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Introduction 

This paper  continues the  s tudy  of non  self-adjoint operator algebras on Hi lber t  

space which began in  [1]. Chapter  1 concerns di lat ion theory.  The ma in  results (1.2.2 

and  its corollary) imply  t ha t  every commut ing  n- tuple  of operators having a general  

compact  set X___ C n as a "complete"  spectral set has a (commuting) normal  di la t ion whose 

jo in t  spectrum is contained in  ~X, the Silov b o u n d a r y  of X relative to the ra t ional  

funct ions which are cont inuous on X. This is a direct general izat ion of a known  di la t ion 

theorem for single operators having for a spectral set a compact  set X_~ C with connected 

complement ,  and  i t  seems to clarify the relat ion between spectral sets and  normal  

dilations. I n  section 1.3 we discuss non-normal  dilat ions and  present  a result  along these 

lines. 

(1) Research supported by NSF Grant GP-5585. 

18 -722909 Acta mathematica. 128. Imprim6 lo 29 Mars 1972. 
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Chapter 2 centers on boundary representations, the principal theme of [1]. Section 

2.1 contains a general result tha t  gives a concrete characterization of boundary representa- 

tions for irreducible sets of operators whose generated C*-algebras are not too pathological 

(i.e., are not NGCR). This "boundary theorem" provides some new information about  

the behavior of a broad class of irreducible Hilbert  space operators. For example, in 

section 2.3 we show tha t  many  irreducible operators T are highly "deterministic" in 

roughly the sense tha t  once one knows the norms of all low order polynomials in T then 

he knows not only the norms of all higher order polynomials but  he in effect knows T to 

within uni tary equivalence. In  section 2.4 we show tha t  the most  "deterministic" 

operators are completely determined by  an appropriate generalization of their numerical 

range. 

Section 2.2 contains applications of the boundary theorem to operators T such tha t  

T * T -  TT* is compact, it contains the solution of a problem left open in [1] concerning 

parts  of the backward shift, and also a unitary dilation theorem for certain commuting 

sets of contractions. In  section 2.5 we give an application of the boundary theorem to 

model theory, which asserts tha t  many  classes of operators have a unique irreducible 

model. 

Preliminaries 

We want to recall one or two results from [1] which will be used freely throughout the 

sequel. Let  S be a linear subspace of a C*-algebra B, and let r be a linear map of S into 

another C*-algebra B 1. I f  Mk, k = l ,  2, ..., denotes the C*-algebra of all complex k • k 

matrices, then M k |  is the C*-algebra of all k •  matrices over B, and Mk|  is a 

linear subspace of this C*-algebra. I f  idk denotes the identi ty map of Mk, then idk| r 

is a linear map of Mk|  into M z |  r We will say tha t  r is completely positive, completely 

contractive, or completely isometric according as every map in the sequence id 1 |162 id 2 |162 .. . .  

is positive, contractive, or isometric. We will use the notation E(~) (resp. C(~)) to denote 

the algebra of all bounded (resp. compact) operators on the Hilbert space ~. 

THEORE~ 0.1. (Extension theorem.) Let S be a closed sel/-adjoint linear subspace o] a 

C*-algebra B, such that B contains an identity e and e E S. Then every completely positive 

linear map r S---> 12(~) has a completely positive linear extension r B ~  F.(~). 

COt~OLLAI~u 0.2. Let S be a linear subspace o] a C*-algebra B with identity e, such that 

eES. Then every completely contractive linear map r S--->~(~) ]or which r  has a 

completely positive linear extension to B. 

These are proved in 1.2.3 and 1.2.9 of [1]. 
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Now let B be a C*-algebra with identity e and let S be an arbi trary subset of B such 

that  B is generated as a C*-algebra by S U {e} (this is expressed by  the notation B = C*(S); 

similarly if T is an operator then C*(T) denotes the C*-algebra generated by {I, T}). 

An irreducible representation g of B on a Hilbert  space ~ is called a boundary representation 

for S if the only completely positive linear map r B-+ C(~) which agrees with ~ on S is r = g  

itself. We will say tha t  S has su//iciently many boundary representations if the intersection 

of the kernels of all boundary representations for S is the trivial ideal (0} in B. As we 

pointed out in [1], in the commutat ive case S ~  C(X) (here X is a compact Hausdorff space 

and S separates points and contains the constant 1) this condition asserts simply tha t  X is 

the Silov boundary for the closed linear span of S. The following is a slight restatement 

of Theorem 2.1.2 of [1]. 

THEOREM 0.3. (Implementation theorem.) Let S t be a linear subspace o / a  C*-algebra 

Bl, i = 1 ,  2, such that St contains the respective identity ei o/ B~ and Bi=C*(S~). I /  both 

S 1 and S 2 have su//iciently many boundary representations, then every completely isometric 

linear map r o / S  1 on $2, which takes e 1 to e2, is implemented by a *-isomorphism o / B  1 onto B 2. 

We also recall once again a theorem of W. F. Stinespring [17] characterizing completely 

positive maps of C*-algebras. 

THEOREM 0.4. Let B be a C*-algebra and let • be a completely positive linear map o / B  

into F~(~). Then there is a representation 7t o/ B on a Hilbert space ~ and a linear map 

V: ~ ~ ~ such that r = V*~(x) V, x e B. 

Finally, recall tha t  if $ is a multiplicative semigroup of operators on a Hilbert  space 

which contains I ,  then a closed subspace ~___~ is said to be semi-invariant under $ 

if there are S-invariant subspaces ~ 1 - - - ~  such tha t  ~)~=~20~J~1. Semi-invariant sub- 

spaces are characterized by the fact tha t  the mapping T E $ -~P~  T [ ~  is multiplicative 

(cf. [20], Lemma 0). 

The rest of our terminology is more or less standard, and conforms with [1]. For 

example, a set of operators $ c  s  is called irreducible if $ and $* have no common 

closed invariant subspaees other than  0 and ~; and sp(T) denotes the spectrum of the 

operator T. 

Chapter 1. Dilation theory 

Let T be a Hilbert space operator and let X be a compact subset of the complex plane 

which contains the spectrum of T. i is called a spectral set for T if II/(T)ll < I[/H~= 

sup (I/(z) l: z EX} for every rational function / which is analytic on X [13]. We begin by 
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recalling a dilation theorem which was proved independently by  C. Foias [9], C. Berger [5], 

and A. Lebow [12]. 

THEOR]~M 1.0. Let X be a compact subset o I the complex plane whose complement is 

connected and let T E ~(~)  be an operator having X as a spectral set. Then there is a normal 

operator N on a Hilbert space ~ and an isometric imbedding V o I ~ in ~ such that 

sp(.N') ~ X  and T n= V*NnV,  n =  O, 1, 2 . . . . .  

Note tha t  if X is the closed unit disc (IzI ~<1} then the above operator N is unitary. 

So this result gives a generalization, more or less, of a familar theorem of Sz.-Nagy 

(appendix of [15]) which asserts tha t  every contraction has a unitary (power) dilation. We 

remark tha t  in most  formulations of 1.0 ~ appears as a space containing ~ and V is the 

inclusion map of ~ in ~ (so tha t  V* is the orthogonal projection of ~ on ~). However, we 

shall find the above " invariant"  formulation somewhat more convenient. 

1.0 suggests generalizations of itself in a number  of directions. For example, if X is a 

multiply connected spectral set for T then one might expect to find a normal operator 

NEi : (~ )  and an isometry VE~:(~, ~) such tha t  sp(J,V)~_~X a n d / ( T )  = V*I(~V) V for every 

rational function / analytic on X (note tha t  if one only requires T n =  V*NnV, n~O,  then 

the conclusion already follows from 1.0 by replacing X with its polynomially convex hull). 

In  another direction, suppose T 1 . . . .  , T~E l:(~) are commuting operators such tha t  

IIp(T~ .. . .  , T,~)I I ~<sup {Ip(zi, . . . ,  Zn) l: Izi[ ~,~l} 

for every polynomial p in the n complex variables z~ .... .  zn (i.e., the unit polydise ( Iz  I ~< l} n 

in a "spectral set" for T = ( T  1 ..... T~)). Then one might expect to find n commuting 

unitary operators U 1 ..... U~ on a Hilbert  space ~ and an isometry V E s  ~) such tha t  

p ( T  1 .. . . .  Tn)=V*p(U1 ... .  , Un)V  for every polynomial p. Indeed a theorem of Ando 

implies somewhat more than  this in the case n = 2  [19]. But  suprisingly the answer for 

n = 3  is no, as shown by  a recent example of S. Parrot t  [14], and it now appears tha t  1.0 

may  even be false in the one-dimensional case X ~  C when X is multiply connected (how- 

ever, even the case where X is an annulus is to this day unresolved). 

In  spite of this negative evidence, there is an appropriate generalization of 1.0 which 

includes minor variations of all of the above conjectures. As we will see, what is required 

is a strengthening of the notion of spectral set, which reduces to the usual one in the 

context of 1.0. 

1.1. The joint  spectrum 

In  this section we collect for later use one or two facts about joint spectra which, 

while quite elementary, do not  appear to be very widely known. Let  E be a complex Banach 
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space, and let T = (T 1 .. . . .  T~) be an n-tuple of commuting bounded operators on E, which 

will be fixed throughout this section. Define the joint spectrum sp(T) to be the set of all 

complex n-tuples ~ = (~1 ..... 2~) E(~ ~ such tha t  p(2) belongs to the spectrum of p(T) for every 

multivariate polynomial p =p(z 1 ..... z~). This definition seems to have been first introduced 

by L. Waelbroeck, and the reader should consult [18] for additional information on the 

functional calculus in severM variables. Let  A be a suhalgebra of the algebra I:(E) of all 

bounded operators on E. A is inverse-closed if whenever an element S of A is an invertible 

operator on E (i.e., S -1E ~(E)) then S -1EA. Note tha t  every commutat ive subalgebra 

A ~  i:(E) is contained in a norm-closed inverse-closed commutat ive algebra (for example, 

the double commutant  .,4" will do). 

PROPOSITION 1.1.1. Let .,4 be any inverse-closed commutative Banach subalgebra o/ 

F,(E) which contains T 1 ..... T n and the identity. Let ~ be the space o] nontrivial complex 

homomorphisms o/ .,4. Then sp(T) contains {(w(T1) , ..., r ~oE~}. 

Proo]. Choose wE~rj~ and define 2E(~ n by  2=(co(T1) , ..., ~o(T~)). Then for every n- 

variate polynomial p we have w(p(T)-p( ,~) l )=O.  Thus p ( T ) - p ( 2 ) 1  is not invertible in 

A, and since ,~ is inverse-closed it follows tha t  p(2) E sp(p(T)). That  proves 2 Esp(T1, ..., Tn). 

COROLLARY 1. sp(T) is not empty, 

Proo/. Let  A be the double commutant  of {T 1 ... .  , T~}. Then A, being a commutat ive 

Banaeh algebra with identity, has at least one nonzero complex homomorphism. The 

conclusion follows from 1.1.1. 

For each polynomial p, the set {2Ecn: p(2)Esp(p(T))} is closed, and so sp(T) is an 

intersection of closed sets. Thus sp(T) is closed. Note also tha t  sp(T) is contained in the 

Cartesian product sp(T1) • • ... • (for if (~.1 . . . .  , ,~n)Esp(T) then choosing 

the polynomial p,(zl, ..., zn)= zf we see tha t  2i E sp(T,)). In  particular sp(T)is bounded, and 

is therefore compact. 

COROLLi•Y 2. Let p be an n-variate polynomial which has no zeros on sp(T). Then 

p(T) is invertible. 

Proo/. Let  A be the double eommutant  of {T1, . . . ,  T n }  , and let oJ be a complex homo- 

morphism of A. By 1.1.1, ~o(p(T)):#0. Thus p(T) is contained in no maximal  ideal of A, 

hence p( T) -1E A. 

We can now make use of a rudimentary operational calculus. Let  X be any compact 

set in C n which contains sp(T), and let rat(X) denote the set of all rational functions 
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on X, that  is, all quotients p/q of polynomials p, q for which q has no zeros on X. The func- 

tions in rat(X) form an algebra of continuous functions on X, and we can cause these 

functions to act on T as follows. If f Erat(X), s a y / = p / q  with p, q polynomials for which 

OCq(X), then by Corollary 2 q(T) is iavertible and we may def ine/(T)=p(T)q(T)-L The 

map ]-~](T) is clearly a homomorphism of rat(K) into s Let  us define R(T) as the norm 

closure of {/(T): f E rat(sp(T))}. Then R(T) is a commutative Banach algebra containing 

the identity operator. Note that  since X contains sp(T), the range of the mapping 

/E rat(X)-~/(T) is contained in R(T). 

PROPOSITIO~ 1.1.2 (Mapping theorem). Let X=sp(T). Then sp(/(T)) =/ (X) /o r  every 

] E rat(X). 

Proof. Choose ]E rat(X) such that  f 4 0  on X. W r i t i n g / = g / h  with g, h polynomials 

having no zeros on X, it follows from Corollary 2 that  both g(T) and h(T) are invertible, 

and hence/(T)  =g(T)h(T) -1 is invertible. Thus 0 ~f(X) implies 0 ~sp/(T). By translation, 

z ~ f(X) implies z ~ sp f(T) for every z E C, which proves sp f(T)_/(X).  

For the opposite inclusion, let ~ E X. Then ] - / (~ )  has the form g/h with g, h polynomials 

such that  h 4 0  on X. Then g(~)=0, so by definition of the joint spectrum we have 

0 =g(2)E sp(g(T)). Thus g(T) is singular. Since h(T) is invertible (Corollary 2) if follows that  

f(T) -/(~) I =g(T) h(T) -~ is singular. Thus f(~) E sp if(T)), as required. 

