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Introduction 

If  G is a locally compact topological group and D a cocompact discrete subgroup, it 

would be interesting to be able to classify the bounded Borel measures on the compact 

homogeneous space D\G in terms of the representation theory of G and the structure of 

D. In  the case of abelian groups, this is accomplished by means of the Fourier-Stieltjes 

transform. In  Theorem 1.1 of this paper, we take G to be unimodular, and we show that  

the continuous projections in L2(D\G) which commute with all right translations and map 

continuous functions into continuous functions correspond one-to-one with those two- 

sided D-invariant BoWel measures on D\G which are idempotent. Although idempotence 

is normally defined only for measures on spaces having a well-defined multiplication of 

points (such as groups and semi-groups), the concept can be readily extended to two- 

sided D-invariant measures on homogeneous spaces D\G. 

After section 1, we restrict our attention to finite dimensional, real, connected, simply 

connected nilpotent Lie groups h r with coeompact discrete subgroups D. Corollary (3.5) 

presents our basic tool for the study of two-sided D-invariant Borel measures on D\N.  

We map the measure v on D \ N  into a measure vp on a toms of the same dimension, and we 

show that  the Fourier-Stieltjes transform ~F can be evaluated by finding the value at a 
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special point of TvV, where 9 is a certain function on D \ N  and T~ is the transformation in 

L~(D\N) corresponding to v. In  order to be able to use the structure theory of L2(D\N) 

to evaluate Tv~ at  a specific point, we show in Theorem (3.6) that  Tv~0 enjoys a weakened 

form of continuity at  that  point. The main results of section 3 are contained in Theorems 

(3.9)-(3.12), classifying all the idempotent measures corresponding to irreducible repre. 

sentations induced from characters of normal subgroups. In Theorem (4.1) we show that  

if the projection Tv corresponding to the idempotent measure v projects L2(D\N) ortho- 

gonally onto an N-invariant subspace H, and if V: H o / ~  is a unitary equivalence, then 

V induces a transformation of measures which carries v into a measure which projects 

onto/ /1 .  I t  is interesting that  mutually orthogonal projections can be thus interrelated. 

I t  is important to note tha t  nilpotence is used only in (3.1)-(3.3) to obtain suitable 

global coordinates on N, and in (3.6), where the polynomial multiplication which is char- 

acteristic of nilpotent Lie groups is used to prove the "semi-continuity" of T ~  at  one 

point. In section 5, we present four special hypotheses subject to which our theorems hold 

on compact solvmanifolds. We call such special solvmanifolds type F,  and, to illustrate 

the fact that  compact nilmanifolds are not the only type F solvmanifolds, we show that  

many three dimensional compact solvmanifolds are type F. Our theorems (3.9)-(3.12) then 

classify all those idempotent measures on three dimensional compact solvmanifolds which 

correspond to projections onto irreducible translation-invariant subspaces. 

The author is deeply indebted to Dr Jonathan Brezin, who made many valuable 

suggestions. In particular, it was Dr Brezin who first saw that  the results of this paper 

could be extended from compact nilmanifolds to suitable solvmanifolds. He also greatly 

simplified the proof of Theorem (3.10), and made several improvements in the termino- 

logy. Thanks are due also to Dr O. C. McGehee for useful suggestions concerning abelian 

harmonic analysis, and to Dr F. P. Oreenleaf for pointing out gaps in the original versions 

of the proofs of Theorems (1.1) and (3.8). 

We lean heavily on the multiplicity theory and L2-structure theory for compact nil- 

manifolds. The first results on multiplicities were obtained by C. C. Moore in [8], and exact 

multiplicity formulas were discovered independently by R. Howe in [5] and also in I l l ] .  

The structure theory in [11] has been extended to compact solvmanifolds by L: Auslander 

and J. Brezin in [1], while L. Corwin and F. Greenleaf have obtained new results concern- 

ing multiplicities in [3], as have C. C. Moore and J. Wolf in [9]. 

w 1. Idempotent measures on compact homogeneous spaces 

Suppose that  G is an arbitrary locally compact unimodular topological group and D 

a closed unimodular ~coeompact subgroup. Then the compact homogeneous space D\G will 
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possess a right G-invariant measure [10]. Suppose tha t  T is an arbi trary continuous pro- 

jection onto ~a right-translation invariant subspace of L2(D\G). Thus T(g./)=g.(T/), 
where (g./) (Dgo) =](Dgog ). Suppose also tha t  T: C(D\G)-+C(D\G),  the space of continuous 

functions on D\G. The mapping T, being a continuous projection, is continuous in the L ~- 

norm. Now suppose/n-+~ and T~n-+g in the sup-norm, where In,/ ,  gn and g are all continu- 

ous. Then, since sup-norm convergence implies L~.norm convergence, and since T is con- 

tinuous in the L~-norm, T / = g .  But  then T is also continuous in the sup-norm, by  the closed 

graph theorem. 

Define E: C(D\G)~C, the complex numbers, by E]=~(De), where e is the identi ty 

of 0. Then Eo T is a continuous linear functional on C(D\G) in the sup-norm. By the 

Riesz-Markov'Kakutani  Theorem, there is a bounded measure v on D\G such tha t  

(Eo T) / = (T])(De) = fD\ o ~(Dg) dv(Dg). 

But, since T commutes with fight translations, we have 

(go" (T/))(De)= (T(g o./))(De) = f (g0"/)(Dg)dv(Dg)= ~ /(Dggo) (TF)(Dgo) dv(Dg), 
3D \a JD\a  

(The above argument is similar to the proof of Wende]'s theorem for locally compact 

abelian groups in [13].} 

Now we will make use of the fact tha t  / and T~ are both well-defined on D\(~. Thus, if 

d 9. D, (T]),(Ddgo) = (T/) (/)go) , so tha t  

f~,a/(Dggo}dv(Dg}=f~,a/(Dgdgo)dv(Dg)=fD, a/(Dg'o}dv(Dg'~-l}, 

for all d in D and for a l l / e C ( D \ G ) .  Thus v( E) =v( Ed), for all deD and for all Borel sets 

E= D\G. 

The fact tha t  v must  be two-sided D-invariant enables us to define a natural  convolu- 
t/on of v with any one-sided D-invariant measure w on D\G. Namely,  (v~ew)(E)= 
SD\a v(Eg-1)dw(Dg), which is well-defined since v is right D-invariant. We can now verify 

tha t  if v corresponds to the projection T, then v must  be idempotent.  Recall tha t  T ~ = T, 

and let ~E denote the characteristic function of the Borel set E ~  D\G. Observe tha t  

( T~E)(Dg~ = .--In\ a ~2s(Dgg~ dv(Dg) ~= v(Eg~ l), 

and tha t  

(T~B)(Dg~ = fD\ a (T~B)(Dgg~ dv(Dg) = f m  a v(Bg~g:~) dv(Dg) = (T~IE}(Dgo) = v(Eg~'), 

Thus v is idempotent: i.e., v ~ v = v. 
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(1.1) THEOREM. Let (7 be a locally com~zvt unimodular topological groul~ and D a 

cocompact discrete subgroup. Then T: L 2( D \ (7) ~ L~( D \ (7 ) is a continuity-preserving continu- 

ous projection which commutes with all right translations by elements o/ (7 i/ and only i/ 

( T/) ( Dgo) = Sm a /( Dggo) dv( Dg) /or some two-sided D-invariant idempotent Borel measure 

v on D\(7. I n  this case we write T-~ T~. 

Proo[. We have already proved that  if T is as stated, then T ~- T v. Conversely, suppose 

v is idempotent and 

(T~/) (Dg o) = JD\ a /(Dggo) dv(Dg), 

and suppose/EC(D\G).  Since D\G is compact, if gn->go in D\G, then/(Dgg,)~/(Dggo) 

uniformly. Since v is bounded, (T/)(Dgn)~(T/)(Dgo); thus T/EC(D\G).  Also, T com- 

mutes with right G-translations, since left and right translations commute, and T ~= T, 

since v is idempotent. Finally, to show that  T~ is L2-continuous, observe first that  D\G 

has a precompact Borel section F contained in G. Then, since D is discrete, F F =  

(ggo I(g, go) e F • F} is contained in the union of a finite subcollection of the set {dP[d E n ) .  

Let p denote the number of sets of the form dF needed to cover FF.  Then it  is easy to 

Show that  []Tv[ [ ~<~p[[v[[. Hence T v is L2-continuous, and the proof of the theorem is 

complete. 

If  D is discrete, let us denote by (D\G) ̂  the set of all those equivalence classes of ir- 

reducible unitary representations of (7 which occur in the decomposition of L2(D\(7) into 

a direct sum of mutually orthogonal irreducible translation invariant subspaces. Then, 

for each g E (D\G) ̂ , the multiplicity with which z occurs in L~(D\(7) is finite [4]. We will 

call any irreducible translation invariant subspace corresponding to z E (D\(7) ̂  an irre- 

ducible z-space. We will call the closed linear span of all irreducible z-spaces the z-primary 

summand. 

