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Introduction 

To begin with we recall the following classical theorem concerning analytic continua- 

tion across a linear segment: 

Let Q=Qa.b denote the rectangle {x+ iy; txl < a, lyl  < b) and let QJ: be its intersection 

with the open upper and lower ha@lane respectively. Two [unctionz /+ holomorphic in Q• are 

analytic continuations o/ each other across ( - a ,  a) i/ they have continuous and identical 

boundary values on ( - a ,  a). 

Although the stated conditions are both necessary and sufficient the theorem is 

nevertheless inadequate in most nontrivial situations, the reason being tha t  the two func- 

tions involved usually appear in a form which does not a priori imply either continuity or 

boundedness at  any point on the common boundary. In  most cases the a priori knowledge 

o f / ~  consists of a growth limitation at  ( - a ,  a) of the form 

[l~(x + iy)[ <~ e a(ty[), (I) 

where h(t) is a given function increasing steadily to oo as t tends to 0. The analytic con- 

t inuation problem for functions satisfying (1) will be divided into two parts, referred to as 

the convergence problem which is closely related to a theorem by  Runge, and the problem 

of mollification, to be treated in Chapter I and I I  respectively. The solutions of both are 

imperative for the formation of a general theory and both have solutions if and only if 

f0 ~log h(y) dy < oo. (2) 

I f  h(t) increases sufficiently slowly to ~o, or more explicitly, if (1) is replaced by  

IF( + iy) l = O(lyl-"), (a) 
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valid for some k>0 ,  then the problem falls within the scope of Schwartz's distribution 

theory with this solution:/+ have boundary values in the distribution sense if and only if 

(3) holds, and the functions are analytic continuations of each other if and only if the two 

distributions agree on intervals [ - c, c], c < a. The particular order of magnitude expressed 

in (3) is however not inherent in the problem but due to the basic use of derivatives and 

primitives in the distribution theory. 

In  the complex space C m, m > 1, the domains of holomorphy add a new element to the 

continuation problem. In a third chapter we consider first a convexity notion of point sets 

in R m, later to be applied when the two regions in C m have a common flat boundary of 

dimension m. Theorem I I I ,  the main result of the chapter, is of a rather old date but 

seems to have survived the years in complete anonymity. I t  was proved by the author in 

1958 after G~irding had made me aware of a related problem actual at the time in quantum 

field theory and called the edge of the wedge problem. The result was never published 

but it was presented at a seminar at The Institute for Advanced Study during the fall 

term 1958 and later at the Colloquium on Function Theory in Bombay 1960. A last chapter 

contains a brief review of an extended distribution theory [3] as compared with the methods 

used in this paper. 

The problems considered in this paper have all been treated earlier by the author 

usually in a less complete form in articles on specific problems or in lectures and seminars. 

This more comprehensive exposition grew out of a series of lectures on the subject given 

the fall term 1970. Other references will be given in each chapter. Concerning the edge of 

the wedge problem the reader is referred to a recently published expository article by 

W. Rudin [8] and to the bibliography contained there. 

We conclude this introduction by recalhng some results on analytic functions which 

satisfy an inequality of the form 

]](x + iy) l <~ const e alyl (4) 

either in the upper or the lower halfplane or, if / is entire, in the whole complex plane. If  / 

is regular for y > 0, then log I/(z) ] - ay is subharmonie and bounded from above and con- 

sequently majorized by its Poisson integral. The familiar conclusion is that  un less / - -0 ,  

log I/(x)] has to be Poisson summable, by which we mean summable on ( - ~ ,  ~ )  with 

respect to the measure dx/(1 +x~). We note at this instance that (4) is satisfied by the 

Fourier transform of any measure with support in the interval [ - a ,  a]. 

We shall also resort to the following result. If k(x) is an even, positive and Poisson 

summable function which increases steadily for x >0, then for each given a >0, there 
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emsts a continuous function ~v(t) with support in I - a ,  a], such that  its Fourier transform 

has the properties: ~(0)= 1 and 

l r  c o n s t  - < x < ( 5 )  

where the constant only depends on k and a. When applying this result we may assume 

that  ~(t)/>0, since the function 2[~(t)[2, due to the relation 

f e-k(x-~)-k(')d$ < 2e-k,~12) f e-'~(~)d$ ' 

will possess all the requested properties if 2 and k are appropriately chosen. 

I. On a theorem by Runge 

Let Q, Q+ and Q- denote the rectangular regions considered in the introduction. If 

/+ and ]-  are analytic functions regular in Q+ and Q- respectively, then a classical theorem 

by Runge asserts the existence of a sequence In of functions holomorphic in Q and con- 

verging to /+  in Q+ and t o / -  in Q-. The/n  can obviously not remain bounded in a neighbor- 

hood of any point of the segment ( - a, a) unless/+ a n d / -  are analytic continuations of each 

other across that  point. The main problem of this chapter is to characterize the growth 

limitations at ( - a ,  a) which can be tolerated by the functions without ruining the approxi- 

mating property in l~unge's theorem. This question is most conveniently studied in the 

topology of a weighted supremum norm. 

To this purpose let w(y) be continuous in [ - b ,  b]; w(y)>0 for y # 0 and w(0)=0. As- 

sume moreover that  w(y) decreases steadily as y approaches 0 through positive and nega- 

tive values, Let  Cw(Q) be the Banach space of complex valued functions / such that  the 

product w(y)/(z) is continuous in the closure of Q and vanishes on [ - a ,  a]. The norm will be 

Iltllw = s u p  w(y)II(x+iy)l. (6) 
x+iyeO 

Define A~(Q) = {/; / e  Cw(Q), / holomorphic in Q}, 

AM(Q +) = {]; ]eC~(Q), ] holomorphic in Q+ U Q-). 

The conditions already imposed on w imply that  A~(Q~=) is closed and thus a subspaee of 

Cw(Q). The same is not unconditionally true of Aw(Q) and our primary objective is to deter- 

mine the closure of that  set. 

T H w o 1~ E M I. Under the condition 

fo 1 f 0 log log w ~  dy + e=  ~ (7) 

the closure o/Aw(Q) equals A~(Q~=) and so does the closure o/polynomials in the metric (6). 

I] (7) is ]inite, then Aw(Q) is closed and consequently a proper subspace o] Aw(Q+-). 
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In  the proof of this and some subsequent theorems we shall avail ourselves of some 

elementary but  important  properties and interrelations of positive monotonic functions 

on the real axis. Let  h(y) be a positive and monotonic decreasing function of y > 0  tending to 

o~ at  the origin. The lower Legendre envelope of h will he denoted Lh = k(x) and defined 

by the relation 
k(x) = inf (h(y) + xy), x > 0. (8) 

y > 0  

As a lower envelope of linear functions, k(x) is concave and it increases to cr with x. I f  

h(y) is only defined on a finite interval (0, b] we extend its domain by  setting h(y)=h(b) 

for y>~b. I t  should be noted tha t  this modification does not influence the value of k(x) 

for large x. 

I f  k(x) is a positive function for x > 0, tending to ~ with x, but  not necessarily mono- 

tonic increasing, we shall consider its upper Legendre envelope Uk defined as 

U k = s u p  ( k (x ) -xy ) ,  y > 0 .  (9) 
X>D 

This function is obviously convex and tends to c~ at  the origin. I t  should be noted tha t  the 

upper envelope of Lh =k(x) equals the largest convex minorant  of the original function 

h(y). 

L ~ M ~ A  I. Let h(y) be a decreasinq positive/unction o/ y >0,  and let h*(y) be its largest 

convex minorant on (0, ~ )  and k(x) its lower Legendre envelope. Then the integrals 

fo f: f; log h(y) dy, log h*(y) dy, ~ dx, (10) 

are simultaneously convergent or divergent. 

The statement concerning the first two integrals is trivial. If  h is continuous, which 

we may  assume, then the set where h(y) > h*(y) is open and thus formed by  disjoint 

open intervals. I f  (a, a+t)  is one of these intervals we shall have 

f aa+t f f+t,  h(a) log h(y) dy <~ t log h(a), log h*(y) dy > 2 log 
2 

which proves our assertion. 