COROLLARY 1. R(T) is inverse-closed. 

Proof. Suppose SER(T) is invertible in L:(E). Choose a sequence/hE rat(sp(T)) such 

that  IIS-]n(T)H-~0. Then In(T) is eventually invertible and ]~(T) -1 converges to S -~. By 

1.1.2 ]n has no zeros on X, hence gn=l/f~ belongs to rat(sp(T)) (for large n). Since g~(T)= 

f~(T) -1 we conclude that  S-l=lim~gn(T) belongs to R(T). 

Note that/~(T) is in fact the smallest inverse-closed Banaeh algebra of operators which 

contains {I, T 1 ..... Tn). We can now identify sp(T) with the joint spectrum of T relative 

to the commutative Banach algebra R(T). 

COROLLARY 2. Let ~]~ be the maximal ideal apace o/ R(T). Then 

sp(T) = {(~(T1) . . . . .  ~ ( T . ) ) :  ~ ~ } .  

Proof. The inclusion _~ follows from the preceding corollary and 1.1.1. Conversely, 

choose ~ E sp(T). Then for every ]erat(sp(T)) we have, by 1.1.2, I/(~)l<-~supIsp(/(T))[<-~ 

H](T)I[. Thus /(T)~/(~)(fErat(sp(T))) is a bounded densely defined homomorphism of 
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R(T), and so there is an eo6~rJ~ such tha t  co(/(T))=/(l), /6rat(sp(T)). The conclusion 

follows after evaluating this formula with the functions/t(z 1 ..... z~) =z~, 1 <~i<n. 

We remark tha t  all of these results extend in a straightforward manner to the case 

of infinitely many  commuting operators. 

1.2. Spectral sets and normal dilations 

Let  T = ( T  1 . . . . .  Tn)  be an n-tuple of commuting operators on a Hilbert  space ~. A 

compact set X _ C  n is called a spectral set for T if X contains sp(T) and ]I/(T)II < 

sup {I/(2)]: t 6 X }  for every ]6 rat(X). We shall require a somewhat stronger definition. 

For each/c >~ 1 let M~ be the C*-algebra of all k • k matrices over C; the norm on M~ is rea- 

lized by  causing Mk to act on the Hilbert  space C ~ in the usual way. For each k ~> 1 let rat k (X) 

denote the algebra of all k • k matrices over rat(X). Each element in rat k (X) is then a 

k •162 matrix of rational functions F=(/~j), and we may  define a norm on rat~ (X) in the 

obvious way IIFII = sup {HF(~)H: ~ 6 x } ,  thereby making rat k (X) into a noncommutat ivc 

normed algebra. For each element F = (/i j) in rat k (X) we obtain a k • k operator matr ix  

F(T) = (/~j(T)), which can be regarded as an operator on the Hilbert  space ~ | 1 7 4  |  

a direct sum of ]c copies of ~. Note tha t  the map F 6 rat~ (X)-~ F(T) is an algebraic homo- 

morphism, for each k = l ,  2 . . . . .  X is called a complete spectral set for T if sp(T)~_X 

and HF(T)H~<sup{IIF(A)II: A6X} for every matrix-valued rational function F (more 

precisely, for every F 6 rat k (X) and every ]c >~ 1). We first want to show that ,  in the setting 

of 1.0, spectral sets are complete spectral sets. 

PROPOSITION 1.2.1. Let X be a compact set in C having connected complement. I / X  

is a spectral set ]or T E C(~) then it is also a complete spectral set ~or T. 

Proof. Let 0X denote the topological boundary of X, and let A = rat(X)Iox, regarded 

as a subalgebra of C(~X). By the maximum modulus principle we have sup (I](~) I : )t e X} = 

sup (I/(~)1:2 ~ X }  for e v e r y / E  rat(X), and t h e r e f o r e / ~ / ( T )  can be regarded as a contrac- 

tive homomorphism of A into /:(~). Now a familiar theorem of Walsh [10] asserts tha t  

every real-valued continuous function on ~X can be approximated in norm by  real parts  

of polynomials. In  particular, A is a Dirichlet algebra in C(~X). By 3.6.1 of [1] the map 

/6A-->/(T) is completely contractive. In  particular we have IIF(T)II <sup  {HF(/)II: 26~X} 

for every matrix-valued rational function F, and the conclusion follows from this. 

We remark tha t  1.2.1 is false in higher dimensions; there is a commuting t r i p l e  

T = ( T  1, T 2, T3) for which the polydisc D~={(zl, z2, zx): z,6C, lz, I ~<1} is a spectral set but  

not a complete spectral set (see the discussion following the corollary of 1.2.2). 
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Now let X be a compact Idausdorff space and let A be a subalgebra of C(X) which 

contains the constant 1 and separates points. I t  will be convenient not to require A to be 

closed. A representation of A is a homomorphism 4 of A into the algebra l:(~) of all 

operators on some Hilbert space ~ such that  4(1)= I and 114(/)l[ ~[[/ll, ]EA. A dilation of 

4 is a pair (z, V) consisting of a representation z~ of C(X) on some Hilbert space ~ and an 

operator VEs  ~) such that  4( / )= V*zc(/)V, lEA. Since ~ is defined on all of C(X) 

the conditions z ( 1 ) = I  and IIz~[[ ~<1 imply that  ~ is in fact a *-representation of C(X) 

(cf. [1], Prop. 1.2.8). Note also that  the condition 4 ( 1 ) = I  implies that  V is an isometric 

imbedding of ~ in ~. Moreover, since 4 is multiplicative on A the mapping T-+ VV*TVV* 

is multiplicative on the operator algebra 7~(A); thus the range of V is a semi-invariant sub- 

space for ~(A). We recall from [1 ] that  4 is called completely contractive if for every/r = 1, 2, ..., 

the induced homomorphism id| M~|174 ) has norm 1. One thinks of Mk| 

as the algebra of all k • k matrices F = (/~j) whose entries/~j belong to A, having the obvious 

norm [[F[[ =sup {[[F(x)]]: xEX}; the map /d |  4 takes a matrix of functions ([~j) to the 

matrix of operators (4(/i~)), the latter regarded as an operator on the direct sum of k copies 

of ~. Finally, the suppor~ of a representation z of C(X) is the smallest closed subset K of X 

such that  ~ annihilates {/EC(X): /(K)=0}. 

TI~EOREM 1.2.2. (Dilation theorem.) Every completely contractive representation o/ a 

/unction algebra A ~_ C(X) has a dilation (z~, V) such that the support o/ r~ is contained in the 

Silov boundary o/ X relative to A. 

Proo/. Let 4: A-+ s  be a completely contractive representation of A and let ~X be 

the Silov boundary of X relative to A. By definition of ~X the restriction map 

/EA-~/[oxEC(~X) is an isometric isomorphism of A onto A[o x. Since both C(X) and 

C(~X) are commutative C*-algebras, 1.2.11 of [1] implies that  /EA-+/Iox is completely 

isometric. Thus we may regard 4 as a completely contractive representation of A[o x ~- 

C(~X), and everything will follow if we simply show that  4 has a dilation (z~, V) where 

z~ is a representation of C(OX). But by the corollary of the extension theorem (see 0.2) 

4 has a positive (in fact completely positive) extension r to C(~X), and by a theorem of 

Naimark (see [1], or Theorem 0.4) r has the form V*z~V where r~ is a representation of C(OX) 

on a Hilbert space ~ and VEI:(~, R). That  completes the proof. 

We remark that  the converse of 1.2.2 is also true, since any map of C(X) having the 

form /-~ V 'g ( / )g  (with ~ a representation and I[ VII 41)  is completely contractive ([1]. 

1.2.10). Thus a representation o/ A is dilatable i], and only i/, it is completely contractive. 

Now let X be a compact subset of (~. We shall write ~X for the Silov boundary of X 

relative to rat(X). I t  follows easily from the maximum modulus principle tha t  aX is 
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always contained in the topological boundary of X, and in the one-dimensional case n = 1 

the two boundaries are identical. In  higher dimensions, however, ~X is usually much 

smaller, f o r  example if X is the two-dimensional polydisc D • D =  {(z, w): I 1, Iwl < 1}, 

then ~X =~D • ~D is the torus while the topological boundary of D • D is aD • D U D • ~D. 

Now let T = (T 1 .... , Tn) be a commuting n-tuple of operators on a Hilbert space ~ and let 

X be a compact set in C ~ containing sp(T). By a normal dilation of T we mean a pair 

(N, V), where N = (N1 .... , Nn) is an n-tuple of commuting normal operators on a Hilbert 

space ~ and V is an isometric imbedding of ~ in ~, such that  s p ( N ) ~ X  and ](T) = V'/(N) V 

for every ] E rat(X). Perhaps it would be better to call such an (N, V) a normal X-dilation 

for T, but the shorter more ambiguous name does not usually cause problems. We can now 

extend 1.0 to the general case. 

COROLLARY. Let T = ( T  1 . . . .  , Tn) be a commuting n-tuple o] operators which has the 

compact set X ~ C n as a complete spectral set. Then T has a normal dilation N = ( N  1 ..... N~) 

such that sp (N)___ ~X. 

Proo]. By hypothesis, the map ] E rat(X)-~/(T) defines a completely contractive repre- 

sentation of the function algebra rat(X). By 1.2.2 there is a representation g of C(X) 

on ~, supported on ~X, and an isometry V of the space on which T acts into ~ such that  

](T)= V*~(])V, ]Erat(X). If we put ]j(zl, ..., z~)=zj and Nj=~(/j) ,  l < j ~ < n ,  then N =  

(N 1 ..... N~) is a commuting family of normal operators for which xt(/)=](N), ]Erat(X). 

I t  is easy to see that  the spectrum of N is the support of ~ (this is well-known in the case 

n = l ,  and the general case has a similar proof), and so the conclusion follows. 

As in the remark following 1.2.2, this sufficient condition for a normal dilation is also 

necessary. Note also that  this result, together with 1.2.1, specializes to the dilation theorem 

1.0 when n = 1 and X has no holes. 

The latter remark raises the question as to whether the conclusion of the corollary is 

generally vahd if one deletes the term "complete" from the hypothesis. The answer is no. 

S. Parrot t  [14] has given an example of a commuting triple T=(T1,  T~, T3) such that  

[[p(T)l I <sup {]p(zl, z2, za)l: ]z,[ <1} for every polynomial p but which has no unitary 

dilation (U, V) (i.e., U = (U 1, Us, U3) is a commuting triple of unitary operators on a 

Hilbert space ~ and V is an isometry such that  p(T)= V*p(U)V for every polynomial 

p(z 1, zz, z3) ). By a theorem of Oka [10] the first condition means that  T has the unit polydic 

D • D • D as a spectral set; while the second condition means that  T has no normal dila- 

tion N with sp(N)~_~(D • D • D). 

As a final note, the corollary implies in Parrott 's  example that  D • D • D is not a 

complete spectral set for T. In  particular, a contractive representation o] a ]unction algebra 
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need not be completely contractive. This affirms a conjecture in ([1], p. 222) and gives another  

example such as in appendix A.3 of [1]. 

1.3. Nilpotent dilations 
I n  the foregoing discussion we have been preoccupied with normal  dilations. There 

a r e  times, however, when one is led to seek non-normal dilations with special properties 

(we shall encounter  such a si tuation in section 2.3). I n  this section we will illustrate this by  

answering the following question: given T E i:(~) and an integer n t>2, under  what  conditions 

does there exist a contract ion/V on a larger Hilbert  space ~___ ~ such tha t  N ~ = 0  and T~= 

P~Ni[~ for i=O, 1, ..., n - l ?  Note  tha t  a necessary condition is t ha t  IIT]I = I l P J [ ~ l l  <l ,  
and if in addit ion T n = 0 then the answer is trivially yes for one can take ~ = ~ and 2V = T. 

However  if T ~ 4 0  then the  question is nontrivial,  and we will see in 1.2.1 below t h a t  the 

answer is yes iff T n is "small"  in an appropriate  sense. 

For  each n>~2 let S~ be the "ni lpotent  shift" of index n; i.e., S~ is the operator  on 

(3 n whose matr ix  relative to the usual basis is 

0 1 0 ""i) 0 0 1 0 

0 

For  any  operator  T and any  positive cardinal k, k. T will denote the direct sum of k copies 

of T. Any  operator  S which is unitari ly equivalent  to k. T will be called a multiple of T, 

and this relation is wri t ten S ~  k. T. 

T ~ O R E M  1.3.1 Let T e s  IITII ~<1, and let n>~2 be an integer. Then the/oUowing 

are equivalent: 

(i) there is a Hilbert space ~ _ ~  and a contraction N E s such that N'~=O and T*= 

P~N*]�9 /or i=O, 1, ..., n - 1 .  

(ii) there is a Hilbert space ~ _ ~  and a multiple N, , , k .Sn  o /Sn  which acts on ~ such 

that T~=P~N~[~ /or i=O, 1 ..... n - 1 .  

(iii) 1 + 2  Re Z~jI~ 2 ' T ~ > 0  /or each ,~ e C, ],~ [ =1. 

(iv) 2 Re ( I - ~ T ) * 2 ~ T ~ < I - T * T  /or each 2eC, I~[ =1.  