(1.2) COROLLARY. If Tv is as in Theorem (1.1), and T,(L2(D\G)) is an irreducible 

z-space H / o r  some zE (D\G)  ^, then T~h=O /or all hEL2(D\G) such that h is orthogonal to 

the z-primary summand ~,,. 

Proo]. We can decompose ~ = @ ~z  Ha into an orthogonal direct sum of irreducible 

subspaees. Then h = Z ~ z  ha, hi s for each i. But  Tv(g" h )=g .  (T~ h), which implies tha t  

T~(H~) =0, since H is not unitarily equivalent to H t. Thus T~h=O. 

We remark that  Corollary (1.2) is trivial for abelian groups, since multiplicities never 

exceed one in such cases. Thus, in the case in which (7 is abelian, the projection T~ is zero 

throughout the orthogonal complement of the irreducible z-space Tv(I~(D\(7)). 
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w 2. Structure of L ~ of a compact  ni lmanifold 

Let  N be any real finite dimensional connected simply connected nilpotent Lie group 

and D a cocompaet discrete subgroup. We will describe in greater detail the decomposi- 

tion of L2(D\N) alluded to in section one for general compact homogeneous spaces. All 

the results in this section, except for Lemma (2.1), are contained in [11]. 

A character Z of a subgroup M of N is given by_z(m) ~ e x  p 2~ix (log m), where ~ is a 

linear functional on the Lie algebra ~ of N, and log is the inverse of the exponential map, 

which is one-to-one and onto. The condition that  z i-s a character is equivalent to the con- 

dition that  ~: [7~, 7~]-*0. M is called maximal (relative to Z) if and only if ~ is of maxi- 

mal dimension so tha t  ~: [ ~ ,  ~] -~0 .  An integral maximal character is a pair (Z, M), where 

g is a character of M, g: DM-+I, where DM=D N M is cocompact in M, and M is maximal. 

(M is thus a rational subgroup of N.) I t  is known that  7~E (D\N) ̂  if and only if g is in- 

duced, in the sense of Maekey, by an integral maximal character. 

We define an action of the group N on (g, M) by (Z, M)'n=(gn, n-lM), hEN, where 

Z~(p) =z(npn -1) and n-lM=n-lMn. If (Z, M) and (g, M) .n  are both integral maximal char- 

acters, then we call n an integral point of N. M acts trivially on (g, M), and D maps in- 

tegral maximal characters into integral maximal characters. If  we denote the set of in- 

tegral points of N by (M\N)D, then the number of distinct orbits of D in (M\N)D is known 

to be the multiplicity with which ~ occurs in the decomposition of L~(D\N) into a direct 

sum of irreducible translation invariant subspaces. We define Int (g, M)= (M\N)D/D, the 

set of distinct D-orbits in (M~N)D. In t  (Z, M) is always a finite set, since multiplicities are 

finite. 

If ~ E (D\N) ̂ , we can construct a full complement of irreducible subspaces of the g- 

primary summand as follows. Let  (Z, M) be an integral maximal character inducing ~, 

and let K be the set of all functions F: N ~ C ,  the complex numbers, such tha t  F(mn)= 

z(m)F(n) for all mEM, and such that  ]F I EL2(M\N) and ]F] has compact support in 

M\N.  Let H be the linear span of function of the form l~(Dn)= F~aGDx\D(F.d)(n), where 

F E K  and thus ~ is well-defined on D\N. Then Fig. (2.1) is a commutative diagram, and 

the unitary map F-~ 1~ can be completed, making H an irreducible N-invariant subspace 

of L~(D\N). 

Now, let In t  (g, M)={x0, x 1 .... , xn-1}, xo=e, the identity of N. Apply the above 

map ~'-+~, called the lilt map to each (g, M).x~, to obtain a li/t space H~. I t  is known that  

H,  is independent of the choice of integral maximal character in (g, M)-x~D. Then 

{H0, H a ..... H~_I} is a set of mutually orthogonal irreducible g-spaces whichspan the 

entire g-primary summand. {H0, t11, .... H,_I} is called a construaible basis for the g- 

primary summand. 



134 L. F. RICHARDSON 

K ) H 

rl 1" u.~v n . .~  

K �9 H 

~ .~ '  ~ 

(Fig. 2.1). 

Let  us note tha t  there exist a t  most  countably many  constructible bases for the ~- 

pr imary s . m m a n d  since there exist a t  most  countably many  rational subgroups Af of N. 

Yet  there exists a whole continuum of irreducible n-spaces whenever the multiplicity of 

exceeds one. The following lemma will be useful for dealing with this difficulty. 

(2.1) LV.M~A. SuIYtmse the orthogonal irreducible yv.spew~ H o ... .  , H,~_ 1 generate the ~- 

primary summand o/~ e ( D \ N)^ .  Suppose Vk: He ~ Hk is a unitary equivalence, k = 0 ..... n -- 1. 

Sup'pose T ~s the orthogonal pro~ection o/ L2(D\N) onto an irreducible ~-space H, and 

Tk: I~(D\N)~H~: is an orthogonal pro~ection, k=O, 1 ..... n - 1 .  Then there exists a complex 

vecwr  c = (co . . . . .  c ~ 1 )  e C',  I c I = l ,  auch that  

n -1  

rq)= Z cz~V,V;'T~q~, for all q~eL2(D\N). 
k. l -O 

Furthermore, the [amily o/all  "such subspaces H can be identified with the points of the com- 

plex pro~ective space CP n-1. 

Proo/. Since H must  have a non-trivial projection onto at  least one of the irreducible 

subspaces H0, H 1 . . . .  , H~_ 1, we can assume without loss of generality tha t  To(H ) =~ 0, and, 

since T O commutes with right-translations, T O must  be onto. I t  follows from Schur's 

!emma tha t  T J = ~  Vt To/, for a l l / 6 H ,  for some ~iEC. Thus 

t / =  {re/+) . ,  L To/+... + ) , , _ ,  V~_, rol l l e H}, 

o r  x = { l+& LI+.. .  +k~-, r,_.,llleHo}. 

Recalling our initial hypothesis, the set of all such subspaecs H c  Ho@H~@...@H,_. 1, can 

be paired with the set of straight lines through the origin in C% We can then choose a vec- 

tor c of length one in the direction of the line through the origin of C" to designate the sub- 

space H c. ( - c  would do just  as well.) 
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To evaluate T~, for each ~6L2(D\IV), we note  t h a t  Top = T(Toq)+ T i C +  ... + Tn_i~ ) 
and we evaluate TT~cp by  finding an hEH, Ilhll =1, such tha t  <T,v, h> is maximized, so 

t h a t  TTtq) = (Tt  q~, h>h. Thus 

1 
h = ~ (c o V[IT, q) §  -I" c, T t q) -i-... -I- On-1 Vn-i Vt-ITf ~)), 

since [ITthl[ must be Ic, I, if h e H and  [c[ •l .  

Hence 

TT, q~ = 6, II T, ~ H h = 5,(co V~ ~ T, ~ + . . .  + r T, ~ + . . .  + cn-I  Vn-1 V~IT| ~o). 

Therefore, 

o r  

n - 1  n - i  n - 1  

Top= ~. TT~cp=c, o ~ 5,V~tT, q~+... +C,_l ~ 5~Vn_i V;tT,  cp, 
, - 0  ,=0  tffiO 

n-I 

Tq) = ~ C t 5 t V, V[IT~ of. 
l , |~O 

This proves the lemma. 

w 3. Irreducible idempotent measures 

An idempotent  measure v on D \ N  will be called irreduc/b/e if a n d  only if the  cor- 
i 

responding projection Tv maps  L2(D\N) onto  an  irreducible, N- invar iant  subspace H of 

L~(D\-N). (This definition of irreducibility is no t  related to  the  concept  of the same name 

in abelian harmonic analysis.) 

Now we will outline a technique whereby any  Borel measure v on an / -d imens iona l  

compact  nllmanifold can be identified with a Borel measure v F on an / -d imens iona l  torus  

T ~, and a ny  Borel measurable funct ion ~ on D \ N  can be identified with a Borel measur- 

able funct ion ~F on T l. 

I n  [7], Malcev proved t h a t  if M is any  rational, nornud Lie subgroup of If ,  then  N 

has a system of one-parameter-subgroups di(t ) . . . . .  d,(t); t ER, the real numbers,  which can 

be described as follows. 

(3.1) Malcev coordinates corresponding to  a rat ional  normal  Lie subgroup M of N:  

(dz(tz)d~l(tz_l).....dl+t(t]+t)J(tz, .... t/+l) eR t-t} = M, 

(d,(n,) dt_l(n~_l). . . .-  dj+,(%+,) l (n , . . . . .  nj+l) e Z t- '} = D M = D • M, 
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where Z denotes the  integers 

{d,(t~)dv-l(h-.1)'..." dl(tl) l(t~ . . . . .  h) E i t ' } =  N,  

and  

{d~(n,)dz_~(n,_l)'..." dl(n~)[ (n, . . . . .  hi) e Z  ~} = D. 