Assume next  tha t  the first integral in (10) converges, and define hi(y)= h(y)/y. Then 

k(x) = inf y(hl(y ) + x) <~ 2~(x) x, (11) 
y>O 
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where ~(x) is the solution of the equation hl(~) = x, if h1(~1 ) = 1, then 

x2 dx<~ - - d x =  - 2  ~ d l o g h l ( ~ ) = 2  loghl (~)d~< co. 
,11 x 

Let  now the third integral converge, and assume tha t  the derivative k'(x) is contin- 

uous and strictly decreasing. Define ~(y) by the relation k ' (~)--y.  Then 

and 

h*(y) = sup (b(x) - xy) < k(~(y)), 
X>O 

log h*(y) dy < log k(~(y)) dy = , log k(~) db'(~) = - 0 log b(~l) + j~ b(~) 

where k ' (~l)= (~. Since k is concave the last integrand above is majorized by  k(~)/~ 2 and 

this completes the proof since the validity of the inequalities is not affected by  the qualita- 

tive assumptions made on k'. 

Proo/o/ Theorem I. In  order to prove the first par t  of the theorem it is sufficient to 

show tha t  polynomials are dense in Aw(Q~). Each linear functional on Cw(Q) has the form 

f /(z) w(y) d/z(z), 

where d r is a Radon measure with support in the closure of Q. As a first step in the proof 

we shall show tha t  if polynomials are orthogonal to the measure wdlu, then the same is true 

for the restriction of tha t  measure to the upper and to the lower halfplane. For arbi trary 

complex $ we have 

O= fe'%(y)dt,(z)= f~,o+ f~o--F+(C) + F-(C). (12) 

Both functions on the right are entire and of exponential type. F+(~) is bounded for real 

> 0, and F-(~) for ~ < 0. Both are thus bounded on the whole real axis and must  therefore 

satisfy the inequality (4). Without  loss of generality we assume tha t  the first integral in 

(7) diverges. Writing h(y)--logw(y), y > 0 ,  we obtain for ~ > 0  

I ~§ </~>0 e-~-~(~)l dg(z) I < II~lle-k% (13) 

where k(x) stands for the lower Legendre envelope of h. By Lemma I applied to h(y) it 
follows tha t  
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Hence, log [F+(~)I is not Poisson summable and F + = F - = 0  follows, proving our state- 

ment.  

In  order to finish the proof we have to show tha t  the measure wdl~ annihilates all 

/6Aw(Q+). To this purpose define TEZ=Zl+(1--s)(z--zl) , 0 < e < l ,  where z 1 stands for the 

center of Q+. By a simple estimate we find tha t  

w(y)ll(T z)l <eonst Illllw,  eQ+. 

Thus, by  dominated convergence, 

e= +0 >0 >0 

(14) 

Since the func t ion / (T  e z) is analytic in the closure of Q+ it can be approached uniformly 

there by  polynomials, proving tha t  (14) vanishes. The analogous result holds for Q- and 

polynomials are therefore dense in Aw(Q+), and the Runge approximation property holds 

under condition (7). 

The second par t  of Theorem I together with the main result in the next  chapter 

depends essentially on the solvability of a certain generalized Dirichlet problem relating 

to the function re(y) defined as the logarithm of max h(+_y). 

LE~MA I L  Let re(y) be an even/unction, bounded/tom below, decreasing and summable 

in (0, b]. Then re(y) has a ma]orant ml(y ) with the same properties and such that the/ollowing 

holds: There exists a simply connected region D contained in Q, and containing each 

rectangle PC = {x +iy; I x ] < I ~ I, [Yl < I~ I } /or ~ = ~ + i~ e ~D. Furthermore, the generalized 

Dirichlet problem /or D with boundary values=e m'(€ at ~=~+i~e~D has a solution u 

satis/ying 
0 < u(x + iy) < 2 e m'(O + c, (15) 

in PC/or ~ 6 ~D, c being a constant depending on Q and m. 

We shall show first tha t  the majorant  can be taken equal to re(y) itself if these condi- 

tions are satisfied: (i) re(y)eC~(O, b]; (if) -m ' ( y ) y  3 is decreasing in (0, b]; (iii) -m'(y)y>~ 

max (1/3, a/2b). We recognize tha t  only the second condition is significant since the first 

always can be fulfilled by  a smoothening, ~hd the last by adding to m a term c log (b/y). 

Instead of trying to estimate u for different regions D we shall construct a continuous 
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superharmonic function U such tha t  the set {x + iy; U(x + iy) = e m{y}} forms the boundary of 

a region D with the prescribed properties. Then the Dirichlet problem will have a solution 

u which automatically will satisfy the same inequalities. 

By  (iii) there exists a positive number ~ ~<b such tha t  

fO ~ U - m'(y) ydy = ~. (16) 

Let  now g(x) be the solution in [0, a) of the differential equation 

and consequently 

g(x) d ( 1 )  1 
2 ~ ~ ,  g ( 0 ) = ~ .  (17)  

x ~ 1 d m'(y)ydy. ~ -  m '  = 
g 

The relation �89 = - m'  (18) 

together with (ii) show tha t  g' is positive and increasing with x. We also note tha t  

�89 g(x)dx=m 1 - m(~), x e  [0, a). (19) 

The definition of g is now extended to ( - a, a) by  setting g( - x) = g(x). Therefore g(x) and 

the function 

/(x) ~ exp g(x) dx 

are even, convex and positive in ( - a ,  a) and tend to c~ at  • a. These properties are of 

course also shared by  ]g2. As a step in the construction of U we set 

Uo(x + iy) =/(x) (2 -y2g2(x)) 

and define D = (x+iy; Ix] <a, lYl <l/g(x)} (20) 

This region is contained in the rectangle Qa.~, and has the geometric properties prescribed 

in the lemma. At points ~=~+i~E~D, we have U0(~)=ex p (m(~)-m(2)),  and in the in- 

scribed rectangle PC, Uo(Z) ~<2U0(~)" For x > 0 ,  

Uo = 2/" - 2/g~ - y~(ta~) " ~< 2/~ - 2/g~ = / g ~  { g '  - 3~ (21)  �9 ~g~ 2 / '  

where the parenthesis is ~< 0 due to (iii) and (18). Hence, U 0 is superharmonic in the 

11 - 722909 Acta mathematica 128. Imprim6 le 23 Mars 1972. 
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strips 0<  x <  a and - a <  x <  0 but  not in D because ~Uo/~xhas a jump on the imaginary 

axis equal to 

3U. =1[~ yg_4y, g,(O))<~ ' 
2-~-x (+0 ,  Y) ~ -  2 ~ 

and thus positive for small y. A superharmonic U satisfying all the conditions is however 

easily obtained by choosing 

U(z)=e~(~)(Uo(z)+~ F G(z, iv)@), (22) 

where G is the Green function for D. The potential integral vanishes on 3D and is bounded 

by some constant c 1 in D. The inequalities (15) are therefore verified by U with 

c=c 1 exp re(X), and the same holds true for the harmonic function u. 

I t  still remains to be proved that  m(y) has a summable majorant satisfying (if), or 

equivalently, that  m(~ -ls2) =~(~) has a concave majorant on (c, ~ ) ,  c =b -2, summable with 

respect to the measure ~-al2d~. Due to the relation ~p(~)=0(~ -1/2) it  follows that  ~p(~) 

has a least concave majorant ~0"(~) on (c, oo). Let  c% = (~n, ~') be the open disjoint intervals 

forming the set {~; ~>c,  yJ*(~)>~(~)} and set ~7= =yJ(~=), ~1" =yJ(~'). In the Cartesian plane 

(~, ~) let da denote the measure ~-al2dy. To each interval o)~ we assign the strip 

Sn={(~,~); ~<~<~176 and the triangle A n with vertices at (~,~/~), (~n,~=) 

and (~', ~ ) .  Since the S= are disjoint and located between the graph of y~ and the t-axis, 

we have 

a(S~) < f~ y~(~) ~- ~ d~. 
3~ 

Because y~ is increasing and y~* linear in w= it follows that  

f~ .  (~* - ~) a(A~). ~-~d~ 

By computation, < 1, 

which proves the stated summability. 

Let  us now return to the proof of Theorem I and show that  the set Aw(Q) is closed if 

(7) is finite. Let  {/n}TcAw(Q) be a Cauchy sequence and assume for simplicity that  

[I/nil <1. Hence 
log [In (x + iy)[ < e m'(y), x + lye Q, (23) 

and harmonic majoration yields 
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Iog [/,~ (x + iy)[4 u(x + iy), x + iy E D, (24) 

proving t ha t  t he /n  are uniformly bounded in Q outside neighborhoods of the points +a .  