Proo/. Since the  implication (ii)=>(i) is trivial, we will prove ( i )*( i i i )*( i i )  and 

(iii) *>(iv). 
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(i) implies (iii). Note  t h a t  if 1 + 2  Re  ~ - ~  z~T~>~O for all ]z[ <1 ,  then  (iii) follows 

by  tak ing  strong limits as ]z] -+ 1. Since the  compression of a posit ive opera tor  in positive, 

~n-lz~lV~ (i) implies (iii)follows f rom the fact  t h a t  if N i s  as in ( i )and  [z I < 1  then  I + 2  R e / a  = 

1 + 2  Re ~ r  z 'N~=Re (~ + z N ) ( 1 - z ~ ) - ~  = ( I - ~ N * ) - ~ ( I -  I z l ~N*~) ( I -z~7)  -1 ~0 .  

(iii) implies (ii). Choose T satisfying (iii) and  define a linear m a p  r of span {S~n : 0 <. i <~ 

n - 1 } onto span {T' :  0 < i ~< n - 1} b y  6:~_--0 ~ A, S~-~ ~ L  -1A~ T' .  Then r is obviously linear 

and  preserves identities. We claim t h a t  r is complete ly  contract ive.  For  tha t ,  consider the  

sequence of operators  {Zi: - co < i < + oo } defined b y  Z i = T i for 0 < i < n -  1, Z~ = 0 for 

i ~> n, and  Z i =Z*I for i < 0. Then  clearly ~ ~ [[Z~II ~< 2n - 1 < oo, and the  hypothesis  on 

T means  t h a t  the  "Four ier  t r ans fo rm"  ~(4) = Z + ~  4 4Z, is positive: $(4)/> 0 for [4] = 1. I t  

follows t h a t  the  m a p  ~p: C(X)-+s defined b y  

~(/) = ~ Jo /(e'~ ~(e-'~ 

is a posit ive linear map, and note  t h a t  ~(z *) =Z,, i =0, 1, 2 ... .  , where z E C(X) is the  funct ion 

z(4) =4.  Now a posit ive linear m a p  of C(X) is a lways complete ly  posit ive [17], and a com- 

pletely posit ive linear m a p  which preserves identit ies is complete ly  contract ive  ([1], 1.2.10). 

So if we let A be the  disc algebra (the closed linear span in C(X) of 1, z, z 2 . . . .  ), then  the  

restr ict ion Vo = YJ [ A is a complete ly  contract ive linear m a p  such tha t  y~0(z ~) = T t for 0 ~ i 

n - 1, and V0(z ~) = 0  for i ~>n. Now since T n ~=0 in general, ~0 is not multiplicative;  however ,  

i t  does vanish on the  ideal znA, and therefore induces a complete ly  contract ive  linear m a p  

Y)0 of the  quot ient  A/znA into / : (~) such t h a t  r t, O<i<~n-1. On the other  
n - 1  i n - 1  i n hand,  it was p roved  in ([1], 3.6.6) t ha t  co: ~=o a~Sn-~=o a~(z +z A) is a complete ly  

isometric linear m a p  of span {I, S n . . . . .  S~ n-l} onto A/znA. Finally,  since the  original m a p  q~ 

has the  decomposi t ion r it follows t h a t  r is complete ly  contractive.  

Now since r  = I ,  a corollary of the extension theorem shows t h a t  ~ has a completely 

posit ive extension to C*(Sn) (see 0.2). B y  Stinespring's  theorem the extension of ~ has the  

form V*zV, where 7~ is a representa t ion  of C*(Sn) on a Hi lber t  space ~ and  VE 1:(~, ~).  

Since V*V=r V is an isometric  imbedding of ~ in ~.  Now ShE s ~) and  is irredu- 

cible, so t h a t  C*(S~)= s Thus,  g mus t  be uni tar i ly  equivalent  to  a mul t ip le  k.id of 

the ident i ty  representat ion.  I n  part icular ,  z(S~) has  the  fo rm N = k. B where B is uni tar i ly  

equivalent  to Sn. Thus we see t h a t  T~=r for O<~i<~n-1, and the  con- 

clusion (if) follows af ter  identifying ~ with a subspace of ~ in t e rms  of the  i somet ry  V. 

(iii) implies (iv). I f  we mul t ip ly  the  inequal i ty  (iii) on the  left  b y  I - ~ T *  and on the  

r ight  b y  I - 4 T ,  making  use of the  ident i ty  ~ - 1 4 k T e ( I - 4 T ) = 2 T - 4 n T n ,  we obta in  

I - T ' T - 2  Re (I-4T)*4nTn<--.O, f rom which (iv) is evident.  
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(iv) implies (iii). Assume (iv). We claim first that  T* has no eigenvalues of modulus 1. 

Indeed, if te is a complex number of modulus 1 and if, to the contrary, ~ is a unit vector such 

that  T*~=fi~, then IIT~-te~llA= HT~Ip-2  Re (T~, #~)+1.  Since IIT~]I ~<1 and (T~, te~)= 

fi(~, T*~)= 1#12=1, we have IIT~-te~]l~<0 and hence T~ =#~. Applying the vector state 

(X) = (X~, ~) to the inequality Re ~ ( I  -A T)* T ~ ~< 1 - T* T we obtain Re 2~(1 - ~fi)te n ~< 0 

for all 14] =1, hence ICe A~(1-~) ~<0 for all 141 =1. But  this inequality is absurd for n~>2 

(because the continuous function/(4) =A~(1-~) = ~ n ~ n - 1  has nonzero real part and zero 

Haar integral, hence its real part  could not be nonpositive), and the assertion follows. 

Now we have already made use of the identity 

n--1 

( I  - AT)* ( I  + 2 R e  ~ )~  T k) ( I  - AT) = I - T *  T - 2 R e  ( I  - 2 T ) *  A ~ T n. 
1 

So if 2E(~ is of unit modulus, then condition (iv) implies that  ((I +2  Re ~-lAkTa)~, U) ~ 0  

for every vector U of the form ( I -AT)~ ,  ~ 6 ~. Since, by the preceding paragraph, the null- 

space of (1 -~T)*  is trivial, these U's are dense in ~, and now condition (iii) follows. That  

completes the proof. 

Our main application of this result will be when T n 40.  However, note that  if T ~ =0  

then (iv) is satisfied, and we conclude that  there is a multiple N ~ oo. S~ acting on a larger 

space such that  T k = P ~ N k I ~  , O<~k<~n-1.  In this case the equation persists for k>~n, 

so that  N is a power dilation of T. We remark that  this special case (but not 1.2.1 itself) 

could also have been deduced from the results of ([1], section 3.6), or by a direct argument 

sketched in section 2.5. 

The following sufficient condition will be useful in chapter 2. I t  asserts, roughly, tha t  

T has a nilpotent dilation as above when T n is "small". For an operator T, I T[ denotes 

the positive square root of T*T.  

P~O:e0SITION 1.3.2 Let T be a contraction and let n>~2. Suppose there is a positive 

constant ~ such that TnT*n<~QT*nT ~ and I T~I <~(8+8~)- �89 T*T) .  Then conditions (i) 

through (iv) o/ 1.2.1 are satisfied. 

Proo]. I t  suffices to verify condition (iv) of 1.2.1; and for that  we shall make use of 

the operator inequality (Re X )  ~ ~ �89 +XX*), which is easily proved by expanding the 

right side of the inequality in terms of the real and imaginary parts of X. Applying this to 

X = ( I - A T ) * A n T  n (where A is a complex number of modulus 1) we obtain 

(Re (I  - AT)* A n Tn) 2 <~ �89 (T  *n I I - AT 12 T n + (I  - AT)* T *n (I  - IT) ) .  

Now since HT]] 41  w e  have T *hI I-T]~Tn< III-ATH~T*nTn<4T*nT ~, and on the other 
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hand (I-2T)*TnT*'~(I-2T)<~O(I-2T)*T*'~Tn(I-2T) = ~T*'~[I-]tT]2T'~<~4~T*nT ". 

Thus (Re ( I  - 2 T) 2n Tn)2 ~< (2 + 2~) T *n T n. Now the function/(X) = Xi  is operator-monotone 

on the set of all positive operators on ~ [4], and we may  conclude from the above 

inequality tha t  IRe (I-~T)]tnT n] ~<(2+20)�89 [. By  hypothesis, the right side is ~< 

� 89  and since X ~<[X[ is valid for every self-adjoint operator X we conclude tha t  

Re (I-2T)*2nTn~�89 for all 2EC, ]2] =1.  Condition (iv) of 1.21 follows. 

Chapter 2. More on boundary representations 

2.1. The boundary theorem 

Let  S be a linear space of operators on a Hilbert  space ~,  which contains the identity. 

The implementation theorem (0.3) asserts tha t  certain isometric linear maps of $ are 

implemented by *-isomorphisms of C*($) provided tha t  S has sufficiently many  boundary 

representations. The special case of greatest interest is where S is an irreducible set of 

operators. Here the identity representation of C*(S) (abbreviated id) is irreducible and of 

course has kernel (0), so the hypothesis of the boundary theorem will be satisfied if id 

is a boundary representation for $ (significantly, this sufficient condition is often necessary 

as well, see 2.1.0 below). Unfortunately, id is frequently not a boundary representation 

for S, even in the "nice" situation where C*(S) is a GCR algebra; see 3.54 of [1] for a class 

of examples. In  theorem 2.4.5 of [1] we gave a very general characterization of boundary 

representations which, while effective for dealing with certain "maximal"  representations 

of the disc algebra, is apparently of no help in determining when id is a boundary 

representation for S in the general case where C*(S) is an irreducible GCR algebra. In  this 

section we are going to take up this problem in a somewhat more general setting, namely 

that  in which S is an irreducible set of operators such tha t  C*(S) contains the algebra 

C(~) of all compact operators (it is easy to see tha t  the latter condition is equivalent to 

saying tha t  C*(S) is not an NGCR algebra, see the discussion preceding 2.3.1). We will give 

a complete solution of this problem in terms of criteria tha t  turn out to be very easy to 

check in special cases. 

We begin with a simple result tha t  provides a useful reduction. 

PROPOSITION 2.1.0. Let S be an irreducible subset o/ ~(~), such that S contains the 

identity and C*( S) contains C(~). Then S has su//iciently many boundary representations i], 

and only i/, the identity representation is a boundary representation/or S. 

Proo]. Sufficiency is trivial, so assume tha t  S has sufficiently many  boundary represen- 

tations. Then there is a boundary representation 7~ which does not annihilate C(~). Since 
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C(~) is an ideal and n is irreducible, the restriction of n to C(~)  is irreducible, and 

therefore is equivalent to the identity representation of C(~). But this implies ~ is equiva- 

lent to the identity representation of C*($) (again, because C(~) is an ideal), proving tha t  

i d , ~  is a boundary representation. 

THEOI~EM 2.1.1. (Boundary theorem.) Let $ be an irreducible set o/ operators on a 

Hilbert space ,~, such that $ contains the ider~ity and C*( S) contains the algebra C(~) o/all 

compact operators on ~. Then the identity representation o/C*($) is a boundary representation 

/or $ i/, and only i/, the quotient map q: ~(~)--> ~(~)/C(~) is not completely isometric on the 

linear span o/ $ U 5". 

Remark. The sufficiency part  of this theorem is of particular interest when $ is a 

"small" subset of C*($). For example, if T is an irreducible operator whose distance from 

the compact operators is less than IITII (i.e., IIT-Kll <IITII for some gec(~)  then it  

follows that  C*(T)~_ C(~), and by the boundary theorem id is a boundary representation 

for S = {I, T} (see the corollary below). 

Proo/. The necessity half is straightforward, and we dispose of that  first. Contra- 

positively, assume that  the quotient map q: /:(~)-~ s is completely isometric on 

span (S (J S*). We will produce a completely positive map r C*(S)-->s such that  

but r 

Let  $1 be the norm closure of span ($ (J $*). Then q is completely isometric on S1, 

and so is its inverse q-l: q($1)_~Sl. Since q-1 preserves the identity it is completely 

positive on q($0 ([1], 1.2.9) and by  the extension theorem there is a completely positive 

map ~: 1:(~)/C(~)-~s which extends q-X on q(SO. Define r C*(S)->s by r =yjoq. 

is completely positive (since both q and ~ are) and leaves each element of S fixed. On the 

other hand ~ annihilates C(~) (because q does), and since C*(S) contains C(~), ~ is not the 

identity map of C*($). 

Turning now to the other implication, we want to show that  if q is not completely 

isometric on span ($ + $*) then id is a boundary representation for $. Note first tha t  it  

suffices to deduce the conclusion from the stronger hypothesis that  q is not isometric on 

span (S+S*). For if, in the general case, we choose k~>l so that  q| C*(S)| 

(C*(S)/C(~)) | is not isometric on span (S + S*)| and realize S| as operators on 

g~ GEe (i.e., all/c • k operator matrices over S) and q| k as the canonical map of C*(S| 

into C*(S | Mk)/C(~ | t~k), then note that  all hypotheses are preserved, so by  the special 

ease we conclude that  the identity representation of C*(S | Mk) = C*(S)| Mk is a boundary 

representation for S|  k. This, however, implies that  the identity representation of 
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C*(S) is a boundary representation for S; indeed if r C*(S)-~ I~(~) is a completely positive 

linear extension of idls, then r174 C*($)| = C*(S|174 is a completely 

positive extension of idls | hence r174 is the identity map, hence 4 is the 

identity map. 

Thus we may assume that  there is an operator T in span (S+S*) and a compact 

operator g such that  II T+KH < II TH. Let  4 be a completely positive map of s  into 

itself, which will be fixed throughou t the remainder of the proof, such that  4(S) = S, SE $. 

We will show that  4 leaves C*($) elementwise fixed (note that  this implies id is a 

boundary representation for $, since by the extension theorem every completely positive 

map of C*(S) into s  extends to s Let  ~_~ 1:(~) be the set of all fixed points of 4. 

