1 was studied.

If K is a totally imaginary quadratic extension of F (with the above notation and
assumption), then the quaternion algebra B over K has a positive involution of the second
kind, and is automatically included in our case of this paper. But, in general, our results for
such B (or ¢ and (") in this paper are weaker than those of Shimura for B, (or G,and G).

1 Case (I) of 1.1 is involved, then B is a quaternion algebra over atotally real algebraic
number field of finite degree (if the condition (BSD) is satisfied), and hence, this case is
also covered by Shimura, as is easily seen.

1.3. Hereafter we restrict ourselves to the case that B and § involve only Case (III)
of 1.1, and fix the notation as follows:

Let K be the center of B, F={a €K |a®=a} and D the central division algebra over K
such that B=M(m, D) for some positive integer m. As we saw, F is atotally real algebraic
number field of finite degree, and K is a totally imaginary quadratic extension of ¥. Put
g=[F: Q] and ¢*=[D: K]}, ¢>0. Let D™ be the space of all m-dimensional row vectors
with components in D. Then D" is a left D- and right B-module with the canonical
action of D and B=M(m, D). Representing B in M(2gmq?, Q) by a fixed basis of D™
over §, we take an algebraic linear group G* so that

Go={y€B"|yy’ =1land N(y) =1}
where N denotes the reduced norm of B over K. Define a reductive Q-group G by
Go={y€B [yy? =2(y)€F"}.

Put Br=B®qR and extend JR-linearly to the involution of Bg. The reduced norm N

is also extended to a multiplicative mapping of Bg to its center. Then the groups G4 and
Gr are regarded as

Gy ={z€Bj|x2’ =1 and N(z)=1};
Gr = {x € Br|2a® = y(z) € center of Br}.
Note that G is connected.

1.4. Fix a maximal compact subgroup M, of Gg and put

H=Gg/My;
M =My = {all maximal compact subgroups of Gg}.
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As is well known, M = {xM 21|z €GR}. Assigning to xM,a~ the coset 2 M, of M, in Gy,
we have a one-to-one correspondence between M and the homogeneous space H.
For j€ By such that = —j and j2= —1, we define a subgroup M(j) of Gy by

M(j) = My(j) = {u€Gy|uj =ju},

and put
F=F:={j€Br|j*=—j, 2= —1 and M(j)EM}.

Then for j€¥, we have zjz1€J and M(zjz—)=xM(j)a! for every x €G}. Fix an element
jo of F, and put
FGo) = Fslo) = {ajo 2~ |wEGR}.
Let ¢ be an element of the center of Bgr such that ¢2=1. Then we see easily that ¢® =e¢.
Therefore je€F and M(§)=M(je) for every j€F. Put

E = Ep = {¢|eE€center of Bg and &2 =1}.
Obviously £ is a multiplicative group of order 2¢ where g=[F: Q].
ProrosiTION 2. For every M €M, here exists an element j€F such that M(j)=M.
For j,j'€3F, M(j)=M(j") if and only if § =je for some c¢€E. For any fized j,€F,
F=Ue:eeJGoe) (disjoint),
and the correspondence, j« M(j), between F(joe) and M is one-to-one for each € E.

Proof. Since F is a totally real field of degree g and K is a totally imaginary quadratic
extension of F, we have Br=B,®...® B, where B, (1=1, ..., ¢) is a simple algebra over
R and R-linearly isomorphic to M(mg, C). In our case, we have Bj=B; for A=1, ..., g.
Let 1=t +...+¢,, ¢t,€B,, be the decomposition of 1, and put

Gy ={x€B;|az? =1; and N(z)=1,}.

Then G =G x ... x Gy (direct product). Moreover any maximal compact subgroup M of
Gy is of the form M =M, x...x M, with some maximal compact subgroups M, of G,
A=1,..,9. Now fix one A for a while. We know that there is an isomorphism (R-linear)
of B; to M(mg, C) which transform 6 to the involution X —H*XH-1 of M(mgq, C) with
H ='H €GL(mg, C). Since H is hermitian, there is an element Y €GL(mg, C) such that

> 1
YHY =J,,= [ 0'_(1) ]
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with some non-negative integers r=r(A) and s=s(1) such that r+s=mq. Twisting the
isomorphism of B, to M(mg, 0) by the inner automorphism of M(mg, C) defined by Y,

we have an R-linear isomorphism @, of B, onto M(mgq, €} such that w ;(@%) =J, ;'w(x)J, s
for € B,. Since w;(N(z)) =det (w,(x)), G} is isomorphic to

SU(r, s) = {U€GL(mg, €)|UJ, U =J,, and det (U)=1}

through w;. Put Jo=V=1J,, Then M'(Jy)={U€ESU(r,s)|UJ,=J,U} is a maximal
compact subgroup of SU(r, s). It is well known and easily seen that, for J€GL(mg, C)
such that [J2=—1,, and J, JJ,,~ —J, the group M'(J)={U€SU(r, s)]UJ=JU} is
a maximal compact subgroup of SU(r, s) if and only if either J =XJ X1 or J =X(—Jo) X!
for some X €SU(r,s). Moreover two such J and J' define the same maximal compact
subgroup M'(J)=M'(J’) of SU(r, s) if and only if either J=J" or J= —J’. Combining
these results for A=1, ..., g, we get the proposition at once.

CoROLLARY 1. The set of pairs of non-negative integers {(r(2), s(A))|A=1, ..., g} deter-
mined in the above proof depends only on B and o. For any fixed j, €}, there exist R-linear
tsomorphisms w; of B; onto M(mg, C), 1=1, ..., g, such that, for x€B,,

P
02(2°) = T ray.s “ 03(2) Tty 00

and wi(jota) = V:J,(l)_,(z, for A=1,...,g9. Such {w;} induces an isomorphism of Gk onto
M§-1SU(r(A), 3(1)). Moreover the set {ew,, ...,y @y, ..., w,} 18 considered as a set of all the
inequivalent absolutely irreducible representations of B.

This is clear by the proof of the proposition.

Remark. Let w,, ..., w, be as in Corollary 1. For ¢€ £, put wj=w, if &1;=¢; and wi=w,
if &13=—1;. Then o}, ..., } satisfy the conditions of Corollary 1 for jye€3F.

Let trg/q denote the reduced trace of B over @ and extend it R-linearly to an R-linear
mapping of Br to R. Let wy, ..., w, be as in Corollary 1. Then we have, for z€ Bg,

traja(z) = 3 [ir(wx(e)) + tr{aat@)].

Therefore we see easily

COROLLARY 2. Let j be an element of By such that 2= —1 and j®= —j. Then the
group M(j) is a mawimal compact subgroup of Gy, i.e. j belongs to ¥, if and only if
trgq (xjali—1) >0 for every non-zero x € Bg.

17 — 712905 Acta mathematica 126. Imprimé lo 15 Avril 1971



256 KATSUYA MIYAKE

1.5. Let us consider a subalgebra C of B which satisfies the following conditions.
(1.5.1) C contains the center K of B;
(1.5.2) C is stable under 6, ie. C*=C;

(1.5.3) & ts a positive involution on C.

From (1.5.3), it follows that C is a semi-simple algebra, each of whose simple components
is stable under §. Therefore the center of each simple component of C is a O M-field con-
taining K.
Now for j€F, put
C(j) = {a € Blaj = ja}.
Then C(j) satisfies the conditions (1.5.1-3). In fact, (1.5.1-2) are obviously satisfied, and
(1.5.3) is assured by Corollary 2 of Proposition 2. For ¢€ £, we have C(j) =C(j¢).

ProrositioN 3. Let C be a subalgebra of B with the conditions (1.5.1-3) satisfied.
Then there exists an element § in J such that C(j) contains C.

Proof. We know that Cr =C® gR is semi-simple, and that ¢ induces a positive involu-
tion of the second kind on each simple component of Or, which is isomorphic to a full matrix
algebra over €. Regarding Cp as a subalgebra of Bg, let 0@ be the projection of Cg to B.
Then Cr=CP@...®CY. Fix one A for a while, and let O =X, @...® X, be the decomposi-
tion of C% into its simple components, and 1 =e, + ... + ¢, the corresponding decomposition
of the identity element of B;. Each X, is R-linearly isomorphic to M(z,,, C) for some integer
My and 4 is a positive involution on X e Therefore on account of Lemma 1 in 1.1 of Shimura
[9], we see easily that there is an R-linear isomorphism v of B, onto M({mg, C) such that
P(a®) = yp(z) for £€CP. Take J €GL(myg, C) such that tJ=J and p(x?) =J4p(z)J- for all
z€B;. Put E,=y(e,) for u=1,...,p. Then E,=1wple,) =yp(ed) =‘Eﬂ since e,€ cP.
For any z€C, () =p(?) =Jp(x) J-1. Therefore J belongs to the commutor algebra ¥
of 1/)(0%’) in M(mg, C). Let Y, be the commutor of (X ,) in £, M(mg, C)E,. Then since
E ,M(mg, €) E, is a simple algebra over C whose center is contained in the simple subalgebra
(X ,), Y, is also a simple algebra over C. Clearly Y =Y1®..®Y,. Put J =J, +... +J, with
J,€Y, ThenJ,=JE,=E,J and 4J ,=J , for u=1, ..., p. Since (X ,) and E ,M(mg, C)E,,
is stable under ‘7, this induces a positive involution on Y ,. Therefore, for example, using
a C-linear isomorphism y, of ¥, onto M(m,, C) for some integer m, such that v ({0)=
“w,(U) for U€Y ,, we can find an element H, in Y, such that (H,J, ‘ﬁﬂ)2=E,‘. Put H=
H,+..+H,and Jy= YV —1J*HH. Both H and J, are in Y and are invertible in M(mg, C).
We see easily that Jj= — 1,,,; and JYJ,J 1 =J,. Since JoJ =V —1JHHJ =V —1(HH)-1, we
also see that tr (UJ,JUJ1J51)>0 for any U €M(mg, €) unless U =0. Define j; =y~1(J,)
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for every 4, 1<A<yg, and put j=j;+...+7,. On account of Corollary 2 of Proposition 2in
1.4, we see that j€J. From the definition, it is clear that C(j) contains C. Q.e.d.

1.6. Let C be a subalgebra of B satisfying (1.5.1-3), C=C,@...®C, where C 18 a central
simple algebra over a CM-field P,, u=1, ...,¢, and 1=¢,+...4-¢ with ¢,€C,. Then the
center of Cis P=P,®..®P, and contains K. Therefore each P, contains the field Ke,
isomorphic to K. Let { be the commutor of € in B. Then 0 =0, @...®0, where { , is the
commutor of C, in e, Be,~=e ,M(m, D)e,, u=1, ..., t. Since ¢,M(m, D)e, is simple, we sce
that 0, is a central simple algebra over P,. It is also clear that (' , 18 stable under 4, and
that ¢ induces an involution of ¢, of the second kind which coincides with the complex
conjugation on the center P,. Considering Cr=C®qR as asubalgebra over R of Bg, Cr
is the commutor of Cr in Bg.

Let N P be the reduced norm of & 4 OVer P P for =1, ..., t, and define algebraic matrix
groups GY0) and G}, u=1, ..., ¢, by

Gigo ={a€C,|aa? = ¢, and N (a) =¢,};
0 =Gl x...x Gk
Then GY(C) is naturally regarded as an algebraic subgroup of G, and
(C)r = {x€Cr|z2d =1 and N (we,) =¢,forp =1, ..., t}.
Pat Je=CrnF={j€F|C(G)>0}
M(j) = {z€P(O)r|2j = jz}, (j€Fa).
Then Proposition 3 assures that Jz is not empty.

ProrositioN 4. Let C be a subalgebra of B satisfying the conditions (1.5.1-3), and

the notation as above. Fix any element §, of Jz. Then J g is decomposed into a disjoint union,
Fe = Ucee Fo(51)
where Jo(j,8) = {zjiex | x € GUO)r}. Moreover the family
M ={Mz()|F€ Fe} ={Ms()|j€ Foi)}
coincides with the set of all maximal compact subgroups of GYC)g.

Proof. Since GY(C)g is a subgroup of G}, we see easily by Proposition 2 in 1.4 that

F6> Uces #5(j,1¢)- For any j € J&, we conclude that M &(j) is a maximal compact subgroup
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of G*(C)g, it we apply Corollary 2 of Proposition 2 to each €, and je , in place of B and 7,
and combine the results for u=1, ..., . Let £z be the set of all the elements £ in the center
of O such that e2=1. Then £z is a multiplicative group containing £= £ as a subgroup.
By the same procedure as above using Proposition 2 in place of Corollary 2, we see that, for
each § in Fz, there are & € £z and x€GYC)r such that j=zj,&,21. On the other hand,
there are £€ £ and y € Gy, such that j=yj,sy~! since both §, and § are in J. Hence we have
181 =171 =2j 6271 with z=x2-1y €EGy. Put g, =¢,671. Then &,j, =2j; 271 since ¢ is in the center
of Bgr. Take an R-linear isomorphism w, of B; onto M{mg, C) so that the conditions
of Corollary 1 of Proposition 2 for §, in place of j, are satisfied. Then w,(z!)=
0 (28) =J'0(z)J; and w,(j)= V—1J, where J 3 =J sy Thereforé ()l —1J ;=
@ ;(2) V=1 taT,l(_z)J 5 and 50, w;(g)=0;(2)'w,(2), from which follows () =1, since
w ;(gg)%>=1,,. Since this is true for every A=1, ..., g, we have g,=1, i.e. & =¢. Thereforej =
xjex—t with x€GHC)r and £€ £. This proves the former half of the proposition. The latter
half is clear since M(j,) is a maximal compact subgroup of G'(0)r, and every maximal
compact subgroup of G}(C)g is of the form of xM(j,)—! = M(xj, =) for some x€GYO)r.

Remark. It can happen that £332 £=E; Then we cannot cover all the je,, &, € £z,
by Fz.

CoROLLARY. Let the notation and the assumptions be as in Proposition 4. Then the fol-
lowing four assertions are equivalent.

(@) Fe="{hele€E}

(i) G1(O)r s compact.

(iii) & is a positive involution on C.

(iv) O(,) contains C.

Proof. The equivalence of (i) and (ii) follows immediately from Proposition 4 and the
defintion of M3(j,). Since G1(0)g is a direct product of Gig, u=1, ..., £, GYCO)r is compact
if and only if every Gy is compact. From Corollary 1 of Proposition 2 in 1.4 applied to
C, in place of B, it follows that G}y is compact if and only if rs =0 for every pair of integers
(r,s) determined by C, and 8. The definition of the pairs (r,s) shows that this
is the case if and only if § is a positive involution on & 4 This proves the equivalence of (ii)
and (iii). Obviously (iv) implies (iii) since 8 is a positive involution on C(j;). Now assume
(iii). Let us consider the commutor of the center P of C in B. Write the commutor by P
Then P=P,®...0P, where each P, is the commutor of P, in ¢,M(m, D)e,. Therefore P,
is nothing but C,® pﬂﬁ 4 considered as a subalgebra of e, M(m, D)e,. (Cf. Corollary 7.3G of
Artin, Nesbitt and Thrall [2], p. 71.) Since é induces positive involutions on both C, and
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C,, it is also a positive involution on P,=C,®»,C,. Therefore ¢ is & positive involution on
P, and there is an element §€ ¥ such that C(§)> P> C. (See Proposition 3 of 1.5.) Then j
is one of j,¢, £€ £, since we have already proved that (i) is equivalent to (iii). Hence we have
C(j,) =0j,&) =C(j)=>C. The proof is done.

1.7. At the beginning of our discussion (1.4) we have fixed a maximal compact sub-
group M, of G%. On account of Proposition 2 in 1.4, there is an element j, in F such that
M,=M(j,). We fix such j,. Choose wy, ..., w, as in Corollary 1 of Proposition 2 for this j,.
Then furnished with the complex structure obtained from that of Il%.,SU(r(4), s(4))
through {w,}, the homogeneous space H=Gy/M, becomes a hermitian symmetric space,
and is isomorphic to a bounded symmetric domain. We denote the hermitian symmetric
space thus obtained by ,,. Then 3, is decomposed into a product

— 1
W, =HPx ... x WP

corresponding to the decomposition Br=B,®...@ B,.
For the later use, we fix a representation of ,, as a bounded symmetric domain
as follows.

For two non-negative integers r and s, put, as before,

SU(r,s) ={z€M(r+s,0C)|aJ, 'z =J,, and det (x)=1}

where J, ;= [(1)1(1)
S,

We define a bounded symmetric domain ¥, ; by

], and let M(r,s;C) be the set of all r x § matrices with entries in C.

W, ={z€M(r,s;C)|1, — 2% is positive hermitan},

XYy
2(2)=(Uz+ V) (X2 +Y)™?

and the action of an element x= [U V] of SU (r,s) on #, ; by

for z€H, .. Note that £=J,,x], , for 2€SU(r, s). As is well known and is easily seen,
this is well defined. Moreover SU(r, s) acts on 3, , holomorphically and transitively. The
isotropy subgroup of SU(r, s) at each point z of H,, is a maximal compact subgroup of
SU(r, s). Especially the isotropy group at z=0 coincides with the subgroup JM(r, s) of
SU(r, s) given by

My(r,s)={z€8U(r, )|V —1d,, =V —1J, z}.

Assigning the point 2(0) on H¥,, to the coset 2M(r, s), we have a homeomorphic mapping
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of SU(r, s)/M(r, s) onto H,,. We define the hermitian structure on SU(r, s)/M(r, s)
through this mapping. Then it is easily seen that

For x= [U V] €SU(r,s) and z€ N, ;, one has z ==z(0) if and only if x= [tlz'lz] [

Uvo
XY )

0Y
Furnishing # with the complex structure obtained from the structure thus defined on
[T5-18U(r(), s(A))/My(r(4), s(A)) through {w;}, we have the hermitian symmetric space
H,, defined clearly. Moreover, by the remark following Corollary 1 of Proposition 2 in 1.4,
we see that, for ¢€E, the space Hjs= Hin X ... x H% relates with J,, in such a way as
HP=HP if £1,~1; and WD =HP, the space with the conjugate complex structure of the

structure of P, if &1, — —1;.

1.8. Let ¢ be an R-linear automorphism of Bgr and suppose that ¢ commutes with
0. Then ¢ induces an automorphism of Gk, and maps J onto itself. Obviously p(M(j)) =
M(p(j)) for j€ 7, and ¢ permutes the sets J(j,&), ¢ € £. Through the correspondence between
# and M assigning x M,z to x M, for z€G, @ induces a homeomorphism of } onto itself.

ProrosiTION 5. Let @ be an R-linear automorphism of Br which commutes with §.
Then @(F(jo)) = F(jo&) for some e € E, and @ induces an isomorphism of the hermitian symmetric
space W;, onto W,,.. Conversely, for € E, every isomorphism of W,;, onto W,,,, if exists, is

obtained from such a @.