The sequence therefore converges pointwise in D to a function which necessarily belongs 

to Aw(Q). 

H. Mollification of analytic functions 

A scalar function / defined on an Abelian group G is most conveniently regularized 

by a convolution operator 

The function ~0 will be called a mollifier if it is continuous and ~> 0, has compact sup- 

port  and 

f ~ ( ~ )  = 1. de 

The usefulness of a convolution derives mainly from the fact tha t  it inherits those pro- 

perties of its components which are invariant under the group operation. Another useful 

property is that  the operator norm is 1 in all translation invariant metrics. 

We shall be concerned only with the case tha t  G equals a Euclidean space R m of 

dimension m >~ 1. By ~(~) we shall denote the radius of the smallest ball centered at  the 

origin and containing the support  of ~v. A sequence {~vn}T will be referred to as a 

mollifier sequence if ~(~0n)-+0. The following definition will be used concerning families 

F (~ )  of locally summable functions on an open subset ~2 of R m. 

Definition. F(~)  is said to be molli/iable if there exists a mollifier sequence {q~n}F 

with these properties: To each compact subset K of ~ can be assigned an integer N(K) so 

tha t  for each fixed n >~N(K) the  set ~n~e F(~2) consists of functions equicontinuous on K 

and bounded there by some constant c,. 

I t  should be noted tha t  the requirement of equicontinuity is redundant  in the sense 

tha t  if {qn} mollifies 2'(~2) to boundedness on compacts for fixed n, then {qo~eq0n} yields 

both boundedness and equicontinuity. Similarly, if the sets F , ( ~ ) ,  v = l ,  2, ..., q, are 

mollified by  the sequences {~ ,  ~}, r = 1, 2 ... . .  q, then they are simultaneously mollified by 

{~v,} with ~o~ = ~0~. 1 ~ ~v,, ~ ~. . .  * q, ,  r 

In  the sequel the space C ~ of m complex variables will be considered as the 

Cartesian product R a • R m where the two copies of R a carry the real and the imaginary 

par t  of the vector z=x+iy .  We shall be concerned with regions of the particular form 
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~ + i Z  = ( z=x  + iy; xE~ ,  yE~}  (25) 

where g2 and Z are connected open subsets of R m, and Z has y = 0  as boundary point. 

The set ( z=x+iy ;  xEs y = 0 }  will represent the linear boundary where analytic con- 

tinuation will take place. As earlier in the paper, h(t) will stand for a decreasing function 

of t > 0  tending to infinity at t=0 .  We shall write Ah(~+iF~ ) for the set of functions 

analytic and single valued in s  and subjected there to the majoration 

I/(x + iy)] <~ e aa(~)), t(y) = dist (y, ~ ) .  (26) 

This set will be called mollifiable in x if the family 

F(s = (g(x); g(x) = fix + iy), y E Z, / E Aa(~ + iZ)} 

can be mollified in accordance with the given definition. The main problem of this 

chapter is to decide in terms of h and ~ whether a set Ah(~ + iZ) is mollifiable or not. 

The o n e - d i m e n s i o n a l  case  

For functions of one complex variable it is sufficient to consider the set Ah(Q+ ) of 

functions analytic in Q+ and satisfying (26) with t(y)=y. The following result is of basic 

importance for the general problem. 

T~]~OR~M II.  Ah(Q+ ) is molli]iable i / a n d  only q h(t) catisfies condition (2). 

The proof is based on Lemma I I  together with a certain representation of / described 

in the following lemma. 

L~MMA III.  I /  h satisfies the previous condition, then each ]EAh(Q+ ) can be written 

/(Z) = gl(Z)/l(Z) + g2(z), (27) 

where /1 is analytic o// the segment I - a ,  a], vanishes o/ second order at ~ ,  and satisfies 

( x + i y ) l a x ~ e  , y>O,  (28) 

with h2(y)=hl (Y) + log+ l +  (29) 

h i being the ma]orant o /h  figuring in Lemma I I .  The/unctions gl, g2 are analytic in a region 

containing ( - a ,  a) and have fixed bounds there. 

Let u be the function harmonic in the region D of Lemma II,  m = log h, and let v be its 
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conjugate normalized by the condition v(0)=0.  D is contained in a rectangle {x+iy; 
Ix[ <a ,  ]Yl <2} for some 2~<b. Denote by r the part  of ~D located in the upper half- 

plane, and let y~, 0 <e  <2, be the modification of y obtained by replacing the portion above 

y--e  by the linear segment joining the points ___~+ie. Define F=u+iv,  and 

c, = :--:. e-~(r ") d$. (30) 
2 ~  

Since the integrand is bounded by 1 and the length of y is <2a  +22 we have ]c~] < (a +2)/~z. 

In (30) as in the following formulas the integrations are made in the direction of increasing ~. 

Define 

1 f t ,  d~ h(z) = ~ (e-~(~>/(~)- ci) ~_ z' (31) 

where e is chosen so small tha t  z lies outside the region limited by y~ and ( -  a, a). For 

x+ iyED, y >0, we obtain by the Cauchy representation 

e-F(~)/(z) - cl = ~ ~- ~ =--/:(z) +/2(z), (32) 

where /2 is analytic off 7. A decomposition of the form (27) is thus obtained with g l=  

exp (F), g2=(/2+Cl)exp (2'), and both functions are analytic in D. Let  (~(z) denote the 

distance from z to [ -  a, a]. If 6(z)>~ 2 b or y < 0 we choose y as integration path in (31) and 

obtain 
const 

If ~(z)< 2b and y >0  the choice e = y / 2  yields 

I/l(z) [ < eonst  e~,(~% 
Y 

and (28) follows with a constant in (29) uniformly bounded if a is bounded. 

The integral 
g a  

(I)1(~) = J/I(Z) e-i~Z dz 

extended over any line Im (z) = y > 0 represents a function vanishing for ~ < 0 and inde- 

pendent of y. Consequently, 

I(I)i (~)I<~ inf e h'(~)+~e = e k'(O, ~ >0, (33) 
y>O 

where k s stands for the lower Legendre envelope of h s. 
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In order to prove that  Ah(Q+ ) is mollifiable it is sufficient to show that  for any a'  < a  

there exists a mollifier ~0 with Q(qj) < a - a '  such that  ~ ++ ](x § iy) remains uniformly bounded 

throughout Ah and for Ix] <~a', O<y<~b. To this purpose let ~ > 0  be so small that  the 

closed rectangle P = {x § iy; ix ] ~<a'+ ~, [y[ ~< 2:r is contained in D. Since g2 is bounded in 

P, and ] is bounded for ix[ <~a', a < y < b ,  it suffices to prove that  

f qJ(x - t) g~(t + iy) /~(t + iy) dt (34) 

is bounded for ix I <~a', 0<  y < a .  We are going to apply the Parseval relation to (34) and 

denote by y~($, x, y) the Fourier transform in the variable t of q~(x-t)gl(t+iy).  Since 

(I)1(~) exp ( -y~)  is the transform of / l ( t+iy) ,  we find that  (34) equals 

, f  2-~ Y'( - ~' x, y) (I)l(~) e -~y d~. (35) 

To conclude the proof we need this lemma. 