Then :~ contains S, so the desired conclusion follows if we can prove that  :~ is a C*-algebra. 

Now :~ is a norm-closed self-adjoint linear space (since 4 is bounded and self-adjoint) 

and we want to show tha~ x, y E :~ implies y*x E :~. From the polarization formula 

y*x = l[(x + y)* (x + y) - (x - y)* (x - y) § i(x + iy)* (x + iy) - i(x - iy)* (x - iy)] 

it is evidently enough to establish the following assertion: ]or every XEE(~) ,  4 ( X ) = X  

implies 4 ( X ' X ) = X * X .  

In the proof of this claim, we will construct a normal idempotent map of a yon 

/qeumann algebra, which is suitably related to 4. The following lemma gives one of the key 

properties of such maps. 

L•MMA 1. Let y~ be a normal completely positive linear map o] avon Neumann ~ into 

itsel/ such that ~po~p =yJ and II~f[I <~1. Let P be the support projection o/y~ (i.e., P• is the largest 

projection in the kernel o I yJ). Then P commutes with the fixed points o I ~p. 

Proo] o] Lemma. We remark that  the existence of P is established just as if ~ were a 

normal state, and moreover P satisfies ~(X)=yJ(PX) =~(XP),  and ~f(X*X)=0 if and only 

if PX*XP=O,  X E ~  (see [7], p. 61). 

Since ~ is self-adjoint its fixed points form a self-adjoint family of operators in ~. 

Thus it  suffices to show that  for every X E ~ ,  y~(X)=X implies P X P = X P ;  in turn, this 

follows if we prove P X * P X P = P X * X P ,  since for every vector ~ in the underlying Hilbert 

space we have ]](I-P)XP~H"= Iixp~ll 2 -  ]IPXP~ii2=(PX.Xp~, ~ ) - ( P X * P X p ~ ,  ~). 

So choose X E ~  such that  ~f(X)=X. l~ote first that  X*X<~f(X*PX); for X * X =  

yJ(X)*~f(X) =~(PX)*~p(PX)<~f(X*PX), the last inequality by the Schwarz inequality for 

completely positive linear maps of norm 1 (which follows directly from the canonical 

representation ~p = V*zcV, see [1] 1.1.1). Thus X*PX <.X*X <~y~(X*PX) and, multiplying on 

left and right by P, we obtain P X * P X P  < P X * X P  <~Py~(X*PX)P. Thus it suffices to show 



2 8 6  W ~ , L ~ M  ARVESON 

tha t  the two extreme members of this inequality are the same, i.e., P(~(X*PX) - X * P X ) P  

0. But  by the preceding, ~(X*PX) -X*PX is positive, and it is annihilated by yJ because 

y3o~ =~. The conclusion therefore follows from the properties of support projections. The 

proof of the lemma is complete. 

Lv.M~A 2. Let g be a yon Nenmann algebra and let go be a weakly dense C*-subalgebra 

o / g  such that every bounded linear/unctional on go has an ultraweakly continuous extension 

to g, Then/or every completely positive linear map @: go-+go/or which I]ell <1, there is a 

normal completely positive linear map v2: g - ) g  such that ]IvH ~<1, r o y = v ,  vo@=v on ~o, 

and @( T) = T implies ~v( T) = T /or  all T E go. 

Proo/. For each integer n>~ 1 define @n: g 0 ~  go as the n-fold composition of @ with 

itself, and let A be a Banach limit on the additive semigroup of positive integers. Define 

Fo: ~o -~ g as follows; fix T E ~ and define a bilinear form [-,-  ] on ~ • ~ (~ being the under- 

lying Hilbert space) by [~, ~] =An(e~(T)~, V), ~, ~e~ (Anna denotes the value of A at  the 

bounded sequence {an} ). [., .] has norm at most supn lie'(T)ll < IITII, and by a familiar 

lamina of Riesz there is a bounded operator ~vo(T ) on ~ such that  (~v0(T)~, 7) =An(@n(T)~,~?) �9 

Clerarly T~>~vo(T ) is a linear map of go into s  of norm at most 1. Moreover, a standard 

separation theorem shows that  Fo(T) belongs to the weakly closed convex hull of (an(T): 

n >/1}. In particular ~vo(~0)_~ g. Since each @n is positive, it also follows that  ~v o is positive. 

For each k>~l we can apply a separation theorem to y~o| ~o|174 in a similar 

way to conclude that  ~v 0 is in fact completely positive. 

One can easily find a normal extension ~v of Y;o to ~. The details are, briefly, as follows. 

For each bounded linear functional ] on go let [ denote its ultraweakly continuous extension 

to R. Then ]]T]] = ]1/11 (since by Kaplansky's density theorem the unit ball of g0 is ultra- 

weakly dense in that  of g), so that  /~-> T is an isometric isomorphism of the dual of go 

onto the predual g ,  of ~. For each T E g define ~v(T) as the unique element of g such that  

/(y;(T))=(/o~vo)~(T), ]E~,.  Clearly ~v is a linear extension of ~vo, and it has the required 

continuity property because ]o~v = (]o~v0) ~ is an ultraweakly continuous functional for each 

/E g , .  The same formula shows ~v is positive, and in fact is completely positive since ~v 0 

WaS, 

That  [l~vll~<l is a trivial consequence of H/II=HfII and I[~v0[[~<l. The condition 

~fo~(T)=~v(T), T ~ o ,  follows from the translation invariance of A. Now choose T E g  0 

such that  @(T)=T. Then ~ ( T ) = T  for every n~>l, thus (~vo(T)~,~)=An(en(T)~,~)= 

(T~, V)' ~, V ~ ,  and we have y(T)  =~vo(T ) = T. I t  remains to show that  ~vo~ =~v. Fix T~  g0. 

Then ~vo@(T)=~v(T) implies ~vo@n(T)=~v(T) for n~> l, so that  ~v(X)=~v(T) for all X in the 

weakly closed convex hull of (@n(T): n>~l} and taking X=~p(T) we conclude ~(~v(T))= 
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y~(T). The condition ~oyJ=yJ on ~ now follows by continuity, completing the proof of 

Lemma 2. 

Returning now to the proof of the boundary theorem, let ~ be the universal representa- 

tion of s  ([8], 2.7.6 and 12.1.3), and let ~ be the yon Neumann algebra generated by  

~(s z decomposes uniquely into a direct sum 3*g=gl~)g2, where g2 annihilates C(~) 

and gl  is a nonzero multiple of the identity representation. Let  E be the projection on the 

range of Zl. Then E is a nonzero central projection in ~ (because gz and 7~2 are disjoint 

[8], 5.2.4), and it is minimal central because ~E=~z(E(~)) is a factor (isomorphic to 

s Note, finally, tha t  if X E s  and ~(X)E=O then X=O, because ~(X)E=7~I(X ) 

and z l  is a faithful representation of s 

Now fix r as in the discussion preceding Lemma 1. Taking ~0=~(s  then every 

bounded linear functional on ~0 has an ultraweakly continuous extension to ~ ([8], 12.1.3) 

and we may  apply Lemma 2 to the map ~or  ~0-~ ~0 to obtain a normal completely 

positive idempotent linear map yJ: ~ - ~  such tha t  119]] ~<1, ~ leaves {~(T): r  

fixed, and y~oTeor = F o ~  on s  Let  P be the support projection of yJ. Then we claim: 

P>~E. Indeed P is in ~ and by  Lemma 1 P commutes with ~(S). Thus PE commutes with 

g($) E =z1($). Since S is an irreducible set of operators it generates s  as a yon Neumann 

algebra, and since gz is a normal representation of s  :7~l(S ) generates xrz(s ~ E  

as a yon Neumann algebra. Thus PE commutes with ~ E  and so PE is a central projection 

in RE. By minimality of E we have PE = 0 or E. Now we claim PE cannot be 0. For if 

i t  were then P<~E • and so ~foTr=yJoPTrP=~foP(O|174 Thus if we choose 

TEspan(S+S*) and a compact operator K such tha t  HT+KJJ<HTIJ, then r  

implies xr(T)=y~oxr(T)=y~(O|174 because 7r~=0 on C(~). But  the 

left hand member has norm JJTr(T)H =JITH while the norm of the right side is at  most 

]lvll" IlT+K]l < J[Y+Kll < ]lTjl, a contradiction. This proves tha t  P E = E ,  as asserted. 

Now to complete the proof, choose X E s  such tha t  r  and let us prove 

r =X*X. By the Schwarz inequality (cf. Lemma 1) we have X*X=r162 

r and hence g(r - X'X)  is a positive element of ~. This element is annihilated 

by ~p because y~o=or =Wo~ on s  and therefore Pz(r - X ' X )  P = 0 because P is the 

support  of W- Multiply on left and right by E and use PE = E to obtain ~I(r - X ' X )  = 

Ez(r  Since x~ 1 is a faithful representation of ~ we conclude tha t  

r  and the proof is finished. 

Remark 1. The compact operators on ~ are "approximately"  finite rank operators. 

To say that  an operator T E s  satisfies H q(T)JJ = JJ TJJ (q being the quotient map  onto 

s means tha t  the norm of T cannot be decreased by  a compact perturbation; 

19 - 722909 Acta mathematica. 128. I m p r i m ~  le 29 Mars  1972. 
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in other words, the norm of T is achieved at  "infinity". Thus the condition of the boundary 

theorem is, roughly, tha t  span(St)S*) contains some operators whose norms are not 

achieved at infinity. 

Remark 2. The  sufficiency proof can be easily adapted to establish the following 

slightly more general result. I f  r ~:(~)-~ l:(~) is a completely positive map of norm 1 whose 

set :~ of fixed points is irreducible and is such tha t  the quotient map q: s  s 

is not completely isometric on :~, then :~ is a C*-algebra. This result is of interest and appears 

to be nontrivial even in the finite-dimensional case: thus if r is a norm 1 completely positive 

map  of a matr ix  algebra into itself whose fixed points algebraically generate the full 

matr ix  algebra, then r is the identi ty map. But  the only proof we know in this special 

case is essentially the one given. One does not need the universal representation here, 

of course, but  the main steps, Lemma 1 and the construction of the idempotent map ~, 

seem essential. I t  would be desirable to have a simpler proof of the finite dimensional 

theorem. For example, one might conjecture tha t  the fixed points of a completely positive 

map of a matrix algebra into itself always form an algebra (assuming, say, tha t  the 

identity is left fixed). However, this conjecture is false: consider the completely positive 

map which takes a 3 • 3 matr ix  (a~j) into ( 110 0) 
a ~  0 

0 �89 n + a ~ )  

Note tha t  this map is even idempotent,  but  not faithful. 

Along these lines, we append the following observation. I / r  is a/aith/ul completely 

positive idempotent linear map o] a C*-algebra into itsel] such that [Jell <1,  then the /ixed 

points o] r /orm a C*-algebra. For the proof, it suffices to show that  r  X implies 

r =X'X ,  as in the proof of the boundary theorem. Let H=r r X 

and the Schwarz inequality imply that  H~>0, and r  follows from idempotence. 

Thus H = 0  because r is faithful. 

Remark 3. Our original version of the sufficiency par t  of the boundary theorem 

assumed tha t  S was an irreducible set of compact operators, see Theorem 1 of [3]. C. A. 

Akemann and the author then adapted the proof to include the case where $ contains a 

single nonzero compact operator. The above is a third adaptation, which is evidently in 

final form. 

Problem. Does there exist a subset S of a C*-algebra (such tha t  S contains the identity) 

such tha t  C*(S) has no boundary representations for S? We remark tha t  if such a set S 

exists then one can construct an algebra with the same feature. Indeed, let B 1 be the C*- 
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algebra of all 3 x 3 matrices over C*(S) and take S 1 to be the subalgebra of B1 consisting of 

all 3 • 3 matrices of the form 

0 2e #e 

0 0 he 

where e is the identi ty of C*(S), 2, # are complex numbers, and s runs over the linear span 

of S. One can verify tha t  B 1=C*($1) , and S 1 is an example whenever S is. 

COROLLARY. Let $1 and $2 be irreducible linear spaces o/ operators on Hilbert space 

~1 and ~ .  Suppose S~ contains an operator Ti whose distance/rom the compact operators is 

less than II T~[[, i = 1, 2. Then every completely isometric linear map o/$1 onto S~ which takes 

11 to 12 is implemented by a unitary operator/rom ~1 to ~2. 

Proo/. First we note tha t  C*(Sl) contains C(~1). For if not, then the quotient map 

q: I~(~1)-~s would be injective, therefore isometric, on C*(S1), and therefore 

isometric on the norm closure of $ + $*, a contradiction. 