Also, if 

N,  = {d~(t~)d,_l(tt_.l) . .... d,(ti) [ (t, . . . . .  t,) eRZ-~}, 

then  ~ is no rmal  in h r for each i = l  . . . . .  2. 

(3.2) L ~ M A .  Let F = d , [ 0 ,  1).d,_l[0, 1) . . . . .  dl[0, 1), where dl . . . . .  d~ are as in (3.1). 

Then ~ is a ]undamental domain /or D \ N .  Furthermore, FM=d~[0, 1) . . . . .  dr 1) is a 

/undamental domain/or DM\M. 

Proo]. Clearly, d~[0, 1) is a fundamen ta l  domain  for (D N Na)\Na. Suppose induct ively  

t h a t  dz[O, 1) ... . .  dz[0, 1) is a fundamen ta l  domain  for (D fl N t ) \N t .  We need only show t h a t  

dz[O, 1) ... . .  d~[0, 1)d~l[0,  1) is a fundamenta l  domain  for (DNN~_I)\N~_ r Let  n =  

n~di_l(t~_l) ENt-_I, where n~ EN~. Then  d~_l(t~_l) =d~_l(p~_l)dt_l(st_l) for some P~-lfi Z and  

st_lE[0, 1). Thus  

n ---- d l_ l (P t_ l )  dt-_ll(Pt_l) n t d t _ l ( p t _ l )  d t_ l (St_l ) ,  

and d~Jl(p~l)n~d,_l(P~l) =dtd~(sl) "..." dt(s~) for some d~ED ~ Nt  and (st . . . . .  st) e[0, 1) z-t, 

since N~ is normal  in ~'~-1. This completes  the  proof. 

We will of ten ident i fy  the  cube F in R l with a t o m s  T ~, since F is clearly a funda-  

men ta l  domain  for T ~ as well as for  D \ N .  I t  is p roved  in [7] t h a t  (tz ..... tx)~dz(tz) "..." d~(tl) 

is a d i f feomorphism of R z onto N.  I t  follows t h a t  the  one-to-one pointwise correspondence 

be tween D \ N  and  T ~ determined by  the  fundamen ta l  domain  F carries Borel sets to  Bo- 

tel  sets and  enables us to  ident i fy a n y  Borel measure  v on D \ N  with a Borel measure  VF 

on T ~ and  a n y  Borel measurable  funct ion q on D \ N  with a Borel measurable  funct ion 

~ on T ~. 

(3.3) LEMMA. I] m denotes the normalized right N.invariant mextsure which D \ N  in- 

herits/ram Haar measure on 2V, then mF is Lebesgue measure on the torus T z. 

Proof. Writ ing N = {dz(tz) . . . . .  dl(tl) }, we need only show t h a t  dtzdt~_ 1 ... dt I is r ight  N-  

invar ian t  on N.  I f  l = 1, this is trivial.  Suppose induct ively  t h a t  the  result  is t rue  when 

the  dimension of N is less t h a n  1. Hence  it  is t rue  for hr~ = {dz(tl) ...." d~(t~)}, which is nor- 

mal  in N. Le t  E be a n y  Borel set  in M and let ~s be the  characterist ic  funct ion of E.  

Then,  if n2EN~, nlf idl(R),  



A CLASS OF IDEMPOTENT MEASURES ON COMPACT NILMANLFOLDS 137 

f ~B(d,(*z) " ... " d,(%) d1(%) n, n~) dr,...  6a, dh 

= fNV2Z(dl(tl) " ' ' '" ds(t$)[dl($1) nz d11($1)] d1(~1) ~1) d~ ... dt~d$1 

= d2(t2) �9 d~ (tl)) dA[l . ,. dt 2 dtl, 

since N~ is normal  in AT and dl(tl) and n 1 both  lie in di(R). This proves the  lemma. 

We note  t ha t  the coordinates of (3.1)-(3.3) are a special case of those const ructed  for 

non-normal  M in [3] and [11]. 

Next ,  we will develop the fundamenta l  connection between ve and T,,  where v is any  

two sided D-invaxiant Borel measure on D \ N .  Namely,  we will relate the Fouricr-Stieltjes 

t ransform 4~ to the act ion of T ,  in L2(D\N).  

(3.4) De/inition. Let  n denote any  vector  (n t . . . .  , nz) where nt 6Z  for each i = 1, 2 .. . . .  I. 

Let  Cn denote tha t  unique funct ion defined at  each point  of D \ N  such t h a t  (r . . . . .  tl) = 

e(nztl+ ... +nit1), where e(a)=exp (2:~/a). (We are using the  coordinates of (3.1)-(3.3).) 

(3.5) COROLLARY. 1/ V i8 any two sided D.invarian~ Borel measure on D \ N ,  then 

~F(n~ ... . .  hi) = (T~qgn)(Dd~(O) ... dl(0)). 

Proo/. Note  tha t  Tv~.  is defined for each point  of D \ N .  Recall t h a t  

(T~ ~)(Da,(t;) �9 �9 ,~(t~)) 

l q~(Dd,(t~).....d~CtO.dl(t;).....d,(t~))dv(Dd,(t~)'..." da(t,)) 
JD \N 

-- e(n, tz + . . .  + ~h tl)dVF(t! . . . . .  t l ) ,  
J r~ 

where t~" is some polynomial  funct ion of tl . . . .  , t 1 and  t; . . . . .  t~. Subst i tut ing t~ . . . . .  t'l =0 

makes t[=t~, i = l  . . . . .  1. This completes the proof. 

I t  is extremely impor tan t  to  note  t h a t  a l though (~n)F is continuous on the  t o m s  T z, 

~n is not continuous on D \ N .  Thus T ~ n  need not be continuous on D \ N .  However,  Tv~n 

does have a proper ty  at  Dd~(O) ..... d,(0 ) which i s  a form of semi-continuity,  and  we will 

use this proper ty  heavily in this paper. 

Define an  as-slab in dz[0, 1).. . . .dl[0, 1) to be a set d~(e/2, s).dz_,(al_l(s/2), a~le)  "..." 

di(al(e/2), a,s), where a = (1, a ~ l  . . . . .  ai). 

9 t -  752905 Acta mathematica 135. Imprim6 Iv 19 D~w.embrr 1975 
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(3.6) THEOREM. There ~ a vector a such that 

Lira (T~ q~,)(Dd,(t'~ ) . . . . . da(t~) ) = (T ,  cp,)(Ddt(O) . . . .  . da(O)), 
s-*O 

where t' is restricted to the ae.slab. 

Proo/. Denote/ ( t ' )  = (T~qgn)(Ddz(t~)'..." dx(t~)), where t' = (t; . . . . .  t;). 

Using the 1-parameter coordinates of (3.1)-(3.3), we write d~(tl).....dl(tx).d~(t~)..... 
t r l l 

dl(tl)=dz(sz)'... 'dx(sx), where s~=t~+t, +P~(t,-x, ..., ta; t,-1 ..... t~) and Pt  is a polynomial 

having only terms with mixed products of t and t' coordinates [7]. By making l>~az_x> ~ 

...>~ax>~0 we can guarantee that ,  if t" lies in an ae-slab and if t has all its coordinates be- 

twcen 0 and 1, then s has all its coordinates non-negative. 

Now we will prove that ,  as e-~0, ](t')~](O), if t' lies in the ae-slabs, where a is restricted 

as above. We must  show tha t  

as e~O, t' in the ae-slabs, where dz(s[).., dx(s~) is the unique representative in F of 

d~(s3 ... dl(sO. 

Now, if the t / s  are all in [0, 1) and bounded away from 1, then our choice of a gua- 

rantees that ,  for small e, s ' = s f i F ,  and ~vn(s') is uniformly close to ~0~(t). On the other 

hand, 

(d,[O, 1).....d,+a[0 , 1)d , (1-~,  1)d,_x[0, 1)... dx[0, 1))--> 0, 

as ~-~0, since these sets form a descending chain of Borel sets with empty  intersection. 

Hence/ ( t ' )~](O)  as e ~ 0 ,  t' restricted to the as-slabs. 

This completes the proof of the theorem. 

Next  we turn our at tention to the problem of classifying all the irreducible idempo- 

tent  measures on a compact nilmanifold D \ N .  The following theorem suggests tha t  this 

problem is equivalent to the problem of classifying a/1 idempotent measures on DI\N1, 

where iV 1 c N is a rational subgroup of codimension one and D 1 -- D N 2V 1. 