L~MMA IV. Let y be a closed interval, ~ a positive number and g(t) a/unction analytic 

and bounded by a constant M in the region (t; dist (t, ~,) < zr Let q~ be a continuous ]unction 

with support in an interval { t ; ] t - to l < 0~ } with toe ~ , 0<1,  and let the Fourier trans/orm 

o/qo satis/y 
]~(~)[ ~< e -eg(~), (36) 

where K(}) is concave /or ~ >0, even and Poisson summable. Then there exists a constant 

C(K, O, ~) such that the _Fourier trans/orm o/ qn(t)g(t) is ma]orized by 

C(K, O, ~) M e  -~:(~). (37) 

Consider first the case t o = 0. Then, 

~f(t)--~q)(t) g(t) = ~cnt~q~(t), Icnl ~ M a  -n, (38) 
0 

and consequently v)(~) = ~ Cn(i)nDn~(~). (39) 
0 

If K(~, ~) is the Poisson integral of K, then harmonic majoration applied to both half- 

planes yields 
log I(~(~+i~)] <f l ]~] l -2K(~,  1~7]) (40) 

with fl=Oo:. By obvious reasons, 2K(~, ~7)>~K(~, 0)=K(~). The minimum of 2K(~, ~) on 
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the disk {~; ]$ -~ ]  ~<r} is ~>g(0) if r > ~ > 0 ,  and > ~ K ( ~ - r ) i f  r~<~. Assume ~>0  and de- 

note by re(r, ~) the maximum of I~(~)1 on the same disk. Hence, for r~<~, 

[Dn~(~) I < n!  re(r, ~) r -n <~ n!  r -~ exp [fir - K ( ~  - r)]. (41) 

The choice r = n/f l  together with Stirling's formula gives the result, 

[Dn~(~)[< 3 Vn + I fin exp [ - K ( ~ - n / f l ) ] ,  (42) 

where K ( ~ -  n/fl) has to be replaced by K(0) if n >/fl~. Writing in the first series below, 

O n = 0 n/~ exp ( - 8n), ~ = (log 0)/2, we get 

3M { Z V ~  1 0 ~/~ exp [K(~) - K ( ~  - nlfl) - (~n] 
n<p~ 

+ex p  [K(~) - K ( 0 ) ]  ~ n ~  1 0n} (43) 
n>p~ 

The exponent K ( ~ ) - K ( ~ - n / f l ) - S n ,  considered as a function of the continuous 

variable n, is convex in the interval [0, fl~] and its maximum A(~) there is consequently 

assumed at one of the endpoints. Hence, A(~) is the largest of the numbers 0 and K ( ~ ) -  

K(0)-~fl~. Since K(~)=o(~ )  it follows that  the second quanti ty above is ~<0 if ~>~0, 

and A(~) is thus bounded for ~>0  by a constant depending only on K, 0 and ~. By 

symmetry the same bound holds for ~<0.  The first series in (43) is therefore majorized 

by  a constant with the prescribed properties, and the same is true of the second series by a 

similar argument. The previous proof is valid for 0 4= t o e ~, and the lemma is thus established. 

The function g(t) = gl(t + iy) satisfies the conditions of Lemma IV for ] y i < ~, with 7 = 

[ - a ' ,  a'], M being the maximum of i gl] in the rectangle P, and ~ the number figuring in 

the definition of P. Let  the mollifier q0 satisfy the conditions (36) and ~(~)<0~<~.  By 

Lemma IV and (33) it now follows that  (35) is bounded under the given restriction on 

x, y,  if 

r e -  K(~)+ k,(~) d~ 

is finite, which can be realized by an appropriate choice of K. This finishes the proof of 

the sufficiency of the condition in Theorem II.  

The necessity of the condition will be proved by construction of an example showing 

that  Ah(Q+ ) contains an / which cannot be mollified if h violates the summability condition. 

Let  again/c(t) be the lower Legendre envelope of h(y), and define 

l(z) = I ~ 
dt eitZ+k(~) t- ~. (44) 

31 
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Whether  or not k is Poisson summable, we always have k(t)=o(t), and [ is thus analytic 

in the upper halfplane and satisfies 

I/(x + iy)] ~ sup e -~+~a) ~< e n(~), y > O. 
t>~l 

If  / were mollifiable in x on any interval ( - a ,  a) there would exist a mollifier V such that  

q~ ~ / ( x  + iy) remained bounded for y > 0 and for I xl sufficiently small, and the same would 

hold if V is replaced by 
/ b  

~(x) = | ~ ( x  + ~) ~(~) d~. 
J 

Since ~(t)= [~(t)[~ we would have 

f dt 
~p~:/(O§ e-~Y+k(t) I~(t)12 ~ .  (45) 

If  h violates (2), Lemma I asserts tha t  k is not Poisson summable. Together with (45) 

and the inequality between the arithmetic and geometric means this leads to the 

contradiction 

log I~(01 i - ~  =- - ~ '  

finishing the proof of Theorem II.  

The previous results make it clear how, and how far, the classic continuation theorem 

can be extended in the case of one complex variable: 

COROLLARY OF THEOREMS I AND II. Two/unctions ]+, analytic in QJ= respectively, 

are analytic continuations o/each other across ( - a ,  a) i / a n d  only i/there exists a sequence 

{q~n} moUi/ying /~ on ( - a ,  a) and such that the mollified ]unctions ~ agree on intervals 

[ -  a', a'] /or a' < a and satis/y an inequality 

I[~ (x + iy)[ <~ e ~(1~1" a,~ 

where h(y, a') is decreasinq in y and (2) is verified. 

The  m u l t i d i m e n s i o n a l  ease 

We shall begin this section by considering some geometric notions and later show how 

Theorem I I  by means of finite compositions of one-dimensional convolutions can be 

applied to the multidimensional mollification problem. 
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If  y is a point ~ R ~ and r a positive number, B(y, r) will denote the open ball of radius 

r centered at  y. We shall be concerned with a certain kind of t runcated circular cones 

C(y~, y~, r), r < I Yl -Y~ I, defined as the union of all linear open segments (Yl, Y) for y e B(y~, r). 

The linear segment joining y~, y~ will be called the axis of the cone, and the angle 

0 - -2  aresin r/Iy ~ -Y~I its opening. 

Definition. A connected open subset F of R m is said to have the interior cone property 

if there exist positive constants ~, 0, and a finite set of unit vectors (Up}l q such that  the 

following holds: For each y EF there exists at  least one truncated circular cone contained 

in F and with opening ~>0 and otherwise such tha t  its axis contains y, has length 

ly -y l and is paranel one of the vectors 

As an example let F be an open convex cone. The interior cone property holds with 

q = 1 if the sole vector u 1 is chosen in F. The conditions are met  with 0/2 =min imum angle 

between u 1 and the generators of P, and with an arbi trary ~ > 0. Each open convex region 

1 ~ has the interior cone property and explicit bounds for q, ~ and 0 can be obtained in terms 

of the dimension m and ~,, ~2, if F is bounded and Q1 < ~  are numbers such tha t  for some 

Y0, B(Y0, ~1) ~ F ~  B(Y0, e~). The previous definition is thus satisfied by  finite unions of 

convex regions, but in general not by  infinite unions, nor by  any  region with a boundary 

containing a cusp, and hence not unconditionally by  starshaped regions. 

COROLLARY OF T ~ O R ~ M  II .  The set A h ( ~ + i F )  is molli]iable i] h satisfies (2) 

and F has the interior cone property. 

I t  is sufficient to show the existence of a probabili ty measure d~ with support  in 

an arbitrari ly small ball centered at  the origin such tha t  

f /(x § iy - ~) d/~(~) (46) 

is uniformly bounded in K §  K being a given compact c ~ .  Assume dist (K, ~ ) > ~ ,  

and let (u~}~ be the unit  vectors in the previous definition related to I ~. The integral 

/(~ + iy - ~ ~ )  I-I~ (k) d~ (47) 
1 1 

is obviously of the form (46), and if the support  of ~0 is contained in I - e ,  s] then the support  

of d/~ lies in the closure of B(0, qe). Let  ~, be the index of the particular vector u~ correspond- 

ing to the truncated cone with axis passing the point y El-'. We shM1 pay  special at tention 

to the result of the integration with respect to d;t~ in (47), assumed to be made first. Write 

;t~=~ and x+Y~.~ .~u~=x o. Then, 
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q 

l(x + iy - ~ ~ u~) = ](x o + iy - ~u~) = F(~). (48) 
1 

Assume ~ < ~/q, where q, as later T and O, refer to the parameters  of the interior cone pro- 

per ty  of F. _F(~+i~) is analytic in a rectangle P = { ~ + i ~ ;  - ~ < ~ < s ,  ~1<~<~2} with 

~2-~1~>~ and satisfies there the inequality 

log [F(~ +i~) I <~h(c(~-~l)), c =sin  0/2, 

Since ~, ~, and c are fixed, there exists by Theorem I I  a mollifier ~ such tha t  

f cf(~) F(~) d~ l <~ c(~), (49) 

where the bound c(e) is finite for e >0,  in general tending to co as e-+0. Since the integra- 

tions with respect to the other variables ~ only can decrease the value of (49), the corollary 

is estabhshed. 

The following remark concerning the existence of unique boundary values will be 

useful. Assume Ah(~ + iF)  mollifiable and let K be a compact c ~ .  Then there exists a 

such tha t  for gEcf~eAh, 

Ig(x +iy)l + [gradxg(x +iy)] <~c, x + i y e K  +iF. 

