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Introduction

If @ is a locally compact topological group and D a cocompact discrete subgroup, it
would be interesting to be able to classify the bounded Borel measures on the compact
homogeneous space D\@ in terms of the representation theory of G and the structure of
D. In the case of abelian groups, this is accomplished by means of the Fourier-Stieltjes
transform. In Theorem 1.1 of this paper, we take @ to be unimodular, and we show that
the continuous projections in L2(D\@) which commute with all right translations and map
continuous functions into continuous functions correspond one-to-one with those two-
sided D-invariant Borel measures on D\@ which are idempotent. Although idempotence
is normally defined only for measures on spaces having a well-defined multiplication of
points (such as groups and semi-groups), the concept can be readily extended to two-
sided D-invariant measures on homogeneous spaces D\G.

After section 1, we restrict our attention to finite dimensional, real, connected, simply
connected nilpotent Lie groups N with cocompact discrete subgroups D. Corollary (3.5)
presents our basic tool for the study of two-sided D-invariant Borel measures on D\N.
We map the measure v on D\N into a measure vz on a torus of the same dimension, and we

show that the Fourier-Stieltjes transform 6, can be evaluated by finding the value at a
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special point of T,¢p, where @ is a certain function on D\N and T, is the transformation in
L*(D\N) corresponding to v. In order to be able to use the structure theory of L*(D\N)
to evaluate T',p at a specific point, we show in Theorem (3.6) that T',p enjoys a weakened
form of continuity at that point. The main results of section 3 are contained in Theorems
(3.9)—(3.12), classifying all the idempotent measures corresponding to irreducible repre-
sentations induced from characters of normal subgroups. In Theorem (4.1) we show that
if the projection 7', corresponding to the idempotent measure v projects L* D\N) ortho-
gonally onto an N-invariant subspace H, and if V: H—H! is a unitary equivalence, then
V induces a transformation of measures whiéh carries v into a measure which projects
onto H'. It is interesting that mutually orthogonal projections can be thus interrelated.

It is important to note that nilpotence is used only in (3.1)—(3.3) to obtain suitable
global coordinates on N, and in (3.6), where the polynomial multiplication which is char-
acteristic of nilpotent Lie groups is used to prove the ‘“‘semi-continuity” of T, at one
point. In section 5, we present four special hypotheses subject to which our theorems hold
on compact solvmanifolds. We call such special solvmanifolds type F, and, to illustrate
the fact that compact nilmanifolds are not the only type F solvmanifolds, we show that
many three dimensional compact solvmanifolds are type F. Our theorems (3.9)—(3.12) then
classify all those idempotent measures on three dimensional compact solvmanifolds which
correspond to projections onto irreducible translation-invariant subspaces.

The author is deeply indebted to Dr Jonathan Brezin, who made many valuable
suggestions. In particular, it was Dr Brezin who first saw that the results of this paper
could be extended from compact nilmanifolds to suitable solvmanifolds. He also greatly
simplified the proof of Theorem (3.10), and made several improvements in the termino-
logy. Thanks are due also to Dr O. C. McGehee for useful suggestions concerning abelian
harmonic analysis, and to Dr F. P. Greenleaf for pointing out gaps in the original versions
of the proofs of Theorems (1.1) and (3.8).

We lean heavily on the multiplicity theory and L2-structure theory for compact nil-
manifolds. The first results on multiplicities were obtained by C. C. Moore in [8], and exact
multiplicity formulas were discovered independently by R. Howe in [5] and also in [11].
The structure theory in [11] has been extended to compact solvmanifolds by L: Auslander
and J. Brezin in [1], while L. Corwin and F. Greenleaf have obtained new results concern-
ing multiplicities in [3], as have C. C. Moore and J. Wolf in [9].

§1. Idempotent measures on compact homogeneous spaces

Suppose that @ is an arbitrary locally compact unimodular topological group and D
a closed unimodular-cocompact subgroup. Then the compact homogeneous space D\G will
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possess a right G-invariant measure [10]. Suppose that 7' is an arbitrary continuous pro-
jection onto .a right-translation invariant subspace of L*(D\G). Thus T(g-f)=g-(T}),
where (g-f)(Dg,) =f(Dg,g). Suppose also that T': C(D\@)—C(D\@), the space of continuous
functions on D\@. The mapping 7', being a continuous projection, is continuous in the L2-
norm. Now suppose f,—f and 7'f,—>¢ in the sup-norm, where f,, f, g, and ¢ are all continu-
ous. Then, since sup-norm convergence implies L?-norm convergence, and since 7T' is con-
tinuous in the L?-norm, T'f =g. But then 7' is also continuous in the sup-norm, by the closed
graph theorem,

Define E: C(D\G)—C, the complex numbers, by Ef=f(De), where e is the identity
of G. Then EoT is a continuous linear functional on C(D\@) in the sup-norm. By the
Riesz-Markov-Kakutani Theorem, there is a bounded measure » on D\G such that

(BoT) [ = (Tf)(De) = L\wag) dv(Dy).

But, since 7' commutes with right translations, we have

(TF)(Dgo) = (go - (TH))(De) = (Tgo  1))(De) = L\ @0 1)) do(Do) = L\GI‘(DQ.%) dv(Dy).

(The above argument is similar to the proof of Wendel’s theorem for locally compact
abelian groups in [13].)

Now we will make use of the fact that f and Tf are both well-defined on D\@. Thus, if
deD, (Tf)(Ddgy) = (Tf) (Dyy), so that

f HDgge) dv(Dg) = f H(Dgdge) dv(Dg) = f HDgge) d(Dgd ),
D\G D\@G D\G

for all d in D and for all f€ C(D\@). Thus v(E) =v(Ed), for all d€D and for all Borel sets
E< D\@G.