Proof. Let {r,s) and (+',s’) be two pairs of non-negative integers such that r+s=
r'+s', and N, ; and W, . as in 1.7. Then Satake [7] tells us the following:

The two hermitian symmetric spaces #, ; and ¥, - are isomorphic to each other if
and only if (r, s)=(r', s') or (¢, '). Moreover, if this is the case, then the isomorphisms
y of SU(r, s) to SU(r', s') of the form, either y(x) =yxy~! for every z€SU(r, s) with some
YEGL(r+s, €) such that yJ, '§=J, , or yp(x)=ysy! for every x€8U(r, s) with some
y€GL(r+s, C) such that yJ, ‘j=—J, ;, induce all the isomorphisms of ¥, to H, .

Let w,, ..., w, be as in Corollary 1 of Proposition 2 in 1.4 for j,. Suppose that ¢ maps B,
onto B,. Then the representation wjogp of B is equivalent to either w, or @,. (For the nota-
tion, see the remark in 1.4.) Here we regard w; as a homomorphism of Bgr to M(mg, ©)
defining w (B,) =0if u +A1. Take y 1« €GL(mq, C) so that wjog(x) is equal to either y, ﬂ(x)y,jl
or y,ua)‘u(oc)y;1 for € Bg. Then since ¢ commutes with d, we have, for some »(y,) €R,

&
Yud ransio Yu =) Trns. sy
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Replacing y, by its scalar multiple, we may assume that »(y,)= £ 1. On the other hand,
there exists x€Qg such that §=g(j,) =zj,ex—1. By the definition of wj, we have

wi(§) = wi(®) V — L iay s i) .
Combining these two equalities with the fact that w3(§) = wi(@(f)) is equal to either

Yu 0u(Jo)¥u 1= Z’/.ul/:~1 Jrunsm Ya h

or Yu w,u(jo)y;:l == ?/ul =1 s :’//:1:

we see easily that »(y,) is equal to 1 or —1 according as wjog is equivalent to w, or &,.
The proposition now easily follows from the results of I. Satake.

1.9. Let us consider two types of ¢ here. First let ¥ be an element of the group
Gr given in 1.3. The inner automorphism ¢, of Br defined by ¢,(x) =yxy! forx € Bg com-
mutes with d. Since £ is contained in the center of Gr, the mapping of Gr to £ assigning to
y€EGQR such ¢€E as yJ(j,)y = F(joe) gives a homomorphism of Gg to &. It is easily seen
that this homomorphism induces an isomorphism of the quotient group Gg/Gg, onto the
subgroup &, of £ given by

80={868|8L1 =1z if 7(2)4‘—‘8(1)}.

Especially, for y€Qr, yF(jo)y"=F,) if and only if yEGr,. Obviously every element a
of the center Gy induces the identity mapping as ¢,, and so, the identity mapping of ¥,,.
We define the action of y EGr,, or ¥ modulo the center of Gr,, on H;, in this way through
@,- The action of the subgroup G} of G, thus defined coincides with the action of Gj on
N =GR/M, defined by the left transformation.

Second let 4 denote the group of all those Q-linear automorphisms of B which commute
with 6. Then extended R-linearly, every element of A4 is regarded as an R-linear auto-
morphism of Bg. Put

Aj, = {x|a€4 and «(IGy)) = JGo)}-

Then 4;, acts on ,, holomorphically. Put Gq, =Gq N Gg,. Then Gq, contains G'g, and the
center of Gq, is K*. For y€Gq,, the inner automorphism ¢, of B defined byy as ¢,(z) =
yay-! for z€ B is contained in 4j,. Put 4% =Gq,/K*. Identifying y modulo K* with ¢,
for y €Gq,, we consider A as a normal subgroup of A;,. Note that A% is of finite index in
4j,. For y€Gq,, the action of y on H,, as an element of Gr, coincides with the action of y
modulo K* as an element of 4;,.
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We see the following three assertions hold:

(1.9.1) If G%, is compact, then W, is the space consisting of just one point, and both
Gr, and A;, act trivially on W,y If Gy is not compact, then an element of Ggr + acts trivially
on H,, if and only if it belongs to the center of Gr,; |

(1.9.2) If G} is not compact, and mq>2, then the identity element is the only element of
Aj, that acts trivially on ‘H,;

(1.9.3) Suppose that B is a quaternion algebra over K, i.e., mg=2, and let By and ¢ be
as in 1.2. Then the, automorphism 6t of B belongs to Aj, if and only if B, is totally indefinite,
i.e., Bgr=DB,®qR 1s isomorphic to a direct product of g copies of M(2, R). Furthermore, if
this is the case, then the identity element and i are the only elements of A;, that act trivially on
H,,. If Gy is not compact, and B, is not totally indefinite, then the identity element is the.only
element of Aj, that acts trivially on ... .

The assertion (1.9.1) is easily seen and well known. Assume that G} is not compact.
Let @ be an R-linear automorphism of Br which commutes with §, and suppose that
(7o) = F(io), and that ¢ acts trivially on ;.. We suppose, moreover, that ¢ induces a
Q-linear automorphism| of B, if mq=2, and of B if mg>2. Let H,\=HZ x ... x U be as
in 1.7. If ¢ is not trivial on F, then it actually permutes the factors #, A=1, ..., g. There-
fore @ has to be trivial on F since Gy is not compact, and ¢ acts trivially on H,,. If ¢ is
also trivial on K, then it is an inner automorphism of B defined by some element y €Gq, <
Gy, i.e., p€AS. Therefore (1.9.1) implies that @ is the identity element of A;. Suppose
now that ¢ is not trivial on K. Note that, although we do not assume that ¢ is an automor-
phism of B if mq =2, it is meaningful to say that g is trivial, or not on K, since B is embedded
in Bgr. Let wy, ..., w, be as in Corollary 1 of Proposition 2. Since ¢ istrivial on F, it induces
an R-linear automorphism of B, for each A=1, ...,g where Br=B,®...® B,. By means
of w;, ¢ induces an R-linear automorphism of M(mg, C) for each . Since ¢ is not trivial on
K, this is not C-linear for some A. Fix such a A. Then the automorphism y, say, is of the
form y(z) =yZy~! for some y €GL(mq, C) such that

th; —
Yrsny = — Jrarsy

since @ commutes with d (see the proof of Proposition 5). In this case, we have (1) = s(A).

We see easily that y =u[(1) 1“8] for some u€SU(r(4), s(4)), and that p induces the auto-
s(4)

morphism of | #,)sa) of the form, z—u(%). Here, since r(1)=s(1), the mapping z—%
is an automorphism of I,;,sm, and u(’2) means the action of % on %2 € I,y ). One can
easily see that this mapping z—u(%) is trivial if and only if (1) =s(4) =1 and u acts trivially.
Therefore, especially, if mg>2, then ¢ must be trivial on K, and (1.9.2) is proved. Now
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suppose that mg=2. Then we have Bor = By, +... + By, corresponding to Bg=B,®...® B,,
and B,=B,;+{B,; for each 1=1, ..., g with an element [ of KX such that {8 = —¢. Then
(1.2.2) implies that G =01 x ... x G1 where

G} = {x€By;|az* =1}.

Note that B, is isomorphic to either M(2, R) or the algebra H of Hamilton quaternions,
and G} is compact if and only if By, is isomorphic to H. Since g, =¢| 5 , is an R-linear auto-
morphism of B;, which maps By; onto itself, we have ¢,({)=*{. If p;({)=¢, then ¢,
is trivial on the center of B, and is an inner automorphism. If @,(¢)= —¢, then ¢,
corresponds to the automorphism,

01} _fo1l
= io] = [vl
of M(2, C) through w;. Observe that this is the case if and only if B,, is isomorphic to
M(2, R). One can easily see that ¢, =3d in this case. Hence ¢ must be trivial on B,since the
projection of Byg to B,; induces an isomorphism on B,, and g is either the identity mapping
or & on B; =By, +{B,,; for at least one 1. Then ¢ must be the identity mapping on B,
if By, is isomorphic to H. Note that this stronger condition for ¢ on B, such that B, is
isomorphic to H comes from the condition ¢(7(j,)) = F(j,). Summing up, we get

(1.9.4) Suppose that mqg=2, and let the notation be as above. Let ¢ be an R-linear auto-
morphism of Br which commutes with 8, induces a Q-linear automorphism of By, and has the
property that p(F(jo)) = F(js). Then @ acts trivially on Wy, if and only if @ is the identity map-
ping on B if By, is isomorphic to H, and is either the identity mapping or 61 on B, if By, is
isomorphic to M(2, R).

This implies (1.9.3) immediately.

Suppose that mg=2, and let the notation be as above. Let §,=fo +... +7o, With
joa€B; for A=1, ..., g. Fix a 4 for a while, and let j,; =7, -+{j, with 4, and j, in B,;. Since
=1 and =iy, we see casily that fi—ji=—fy, =js=7s and fyjs+iafs=0.
Then jy=j3=34(j,+72) =% tr (j;) and it belongs to the center of B,;. Therefore j;j;+
Jat1=24172=0, and either j, =0 or j,=0. If j, =0, then j,, ={j, belongs to the center of B,
and the maximal compact subgroup {x € G;|zj,1 =j,17} of Gj is G} itself, i.e., G} is compact.
If j,=0, then jy,=4;. Since §;= —j;, j, does not belong to the center of B,;. Therefore
@} is not compact since the maximal compact subgroup { € G| 2jz ~j,22} of G} is not the
whole group Gj. (Note that the element of G spans By, over R.) Now we define a group
A4}, if mg=2 as follows:

Let B, (resp. Bg) be the direct sum of the simple components of Byg which are iso-
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morphic to M(2, R) (resp. H). Then Byr=B;® By. Corresponding to this decomposition,
Bg is decomposed into a direct sum, Br=B'@® B”, such that B'> B; and B"> By. Let
F(o)’ be the projection of J(j,) to B’. Then it follows from the above observation of §,
that J(j,)’ is contained in By Let 8 be a Q-linear automorphism of B,." Extending f
R-linearly to an automorphism of Bor, we have f(Bg)= By and B(B;)=B;. Put

Aj, = {B]B is a Q-linear automorphism of B, and B(F(j,)’) = F(js)'}-

Let 8 be an element of 4;,. Then # can always be extended to an R-linear automorphism
of Br so that B(F(jo)) = F(jo)- Note that f commutes with §. Observe that the extension is
unique on B”, but not on B’. Though the extension is not unique, the holomorphic action
of # on H;, is well defined on account of Proposition 5 and (1.9.4).

The assertion (1.9.3) shows that the quotient group A;,/{1, 8t} is naturally considered
as a subgroup of 4; if B, is totally indefinite, and so is the group 4;, itself if B, is not
totally indefinite. In both cases, the group A% is considered as a normal subgroup of A4j,.
Now put

A, - { A5, if mg=2 and B, is totally indefinite,
Aj, otherwise.
By (1.9.1-4), we see easily that the identity element is the only element of 4, that acts
trivially on 3, unless Gy is compact.

Hereafter we assume that Gy is not compact.

1.10. Put Dr=D®qR, and identify Dg with D"® gR. The module D§ is thus a left
Dg- and right Br-module. For any j€¥, the algebra R[j] generated by jin Bg over R is
R-linearly isomorphic to the complex number field C by assigning J/ =1 to j. The involution
& on R[j] corresponds to the complex conjugation. In this way, éachj € J defines a complex
structure on Dj.

Let C be a subalgebra of B satisfying the conditions (1.5.1-3), and C-! the reciprocal
{or inverse) algebra of C. We can regard D™ (and so, Dg) as a left D® C—'-module by de-
fining (d®¢)-v=dvc for d€D, c€C-1 and v€D™ (or Dg).

Take j € Jz. Since every element of D® C-! commutes with j as R-linear transforma-
tions of Dg, j determines a representation W', of D® zC-* into M(mg?g, C) through the
complex structure on Dg which j defines as above. Actually W', is a representation of
D@ C(j), which contains D® xC-1. Let 1=, +...-+¢, be the decomposition of 1 of B
corresponding to the decomposition Br=DB,®..®B,. Since each Dg¢; (1<i<yg) is
stable under the actions of § and D®zC-1, j defines a complex structure on Dg¢;,
and gives a representation W® of D® C-! into M(mg?, C). It is easy to see that

=0+ + P,
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If we define a complex structure on Df:; by assigning V=1 to —jt;, the structure is the
complex conjugate of the structure defined by j first. For ¢ € £, let V' be the representation
of D®C-1 obtained by replacing W{® with ¥{®, the complex conjugate of ¥'®, if
g1, = —1u; and taking ¥{¥ unchanged if &, =¢;. Then we have

V=¥, (c€€&).

ProOPOSITION 6. Let C=C,®...®C, be a subalgebra of B satisfying the conditions
(1.5.1-3) with the simple components C,,, u=1, ..., t. For j€ s, let V', be the representation of
D® C-1 defined above. Then, for each u=1, ..., t, the restriction of the representation V', +fF—j
to D® g0, contains all the inequivalent absolutely irreducible representations of D® 2Ot
with the same multiplicity. Moreover, for j' € Iz, W', is equivalent fo W, if §' =xja) for some
x€GYC)r where GXC) is as in 1.6.

Proof. The last assertion follows from immediately the definition.
Let P=P,®...®P, and 1=e¢, +... +¢, be the decompositions of the center P of C and
1 respectively corresponding to the decomposition of C. Each P, (1<u<t) is a CM-field

containing K. Fix one u. Since e, commutes with every element of D as linear transforma-

tions of D™ and D is a divisi!;n algebra, the module W ,=D"e, is isomorphic to D™
for some integer n,. Moreover the R-module W,rp=W ,®qR is a vector space over
R[j]1=C, and gives a representation @, of D®,C}", since e, commutes with j. Let@, be
the field consisting of the elements of P, fixed by 6. Then @, is totally real, and P, is a to-
tally imaginary quadratic extension of @,. Put p=[@,: Q], and take p isomorphisms
X1» - Xp Of P, into € such that y;, ..., y, with their complex conjugates 7y, ..., 7, give all
the isomorphisms of P, into C. Then ,, ..., y, give all the isomorphisms of ¢, into C (actu-
ally into R). From the definition of ®, and the fact that @, is totally real, it follows that
0,| g, contains all y,|o,, ¥=1, ..., p, with the same multiplicity. Therefore (0, +©,,)| Pu
contains all y, and ¥,, »=1, ..., p, with the same multiplicity. Here ) 4 is the complex
conjugate of @ ,. Since D® ,C;;" is a central simple algebra over P, thisshows that ® , + 0, P
contains all the inequivalent absolutely irreducible representations of D® (C;' with
the same multiplicity. Identifying W g with Dge, and patching up the results foru =1, ....¢,

we get, the proposition.

1.11. For j € #, let ¥',, be the representation of D® g C(j,)~* defined in 1.10. Then there
is a representation ®,, of K into M(mgg, C) such that ¥, | is equivalent to ¢®,,. Note
that this ©,, is quite different from ©, used in the proof of Proposition 6 in 1.10. From
Proposition 6, it follows that © ,-u+_(§ » contains all the (inequivalent) absolutely

irreducible representations of K (i.e. all the isomorphisms of K into C) with the same
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multiplicity. Let (Kj,, ©;) be the reflex of (K, ©,). See §1 of Shimura [14] I for
the definition. The field K, is generated by all the elements of {tr (¥',,(a))|a €K} over @’
since tr (¥';,(a)) =¢ tr (0,,(a)) for @ € K. It is known that Kj, is equal to Q if @, is equivalent
to (T),o, the complex conjugate of ©,, and is a CM-field otherwise. (See 5.11-12 of Shi-
mura [12].) Put
&,(a) =det (B,(a')) ('€ K;Y).
Then it is also known that &, is a homomorphism of K;* to K* with the property
£(a') &, = Nrjuq(@)™ (a'€ K}.)

This formula can also be derived from 1.4 of [14] I knowing that K;, is a CM-field if 2/mgq.

Remark 1. If j€J(j,), then we see, on account of Proposition 6, that @, defined by j
in the same way is equivalent to ®,,. Therefore ®, determines the same reflex (Kj,, ©;,)
and the same homomorphism &,, as @,, does. Hence the field K;,, and the homomorphism
&,e of K;; to K* are determined for each J(jy¢), € £, corresponding to the decomposi-

tion F= Ueces FGoe).

Remark 2. For j,€ J, choose w,, ..., w, as in Corollary 1 of Proposition 2 in 1.4. Then
®y, ..., 0, determine g isomorphisms 7y, .., 7, of K into C so that w;|c~mgr; for
i=1, .., 9. The set {ry, ..., 7, 74 9, ..., 7,0} gives all the isomorphisms of K into C. Let
(r(A), s(A)), A=1, ..., ¢, be the pairs of integers determined in Corollary 1 of Proposition 2.
Then it can be shown that

O, ~ i (r(A)Ta+ s(A)r:d).

Especially K, is equal to Q if and only if (1) =s(1) =mg/2 for 1=1, ..., g. If this is the case,
then all @, £¢€ £, are equivalent, and all K, are equal to Q. Moreover, as we saw in 1.9,

there is an element of Gr which gives an isomorphism of W, onto Y, for every c€E.

1.12. Let 4 be as in 1.9, and « any element of 4, and take a Q-linear transformation
@ of D™ onto itself so that g(va)=@(v)a(x) for v€ D™ and 2€B. Then ¢ determines a Q-
linear automorphism ' of D such that g(dv)=o'(d)p(v) for v€ D™ and d€.D. Obviously
«’ induces the same automorphism of K as « does. Thus we have an isomorphism
o' @a of DR xC(jo)~* onto D® xCx(jy))! for j,€F since a(C(jy)) =C(a(f,)). We see easily
that Wy, © (&' ®a) is equivalent to W, as representations of D® xC(j,)~ . Therefore,
especially, O, 00~ ;. Take c¢€E so that a(jy) € F(j,£). Then O, 00~ 0, The fields
K;, and Kj, are generated over Q by all the elements of the sets {tr (0,(a))|a €K} and
{tr (9,,(a))|a €K} respectively. Since « maps K onto itself, the equivalence of ®,, and
0,00 implies that Kj, is equal to K.
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ProrosiTIoN 7. Let A be as in 1.9, and « any element of A. Take ¢€E so that
a(F(jo)) = FGoe), and let K;,., K, &, and &, be as in 1.11 for j, and jo& respectively. Then
Kj,=Kj,, and

Euela’) = (@) (o €K} =Ky7).