(3.7) THEOREM. Suppose the orthoyonal lrro~ection onto the lift space H corresl~nding 

to (Z, M),  which induces g E ( D \ N )  ^ ,  is given by T~, where v is some irreducible ideml~otent 

measure o~ D \ N  as in (1.1). Then there exists a rational subgroup N 1 c N with codimeneio~ 

one and a one-parameter subgroup dx(R ) such that N = N x . d 1 ( R  ) (semi-ditcH lyroduc$) and 

there exists ar~ idempotent measure v x on D x \ N  x, D I = D  fl N x, such that v is the Cartesiar, 

product measure v a x 6 o, where ~o is the unit  mass at the identity of dl(R ). 
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Proo/. M must  be contained in a rational (normal) subgroup N 1 of codlmension one in 

N [8, 11]. We can apply (3.1)-(3.3)'using N 1 in place of M to decompose N = N I - d l ( R  ) 

where N x--d~(R).... .ds(R). Since vF is a Borel measure on the torus T l, we can show tha t  

vp is a Cartesian product of a measure on T ~-I with the unit  mass a t  zero in [0, 1) by  

showing tha t  ~p(n~ ..... n~, hi) is independent of n l, where ~p is defined on ZZ=(TZ) ̂ . Re- 

calling the description of the lift map from section 2, and writing n=nax, where n l G N  1 

and x edl(R),  a preimage under the lift map for a typical generating element of H is F(n) = 
E(nlx ) where g(n,x)=h(n,)/(x),/6L~(R) has compact support,  h(mna)=g(m)h(nl)  for 

each m E M, and 1/11 EL2(MkN1) has compact support  in M k N  r Then the typical generat- 

ing e lement /~ of H is given by  

-~(Dn)=l~(Dnxx)= E (F'dld)(n  x)= Z 
dld~DM\D d,d 

d, �9 Dl. de d(R) n D 

Since/l(dl(dnld-1)) is independent of x, and s ince/6L~(R)  is a::bitrary, i t  follows tha t  H 

is the closed linear span of H 1 x L~[0, 1), where H 1 is some subspace of L~(DI\N1). 

Define ~n as in (3.4) and invoke (3.5). Now Tv is the orthogonal projection of L~(D\N) 
onto H = closed linear span of H I • L2[0, 1), and, by  Lemma (3.3), inner products in LS(D\N) 
are carried into inner products in L2(T z) by the pointwise map D\N-~  T z. Thus 

' T ' * e(n~ 6) v ~(,,.....n,.0)(t, . . . . .  tl) = / ( t ' ) ,  

and Tvq%(t: ..... t~)=y(t') are square integrable functions which are equal almost every- 

where. We can conclude tha t  ~F(n) is independent of n x by  proving t ha t / (0 )  =g(0). This 

follows however, from (3.6), since if /(0) *g(0) / a n d  g wonld be unequal on a set of posi- 

tive measure. Hence vF is independent of n 1 and v and vF can be decomposed into a Car- 

tesian product measure as required: v=v~ x (~0. I t  is necessary only to prove tha t  v 1 is idem- 

potent  on DI\N r 
Let E=ElxEx,  E1cDl\N1, Ex=d[0,  1), be a product of Borel sets, and let ~PE be 

the characteristic function of E. Then 

f D\ N f D\ ~ vE(Drs) dr(Dr) dv(Ds) 

10- 752905.4eta mathemathica 135. Imprim6 le 19 D~cembre 1975 
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'=fD~\NfD,\~PE(Drlx,)dvl(Dlrl)d~o(Xr) 

= fD, \  N, ~PB,(D1 rl) dvl(D1 rl). 

Thus v 1 is idempotent on D I \ N  1 since v is idempotent on D \ N .  

This completes the proof of the theorem. 

(3.8) THEOREM. I~t V be any irreducible idempotent measure on D \ N  such that T~ 

Iaro]eds L~(D\N) orthogonally onto an irreducible ~.space, where ~E(D \N )  ^: is induced by 

(Z, M) and M is normal in N. Then vF is a ]inite linear combination o/idempotent measures 

on T'.  

Proof. I t  is sufficient to show that  vF is only fini~ly many valued on Z z = (TZ) ̂ . Adopt 

the coordinates of (3.1)-(3.3). Let  Int  (g, M) = ( x  0, x I ..... xn_t} , where xo=e, as in section 2. 

Denote T~ = T c = Z ~ o  ck ct V~ V~ 1 T~, where Tt is the orthogonal proj ection onto Hi, 

the lift space corresponding to (X, M).xt,  as in Lemma (2.1). Recall that  Hi is generated by 

functions 

rp,(dz(tz) "..." dl(tl) ) = e(nztl § ... + nit1), 
such that  

e(nzt~ +... + nj+ ltj+l) E {Z z'd [d = dj(pj) ...." dl(Pl) for (pj ..... Pl) E ZJ}. 

Also, as in (3.5) ~v(n)= (T~9~,)(Dd~(O)'...'dl(O)). The problem is to calculate Vk V~I~, for 

~.  a generator of H t, by  tracing ~.  around the following diagram of the lift map in fig. 

3.1. 

.F ~ F "  z; ' l 'xk 

X 

B 

(Fig. 3.1). 

�9 V~V~I~. 



A CLASS OF IDEMPOTENT MEASURES ON COMPACT NILMANI~OLDS 141 

We will construct a preimage under the lift map for ~n. Let  the fundamental  domain 

of (3.2) for D \ N  be denoted by  E, and let E'=d~[O, 1).....dl[0, 1). Let  F e K ~  be such tha t  

aV(n)=0 if n~MdoE'  and F(mdodj(t~).....dl(tl))=gX'(m)e(njt,+..,+nxtl) where dz(tz)'..." 

dl(tl) E E. Then _P =~on, where ~% is a typical generator of H,. 

I t  suffices to show tha t  (F.x.~i.xk)~(Ddz(O).....dl(O)) achieves only finitely many  

distinct values as n varies in i t such tha t  ~ ,  agrees with )f,d. on D \ D M  and as d o varies 

in DM\D. 

We begin by  showing tha t  if x=dj(rj). . . . .di(rx)EInt (X, M) then ri is rational for all 

i = j  ..... 1. In  fact, since (g, M) is an integral maximal character, it is shown in [11] tha t  

there corresponds to d~(1) a rational point Yx in M such tha t  N2 centralizes Yl but  the corn- 

mutan t  of dx(1 ) and Yl is not in the kernel of Z- I t  follows tha t  r x is rational. We can pro- 

cede similarly for r 2 ... .  , rj. 

Now, (F.x~lxk)~(De)=]~d~D~\DF(x~lx~d), where this is actually a finite sum overa l l  

d such tha t  x~ ~x~d ~ Md o E'. Of course, the finite set of d's involved in such a sum will vary  

with d 0. Observe tha t  x~lx~d =dod~(s~).....d~(s~) such tha t  s~=Si(x~; x~; d; do), a polynomial 

with rational coefficients in the coordinates of x~, x~, d, and do, for each j =  1 ... . .  1. Even 

as d and d o vary  in D, S~ can achieve only finitely many  distinct values modulo one. There- 

fore, as n and d o vary,  Zd lV(x~lx~d) achieves only finitely many  distinct values. This com- 

pletes the proof of Theorem (3.8). 

In  Theorem (3.9) we will utilize a certain Boolean ring of subsets of the character 

group of a torus. In  particular, the coset ring in any discrete group is the smallest family 

of subsets of tha t  group which contains all cosets of all subgroups and which is closed 

under finitely many  applications of the operations of taking unions, intersections, and 

complements. 

(3.9) THEOREM. Suppose ~ E ( D \ N ) ̂  is induced by a maximal integral character (•, M), 

where M is normal in N. Let T be the orthogonal projection o] L2(D\N) onto H, where H is 

the lilt space corresponding to (X, M) as in section 2. Then T preserves the continuity o] /unc- 

tions q and only i / ( z a l d e D M \ D }  lies in the coset ring o] the character group ( DMM,\M)  ^, 

where M x is the commutator subgroup o / M  and DM = D f~ M. 

Proo]. Following (3.1)-(3.3) coordinatize N with one-parameter subgroups d~(t), 

i = 1  . . . .  , l ,  in such a way tha t  {d,(tt)dz_l(tz_l)...d~+x(t~+x)l(t z . . . . .  tk+x)ERt-k}=Mx, 

{dt(tz) dz_x(tt_l) ... dj+x(tj+l) l (t z ..... tj+~) ER z-j} = M ,  and {d~(tt) d~_x(tt_l) ... da(tl) l (tz .... , tl) E 

R l} = N .  We may  also assume tha t  

D = {d~(~z)dz_i(n~_l)  ... d l (n l )  l (n~ . . . . .  n~) r Z'} .  
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Then  the  set  F = d z [ 0 ,  1).dl_l[0,  1). . . . .all[0, 1) is a f u n d a m e n t a l  doma in  for D\N. Also, 

F 1 =dz[O, 1)-dz_l[0, 1) ... dj+l[0, 1) is a f u n d a m e n t a l  doma in  for DM\M. 