By the boundary theorem, id is a boundary representation for $1, and in particular 

the intersection of the kernels of all boundary representations of C*($1) for $1 is {0}. The 

same is true of $3, so by  the implementat ion theorem every completely isometric linear 

map r $1-~$~ such tha t  r  is implemented by  a *-isomorphism ~: C*($1)-~C*($2). 

is an irreducible representation of C*($1) , thus its restriction to the ideal C(~1)~ C*($1) 

is also irreducible and so is unitarily equivalent to the identity representation of C(~) 

([8], section 4.1). Since C(~) is an ideal in C*($1) , g itself is unitarily implemented, and 

therefore so is r 

2.2. Almost normal operators and a dilation theorem 

The criterion of the boundary theorem becomes particularly easy to check in the 

presence of almost normal operators. An operator TE IZ(~) is almost normal if T ' T - T T *  

is compact; i.e., T is normal modulo C(~). I t  is an empirical fact tha t  many  of the most  

commonly studied operators are almost normal. For example, subnormal operators are 

often almost normal, a prototype being the unilateral shift S of finite multiplicity (here 

S*S-SS*  is a finite rank projection); and the same is true of the compression of S to one 

of its semi-invariant subspaces (such a compression T is even "almost  uni tary"  since both 

I - T * T  and I - T T *  have finite rank). As another type of example let T be a unilateral 

weighted shift with weights ~0, ~1, ~ ... .  , tha t  is, 0 <  I~nl ~<M< ~ for all n and T is defined 

on an orthonormal base %, el, e2, ... by  Te~=o:,e,+ r A simple computation shows tha t  

T * T - T T * :  en-~([~n[~-]~_l l2)e~ for n~>l, so tha t  T is almost normal q and only i/ 
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[~n+l[ -  ] ~ [ - 7 0  as n~oo .  Thus the moduli [~n] may oscillate so long as the period of 

oscillation becomes appropriately large at co; for example the weights ~ = = l + s i n  ~n 

define an almost normal weighted shift. We also remark that  all unilateral weighted shifts 

are irreducible, since a routine matrix calculation shows that  the only self-adjoint matrices 

that  commute with the matrix of a unilateral weighted shift (relative to the obvious basis) 

are scalars. 

The essential spectrum of an operator T E s  is the spectrum of the image of T in 

the Calkin algebra s this will be written esp(T). I t  is clear that  esp(T) is a sub- 

set of sp(T) which is invariant under compact perturbations of T, and thus esp(T) c 

f'l sp(T + K), the intersection taken over all compact operators K. The larger set in this 

formula is usually called the Weyl spectrum of T, and it may contain esp(T) properly, 

ef. [6]. }asp(T) l will denote sup {1~1:2 e esp(T)}, the essential spectral radius of T. 

In the following theorem we assume that  the underlying Hilbert space has dimension 

at least 2. 

T H E O a E ~  2.2.1. Let S be an irreducible set o~ commuting almost normal operators which 

contains the identity. Assume that lesp( T) l < IITll for some element T e S. Then the identity 

representation o/ C*($) is a boundary representation /or S. 

Proo/. Note first that  C*($) contains all compact operators. For if TES is normal, 

then by Fuglede's Theorem TEC*($)' and hence T is a scalar. Thus for every non-scalar 

Te$, T * T - T T *  is a nonzero compact operator in C*($); since C*(S) is irreducible a 

standard result (el. [8]) implies that  C*(3) contains the entire algebra C(~) of compact 

operators. 

Now let q be the canonical map of s onto the Calkin algebra ~(~)/C(~). Then 

q($) is a commuting set of normal elements in ~:(~)/C(~), and in particular IIq(T)ll is the 

spectral radius of q(T) for every TeS.  The latter is lesp(T)l, so by hypothesis q is not 

isometric on S. The desired conclusion now follows from the boundary theorem. 

When the set $ of operators is an algebra one may obtain other criteria, of which the 

following is a sample. 

TH~ORE~ 2.2.2. Let 14 be any non-commutative irreducible algebra o] almost normal 

operators which contains the identity. Then the identity representation o/C*(.,4) is a boundary 

representation/or ~4. 

Proo/. As in the preceding result, C*(A) contains C(~), and the canonical map q: 

s163 maps  M onto an algebra of normal elements in s Now for 
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X, YEq(•) define IX, Y] - - X Y * -  Y*X. Then [., .] is a sesquilinear form on q(J4) such that  

IX, X] =0, XEq(A), by normality of X. Thus the usual polarization identity shows that  

[X, Y]=O for all X, YEq(A), hence XY*= Y*X. By Fuglede's Theorem we conclude 

that  q (~ ) i s  commutative. So choosing S, T to be any two elements of A which do not 

commute, then we see that  S T - T S ~ : O  while q(ST-TS)=0 .  In particular q is not iso- 

metric on A, and the proof is completed by an application of the boundary theorem. 

We remark that  it is very easy to give examples of noneommutative algebras of almost 

normal operators. For instance, let T be any almost normal but  non-normal operator, and 

consider any non-commutative subalgebra of C*(T). 

We shall first apply 2.2.1 to settle a problem taken up in [1]. Let  H ~ denote the usual 

Hardy space of all functions in L 2 of the unit circle T whose negative Fourier coefficients 

vanish. Let  r be an inner function, let ~ =H2GCH 2, and let Sr be the compression of the 

operator "multiplication by e go'' to ~. To avoid trivilalities we will assume that  the 

dimension of ~ is greater than 1; equivalently, r is not a constant and is not a trivial 

Blaschke product of degree 1. Then Sr is an irreducible contraction (which is not normal 

since dim ~ > 1), and we may ask if the identity representation of C*(Sr is a boundary 

representation for ( I ,  Sr S~ .... }. In  section 3.5 of [1] a partial solution was given in terms 

of the "zero set" of r defined as the set Zr of all points 2 ET for which 1/r is unbounded 

in every open subset of (Iz I < 1} which contains 2 in its closure, where ~ denotes the canoni- 

cal analytic extension of r to ([z I < 1}. The result of [1] was that  if Zr has Lebesgue 

measure zero then id is a boundary representation, and if Zr then id is not a 

boundary representation. The method of [1] gives no further information about the inter- 

mediate cases, Zr of positive measure but different from T. The following result completes 

the discussion of this class of examples. 

COROLLARY 1. The identity representation o/C*(Sr is a boundary representation/or 

(I, Sr Sr ...~ i/, and only i/, Zr is a proper subset o~ the unit circle. 

Proo]. I t  remains to show that  if Zr ~=T, then id is a boundary representation for 

(S~: n>~0}. Since Sr is irreducible and almost normal (recall that  I - S ~ S r  and I - S r  

are compact, cf. [1] Theorem 3.4.2), by 2.2.1 we need only show that  if Zr ~:T then there is 

a polynomial p such that  l esp(p(S~))I =sup (]p(2)[: 2Eesp(Sr is less than ]]p(Sr 

By ([1], 3.4.3 (ii)) we have esp (S~) =Zr and thus it suffices to show that  Zr is not a spectral 

set for Sr 

But  since the complement of Zr is connected and Zr has no interior, every operator 

having Zr as a spectral set must be normal (for example, see [15], p. 444). Since Sr is not 

normal, the conclusion follows. 
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As a second application of Theorem 2.2.1, let us consider a weighted shift T with 

weights a0, al  . . . . .  As we have already pointed out,  T is always irreducible, and it  is 

almost normal if I an+~ I - [ an [ ~ 0 as n-~ ~ .  The following corollary implies in the almost 

normal  case tha t  id is a boundary  representat ion for {I, T} iff the sequence ]a0I, l all  . . . .  

does not  achieve its max imum value at  infinity. First,  we require the following two laminas. 

L E M ~I A 1. Let ( Pa ) be any net o] pro~eetions in s ( ~ ) such ]harp a ~ has finite cod imension 

and lira a Pa=O weakly. Let q: I : (~)-~I : (~)]C(~)  be the natural map onto the Calkin algebra. 

Then lim a HP~ TP ail= llq( T)[[, /or every T E s 

Sketch o/Pro@ A trivial computa t ion  (which we omit) shows t ha t  lira a [[PaKPai[ =0 

for every  operator  K of rank  1, hence the same is t rue  of every  finite rank  operator  K. 

Since {KeC(~) :  limallPJPall=O} is easily seen to be norm-closed, it follows that 

lima liNg Keg 11 = 0 for every K e C ( ~ )  Thus, ~ T e C(~) and K e C(~) then lira supa [[P~ TPaI[ 
=lira supa IIPa(T +K)P~] I < I[ T +KII; taking the inf over K we obtain lira supa IIPa TP~[[ < 
IIq(T)H. On the  other  hand, since each P a T P a = T + ( P ~ T P ~ - P ~ T - T P ~ )  is a finite 

rank  per turbat ion  of T, we see tha t  ]Iq(T)II<~llP~TPa[], and hence Hq(T)l[< 
lim inf= [[Pa TP~II. The conclusion follows. 

L~M~A 2. La  T be an almost normal weighted shi/t with weights {an}. Then lesp( T) I = 

lim supn I a,~ l" 

Pro@ Choose an or thonormM base % e i ... so tha t  Te~ = anew+ i. A familiar computa-  

t ion with weighted shifts (cf. [11], problem 77) shows tha t  IlZll =sup~ la~l. So ~ we let 

Pn be the projection onto the invariant  subspace [e~, e~+ l, ...], nJ>l ,  then  the same 

calculation shows that IIP~TP~II~sup~nla~I. By Lemma 1 we see tha t  IIq(TIIl= 
limn IIP~ TP,  II =lira  supn I an l, and since q(T) is normal  the required formula [esp(T) l = 

r(q(T)) = llq(T)]l =l i ra  sup~ l an[ follows. 

COROLLARY 2. Le T be an almost normal weighted shi]t with weights ao, al . . . . .  I] 

lim sup.  Icon[ < supn Jan [, then id is a boundary representation/or {I, T}. I1 lira supn Jan ] = 

sup~ la~[, then id is not even a boundary representation/or {T'~: n=O, 1, 2, ...}. 

P r o @  If  l imsupn[an[  <supn[anl  then  by  Lemma 2 we see tha t  [asp(T)] <HTH, 

and the first conclusion follows by  applying 2.2.1 to S={I ,  T}. 

Now assume lim supn l an] =supn [a~l. There is no essential loss if we assume 

supn [an [ =II T I] = 1. Then  ][ q(T)]] ~< 1 while by  hypothesis  (and L e m m a  2) r(q(T))= 1; hence 

liq(T) l[ =r(q(T)) = 1. We claim t h a t  the spectrum of q(T) contains the unit  circle T. Indeed,  

sp(q(T)) N T 4=~ by  the  preceding formula,  so i t  suffices to  show tha t  sp(q(T)) is invar iant  
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under (complex) rotations. But  T is unitarily equivalent to )~T for [4[ = 1, because 2T  

is a weighted shift whose weights {2:r have the same moduli as (~n) ([11], problem 75). 

The claim obviously follows from this. 

By  ([1], Theorem 3.6.3) the map p(z)F-+p(q(T)) (where p ranges over all polynomials) 

defines a completely isometric representation of the disc algebra P({]z] ~< 1)). The same 

argument shows tha t  the same is true of the map p(z)F-->p(T). This implies in particular 

tha t  q is completely isometric on the linear span A of { Tk: k >~ 0). From ([1], 1.2.9 and 1.2.10) 

we conclude tha t  q is completely isometric on the norm closure of .4+.,4*, and now the 

conclusion follows from the boundary theorem. That  completes the proof. 

So for example, if we consider the three weight sequences cr247247 fl~= 

n + l / n §  and ~ n = l  §  ~nn, then ~n+l-an, fln+l-fl~, and ~ n + l - ~  all tend to 0 so tha t  

each defines an almost normal weighted shift. Since lim supna~=l<supn~Zn=2, id is a 

boundary representation for {I, T~}. On the other hand, lim sup~ fl~=sup~ fln=l and 

lira sup~ ~ = sup~ y~ = 2, so tha t  id is not a boundary representation for ( I ,  T#, T~ .... 

or for (I,  Tv, T~ .... }. 

I f  one states the boundary theorem contrapositively, then it can be  combined with 

the results of Chapter 1 to produce an unusual dilation theorem. To illustrate this, we will 

deduce a new unitary dilation theorem for certain sets of commuting contractions. We 

want  to consider the following question: does every commuting n-tuple T = ( T  1 ..... Tn) 

of almost normal contractions on a Hilbert space have a unitary power dilation? The answer 

is no in general, for Parrot t ' s  class of examples [14] of commuting triples with no unitary 

dilation contains finite dimensional special cases, and clearly all finite rank operators are 

almost normal. Nevertheless, we will see tha t  the answer is yes for a broad class of infinite- 

dimensional almost normal n-tuples. 

First, we want to point out tha t  the above question for general commuting n-tuples 

of almost normal contractions T = ( T  1 ..... T~) reduces to the case where {T 1 ..... Tn} is 

irreducible. Indeed, we claim tha t  the underlying Hilbert  space ~ decomposes into a direct 

sum ~ 0 ( D ~  ~ of reducing subspaces for {T~ .. . .  , T~) such tha t  if T~ = N ~ ( ~  T~a is the 

corresponding decomposition of T~, then (N 1 ..... Nn) is a commuting n-tuple of normal 

contractions on ~0 and, for each ~, (T 1 . . . . . .  T ~ )  is a commuting n-tuple of almost normal 

contractions on ~a such tha t  {Tla ..... T ~ }  is irreducible. Granting that ,  the reduction 

follows from the obvious fact tha t  an orthogonal direct sum of dilatable representations is 

dilatable and the known fact tha t  a commuting n-tuple of normal contractions has a unitary 

power dilation. To obtain the indicated decomposition of ~,  let q be the canonical map  of 

~(~)  into the Calkin algebra /:(,~)/C(~)). Then (q(T~), ..., q(T~)} is a commuting set of 

normal elements in s  and hence generates a commutat ive C*-algebra (by Fuglcde's 
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theorem). So if corn(T) is the commutator  ideal in the C*-algebra C*(T) generated by 

( I ,  T~, ..., Tn}, this implies q(C*(T)) is commutat ive and hence q(com(T))={O}, i.e., 

corn(T) consists of compact operators. Define ~0 to be the nullspace of com(T). Then the 

restriction of corn(T) to ~o ~ has trivial nullspace and so ~ splits into a direct sum 

~| ~ such tha t  com(T) l ~  = C ( ~ )  (see 1.4.4. of [2] for a proof of this standard result). 

That  this decomposition has the stated properties is a routine verification which we leave 

for the reader. 