By the Cauchy-Riemann equations, Igradxg] = lg r adyg ] .  Consequently, Ig(x+iy) -  
g(x +iy')[ <.c[y, y', F], where the bracket stands for the inner distance in F defined as the 

lower bound of the length of an arc joining y, y '  within F. Call a boundary point Y0 simple 

if for each sequence {Yi}T c F the convergence Y~->Yo implies 

lim [Yi, Yj, P] = 0. 
10 t=~  

Then g(x + iy) has a unique and continuous limit on K as y tends to a simple boundary 

point. 

Remark. I t  seems natural  to ask whether or not a more general result could 

emerge by  weakening the conditions on h. I f  h is lower semicontinuous and log h ELl(0, (~), 

then there still exists a region D such tha t  the Dirichlet problem in Lemma IX has a solu- 

tion. The boundary ~D does not however need to be rectifiable any longer. As a conse- 

quence the second par t  of Theorem I remains valid under the new conditions, whereas 

the t ru th  of Theorem I I  remains in doubt  due to the use of the Cauchy integral. 
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I t  should he noted tha t  the majorat ion connected with Lemma I I ,  and the problems 

of mollification and analytic cont inuat ion in one complex variable was t reated in [2] 

and [3] by  means of Fourier  analysis. 

III. Analytic continuation in C "~, m >~ 2 

The continuat ion problem in C m contains a var ie ty  of situations among which we 

shall only consider one of the main  cases, the symmetr ic  case, characterized by  the sym- 

me t ry  D ~ = ~ •  of the two regions involved. Here and for thwith  ~ and E are always 

open connected sets, E N ( - Z ) = •  and E has y = 0  as boundary  point. I f  ]• are holo- 

morphic in D • and co is an open subset of ~ ,  analytic cont inuat ion of /* into each 

other  "across" co means something different than  in the one dimensionai case, the set 

D+U D - U  {x+iy; x~9,  y = 0 }  being no longer an open connected subset of C "~. I n  the  

present s i tua t ion /~  are by  definition analytic continuations of each other  across ~o ~ s if 

there exists an open set A in C ~ and a function / holomorphic in A and such t h a t / ~  agree 

with / in the sets D + - N A respectively. This problem has an interesting proper ty  lacking 

in ~he one dimensional case and due to the new character  of holomorphic convexity.  I f  

namely  /~, or their mollified functions, agree on a set co, then this set has in general 

an extension 05 depending on ~o, ~ and E such t h a t / ~  are analytic extensions across 05. 

The s tudy  of 05 is the main  object of this chapter.  

We now introduce some convexi ty  notions associated to an open convex cone F.  

If  a, b is an ordered pair of points and F an open convex cone in R ~, we define 

F(a, b) = ( a + F )  N ( b - F ) .  (50) 

If  b - a E F ,  then F(a, b) is an open convex set symmetr ic  with respect to the  point  

�89 (a + b) and containing the open segment (a, b). I f  b - a ~ F, then F(a, b) = ~D. 

De/inition. (i) An  open set ~o is F-convex if F(a, b) c (o whenever  [a, b] c ~o; (ii) the  

F-convex hull ~ o/an open set ~o is the  least open F-convex set containing it. 

The convexi ty  not ion defined above will only be applied to open sets. We note  

the  following consequences of the definition. F-convexi ty  is closed under  finite intersee- 

t ions of open sets, and  the  same is t rue of finite unions provided the  sets are mutua l ly  

disjoint. The components  of a disconnected F-convex set are F-convex.  

The F-convex hull 05 of an arb i t rary  open set co equals the interior of the  intersec- 

t ion of all open F-convex sets containing co. I n  view of a later  application we shall also 

need this construct ive definition of 05. Le t  Hco denote  the union of all sets F(a, b) for 

[a, b] ~ co. Set H~+l~o = H(H~o~), n ~> 1, and define 
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oo 

o~*= UHnco. 
1 

This set is by  construct ion open, F-convex and it contains ~o. Thus c5 c w*. Since, how- 

ever, each F-convex set containing o~ also contains H n co, n >1 1, it follows tha t  ~5 ~ co* and 

the  two sets are identical. 

We recognize tha t  in definition (i) the implication F(a, b) c ~o remains t rue under  the 

following weaker assumptions on a, b. Assume a, b c co, b - a E F, and let there exist se- 

quences {an}~, {bn}~, converging to  a and b respectively and such t h a t  [an, bn] c co, 

bn-a=EF. Then UTF(a~,  bn) will contain the open segment (a, b) implying [a, b ] ~  ~o. 

As a consequence we find tha t  F(a, b) ~ co if a, b are endpoints  of a J o r d a n  are ~ con- 

tained in o~ and such tha t  x - a E F for x E ~, x =~ a. We have [a, x] c a~ for x E y sufficiently 

close to a. I f  therefore [a, b] were no t  contained in ~o there would exist a point  b 'Ey ,  

b' =~ a, b, such t h a t  [a, b'] ~= co bu t  [a, x] c co for x belonging to the open arc limited b y  a 

and b'. The previous remark  leads to  the  contradict ion [a, b'] ~ eo proving our  s ta tement .  

Fig. 1 shows the typical  shape a connected F-convex set in the  plane when F equals 

the first quadrant .  

Fig. I. 

By  a mollification ~0 * ] the  domain of ] shrinks. I t  should therefore be pointed ou t  

t ha t  if ~oe--{x; x E co, dist (x, 0oJ)> e} we shall always have F-hull  eo = U,>0 F-hull  co,. Be- 

cause if x belongs to the  hull, then  there exists an index n such t h a t  xEH~aJ, which to- 

gether  with the  relation Hneo = U,>0Hnw,  confirms our  s ta tement .  

Continuation in the special symmetric case 

The heading of this section refers to the case tha t  D +--  ~ q- iFr, where F is an open con- 

vex cone and Fr, 0 < r  ~< ~ ,  is the intersection of F and the open ball B(0, r). I n  the following 

theorem we a s s u m e / + E A h  (~_+iFr) where h satisfies (2), and therefore/-+ are mollifiable. 

TH~.ORV.~ I I I .  Let there exist a molli/ier sequence {q0n} such that/~ =q)n~ /+ agree on 

compact subsets o/an arbitrarily thin open set co containing a segment (a', b') where b' - a '  EF. 

I/ 
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w c F ( a ' , b ' ) c ~ ,  

then ]J= are analytic continuations across 05 =F(a ' ,  b') and this property is not shared by any 

other open set containing 05. 

IT]/~ agree on compact sets contained in an arbitrary open set co c ~ ,  then /*  are analytic 

continuations across 05 =F-hul l  o~, provided 05 c ~ .  

We begin by proving the optimal proper ty  of 05 =F(a ' ,  b') stated in the first par t  of 

the theorem, its proof being free of technical elements and conducive to conveying insight 

in the problem. Let  g(t) be a continuous and summable function on R, vanishing for t ~> 0 

and > 0  for t < 0  and such that  

1 l ~ g(t) dt, 
g(~) =~-~=~ j_=r t - ~  

is bounded with continuous boundary values on the real axis for y-~ ~0 .  Let  {~.} be a 

sequence of unit vectors 6 R  ~ such that  the halfspaees H ~ =  {x; <x, ~ }  >0} contain F and 

meet  OF along generators. Assume tha t  {~n} is so dense tha t  no point x E ~ is contained in 

the intersection of the H~. The series 

F(z) = ~ 2-~{g(<z - a',  ~n}) + g(<b' - z, ~n>)} 
n 

represents a function holomorphic in an open connected set containing 

We also have 
(Rm+iF) U (Rm- iF )  U {x+ iy ;  xEF(a ' ,  b'), y--0}.  

lim (F(x + iy) - F (x  - iy)) = ~ 2-"  {g(<x - a', ~n>) + g(<b' - x, ~n))} 
r~y--~0 n 

where the series i s = 0  for xeF(a ' ,  b') a n d > 0  for x t P ( a ' ,  b'). This proves tha t  under the 

stipulated conditions analytic continuation in the real space R m cannot be extended beyond 

05 =F(a ' ,  b'). 