Next ,  recall  t h a t  H,  as descr ibed in sect ion 2, is the  closed l inear  span  of t he  set  

{~f(m) e(n,t, +... + n 1 t,)[ (n,, ..., nt) e Z j, d e DM\D } , 

so t h a t  eve ry  funct ion  in H is cons tan t  on Ml-cosets ,  since th is  is the  case for Z d. Work ing  

on T t, we have  

/p(t, . . . . .  t l)  = 5 f , (n~ . . . . .  n l )  e (n~t~+ . . .  + m r 1 ) .  
(nt ,  ..., n D  ~ Zz  

Now, (T])F corresponds to  the  subseries of the  series f o r / F  wi th  t e rms  of t he  form 

[e(nlt 1 + ... +njtj)]Za(m),  d E D, where we no te  t h a t  zn(m) can be ident i f ied  wi th  a t r igono-  

met r ic  monomia l  on F I ,  since ~ is cons t an t  on Ml-COSets and  D~MI\M is a ( j - k ) - d i m e n -  

sional  (abclian) t oms .  Thus,  H can be regarded  as a d i rec t  sum of i r reducible  subspaces  

of an  abe l ian  toms ;  a convenien t  phenomenon  which we will exploi t .  

Suppose  T does preserve  the  con t inu i ty  of funct ions  on D\N, so t h a t  T = T~ for some 

i dempo ten t  measure  v on D\N, in the  sense of sect ion 1. W e  will show t h a t  v can be writ-  

t en  as a Car tes ian  p roduc t  measure  v(t~ ..... tl) =vl ( t  z . . . . .  ts+l) • 60(tj, ..., tl), where  60 is t he  

un i t  mass  a t  the  iden t i ty ,  and  v 1 is a bounded  Borel  measure  on D~t\M. To do this ,  i t  suf- 

rices to  show tha t ,  if we view vg on T z v ia  the  na tu r a l  1 - 1 pointwise  m a p  be tween  F a n d  

D \ N ,  then  ~ ( n  l . . . . .  nl) is i ndependen t  of nj, ..., nl.  Defining ~ as  in (3.4), we have  

~p(nl ..... nl) =(T~)(dl(O ).....dl(O)). But  T, cp~=q~ if e(nltl+... +nj+l t j+ l )  = g f  for  some 

dEDM\D, and  T ~ 0 , = 0  otherwise.  Thus,  using (3.6) as we d id  in  (3.7), ~g(nz . . . . .  nl)= 

(Tvqn) (Ddt(O) . . . . .  dl(0)) = 1 if e(nttz +... + nit1) e {gf]d E DM\D} a n d  ~F(nt . . . .  , nl) = 0 other-  

wise, i ndependen t  of n j, ..., n 1. 

Thus  v = v 1 x 60, where v~ is a bounded  measure  o n  DM\M , a n d  ~ g  is also zero unless 

n~+l . . . . .  n~ = 0, since ~f is t r iv ia l  on M 1 for al l  d ~ D. Thus  v = m x w x 60, where m is t he  

t r a n s l a t i o n - i n v a r i a n t  measure  on DM,\M 1 der ived  f rom H a a r  measure  on M1, and  w is a 

bounded  Borel  measure  on D~MI\M , de te rmined  b y  the  Four ie r -S t ie l t j e s  t r ans fo rm of 

v~g. W e  will p rove  t h a t  w is i d e m p o t e n t  on the  to rus  DMMI\M, which will p rove  t h a t  the  

suppor t  of @, n a m e l y  {zd[dqDM\D), lies in the  coset-r ing of (DMMx\M) ̂ , b y  the  H e l s o n -  

R u d i n - C o h e n  i d e m p o t e n t  measure  theorem [12]. 

Recal l  t h a t  m x w x 60 is i d e m p o t e n t  on D \ N ,  and  t h a t  th is  measure  is 2-s ided D- 

invar ian t .  P ick  an  a r b i t r a r y  Borel  set  H c D ~ M I \ M ,  and  let  E=(DM,\Mx)xH. Le t  ~p~ 

denote  t he  charac ter i s t ic  funct ion  of E,  a n d  no te  t h a t  m(DM,\Mx)= 1. Also, if x E DM\M, 

wri te  x = DXlX,n, where x I E M,  and  x m has  t he  form dk(tk)'..." dj+l(tj+l). Then,  we show t h a t  

w is i dempo ten t  on DMMI\M b y  using Fub in i ' s  Theorem several  t imes  as follows: 
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V/E(DM Xl Xm Yl Ym) dm(xa) dw(xm) din(y1) dw(y,n) 
3( Dx\M) s 

f (D ~\ M)" ~ (  D M Xl ( Xrn YI Xm 1) Xm Yra) din(x1) din(y1) dw(X,n) dw(y,,) 

f (Dx M,\ M) V/A(DM M1 Xm Ym) dw(x,n) dW(ym), 

since yV->XmYlXm 1 is a n  au tomorph i sm  of M 1 a n d  leaves m inva r i an t  because  i t  has  J a -  

cobian 1, as  can be  eas i ly  c o m p u t e d  re la t ive  to  a J o r d a n - H o l d e r  basis.  

Conversely,  suppose  (g~]dE DM\D} lies in the  coset-r ing of (D~MI\M) ^. Define the  

i d e m p o t e n t  measure  w on DMMx\M b y  requi r ing  t h a t  @ be the  charac te r i s t i c  func t ion  of 

th is  set.  Then,  we mus t  show t h a t  m • w • 80 is an  i d e m p o t e n t  measure  on D \ N  y ie ld ing  

T, where  m and  80 are  as before,  a n d  m • w • 80 on F yields  a measure  of the  same n a m e  on 

D\/V. Define ~% as in  (3.4). W e  can  check bo th  the  r igh t  D- inva r i ance  of m • w • 80, a n d  

the  fac t  t h a t  Tm•215 = T, b y  examin ing  

f ~ q~,(Dd~(tz) ... d~(t~) d(m w 8o)(0, dz(t~) . . ,  4(t;) • x 

where  t - - ( t  z . . . . .  tk+l; t~ . . . . .  tj+l; ts, ..., tx). W e  in tegra te  f i rs t  wi th  respec t  to  8 o to  reduce  to  

an  in tegra l  over  Dx/M , with  tj . . . . .  t 1 = 0 ,  we no te  t h a t  M 1 is no rma l  in M a n d  t h a t  t h e  

in tegra l  wi th  respect  to  m is zero unless n~ . . . . .  nk+l =0 ,  a n d  we are  lef t  wi th  e i ther  zero, 

or, if nl  . . . . .  n~+ 1 --0,  we ge t  

D e(~ktk~- . . .  -~- n j+ l* j+ l )  dw(t,k . . . . .  $j+1). 

I f  t~ . . . .  , t~ are  integers,  we see t h a t  m • w • 8 0 is r igh t  D- invaxiant .  A n d  we see t h a t  

Tmxwxa, = T .  

This  completes  t he  proof.  E x a m p l e s  a p p e a r  in  (3.15a-c).  

(3.10) THEOREM. / f  zee(D\N) ^ is induced by (~, M), where M is normal and N =  

M" X (semi-direc~ produc~) with X an abelian Lie subyroup of ~ ,  then the/ollougng two state. 

merits are equivalent: 

(i) {zaldeDu\D} is in the coset.rin~] o/(DuMx\M) ^. 

(ii) Every pro~ection orthogonally onto any irreducible ~-space preserves continuity. 
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Ko �9 K, 

Ho > H, 

(Fig. 3.2). 

Proo/. (ii)~(i) by  Theorem (3.9). We need only prove tha t  (i)~(ii). 

Let  H 0 ..... Hn_l be a constructed basis for the x-pr imary summand corresponding 

to In t  (g, M ) = ( x  0 ..... x~_l} with xo=e. Let T~: L2(D\N)-~H, he an orthogonal projection, 

i = 0 ,  1, ..., n -  1. To show tha t  each T~ preserves continuity, it is necessary and sufficient 

to prove tha t  {~,dld e DM\D} = {X '~' [d e DM\D} lies in the coset-ring of (DMMI\M) ̂ . 

However, the mapping /~ -~ A x~ in (DMM,\M)^ carries eosets of subgroups onto cosets of 

subgroups: For example, A +S~/\x'+SX',  where S ~ is a subgroup. The same applies 

to finite unions, intersections, and complementations. Hence T~ preserves continuity, for 

each i = 0, 1 ... . .  n -  1. 

Next,  suppose T: L2(D\N)~H~, where H c is an arbi trary irreducible x-space and T 

is an orthogonal projection. Then, by Lemma (2.1), ,-1 - -1 Tq~=Zl.t~oClC~ Vz V~ Ttq), for each 

q~6L2(D\N). We need the following lemma. 

(3.11) LEMMA. I[ K o and K~ are the pre-images of H o and H~, respectively, under the 

lilt map, and i / N = M . X  (semidirect), M normal, X abelian, then the diagram in /ig. 3.2/8 

commutative. 

Proo/. For each d E D, we write d=dMd t where dM6 D M and d, E D N X. Recalling tha t  

X is abelian, we have 

(F.x,)~(Dn) = ~ (F.x~)(dn)= ~ F(x~dn)= ~ F(x~dMX~lx~d,n) 
Dx\D DX\V D~\D 

= ~ F(x, dq n) = ~ F(d, x, n) = F(Dx, n) = (/~. x~)(Dn), 
DM\ D D Mk D 

which is thus well-defined. 