Proof. We have already seen that K;,=K,,. Put K'=Kj, Let V be a (K, K’')-module
of type (K, ©,,) and of type (K’, ©;,). Since « is an automorphism of K, we can define
another action of K on V by a-v=a(a)v for a€K and v€V where a(e)v is the original
action of the element «(a) of K on v€ V. Let us denote by V"’ the (K, K')-module V with this
new action of K. Obviously V' is of type (K, @,,0«). Let us fix a K-basis of V and represent
an element a' of K’ by a matrix ®(a’) with entries in X with the K-basis of V. Then ® is
equivalent to ©j,. Since the fixed K-basis of V isalso a K-basis of V’, we have a
representation @' of K’ on V' with this K-basis. Then V' is of type (K’, ®’). Moreover,
for @' €K’, we have ®'(a’)=(0"a;)) where D(a’)=(a;,) with a,,€EK. Now FV’ is of type
(K, 0O,,0a), and O, 0« is equivalent to ©,, as was seen. Therefore the uniqueness of the
(K, K’)-module of type (K, ©,), which is assured in 1.2 of [14] I, implies that V'is
of type (K’, ©;). This means that @' is equivalent to @,. Hence we have &,(a’)=
det (0, (a')) =det(D'(a’)) =a~1(det(D(a’))) = a~1(det(O; (")) =a1(&,e(@’)) for a’ €K’. The
proof is done.

2. Isolated elements of 7 and commutative isolating subalgebras of B

2.1. For j€3¥,let C(j) and J5(, be asin 1.5 and 1.6 respectively. We say that j is ssolated
if Fai = {je|e€ E}. The existence of an isolated element of ¥ will be seen in 2.4. It follows
from the corollary of Proposition 4 in 1.6 that 4 is isolated if and only if C(j) contains 0(7).
Hence we have

(2.1.1) An element § of F is isolated if and only if the commutor 0"(3') of C(5) in B coincides
with the center of C(j).

Let A be as in 1.9. Then the following assertion is easy to see.

(2.1.2) If j€F is isolated, then afj) is also isolated for each x€A.

Let C be a subalgebra of B satisfying the conditions (1.5.1-3). Then #3 is not empty
as was seen in Proposition 3 in 1.5. We say that a subalgebra C of B is an isolating subalgebra
of Bif C satsfies the conditions (1.5.1-3) and Jz={je|¢€ £} for some j in F. We also say
that C isolates §, and j s isolated by C if C is an isolating subalgebra of B, and j belongs to
F¢. Note that every isolating subalgebra of B isolates one and only one element of
F(qe) for each ¢ € £. Obviously an element j of ¥ is isolated if and only if C(4) is an isolating
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subalgebra of B. Moreover C(j) for an isolated element j of ¥ is a maximal one among
isolating subalgebras of B.

Let 4 be an isolated element of ¥, and P(j) the center of C(j). Then (2.1.1) shows that
the commutor P?’j) of P(j) in B is nothing but C(j). Hence P(j) is a commutative isolating
subalgebra of B on account of the corollary of Proposition 4, and is a minimal one among
isolating subalgebras of B. We see easily

(2.1.8) For any isolated element j of F, the center P(f) of C(j) is the smallest amonyg those
1solating subalgebras of B which tsolate j.

Let P be a commutative isolating subalgebra of B, and j an element of ¥ isolated by P.
Then P is a direct sum of CM-fields and contains P(j). Put C = P, the commutor of P in B.
Then C is contained in C(j) and is an isolating subalgebra of B. Since P contains the center
K of B, P is the center of C and the commutor of C in B.

2.2. PrRo?oSITION 8. Let O =C,®...®C, be a semi-simple subalgebra of B with simple
components Cy, u=1,..,t, and P=P;®...0OP, the center of C where P, 1s the center of ),
for p=1, ..., t. Suppose that the commutor of C in B coincides with P, and let C;' be the
reciprocal (or inverse) algebra of C, and q:=[C WP, 4,>0 for u=1, ..., t. Then for each u,
D®xClis P u-linearly isomorphic to M(qq,, P,), the full mairix algebra of size qq, over P,

and

t
2 90,P,: Q1 = [D":Q] = 2gmg?.

Proof. Let 1=e¢,+...+¢, with ¢,€P,, u=1, ..., . Then the submodule D", of D™ is

a left D-module and is isomorphic to D™ for some integer m , since D is a division algebra.

12
Therefore e, Be, is isomorphic to M(m,, D). From the assumption, it follows that the

commutor of C L in e, Be P coincides with Pﬂ. Hence we have
[Cy: K1[P,: K] =[e, Be,: K] =m}[D: K].

Now define the action of D®C;' on D™, by (d®c)-v=dvc for v€D",, d€D and
¢€C;". Then D® (" acts P,-linearly on D™e,. Obviously, the action is faithful. There-
fore D®xC,' is P linearly isomorphic to a subalgebra of M(n,, P,) where n, is the
dimension of the vector space D™, over P,. We have n,=m,[D: K]/[P,: K]. On the
other hand, [D®C.": P,]=[D: K][C,: K]/[P,: K]=m}[D: KP/[P,: K]*=n. This shows
that D® xC;' is isomorphic to M(n,, P,) itself, and that n,=gqq,. Since D" =D"¢;®...
@ D™e,, the last formula of the proposition is clear. The proof is done.

23. Let P=P,®...@P, be a commutative isolating subalgebra of B where P, is a
CMfield for u=1, ..., t, and C the commutor of P in B. Then C'is also anisolating subalgebra
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of B, and C=0,®...©C, with central simple algebras C, over P,, u=1,....,¢. Put [C: P,]=
9 9, > 0for p=1, ..., t. This C satisfies the assumption of Proposition 8. Let j be an element
of J isolated by P. Then C isolates j, i.e. j € Jz, since P and C are both contained in C(j).
Let ¥'; be the representation of D@ C-! defined by § in 1.10. On account of Proposition 8,
we can find a representation ®; , of P, for each u, 1 <pu<t, such that

¥,le 0~ 99,9, u - (zero representation).

It follows from the last equality of Proposition 8, and from Proposition 6 in 1.10 that
(2.3.1) Py, @;.,) is a CM-type for each p—=1, ..., ¢

See 1.8 of [14] T for the definition of a CM-type. Let (P,, ®;,,) be the reflex of (P,, ®; ,).
Put R,(P)=P; ... P;, the composite field of P,, u=1, ..., t. Define a mapping 7; of R;(P)
to P by

n,(a@’) = Z det (@, , NRj(P)/Pp(a’ Neu

for @’ € R/(P) where 1 =¢, +... +¢, with e, €P,, u=1, ..., . It is clear that E,(P} is generated
over Q by the elements of {tr (¥',(a))|a €P}. Let £ be the element of & such that j € J(jys).
Then it is easy to see that the field K, defined in 1.11 is contained in R,(P), and that

£
®io€ ~ Z q,“(l))-ﬂl K-
p=1

ProrosiTIoN 9. Let P be a commuiative isolating subalgebra of B, and j the element of
Jioe) isolated by P for ¢ € E. Let R)(P) and n; be as above, and K; . and &,,, as in 1.11. Then
R(P) contains K;,., and, for o' € R(P),

70"y ,(a’)? = Nrenela');
Ninfa')) =&, N rxpuxse{a’)).

Proof. It is enough to show the last two formulae. Since the reflex of a CM-type is
again a CM-type (cf. 5.13 of [12]), the first formula is obvious. Let us show the last formula.
Put P'=RE,(P), and let us use the notation introduced above. For each u, let V, bea
(P, Pp)-module of type (P,, ®; ,). Then V,p,=V,®z,P isa (P, P')-module of type
(P, @;,,). Put W,=V,p-x...xVyup (g, times). Then W, isa(P,, P')-module of type
(Puq,9;,,). Put W=W, x..x W, and define the action of P=P;®...®P, on W by
¢, W,=0if v 3u. This action of an element a =ae, +... +ae, of K on W makes W a (K, P')-
module of type (K, @,,) because of the formula followed by the proposition. Let Z
be a (K, K;,)-module of type (K, ©,,). Then Z,. =Z®@xj,. P’ is a (K, P’)-module of type
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(K, ©,,), and hence, is isomorphic to W as (K, P’)-modules. (See 1.2 of [14] I.) Take a
representation @ of P’ so that Z,. is of type (P’,®’). Since g;=[C,: P,], the formula
follows easily from computing det (®’) in two different ways using W and Z,..

Remark. From the first formula of the proposition and 1.7 of [14] I, it follows that
7,18 & Q-rational homomorphism of R,(P)%, considered as a {-rational algebraic group, to G.
Since R, (P) is a CM-field, we see that 7,(R{P)<)< Gq..

ProrosiTION 10. Let P be a commutative isolating subalgebra of B, and § an element of
F isolated by P. Let A be as in 1.9. Then, for any €A, a(P) is a commulative isolating
subalgebra of B, which isolates «(f). Moreover R, (a(P)) coincides with Ry(P), and

Na(@') = &l (@) (a' € R, (P)X).

The proof is omitted since the proposition can be shown in a straightforward way for
each simple component of P with a similar argument to that used in the proof of Proposition
7 in 1.12.

2.4. ProPoSITION 11. Let L be any given finite algebraic extension of K, for any fixed
£€ E. Then there exists a commutative isolating subalgebra P of B such that R(P) is linearly
disjoint with L over K, where j is the element of J(jye) tsolated by P. Moreover P can be taken
to be a CM-field containing K with [P : K]=mq.

Proof. As we saw in Proposition 1 in 1.2, there exists a positive involution ¢ of B
which coincides with ¢ on K. Since g is of the second kind, there is an element % in B such
that h®=h and #% =ha?h-1 for all € B. Let 7y, ..., T, be g isomorphisms of K into € such
that 7y, ..., 7,, 7,0, ..., 7,0 are all the isomorphisms of K into C. We can choose g absolutely
irreducible representations y;, ..., ¥, of B into M(mg, C) so that, for A=1, ..., g,

1a@)=7aa)l,, (a€K);

2@ =":)  (x€B).
For the latter condition, see Lemma 1 of Shimura [9]. Let { be an element of K such that
{®=—{, and take n=(mgq)? elements e, ..., e, of B so that e,‘i=eﬂ foru=1,..,nande, .., €,
span B over K. Such n elements exist since B=B, @®{B, where B, ={z€B|a?=x} is a
vector space of dimension n over F. Note that ’y;(e,)=ya(e,) forA=1, .., gand =1, ..., n.
Let a,, ..., a, be a basis of F over . Take gn independent variables z}, (=1, ..., n; =1,
...; g) and put

n

Y= i Tala@,) > 2 Xalen) (A=1,...,9).
y=1 p=1
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Take another independent variable z, and put, for A=1, ..., g,
P(R) =yalz; ) = det (21,0 — Y 1 12(R)'Y 3).

If z and 2, move in Q, then, for each A, y,(z; ;) gives a reduced norm of an element of
22 B) over 7,(K), and belongs to 7;(F). This shows that the polynomial y;(z; ;) has the
coefficients in 7,(F). In a similar way, we see that w(z) =y,(2) ... p,(2) belongs to Q[z, z,].
Using these y;, 1=1, ..., g, we can apply the argument of 4.10-15 and 2.1-4 of [10] I and
IIT respectively with slight modification to our case. Although our y;(h), A=1, ..., g, are
not symmetric but are hermitian, we can easily derive, from 4.11 of [10] I, a similar result
for a hermitian matrix, and then the rest of the argument works almost as it is. Hence
we conclude that there exist an algebraic number 3, and an element E of B of the form E =
dhd® with d€ B such that

(i) K(y,) is a CM-field containing K with [K(y,): K]=mg;

(ii) Assigning F to y;, we have an isomorphism of K(y,) onto the subalgebra K[F]
of B generated by E over K;

(iii) For any such CM-type (K(y,), @) as O | g~ D,,, thefield K(y,)’ generated by all the
elements of {tr (®(x))|x€K(y,)} over Q is linearly disjoint with the given field L over Kj,.
Put E,=d Ed=hd% and P=K[E,], the subalgebra of B generated by K, over K. Then
since ES=hE3h-1= E, and P is a O M-field, 6 must be a positive involution on P. Moreover
the commutor P of P in B is P itself since [P: K]=mgq. Therefore J5=3p={j;c]|c€E}
for some j, € J. Take j€ 73N F(jye), Then (iii) implies that R,(P) is linearly disjoint with L
over K. The proposition is proved.

2.5. As we saw at the beginning of 1.4 and in Proposition 2 in 1.4, thereis a one-to-one
correspondence between F(j,e) and H,,. for each ¢€ E. We fixed such a correspondence
at the beginning of 1.7, and defined the action of Gr+ on H,,. in 1.9.

Let z and § be the corresponding elements of ,,, and of J(jy¢) respectively. Then
we have

Ga+ NC()) = {y €l |y(z) =2}
On account of 1.6 of Shimura [13], it is clear that the elements of Gq, N C(j) span C(j)

over . We see easily, moreover, that j is an isolated element of J(j,¢) if and only if
{2} = {2’ € Wyc|y(#') =2 for every yE€Gq, NCY)}.

It follows from Proposition 2 in 1.4 and 1.9 that Ggr, acts on 7, transitively. Since
Gy, is dense in Ggr_, the G, -orbit of an arbitrary point on ¥, is dense in H,,.. Now let P
be any given commutative isolating subalgebra of B, j the element of J(j,¢) isolated by P,

and z the isolated fixed point on ,,. corresponding to j. Then since Gq, is reduced to the

18 — 712905 Acta mathematica 126, Imprime 16 15 Avril 1971
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subgroup A% =Gq,/K* of A as groups of transformations on #,,, we conclude, on account
of Proposition 10, that there are densely many isolated fixed points a(z), ®€A4%, on U,
which give the same field R,,(a(P)}=R,(P). We use this fact with Proposition 11 later
in 4.3-5 and in 5.10-12.

3. The adelization of G and the group ¥,

Hereafter, we develop our theory on the fixed hermitian symmetric space ¥;,. The

theory on another ., for ¢€ £ is obtained simply by replacing j, by j,e.

3.1. First we show some lemmas on the idele group of an algebraic number field. Let P

be an algebraic number field of finite degree.

LeMMa L. Let E_ be the multiplicative group of all the totally positive units in P, E ¢
the projection of E_ to the non-archimedian part Pt of PX, and E—T; the closure of E_g1n P™.
Then the closure P* of P*Pg  in PX is equal to E_+1P"P:° 4+ Moreover, for every positive in-

teger n L o
E=E B¢ P*=P*P*"; P* N P*"=P*".

Here E_ ¢, P*", and P*" are the groups of all the n-th powers of the elements of Ej, P*, and
P respectively.

Proof. On account of 2.2 of Shimura [14] 1I, it is sufficient to show P P**=P**,
Obviously P*" is contained in the other. Let a be an element of P* N P*". Take b€P* so
that a=b" For any open subgroup U of Py, there is an element ¢ of P* such that bc—?
belongs to UP%,. Then ac—"=(bc1)" belongs to UPg,,. Therefore, by Chevalley [4], we
see that there is a totally positive element d in P* such that ac—" =d" if we take a sufficiently

small open compact subgroup U of P*. Hence a=(cd)"€P*"

Remark. Let the notation and the assumption be as in the above proof. If a is totally
positive, then we can take a totally positive element as cd. In fact, if » is odd, then cd must
be totally positive. If » is even, then we can take a totally positive b. Then it follows from

the choice of ¢ that ¢ is totally positive, and so is cd.

LevMA 2. Let a be an element of P*. If a™=1 for some non-zero integer n, then a belongs
to P*Pg,,.

Proof. Let u be the number of the roots of 1 in P. Since P* =P*P** for any positive
integer », there are an element a, of P* and an element b, of P* sch that a=a,b}". Then
ay b} =1, and so, a} belongs to P N P*" =P*"" Takec,EP" so that a; =c™*, and put

¢,=a,c;#*. Then {, is an n-th root of 1in P. Moreover £, ,={b,¢c,b; 7 ¢, "} €P* N P* =
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Pk, Let £ €P* be such that {*={7"¢,. Obviously { is a root of 1 in P. Hence we have {#=1
by the choice of u. This means {,=; and {{'a €P*** for any positive integer ». Since u
is even, {7'a is totally positive. Let p be any non-archimedian place of P, and a, the p-
component of a. Then ({;'ay)"=1. Taking a multiple of the number of the roots of 1 in
P, for v, we see eagily that ay={,. This shows that a € P* P .

Lrmma 3. For any positive integer n and any open subgroup U of Py, there exists an
open subgroup V of Pt such that

P*nNVPs, c{a"|a€P* nUPL.}.

Proof. We may assume that U is compact. By Chevalley [4], we can find an open
compact subgroup V of Pf such that PN VP, <{a"|a€P* N UPL,}. Then (P*P )N
VP, =(P*NVP, )Py, is contained in the set {a"|a€P P, NUPL,}. Since
both VP, and UPZ,, are open and closed, we get the lemma by taking the closures of
PP NVPy, and {a"|a€P*P; 0 UPL,}.

LEMMA 4. Let Q be a finite algebraic extension of P. Then
Py N Q% =P*(P% N Q).

Proof. Obviously P N@Q* contains the other, Let a be any element of PXNQ*, and
n=[@: P]. Then a"=Ny(a) is contained in both P*=P*P** and Q”*". Puta”=>bc" with
bEP* and c€EP”. Then b=(ac)"€EPXNQ*"=P* N Q*". Take d€Q™ so that b=d", and put
e=ac~'d~1. Then ¢"=1 and e€Q”. Therefore e belongs to @*Qx .. Hence we have de=
ac€Q Qo NPA=P*(P5NQ%,), and so, a=cde€P*(Py, N Q). The proof is done.

3.2. Let K;, and &, be as in 1.11. Define a homomorphism ¢ of K;* to K* x F* by,
for o’ €K,
(3.2.1) pla’) = (£:(@’), Nrjuq(a’))-
Then from 1.7 of [14] I follows that ¢ extends to a continuous homomorphism of K;§ to

K} x F§.From the class field theory, it follows that the quotientgroup (K i x F}/(K* x F*)
is a compact group. Put

W, = p(Kja) (K* x F?)|(K* x F*).

Since ¢~1(K” x F*) is a closed subgroup of K;* containing K;7, it defines an abelian
extension of K;. Let R, be the subfield of K/ 4. Then ¢ induces a continuous homo-
morphism ¢ of Gal (8,/K;,) onto W,, such that, for ¢’ €K,

o(la’, K;,])) = p(a’) modulo (K* x F?*).
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ProrosiTION 12. Let the notation be as above. The homomorphism ¢ is a (topological)
isomorphism of Gal (&,,/K;,) onto W,,. The field &, is an abelian extension of K, and con-

tains Qap.

Proof. 1t is obvious that @ is continuous, one-to-one and surjective. Let us show that
it is open. Let U be an open subgroup of Gal (8,,/K;,). Then it is compact and of finite
index. Therefore p(U) is compact and of finite index in UY,,. Hence ¢(U) must be open.
Now let us show that &, contains Qap. Let o’ be any element of K;Y such that g(a’)
is in K* x F*. Then, especially, Nk;j o(a’) belongs to Q* =QX N F*. (See Lemma4.) There-
fore [a’, K;,]| an =[N &j,0(a’), Q] is the identity on Qap. The proof is completed.

3.3. Let G be the algebraic group defined in 1.3, and G4 the adelization of @. We

define a continuous homomorphism yp of G4 to K3 x F by
33.1) p(x) = (N(z), v(2)) (€E€GA).