The main statement in the theorem will first be proved under the condition tha t  

any two generators of F form an angle~<0<z. I f  [a, b] is a given segment carried by  

(a ' ,  b') we choose (~ so small tha t  the set V = { x ;  dist (x, [a, b])<~} is contained in co. I f  n 

is sufficiently large/in will agree on V. We shall prove tha t  this implies t h e / ~  agree on 

F(a, b) and are analytic continuations across tha t  set. In  other words, we shall show 

the existence of a func t ion / ,  holomorphic in an open set A ~  C m containing F(a, b) and 

such t h a t / i  n =/~ on the set A N (F(a, b)_+iF) respectively. The proof is based on a certain 

analytic function ~v of one variable now to be defined. 
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Let s be a positive parameter and set 

e = f/g(#) de 

= e -  f [  g(~) d~. ~(~) 

When e tends to 0, g (~) converges uniformly to sign ~ for real ~, I~I ~> ~ > 0, and e < 1 

tends to 1. We shall consider ~f =u+iv  in a rhombus P~ with vertices at •  +i~.  On the 

real axis u(~) is concave, and in [ -  1, 1] we have 18u/8~1 < g(1) < 1, u(+_ 1) = 0, u(0) = e. 

Consequently, 
~< u(~) ~< 

_ ] ~ l ~ g ( 1 ) <  1, ~ e [ - 1 ,  1]. (51) 

By the Cauchy-Riemann equations we have for fixed s, 

v (& 7) = 7 ~ + o(73), u(& ,1) + 0(72). 

We can therefore choose ~ so small that  the inequalities 

v(~'7) <] ,  u (~ '7 ) -u (~ ) l< l ,  (52) 
7 7 I 

are satisfied in P~. On combining (51) and (52) we obtain for ~EP~, 

u(~)=(1--1~l ) ( l+5(~)) ,  ](~(~)l<~l--e+~, (53) 

v(~)=~(~)7, I~(~)1 <~l. (54) 

We notice tha t  on SPa, lu(~)/7I is bounded by 1+1/~.  

Assume for the sake of simplicity that  a = - b  so that  F(a, b) is centered at the origin. 

Consider the function 
F(z, ~) =/n(~b § § iy) ) (55) 

for R e z E F ( - b ,  b), ~EP~. Here ],~(z) is defined as/+~(z) or/~(z) according to whether the 

imaginary part  of the vector belongs to 1 ~ or to - r .  Write 

X(~) = ~b + u(~)x -  v(~)y, 

Y(~) =nb + v(~)x + u(~)y. 
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In the sequel ~ P~ will denote the intersection of ~aP~ with the upper and the lower half 

plane, and the notation [x~, x2 ..... xn+x] will stand for the polygonal path consisting of the 

segments [xv, xp+l], 1 ~<v ~<n. If  y =0  the mapping ~ X ( ~ )  takes [ - 1 ,  1] to a curve c R m 

confined to the 2-dimensional polygon [ - b ,  x, b, 0x, -b] ,  and it is thus contained in 

V if xE V. Whether y = 0  or 4:0 it follows by (53), (54) that  the same map takes Pa to a 

set with real par t  contained in F ( - b ,  b) provided 

x E F ( - b ,  b), 

(1 - e + a ) l x I  + a l y  I <dist  (x, ~F( -b ,  b))=r 1. (56) 

Assuming again y=O and writing Y(~)=~t(b+v(~)#t)=~lY'(~), s=da, we find that  

the condition b~x E F8 implies Y'(~)E F s for $ s and consequently Y(~)ef t  for $ EP + and 

Y(~)E - F ~  for ~EP j .  The set (b-F~)N ( - b + F ~ )  is however equal to F ( - b ,  b) if a is so 

small that  2 I b i s<  r sin0, which condition keeps the spherical boundary of Fr out of 

the picture. If, therefore, ~ and ~ are chosen so small that  all previous conditions are 

satisfied, and if x E V, then the function F(x, ~) is analytic in ~ for ~ EP + U P j ,  continuous 

on the common boundary [ -  1, 1] and hence holomorphic in P~ according to the classical 

theorem. By the Cauchy integral representation 

1 fo d~ ~(x, o ) = / ~ ( ~ ) = ~ /  ~ F(~, ~) ~-. (57) 

Let us now return to the case y 4: 0. I t  has already been shown that  X(~)EF( -b ,  b) 

for { E aP~ if (56) is verified. Writing Y('$) =~(b +xv($)/~ +yu(~)#l ) we find by (52) and (54) 

that  Y(~)EF for SEa+P~ and Y ( $ ) e - F  for ~ea-P~  if 

[b+x, b - x ] c r ,  0 + 1 / ~ ) ] y [  <dist  ([b-x, b+x],  alP). (58) 

I t  should be noted that  the distance from a point on the segment [b +x,  b - x ]  to aF is 

minimum at one of the endpoints of the segment. This implies that  the right hand side of 

(58) equals the distance r I in (56). 

Summing up, we have established that  to each ~>0, ~<e 1 can be associated an 

a = a(e) > 0 and a region 

A~= {x+iy; x e r ( - b ,  b), (1 - e + a ) I x I  +(1 + l / a ) l y I  <dist  (x, a F ( - b ,  b))} (59) 

such that  F(z, ~) is holomorphie in z for z EA~ provided ~s ~ 4  _+ 1. 

Define now 

f0 1 F (~, r ~ ,  (6o1 J(z) - ~ /  ~ 
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and let Ja  denote the integral when two arcs of aP~ of length 8 centered at  __ 1 are deleted 

from the path  of integration. J$ (z) is manifestly holomorphie in A~ and the same must  be 

true of J(z) due to uniform convergence as 8 ~ 0. By  virtue of (57), J(x) =/n(qx) for x be- 

longing to a certain open set c R m containing the segment (a, b). This implies tha t  for each 

e, J(z) represents an analytic extension o f / ~  (Qz) to A,. Consequent ly/~ (z) possesses an 

analytic extension to the open set A = U0 . . . . .  ~(e)-lA,, which contains F(a, b) since Q(e) ~ 1 

as e r 0. Because the summabil i ty condition (2) is satisfied by  h(t), Lemma I applies to 

functions of the form F,(~)=/n(xo+x~),  and we find as in the one-dimensional case, tha t  

/,(z) converges in A to a function holomorphic there and equal t o / +  in A ~ (F(a, b)_+iF). 

I f  ~F contains a whole straight line the sets F(a, b) are no longer bounded. In  this case 

we apply the previous proof to interior cones F '  with maximal opening angle < ~ and 

obtain the stated result by  letting F '  grow out to F. This finishes the proof of the 

first par t  of Theorem I I I  since a and b can be taken arbitrarily close to a '  and b' 

respectively. 

The second par t  of the theorem is merely a corollary of the result already obtained 

combined with the definition and properties of the F-convex hull of an open set. The proof 

would consist of repetitions and is therefore deleted. 

Theorem :[II does not take account of the case when the F-hull of m is not contained 

in ~.  This case requires the definition of the ~ restricted F-hull of an open set ~o ~ ~.  We 

replace the operator H defined previously, by H a  defined as the union of all F(a, b) con- 

tained in ~ and such tha t  [a, b] ~ w. Except  for this modification the previous definition 

is unchanged. The result now is of course tha t  ]~ are analytic continuations across the 

restricted F-hull of co. 

The general symmetrical case 

In  its most  advanced form the result usually referred to as " the  edge of the wedge 

theorem" states tha t  i f / +  are analytic in ~o •  and have boundary values in the sense 

of Schwartz's distributions which agree on compact subsets of ~o, then f~ are analytic 

continuations across co. 

Little or no attention used to be paid to the fact tha t  the distributions involved only 

exist provided inequalities ]/+-(x+iy)]=O(ly]-k) are verified on compact subsets of co. 

Another aspect of the problem which seems to have been overlooked concerns analytic 

extension in the real space R m beyond the set where/-+ agree in some sense or another. 

There exists, however, a result due to H. Epstein [6], [8], about analytic extension in the 

imaginary space R m, which combined with Theorem I I I  will yield a more complete treat- 

ment  of the symmetrical case. We formulate Epstein's theorem as follows: 
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Let F be an open cone consisting o//in• many  connected components. Let Fr be the 

intersection o/ F with a ball B(O, r) and denote by F~ the ordinary convex hull o /F t .  Assume 

that/(z) is locally analytic in o9 +iF~ and continuous on 09 U (co +iF~). Then there exists an open 

set A ~ C m containing co and such that / (z)  extends to a /unc t ion  locally analytic in D = A  N 

(o9 § i~r) and continuous on D U o9. 