The fact that v must be two-sided D-invariant enables us to define a natural convolu-
tion of v with any one-sided D-invariant measure w on D\@. Namely, (v%w)(E)=
Jone v(Eg~)dw(Dg), which is well-defined since v is right D-invariant. We can now verify
that if v corresponds to the projection 7', then v must be idempotent. Recall that T2=17T,
and let y; denote the characteristic function of the Borel set < D\@. Observe that

(T'pe)(Dg,) = L\G%(Dggo) dv(Dg) =v(Eg5*),
and that

(T5)(Dgo) = fm (Tys)(Dggs) d(Dg) = L\Gv(Ega‘g-’)deg) = (T3)(Dgo) = o(Ega™).

Thus v is idempotent: i.e., v%v=v.
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- (1.1) THEOREM. Let G be a locally compact unimodular topological group and D a
cocompact discrete subgroup. Then T: L} D\G)—>L* D\G) is a continuity-preserving continu-
ous projection which commutes with all right translations by elements of @ if and only if
(T)(Dgo) = fona (Dggo)dv(Dg) for some two-sided D-invariant idempotent Borel measure
v on D\G. In this case we write T=T,.

Proof. We have already proved that if 7' is as stated, then T =T,. Conversely, suppose

v is idempotent and

(T, /)(Dgo) = fD\Gf(Dyyo) dv(Dg),

and suppose fEC(D\@). Since D\@ is compact, if g,—>g, in D\@, then f(Dgg,)—{(Dgg,)
uniformly. Since v is bounded, (7'f)(Dg,)—(Tf)(Dyg,); thus TfEC(D\@). Also, T com-
mutes with right G-translations, since left and right translations commute, and T2=17T,
since v is idempotent. Finally, to show that T, is L*-continuous, observe first that D\G
has a precompact Borel section F contained in G. Then, since D is discrete, FF =
{9901 (9,90) € F x F} is contained in the union of a finite subcollection of the set {dF|d € D}.
Let p denote the number of sets of the form dF needed to cover FF. Then it is easy to
show that | 7,]< Vz—)"v” Hence T, is L2-continuous, and the proof of the theorem is
complete.

If D is discrete, let us denote by (D\G)” the set of all those equivalence classes of ir-
reducible unitary representations of G which occur in the decomposition of L D\@) into
a direct sum of mutually orthogonal irreducible translation invariant subspaces. Then,
for each 7z € (D\G)", the multiplicity with which # occurs in L*D\G) is finite [4]. We will
call any irreducible translation invariant subspace corresponding to € (D\G)”" an irre-
ducible n-space. We will call the closed linear span of all irreducible n-spaces the s-primary
summand.

(1.2) CoroLLaRrY. If T, is as in Theorem (1.1), and T (L*D\G)) is an irreducible
n-space H for some n€(D\G)™, then T,h=0 for all h€L:(D\G) such that h is orthogonal to
the m-primary summand H.

Proof. We can decompose Hz= @ ez H, into an orthogonal direct sum of irreducible
subspaces. Then h=2Xpez k,, b, €H, for each i. But T,(g:-h)=g-(T, k), which implies that
T,(H;)=0, since H is not unitarily equivalent to H,. Thus T, -=0.

We remark that Corollary (1.2) is trivial for abelian groups, since multiplicities never
exceed one in such cases. Thus, in the case in which @ is abelian, the projection T, is zero
throughout the orthogonal complement of the irreducible 7-space T ,(L*(D\G)).
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§2. Structure of L? of a compact nilmanifold

Let N be any real finite dimensjonal connected simply connected nilpotent Lie group
and D a cocompact discrete subgroup. We will describe in greater detail the decomposi-
tion of L} D\N) alluded to in section one for general compact homogeneous spaces. All
the results in this section, except for Lemma, (2.1), are contained in [11].

A character y of a subéroup M of N is given by y(m)= ~exp 2miA (log m), where A is a
linear functional on the Lie algebra Nof N, and log is the inverse of the exponential map,
which is one-to-one and onto. The condition that % is a character is equivalent to the con-
dition that A: [, M]—>0. M is called maximal (relative to y) if and only if M is of maxi-
mal dimension so that A: [0, ] —0. An integral maximal character i8 a pair (y, M), where
% is a character of M, y: Dy—~1, where Dy =D N M is cocompact in M, and M is maximal.
(M is thus a rational subgroup of N.) It is known that = €(D\N)" if and only if  is in-
duced, in the sense of Mackey, by an integral maximal character.

We define an action of the group N on (y, M) by (y, M)-n=(x”,"_1M), n€N, where
1™(p)=x(npn—1) and "M =n-1Mn. If (x, M) and (y, M)-n are both integral maximal char-
acters, then we call » an integral point of N. M acts trivially on (y, M), and D maps in-
tegral maximal characters into integral maximal characters. If we denote the set of in-
tegral points of N by (M\N),, then the number of distinet orbits of D in (M\N), is known
to be the multiplicity with which 7z oceurs in the decomposition of L?(D\N) into a direct
sum of irreducible translation invariant subspaces. We define Int (y, M)=(M\N),/D, the
set of distinet D-orbits in (M\N),. Int (y, M) is always a finite set, since multiplicities are
finite.

If z€(D\N)", we can construct a full complement of irreducible subspaces of the z-
primary summand as follows. Let (y, M) be an integral maximal character inducing n,
and let K be the set of all functions F: N—C, the complex numbers, such that F(mn)=
x(m) F(n) for all m€M, and such that |F| €L M\N) and | F| has compact support in
M\N. Let H be the linear span of function of the form F(Dn)=Zucpy\o(F-d)(n), where
FeK and thus F is well-defined on D\N. Then Fig. (2.1) is a commutative diagram, and
the unitary map F— ¥ can be completed, making H an irreducible N-invariant subspace
of L*(D\N).