Thus Vt[=[ .x~ for each [ 6 H  0. To complete the proof of (3.10), it:is sufficient to show 

tha t  each V~ and V71 preserves continuity. But  this follows from the fact tha t  Vt and Vj -1 

are essentially left-translations, by  (3.11). 
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To be precise, any continuous function on D \ N  can be regarded as a left D-invariant 

continuous function on N. So viewed, Vt and F [  1 act as left translations having the spe- 

cial property of leaving functions in either H 0 or Hj left D-invariant, and thus still con- 

tinuous when viewed on D\N.  

This completes the proof of Theorem (3.10). 

Next, we consider the delicate question of when the existance of an arbitrary idem- 

potent measure v corresponding to ~zE(D\N) ̂  implies tha t  eve ry  projection onto an ir- 

reducible subspace corresponding to ~ is given by  some idempotent measure. Very few 

irreducible subspaces are constructible, in the sense of section 2. I t  is only for these tha t  

theorems (3.9) and (3.10) answer this question in the affirmative. 

We suppose again that  M is normal and N = M . X  (s.d.) with X abelian, and (Z, M) 

induces 'ZE(D\N)  ̂ . We will adopt the coordinatizing Malcev subgroups of (3.1). Let  

In t  (Z, M)=(x0,  .--, X~-l}, with xo=e , and write x~=dj(x~!).....dl(X~)), where 0~<x~ ~) ..... 

x~ t) < 1. Denote the lift space corresponding to xi by  H~. We can designate any irreducible 

~-space HCHo| 1 as He, where c=(c o ..... cn_l) is a unit vector in C ~, by Lemma 

(2.1). We will call He singular relative to (H o ..... Hn_ l}~  the following condition holds: 

If we let A(n) be the complex conjugate of ~-1 (~) ~l-o cle(njxi + ... + nlXr then for each 

k =0  ..... n -  1, there exists an l ~=k such that  

A (n) cze(njx~ ~) -b ... § nl x~ z)) =A(n) c~e(n'j x~k) -4 - ... § n~ x(1 k)) 
t t for some (nj, ..., h i )  and (nj . . . . .  h i )  e Z  t. 

We will call an irreducible g-space singular -~ it  is singular relative to every constructible 

basis for the g.primary summand. Using the ordinary (hemispherical) measure on CP ~-1, 

we see tha t  the set of singular subspaces of the ~-primary summand has measure zero. 

(3.12) THEOREM. Suppose (X, M) i~dy~e8 ztE(D\N)  ̂ , M is normal and N = M , X  

(s.d.) with X abelian. Suppose H is any non.singular ~'rreducible zt-st~c,e and v is an idem. 

potent measure such that Tv: L2(D\N)---~H is an orthogonal pro~ection. Then every orthogonal 

pro~ection onto any irreducible zt.spacc is given by an idempotent measure 

Proof. Pick a constructible basis {H 0 ..... H,_I} relative to which H is not singular, 

where H~ is the lift space corresponding to the integral point z~G Int  (Z, M). Denote Hc=H, 

where c--(c 0, ..., c,_1). We: will use the coordinates of (3.1)-(3.3) and define ~n as  in (3.4). 

Then, as in Theorem (3.5), 

,~(nz . . . . .  n~) = ( T , ~ , ) ( d ~ ( O ) . . . . .  d,(O)).  
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Recall from Lemma (2.1) that  

Furthermore, 

Tf~n =~n 

n - 1  

I.  f - 0 

~f  e(.,~, + . . .  +.,+~*,+~) ~ O f  ~ I a ~ ~ \ ~ } ,  

and T ~ n = 0  otherwise. Recall also the description of V~ in Lemma (3.11). Then, denoting 

ztf(x~ t), ..., x(l~))=dj(xJ t)) .....all(x(1~ where all x~) axe necessarily rational, and recalling 

that  X is abelian, we have 

n--1 

~p(~ . . . . .  ~ ) =  ~ c z ~ n ( a , ( o ) . . . . ,  d , l (o )d , (~ '~-x~' ) )  �9 . . . .  ~ ( x i ~ -  xl ~)) 
l - 0  

e(n,t,+... +n,+lt,+l)e{zz'a[deD.~\D}, or O, otherwise. 

Now, VF has only finitely many distinct values. In particular, ff nEZ j and ff T~n:~0,  

then 
n - 1  

~ ( n ,  . . . . .  ~ )  = v," = 6, e~p [ - 2~i(~j x7 ) + . . .  + ~ ~i'~)] 7 e, e~p 2~i(~s ~')  + . . .  + ~ xl ')) 
l - 0  

which, for each i = 0  ..... n - l ,  runs through only finitely many distinct values for nEZ j 

since x~ ~) is rational for each ], k. Thus vp is a finite linear combination of measures which 

axe idempotent on the torus T z. 

By hypothesis, H,  is not singular, so we can pick an i such that  Vr 4= V f  for all n, n'  

and ]:~i. Then the subset of the support of ~F on which VP = ~F(n) must lie in the coset-ring 

of Zk Hence (z~a[dEDM\D} l ies 'n the coset-ring of (D~M~\M)^.Now we apply Theorems 

(3.9) and (3.10) and the proof is complete. 

(3.13) TH~.OREM. Su~x~se (g, M) induces :~6(D\N) ̂ , where M has codimension one 

in N. Then the/ollowlng/our statements are equit~dent. 

(1) ~ I d ~ D ~ k D }  lies in the co~a ring o/(D~M~\M) ^. 

(2) Or~hogonal pro#aions onto all irreducible g-spaces preserve cou~inui~y. 

(3) The org~wonal pro~eaion onto the g.primary summand ~areserves continuity. 

(4) The or~h~o~l Fro#~iou onto at ~ one irreducible ~-~pace preserves c~,Uiauity. 

~o~e: We will make specific use of the polynomial multiplication in N, so t h a t  this 

theorem is not listed in section 5 as being extendable to  suitable solvmanifolds. 

Proof. (1)~(2), (1)~ (3), and (1)~(4) by Theorems (3.9) and (3.10). We need thefol .  

lowing lemma. 
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(3.14) L~.~MX. Let Px, ...,P: be laolynomials and let x0=0, x ~ ..... x~ be rational num. 

bets. 1/ [.J~-o ((p~(n + x,) ..... p:(n+ x~))ln~Z } lies in the coset.rin~ o/Z: then {(px(n) ..... 

p~(n))]neZ} must also lie in the coset-r~ng o/Z ~. 

Proo[ o[ lemma. If each polynomial Pt is linear then we are done. Suppose some pj  

has degree greater than  one. Since projections onto the coordinate axes map the coset, 

ring of Z l onto the coset-ring of Z, we have [J~=o(pj(n+x~)]nGZ} in the coset-ring. Note 

tha t  the gaps between successive elements of this set approaches infinity as n-~ oo. This 

is a contradiction, since subsets of Z in the coset ring are essentially equal except a t  fi- 

nitely many  points to periodic sequences. This proves the lemma. (Unfortunately, if the 

variable n has a multidimensional lattice for its domain, then the condition on the degree 

of pj  is false.) 

(3)~(1). Since the or thogonal  projection o n t o  the n-pr imary summand of L2(D\N) 

preserves continuity, we can use the same argument as in the proof of Theorem (3.9) to 

conclude tha t  I..Jx~Grat(x.M){gaX~[deD~t\D} lies in the eoset-ring of (DMMI\M) ̂ . But  

DM\D=Z, so we can apply Lemma (3.14) to conclude tha t  {~]deDM\D} is also in the 

coset-ring, the polynomials coming ~ o m  the Campbell-Hausdorff formula [6]. 

(4) ~ (1). Suppose v is some irreducible idempotent measure corresponding to ~ E (D\N)". 

I t  is shown in Theorem (3.8) tha t  vr is a finite linear combination of idempotent  measures 

on a torus, so tha t  ~ has its support  essentially of the form of a union of sets {g&~ld e DM\D}, 

this union lying in the coset-ring. I t  follows from the lemma tha t  {X~ldeD~,\D} a~so must 
lie in the coset ring. 

This completes the proof. 

(3.15) Examples. (a) Let  N 3 be R 3 equipped with the multiplication (x, y, z) (x', y', z') = 

(x+x', y+y',  z+z' +xy'). Let D be the integral lattice points Z a in N s. Then any  infinite 

dimensional :~ e (D\.~3) ̂  is induced by  a character Z~ of M--{(0 ,  y, z)}, where g~(0, y, z)-- 

e(~z), for some ~ e Z. Then the set {Z~ ]d e DM\D } lies in the coset-ring of Z' ,  so tha t  every ir- 

reducible n-space is the image of an orthogonal projection given by  an idempotent  measure. 