We shall apply this result to the case/~ 6Ah(s • iZ) where Y. is an open connected set 

with the origin as boundary point and such tha t  for small r > 0 the set Zr = (x; ] x I < r, 

(0, x) c Y~} is not void and not containing a point x together with - x. Let  F r denote the 

cone (2x; x EZ~, 2 >0}. F r is obviously increasing for decreasing r and possesses thus a 

limit F as r ~ 0. I f  F is disconnected, its different components define distinct boundary 

points which happen to have the same coordinates and should therefore be considered 

separately. By  this reason we assmue tha t  F ~ is connected for r sufficiently small, say for 

r < r o. We approximate F r from within by finite unions 7 of convex cones. According to 

the results in Chapter I I  the sets Ah(~ + i7~) are mollifiable. Assume tha t  for n sufficiently 

large the mollified functions /n + agree on an open set o9c ~0 where ~0 has compact 

closure contained in ~.  By applying Epstein's  theorem to/+n and /n  separately, we conclude 

tha t  these functions are analytic in ~20 • i~r respectively, where ~r is the convex hull of 

?r. By virtue of Theorem I I I / ~  agree on the ~-hul l  of o9 and are analytic continuations 

across tha t  set, provided it is contained in ~0- At this instance we should note tha t  because 

the regions A N ~o + -- i ~ are contained in the holomorphic hulls of ~0 + i?~, the functions 

/~ are bounded in the former regions by the same constants as in the latter. We finally 

obtain the result that  / i  are analytic continuations across the r -hul l  of m by  letting 

increase to F r and then r decrease to 0. 

Remarks.  In  case the reader might not have noticed it, we point out here some of the 

questions left unanswered in this chapter. Even though the optimal role of the sets 

F(a, b) has been made clear, it does not follow automatically tha t  the hull ~ in the second 

par t  of Theorem I I  is the optimal set in the continuation problem. :Nor is it obvious tha t  

the g2 restricted F-hull of o9 is optimal if ~ is not convex in the ordinary sense. 

To these remarks we add some specific applications of the results obtained. Let  

Lw be the Hilbert  space of functions w(~) be a positive measurable function in R m, and let 2 

square summable with respect to the measure w(~)d~, and with scalar product 

(/, g) = fl(~) g-~) w(~) d~:. 

12 - 722909 Acta mathematica 128. Impr im6  le 23 Mars 1972. 
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Let  y be an open symmetric cone c _R m, i:e. an open set such tha t  xEy implies 2xEy for 

real 2 # 0. Assume tha t  L~ contain the function 

I e~l~l' ~ Y  (61) 

g ( ~ ) = [ 1  , $E7 

for some r >0.  Let  {h} be the set of hyperplanes which meet ~ only at the origin, and 

denote by h+ and h- the two open halfspaces separated by  h. For the purpose of identifica- 

tion let x0~ y be a fixed reference point and h + the halfspace containing x 0. Call two hi, 

h 2 E {h} equivalent if h~ (3 ~ = h~ (1 y. Let  finally {h~} c {h} be a set of mutual ly inequivalent 

hyperplanes and let F(h~) be the open convex cones 

F(h~)={x;xER '~, <~,x> >0,  u  n h+}. 

The condition concerning the function (61) implies tha t  all bounded continuous 

characters e ~<~'z> belong to L~. We are interested in the closed subspace S(co) of L~ spanned 

by  a collection of characters E@) = {e~<~'~) ; x E w)) where co is a given open set. An appliea: 

tion of Theorem I I I  yields this result: 

E(oS)~ S(o)) (62) 

where o5 is an extension of co which can be defined as the closure of U~w=, where 

r = U ~F(hi)-hull of co, w=+l = U~F(h~)-hull of w~. 

In  order to estabhsh (62), assume that  g EL~ is orthogonal to E(~o). We shall therefore 

have, 

for x E~o and for any h i. The functions/~+ are obviously analytic and bounded in the regions 

R'~• and continuous on R m. Theorem I I I  ascertains that  /~+ + f f  vanishes on the 

F(hi)-hull of (o, and iterated use of this result lead~ to the stated property. 

ff  co consists of a neighborhood of a convenient Jordan  curve, for example a straight 

line with direction belonging to some F(h~), then ~5 would contain the whole space and the 

trigonometric polynomials 

Y.cve~(~'zP~ xvEw, 
would be dense in L2w. 

We shall also show a case where the double cone (x 0 + F) U (x 0 - F )  plays a role similar 

to l~(a, b) in Theorem I I I .  In  [3] we considered properties of bounded continuous functions 
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on an open interval ~ c R in relation to functions analytic in a region D contained either 

in the upper or the lower halfplane and with boundary containing ~. The approximation 

index a( t )=a(1 , / ,  D) was defined by the relation 

e -a(;O= inf I1!- gll (64) 
g 

when g is analytic in D, bounded there by e x and continuous on ~. I t  was proved that if 

)3 d ~ =  ~ (65) 

then / vanishes identically on f~ if / = 0  on a set of positive measure, By the method used in 

[3] the result is easily extended as follows: To each a(~) satisfying (65) can be associated a 

function h(t) increasing steadily to oo as t r 0 and such that if / has a sufficiently "strong" 

zero at a point x0, in the specific sense that 

I/(x0 q- x)[ = O(e-Ch(Ixl)), C > 0, (66) 
then / =  0 on ~. 

The approximation index is a very useful and flexible tool. In the one-dimensional 

case it is largely independent of D, insofar as only the two possible orientations of D are 

relevant, namely if D is located in the  upper or in the lower halfplane. In  several dimen- 

sions the problems promise to be much more interesting since now D can be chosen aS 

f~ + iFr for any convex cone F, and with a more general D if that  is desirable. We quote the 

following direct application of the one-dimensional result: If  / is continuous on f2 and has 

an approximation index a(~) with respect to a region g2 + i F ,  then / vanishes on the 

double cone (x 0 § ~) U (x0 - F )  if / has a "strong" zero at x 0 and (65) is satisfied. This in turn 

implies, of course, that  / = 0  throughout  f2, if this set is connected. 

IV. Distributions 

I t  should be obvious at this stage that  the problems considered in Chapters I and I I  

must be related to an appropriate extension of Schwartz's distributions. Such an extension 

was actually presented at the American Mathematical Society Summer School in Stanford 

in 1961 [3]. I t  was based on certain convolution algebras dating back to 1938 [1]. The 

object of this chapter is to reproduce the pertinent definitions and properties of that  theory 

and to relate it to the m a i n  problem of this paper. 

Let W(R m) denote the collection of measurable subadditive functions w(~) on R ~ 

bounded in a neighborhood of the origin and satisfying 

0 = w(O) ~ w(~ +7) <~ w(~) + w(~), 4, ~ ~ R m. 
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To each w we assign a Banach space Aw =Aw(R m) consisting of functions T(x) admitting a 

representation 

= j d  (=" ~>~(~) d~, q~(x) 

where q~(~) exp w(~) is summable. The norm in A w is 

I1~11 = [l~l[= = flr 
A= is an algebra under pointwise multipncation: II+~ll -< ll+llll~[[. By  replacing w by itw, 
it>0, we obtain a family of algebras A~: with norms II+ll~== I[+11~" Define 

M :  = M : ( R : )  = {+; +eag0A~:, supp + is compact} 

If K is a compact subset of R m, we define 

M~(K) = {~0; ~0EAw, supp 90=K} 

Expressed in the usual terminology ~w(K) consists of testfunctions with support in K. 

The topology of the space xlw(K ) is determined by the norms [[90[[ x for it = 1, 2 ..... considered 

as seminorms, and the topology of ~1~ (R ~) is defined as the inductive limit of the topo- 

logies of .~w(K~), where K ,  can be taken as a sequence of closed balls B(0, r~) with radii 
r n  ~ oo,  

t m Distributions o/class w, denoted .~w(R ), is by definition the dual of Mw(Rm). In the 

particular case w(~)=log (1+ [~[) the spaces ~ and ~ '  of Schwartz coincide with ~w 

and M" respectively. These notions would, of course, be void if ~w(Kn) only contained the 

identically vanishing function. This question is resolved by 

T H ] ~ O R ~ M  I V .  Let wE W(Rm), m>~l, and assume 

fj  d~ (67) J,n(w)= ~l>~lw(~) ~ =  ~ .  