Thus we will only consider n-tuples T = (T1 ..... Tn) for which {T1, ..., T~} is irreducible. 

Now, let S be an irreducible subset of l:(~), which contains the identi ty and is closed under 

multiplication. Let  ~ - ~ = ~ | 1 7 4  be the direct sum of ~r copies of ~, and let c ~ - $ ~  

s  .~)  be the semigroup of all operators of the form c~. T =  T |  T|  TE S. Note tha t  

if ~J~ is one of the "coordinate" subspaces of ~ . ~ ,  then ~ reduces oo-S, and in fact the 

map T E $ ~-> c r  is unitarily equivalent to the identity map of $. By  a sell-dilation 

for S we mean an isometric imbedding V of ~ in co. ~ such tha t  V* ~ �9 T V = T, T e $; the self- 

dilation is called trivial if the range V~ of V reduces ~ �9 $. Thus, S has a nontrivial self- 

dilation if ~ .  $ has a non.reducing semi-invariant subspace ~ such tha t  the map 

T E $ ~->P~ ~ �9 T I~ is unitarily equivalent to the identity map of $. Note that  if there is a 

nonunitary isometry V e s  such tha t  V * T V = T ,  T E $  (i.e if, in the terminology of 

Section 3.2 of [1], $ is infinite) then $ has a nontrivial self-dilation. Thus we obtain a 

simple example of the latter by  taking $ to be any  algebra of analytic Toeplitz operators 

on H 2 (here, one may  take the isometry V to be the unilateral shift). 

Finally, if T=(T1,  ..., T=) is any  n-tuple of operators on ~ and k=(k  1 ..... k~) is any  

n-tuple of integers, then k>~0 will mean kl>~0 .. . .  , k~>~0 and, for such a k, T k denotes 

T k'~'k~ T~-. 1 " L 2  . - .  

T ~ E O R E ~  2.2.3. Let n = l ,  2, ... and let T = ( T  1 . . . .  , T~) be an n-tuple o/ commuting 

almost normal contractions such that ( T 1 .... , Tn} is irreducible. I] (Tk: k >~0) has a nontrivial 

sell-dilation, then T has a unitary power dilation. 

Proo]. Let S={Tk: k 1 ... .  , kn>~0} be the semigroup generated by  {1, T1 .. . . .  Tn}. We 

claim first tha t  id is not a boundary representation for S. For that ,  since S has a non-trivial 

self-dilation, we can find an isometry VEs  c~-~) such that  V * ~ . T V = T ,  TES,  

and V~ does not reduce {cr T: TES}.  Define a map r C * ( S ) ~ ( ~ )  by r  V * ~ . X V .  

r is clearly a completely positive linear map which fixes S, and the claim will follow if we 

prove tha t  r is not multiplicative on C*(S) (for then r  on C*(S)). But  if ~ were 

multiplicative on C*(S) then V:~ would be a semi-invariant subspace for the *-algebra 

{ ~ . X :  XEC*(S)), and thus V~ reduces co. S, a contradiction. That  proves the claim. 
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Next,  note tha t  if the dimension of ~ is at  least 2 (the only case of interest) then as in 

the proof of 2.2.1 we see tha t  C*($) contains the algebra C(~) of all compact operators. 

The boundary theorem, together with the preceding paragraph, now shows tha t  the 

Calkin map q: E(~) -~s  is completely isometric on span $. 

Thus, if we define N,=q(T, ) ,  i = l ,  2 . . . .  , n, then N = ( N  1 ..... ~Vn) is a commuting n- 

tuple of normal contractions in C(~)/C(~) for which the map p(N)~p(T)  (p ranging over 

all n-variate polynomials) is completely isometric. Letting X = { ( z  I ..... zn): Iz,[ ~<1} be 

the closed n-dimensional polydisc, we see tha t  the joint spectrum of N is contained in 

sp(N1) • ... • sp (N~)c  X .  Since the joint spectrum of N is a complete spectral set for N 

(a fact which follows easily from the operational calculus for commutat ive C*-algebras), 

we see in particular tha t  X is a complete spectral set for N. Thus X is also a complete spectral 

set for T, and now the conclusion follows from the corollary of the dilation theorem (1.2.2). 

2.3. The order of an  irreducible operator 

One of the basic (and hopelessly difficult) problems of operator theory is to classify 

separably-acting operators to uni tary equivalence. One encounters a principal source of 

these difficulties immediately when he a t tempts  to reduce the problem from general 

operators to irreducible operators by  expressing the given operator T as a direct integral 

of irreducible operators. What  happens is tha t  if C*(T) is not a GCR algebra then this 

direct integral decomposition is badly non-unique, and it turns out to be all but  useless 

(the numerous sources of this pathology are discussed at  some length in [2]). If, on the other 

hand, C*(T) is a GCR algebra, then this procedure runs smoothly and allows a reduction 

to the case where T is an irreducible GCR operator (we will sketch this reduction 

presently). Thus one is led to seek unitary invariants for the class of all irreducible GCR 

operators. The self-adjoint theory takes us no farther, however, and in particular it gives 

virtually no insight into what kind of invariants one should look for in the latter class of 

operators. 

In  this section we will initiate the study of a somewhat broader class of irreducible 

operators. We are interested in the following admittedly vague question: what  is the 

minimum knowledge of an irreducible operator T tha t  one needs in order to know T 

to within unitary equivalenceS. We will find, for example, tha t  with many  operators T 

one can associate a numerical invariant  n(T) (the order of T) such tha t  T is determined to 

unitary equivalence by  the norms I]p(T)ll, where p ranges over all matr ix  valued poly- 

nomials o] degree at most n(T). Such operators are therefore highly "deterministic" in a 

sense analogous to the usage of the term in prediction theory, in that  once one knows the 

20 -- 722909 Acta mathematica. 128. I m p r i m ~  lo 29 Mars 1972. 
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norms of all low order polynomials in T then he knows not only the norms of all higher 

order polynomials, but  he in effect knows every geometric property of T. 

First, we want to sketch without details how the reduction of the classification problem 

to the irreducible case can be accomplished for GCR operators. I t  is known that  every 

separable representation of a separable C*-algebra is a direct integral of irreducible repre- 

sentations. This leads in a straightforward manner to the conclusion that  every separably- 

acting operator T is a direct integral of irreducible operators. Thus one might hope that  

this device would reduce the general problem to the problem of classifying irreducible 

operators. However, profound difficulties appear when C*(T) is not a GCR algebra, not the 

least of which is that  the above direct integral decomposition is highly non-unique. So one 

is lead to consider only those operators whose generated C*-algebras are GCR algebras. 

Here a reduction is possible, and one may deduce from the self-adjoint theory that  every 

such operator T has a direct integral decomposition of the form 

= f / m ( x ) .  TJ# (x ) ,  T 

where X is a standard Borel space (which can be taken as the spectrum of C*(T)),/z is a 

finite Borel measure on X, m(.)  is a "multiplicity function" (i.e., a Borel-measurable 

funct ion from X into the set {1, 2, 3 ..... ~r of all countable cardinals), x~+ T~ is a Borel- 

measurable map of X into the Borel space of all separably-acting irreducible GCR operators 

such that  x =~y implies Tx is not equivalent to T~, and finally m . S  denotes the direct sum 

of m copies of the operator S (see [2]). The key property of this decomposition is expressed 

as follows. Let  S be any other separably-acting operator which is algebraically equivalent 

to T (see section 1.1 of [2]; when S and T are normal this means simply that  they have the 

same spectrum, and this is also true in general provided one interprets the words 

appropriately). Then S has a decomposition 

= f ;  n(x). Sz dr(x), S 

where v is another Borel measure on X, n(. ) is another multiplicity function defined on X, 

and x F-> Sz is another operator-valued measurable function such that  Sz is unitarily equiva- 

lent to Tx, for each x e X .  The key property is this: T and S are unitarily equivalent i/f 

fz and v are mutually absolutely continuous and the multiplicity functions m and n agree almost 

everywhere. Thus the self-adjoint theory has reduced the classification problem for arbitrary 

separably-acting GCR operators to the problem of classifying irreducible GCR operators. 

Turning now to the current discussion, let T be a Hilbert space operator. We define 

the order of T (written n(T)) as follows. If a positive integer n exists such that  {I, T, 
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T 2 ..... T ~) has sufficiently many  boundary representations, n(T) will denote the smallest 

such n. I f  no such finite n exists but  {Tk: k =0,  1, 2 . . . .  ) has sufficiently many  boundary 

representations, we define n(T)=w.  I f  {T~: k = 0 ,  1, 2, ...) does not have sufficiently 

many  boundary representations then n(T) is undefined. Now according to 2.1.0, if C*(T) 

happens to contain the algebra C(~) of compact operators and n(T) is defined, then 

n(T) is the smallest positive integer such tha t  id is a boundary representation for 

( I ,  T, Y 2 ... . .  Tn), provided such an integer exists, and is ~o otherwise. Moreover, we will 

see momentari ly tha t  in this case n(Y) does not take on the infinite value co, and in fact 

n(T) =co only for the most pathological irreducible operators. 

Before proceeding further, we want  to recall one or two facts about  irreducible 

C*-algebras. Fist, recall that  a C*-algebra B is called NGCR if B has no nontrivial closed 

CCR ideals [8]. Now if B is an irreducible C*-algebra acting on ~,  then the largest CCR 

ideal in B is B N C(~) (indeed the latter is clearly a CCR ideal in B, and conversely if 

T E B  is such tha t  ~(T) is compact for every irreducible representation ~ of ]~ then take 

~=id  to see tha t  TERN C(~)). Since B is irreducible, Bfl C(~) rout be either {0) or 

C(~) ([2], Corollary 2 of 1.4.2), and thus we see tha t  an irreducible C*-algebra acting on ~ 

is not NGCR if it contains C(~). We now show tha t  n(T)O=w for all but  the "worst"  

irreducible operators T. 

PROPOSITIOI~ 2.3.1. Let T be an irreducible operator such that C*( T) is not an NGCR 

algebra. I] n(T) is defined at all then it is finite. 

Proo 1. By the preceding remarks we know tha t  C*(T) contains C(~). So assume tha t  

n(T) is defined, tha t  is, the identi ty representation of C*(T) is a boundary representation 

for (Tk: k =0,  1, 2 . . . .  ). Let  $ be the linear span of the latter, and let tn =span (I ,  T . . . .  , 

T ~) for n = 1, 2 . . . . .  By  the boundary theorem 2.1.1 we see tha t  the quotient map q: C* (T) -~ 

C*(T)/C(~) is not completely isometric on the closure of S§  Now {Sn§ is an in- 

creasing sequence of subspaces of S § S* whose union is dense in S § $*, and is such tha t  

C*(Sn) =C*(T) for each n. Now if q were isometric (resp. completely isometric) on each 

tn it  would follow tha t  q is isometric (resp. completely isometric) on ($ + $*)-. We conclude 
§ * tha t  there is a first n, 1 ~<n < ~ ,  such tha t  q fails to be completely isometric on tn tn.  

By the boundary theorem again we see tha t  n is the first positive integer such tha t  id 

is a boundary representation for (I~ T, T 2, ..., Tn). Hence n ( Y ) = n  is finite, and the 

proof is complete. 

Before proceeding further, we want to point out tha t  there exist irreducible GCR 

operators T for which n(T) is undefined. Indeed, 3.6.3 of [1] implies tha t  n(T) is undefined 
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for every GCR contraction T whose spectrum contains the unit circle { I z I =  1} (example: 

the unilateral shift of multiplicity one). 

Before stating the basic result on operators of order n let us perturb slightly some 

terminology from Chapter 1. Let A0, A s ..... An be a sequence of ]c x k complex matrices 

with A~ :V0. Then p(z) = A o + Alz  +... + Anz n defines an Mk-valued polynomial of degree n. 

If  T is an operator on a Hilbert space ~, then we define p(T) to be the operator on (~k| 

given by A o | 1 7 4 1 7 4  n, where we have identified ]c• matrices with 

operators on (jk in the obvious way. Thus for each k, IIp(T)II = I I A o | 1 7 4  

An| T~]I defines a seminorm on the algebra of all Mk-valued polynomials p. When we say 

that  a statement is valid for all matrix-valued polynomials we mean that it is valid for 

every M~-valued polynomial and for every k = 1, 2 .. . . .  

T~EO~EM 2.3.2. Let S and T be irreducible operators acting on ~ and 2, respectively, 

such that C*(S) contains C(~), and such that n(S) and n(T) are de/ined and equal. I] 

liP(S) II = liP(T)II /or every matrix-valued polynomial p o] degree <~ n(T), then S and T are 

unitarily equivalent. 

Proo/. Let us write n for n(S)=n(T) (note that  n is finite, by 3.3.1). The hypothesis 

asserts simply that  the linear map 

aoI +al S + ... +anSn~->aoI +a 1 T +... +a n T n 

is a complete isometry of span {I, S .... , S ~) onto span {I, T, ..., Tn}. The implementation 

theorem (0.3) implies that this map extends to a *-isomorphism ~ of C*(S) onto C*(T). 

Note that  7~(8) = T. Since C*(S) contains C(~) we may argue as in the proof of the corollary 

of the boundary theorem 2.1.1 to conclude that  ~ is unitarily implemented. The con- 

clusion is now immediate. 

We conclude this section by describing a class of examples of operators of arbitrary 

finite order. The construction may be of independent interest, as it makes use of the 

"nilpotent dilation theorem" of section 1.3 as well as the boundary theorem. 

T~Z~OR]~M 2.3.3. For every positive integer N there is a unilateral weighted shift T such 
that C*( T) contains the compact operators and n(T)=iV. 