Now, let Int (y, M)={,, zy, ..., ¥,_,}, Zo=e, the identity of N. Apply the above
map F - F, called the lift map to each (y, M)-x,, to obtain a lift space H,. It is known that
H, is independent of the choice of integral maximal character in (y, M)-z,D. Then
{Hy, H,, ..., H, ,} is a set of mutually orthogonal irreducible 7-spaces which span the
entire 7-primary summand. {H,, H,, ..., H, ,} is called a constructible basis for the n-
primary summand.
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Let us note that there exist at most countably many constructible bases for the z-
primary summand since there exist at most countably many rational subgroups M of N.
Yet there exists a whole continuum of irreducible n-spaces whenever the multiplicity of
7 exceeds one. The following lemma will be useful for dealing with this difficulty.

(2.1) LEMMA. Suppose the orthogonal irreducible m-spaces H,, ..., H,_, generate the -
primary summand of x € (D\N)". Suppose V,: H,~ H, is a unitary equivalence, k=0, ...,n—1.
Suppose T is the orthogonal projection of L*D\N) onto an irreducible n-space H, and
Ty: L D\N)—H, is an orthogonal projection, k=0, 1, ..., n—1. Then there exists a complex
vector ¢=(Cg, ..., n1) EC*, |¢| =1, such that

n-1
To= k; KL V,Vi'Tvp, forall @€L*D\N).

Furthermore, the family of all such subspaces H can be identified with the points of the com-
plex projective space OP™1.

Proof. Since H must have a non-trivial projection onto at least one of the irreducible
subspaces H,, H,, ..., H, ;, we can assume without loss of generality that 7',(H)=+0, and,
since T, commutes with right-translations, 7T, must be onto. It follows from Schur’s
lemma, that T',f=4,V,T,f, for all € H, for some 4,€C. Thus

H={Tof + V,Tof +... 4+ 20y Vo, Tof |/ €H},
or H={{+2V\f+..4+d, Vn——l/leHo}‘

Recalling our initial hypothesis, the set of all such subspaces Hc Hy@H,®...® H,_, can
be paired with the set of straight lines through the origin in C*. We can then choose a vec-
tor ¢ of length one in the direction of the line through the origin of C* to designate the sub-
space H,. (—c would do just as well.)
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To evaluate T'p, for each ¢ €L} D\N), we note that To=T(Typ+T1p+..+ T, 1)
and we evaluate T'7T;¢p by finding an A€H, ||k =1, such that {T,p, k) is maximized, so
that TT,0=<T; @, k>h. Thus

1
7]
since [|T,A|| must be |c,|,if & € H and [¢]| =1.

h= (COVi_lTi(p+..-+C‘Ti¢+...+Cn_1Vn_1V{_1T‘(p),

Hence
TTf‘P:éi "Ttw"h:c-i((;ov;lq,iw'l' vee +G‘T{(p+ ...+Cn_1 Vn_.l Vi_lT‘¢)-

Therefore,

n-1

n-1 n-1
T(p= izo TT{(P‘:co izo C-, V;lTl(p"' eee +cn_1 ‘20 c-‘ Vﬂ-—l V“IT‘¢,

or )
n-1

T‘P=”20015iV1V1—1T1¢'-

This proves the lemma.

§3. Irreducible idempotent measures

An idempotent measure v on D\N will be called irreducible if and only if the cor-
responding projection 7', maps L*D\N) onto an irredﬁcible, N-invariant subspace H of
Lz(D\N ). (This definition of irreducibility is not related to the concept of the same name
in abelian harmonic analysis.)

Now we will outline a technique whereby any Borel measure v on an I-dimensional
compact nilmanifold can be identified with a Borel measure »; on an I-dimensional torus
T', and any Borel measurable function @ on D\N can be identified with a Borel measur-
able function g on T".

In [7], Malcev proved that if M is any rational, normal Lie subgroup of N, then N
has a system of one-parameter-subgroups d,(t), ..., d;(); t€R, the real numbers, which can

be described as follows.

(3.1)-Malcev coordinates corresponding to a rational normal Lie subgroup M of N:

{@t)diy(tig) * oo dpa(bisn) | (1 ons b0 ERTT} = M,

{dl(nl) dl_l(nl_l) * e dj+l(nj+l)| (nb veey nj+l) GZ’—’} = ‘DM = .D n .M,
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where Z denotes the integers

{dt)diy(tiy) o Ayt |ty ooy 1) ERI}F =N,
and
{din)d, 3(ny_y) ...t d1(”1)| (g ooy My) EZI} =D.
Also, if
No={dit)diy(tiy) * " dilt) | By oons 8) ERY,

then N, is normal in N for each =1, ..., 2.

(3.2) LEMMA, Let F=d,[0,1)d,,[0,1)-...-d,[0, 1), where dy, ..., d; are as in (3.1).
Then F is a fundamental domain for D\N. Furthermore, Fy=d,[0,1)-...-d;4[0,1) is a
fundamental domain for Dy\M.

Proof. Clearly, d 0, 1) is a fundamental domain for (D N N;)\N 1. Suppose inductively
that d;[0, 1) -...- d,[0, 1) is a fundamental domain for (D N N;)\,. We need only show that
djf0,1)-...-d,[0,1)d,_,[0,1) is a fundamental domain for (DNN, ;)\N,, Let n=
n;d;_y(t; 1) EN,_,, where n,€N,. Then d,_,(¢, ,)=d;_;(Ps_1)di_1(8;,) for some p, ;€Z and
8; 1, €[0, 1). Thus

n = dt—l(pt—1)dt_—11(1’t—1)ntdt—l(Pi_1)dt—1(3£—1),

and diy(p, ) mid,_y(p_y) =didy(s) -...- dy(s,) for some d,€DNN, and (s, ..., s,)€[0, 1),
sinéa N, is normal in N,_,;. This completes the proof.