The group Ga, =G, is a closed normal subgroup of G. Let G* (resp. G7) denote
the closure of GGy, (resp. Gq.Gy,) in Ga. Then G% is a closed subgroup of Ga,.

ProProSITION 13. Let the notation be as above. Then
a* =K*GQG}& =1/)_1(K# x F*),
ot =K*GQ+ Gk=1p"1(K* XFEYN Gy =G NGy, .

Proof. The strong approximation theorem for @ of Kneser [56] shows that G is con-
tained in G, UG, for any open subgroup U of Gr. Therefore G iscontined in G%. Then
the inclusions,

K*GoGy =G* <y (K* x F*),

and K*Gg.Gy < Gf cy Y (K* x F*) N Gy,

are clear. Since the inclusion, K*Gq G Dyp-1(K* x F*), implies that (K*GgG3)NGa, =
K*Go Gy>ypY(K* x F*)N Ga., it is enough to show K*GqGy>yp-1(K* x F*). Now let z
be an element of G4 such that y(xr)€EK* x F*, and put y(x)=(N(z), »(x)) = (a, b). Then
aa’ =b™. Since K* = K*K*™ (see Lemma 1), we can find ¢€ K* and d€ K* so that a —cd™.
Then cc? =aad(d-1d—9)™ belongs to F* N F*™ = F*™? Take e € ¥ so that cc? =¢™. Put { =
b~ledd?. Then € F* and (™ =1. Hence (€ F*F,, (see Lemma 2). Since F istotally real, we
have { =+ 1. Replacing e with (e, we have y(x) =(cd™, edd?®) with cEK*,d€K* and e€ F*.
Since (c, e) =y(xd~!), it follows from the Hasse principle for G that (c, €) =y(y) with some
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y €Gq. (See M. Kneser, Hasse principle for H! of simply connected groups, [1], pp. 159-163.)
Put y=9-'d-12. Then we have y€GY} . This proves the proposition.

ProrosiTioN 14. K*G, is the closure of K*Q,, in Ga, and contained in G%. More-
over, Go, N K*G, =K".
This is obvious.

3.4. Let ¢ be the continuous homomorphism of G4 to the quotient group (K x F3)/
(K* x F”) obtained from y and the natural projection of K} x F3 onto the quotient group.

Put i
G, =y 1 (W,,),

Gier =Gio N Gar =y (W) N Gas
Then (G, (resp. Gj,,) is a closed normal subgroup of G4 (resp. Ga,).

ProrosiTioN 15. Let the notation be as above. Then the resiriction of § to G, gives
an open continuous homomorphism of G, onto W, and P induces a (topological) isomorphism
of the quotient group G, /0" =G, [G% onto W,,.

Proof. Take any commutative isolating subalgebra P of B, and let j be the element of
7(jo) isolated by P, and R,(P) and %, as in 2.3. On account of the remark following the proof
of Proposition 9 in 2.3, #; extends to a continuous homomorphism of B/(P); to Ga,.
Moreover we see by Proposition 9 that the image of R,(P)j is contained in G,,,, and
‘have the formula,

(3.4.1) Py(a)) =@((N,(@), K3,]) (@' €Ry(P)})

where N;=Ngipyx’',. From the class field theory and Proposition 12 in 3.2, it follows
that the mapping ¢([N,(-), K},]) of R,(P); to W, is open. Since %, is continuous, the
formula (3.4.1) shows easily that ¢ is an open mapping on .. As for the surjectivity of
%] G, take another commutative isolating subalgebra @ of B so that R,(Q) is linearly
disjoint with R,(P) over K;, where §' is the element of }(j,) isolated by @. Then by the
class field theory and the formulae (3.4.1) for j and §', we can easily see that (G, ) ="10,.
The rest of the proposition follows immediately from Proposition 13. Q.ed.
Let us define a homomorphism o of §;, onto Gal (§,,/K;,) by

(3.4.2) o(@) = (g~top(x))? (¢€G,,).

Since Gal (8),/K],) is abelian, o is well defined. Propositions 12 and 15 imply at once
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ProrosIiTioN 15'. Let the notation be as above. Then o is an open continuous homo-
morphism of G,,, onto Gal (R,,/Kj},), and induces a (topological) isomorphism of the quotient
group G, ,|G% onto Gal (R,,/Kj,).

3.5. Let A be as in 1.9, and « any element of 4. Then « extends to an automorphism
of the adelization By =B®qQa of B. Obviously, « induces an automorphism of G, and
maps G4, onto itself. We see easily that « commutes with y, i.e. a(p(z)) =y(x(z)) for xEGQ,,
and maps G and K*@G,,, onto themselves. The algebra Br=B® qR over R is canonically
identified with the archimedian (or infinite) part B, of Ba. Through this identification,
the action of & on B, =Bg and, especially, on ¢, =G coincides with that of « on them
defined in 1.9.

Now let A4j, be asin 1.9, and suppose that « is in 4;}. Then Proposition 7 in 1.12 shows
that o acts trivially on (K% ). Therefore « maps G, onto itself and induces an auto-
morphism of G, ./[K*G,, . We see easily that o(a(x)) =o(x) for any z€§Gj,.

Suppose that mg =2 and that B, is totally indefinite. The notation being as in 1.2 and
1.9, let us define the action of 4, on G,,./K*Gy,. Put H=y Yp(K;54)). Then as is men-
tioned at the beginning of 3.9, we have ,,,=HGq, K*Gy,. On account of (1.2.5), we
have G, /K*Gy, =HGyq, [(HGoq+)N (K*Gy,). Therefore if we show that H is contained
in Goa, then we have the well defined action of 4, through this natural isomorphism. Now,
in the present case, we have K;, =@ as was mentioned in Remark 2 in 1.11, and easily see
that @ is the diagonal embedding of Q} into K} x Fj. On the other hand, we see easily
that G4 =K} Gya. (The argument of the proof of (1.2.5) is applicable to this case with slight
modification.) Let #=ay be an element of H with a €K} and y€Gpa. Take bE€Q) so that
p(x) =p(b). Then we have N(z)=a?N(y)=ayy'=b and 2z® =aa’yy® =aa’yy’ =b. Therefore
a=a% and it belongs to F3. This means that x=ay€Gys.

Thus, in any case, the action of 4,, on G, [K*G,, is well defined.

Put %) =G,,,/K*Gy,. Then on account of Proposition 14, the subgroup A% =
Gq./K* of A, is canonically isomorphic to the subgroup of 4, which is the image of the
subgroup Gq, of G, under the natural projection of G, onto?j,. Let y° denote the iso-
morphism. We have
(3.5.1) { 22(Bef™) = B(A0(@)) (2 € A%; BE Ay,);

Py =a@Xax)  (x€A3; yeA).

ProrosSITION 16. There exist a topological group N,, containing Aj,, and an injective
homomorphism y of 4,, into U,, satisfying the following conditions.

(i) A}, is a closed normal subgroup of U,,.

(i) x=x° on AY.
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(iii) x(Ag') =x(A]o) n m)?o'
(iV) %[fo =9’[?ox(Ajo)‘
(v) y(a)r=olz)x(ec) for x€YU,, and a €A,

Moreover W, and y are uniquely determined by these conditions up to isomorphisms.
Proof. We can show the proposition by modifying 4.6 of [14] IT as follows. Let 4, =

U.er4S « be the coset decomposition of 4, with an arbitrarily fixed set of representations
R. Note that R is afinite set. If A% af=A4%y with «, f and y in R, then «f =, y with
an element (.5, in 49. Let U, =AU}, x R, and define a group structure on ¥, by

(@, ) (g, B) = (@(y) 2L asy), ¥)
for «, B, y€R and z, y€YAJ, and define y: 4, >, by

x(ex) = (1%e), @)
for e€ A% and «€ R. If we topologize %,, by defining that U, x {«} is open, and furnishing

A7, x {o} with the topology of S, for each € R, we can show the proposition in a stright-
forward way using (3.5.1).

3.6. We fix a pair (,,, ) which satisfies all the conditions of Proposition 16, and
identify A, with x(4,). The closure A% of A% in 9, coincides with Gf/K*G,,. As is
easily seen, moreover, 4, =A% A, and A% =A4%N A, where A, denotes the closure of

A,, in Y,,. Henee we have a sequence of isomorphie groups,
U,/ 4;, > )43 = G, 61 = Gal (8,/K;,).

Here the last isomorphism is that which is induced by ¢. Combining these isomorphisms
with the natural projection of ;, onto %,,/4,,, we get an open, continuous and surjective
homomorphism of ¥, onto Gal (f,,/K,) which coincides with the homomorphism induced
by o on U}, =G,,,/[K*G,,,. We denote this homomorphism again by ¢ since there will be
no fear of ambiguity. Summing up, we get

ProPOSITION 17. Theabove defined homomorphism o of U, to Gal (8,,/K},) is open, conti-
nuous and surjective, and induces a (topological) isomorphism of 9[,,/44—,, onto Gal (R,,/K},).

3.7. Let us denote by 3,, the family of all the open compact subgroups of %,,. The
following assertions are clear.

(3.7.1) For W, X€3,,, WnX again belongs to §,,.

(3.7.2) For u€¥,,, and WEG,,, uWu-! belongs to 5,,.

(8.7.3) Any two members of 8,, are commensurable.

(3.7.4) For Weg,,, WnA, belongs to B,
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It follows from Proposition 17 that o( W) is an open compact subgroup of Gal (&;,/K;,)
for each We€3Z,. Let ky denote the finite abelian extension of K, contained in &,
corresponding to the subgroup o(W) of Gal (R,,/K},) for each WE3,,.

ProrosiTioN 18. For any WEJ,, and any €YU,
xWAJ'n = Wfoo = W‘A‘]ox = zAio W = AloxW = Aio Wx: {y es‘)’[fnlo'(y) = G(x) on kW}

Proof. Let WE€3,, Since 4,, is normal, we have Wjjn=A_,o W. Moreover since W is
open, we have WA, — WA, =A; W. Obviously

WA, = {y€W,,|o(y) is the identity on ky}.

For €%, put X =a-'Wz. Then ky—ky, and hence, X4, =XA, =WA;, =WA,,. There-
fore we have *WA, =WzA4,. The rest can be shown in a similar way.

For We3g,, put I'y=4,n W. It follows from Proposition 5 in 1.8 and the definition
of 4, in 1.9 that every element of 4,, and so, especially, every element of I'y acts on
;, holomorphically. For each W€ 3,,, I'y is, in fact, a properly discontinuous group of
transformations on . To see this, let us introduce certain subfamilies of 3,,.

3.8. Put Gr=@,, NGy where Gy is the finite part of Ga. Then G, . = GtG,. Let =
denote the natural projection of G,,, onto A, =G,,,/K*Gy,, and 3}, denote the family
of all the subgroups of (G,,, of the form 8=StG,,, where S; is an open compact subgroup
of G Then the family n(3)) = {n(S)|S€8}.} is a subfamily of 8. We see that

(3.8.1) For W and X in n(8}), WN X is again in a(37,).
(3.8.2) For u€¥, and Wen(3l,), uWu" belongs to n(37,).
(3.8.3) For any W in 3, there is a member X of n(33,) such that X is a normal subgroup of W.

The assertion (3.8.1) is obvious, and (3.8.2) follows immediately from (iv) and (v) of
Proposition 16 in 3.5. Let W be any member of 3., and take ¥ in 7(37,) such that W con-
tains Y. Let W= U ,u, Y be the coset decomposition of W. The set of representatives {u,}
is a finite set. Put X =) ,u, Yu,'. Then this X satisfies (3.8.3) for W.

For S€37,, put I's=G¢NS. Then I'¢ is a subgroup of Gq,. Since S is open in §;,,
and contains G,,, K*S is an open neighbourhood of K*Kg, in §,,,. Therefore K*8
contains the closure K* of K*KJ,, in G4 since G, is closed in G5 and contains K*. Hence

we have

(3.8.4) If S€B, then K*S=K*S, Gon K*S=K*T% and m(l'%) =T).
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3.9. Now put Gj,=vY@(K;4))Gwp., and Gt =G} N Gr. Then G}, = Gy Gy, Obviously
Gj, is a normal subgroup of G,,.. The restriction of § to G}, is an open, continuous and
surjective homomorphism of G}, to W, since the proof of Proposition 15 in 3.4 also works
for Gj, as it is. Observe, for instance, that 7,(R,(P)}) is actually contained in Gj, where
E(P) and 7); are as in the proof Proposition 15. Hence it follows from Proposition 13 in
3.3 that G,,, =K*Gq.G;,

ProrosiTIoN 19. Let S be an arbitrary member of 3, and put S’'=80 Gj,. Then
K78" is an open subgroup of G, ., and n(K*8') is compact. Moreover G N K*8'=K*(GqN S’).

Proof. Let U be an open compact subgroup of K such that UK,< K N8, and take
an open compact subgroup V of Ky so that

K*nVKL<{a™|a€ K* N UKL)}.

Lemma 3 in 3.1 assures the existence of such V. Then on account of Proposition 12 in 3.2,
we can find an open subgroup V’ of K;y so that ¢(V’) is contained in VK x F,, and
(V') (K* x F?*) is open in the subgroup ¢(K;4)(K* x F*) of K x F}. Put

T =8Ny (V') (E* x F*) 0 (VK% x Fj.)).

Then it follows from Proposition 15 in 3.4 that 7' is an open subgroup of G,,,. Let us show
that T'< K*8'. Let « be an element of 7', and take »€ V' and (y, z) EK* x F* so that y(x) =
(@) (y, 2). Put p(x)=(a, b) and ¢(v)=(c¢, d). Theny=ac1€K*N VK, Take w€K*N UK
so that y =" Note that aa® =b™ and cc® =d™. We see that (z-lww?)™ =1 and z-lww?’ €
F*F 3, since z-lwwl€ F*, (See Lemma 2in 3.1.) Therefore z~lww? = 1 since it is totally positive
and F is totally real. This means the w(w—ix) =@(v). Consequently, wz€(j,. On the
other hand, w€ UK, <8, and so, w1z €S. Hence x =w(w1x) belongs to K*8'. This proves
that K*§’ is an open subgroup of G, ,. Moreover 7(K*S’) being open and contained in a
compact group z(8S), it must be compact. Now let us show that Gg N K*8' =K*(Gq N S’).
Obviously the latter is contained in the former. Let x be an element of GgN K*8'. Then
x€Gq,. Take y€K” so that s=y~'2€S’". Then since s€ §j,, we have ss?€(Qx Fx,)n F* =
(QAN F*)F,,. From Lemma 1 and 4 in 3.1 followsthat Q3 N F* =Q* =Q*Q . Put ss’ =ab
with a €Q and b€ F; .. Let c€ F}, . such that ¢®=b. Then a=(c-1s)(c~1s)¢- It follows from
Landherr [6] that there is an element y €Gq, such that a=yy?. (Also see Lemma 1 of
M. Kneser [1], p. 160.) Then z=yp—1c-1s€ K*Gq, and 22! =1. Let E (F) and E,(K) be the
groups of all the totally positive units of F and K respectively, and £, (F);and E_ (K); their
projections to the non-archimedian parts of F; and K, respectively. Since F is totally

real and K is a totally imaginary quadratic extension of F, there is a positive integer »
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such that B (K){ < E,(F). Taking the closures of these sets, we have K (K){ < E (F)r.
Then it follows from Lemma 1 that K* is equal to E (F)K* K. Therefore K*Gq, =

E (FuKyGq:. Take d€EE (Fx, e€Ky, and fE€Gq, so that z=def. Then (def)(def)® =
d%edpp’ =228 =1, and so, d2€EF*2N F*F} =(F*2nN F*)F; =F**F; . Using Lemma 2,
we see easily that z€ K5 Gq,. Therefore s =cyz€K 5 Gq,. Put s=fawith f€ K and x€Gq..
Obviously x€8’. Now let us go back to z=ys. We have yf=za1€EK*NGg, =K. (See
Proposition 14 in 3.3.) This means that z=(yf)a € K*(GgN §'). The proof is completed.

CoROLLARY 1. K*Gg N G}, < Ge. K%; K* N Ge.G),=K*K.

Proof. The first inclusion has been shown in the above proof since the proof works

for any s=yx in Gj, with y € K* and x € Gq. The second equality follows easily from the first
one.

COROLLARY 2. Let S€ 8% and S*= (S 0 K*) (S N Gj,). Then S'€ 3}, Moreover, for any
xe GQ‘*’g}of

6o, (S N GL) = Go. (8 N GL) = Gq. (8 N Gh)z==(S N GL)Ga: = (8 N GL)2Go.
=(8 N G} )Gz ={y€ Gq. G}, | o(n(y)) = o(w(x)) o0 knesry}-

Proof. The last set contains all the others. Let y €Gq, Gj, such that o(n(y)) =o(n(x))
on kysy. Then it follows easily from Proposition 18 in 8.7 that there are s EK*, u€8N G,
and «€Qq, such that y =zaau. (Also see (iii) of Proposition 16 in 3.5). Thena € K* N Gq, Gj,
=K*Kj. Take b€EK* and c€K}, so that a=bec, and put f=bx and v=uc. Then

y=2fv€xGq, (SN Gj,). The rest can be easily seen in a similar way.

3.10. For S€3), put 81=(SN K*)(Sn G}}), and 8},={S*|S€3},}. Then Proposition
19 shows that 3 is a subfamily of 37,. Therefore 7(3},) = {#(S!)| S*€ 8},} is a subfamily
of 3,,. We see that

(3.10.1) For z€(,,, and S€J), we have xS'z~1=(xSx~1)1. Especially, S* is a normal
subgrowp of S for every S€B3;

(3.10.2) For u€N,, and S€ZY, un(S)u-1 belongs to n(3},).

The assertion (3.10.1) is clear, and (3.10.2) follows from Proposition 7 in 1.12, (v) of
Proposition 16 in 3.5 and the definition of §j, in 3.9.

ProposIiTION 20. For any sufficiently small S€3),
T8 =G N[(S N K*)(SNnGi)]<=K*(8NGy).

Proof. On account of Proposition 19, it is enough to show that GqN (SN Gj,)< Gy for



MODELS OF CERTAIN AUTOMORPHIC FUNCTION FIELDS 281

sufficiently small S. Let U be an open subgroup of Ky such that UK}, does not contain
any roots of 1 in K except 1 itself. Then N-}(UK,) is an open subgroup of G4. Let S be a
member of 3} contained in N-Y(UK}), and y any element of Gg N (SN G},). Since the non-
archimedian part of § is compact, we see that »(y)=yy? is a unit of F contained in Q* =
F* nQj Fg . Since »(y) is totally positive, we have ¥(y) =yy®=1. On the other hand, N(y)
is a unit of K, and N(y)N(y)® =v(y)™ =1. Therefore N(y) must be a root of 1 in K since K
is a CM-field. From the choice of U and 8§, it follows that N(y)=1. Q.e.d.