Proo/. Note first that  the ease iV = 1 is simple. For any weighted shift T whose weights 

tend to 0 is compact and irreducible, hence by the boundary theorem id is a boundary 

representation for {I, T}, so that  T has order 1. 

So choose iVy2,  and let %, e s .... be an orthonormal base for a Hilbert space ~. Let 

as, a2 .... be a sequence of positive numbers which increases to 1, and choose ~, r, 0 <~, 
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r < 1. Define a weight sequence {a=} as follows; if k >~0 put  r162 = gkN+l . . . . .  ~kN+N--2 =a/r 

and put  a~+~_l=~r  ~+*. So if N=3, for example, then we have the weight sequence 

al ,  a l ,  Er, a2, a2, 8r 2, an, a3, ~r 3, . . . .  

Let T be the weighted shift on ~ defined by  Te~=a~e~+l, n>~O. We will show first tha t  

T N is compact and nonzero (so tha t  by the boundary theorem id is a boundary representa- 

tion for {I, T, ..., TN}; note that  this also implies C*(T) contains C(~)). We will then prove 

tha t  if {ak} increases not  too rapidly to 1 and s is sufficiently small then id is not a 

boundary representation for {I, T, ..., TN-1}. Thus T will have order N. 

Now TNis defined on {e~} by  TNe~=a~a~+I ... a~+n_~e~+n, and so I TNI is the diagonal 

operator [ TN] en = an Cr "" Cen+g--len, n >~0. An inspection shows tha t  the sequence 

{a~an+l .-. a~+~-~} is term-by-term smaller than the sequence 

~r, ..., ~r, ~r 2, . . . ,  ~ r  2, ~r a, . . . ,  ~r 3, ..., 

where the indicated blocks are of length N. Thus I TN] is a nonzero compact (in fact, trace 

class) operator, and the same is true of T ~. That  proves the first assertion. 

For the second assertion, let S~ be the "nilpotent shift" of index iV (cf. section 1.3). 
~ - 1  r T k We will prove tha t  for suitably chosen r, e, and {ak}, the linear map r ~k=0 ,,k ~-> 

k=0 ~ N is completely isometric. Granting tha t  for a moment,  note tha t  id cannot be a 

boundary representation for {I, T ... . .  T~-I}. For if it were, then of course id is a boundary 

representation for {I, S N ..... SNN -1} (SN is compact and irreducible, cf. 2.1.1) and the imple- 

mentation theorem would imply tha t  r is implemented by a *-isomorphism of C*(T) 

onto C*(SN). But  tha t  is absurd, since for example C*(S~) is finite-dimensional while 

C*(T) is not. 

First, we claim tha t  r is completely contractive. For that,  let q: C*(T)~C*(T)/C(~) 

be the canonical quotient map. We will produce an operator T 1 on ~ such tha t  q(T)= 

q(T1), and T 1 is unitarily equivalent to an infinite multiple oo.S~=SNGSN| of SN. 

This leads to the claim because, on the one hand, the fact tha t  T 1 ~ oo. SN obviously implies 

tha t  we can find a decreasing sequence P~ of reducing .projections of finite codimension 

for T 1 such tha t  P~-+0 weakly and T 1 is equivalent to each restriction Tl[p,�9 and as in 

the proof of Lemma 1 of Section 2.2 we conclude tha t  q is completely isometric on span 

(T~: k >10}. On the other hand, the map ~ : 0  ~ ~ Ti ~ ~+ ~ : 0  ~ ~ S~ is clearly completely iso- 

metric (because T 1 is a multiple of S~), and we conclude tha t  the map V: ~ = ~  t~ q(T1)%-> 
N-1  ~ = 0 ~ k S ~  is completely isometric. Since q(T)=q(T1) we see tha t  r is the composition 

Voq, and since q is completely contractive, the claim will follow. Now define T 1 as 

follows. Let  {cn} be the sequence of nonnegative weights defined by cn=0 if n = N - 1 ,  
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2 N - l ,  ..., and c ~ = l  if n ~ N - 1  (rood N). Define T 1 on e o, e 1 . . . .  by  Tle~=c,~en+l. Then 

the  matr ix  of T 1 appears in the N • N block form as 

so t h a t  T 1 is equivalent  to ~ "SN. Finally, we note tha t  q(T1) =q(T) ,  tha t  is T 1 - T is com- 

pact .  For  clearly T t -  T is a weighted shift with weight sequence 

I - a ~ ,  . . . ,  1 - a  1, - s t ,  1 - a  2, . . . ,  1 - a  2, - e r  ~, ...; 

since %->1 and  er~->O as k->~,  T 1 - T  is compact.  

Secondly, we claim tha t  for suitable s, r, {ak}, r ~ : ~  ~k S~ ~+ ~ = o  ~ ~ T k is completely 

contractive.  Of course tha t  will follow if we can produce a t t i lber t  space ~ containing 

and a multiple A ~ ' S N  acting on ~ such t h a t  Tk=P@Ak[@ for k = 0 ,  1 . . . . .  / V - 1 .  B y  

1.3.1 and 1.3.2, i t  suffices to prove the following assertion; if 0<r~<�89 a D a2 .. . .  is any  se- 

quence which increases monotonical ly  to 1 so tha t  0 < a~ ~ (1 - rk) �89 and 0 < s ~ (8 + 8~) -1 

where ~ = m a x  (r -x, a{1) ~N, then T satisfies TNT *N <~gT*~T N and ] TNI <~ (8 + 8~) -1 ( I  -- T 'T ) .  

We shall only sketch these routine calculations. Now T*NT ~ and TNT *H are, respectively, 

the  diagonal operators whose weight sequences are {(~ak+l...~k+N_l)z}~:0 and 

{(~k--N~k--N+l "'" ~--~)~}~=0 where we have made the convention ~r  if ~<0.  Thus  the  

condition T~T*~<~oT*~T~is equivalent  to  the  condition (gk~z+~ ... ~a+N_~) ~ ~<~(~+~+~+~ 

... a~+2N_~) 2 for k~>0. Now for each k~>0, ~(a~+~) -~ is either of the form srr -~ 

or ar162162 ~. So in either case we have ~ < m a x  (r -~, a~)~r and the  

asserted condition follows. Secondly, note t ha t  I T~I and I - T * T  are, respectively, the  

diagonal operators whose weight sequences are {u~ ~a+~ ... ~+~_~} and {1 - ~ } . / q o w  we have 

already pointed out  t h a t  {~a~+x ... ~+~_1} is te rm-by- term smaller t han  the sequence 

sr . . . . .  ~r, ~r ~ ... sr ~, sr ~ . . . . .  where each subsequence of terms of the form sr ~ has length ~V. 

On the other  hand, { 1 - a ~ }  is the  sequence 1 - a ~  ... .  , 1 - a ~ ,  1 - r  ~, 1 - a ~  ... . .  1 - a ~ ,  

1 - eZr  a . . . . .  Since S<(8~-8~) -1, the  inequahty  ]T~I <~(8+8~)-~(I -T*T)  will follow if 

we show t h a t  for ~>~1, r~<min  (1 -a~ ,  1 -s~r2~). But  r ~ < l  - a ~  follows from ar162189 

and r ~ ~< 1 - e ~ r  ~ follows from r ~< �89 Tha t  completes the  proof. 

2.4. First order operators and the matrix range 

We are now going to  look at  first order operators in more detail; we will introduce an  

invar iant  (the mat r ix  range) which will tu rn  out  to be a complete un i t a ry  invar iant  for 

m a n y  of these operators. 
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Let  T be a Hilbert space operator. Then as r runs over the state space of C*(T), the 

complex numbers r fill out the closure of the numerical range of T. One may generalize 

this as follows. Let  n be a positive integer and let M~ denote the C*-algebra of all complex 

n •  matrices. ~(~s(T) is defined as the set of all n • n matrices of the form r where 

r ranges over all completely positive linear maps of C*(T) into Ms which preserve the 

identity. Thus Wl(T) is the closure of the numerical range of T, and the sequence 

{~I (T) ,  ~2(T)  . . . .  } will be called the matrix range of T. 

Let  us first collect some simple properties of ~0s(T). Clearly ~0s(T) is contained in 

the ball of radius ]l T]], and since the set of all completely positive maps r C * ( T ) ~ M  s 

for which r  I is compact in the obvious topology, ~ ( T )  is also compact. Note also 

that  ~/3s(T) has a very strong convexity property: If X1, X~ .... is any sequence in ~ s ( T )  

and Z1, Z2, ... is a sequence in M s satisfying ~k Z* Z k = I,  then ~k Z~ Xk Zk belongs to ~s (T) -  

For we may find completely positive maps r C*(T)~Ms  with r  such that  Xk=  

Ck(T), k = 1, 2 ..... and thus ~(S) = ~kZ* Ck(S)Z~ is a completely positive map taking I to I 

and T to ~ Z * X k Z k .  Finally, the sequence (~ s (T )}  is coherent in the sense tha t  

~ m ( ~ ( T ) ) ~ m ( T )  for all m,n>~l. More precisely, for every X e ~ ( T )  one has 

~m(X)___~m(Y); this is a trivial consequence of the fact that  the composition of two 

completely positive maps is completely positive. 

I t  is not  hard to see that  these properties characterize the matrix range of an operator. 

Explicitly, suppose that  for each n >/1, ~s is a closed subset of the ball of radius r in M~ 

having the above convexity property, for which ( ~ }  is a is a coherent sequence in the 

sense that  ~{gm(~q~)___ ~ for all m, n>~ 1. Then there is a separably-acting operator T such 

that  ]1T]I ~<r and ~ s ( T ) = ~ s  for every n/> 1. We omit the proof since this result does not 

bear on the sequel. 

Experience has shown that  while ~(q~(T) can be calculated for quite a variety of 

operators, it  is not  feasible to a t tempt  to carry out the computations in general. Of course 

one would expect that  to be so since by 2.4.3 below the matrix range is a complete unitary 

invariant for irreducible compact operators. Thus the purpose of this section is merely to 

point out the existence of this unusual invariant, its connection with dilation theory and 

first order operators (2.4.2 and 2.4.3), and the fact that  for certain operators its structure 

is quite simple. 

The following result shows that  when T is normal, W~(T) is the closed "matr ix  valued" 

convex hull of the spectrum of T. 

PROPOSITIO~ 2.4.1. /Let T be a normal operator and let n be a positive integer. Then 

T~s(T) is the closure in Ms o/ the set o/ operators of the ]orm ~ I H I + ~ H ~ +  ... +)t~Hr, 

where r>~l, 2~e sp(T), and {H~) is a set o] positive elements o] M s having sum I. 
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Proot. Let  K denote the set of all completely positive linear maps r C*(T)~Mn 

satisfying r  I.  K is compact in the obvious "pointwise" topology ([1], Chapter 1) and 

it is a convex set of linear maps of C*(T) into Mn. Since 6~->r maps K continuously 

onto ~ ( T ) ,  the proposition will follow" from the Krein-Mflman theorem provided we show 

that  r  has the asserted form for r an extreme point of K. But  by 1.4.10 of [1] such a r 

has the form r  ~=1  ~%(X)Hk, where o)1 ..... o)r are complex homomorphisms of C*(T) 

and/ /1 ,  ..., Hr are positive matrices in M~ having sum I. The conclusion follows by taking 

X = T and noting that  wk(T) Esp(T). 

So, for example, if T is a unitary operator whose spectrum fills out the unit circle, 

then ~ ( T )  is the closed unit ball in Mn, n = 1, 2 .... (indeed 2.4.1 and the spectral theorem 

imply that  7~ (T)  contains every unitary operator in M~, and since the closed convex 

hull of the unitary operators in M n fills out the unit ball in Mn we see that  ~ ( T )  contains 

ball M~; the opposite inclusion is trivial). Similarly, if T is self-ad]oint and [a, b] is the 

smallest closed interval containing sp(T), then */~q~(T) is {XEMn: X=X*,  a I < X < b I } .  

Finally, us a different type of example, we remark that  if T is a two-dimensional operator 

having a matrix representation 
0 1 

( 0  0 )  

then 'W~(T) consists of all X E.M,~ whose numerical radius is ~< �89 (this follows easily from 

2.4.2 below and 1.3.1). 

We now examine the partial ordering of operators defined by the relation 'Y~0n(S)_~ 

' ~ ( T ) ,  for every n = 1, 2 . . . . .  We will say that  an operator SE IZ(~) is a compressio~ of an 

operator T E l:(~) if there is a closed subspace ~J~ of ~ such that  S is unitarily equivalent 

to P~)~ T I~, P ~  denoting the projection o~ ~ on ~ .  Note that  ~J~ need not be invariant, 

or even semi-invariant, under T. 

THEOREM 2.4.2. Let S and T be Hilbert space operators (perhaps acting on di/lerent 

spaces). Then the ]ollowing are equivalent. 

(i) ?~(S)g~n(T) /or  every n>~l. 

(ii) IIA|174 < IIA| + B| /or every pair ,4, B o / n  x n  matrices and every 

n >~ l. 

(iii) Every finite dimensional compression o/ S is a compression o/ z(T),  /or some 

*-representation ~ o/C*(T) (which may depend on the particular compression o] S). 

(iv) S is a compression o/~(T) ,  /or some *-representation ~ o/ C*(T). 

(v) (lot normal S) sp(S) is contained in the closed numerical range o/ T. 

(vi) (/or T compact and irreducible) S is a compression o/some multiple k. T o /T .  
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Proo]. We first establish the equivalence of (i) through (iv). Since (iv) ~ (iii) is trivial, 

it suffices to prove (i)~(iv) and (iii) ~ (ii)~(i). 