(b) Let  N 4 be R 4 equipped with the multiplication (w, x, y, z)(w', x', y' ,  z ' ) =  

(w+w', x+x',  y+y'  +2wx', z§ +2wy' +2w2x'). Let D - - Z  ~ and M=((O, x, y, z)}. Then 

every infinite dimensional ~ e (D\N4)^ is induced b y  a character X(~.~.y~ on M, where 

Z(~. ~. ~)(0, ~, y, z)-- e(~ +py +Tz), (~,/~, 7) e Z 8. 

Furthermore,  if ~z is non-trivial on the center Z, then 7 ~0 .  (If  ~ t Z  = / ,  then we can factor 

Z out and the situation is reduced to example (a).) Then ~(~.0.0.0) 

Hence {X~.p.~)IdGDM\D} is not in the cceet-ring, so tha t  there does not  exist any  it- 
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reducible idempotent measure corresponding to ~, by  Theorem (3.13). 

(c) Now we give an example of a non-Heisenberg group N, = 6 ( D \ N )  ^, =[Z+I,  and 

such tha t  every orthogonal projection onto any  irreducible ~t-space preserves continuity. 

Le t  N be R s equipped with the multiplication 

yl,  y , ,  zl, y;. y ,z' ') 
r v t ~' t t v 

( ~  + xl, x~ + ~ ,  Yl + Yl, Y~ + Y2 + 2x2 Yl, z + z' + 2x~ Y2 + 2 ~  Yl + 2x~ y~). 

Let D = Z  a and ( z ,M)#~6(D\N)  ̂ , where ~ I Z # I ,  M =  {(0, O,y~,ye, z)}.Then{z~[d6DM\D} 

lies in the coset-ring of Z ~. 

w 4. T r R n ~ [ o r m a t i o n s  o f  m e ~ u r e s  o n  D \ N  

Throughout this section we will make the hypothesis tha t  M is normal in N and tha t  

N = M . X  (semi-direct product) where X is an abelian Lie subgroup of N. 

Suppose ~ 6 ( D \ N )  ^ is induced by  (Z, M) and In t  (X, M)={Xo, xl ..... x,_,} where 

xo=e. Let  H o ... . .  Hn_ 1 be a constructed basis for the ~z-primary summand corresponding 

to x 0 ... . .  x~_l, and let T~: L2(D\N)~Ht  be an orthogonal projection, i = 0  ..... n - 1 .  Then, 

if /6L2(D\/V),  T o / a n d  T J  are not related to each other, since H 0 and H t are orthogonal 

subspaces of L2(D\IV). However, we will see that ,  if T o preserves continuity,  then the 

unitary equivalence given in (3.11) between H o and H i induces a transformation of meas- 

ures which carries the idempotent  measure v 0 which corresponds to T o into the idem- 

potent  measure v t which corresponds to T t. 

First, we let F denote the fundamental  domain of (3.1). I f  E is any  Borel set in D\N,  

we define xE = (Dxn]Dn 6 E and n 6 F}. Then xE  is also a Borel set, and if v is any  Borel 

measure on D\IV, we define v'(E)=v(x(Ex-i)). This seemingly artificial transformation 

yields canonical, well-defined measures, under the hypotheses of the next  theorem. 

(4.1) THEOREM. ~uppose 7z6(/)\N) ̂ is induced by,(g, M), and N=J]I.X (8.d.), X 

abelian and M normal. Denote Int (g, M)={x  o ..... X~_l}, where Xo=e. Let H, be the lilt 

space corresl~nding to (~, M).xt, as in section 2, and sultrpose T~: L~(D\N)-~Ho is an ortlm- 

gonal projection, where v is an idempotent measure. Then v ~' is that unique idempotent meas- 

ure such that Tv,,: L~( D\  N)-~ Ht, an orthogonal projection. 

I n  order to prove the above theorem we first need the following lemma. 

(4.2) LEMMA. I / g  =d~(gz)'... "d~(g,) 6N, using the coordinates o/(3.1), and q ~ :  D \ N - ~  

D \ N  by qDg(Dn)= Dgn', where n ' 6  F fi Dn, then q~o is an automorphism o/the Borel structure 

o! D\N. 
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Proo] of lemma. I t  is necessary only to show tha t  ~o is one-to.one and onto. Thus, 

given aEIV, we must  show there exist unique d E D  and ]E$ '  such tha t  dg]=a .  Denote 

d=dz(nt)  ... dl(nl) , where (nz, ..., n l)EZ t. Then we must  show there is a unique solution 

to the equation 

dt(nt) ... dl(nx)dt(g~) ... dl(gl)dt(/t) ... dl(/1) -dr (a t )  ... dl(al), 

having 0 < / l  .. . .  , fl < 1. But  it is proved in [7] tha t  there exist polynomials Pl  . . . .  'P1  such 

tha t  

dz(nt) ... dl(nl)dt(gt) ... dl(gl)dz(/t) . . .  dl(/1) 
= dz(nz-t-gz+/t+Pt(nz_l . . . . .  nl; gt-1 . . . .  ,gl;/v-1 ... . .  fl)) "..-" dl(nl-t-Xl+{1). 

Clearly, n 1 and fl are uniquely determined. But  then n2 a n d / z  are uniquely determined. 

We procede until the lemma is proved. 

I t  is a simple consequence of the above lemma tha t  

~\ (/~176 f ~, /(Dn)dv(Dn) 

for any Borel measure v and for any  func t ion /eL~(D\N) .  

Proo[ o /Theorem (4.1). To complete the proof it will suffice to show tha t  

1 if e(nzt t+. . .  +nj+ltj+l)e{Z~'[deD~\D}. 
(v~')^(n) = 0 otherwise, 

since this characteristic function has already been identified in the proof of Theorem 

(3.10) as the transform of the measure corresponding to T~: L 2 ( D \ N ) ~ H t .  Note tha t  if 

(~n)F=e(ntt~+.. .+nlt l)  such tha t  e(nt t t+. . .+nj+lt~+l)e{g~]dEDM\D} then ( ~ ) F =  

(x~ 1" (~0,o~0~,))F = e(n[ t~ +... + n~ tx) such tha t  

e(n; $t + ...  + n;+l tl+,)q { Zdz'] de  D•\D }, 

and every element of the latter set arises in this manner. Hence 

~F(n) = .I%~(Dn) dv(Dn) = _Iep~'(Dn)dv~(Dn) = (v$')^(n ') = 1, 

if 
t 

e(n; St + . . .  + n,+l t,+~) e ( Z~' ld  e D ~ \ D } ,  

where we have applied lemma (4.2). Similarly, (v${)^(n ') = 0  otherwise. This completes the 

proof of the theorem. 

(4.3) COROLLARY. 1 [  V i8 the measure in Theorem(4.1) ,  then v is both le,[t and r~ht  

X' D . i n w r ~ n t .  
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Proo]. As a result of Theorem (4.1), ~ is right D-invariant. But, v ~ is right D-in- 

variant if and only if, for each dfiD, ~(Ed)=v~(E), for each Borel set E c  D\N. How. 

ever, ~(Ed) =v{Dx,d'ndz[ ~ I DnfiE, d'ndx'{ ~ fi F} =v{L~'d'(X'n)X~dl DnEE, d'ndz~-' fi F} = 

v~'(E) if and only ff v is both left and right ~D-invariant. This proves the corollary. 

Note that  the fight ~D-invariance of v is also an easy consequence of the fact that  

Tv projects L$(D\N) onto a space of left ~D-invariant functions. However, the left ~'D- 

invariance of v is not so easy, and the above proof uses the strength of the coset-ring 

theorem. 

(4.4) COROLLARY. Under the h y ~ s e 8  Of Theorem (4.1), the measure vc correspond. 

ing to T j  L~(D\N)~Hc, as described in (21) is given by 

n - -1  

ro t  7 c~e,(~;~x,).v,, 
l ,  ~-0 

where (x. v,)(E)=v~(Ex), and T~, pro]ea. L2(D\N) onto Hi. 

Proo/. We need only note that  

= f . \  N ~(Dna x,x~' n)dv,(Dnl)-- f . \  N ~0(Dna n)dv,(Dn a zi'lx,). 

This completes the proof. 

(4.5) COROLLARY. Under the hypotheses o/ Theorem (4.1), q To:I_~(D\N)~H o and 

T4 L2( D \ N ) ~  Ht are orthogonal projections, we have ( T d) = ( To( / . z ;  ~ ) ) .z,, /or a1~ / ~I,2( D \ N). 

Proo]. (Tt/)(Dn) =(Tj , / ) (Dn) ,  where T~= T o. But  

(To(/. z~l) - z,)(/~) = (~'~(/�9 x~l))(/~z, n) = f~\  N / ( ~ l n x  ~, ~) dv(Z~l) 

l(Dn~ n) d~ (D~)  = ((To~) I)(Z~). 
dD \N 

This completes the proof. 

Now we will generalize Corollary (4.5) by eliminating the hypothesis that  T o is given 

by  a measure. 