Remark. Put Gg={y € B|yy®=1}. Then G§ defines an algebraic subgroup of G contain-
ing G*. In the above proof, we have shown that Gq N (SN G},) = G§ for every S€ 3j,. More-
over if we take any sufficiently small S described in the above proof, then we see that SN Gg
itself is contained in G§. Since G§ is contained in §j,, we showed actually

(3.10.3) For any sufficiently small 8,

SN GE=8n 0T (M%) =Tusn =n(8 N GF).

Moreover since the subgroup N-Y(UKy) of G4 defined in the above proof is a normal
subgroup of Ga, we can assume that, if § in 3], is sufficiently small, then (3.10.3) is true
for 8z~ for every z€§,,,.

CoroLLARY. For any WEZ,, Ty=A4,; N W is a properly discontinuous group of trans-
formations on W, and Ty \H,, can be embedded in a normal projective variety as a Zarisky
open subset.

Proof. Take S€3}, so that Proposition 20 holds. Then 7(8") is a member of 3,,, and
sy =n(l$) =n(l'$) =7(SN Gy). This means that s, coincides with the arithmetic
subgroup SN G} of (! as transformation groups on H,,. Since every member W of 3, is com-
mensurable with 7(8), the corollary follows from Baily and Borel [3].

4. The main theorem and reduction of the proof

4.1. In the previous section, we defined the following things related with the hermitian
symmetric space },, and the corresponding 7(j,) for a fixed element j,€ ¥: An (infinite)
abelian extension &, of Kj, in 3.2 (also see 1.11); a topological group %, in 3.5; an open,
continuous and surjective homomorphism ¢ of ,, to Gal (R,,/K;,), whose kernel is the
closure of the subgroup 4, of %, in 3.6; finite abelian extensions ky, of K;, contained in
R,, and properly discontinuous groups I'y, of transformations on #,,, both parametrized
by the members W of the family 3,, of all the open compact subgroups of U, in 3.7.

For a commutative isolating subalgebra P, let j be the element of J(j,) isolated by P.
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(See 2.1.) We defined a finite algebraic extension R;(P) of Kj, and a continuous homo-
morphism 7; of By(P)5 to G,,. (See 2.3 and 3.4.) We define a homomorphism 7] of
R{(P)X to U, by putting ] =non; where x is the natural projection of (. onto the
subgroup ], of %,,. (See 3.5.)

For the discontinuous group I'y, for W€ 3,,, we say that a pair (V, ¢) is a model of
Tw\H,, if V is a Zariski open subset of a normal projective variety and ¢ is a holomorphic
mapping of N, onto V such that ¢ induces a biregular morphism of the quotient space
T'w\#,,, which also has a structure of a Zariski open subset of a normal projective
variety (see the corollary of Proposition 20 in 3.10), onto V. k

Now our main theorem states that

THEOREM 1. There exists a system
{VXy Px> JYX(u)! (X’ Ye :8.70; ueg{io)}

consisting the objects satisfying the following conditions.

(I) For each X€3,,, (Vx, px) is a model of T'x\ ¥,

(II) Vg is rational over kx.

(IIT) For u€A,, Jyx(u) is a morphism of Vg onto V¥, which is defined if and only
if uXu1c Y, is rational over ky, and has the following properties:

(I11a) Jxx(u) is the identity mapping of Vyx if w€X;

(I11b) J yx(w)* P od xy(t) = py(ut);

(I11c) J yx() [@x(2)] =@y(a(2)) for every a€A;, and every z€ W, if aXa =Y.

(IV) Let z be an isolated fixed point on W, j the corresponding element of 3(j,), and P a
comm utative isolating subalgebra of B which isolates j. Then, for every X € 8,,, px(z).is_rational
over R{(P)ap. Furthermore, for every v€Ry(P)y,

pr{a)® =J vx(nf (v) ) [px(2)]

where T=[v, R,(P)]€Gal (R,(P)an/B,(P)) and Y =n} (v)"1Xn] (v).

The proof will be completed in the last section with the help of the lemmas given in
4.3-7 and the theory of the modulus-varieties of PEL-structures, abelian varieties with
certain additional structures.

Note that, in (IV) of Theorem 1,7 =[v, B,(P)]=0(5} (v)™") on &;,. (See Proposition 9in
2.3, (3.2.1), (3.3.1) and (3.4.2).)

COROLLARY. Let the notation and the assumptions be as in (IV). Put ©;(z)=
{x€ A,,|(z) =2}. Then the finite abelian extension R, (P)ky(py(z)) of R;(P) corresponds to
the open subgroup
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Ry(P){v€R,(P)} |7} (v)€E,,(2) Y}

of By(P), by the class field theory.

Proof. Suppose that 7=[v, R,(P)] is trivial on R,(P)ky(py(2)). Then since (v, R,(P)]=
a(7; (v)~!) = the identity mapping on ky, there are o€ 4,, and y€ ¥ such that 5] (») ! =ya.
(See Proposition 18 in 3.7.) Then @y(2)” =J yx(n/(v) ) opx(2) =J yx(x)opx(2) =@ y(alz)). .
On the other hand, we have @y(z) =@y(2)” since 7 is trivial on B,(P)ky(py(z)). Therefore
@y(?) =@yla(z)), and so, there is an element SE€I', such that fa(z)==z. Then #(v)=
aly-1=(Ba) 1 fy—1€ES, (2) Y. The converse is easy to see.

4.2. By means of Theorem 1, we can describe the group 9, as a group of automorphisms
of a function field.
For X€3,, let Ly be the field of all the rational functions on Vy defined over ky,
and put
= Uxepso8x; 8x= {f°¢x|f€Lx}-

Then &, is a field of meromorphic functions on ¥,,. For €%, define a mapping o(«)
of &, to itself by
(fopx)™ = "od zy(u)opy

for fopx€4;, where W=u"1Xu. We see easily that p(w) is an automorphism of £,, over
K, and that ‘g gives a homomorphism of 9, to Aut (£,,/K;,) as abstract groups. We regard
§;, as a subfield of €, in the obvious way. Then p(u) coincides with o(u) on &, for each
u€%,,.
Now let us topologize Aut (8,,/K;,) by taking all the subgroups of the form
{r€ Aut (L/K;) | hi =Py, ... B =hy}

for a finite subset {&,, ..., h,} of &,, as a basis of the neighbourhoods of the identity. Then

Aut (;,/K;,) becomes a locally compact Hausdorff-topological group. (See 1.3 of Shimura
[14] I1.)

TurorEM 2. The mapping g is an open, continuous and injective homomorphism of U ;,
to Aut (L,,/K;,), and has the following properties:

(i) o(u)=0a(u) on &, for every w€N,,;

(ii) h*(z) =h(a(z)) for a€A,, h€L, and zEH,,;

(ili) Let z, §, P, Ry(P) and n] be as in (IV) of Theorem 1. Then, for every h€L,, that is
defined af z, h(z) is rational over R(P)ay. Moreover, if we put v=[v, R(P)] and u=n;(v)-!
for an arbitrary v€ R/(P)x, then h¥™ is also defined at z, and h(z)* =h*"(2).
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Proof. The property (i) is clear, and (ii) and (iii) follow easily from Theorem 1. Let us

show the topological properties of g. First we show that
W = {u€¥,,|o(x) is trivial on Ly}

for any W€ 3,,. Then since ¥y is finitely generated over K;,, we see that g is continuous.
Moreover since [ xeg;, X ={1}, we also see that ¢ is injective. Now, obviously, W is
contained in the other. Let % be an element of %, such that p(«) is trivial on £. Since
o(w) is trivial on ky, we can find t€ W and « €4, such that w=tx. (See Proposition 18 in
3.7.) For every h=fopy€Qy with f€Ly, we have fopy=h=h" =foJy (ta)op,=
fopwoa where T =u~Wu. Hence py=gyoa, and so, €'y < W. Thus wehaveu=ta€W,
and W contains the other set. This shows that W coincides with the other. Therefore, as
we have already seen, g is continuous. Hence (W) is a compact subgroup of Aut (£;,/K. 10)-

Then if we show
(4.2.1) Ly ={h€L, | B =h for all ue W},

we can conclude that
(4.2.2) o(W) = {r€Aut (8,/K,,)| 7 is trivial on Ly}

on account of 1.2 of [14] TI. Moreover, since Ly is finitely generated over K;, we sece
that o(W) is open in Aut (Z,/K;,). Hence it is sufficient to show (4.2.1). Obviously Ry
is contained in the other. Let & be an element of &, such that h** =h for every u€W.
Then h=fog, with fEL, for some T € 3,. We may assume that 7’ is a normal subgroup
of W. For any a €'y W, fopr=h=k® =foJ rr(a)opy. Therefore f=foJ r7(x). We see
easily that Vy, is biregular over k, to the quotient variety of ¥V, by the (finite) group of
automorphisms of Vg, {J pp(@)| 2 €Ty}, since (Vy, ¢w) and (V 7, 1) are respectively models
of Ty\¥,, and T';\ },,. Therefore there is a rational function g on Vy, defined over &k
such that f=goJy4(1), in other words, h=gogpy. We have to show that g is defined over
ky. For any 7€Gal (ky/ky), take w€ W so that o(u) =o(u) =7 on k. The existence of such u
follows from Proposition 18 in 3.7 at once. We have gogy=h =k =f""oJ rr(w)opr=
gc(u)oJWT(]-)J(u)OJTT(u)O(pT=ga(u)°JWT(u)°(pT=ga(u)°JWW(u)°JWT(1)°(pTzga<u)°(PW' This
means that g—g° for any [r€Gal (k,/ky). Therefore g is defined over ky, and h=
gogw€y. Hence (4.2.1) is proved. Q.e.d.

CoroLLARY 1. The following assertions hold.

(i) K;,={h€,|h**® =h for every u€,}.

(ii) For WE3B,, o(W)={r€Aut (L,/K})|t is trivial on Ly}=Gal (£,,/Lw).
(ili) For WER,, Qu=1{h€Q, | =h for every u€ W}.
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Proof. The assertions (ii) and (iii) have already been proved. Let us see (i) fold. Ob-
viously Kj, is contained in the other. Now let % be an element of £, such that 4% =}
for every w€,. Take W€, and f€Ly so that h=fopy. Then fopy=h=hr""=
fopwoa for a€4,. Fix any z€,,. As is seen in 2.5, we see that {py(«(z))|]a€4,} is
dense in Vy. Therefore f must be a constant function on Vy, i.e. f€ky. For any 7€
Gal (ky/K;,). we can find u€9,, so that g(u)~=o(u)=7 on ky. Then we see easily that
f=/f* since A" =h. Hence €K, Q.e.d.

CoroLLARY 2. (i) If mg>2, and U',\ H,, is compact for some U € B,,, then g is sur-
jective.

(i) If mq=2, and I'y\ W, is compact for some UER,, then o(U,,) s a subgroup of
Aut (L,,/K},) of finite index, and

{AUt (gjan;o): Q{%Ifo)J < [A;a: Aia] \<‘g = [F Q]’
Here A}, is the group defined in 1.9.

(i) If mg =2, and the algebra B, determined by (1.2.1) is isomorphic to M(2, Q) (therefore
F=Q, and K is an imaginary quadratic extension of Q), then o is surjective.

Note that the compactness of I';\ };, does not depend on the choice of UEJ;,.

Proof. For SE€R, put S'=(SN K*)(SN G}, and I's=8nG@§. Then on account of
(3.10.3), we see easily that

(4.2.3) For any sufficiently small 8 of 3,

n(FslS') = Fn(S‘))

and Tnsiy has no element of finite order other than the identity element.

As is easily seen, the group Aut (£,,/8;,) is a closed normal subgroup of Aut (£,/Kj,),
and Aut (8,/K;)=0;) Aut (,/8R,) (see Proposition 17 in 3.6). Let 2% for We3g,,
{resp. £&*) be the composite of &y, (resp. ;) and C. Then * = U wes;, - Since L, and €
are linearly disjoint over &, the group Aut (&,/R,,} can canonically be regarded as a sub-
group of Aut (¥*/C). Let 7€Aut (,,/K;,). Take S€J) so that (4.2.3) holds, and put W =
a(81). We can find members X and Y of 8,, so that Y X< W, €% 1< &,, 85 8y, and
Y is a normal subgroup of W. Then £} < ¥ < £%. Let A be the subgroup of I'y, such that
A[T'y corresponds to 8% under the isomorphism of Gal (%/8%) onto 'y, /I'y induced by g,
and put U=AY. Then U€3,, and I'y;=A. Moreover 7 gives an isomorphism of £% onto
L%. Therefore we have a birational mapping & of ¥, to ¥V such that (fopx)* =fobop,
for every f€L;. Now suppose that either mg=2 and By~ M(2, Q), or 'y \ ¥, is compact.
Then there exists an R-linear automorphism £ of Bg such that 8 commutes with 8, 8(#(j,)) =
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F(jo) and Eopy=@xop. In fact, it is enough, on account of Proposition 5 in 1.8, to show that
& can be shifted up to a (holomorphic) automorphism of H,,. If mg=2 and B,=M(2, Q),
we easily see this by 7.21 of [14] I. If I';,)\ ¥, is compact, then it follows from the choice
of 8§ that ¥V, and Vy are both complete non-singular minimal models, and hence, & is a
biregular isomorphism. Therefore & can be shifted up to an automorphism of . As
transformation groups, fI'y;f~! coinsides with I'y. Note that every element of I'; and
I'y is of the form n(y) with some y€ls=Gy. Let y be an element of I'} such that
7i(y)€l'y. Then, as R-linear automorphisms of Bg, (and hence, as automorphisms of H,,),
Pr(y) B~ =7(B(y)) where f(y) is the image of y under the automorphism 8 of Bg. Take
y' €5 so that w(B(y))=n(y’)€ly. Then there is an element a of the center of Gg such
that f(y) =ay’ since both f(y) and 9’ are in G§. We see easily that a™ =1. Therefore we have
B(y™)=y'™ €Ty for every y €I} such that n(y)€T,. Then by Lemma 9 in 4.8 we have
B(B)=B if mq>2, and B(B,)=B, it mg=2. If mg>2, or if mg=2 and B,=M(2, Q),
then 8€4;, and v=g(f) on L. Since X can move all the sufficiently small open compact
subgroups of 9;,, and p(2,,) is open and closed in Aut (£,/Kj,), this shows that v belongs
to (). Thus (i) and (iii) are proved. Suppose now that mg=2 and I',\ H,;, is compact.
Let us define a homomorphism g’ of 4j, to Aut (2*/C). Let 8 be an element of 4;. For
hEL*, put B? =hopB. Choose S€J) so that (4.3.2) holds, and h€ Ly Since f-1(S N G)
is an open subgroup of G, there is a member 7 of 3}, so that 7S and TNGL<
BHSNGY). We have B(I'y)<Ti since B(G§)=G§. Let y be an element of I'y. Then
Ba(y)B—t=n(B(y)). Therefore hofon(y)=hom(f(y))of=hof, and hence, kP =hof€
L= &*. This shows that o’ is a well defined homomorphism of 4; to Aut (2*/C). Obvi-
ously, o’(x) coincides with g(«) considered as an element of Aut (2*/C) if €4 ;,. Suppose
that ¢'(f) is trivial on Q% for some X€3,. Then @yof =gy, and hence, BETy< 4.
This shows, especially, that ¢’ is injective. Now let = be an element of Aut (2,,/8,,), and
choose X € 3;, as above for v and the fixed W. As we saw above, there is an element j of
Aj, so that T=0(B) on L%. Once such an X is chosen, there exists an element ' of 4,
such that 7=g'(8') on %, for X'€3,, if X' X. We see easily, moreover, that the cosets
pA;, and f'A, of 4, in Aj, coincide with each other, since p’(8-18") is trivial on 2%. There-
fore we have a well defined mapping of Aut (&,,/8,,) to the quotient space 4;/4,. Now
let 7 and 7’ be two elements of Aut (¥,/8;,), and choose X, X'€3, and 8, p'€4], so
that v=g'(8) on % and 7’ =¢’(8’) on L% Suppose that 84, =p4,,. Let X" be a member of
B such that X"<Xn X', and 8" an element of 4], such that v’ =p'(8"x) on %.. Then
there is an element «€4;, such that 7" =p'(8"'«) on L%. since " €84 ;y=p"A,,. Therefore
717 =p'(a) =p() on L%-. Since both 717’ and g(«) belongs to Aut (2,,/8),,), we see that
717" =g(a) on Lx.. Having X" move through all the members of 8, that are contained
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in XN X', we conclude that t—17' belongs to g(2,,). Thus we get an injective mapping
of the quotient space Aut (L,/K7)/o(®,,)=Aut (€,/5,)/(Aub(L,/R,) N @) into the
finite set A;/A4,,. This shows that the assertion (ii) holds, and completes the proof.

4.3. Now we proceed the reduction process of the proof of Theorem 1. Our argument is
similar to that of [14] I, 3.8-11.

We say that a subfamily 3 of 3, is normal if uWu~1 belongs to I for every W e
and every u€Y,. The assertions (3.8.2) and (3.10.2) show that n(3;,) and =(3},) are both

normal. By a canonical system for a normal subfamily 8 of 3,, we understand a system
(Vo oz Txrlw), (X, ¥ €8 w€,)}
satisfying all the conditions of Theorem 1 for ¥ in place of 3,,.
LemMa 5. Let 38 and BB’ be normal subfamilies of 3,,, and suppose that there exist

canonical systems
Vs, s, J zs(), (S, TEW; u€WN,,)}
for B and
(Vi 91 Jun(w), (L MW ue;,)}
for W'. For SEW and LEW' such that S< L, let E,g be the morphism of Vg onto V;, defined
by @1, =Esops. Then K, is rational over kg and,

(4.3.1) Bipod s(u) = Jyp(w)oBys
for every w€,, where T=uSu1€X and M =ulwu-1€% .

Proof. Since the sets of the points of the form gg(z) and @} (z) for an isolated fixed
point z on H,, are dense on Vg and V7 respectively, it follows from the property (IV)
of the canonical systems that E, ¢ is defined over the algebraic closure 6 of Q. Let k be a
finite normal algebraic extension of kg, over which E, is rational. Take a commutative
isolating subalgebra P of B so that R,(P) is linearly disjoint with & over Kj,. (Cf. Proposi-
tion 11 in 2.4.) Here j is the element of F(j;) isolated by P. Let z be the corresponding
isolated fixed point on H;,. Take u€9,,, and let v be the restriction of ¢(u) to ks. Extend =
to an automorphism o of Q over R,(P), and take v€R,(P)s so that w=[v, B(P)] on
B(P)ay. Since o(n;(v)"1)=[v, B,(P)] on K, we see that o(z] (v)~!) =0(u) on kg. Hence on
account of Proposition 18 in 3.7, we can find «€4,, and s€S so that 7 (v)' =aus. Put
T=uSu"l, U=alal=n©)18(®), M=ulul, and N=aMa1=n](v)1Ly}(v). Then
by (IV), we have @u(2)° = ys(n] (v) L) ops(z) =J yr(a)?od rs(u)o@,(z). From this, we see
easily that g r(0=1(z))? =J z5(u)o@s(z). Similarly, we have @i (a1(2))® =J . (u)ogL(2). There-
fore we conclude that

(4.3.2) Eyrod ps(u)ops(z) =JIML('”’)°ELS¢S(Z)'

19— 712905 Acta mathematica 126. Imprimé le 16 Avril 1971
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After fixing %, P, and w, if we change z for f(z) with 8€ 4%, then B(z) is an isolated fixed
point on H;, and corresponds to B(j) which is the element of F(j,) isolated by B(P). On
account of Proposition 10 in 2.3, we have R,(P)= Rg;(B(P)), and see easily that (4.3.2)
holds if we replace z by f(z) with any B€AY. Since {f(z)|B€A%} is dense on H,,, we
obtain

(4.3.3) Eyrod rs(u) =Jyr(u)oE 5.