We will often identify the cube F in R’ with a torus 7", since F is clearly a funda-
mental domain for 7" as well as for D\N. It is proved in [7] that (¢, ..., ;) =>d(t)) ... dy(ty)
is a diffeomorphism of R onto N. It follows that the one-to-one pointwise correspondence
between D\N and T" determined by the fundamental domain F carries Borel sets to Bo-
rel sets and enables us to identify any Borel measure v on D\N with a Borel measure vr
on T and any Borel measurable function ¢ on D\N with a Borel measurable function

gron T

(3.3) LEMMA. If m denotes the normalized right N-invariant measure which D\N in-
herits from Haar measure on N, then mg is Lebesgue measure on the torus T'.

Proof. Writing N ={d,(¢,) : ... d(,)}, we need only show that d¢,dt, , ... d¢, is right N-
invariant on N. If [=1, this is trivial. Suppose inductively that the result is true when
the dimension of N is less than I. Hence it is true for Ny={d,(t;) -... dy(t;)}, which is nor-
mal in N. Let E be any Borel set in M and let ¢; be the characteristic function of E.
Then, if n,€N,, n, €d,(R),
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fNWE(dz(tl) oo dy(by) dy(8) mamy) Aty .. dbydty
= L%(dz(tz) “ e Bylbo)dy(By) modi M (8)] dy () 1) diy ... dbpdity

= waE(dt(tl) *en o dylty) - dy(ty)) dE, ... dEgdiy,

since N, is normal in N and d,(¢,) and », both lie in d,(R). This proves the lemma.

We note that the coordinates of (3.1)—(3.3) are a special case of those constructed for
non-normal M in [3] and [11].

Next, we will develop the fundamental connection between v, and T',, where v is any
two sided D-invariant Borel measure on D\N. Namely, we will relate the Fourier-Stieltjes
transform & to the action of 7', in L2(D\N).

(3.4) Definition. Let n denote any vector (n, ..., n;) where n,€Z for each =1, 2, ..., L.
Let ¢, denote that unique function defined at each point of D\N such that (@,)z(¢s, ..., &) =
e(n;t,+ ... +nyt,), where e(a) =exp (2nia). (We are using the coordinates of (3.1)—(3.3).)

(3.5) CorOLLARY. If v is any two sided D-invariant Borel measure on D\N, then
61’(”17 weey nl) =(Tv(pn) (Ddl(o) dl(O))

Proof. Note that T',¢, is defined for each point of D\N. Recall that
(T'u (pn)(Ddl(tlI) Teest dl(t{))

- f o Po D) - all) Gt .. () (D) .. - da(h))

= fwe(n, 4+ ..t t)duglly, ..., 8,

where f; is some polynomial function of ¢, ..., %, and #, ..., #. Substituting & =...=f; =0
makes ¥ =t,, =1, ..., I. This completes the proof.

It is extremely important to note that although (,)r is continuous on the torus 7",
@y, 18 not continuous on D\N. Thus T',¢p, need not be continuous on D\N. However, T,p,
does have a property at Dd,(0)-... d,(0) which is a form of semi-continuity, and we will
use this property heavily in this paper.

Define an ae-slab in d,[0, 1)-...-d,[0, 1) to be a set d;(e/2, &)-d;_y(@;_(¢/2), @;_48) -...0
d,(ay(e/2), a,€), where a=(1, a4, ..., &)
9% — 752905 Acta mathematica 135. Imprimé le 19 Décembre 1975
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(3.6) TREOREM. There exists a vector a such that
I:jgl (To@a)(Ddy(tr) - ... - dy(#1)) = (T @n)(Ddy(0) - ... « 4, (0)),
where t' is restricted to the as-slab.

Proof. Denote f(t') = (T,@,) (Dd{t;) - ... dy(t1)), where t' =(t, ..., t1).

Using the 1-parameter coordinates of (3.1)-(3.3), we write d(t,):...-d,(t,) dy(t})+...*
dy(t1) =dy(8;)*...dy(s,), where s;=t;+t; +P(ti-1, - by ti_1, ..., t1) and P, is a polynomial
having only terms with mixed products of ¢ and ¢ coordinates {7]. By making 1>a, ;>
...>a,>0 we can guarantee that, if ¢’ lies in an ae-slab and if ¢ has all its coordinates be-
tween 0 and 1, then s has all its coordinates non-negative.

Now we will prove that, as >0, f(t')—f(0), if ¢’ lies in the ac-slabs, where a is restricted
as above. We must show that

fF¢n(dl(8;) dl(sg)d”p(dt(tt) e dy(ty)) > fp‘Pn(dt(tz) oo i(8)) dop(dy(ty) ... dy(t)),

as ¢~0, ¢’ in the ae-slabs, where d,(s;)...d,(s1) is the unique representative in F of
di(sy) .- dy(sy).

Now, if the ;s are all in [0, 1) and bounded away from 1, then our choice of a gua-
rantees that, for small ¢, s'=s€F, and ¢,(s’) is uniformly close to @,(t). On the other
hand,

I'UFI (40, 1)-...-d;4[0, 1)d,(1 -6, 1)d,_,[0, 1) ... d,[0, 1)) =0,

as 0—0, since these sets form a descending chain of Borel sets with empty intersection.
Hence f(')—>f(0) as £—0, t’ restricted to the ae-slabs.
This completes the proof of the theorem.

Next we turn our attention to the problem of classifying all the irreducible idempo-
tent measures on a compact nilmanifold D\N. The following theorem suggests that this
problem is equivalent to the problem of classifying all idempotent measures on D,\N,,
where N, < N is a rational subgroup of codimension one and D, =DN N,.