(i) implies (iv). We claim first that  (i) implies that  the linear map r aI+bT+cT%--~ 
al+bS+cS* of span {I, T, T*} onto span {I, S, S*} is completely positive. Let {~j~} be 

an increasing directed set of finite dimensional subspaces of the space ~ on which S acts 

such that  (J~fJ~ is dense in @. Let P~ be the projection of ~ onto ~)~a, and definer span 
{I, T, T * } - ~ s  r ~. We will show that  each 

r is completely positive. I t  will then follow from (1.2.10 of [1]) that  IIr = IIr =1, 

while on the other hand lim~r162 in the weak operator topology for each 

XE sl)an {I, T, T*}, and the complete positivity of r will be proved. But  if n~ is the dimen- 

sion of ~J~, then we may regard s as Mn~ (by making use of an orthonormal base in 

~)~). Thus the map X e s  becomes a completely positive map of s into 

M.~ carrying I to I and S to P~SI~ ~. Thus P~ S I~ ~ belongs to ~19~(S), and by hypothesis 

it also belongs to ~/~,~(T). Thus there is a completely positive map F: C*(T)~ s such 

that  yJ(I) = I and y)(T) =P~ S l~ ~ . I t  follows that  ~0(T*) = y;(T)* =P~ S l~n~ =P~ S*I~ ~, because 

yJ is self-adjoint, hence r =~p is completely positive, and so is r 

By the extension theorem (0.1), 55 may be extended to a completely positive map of 

C*(T) into l~(~), and by Stinespring's theorem (0.4) the extension has the form 

F*zrV where ~r is a *-representation of C*(T) on some Hilbert space ~ and VEI:(~, ~). 

Since r we see that  V * F = I ,  so that  V is an isometry. The equation S=55(T)= 
V*ze(T) V now shows that  S is unitarily equivalent to the compression of z~(T) onto FF*~. 

(iii) implies (ii). Fix n, a positive integer, and let ~l~ be the net of finite dimensional 

subspaces of ~ described above. Then for each ~ there is a *-representation zr~ of C*(T) 
on ~ and an isometric imbedding Va of ~ in ~ such that  P~S]~= V* ~r~(T)Va. So if 

we put 55~ = V* zr~ V~, then Ca is completely positive, takes T to P~SI~ ~ and I to the identity 

in l~(~J~). By (1.2.10 of [1]) 55a is completely contractive. So if A, B~Mn then we have 

IIA|174174174174174 Fixing A and B we 

can allow P~ to increase to the identity of ~, and in the limit the left side is IIA | I + B| 
from which (ii) follows. 

(ii) implies (i). Choose X~l~n(8). We want to show that  Xe~AT), assuming (ii). 

By (ii) the map aI+bTe-->aI+bS is a completely contractive linear map of span (I, T} 
on span {I, S}. By the corollary of the extension theorem, there is a completely positive 

linear map ~p: C*(T) -> s such that  ~0(1) = I and y~(T) = S. On the other hand, by the defini- 

tion of ~n(T) there is a completely positive linear map r of C*(T) into M~ such that  

55(T)-~X. By the extension theorem again we m a y  extend r to a map r s Thus 
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r C*(T)-+Mn is completely positive, takes I to I and takes T to X. Thus XE ~n(T) ,  

as required. 

Now for (v), assume S is normal. Now if (i) is valid then in particular Wl(S)_  ~ I ( T )  

and it is well known that  in this case ~1(S) is the closed convex hull of sp(S) (see 2.4.1 

for example). Thus sp(S)~_ ~{~I(T). Conversely, suppose sp(S)~_ ~I (T) .  By the preceding 

sentences ~ 1 ( S ) ~  ~ I (T ) ,  and from this it is immediate that  the linear map r a I + b T +  

cT* e-+ aI  + bS + cS* is positive. Since C*(S) is commutative r must be completely positive 

(1.2.2 of [1]), and therefore completely contractive (1.2.10 of [1]). Thus condition (ii) 

follows. 

Finally, suppose T is compact and irreducible. Then C*(T) is the full algebra of all 

compact operators, and the equivalence of (iv) and (vi) is immediate from the fact that  

every representation of C*(T) is a multiple of the identity representation [8]. 

We now state a classification theorem for irreducible first order operators. 

THEOREM 2.4.3. Let S and T be irreducible /irst order operators such that neither 

C*(S) nor C*(T) is an NGCR algebra (i.e., both C*.algebras contain nonzero compact 

operators). Then S and T are unitarily equivalent if, and only i/, they have the same matrix 

range. 

Proo/. The "only if" part  is trivial, so assume ~ n ( S ) = ~ ( T ) ,  n>~ 1. By 2.4.2 (ii) we 

see that  the linear map aI  +bSe-~ aI  +bT is completely isometric and preserves identities. 

By hypothesis, span {I, S} and span {I, T} have sufficiently many boundary representa- 

tions, so this map is implemented by  a *-isomorphism ~ of C*(S) onto C*(T). Since C*(S) 

contains nonzero compact operators we may argue as in the proof of the corollary of the 

boundary theorem to conclude that  ~ is unitarily implemented, and in particular T =z(S)  

is equivalent to S. 

Remarks. Since every irreducible operator T, with the property that  some linear combi- 

nation aT+bT* is at a distance less than [[aT+bT*II from the compact operators, is of 

first order (boundary theorem) and its generated C*-algebra contains the compact 

operators (cf. the proof of the corollary of the boundary theorem), these operators are 

classified by their matrix range. Of course, irreducible operators with compact imaginary 

part  fall into this category, but  as 2.2.1 and its corollary indicate, the latter form a rather 

small subclass. 

I t  goes without saying tha t  the matrix range is no~ a complete invariant for irreducible 

GCR operators which are not first order. As a rather extreme example, if S and T are any 

two contractions such that  sp(S) and sp(T) both contain the unit circle, then [[p(S)[[ = 
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IIp(T)l] for every matrix valued polynomial p ([1], 3.6.3). In  particular, 2.4.2 (if) shows 

that  S and T always have the same matrix range. 

2.5. An appfication to model theory 

Let C be a class of Hilbert space operators. For example, C might be the class of all 

contractions, or the class of all compact operators with nonnegative real part (thus we allow 

operators in C to act on different spaces, and we are deliberately ignoring set-theoretic 

anomalies). Broadening somewhat a term introduced by G.-C. Rota [16], we will say an 

operator T is a model for C if T E C and each operator S E C is unitarfly equivalent to the 

compression of c~. T = T |  to one of its semi-invariant subspaees: this relation 

between S and T will be written S << T. Thus, S << T i f f  there is an isometric imbedding 

V of the space of S into the space of oo. T such that  sn= V*(oo" T) '~ V, n = 0 ,  1, 2 . . . . .  

I t  is easy to see that S < <  T implies ~ . S < <  T, and in turn this implies that  the relation 

<< is transitive. Thus <<  is a partial order in the class of all operators, and hence 

S << T << S defines an equivalence relation (we omit these details). In  the following dis- 

cussion, we shall be primarily concerned with classes which have an irreducible model. 

Note first that  there are trivial examples of classes which do not have models; for 

example, if T is a model for C then every operator in C has norm at most IITH, so that  a 

necessary condition for a model to exist is that  C be bounded in norm. Similarly, it is easy 

to see that  if C has an irreducible model then every operator in C must act on a separable 

space. 

As a first example, let C be the class of all separably-acting operators T such that  

11TI] ~< 1 and lim,~_,~ T *~ =0  in the strong operator topology. I t  is not hard to see that the 

simple unilateral shift S (i.e., the weighted shift with weight sequence 1, 1, 1 . . . .  ) is an 

irreducible model for C. While this is a restatement of a familiar result in dilation theory, 

we will briefly sketch the construction for completeness. Choose TE C, let D be the positive 

square root of I -  TT*, let ~ be the space on which T acts, and let ~ be the closed range 

of D. Let ~ '  = ~ O ~ ( ~ . . .  be the Hilbert space of all square summable sequences in ~, and 

let S' be the unilateral shift on ~' ;  S'(~0, ~1 . . . .  ) = (0, ~0' ~1' "")" S'  is unitarily equivalent to 

n. S where S is the simple unilateral shift and n = dim ~. Define a linear map V of ~ into 

~' by V~ = (D~, DT*~, D T*~,...), ~ E ~. Because [[ T*n~[[ ~ 0 as n-~ oo, it follows easily that  

V is an isometry, and clearly VT*= S'*V. This implies that  the range of V is invariant 

under S'* and VT*'~=s'*nv for n>~0. Thus T'N= V*S'*nV and hence T n= V*S"~V, n~O. 

Since n <~ ~r and S'  is equivalent to n. S, this implies T << S. I t  is very easy to see that  

s*n~o stongly, so that  S is a model for C. 

As another example, let n ~> 2 and let C, be the class of all contractions T such that  
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T==0.  Then the n-dimensional operator S~ whose matr ix  relative to some orthonormal 

basis has the form (:10...0) 
0 1 0  0 

1 

0 

is an irreducible model for C= (this can be proved by  a simple variation of the preceding 

construction, or it follows as a somewhat trivial special case of 1.3.1). 

Suppose now tha t  C is a class which has an irreducible model. A natural  question is, 

when does C have a unique irreducible model? More precisely, under what  conditions are 

the irreducible models for C all unitarily equivalent? Now every irreducible operator T 

determines a largest class C(T) having T as a model (namely the class of all operators X 

such tha t  X < <  T), and note tha t  T is a model for C if T e  C ~  C(T). Therefore T will be 

a unique model for C if it is a unique model for the larger class C(T). Note also tha t  C(T) 

has a unique model if T satisfies the following condition: for every irreducible operator 

T~, T 1 << T << T 1 implies T and T 1 are unitarily equivalent. Any irreducible operator T 

which has this property will be called a unique model, and we arc led to ask which irreducible 

operators are unique models. 

First, we want to point out tha t  the simple unilateral shift S is not a unique model. 

To se this, let ~0, ~1 .. . .  be a sequence satisfying 0<a t~< l ,  s 0 < l  , and ~ = 1  for all 

i >~i0~> 1. Let  T~ be the weighted shift defined on an orthonormal base e 0, e 1 . . . .  by  

T~e~=~ne~+ 1, n>~O. Then IIT~II ~<1 and T~*~-+0 strongly, as n ~ ,  so by the preceding 

construction we have T~<< S. On the other hand, the restriction of T~ to its invariant  

subspace [el~ e~~ . . . .  ] is clearly unitarily equivalent to S, and this implies S < <  T~. :But 

T~ is not unitarily equivalent to S because two unilateral weighted shifts with different 

positive weight sequences cannot be equivalent (el. [11], pp. 46-47). 

In  spite of that ,  the following result shows tha t  a great variety of operators are 

unique models. 

T H e o r e M  2.5.1. Let T be an irreducible operator such that the Calkin map is not iso- 

metric on the ultraweakly closed linear span o/ ( I ,  T, T*, T z, T .2, ...}. Then T is a unique 

model. 

Proo/. Let T 1 be any irreducible operator such tha t  T 1 << T << T x. Then as we have 

already pointed out, ~ .  T I < <  T. So letting ~, ~ .~,  ~ "~1 be the Hilbert  spaces on which 

T, co. T, oo. T 1 respectively act, then there are isometrics V EI:(~, c~. ~1) and 
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WEs  , o o . ~ )  such that  T n = V * o o . T ~ V  and oo.T~=W*oo.T~W,  n=O, 1,2 . . . . .  

We claim first that  the range of W V E s c~ .~) reduces ~ .  T. Indeed, the preceding for- 

mulas imply T n = ( W V ) * c ~ . T n W V  for n>~0, and hence the completely positive map 

~(X) =(WV)*oo . X W V ,  XE C(~), fixes S={T~: n>~0} U {T*n: n~>0}. Since b is ultraweakly 

continuous it must fix the ultraweakly closed linearly span $1 of S. The Boundary Theorem 

implies that  ~ fixes C*(S1), and in particular ~ is multiplicative on C*(T). This means that  

the range of W V  is semi-invariant under { ~ . X :  XEC*(T)}  and, since the latter is a 

*-algebra, the claim follows. 

Next,  we claim that  the range of V reduces oo-T 1. Indeed, the preceding paragraph 

implies (oo.X) W V =  W V X  for X EC*(T), hence c~- T 1V = W*oo. T W V =  W * W V T  = V T  

and similarly c~. T* V =  VT*. This shows that  ~ - T  1 and c~. T~ leave the range of V 

invariant, as asserted�9 

Thus V implements a unitary equivalence between T and the restriction of ~ .  T 1 

to one of its reducing subspaces. Now since C*(T1) is irreducible, every irreducible subrepre- 

sentation of the representation X E C*(T1) ~ oo. X is equivalent to the identity representa- 

tion of C*(T1). I t  follows that  the restriction of ~ .  T 1 to the range of V is unitarily 

equivalent to T1, and it now follows that  T is equivalent to T 1. 

As an illustration of this theorem, let T be an irreducible operator, and suppose there 

is a sequence Pn of polynomials such that  Rep~(T) converges weakly to some nonzero 

compact operator K. Then T is a unique model (for the Banach-Steinhaus theorem implies 

that  the sequence X ~ = R e p ~ ( T )  is bounded, and hence converges to K ultraweakly; 

since K =~0, 2�9 applies in a straightforward manner). Note that  this also implies that  for 

2 ~<n< oo, the n-dimensional operator given by the matrix 

0 1 0 . . . 0  1 0 0 1  0 . . 0  

1 

0 

is a unique model for the "nilpotent" class Cn described above. 
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