Especially, if we take w =1, then we have E7s=E 5. Since w can move all the automorphisms
of k over kg, B, should be rational over ks. Therefore we can replace w in (4.3.3) by o(u),
and get the lemma.

4.4. For We3;, put W(W)={uWu'|u€e,}. Then W(W) is a normal subfamily.
If there exists a canonical system for every (W), W € 3,,, then Lemma 5 allows us to con-
clude that there is a canonical system for 8, itself, i.e. we get Theorem 1. In fact, all we
have to show is (IIT), which is easily seen if we put J;5(1) = E;s and J y5(w) =J 4 ()0 Eys
with the same notation as in Lemma 5.

It should be noticed that we can easily see the uniqueness of a canonical system by

Lemma 5.

4.5. LEMmMA 6. Let L and S be two members of 3;, such that S is a normal subgroup of L.

Then if there exists a canomical system

{VT’ Pr, JUT(u)’ (T’ UEQB(S), ueg’[iu)}
for W(8), then there exists a canonical system

{VM: (PM: JNM(u)’ (M’ NGQB(L), ue%[h)}
for W(L).

Proof. First let us construct a model (Vy, @,) defined over k, for every M €(L).
Fix M, and take a normal subgroup P of M in 28(8). Since T'is of finite index in M, the set
{Jrr(y)|7€Ty} is a finite group of automorphisms of V;. Each Jr(y)] and V; are de-
fined over k;. Therefore there are a quotient variety V of V by {Jrr(y)|y €'y} defined
over k7, which is a Zariski open subset of a normal projective variety, and the projec-
tion morphism ¥ of V; onto V defined over k.. (Cf. Serre [8].) Let u€M and y €T,.
Then since o(upu~1) =the identity mapping on k;, we can find €4, and v€T so that
wyw1=fv on account of Proposition 18 in 3.7. Obviously S€I'y. Since J7,{(v) is the
identity mapping, we have Jpp(u)od rp(¥) =J rp(Bve) =J 17(B)° 0 ro(u). If y movesall
the elements of T'y, then J ;,(8)°™ moves all the elements of {J ;7(y)°™|y €'} }. Therefore
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there is a biregular mapping J(u) of V onto V™ such that J(u)oE =E"“oJ pp(u).
On the other hand, it follows from Proposition 18 that ¢ induces an isomorphism of
the quotient group M (I, onto Gal (k4/ky). Let v be an element of M such that o(u)=
o(v) on k;. Then v=pPwu with some SE€I'), and w€T. We have Jpp(v)=J r7(8)"*o
J pp(u). Since E=EodJ ;4(f), we have J(v)o B =E* Vo pp(v) = B Pod pp(u) =J(w)o E, and
80, J(v)=J(u). This means that J(u) depends only on the effect of o(«) on k. For each
t€Gal (kr/ky), put J,=J(u) with w€M such that o(u)=t on k,. We see easily that
Jrg=Jso0Jd for 7, £€Gal (kyfky). Hence on account of Weil [15], there are a variety V,,
defined over k) and a biregular morphism R of V,, onto ¥V rational over %k, such that
J:=R'o R for all T€Gal(k/ky). Put Eyr=R'oF and ¢y ==Eyro@s. Then (V,, @) is
a model of I")\ #,, such that V,, is defined over k,. Next we show

(4.5.1) For every U€B(S) that is contained in M, the morphism Eyy of Vi onto Vi
defined by @y =Eyyopy is rational over ky. Moreover for any w€M, E5Dod yyw(u) = Eyy
where W =u"1Uu.

Let T be the member of 2(S) used to construet (Vy, ¢y). Then it is easily seen that
(4.5.1) holds for 7 in place of U. Therefore, especially, ¢,(2) is rational over the algebraic
closure § of Q for any isolated fixed point z on J,, since it follows from the property (IV)
of the canonical system for B(S) that ¢,(z) is rational over Q Hence we conclude that
Eyy is defined over Q, and so, over a finite normal algebraic extension k of K;,. Note that
ky =k for every U € B(S). Let P be a commutative isolating subalgebra of B such that R, (P)
is linearly disjoint with kk; over K; where j is the element of 7(j,) isolated by P. Let z
be the isolated fixed point on W, corresponding to j. Let tr be the restriction of
a(u) to ky and w any automorphism of (—} over R,(P) such that w =7 on k. Take v€ R)(P);
so that w=[v, B;(P)] on R,(P)ap. Then since a(u)=1=[v, B)(P)]=a(n;(v)™) on ky=Fky,
there are a€4;, and w€W such that #;(v)~! = quw. (See Proposition 18 in 3.7.) Put X =
aUc l=nf(v)* Wnf(v), and Y=aTa'. Then #j(v) ¥y () =wlu"ta 1Y quw=w"1u"1
Tuw=T since uw€M and 7T is a normal subgroup of M. We have ¢@x(2)=
Jxwln} (0) ) oy(2) = gw(ocurw) o @y(2) = J xy(@)" ¥ o ow(%)o@y(2) and @y(2)” =J yr(n;(v) )0
@r(@)=J yr(auw)o pr(2) =J yr () o J pr(uw)o @, (z). Therefore E4yoJyw(u)o gy (z)=
Evodyx () P[@x(2)°] = Byylpy(a™ (z))]w = pu(a(2))” = Eyr(pr(a(2)*] = Eur
od py (o) [py(2)”] = Eyrod pp (uw)opy (2). We know that (4.5.1) holds for 7' in place of
U. Therefore E%rod py(uw)=E5%4%" 0d pp(uw) = By, since w =7 =0(u) =c(vw) on ky=ky

=ky. Thus Eyrod pr(uw)opr(z) = Eyro@(2) = gulz) = Eywopw(z), and finally we obtain

By o J gwlu) o gyl(z) = Epy 0 py(?).
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Using the same argument as in the proof of Lemma 5, we can derive (4.5.1) from-this
formula.

After constructing (V, @) for every M €B(L), let us now construct J yu(y) for N,
M eB(L) such that N=yMy-! with y€, . Take a member 7' of B(S) which is a normal
subgroup of M and put U=yTy-t. Then U€W(S) and U is a normal subgroup of N. Let
y€I'y. Since o(yyy')=identity, we have yyy—'=pu with €4, and w€U. Then BET,,
and Jyr(y)od rr(y) =Jyr(fuy) =J yu(B)* V0 yr(y). Therefore EYPod yr(y)=ExGod yr(y)
oJ p(y) for every p€I'), and hence, there is a morphism Jy(y) of V) onto V3¥,
defined over kg, such that Jy(y)o Eyr=E%Y0d yr(y). We see easily that thus defined
Juuly) satisfies (II1a) and (IIlc). Let us show

(4.5.2) For every WER(S) that is contained in M, Juu(y)o Epyyw— B3P 0d xwly)
where X =yWy-L.

Take P, § and z as above so that R,(P) is linearly disjoint with &y, over K}, and
vER(P)y so that w=[v, R(P)]=0(y) on ky,r. Then we can find «€4; and weWnT
so that #/(v)l=oyw. Put ¥ =aXal=9®)1Wy@®), and Z=aUo 1=y ()17 ().
Then we have EF¥od xy(y)opy(z) =B o yr(yw)opr(2) by a similar computation to
that done above in proving (4.5.1) (but do not confuse the notation). We know that w
belongs to 7, and that Jyy(y)o Eyr=E% 0 yr(y). Therefore we have E3%Xod yw(y)o
Pwl2) =J yu(y)© Eyro@r(2) =J yn(y)o0@u(2) =J yu(y) 0 Eywopw(2). Then varying z in {f(z)]
BeAL}, we get (4.5.2).

Now let x €%, B=zNa~! and ¥ =aXz!. Then we can define Jzy(x) and J gu(zy).
On account of (4.5.2), we get the formula,

J el ®y) = J zu(®)" 0 e (y)-

In  fact, Jau(@y)oByyw=EF5"0d yy(@y) = E5P 0 yx(x)"V0J xyy(y) =J py(2)" V0 B3R o
I xw®) = zn(2)°P0d yp(y)o Bpyyy. Thus (ITIb) holds. Especially, we have J y,(uy)=
Jxuly) for w€N. Therefore, if yEN, we have J py(x)°Y =J pulxy) =J py(xyz—z) =J zy(x)
since xyx—1 € R. This shows that J zy(x) is rational over &y since o induces an isomorphism
of N/T'yX onto Gal (kg/ky) and J zy(x) is rational over kx=Fks. Finally, let 2, j and P be as
in (IV) of Theorem 1. Then @y(z) = B\ ro@1(2) is surely rational over R,(P)ap for M €B(L).
For vER,(P)y, put N=x(v)1Mn/(v) and U=yx;(®)1Ty(v). Then for v=[v, R,(P)],
uu(e) = Bizlp (21 = Burod rolnf®))opy(z). Since t—o(f(v)™) on ks, we have
Pu(2)" =Eyrod ro(nj (v) 1) oyu(2) = Jun(n] (v) )0 Enyogy(z) = Jun(nj (v) ) o@y(2). The proof
is completed.

4.6. In 4.4, we reduced the proof of Theorem 1 to constructing a canonical system for
(W) for each W€ ;. We may restrict ourselves to considering only the members of the
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sabfamily n(3],) of 3,. Further, it is sufficient to show the existence of a canonical
system for ZB(W) for each member W of such a subfamily of z(8],) as it contains a normal
subgroup of every member of n(3},). Before getting into such a subfamily of =(3},), we
proceed another type of reduction.

For a member W of (3},), put (W)= {uWu|uw€A},}. We understand by a canoni-
cal subsystem for W) a system

{Vx, @x J yx(u), (X, YEW(W); u€ ?,)}

which satisfies all the conditions of Theorem 1 for W) and A}, in place of 3,,
and ¥, respectively. Using the argument of Shimura [14] II, 5.6, let us show

Lemma 7. Let Wen(3},). If there exists a canonical subsystem for TOW), then there
exists a canonical system for W(W).

Proof. Let {Vy, px, Jyz(u), (X, YEWYW); w€AY,)} be the canonical subsystem for
WO(W). We see easily from Proposition 16 in 3.5 that there exists a set {ay, ..., &,} of ele-
ments of 4;, such that

WW)y=BOW) U oty BEW )z U ... U oty BO(W )

(disjoint union) and that, for X, Y€W(W), there exists an element €Y, such that
Y =uXwuif and only if X and Y belongs to the same «¥83% W) o for some « €41, ¢, ..., 2, }-
Fix a€{oy, ..., o,}. Let TE€aMWO(W)a?, and take X €YW) so that T'=aXe . Then
kr=ky and I'r=al'ya'. Put V,=Vy and @pr=@yoa~l. Then (V,, ¢;) is a model of
T2\ H,,. After defining (V, ) for all 7 €a¥8( W) in this way, define J,7(u) for u €],
and U =uTu1€x28% W)« by putting J () = J yx(oc—lue) where ¥ = (" uor) X (o tuet) 1 €
LWO(W). We can see in a ’straightforward way that {Vi, @5, Jyr(u), (T, U€aBUW)a?;
u€9))} is a canonical subsystem for Wo(aWa?)=aB(W)a-L. To see (IV), use Proposi-
tion 10 in 2.3. Collecting the canonical subsystems for a¥3%(W)al, a€{l, &y, ..., &y}, We
have a system {Vy, @x, Jyx(uw), (X, YEBW(W); w€NU})} satisfying all the conditions of
Theorem 1 for W(W) and 9], in place of 3,, and U, respectively as is easily seen. Now all
what we have to do is to define J yx{u) for all #€9,,. Fix an element x€4, at first. For
each X €XB(W), put X =aXa-l, Vx=Vx and px=gpzoa. Since [y=a 'z a, we see easily
that (Vy, @x) is a model of I'y\ #,,. Put J yx(u) =J3z(auat) for u €Y, and ¥ =uXu-l.
Then we see easily that the new system {Vy, @x, J yx(w), (X, Y €W(W); u€MA;,)} satisties
all the conditions of Theorem 1 for (W) and A, in place of 3, and A, respectively.
To see (IV), use Proposition 10. In a similar way to that in which we showed Lemma 5,

we can show the existence of a biregular morphism Qy of V, onto V. for every
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X eW(W), which is rational over ky and such that @xopy =@y and Q¥ oJ yy(u) =J xyw(u)o
Qw for w €Y, with W =u-1Xu. Put Jzx(x)=Qx. Then we have

I zx(0) [@x(2)] = @x(2) = px(a(2))

where X =aXa1. For v=ua €Y, withu €U}, put J yx(v) =J yz(u)oJzx(x) where X =X a1
and Y =vXv-1. Thus we obtain J yz(v) for all v€¥, =7, 4;, (see Proposition 16), and can
show in a straightforward way that these are well defined and satisfy (II1a, b, ¢). Q.e.d.

4.7. Let D™ be the space of all the m-dimensional row vectors with components in D,
as before, and fix a Z-lattice M of D™ For each prime integer p, let Q, be the field of all
the p-adic (rational) numbers and Z, the ring of all the p-adic integers. Put Dy =D"® ¢Q,
and M, =M®zZ,. Then I, is a Z, lattice of Dy.

For 2€Ga, we define a Z-lattice Mz of D™ by Mz = N (WM, x,N D™) where N, is the
intersection over all prime integers, and =z, is the p-component of x€Ga. Obviously, Mz
coincides the ordinary transformation of IR by =z if 2€Gq.

We identify the quotient module D™/IR with the direct sum,

Dm/im = Zp Dz‘/mp

in the natural way. Here X, is the direct sum over all prime integers. For £ €G 4, define an
isomorphism of D™/ onto D™/IMx through the direct sum by the non-archimedian part ofz.
For any finite number of elements w,, ..., w, of D™ put

Se(M; wy, ..., w;) = {x € Gt| M =M, wr=w, mod M, i=1, ..., t};
S(MM; wy, ..., w,) = Se(WM; wy, ..., wy) Gopyy.-
Then S(X; w,, ..., w,) belongs to 3).. We have
(4.7.1) 218 wy, ..., w)x = S(WMx; w, 2, ..., w,x) (TEG,,).

LEMMA 8. Fix any Z-lattice IN of D™, and let the notation be as above. Suppose that,
for every finite number of elements w, ..., w,, there exists o canonical subsystem for BWO(x(S)),
where S! is as in 3.10 for 8 =S(M; w,, ..., w,). Then there exists a canonical system for 3;,.

Proof. Let T be any member of 3),, and let S(I%) be the group defined above for
w; =...=w,=0. Since 7'N S(IR) is a subgroup of 7T of finite index, there is a normal subgroup
U of T in 8, which is contained in S(IR). For example, U= ,u,(T N S(M))u;" where
{u,} is a set of representatives of the coset decomposition 7'= U ,%,(7 n S(IM)). Since U
is a member of 8}’,, there is a finite number of elements v,, ..., »; of D™ such that U contains
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S(IR; vy, ..., v5). Let {yy, ..., ¥,} be a set of representatives of the coset decomposition of U
by the subgroup S(I; v, ..., v,), ie. U=Ur,y,8(I; vy, ..., v;). Then we have a normal
subgroup S=,y, S vy, ..., v)y, ! of U. Since each y, belongs to S(M), v, S(M; v,,
s 0) 4 =8(M; vy, ..., v,5 7). Therefore, S =S(I; wy, ..., w;) where {wy, ..., w,} = {v,5;%,
oo 0545 |w=1, ..., n}. Make 71, U and 8! from 7T, U and S as in 3.10. Then 7(U1) is a
normal subgroup of #(7"), and 7(S!) is a normal subgroup of #{U1). By the assumption,
there is a canonical subsystem for $3%(n(S1)). Therefore, Lemma 7 assures the existence
of a canonical system for (z(S')). Using Lemma 6 successively, we see that there exists a
canonical system for W(z(7)). Since this is true for every 7(7T?) of 7(3},), we get the lemma
as was seen at the beginning of 4.6.

Remark. In the above proof, we can take S(I; vy, ..., v,) as small as we like, choosing
a large set vy, ..., v;. Therefore, to see the existence of a canonical system for 3;,, it is suf-
ficent to show the existence of a canonical subsystem for °(n(S?)) only for every suf-
ficiently small S=8(M; w;, ..., w,). Saying “sufficiently small,” we think of Proposition
20 in 3.10 and the remark following its proof.

4.8. Here we insert a lemma, which we needed to prove Corollary 2 of Theorem 2 in 4.2.

LemMmA 9. Let U be an arbitrary open compact subgroup of Gy, and T'y=G{n UGL.
Then for any positive integer n, the linear span of the set {y"|y €Ty} over Q is equal to B if
mq>2, and By if mq=2 where By is the quaternion algebra over F determined by (1.2.1).