(3.7) THEOREM. Suppose the orthogonal projection onto the lift space H corresponding
to (x, M), which induces w€(D\N)™, is given by T,, where v is some irreducible idempotent
measure on D\N as in (1.1). Then there exists a rational subgroup N,< N with codimension
one and a one-parameter subgroup d,(R) such that N=N,-d,(R) (semi-direct product) and
there exists an idempotent measure v; on D;\N;, D, =D N N,, such that v is the Cartesian
product measure vy x 8, where d, is the unit mass at the identity of d,(R).
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Proof. M must be contained in a rational (normal) subgroup N, of codimension one in
N (8, 11]. We can apply (3.1)—(3.3)kusing N, in place of M to decompose N =N,-d,(R)
where N, =d,(R):... d,(R). Since v, is a Borel measure on the torus 7", we can show that
vp is a Cartesian product of a measure on 7"'~! with the unit mass at zero in [0, 1) by
showing that @z(n,, ..., %y, #;} is independent of n,, where 9, is defined on Z'=(T")". Re-
calling the description of the lift map from section 2, and writing n =n,, where n, €N,
and z €d,(R), a preimage under the lift map for a typical generating element of H is F(n)=
F(n,x) where F(n,x)=f,(n,)f(x), f€ELXR) has compact support, f,(mn,)=x(m)fi(n,) for
each m€M, and |f,| €L*M\N,) has compact support in M\N,. Then the typical generat-
ing element F of H is given by

F(Dn)=F(Dn, v) = 2 (F - d, d)(n, z) = %h(dn(dnld'l))f(dx)-

d,deDy\D
d;eD;, ded(R)ND

Since f,(d,(dn,d-1)) is independent of z, and since fEL2(R) is a bitrary, it follows that H
is the closed linear span of H, x L*0, 1), where H, is some subspace of L*(D,\N,).

Define @, as in (3.4) and invoke (3.5). Now 7', is the orthogonal projection of L*(D\N)
onto H —closed linear span of H, x L*[0, 1), and, by Lemma (3.3), inner products in L*( D\N)
are carried into inner products in L*(T"?) by the pointwise map D\N—T". Thus

e(nl tll.) Tv (p("x.u-:?'h.o)(tl’: cney ti) = f(t’)9

and T,@,(t/, ..., t1) =g(t') are square integrable functions which are equal almost every-
where. We can conclude that #4(n) is independent of n, by proving that f(0)=g(0). This
follows however, from (3.6), since if f(0)4¢(0) f and g would be unequal on a set of posi-
tive measure. Hence ¥ is independent of #, and v and v; can be decomposed into a Car-
tesian product measure as required: v =v; x d¢. It is necessary only to prove that v, is idem-
potent on D\N,.

Let E=E, x E,, E,= D,\N,, E,=d[0, 1), be a product of Borel sets, and let yz be
the characteristic function of K. Then

f f wg(Drs) dv(Dr) dv(Ds)
DNJD\N
= f f j f Ye(Dry 2,8, ;) dvy (D, 11) ddg(,) dvy (D, 8,) ddy(z,)
DN\N J DA N1 J DN:\N J D\ My

= f f Y& (D111 81) d0y(Dry) dvy(Ds,)
D\ N1J DI\ N1

10— 752905 Acta mathemathica 135. Imprimé le 19 Décembre 1975
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= f f ye(Dry z,) dvy (D 1) dg(,)
DNANJD\ M

= f Ye(Dy 1) dvy(Dy 1y).
D\ N,

Thus v, is idempotent on D,\N, since v is idempotent on D\N.
This completes the proof of the theorem.

(3.8) THEEOREM. Let v be any irreducible idempotent measure on D\N such that T,
projects LA D\N) orthogonally onto an irreducible nt-space, where w€(D\N)" is induced by
(x, M) and M is normal in N. Then vy s a finite linear combination of idempotent measures
on T

Proof. It is sufficient to show that ¥ is only finitely many valued on Z'=(T")". Adopt
the coordinates of (3.1)~(3.3). Let Int (y, M)={z,, #,, ..., ¥,_, }, Where x,=e, as in section 2.

Denote T,=T, =7 toc, 6,V Vi'T,, where T, is the orthogonal projection onto H,,
the lift space corresponding to (y, M)-x,, as in Lemma (2.1). Recall that H, is generated by
functions

Pa(@illy) + ..t dy(ty)) = e(ngt + ...+ ty),
such that
ety + ... +1yy1t) E{r|d = dy(py) - ...  dy(py) for (py, ..., p,) EZ'}.

Also, as in (3.5) Bp(n) =(T,@,) (Dd,(0)-...-d;(0)). The problem is to calculate V, Vi'ep, for
@, a generator of H,, by tracing g, around the following diagram of the lift map in fig.
3.1.

F —> F.zi’-z,
K; = K,
~ o ~
v y
H, > H,
Pa —> ViVi'ea

(Fig. 3.1).
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We will construct a preimage under the lift map for ¢,. Let the fundamental domain
of (3.2) for D\N be denoted by E, and let B’ =d.{0, 1)-...-d,[0, 1). Let F e K, be such that
Pn)=0 if n¢MdyE and F(mdydt)-... dy(t,)) =y"(m)e(n,t;+... +n,t,) where d,t;)- ...
dy(t;) € E. Then F=¢q,, where g, is a typical generator of H,.

It suffices to show that (F-z7'-z,)”(Dd,(0)-...-d,(0)) achieves only finitely many
distinet values as » varies in Z’ such that ¢, agrees with y*® on D\DM and as d, varies
in D, \D.