Then the integral p(~) = w(r~) ~ (68) 

is = ~ on an open hal/space o/ R 'n and ~r (K) is empty/or  each compact K.  

I / J m  (w) < o~, then there exists a concave/unction k(r) on r >~ 0 such that 

f w(~) ~< k( I ~l), k(r) dr - -  ~ .  ( 6 9 )  r 2 < 

and the sets ,~w (K) contain nontrivial /unctions whenever K has interior points. 
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In  order to prove the first part  of the theorem consider R m as the Cartesian product 

R+ • S m-l, and write d~=rm-ldrdO, where r =  If] and dO is a measure on the unit sphere 

S m-1 in /~m. For the integral (67) we obtain 

Jm (w) = / s ~ _ p ( f  ) dO(f). 

If  m(f) is the least upper bound of w on the segment [0, ~], we shall have 

p(,~) < ~p($), 2 >~ 1 

p(2~) <~ 2p(~) + (1 -,~)m(~), 0 ~<~ ~< 1. (70) 

Since w is subaddi$ive, the assumptions p(f) < c~, ~ ~ 0, imply p(2f) < ~ .  Together with the 

inequality p(f  +~)~<p(~)+p(~]) this implies that  the set F = {~; f E R m, p(~)< ~},  is formed 

by a convex cone, and hence either contained in a closed hal/space or equal to the 

whole of R m. Under the latter alternative p(~) is finite on S m-1 which, due to the sub- 

additivity, implies boundedness there, contradictory to the assumption (67). Therefore F 

is contained in a closed hal/space, on the complement of which p ( f ) =  ~ .  

Let now ~ belong to an algebra Axw, say for 2=1 ,  and have compact support. I f  

// q(f) = I~)(r~)l eW(r~)r'n-ldr, ~eS,~-I 

then /s,~ - tq(~)dO(~) = 117~lI~ < 

and we would have a.e. on S m-l, 

p(f) +p(  - ~:) = ~ ,  q(~) +q(--~) < ~ .  (71) 

Because of the inequality between the arithmetic and geometric means, the function 

log Iq3(r~)l cannot be Poisson summable in r for any ~ satisfying (71). As a function of r, 

~(r~) is the restriction to the real axis of an entire function of exponential type bounded on 

R, and therefore vanishing identically in r for a.e. ~ ES m-1. This implies q3 =0, whicb in turn 

proves that  ~ =0. 

The proof of the second part of Theorem IV rests on the following result which can be 

considered as a converse of Lemma I. 

LEMMA V. 1] It(f) E W(R) and is Poisson summable, then it possesses on R+ a concave 

majorant which is Poisson summable. 
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I t  should be noted that  the corresponding statement is wrong for the set of monotonic 

increasing k(~). 

Since the maximum of k(_+~) still belongs to W(R) we may assume that  k(~) is even, 

and consequently that  ]k(~ +~) -k(~) ]  ~<k(~]), ~, ~ E R. Without loss of generality we shall 

also assume k continuous. I t  is readily seen that  the function k 1 defined as the maximum 

of k on [0, ~], is still subadditive. We shall prove first that  kl(~)~ -s qL~(1, c~), and then that  

the least concave majorant kz(~) of kx(~) has the same summability. 

Let  (a, b) be one of the intervals forming the open set where kl(~)> k(~), and denote 

by ?t the interval (a, a + t), 0 <~ t <~ b - a. Define 

E t = {~; ~E?t, k(~)< k(a)/3} 

E~ = {~; $E?t, k(~)>~k(a)/3} 

E~' = {~; ~ = a + ~ ' - ~ " e ~ t ,  ~', ~" ee l}  

We shall have on Er k(~) ~> k(a) -k($')  -k(~") >~ k(a)/3, implying E ' ~  E~. As for the measures 

of these sets we have: ]E~[ ~> lEvi, t= IEr + IE;I < E;' I + IE;I<21E;I. I t  is readily seen 

that  this implies 

fa b . . . .  d~ k(a)[bd~ I r a  d~ 

Hence, k 1 is Poisson summable. 

We have still to show that  k2(~) has the proper summability. Assume that  on (a, b), 

k s - k l  is positive while vanishing at the endpoints, and define 

Then, 

ks(b) -ks (a)  
b - a  

ks(~)<--.ks(b)+~(~-b), ~>~0, 

and by subadditivity of k 1, 

Hence, 
ks(b ) = ]Q(b) ~< ]cl(b - ~) + k l (~) .  " 

kl(~ ) >~ ks(b ) - k 2 ( b - ~ )  >~2~, 0~<~<b. 

Since kl(~ ) is monotonic increasing we shall have 

kl(~ ) >~max (kl(a), ~ ) ,  a<~<~b. 

We shall show that  these inequalities imply that  ks(~)~<2kl(~ ) in (a, b). In order to 
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simplify we consider the normalized case: a = 1, kl(a ) = 1 and consequently 0 ~<~ ~< 1. Hence 

for ~ E (a, b) 

which finishes the proof of the Lemma V. 

Returning to Theorem IV we first form the maximum ko(r ) of w at the 2m points 

where the sphere ]~[ = r meets the coordinate axes. Since the restriction of w to each axis 

belongs to W(R) it follows that the same is true of the even function ko(r), which therefore 

by Lemma V has a concave majorant k(r) on R+ with the proper summability. At a point 

with the coordinates {~}In we shall have 

In  

< V ([ I) < I), 
1 

ending the proof. 

Due to results previously obtained in this paper, the condition JIn(w)< ~ thus as- 

certains the existence in dw of mollifiers with support in balls B(0, r) of arbitrarily small 

radius, which in turn leads to the existence of local units and a partition of the unity. 

Let us now spell out explicitly what is meant by a statement like this: "The function 

/(x § iy), analytic in Q = {x § iy; Ix I < a, 0 < y < b ), has boundary values in the distribution 

sense on ( - a ,  a) as y 4, 0." The meaning is this: To each compact K ~ ( - a ,  a) can be 

associated a wE W(R) with J l (w)< co such that  the distributions 

Ty (q~) = f /(x § iy) q~(x) dx E ~ "  (7 2) 

converge pointwise for cfES/w(K) as y ~ 0, and uniformly in bounded set {~v; ~0E~C~(K), 

I1~11~<~, 4=1, 2, ..:} where {a~}~ are given positive numbers. 

There is nothing wrong with the definition as such, but one can hardly omit to ask 

for a criterion by means of which it is possible to decide whether or not the distributions in 

question do converge in the prescribed sense. 

In  the theory of Schwartz the same question is hardly conspicuous since its answer is 

contained in the definition of the testfunctions. In  the case at hand, Y~ considered as 

dements of ~ ' ,  converges if and only if / has a primitive of finite order which is bounded on 

K for each K c  (a, b), and this result can be obtained by a finite number of partial 

integrations in (72). The testfunetions do therefore in this case effectively provide a test 

of convergence, whereas testfunctions ~vEdw(K) do not give that service. This unsatis- 

factory situation is one of the reasons for this paper, and particularly for the study under- 

taken in Chapters I and II .  
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According to what is established about sets Ah(~l + iE) of analytic functions, it follows 

that  all /EAh(~  +iE) have boundary values on f~ in the distribution sense if and only 

if Ah is a mollifiable set. The situation is not the same for individual functions. I t  is obvious 

that  the existence of a boundary distribution implies t h a t / ( x  +iy) is mollifiable in x for 

xEfl ,  but the converse is not true. Nor is it true that  a function violating the stated 

growth condition cannot be mollifiable. Here is a simple eounterexample. A Taylor series 

o o  

/(z) = y~ % z %  

with ~ ~  0% can have a radius of convergence= 1 and a maximum modulus M(r) 

larger than any given increasing function, for values of r arbitrarily close to 1, but still 

be mollifiable. The reason for this is the existence of mollifiers {Ti} with Q(~z)->0 and such 

that  ~ ( n , ) = 0  for all n~ sufficiently large. Hence, 

~, ~ / =  ~ c ~  (n~) z ~ 

is a polynomial and therefore / mollifiable. The proof is based on quite elementary pro- 

perties of Weierstrass products. 

The results obtained so far on the three main problems, convergence, mollification, 

and distributions dovetail perfectly in that  they all reveal an inherent optimal order of 

magnitude, the same in all three cases, indicating the close relationship between analytic 

functions and harmonic analysis on Euclidean groups. 
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