Proof. Let p be a prime integer in Z such that p decomposes completely in K, and that D
is unramified at every prime factor of p in K. Then B® ¢Q,=M(m, D)® ¢Q, is isomorphic
to the direct product of 2¢ copies of M(mgq, Q,). Define an involution &' of M(mgq, Q,)* by
(z, )% =('y, =) for (z, y)EM(mg, Q,)%, and put

Hsz = {(x, y) EM(mq’ Qp)2I (x: y)(x> y)",:(lmq: lmq), and det (37) :1}_

If we furnish M(mg, Q,)* =(M(mq, Q,)%)° with the involution defined by &', we can find,
as is well known, a Q,-linear isomorphism y of B® Q, onto M(mg, Q,)* which transforms
the involution § of B® ¢Q, to this involution of M(mq, Q,)¥. (Cf. M. Kneser, Galois- Koho-
mologie halbeinfacher algebraischer Gruppen iber p-adischen Korpern, I, Math. Z. 88 (1965);
1I, Math. Z. 89 (1965). Also see T. A. Springer, Galois cohomology of linear algebraic groups,
(1], pp. 149-158, and M. Kneser, Hasse principle for H' of simply connected groups, [1],
p- 160.) Therefore G§, is isomorphic to the direct product of g copies of Hg,. For a non-
negative integer e, let Hy,(¢) be the principal congruence subgroup of Hy, = Hq, N M(mq, Z,)?
modulo p. Put t=2(mg)?*g if mg>2, and ¢ =4y if mg=2. Then for any positive integer #,
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and e, one can easily find ¢ elements w;, 1=1, ..., ¢, in Hyy(e)’ such that u}, i=1, ..., ¢,
are linearly independent over ),. Now let U be as stated in the lemma. Then we can find
a positive integer e such that U’ x y~'(Hy,(e)?) is an open compact subgroup of U with
some subgroup U’ of II,.,Gh,- In fact, it is enough to choose such an e as {1’} x
1 (Hz,(€)°) is contained in U where 1’ is the identity element of I1,..., G¢,- For given n,

take u, in Hy,(e) as above. If mg>2, then the module
m = 3399 2,7

is a Z,-lattice of M(mg, Q,)*. Therefore there is some positive integer e’ such that
P M(mg, Z,)¥ < pm. If mq=2, then Hz,(e)’ is contained in y(B,® ¢Q,) (see 1.2). Therefore
the module

n= Z%il Zyu

is a Z,-lattice of y(B,® ¢@Q,). Hence there is a positive integer e’ such that p°***(y(B,®q
Q,)NM(?2, Z,)¥)<pm. Since U’ xy(Hzyle+e')?) is an open compact subgroup of Gf,
we can find, by the strong approximation theorem, ¢ elements y,, ¢=1, ..., ¢, in G§ such
that p; Y1, x~Y(u,)) €U’ x y~Y(Hz,(e+€')?). Then y, €Ty, We see easily that y(yj") —ui €pm.
This shows that y(y7), ¢=1, ..., £, are linearly independent over Q,. Therefore 47, i=1, ..., £,

are surely linearly independent over Q. Now the lemma follows at once.

5. Modulus-varieties of PEL-structures

5.1. First we review on PEL-types and PEL-structures defined and studied by Shimura
in [9], [10] and [11]. (Also see 4.1 of [12].)

Let L be a simple algebra over Q with a positive involution g, » a positive integer such
that 2rn=m[L: Q] for some integer m, and ® a representation of L on a complex vector
space C" such that ® maps the identity of L to the identity mapping of C*, and the
direct sum of @ and its complex conjugate ® is equivalent to a rational representation of
L. Let L™ be a left L-module of dimension 2n over Q, 7' a p-antihermitian form on L™, i.e.

an L-valued Q-bilinear form on L’ such that
T(axa by) = aT(x’ ?/)bg; T(=, ?/)9 = —T(y, »)

for @, bEL and z, y EL'™. We consider only a non-degenerate 7. Put Lg =L ® R and L{” =
L' ®qR, and extend T to an Lg-valued R-bilinear form on L. Let I be a Z-lattice of
L™ such that

tr (TR, M) =27 -
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where tr denotes the R-linear mapping of Ly to R obtained from the reduced trace of L over
Q. For any given 7', a rational multiple of 7" satisfies this condition for any given . Let
Uy, ..., %y be elements of L. A PEL-type is a collection

Q=(L,®,0 T, M; uy, ..., uy).

Two PEL-types (L, @, o; T, M; uy, ..., w,) and (L', ¥’, o’; T", M'; uy, ..., ut) are equivalent
if L=L', p=¢', t=t', ® and @' are equivalent, and there exists an L-linear automorphism
a of L™ such that T"(a(x), a(y))=T(,y), M =a(IM), and u;=o(u;) mod M’ for i=1,
ey b

A PEL-structure Q=(A4, C,0; p,, ..., p,) of type Q=(L, ®, g; T, IM; u, ..., u,) is a
collection of an abelian variety 4 with a polarization C and points p;, =1, ..., ¢, of finite
orders, and a homomorphic embedding 8 of L into Endg(A4)=End ( 4)®zQ satistying the
following conditions: ‘

There are a complex torus C*/I%, an R-linear isomorphism 1) of LEY onto €"and a homo-
morphism ¢ of C" onto 4 such that

(6.1.1) ¢ induces a biregular isomorphism of 0"/_952 to A, and (Q(a)w)=0(a)(w) for
a€LN0-YEnd (A4)) and weC

(6.1.2) 1) maps M onto M and Y(ax)=D(a)y(z) for a€L and xELI;

(6.1.3) C contains a divisor which determines a Riemannian form E on 0"/@ such that
EW(x), 9()) =tx(T(z, y)) for =, yEL;

(5.1.4) «(y{w,)) =p; for i=1, ..., L.

Let Q=(A, C, 0; p,, ..., p,) be a PEL-structure, and 7 an antomorphism of €. Then
we get naturally a structure

Q= (A7, C7, 07; pi, ..., P}).

Here 67 is an (injective) homomorphism of L into Endq(4%) defined by 6%(a) =0(a)* for
a €L N 6-1(End (A)).

Let Q=(A4, C,0; py, ..., p)) and Q' =(A', C', 0'; p1, ..., p;) are PEL-structures of types
with the same (L, @, p). We say that Q is isomorphic to Q' if there exists an isomorphism
4 of the abelian variety 4 onto A4’ such that 4 maps C into C’, 200(a)=8(a)oA for every
a€L and A(p)=p; for i=1, ..., ¢

5.2, Let Q=(L, D, 0; T, I; uy, ..., u;) be a PEL-type. Let 0 be an order determined by
M as
0 = {a€LjaM<=M},

20 — 712905 Acta mathematica 126. Imprimé le 15 Avril 1971
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and define a Z-lattice N, an algebraic group U(T), a Lie group Ugr(T), and discrete
subgroups I'(7, M) and T(T, N/M) of Ur(T) by

N =M+t 10uy
U(T) = {x€GL(m, L)| T(za, yx) = T(z, y)};
Un(T) = {2 €6L(m, Lg)| T(xx, yo) = T(x, y)};
DT, M) = {«€U(T)| Mo = M};
(T, RIM) = {«€T(T, MW)| R — )< M}.

Here we identify the algebra of all the Q-linear endomorphisms of L™ which commute with
every element of L with M(m, L), and consider L™ as a left L- and right M(m, L)-module.
This can be done since we assume that [L™: Q] =2n=m[L: Q]. If L is a division algebra,
then L™ is isomorphic to the direct sum L™ of m copies of L.

In [10] and [11] II, Shimura fixed a bounded symmetric domain (7') isomorphic to
the quotient space of Ur(7') by a maximal compact subgroup, and constructed a family
20={Q.|2€ W(T)} of PEL-structures of type  parametrized by the point z of (7).
We construct a family of PEL-structures of our case in 5.3-5 essentially in the same way
as he did. The main theorems of the theory of the modulus-variety of PEL-structures of
Shimura [12] tell:

(5.2.1) There exists an algebraic number field k(Q) of finite degree with the following two
properties.

(i) Let Q be a PEL-structure of type Q, and T an automorphism of C. Then Q7 4s of type Q
if and only if © is the identity mapping on k(Q).

(ii) The field k(£2) contains tr (®(a)) for every a in the center of the algebra L.

Moreover the field k(Q) ts uniquely determined by the property (i).

(6.2.2) There are an algebraic variety V(Q) and an assignment v =g of exactly one point
v(Q) of V(Q) to every PEL-structure Q of type Q satisfying the following conditions.
iy V(Q) is defined over k()), and is everywhere normal.

) (Q)=9(Q’) if and only if Q is isomorphic to Q'.
i) Let Q be a PEL-structure of type Q, and v an automorphism of C over k(Q)). Then
v(Q)* =v(Q)-

(iv) K(Q)(0(Q)) s the field of moduli of Q, i.e. the subfield of € fixed by all such auto-

morphisms v of € as Q7 is isomorphic to Q.

(
(
(

ii
i

" (v) There is a holomorphic mapping gq of H(T) onto V(Q), which induces a biregular
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isomorphism of T'(T, N/W)\ IT) onto V(Q), and such that v(Q,) =pq(2) for every member
Q. of 2q.

(vi) V(Q) is a Zariski open subsel of a projective variety.

Moreover it is seen in 3.1 of [10] III and 4.18 of [12] that

(5.2.3) For any automorphism < of C, there is a PEL-type Q7 characterized, up to equiva-
lence, by the condition:

If Q is a PEL-structure of type Q, then QF is of type Q. Moreover k(Q7) =k(Q)7,
and Q°°=(Q7)* for any two automorphisms ¢ and 1 of C;

(5.2.4) For any automorphism v of C, there exists a biregular morphism f. of V(Q7) onto
V(L)* defined over k(%) such that, for every PEL-structure Q of type Q7, {.(v'(Q)) =v(Q*")*
where v =vq and v =vgr. Moreover fo=f. for any automorphism o of C such that c=1
on k().

5.3. Now we consider our case, L=D. Let g be any positive involution of D, which
coincides with the complex conjugation on K. Then the involution z->%¢ of B=M(m, D)
is a positive one and coincides with § on K. Take A€GL(m, D) such that 4°<=h and
28 =h'z?h! for z€B. '

Let wy, ..., w, be as in Corollary 1 of Proposition 2 in 1.4 for j,. For A=1, ..., g, we have

1 0
(5.3.1) wi(a®) = Titox@) i Ja=Traen=| 7" .
0 -l

Since w(2)—>w;(*2?) is a positive involution of M(mg, €), there is a positive definite her-
mitian matrix Y, such that

wi(*2?) = Y 3 ten(z) Y7t

for allz€ Bg. Take a positive definite hermitian matrix W, such that ¥, = W32 = W;tW;},
and put

(5.3.2) va(@) = Wioa@)Wi' (z€Bg).

Then we have

(5.3.3) pa('a?) =tyy(x) (€ Bg).

Put h;=y;(h). Then h,='k,. Since h%=h, we see easily that W,J, W'k, =
kW J 3 W5, and so, especially, Wi'J, Wi'h, is hermitian since so is W,. On the other
hand, we see easily that ¢;=W;'J, Wik, is a scalar, if we compute y;(2?) =h 'y ,(x)hi*
through w; for all #€ Bg. Therefore ¢, is a real number. Let 7, be the isomorphism of K
into € such that w;(a)=7;(@)l,, for a€K, and let ¢ be an element of K* such that
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fe= (. Since { generates K over F, it must be totally purely imaginary. Changing [ to
its multiple of an element of F* if necessary, we can take such [ so that the real
number —V —1¢ 1T2(8) is poitive for all A=1, ..., g. Put H=C_h. Then H is an element of
B such that

(5.3.4) tHe = —H and 28 = H'2°H! for every x€ B.
Define a D-valued bilinear form on D™ by
(5.3.5) H@w, w) =vHw® (v, w€D™).

Then, obviously, this is a non-degenerate g-anti-hermitian form,

Fix a Z-lattice IR of D™, and take a positive rational number x so that
(5.3.6) tr (H(M, M)) = Z.

Here tr denotes the reduced trace of D over Q. Take a positive real number b, so that
b= —V=lc 172(l)%, and replace W, by the positive definite hermitian matrix b, W , for

A=1,...,g. This does not change y,. We see easily that, for each 1=1, ..., 9,
(5.3.7) Jo=WV =1t H7 YW 53 H; =y;(H).

Finally, let ¥'; be as in 1.10 for each j€ J(j,), and put ®,=¥;|,. Then it follows from
Proposition 6 in 1.10 that @, is equivalent to ®,, for every j€J(j,), and that q),o+6 o
is equivalent to a rational representation of D.

Thus, for each finite number of elements %,, ..., , of D™, we have a PEL-type
Q= (-D’ q)]u) 0; MH, WE; Ugs ooy ’Ll/t).

Since D, ®@,,, and g are common for all PEL-types that we consider hereafter, we write
simply Q= (xH, IM; uy, ..., u,).

We fix H once for all. Then, for a Z-lattice IR, there is a positive rational number »x
so that (5.3.6) holds. Once x» is so chosen, we can always find W, A=1,..9, so
that (5.3.2) and (5.3.7) hold.

5.4. Our next step is to construct a PEL-structure Q, of type Q=(xH, IM; u,, ..., )
for each J€J(jo) if H, %, M and uy, ..., u, are given.
Define an R-valued R-bilinear form E on D{ by

(5.4.1) E(v, w) = tr(xH(v, w)) = tr (vxH'w?) (v, w€DR).

Then E is non-degenerate and skew-symmetric.
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ProrositioN 21. For each ;€ J(j,), the torus Dig/IN with the complex structure deter-
mined by § in 1.10 defines an abelian variety A, with the Riemannian form E(v, w),
and determines a PEL-structure Q;=(A;, C;, 05 Dy, ..., Do) of type Q.

Proof. To see that Dg/IR with the complex structure defined by § becomes an abelian
variety, it is sufficient to see that the bilinear form E’(v, w)= E(v, wj) for v, w€ Dy is
symmetric and positive definite. Take x€G so that j=wzjyz~!. On account of (5.3.4), we
have xH'%=xH'®HH =3xj*H = —xjH = —nxj,x—H. Since zxf=1, we have z~1=xf=
Hx?H-'. Hence xH'%® =ux{ —xj H)a?. For each =1, ..., g, it follows from the choice of
wy, (5.32) and (5.3.7) that p,(—xjoH)= —xW (V =1J,)Wi'H,~W2. Take y€Bg=
B,®...® B, such that y;(y) =W, for all A=1, ..., g. Since W, is hermitian, we see by (5.3.3)
that ‘y2=y. Thus we have xH%¢ =xy**x? = (wy)*(xy)?. Therefore E'(v, w)="tr (vxH"je'uf)=
tr (v(zy)(2y)? w?) =tr ((vay)(wwy)?) for », w€DF. This shows that E'(v, w) is symmetric
and positive definite. Thus the torus Dg/M furnished with the complex structure defined by
4 becomes an abelian variety with the Riemannian form E(v, w). Denote the abelian variety
by 4;, and the polarization of 4; determined by the Riemann form E(», w) by C;. Since
the action of each element of D on Df commutes with that of §, D is naturally embedded
in Endg(A;). Denote this embedding by 8,, and put p,=wu, mod I for i=1, ..., &. Since
®,=¥,|, is equivalent to ®;,=%,|, it is now clear that thus obtained Q,=
(A, Cs 05 4, -, 1) is a PEL-structure of type Q.

CorROLLARY. Let the notation be as in Proposition 21, and o any element of Gqg..
Then Q' =(w(e)uxH, Ma; uya, ..., u ) 18 a PEL-type equivalent to Q= (xH, IM; uy, ..., u,).
Moreover o induces an isomorphism of the PEL-structure Q-1 of type Q obtained above
for aja~1€F(j,) to the PEL-structure Q; of type Q' constructed for j as above.

This is almost obvious, and the proof is omitted.

5.5. For given H, », IR and w,, ..., u,, we have constructed a family {Q;,|7€7(jo)} of
PEL-structures of type Q=(xH, IR; u,, ..., u,) in the previous paragraph. We say that a
member Q; of this family is the PEL-structure of type Q attached to j.

The family {Q;|] € J(j,)} is considered to be parametrized by the points of the hermitian
symmetric space },, through the correspondence between F(j,) and H,, fixed in 1.7. To
use the theory of the modulus-variety of PEL-structures of G. Shimura, we have to clarify
the relation between Shimura’s family > defined in [9] and [10] and ours.

Let Q, be the PEL-structure of type Q attached to j € (j,). Take x € G}, such that j=
xjoxt, and put x,=y,(x) for 1=1, ..., g. Here we use the same notation as in 5.3. Since
Pa0) =2392G0) T =23 W w30i0) Wiz =2, Wy(V —1J ) Wi'z;?, we have

(5.5.1) V=1Ja8 @ Wa) = Wa) 'alf).-
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Since W is hermitian, it follows from (5.3.2) that
(5.5.2) Hay W Wit =" o).

Ui VA]. Since x2’ =1, we see by (5.3.1) that

t =
Put *w;(x) [X;. Y,

ta () I vy, sy 0a(2) = T reay, sty
that is, UstU,— VifVa=loay; ¥2'Y:— X3 X, =10y
UltXl—V;,t?;,=0; X;‘('IA—Y,I‘171=O.

Therefore U; and Y, are invertible, and U;'V,=4U7'X;). Put 2,=U;' ¥V, Then

Ligy—2'2= U7 tU;* is positive hermitian. We have

_ lr(;') 2; tUA O
w,l(a:)——[% Ll 10 *Ta

On account of (1.7.1), this shows that the point (2, ..., 2,) of the bounded symmetric domain
He1y, 500 X o X Hiregy. 50y 18 the image of the point of ¥, corresponding to j=xj,z* € F(j,)
under the mapping by which we defined the structure of the hermitian symmetric space
H,, in 1.7. (Note the difference of the notation.)

Now the relations (5.3.3), (5.3.7), (5.5.1) and (5.5.2) make it possible to compare the
PEL-structure Q; attached above to an element j of #(j,) with that which Shimura attached
to a point (z,, ..., 2,) on the space U(xH)= W, q)sqy X ... ro).s0y I [9] and [10] (see 2.2-6
of {9], especially). The (possible) difference between these two occurs on the choice of the
representations p,, A=1, ..., g, once xH, M and u,, ..., u, have been fixed so that (5.3.4)
and (5.3.6) hold. But since, for each A, the representation Shimura chose and our yp, are
equivalent, and satisfy (5.3.3), we see easily, on account of what we saw in the proof of
Proposition 5 in 1.8, that

(6.5.3) There exists such an isomorphism y, of W, onto W(xH) as it maps the point on
H;, corresponding to an element § of F(j,) to the point on H(xH) to which the PEL-structure of
type Q=(cH, IM; u,, ..., u,) attached by Shimura ¢s isomor phic to the PEL-structure Q; of
type ) attached to § in Proposition 21.

5.6. PrRoPOSITION 22, Let P be a commutalive isolating subalgebra of B, and j the element
of F(jo) isolated by P. Let Q; be the PEL-structure of type (xH, M; uy, ..., u,) attached to j.
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For a€R,(P)y, let v be an automorphism of C such that v=[a, B,(P)] on R,(P)ay. Then
Q; is isomorphic to the PEL-structure Q] of type

(Nrypye(a)xH, M) winila) ™, ... uemla)™)

attached to j, where a is the ideal of R,(P) associated with a.

Proof. Let P=P,®...® P, where P, is a CM-field for u=1, ..., s, and C the com-
mutor of P in B. Then C=0,®...®C, with a central simple algebra C, over P, for each
n=1, ...,s. Since the commutor of C in B is P, we see by Proposition 8 in 2.2 that D® ;O =
D@xCrT'®...@DR4C;* where each D®gC,;* is isomorphic to M(n,, P,) with some
integer n, such that 235, n, [P, Q)=[D™ Q]. On the other hand, C is also an isolating
subalgebra of B, and isolates §, as was seen in 2.1. Therefore the representation V', of
D®gC(3)" defined in 1.10 is considered as a representation of D® xC-1. Moreover the
embedding 6, of D into Endq(A4;) extends to an embedding of D® zC-1 into Endg(A,)
where A; is the abelian variety of Q. All of these shows that Q; is of type (D®gC,
W, I, »H; uy, ..., ;) in the sense of 4.1 of Shimura [14] I. Hence the proposition
follows at once from 4.3 of [14] 1.