We begin by showing that if x=d,(r;):...-d;(r,) €Int (y, M) then r, is rational for all
t=4, ..., 1. In fact, since (y, M) is an integral maximal character, it is shown in [11] that
there corresponds to d,(1) a rational point y, in M such that N, centralizes y, but the com-
mutant of d,(1) and y, is not in the kernel of y. It follows that r, is rational. We can pro-
cede similarly for 7, ..., 7;.

Now, (F-x;'2,)"(De) = Zaepy\p F(xi ‘2, d), where this is actually a finite sum over all
d such that z; 'x,d € Md, E'. Of course, the finite set of d’s involved in such a sum will vary
with dy. Observe that z; '@,d =dyd (s))" ... dy(s,) such that s;=8,(z; x;; d; d;), a polynomial
with rational coefficients in the coordinates of z,, z,, d, and d,, for each j=1, ...,l. Even
as d and d,, vary in D, §; can achieve only finitely many distinct values modulo one. There-
fore, as n and d, vary, X, F(2; 'z, d) achieves only finitely many distinct values. This com-
pletes the proof of Theorem (3.8).

In Theorem (3.9) we will utilize a certain Boolean ring of subsets of the character
group of a torus. In particular, the coset ring in any discrete group is the smallest family
of subsets of that group which contains all cosets of all subgroups and which is closed
under finitely many applications of the operations of taking unions, intersections, and

complements.

(3.9) THEOREM. Suppose n € (D\N)" is induced by a maximal integral character (y, M),
where M is normal in N. Let T be the orthogonal projection of L*(D\N) onto H, where H 1is
the lift space corresponding to (y, M) as in section 2. Then T preserves the continuity of func-
tions if and only if {}*|d € Dy \D} lies in the coset ring of the character group (Dy M,\M)",
where M, is the commutator subgroup of M and Dy=DN M.

Proof. Following (3.1)~(3.3) coordinatize N with one-parameter subgroups d,(t),
i=1,.. 1, in such a way that {d,()d;_1(t,,) - Besalbiss)|Co oo b)) ERTFF =M,
{dt)di 1t 1) - Bra(rs) | G oos 850) ERT} =M, and {di(t)di1(1_y) - di(E) | (s, .on ) €
R’} =N. We may also assume that

D= {dl(nl)dl—l(nl—-l) o () ] (g ooy 1y) ezl}~
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Then the set F=d,[0,1)-d,_,[0,1)-...-d,[0, 1) is a fundamental domain for D\N. Also,
F,=d)[0, 1)-d; ,[0,1) ... d,,[0, 1) is a fundamental domain for D, \M.
Next, recall that H, as described in section 2, is the closed linear span of the set

{¥'m)e(nst,+... +n b)) | (n,, ..., n,) EZ?, d€ Dy \D},

so that every function in H is constant on M,-cosets, since this is the case for y*. Working
on T, we have

felts, .- 1) = > z’fp(nu o n)e(ndt L+ nghy).

(ny,...n)e

Now, (T'f)r corresponds to the subseries of the series for fr with terms of the form
[e(nyty +... +n,t)]y*(m), d € D, where we note that y*(m) can be identified with a trigono-
metric monomial on F,, since y* is constant on M,-cosets and Dy M,\M is a (j —k)-dimen-
sional (abelian) torus. Thus, H can be regarded as a direct sum of irreducible subspaces
of an abelian torus; a convenient phenomenon which we will exploit.

Suppose T' does preserve the continuity of functions on D\N, so that 7'=T, for some
idempotent measure v on D\N, in the sense of section 1. We will show that v can be writ-
ten as a Cartesian product measure v(f,, ..., &) =,(f,, ..., t;41) X o(ty, ..., &), Where §; is the
unit mass at the identity, and v, is a bounded Borel measure on D, \M. To do this, it suf-
fices to show that, if we view v, on T via the natural 1 —1 pointwise map between F and
D\N, then #y(n,, ...,n,) is independent of n,, ..., n,. Defining @, as in (3.4), we have
Tp(ny, ...y 1) =(Toy) (d1(0)-...-dy(0)). But T,@, =@, if e(nf;+...+ny,,8;,,)=x* for some
d€Dy\D, and T,p,=0 otherwise. Thus, using (3.6) as we did in (3.7), ¥¢(n,, ..., ny) =
(T30,) (D0 -... dy(0) =1 if e(myt;+ ... +nyt,) E{3?|d€ Dy\D} and Be(ny, ..., n;) =0 other-
wise, independent of n, ..., n,.

Thus v =, x d,, where v, is a bounded measure on D,\M, and 3, » i8 also zero unless
Mpyy =...=n;=0, gince y* is trivial on M, for all d€ D. Thus v=m x w x d,, where m is the
translation-invariant measure on Dy, \M, derived from Haar measure on M, and w is a
bounded Borel measure on D, M,\M, determined by the Fourier-Stieltjes transform of
1, We will prove that w is idempotent on the torus D, M,\M, which will prove that the
support of %, namely {y*|d € D)\ D}, lies in the coset-ring of (DyM,\M)", by the Helson-
Rudin-Cohen idempotent measure theorem [12].