(4.6) T H E 0 R E ~. ~uppose (Z, M) induc~ ~ E (D\N) ̂ , where M is ~ and N = M. X 

(semi-direct), with X abdian, le t  {H e ... . .  H._,} be a constructed basis /or the ~-pr/mary 
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summand corresponding to In t  (Z, M)={e=xo ,  x~ .. . .  , x_i} ,  and let T~: L2(D\N)~-H~ be an 

orlhogonal projection, i = 0  .... .  n ' l .  Then, letting ] .x  t denote [oq~z~ (as in Lemma (4.2)), we 

have ( T d ) = ( T o ( / . x / l ) ) . x i .  

Proo]. Denote S([)=(To(/.x~-l)).x~. Clearly S acts as the identi ty on Hi, so we need 

prove only tha t  S: H~-~0. I t  suffices to show t h a t / E H ~  implies/ .x~ "1EH~ or tha t  

fD\N(/'x,~-l)(Dn)ho(nn)d~tl,(Dn)"-'= fD\Nf(.DTfi~)(ho*ff',f,)(Dn)~/,f,g(1)Tb)=O 
for each /EH~ and h o EHo, where ~u is the translation-invariant measure on D \ N .  But  this 

follows from Lemma (4.2). Specifically, we need only note t ha t  ~u is invar iant  under ~0xi 

since N is unimodular. This completes the proof. 

w 5. Applications to compact solvmanifolds 

We will show in this section tha t  the methods and results developed in section 3 for 

compact nilmanifolds are also true on suitable compact solvmanifolds. The author is in- 

debted to J.  Brezin for pointing out the generalizations in this section. 

The compact solvmanifolds which we are able to t reat  must  possess global coordinates 

similar to those in (3.1)-(3.3), so tha t  (3.4) and (3.5) will remain true. Also, the funda- 

mental  domain F for the compact solvmanifold D \ S  will have to have a rather  delicate 

relationship to the multiplication in S, enabling us to prove (3.6). To be specific, suppose 

S is a connected, simply connected, solvable Lie group and D a cocompact discrete sub- 

group. Suppose ~r E (D\S)  ^ is induced by a character Z of a normal subgroup M such tha t  

(M N D ) \ M  is compact. Then the zr-primary summand  of I ) ( D \ S )  is constructed by  means 

of lift maps exactly like those of section 2 [1]. 

(5.1) De/inition. We will call D \ S  a type F solvmanifold relative to M provided tha t  

D \ S  has the following four properties. 

(1) There exist one-parameter subgroups dz(t) . . . .  , dl(t ) of S such tha t  S = dl(R)...., dl(R) 

and S, =dz(R)' . . .-d,(R) is normal in S,_ 1 for each i = l  ..... 2. 

(2) D =dz(Z)....-dl(Z), so tha t  dz[0, 1)-....all[0, 1) is a fundamental  domain for D\S .  

(3) There exist integers ] and k such tha t  [M, M] =Sj  and M = S , ,  O<~k<j<~l. 

(4) I f  0 < 8 1 < 1  and 0 < ~ , < 1 ,  then there exists a set S~,.a,c[0, 8,) t, having positive 

measure in the invariant  measure of D\S ,  such that ,  if te l0 ,  1 --(~1) z and t'ES~,.6,, then 

dz(tz) " ... . dl(tl) dt(t;) . ... . d~(t;) = dt(t~) . ... . dl(t~), 

where t~ >~ 0 for each i = 1 . . . .  ,1. 

Properties (1)-(3) enable us tb use (3:1)-(3.5), exactly as before. However, in order 
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to use (3.5) effectively, i t  will be necessary to have a result very similar to Theorem (3.6). 

Tha t  is, the formula ~F(n)= (T~r is not computationally useful by it- 

self since our knowledge of the structure of L2(D\S) can determine T ~  n only almost 

everywhere--not  at  the specific point Ddz(O).....dl(O ). But  (3.6) provides a "semi-con- 

t inui ty"  proper ty  a t  this point which enables us to determine ~F(n) from the structure 

of L2(D\S). The purpose of property (4) is to enable us to prove a theorem very similar to 

(3.6), except tha t  S~,.~, replaces the a~-slab which worked when the multiplication was 

given by  polynomials. Since S~,,~, has positive measure, regardless of how small we choose 

(~1 and ~ ,  our new version of Theorem (3.6) is just as useful as the old version, and the 

proof requires no further changes and need not be duplicated here. I t  is then elementary 

to check tha t  Theorems (3.9)-(3.12) apply just as well to type F solvmanifolds as to com- 

pact  nilmanifolds. 

We will show tha t  m a n y  three dimensional compact solvmanifolds are type F,  and 

we will use Theorems (3.9)-(3.12) to classify all the irreducible idempotent measures on 

these manifolds. I t  is proved in [2] tha t  there are only two types of three dimensional com- 

pact  solvmanifolds which are not nilmanifolds. Every  such solvmanifold comes from a 

solvable Lie group which can be identified with a semi-direct product R ~. R, where R ~ is 

normal in R~.R under an action of R on R ~ given by  a one-parameter subgroup A t of 

SL(2, R), and where D can be identified with the integral lattice points of R a. I f  A is a 

matr ix  in SL(2, Z) having positive unequal eigenvalues p and p-1 then we will call the 

group S 1. I f  

then we will call the group S~. In  either case, the group multiplication is given by 

(v; t). (u; s) = (v + Atu; t + s). In  either case, all the infinite dimensional ~ E (D\S)^  are induced 

by integral characters of M = {(v; 0)}. [1]. 

(5.2) THEOREM. D \ S  1 and D\S2 are both type F solvmani/olds, relative to the normal 

subgroup M = {(v; 0)}. 

Proof. Properties (1)-(3) are trivial, so we will concentrate on proper ty  (4). 

Let  us consider D \ S  1 first. The matrices A t have eigenspaces Rw 1 and Rw~ corre- 

sponding to the eigenvahies p~ and p-~ respectively. By  choosing the one-parameter co- 

ordinate subgroups da(t ) and d2(t ) in R ~ sensibly, we can insure tha t  one eigenspace 

extends into the interior of the first quadrant  da[0, c~).d2[0 ' c~) or else both lie along the 

axes bordering the first quadrant.  In  either ease, it is clear that ,  for any  first quadrant  

vector u, lying between two suitable first quadrant  rays Atu will again lie in the first 
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quadrant.  Thus (4) is clearly satisfied, provided only tha t  we make a sensible choice 

of da(t ) and d2(t ). 

The compact solvmanifold D\S~ is also type F, but  the verification of property (4) is 

more delicate. In  this case, (vl, v~; t) (Ux, %; s) -- (Vl + Ul cos �89 + u, sin �89 v~ + u2 cos �89 

ulsin�89 ). Given 0< ~ 1< 1  and 0 < ~ , < 1 ,  let us restrict t to [0 ,1 -~1)  and see 

whether there are acceptable conditions on (ux, u,) which will guarantee tha t  

7t~ . 5T 
(a) u,  cos ~ t + u2 sm ~ t >/0, 

and 

(b) u~ cos 7, t - u 1 sin 7, t/> 0. 

Note tha t  sin �89 is bounded away from 1 and cos �89 is bounded away from 0 for 

0 ~<t < 1 -(~1- Thus, any  first quadrant  vector u will satisfy (a) and, if ul.<u ~, (b) is also satis- 

fied. Hence the existence of S~,. ~, is assured, and (4) is satisfied. This completes the proof. 

(5.3) Example. Suppose (g, M) induces ~ E (D\S1) ̂ , an infinite 'dimensional irreducible 

representation. We will show tha t  {zdld e DM\D} does not lie in the coset ring of Z ~= 

(DM\M) ̂ , so that ,  by  Theorem 3.12, the orthogonal projections onto all non-singular ir- 

reducible ~r-spaces fail to preserve continuity and hence cannot be given by  idempotent 

measures. In  particular, let us write Z = n = ( n l ,  n2) , where g(u; O)=-e(nlul-4-n2u2). Then 

Z ~= ('A)an, where 'A denotes the transpose of A, as m a y  be easily calculated. But  there is 

a non-singular linear transformation W such tha t  

\ 2 /  \n~] 

which does not have bounded gap in each coordinate. Hence {Z a ] d E Z = DM\D} does not 

lie in the coset-ring of Z 2. 

(5.4) Example. Let (g, M) induce ~zE (D\S2) ̂ , an infinite dimensional irreducible re- 

presentation. We will show tha t  {gdld e DM\D} is in the coset-ring of Z ~, so tha t  every 

orthogonal projection onto any  irreducible g-space is given by  an idempotent measure. 

Let  us denote Z again by  n = (n 1, ha). Then the set {g~ld fi DM\D} is finite, and hence in 

the coset-ring, since 
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Thus  we have  shown t h a t  on  compac t  so lvmanifolds  D\S1,  there  are  essent ia l ly  no  

i r reducible  i d e m p o t e n t  measures ,  whereas  on compac t  so lvmanifolds  D\S2, the re  a re  as  

m a n y  i r reducible  i dempo ten t  measures  as  one could desire. 
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