5.7. Let Gj, be as in 3.9, where we saw (. =K?*Gq, G},. Define a homomorphism
u of Gq, Gj, to F3, the multiplicative group of all the totally positive elements of F, as
follows:

It follows from the definition of Gj, that, for any z€ §},, the ideal £ of F associated
with the idele y(2) =22? of F is actually an ideal of Q. Therefore there is a unique positive
rational number £ such that y=(), the principal ideal generated by & We define u(x)=§.
Let y=ox be an element of Gq, G}, with x€Gq, and z€Gj,. We define u(y)=»{o)u().
Then it is easy to see that 4 is a well defined homomorphism of G, Gj, to F3, and that

(5.7.1) For any S€B], we have u(x)=1 for every z€S N Gl..

Let P be a commutative isolating subalgebra of B, j the element of }(j,) isolated by P,
and R;(P) and 7, as in 2.3. Then Proposition 9 implies at once that

(5.7.2) For a € R)(P)y, let a be the ideal of R,(P) associated with the idele a. Then u(n(@)) =
N ryeyg(a).

5.8. ProprosSiTiON 23. Let Q=(H, M, wuy, ..., %) be a PEL-type, and S=
S, wy, ..., u,) as in 4.7. Then the field kns, defined in 3.7 coincides with the field k() of
(5.2.1) for the PEL-type . Moreover the PEL-type Q°@® {5 equivalent to (u(x)xH,
Me; wyz, ..., u,x) for 2€GQq, Gj.

Proof. Take a commutative isolating subalgebra P of B so that R,(P) and k() k.
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are linearly disjoint over K, where § is the element of J(j,) isolated by P. By (ii) of (5.2.1),
we see that £(Q) contains K;,. Let « be an element of Gg, Gj,. Since R,(P) is linearly dis-
joint with k., over Kj, there exists an automorphism 7 of C over R;(P) such that 7=
o(@(@)) on kg, Take a€R,(P)y so that 7=[a, E,(P)] on R,(P)ay. Then o(n(x)) =7=
(@, B(P)]=0(n(n;(@))™) on kys, Therefore it follows from Proposition 18 in 3.7 that
a(n @)y =m(y')n(z)« for some y' €8 and a€A4,,. Then (iii) of Proposition 16 in 3.5 shows
that there is an element ' in Gq, such that «=zn(y’). Hence we have n(n,(a)~*y 7 2~1) =
7(y’) En(S). Since K*G,, S=K*S, there are b€K* and y€S such that n,(a)=yxby’.
Put y=by €Gq,. Then 7,(a)-! =yxy. Since 7,(@)2€Gj,, we have y€Gq, Gj,. Let Q; be
the PEL-structure of type Q attached to 5. Then Proposition 22 tells us that Qj is the PEL-
structure of type Q' =(u(n,(@))xH, Mn,(@)~; um,@)?, ..., um(a)?) attached to j. (See
(6.7.2).) Then 4.1 of Shimura [11] assures that Q7 is also of type Q' for every PEL-structure
Q of type Q. This means that Q7 is quivalent to €’. (See (5.2.3).) Since Q' = (u(yxy)*xH,
Myzxy; wyxy, ..., u,yxy) with y€SNGq, Gl yE€Gq, and u(y)=v(y)=yy’=yH'y*H?,
we see that ' is equivalent to the PEL-type (u(x)~'»H, Mx; wyz, ..., u,x). (See (5.7.1).)
Now take x=1. Then Qr is equivalent to Q for every automorphism 7 of C over E,(P)
that is the identity mapping on k.s. Therefore, on account of (i) of (5.2.1), we have
J(Q) S knsy since R,(P) is linearly disjoint with k(Q)kns, over Kj,. Thus for z€Gq, Gj,
Q°™ is meaningful and equivalent to (u(x)lxH, Mz; u,, ..., u;x). Suppose now that
o(n(x)) is ‘trivial on k(Q) for z€Gq, Gj,- Then since Q°“ is equivalent to €, thereis an
element y of M(m, D) such that y(xH)%® =u(x)"'xH, Mry =M and u,xzy=u, mod M for
i=1, ..., t. This means that y € Gq, and xy €S =S(I; u,, ..., u,). (See (5.3.4).) Hence o(n(x)) =
o(n(ry)) is the identity mapping on kngs,. As we saw at the beginning of 3.9, con maps
G, G}, onto Gal (®//K;,). Since k() contains K;, and is contained in ks, all auto-
morphisms of ks, over k(Q) are obtained by o(n(x)) for €Gq, Gj,. Therefore we have
kasy=k(Q). This completes the proof.

5.9. ProrosiTioN 24. Let Q=(xH, IM; uy, ..., u,) be a PEL-type, and V(Q) and v
as in (5.2.2). Let P be a commutative isolating subalgebra of B, j the element of 3(j,) isolated
by P, and Q, the PEL-structure of type Q attached to j. Then the point v(Q;) of V(L) is
rational over R (P)ap.

Proof. It follows from Proposition 23 that the field k(Q) is an abelian extension of K,
and hence, is contained in R,(P)sp. Now let v be an automorphism of C over R;(P)ap.
Then taking a=1€R,(P);, we see that Qj is isomorphic to Q,. (See Proposition 22.)
Therefore, on account of (ii) and (iii) of (5.2.2), we have v(Q,) =v(Q}) =v(Q;)*. This proves
the proposition.
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5.10. Now we restrict ourselves to the case that S =S8(IR; %,, ..., %) is small enough to
satisfy not only Proposition 20 but also (3.10.3). As was mentioned just after (3.10.3),
we may also assume that xSz~ satisfies (3.10.3) for every z€(,,,.

Put $1=(SNK*)(SN G;,). Define a Z-lattice R of D™ and a group I'(xH, N/M) as
in 5.2. Then we see easily that I'(xH, /M) coincides with 8N Gy given in (3.10.3). There-
fore we have n(I'(xH, N/M)) =nsyy. Note that I'(xH, N/IN) coincides with #(I"(xH, N/IN))
as groups of transformations on W(xH), or on H,..

ProrositioN 25. Let Q=(xH, M; uy, ..., u,) and Q' =(u(x)xH, Me; w27, ...,
u,27Y) be two PEL-types with x€Gq, Gj,, and (V(Q), v, gg) and (V(Q'), V', go) as in (5.2.2)
for Q and Q' respectively. Suppose that m(SY)=n(xzSx-) where S'=(SNK*)(SN Gj,)
with S=8M; uy, ..., u;). Then there is a biregular morphism Eqq. of V(Q') onto V(L2),
which is rational over kysy, such that gpq=Eqq-0pq-.

Proof. As was seen above, both I'(xH, R/M) and I'(u(x)xH, Na—t/Mz~!) coincide
with Iney=Dnzs1z-1 as transformation groups on H(xH)= H¥(u(x)xH). Therefore both
(V(Q), @q) and (V(Q'), ¢o) are models of the quotient space I'(xH, N/M)\ H(xH), and
Eqoq defined by go=Eqq0@q is a biregular morphism of V(') onto V(). Since there
are densely many isolated fixed points on H(xH), it follows from (v) of (5.2.2), (5.5.3)
and Proposition 24 that Eqp- is defined over the algebraic closure Q of Q, and so, over a
finite normal algebraic extension % of kg, Note that k,s,=ZFucsiz—1> Q) =kas =
knrse-ny=k(Q'). Let P be a commutative isolating subalgebra of B such that E,(P) is
linearly disjoint with & over K, where j is the element of J(j,) isolated by P, and Q;
(resp. Q;) the PEL-structure of type Q (resp. ') attached to j. Let  be an automorphism
of C over kg R;(P), and a an element of B,(P)s such that t=[a, B,(P)] on B;(P)ap.
Since o(z;(@)™2) =t =the identity mapping on ks, it follows from Corollary 2 of Proposi-
tion 19 in 3.9 that 7,(a)* =y« with y €SN G}, and 2 €Gq.. Since n(y) En(SN Gj,) =7(S?) =
n(@S'x-1) =nm(xSx~1N (,), there is an element bEK* such that b-ly€zSz-1n Gj,. On
account of Corollary 1 of Proposition 19, we may assume that € K. Then Proposition 22
in 5.6 shows that QJ (resp. Q%) is isomorphic to the PEL-structure of type (»(x)~'»xH,
Mo, uyat, .o, wgr) (vesp. (v(ba)u(z)xH, Me—be; w,xba, ..., w2~ b)) attached to j.
(Also see (5.7.1).) Therefore it follows from the corollary of Proposition 21 of 5.4 that
Q; (resp. Q;%) is isomorphic to the PEL-structure Q-1 (resp. Quy.-1) of type Q (resp. Q')
attached to ajo?. (Since bEK™, we have aja'=(ba)j(bx).) Hence we have v(Q,)*=
Q%) =9(Qyue-1) and v’ (Q;)*=9(Q;7) =9'(Que-1), on account of (iii) of (5.2.2). Then
(v) of (5.2.2) and (5.5.3) imply that Baq(v'(Qese-1)) =0(Qusa-1) =b(Qy)* = B (v'(Q))7) =

aa(0'(Que-1)). As we mentioned in 2.5, this is true for every point of a dense subset
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{0'(Qopip-1a-1)|BEGq,} of V(Q') since BB~ gives the same field B,(P)= Rps-1(fPB,
for every f€Gq,. Thus we have Eqq. = Epq.. Since 7 can move all the automorphisms of &
over kngs,, this shows that Eqgg. is actually rational over k., The proof is done.

5.11. Let Q= (»H, IM; uy, ..., u,) be a PEL-type, and define a PEL-type Q(x) = (u(z)xH,
M=t uyz, ..., wr) for z€Gq, Gj,. Put S=8(I; uy, ..., ;) and S1=(SN K*)(SN G,,).
We assume that S is sufficiently small, as in the previous paragraph.

Now let 2 be an element of Gg,Gj, such that n(xSz—1)=n(S"). Then Proposition 25
gives us a morphism ¥ =Eqgq,, of V((z)) onto V(Q). Let w be an arbitrary element of
Gq.Gj,- Then we have a morphism E’'=Eq,-1qu-1 of V(Q(wz)) onto V(Q(w™1)),
on account of Proposition 25. On the other hand, it follows from Proposition 23 that
Q7 (resp. Q(z)°™*Y) is equivalent to Q(w!) (resp. Q(w1x)). Therefore we have
morphisms f: V(Q(w1)) > V(Q)°™*” and f: V(Q(w-1x))—> V(Q(x))*™ ™ of (5.2.4).

PrOPOSITION 26. Let the notation and the assumptions be as above. Then E°“™of =
foE'.

Proof. Take a commutative isolating subalgebra P of B so that E,(P) is linearly disjoint
with Ky, over Kj, where j is the element of J(j,) isolated by P, and take an element
a€Ry(P); so that [a, B,(P)]=0(n(w1)) on ks, Note that k(Q)=Fk(Q(x)) =k(Qw1))=
knsyS knsy. Let T be an automorphism of € such that T=[a, R,(P)] on R,;(P)an. Since
o(ni (@) ) =o(m(w)) on kug, there are s€SN Gj, and z€Gq, such that 7;(a)'=
wsa.' (See Corollary 2 of Proposition 19 in 3.9.) Since 7(S!) =m(xS'2~1), we can find an
element bEK™ such that sb-1€xSz~1n G},. (See Corollary 1 of Proposition 19.) Then on
account of (5.7.1), we have Q(n,(a)w-l)=§2(a—1) and Q(n;(a)wx)=Q(bla"tx). Let Q;
(resp. R;) be the PEL-structure of type Q(w-1) (resp. Q(w-lr)) attached to j. Then it
follows from Proposition 22 in 5.6 that Q} (resp. Rj) is isomorphic to the PEL-structure
of type Q(a!) (resp. Q(b~la—x)) attached to j. Let Qi1 (resp. Ryj.-1) be the PEL-
structure of type Q (resp. Q(z)) attached to aja—. Then the corollary of Proposition 21
in 5.4 shows that Q) (resp. R}) is isomorphic to Qi;,-1 (resp. R.j.-1). Hence we have
E(0'(Reye-1)) =0(Qose-1)  and  B'(0(R))=0y(Q)). Since 7=0(n(w))! on kKQw™) =
B Qw 1)), it follows from (5.2.4) that f(v,(Q,))=9(Q})* =0(Qu.-1)* ' and f'(v01(R;)) =
V(R)"" =0'(Rye-1)"". Thus we have (foB)(0i(R))=/(v2(Q))=0(Qusa-1)* =
EF (0" (Rya)™ ) =(E*'of)(vi(R,)). As was mentioned in 2.5, this is true for Bjf—
for every f€Gq,, and {vj(Rss-1)|fE€Gq,} is dense in V(Q(w'r)). Therefore we have the
desired result.
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5.12. We are now ready to show

ProrosiTION 27. Let 8 =S(IM; uy, ..., u,) be sufficiently small in the sense of the begin-
ning of 5.10. Put 8'=(SNK*)(SN G},)€R}. Then there exists a canonical subsystem for
IOz (SY)).

Proof. Let W be a member of 8% (S)). Since 7(Gq, Gj,) =%j,, there is an element
w€Gq, G}, such that W=n(wSw1). Put 7=wSw=SMw; ww, .., w,w?) and
T =(TNK*) (TN G},). Then we have W =n(T") by (3.10.1). For each W €®(n(S")), fix
w€Gq, Gj, and T =wSw1, and put V= V(Q(w)) and gy =@as°; Where Q(w) is the PEL-
type (u(w)xH, Mw; wwl, .., w,w?), (V(QW)), gaw) is as in (5.2.2) for Q(w) and
%5 is as in (5.5.3). It follows from the argument given at the beginning of 5.10 that (Vy,
@w) is a model of I'y\ H,,. Since T'< T, we have ky =k > kncry =k((w)). Therefore
Vy is surely defined over ky.

Now let us construct J gy(n(w)) for m(u) €A, =n(Gq, G},) With u€Gq, Gj,. Put X =
a(u) Wr(u)=1, and let # be the element of Gg, Gj, selected to define Vy and ¢x. Put
U=x8z1 and U'=(UNK*)(UN Gj,). Then X =n(U*). Since Q(x)°™*” is equivalent to
Q(u-'z), we have a morphism f, of V(Q(u1)) onto V(Q(z))’™ ™) =VEF**” by (5.2.4).
On the other hand, if we put B=wSz'u and B! = (RN K*)(RN G},), we have n(R!) =
a(u) L (U n(u) =n(u) " Xa(u) = W = m(wStw1) = g(wr-tu(u xS u) u—lew ™) = m(wr1 x
uRWwtzw1). Therefore Proposition 25 applied to Q(x~12) and wz—'» in place of Q and

x gives us a morphism Eq,-15000) 0f V(Q(w)) =TV onto V(Q(uz)). Put
J xwlm(w)) = quEQ(u—lz)ﬂ(w)'

To see that this is well defined, let us replace » with beu where b€ K™ and c€ K, on account

of Corollary 1 of Proposition 19 in 3.9. Since ¢ has no effect at all, it is enough to show that
fu2 Baw-10000) = fru®Eaw-1u-1n00w)

for b€ K*. But this follows easily from (5.2.4), the corollary of Proposition 21 in 5.4 and
Proposition 25. Since kypy=ky containg k(Q(u—'2)) =ky g, =kasy =k~ both f, and
Eow-1n0w are defined over ky, and so is J yy(m(u)).

'We have to show that the properties (I11a, b, ¢) are satisfied. Suppose that z(u) belongs
to W. Then we may assume that w €71, and have x=w. Therefore Q(u1z)=2(w). (See
(5.7.1).) Moreover since g(n(%)) is trivial on k(Q(w)), f, is the identity mapping. This shows
(IITa). Let n(v) be another element of U7, with v€Gq, G}, Put ¥ =n(v) Xn(v)~?, and let y
be the element of Gq, Gj, selected to define Vy and @y. We have Y =n(yS'y~!). Then

J v x(7(®)) "0 J g w(7m(u)) = fZ""“”oEE’{Z’v“i?bnmofu ° Equ-1qow)e
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Since n(v1ySty—1) =n(rylv(v-ySy—lv)v-lyx1) as is easily seen, we have

o(T(u)) — ¢
EQuYamofe = fuo Baw-1v-1n0-12

by Proposition 26 applied to Q(v—y), zy—'v and u in place of 2, x and w respectively.
Now let Q be a PEL-structure of type Q(w—'v), and 7 and o automorphisms of C
such that 7=0(7(x)) and w =0o(w(v)) on ky. Then we have f,(9(Q)) =v'(Q*)*. Therefore
(570 fu) (0(Q) = (F(0'(Q7 )7 =(0"(Q7*7)*)* =fou(0(Q)). Hence

f‘,’,(”(“”of; — fvu-

The formula

Bou-10-1900-10°Eaw 105000 = Baw-10-1n000)

is easy to see. By these formulae, we see easily that
J yx(7(0))" o x w(n(w)) = J y w(m(vn))

for m(u), n(v) €N, =n(Gq, G},)- This shows (IIIb). Suppose now that u=x€Gq,. Let Q,
(resp. Q;) be the PEL-structure of type Q(w) (resp. Q(o—r)) attached to j. Then
Eoe-1500y0(Q;)) =0'(Q)). Since Q; is isomorphic to the PEL-structure Q-1 of
type Q(x) attached to ajax—! (see the corollary of Proposition 21), f,(v'(Q;)) = (Quj-1).
Then combining this and (v) of (5.2.2) with (5.5.3), we see at once that

wa(ﬂ(“))mpw = @xom(ax).

Here the last m(x)€A% is the transformation on H,, corresponding to the mapping
j—>oajot of F(j,) onto itself. (See 1.9.) Thus we have (IILc).

Finally, let P be a commutative isolating subalgebra of B, j the element of F(j,)
isolated by P, and Q) the PEL-structure of type Q(w) attached to j. For a€ R, (P);, let
u=n,(a)"t. Let Q; be the PEL-structure of type Q(u~1z) attached to j. Then Equ-1n0cw)
(0(Q,))=v'(Qj). Let 7 be an automorphism of € such that v=[a, B)(P)] on R,(P)ap. It
follows from Proposition 22 in 5.6 that Q" is isomorphic to the PEL-structure Q; of
type Q(x)=Q(n,(@) u ) attached to j. Therefore we haveJ gy (7(%)) (0(Q;)) =f.(0'(Qy)) =
p"(Qj* 1) =v"(Q;)*. We now get the property (IV) if we describe this by the words of
ow> @x and H,, (see (5.5.3)), and put it together with Proposition 24 in 5.9. The proof
is completed.

On account of Lemma 8 in 4.7, we have also proved Theorem 1.
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