Recall that m xw xd, is idempotent on D\N, and that this measure is 2-sided D-
invariant. Pick an arbitrary Borel set H< Dy M,\M, and let E=(Dy,\M,) x H. Let y;
denote the characteristic function of E, and note that m(Dy,\M,)=1. Also, if x€ D, \ M,
write = Dz, z,,, where z, €M, and z,, bas the form d,(t;)-...-d,,,(¢;.,). Then, we show that

w is idempotent on Dy M,\M by using Fubini’s Theorem several times as follows:



A CLASS OF IDEMPOTENT MEASURES ON COMPACT NILMANIFOLDS 143

f Yu(Dy M, x,) dw(x,) = f Ye(Dy 2, 2z) dm(zy) dw(2,,)
Dy M\ M DM\ M

I

f Ya(Dy ) d(m X w)(x) = f Ye(Dy 2y) d(m X w)(z) d(m X w)(y)
Dy\M (Dy\ M)

=f Ye(Dy 1 Tn Y1 Ym) dm(y) dw(2,) dm(y,) do(y,)

(Da\ M»

= J Ye( Doy 24 (X Y1 Tii') T Yim) A1) d(y,) Ao (2,,) de0(Y )
D\ MP

= f wH(DM -Ml T ym) dw(xm) dw(ym),
(DHMx\M)’

since 9, ~>%,¥%,;%»" is an automorphism of M, and leaves m invariant because it has Ja-
cobian 1, as can be easily computed relative to a Jordan-Holder basis.

Conversely, suppose {y*|d € D)\ D} lies in the coset-ring of (DyM,\M)". Define the
idempotent measure w on Dy M,\M by requiring that #% be the characteristic function of
this set. Then, we must show that m x w x d, is an idempotent measure on D\N yielding
T, where m and J, are as before, and m x w x §, on F yields a measure of the same name on
D\N. Define ¢, as in (3.4). We can check both the right D-invariance of m x w x dy, and
the fact that 7', ys, =T, by examining

fD\N¢n(Ddz(tz) e da() i) .., dy(81) d(m X w X So)(E),

where t=(t}, ..., figs by +os bpys Ep oo ). We integrate first with respect to §, to reduce to

an integral over Dy,/M, with ¢,=...=¢,=0, we note that M, is normal in M and that the
integral with respect to m is zero unless n,=...=n,,, =0, and we are left with either zero,
or, if n;=...=n,,, =0, we get

f e(ylt+ ...+ nypa b)) dwlly, ..o te).
Dy M\M

If 4, .., & are integers, we see that m X w X §, is right D-invariant. And we see that
mewxao =T.
This completes the proof. Examples appear in (3.15a—c).

(3.10) THEOREM. If n€(D\N)" ¢ induced by (x, M), where M is normal and N =
M- X (semi-direct product) with X an abelian Lie subgroup of N, then the following two state-
ments are equivalent:

(i) {x°|d€Dy\D} iz in the coset-ring of (DyM,\M)".

(ii) Every projection orthogonally onto any irreducible r-space preserves continuity.
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f—— toa,

K, — K,

&

f"f"”i:f'\x/i

(Fig. 3.2).

Proof. (ii) = (i) by Theorem (3.9). We need only prove that (i) = (ii).

Let Hy, ..., H, ;, be a constructed basis for the s-primary summand corresponding
to Int (y, M)={x,, ..., ¥,_,} with z,=e. Let T: L} D\N)—H, be an orthogonal projection,
=0, 1, .., n—1. To show that each 7, preserves continuity, it is necessary and sufficient
to prove that {y*|d€Dy\D}={y"%|d€D,\D} lies in the coset-ring of (DyM,\M)".
However, the mapping A ~ A® in (Dy M,\M)" carries cosets of subgroups onto cosets of
subgroups: For example, A +8— A%+ 8%, where §% is a subgroup. The same applies
to finite unions, intersections, and complementations. Hence T'; preserves continuity, for
each ¢=0,1, ..., n—1.

Next, suppose T: L} D\N)—H,, where H, is an arbitrary irreducible n-space and 7'
is an orthogonal projection. Then, by Lemma (2.1), Tp=3"720c,é, V, VT ¢, for each
@€L2(D\N). We need the following lemma.

(3.11) Lemma. If K, and K, are the pre-images of H, and H,, respectively, under the
lift map, and if N=M-X (semidirect), M normal, X abelian, then the diagram in fig. 3.2 is
commutative.

Proof. For each d€ D, we write d =dyd, where d, € D), and d,€.D N X. Recalling that
X is abelian, we have

(F-2)"(Dn)= 3 (F-x)dn)= > F(xdn)= 3 F(xdyai’zdyn)
Dy\D Dy\D Dy\D

= Z F(x,dyn)= Z F(d,zn) =F(Dx,n)= (F-x,)(Dn),
Dy\D Da\D

which is thus well-defined.

Thus V,f=f-z, for each f€ H,. To complete the proof of (3.10), it is sufficient to show
that each ¥, and V;' preserves continuity. But this follows from the fact that ¥, and V;!
are essentially left-translations, by (3.11).
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To be precise, any continuous function on D\N can be regarded as a left D-invariant
continuous function on N. So viewed, V, and V;* act as left translations having the spe-
cial property of leaving functions in either H, or H, left D-invariant, and thus still con-
tinuous when viewed on D\N.

This completes the proof of Theorem (3.10).

Next, we consider the delicate question of when the existance of an arbitrary idem-
potent measure v corresponding to 7z €(D\N)" implies that ‘every projection onto an ir-
reducible subspace corresponding to & is given by some idempotent measure. Very fow
irreducible subspaces are constructible, in the sense of section 2. It is only for these that
theorems (3.9) and (3.10) answer this question in the affirmative.

We suppose again that M is normal and N=M-X (s.d.) with X abelian, and (y, M)
induces 7 €(D\N)". We will adopt the coordinatizing Malcev subgroups of (3.1). Let
Int (x, M) ={2y, ..., ¥, 1}, with zy=e, and write z,=d;(z{")-...-d;(2{"), where 0<2a?, ...,
#{? <1. Denote the lift space corresponding to z; by H,. We can designate any irreducible
n-space HcH,®..®H,_, as H,, where ¢=(c,, ..., ¢,_;) is a unit vector in C*, by Lemma
(2.1). We will call H, singular relative to {H,, ..., H,_,}< the following condition holds:

If we let A(n) be the complex conjugate of > ;g ¢ e(n,z5” + ... +n, 2), then for each
k=0, ..., »—1, there exists an l==k such that
A(n) ce(n;z + ... + 0y 2P) = A(n) cre(n;x{® + ... +ny i)

for some (n,, ..., n,) and (n, ..., n1) €Z.

We will call an irreducible z-space singular < it is singnlar relative to every constructible
basis for the x-primary summand. Using the ordinary (hemispherical) measure on CP™1,
we see that the set of singular subspaces of the s-primary summand has measure zero.

(3.12) TarorEM. Suppose (y, M) induces w€(D\N)~, M is normal and N=M-X
(s.d.) with X abelian. Suppose H is any non-singular irreducible -space and.v is an tdem-
potent measure such that T,: L} (D\N)~H is an orthogonal projection. Then every orthogonal
projection onto any trreducible r-space is given by an idempotent measure

Proof. Pick a constructible basis {H,, ..., H, ,} relative to which H is not singular,
where H, is the lift space corresponding to the integral point ;€ Int (y, M). Denote H,—H,
where ¢=(cy, ..., ¢,;). We will use the coordinates of (3.1)-(3.3) and define ¢, as in (3.4).
Then, as in Theorem (3.5),

Bp(ss s 1) = (Tpp,)(d(0) ... dy(0)).
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Recall from Lemma (2.1) that

n-1

Tv(pn"_—.l ‘zoc’ 6‘ V[ V[—IT‘ ¢".

Furthermore,
Tipn=@n i e(ni;+... +ny18,,) €{y*|d€D,\\D},

and 7', =0 otherwise. Recall also the description of ¥, in Lemma (3.11). Then, denoting
zy= (P, ..., ") =dy(2f") -... dy(a{?), where all z{’ are necessarily rational, and recalling
that X is abelian, we have
n-1
Bp(nyy ..., my) = zzo 18 @n(@y(0)- ... - &111(0) dy(@P — ") - ... o dy (a? — o) iff
e(mty+ ... +ny1t01) €E{X*|d€D)\D}, or 0, otherwise,

Now, ¥, has only finitely many distinct values. In particular, if n€Z’ and if 7',p,+0,
then

n-1
Be(myy ooy my) =V =G exp [ —2mi(n,z’ + ...+ 2{")] 3 c,exp 2mi(n; 2’ + ... +my 2)
i-0

which, for each ¢=0, ..., n—1, runs through only finitely many distinct values for n€Z’
since 25’ is rational for each , k. Thus v, is a finite linear combination of measures which
are idempotent on the torus 7.

By hypothesis, H, is not singular, so we can pick an ¢ such that Vi + V) for all m, n’
and j <i. Then the subset of the support of 6, on which V}'=4%g(n) must lie in the coset-ring
of Z'. Hence {y*¢|d € D)\ D} lies :n the coset-ring of ( Dy M,\M)". Now we apply Theorems

(3.9) and (3.10) and the proof is complete.

(3.13) THEOREM. Suppose (1, M) induces n € (D\N)", where M has codimension one
in N. Then the following four statements are equivalent.

(1) {4*|d€ Dy \D} lies in the coset ring of (DyM,\M)".

(2) Orthogomal projections onto all irreducible r-spaces preserve continuity.

(8) The orthogonal projection onto the m-primary summand preserves continuity.

(4) The orthogonal projection onto at least one srreducible s-space preserves continuity.

Note: We will make specific use of the polynomial multiplication in N, so that this
theorem is not listed in section 5 as being extendable to suitable solvmanifolds.

Proof. (1)<>(2), (1)= (3), and (1) =(4) by Theorems (3.9) and (3.10). We need the fol-
lowing lemma.
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(3.14) LeMmA. Let py, ..., p; be polynomials and let 2,=0, x,, ..., z, be rational num-
bers. If Uilo {(py(n+y), ..., pi(n+2,))|n €L} lies in the coset-ring of Z' then {(ps(n), ...,
Pi(n)) | n€Z} must also lie in the coset-ring of Z'.

Proof of lemma. If each polynomial p, is linear then we are done. Suppose some p,
has degree greater than one. Since projections onto the coordinate axes map the coset-
ring of Z' onto the coset-ring of Z, we have U /o {p,(n+,)|n€Z} in the coset-ring. Note
that the gaps between successive elements of this set approaches infinity as n— co. This
is a contradiction, since subsets of Z in the coset ring are essentially equal except at fi-
nitely many points to periodic sequences. This proves the lemma. (Unfortunately, if the
variable » has a multidimensional lattice for its domain, then the condition on the degree
of p, is false.)

(3)=(1). Since the orthogonal projection onto the 7-primary summand of L#(D\N)
preserves continuity, we can use the same argument as in the proof of Theorem (3.9) to
conclude that U emecy, 1 {x**|d€Dy\D} lies in the coset-ring of (D,M,\M)". But
Dy\D=1Z, so we can apply Lemma (3.14) to conclude that {y*|d€D,\D} is also in the
coset-ring, the polynomials coming from the Campbell-Hausdorff formula [6].

(4) =(1). Suppose v is some irreducible idempotent measure corresponding toz € (D\N) ™.
It is shown in Theorem (3.8) that vy is a finite linear combination of idempotent measures
on a torus, so that 9, has its support essentially of the form of a union of sets {y**|d € D\/\ D},
this union lying in the coset-ring. It follows from the lemma that {y*|d € D\ D} also must
lie in the coset ring.

This completes the proof.

(3.15) Examples. (a) Let N4 be R? equipped with the multiplication (z, y, 2)(2', ¥, 2') =
(x+2', y+y', z+2 +xy’). Let D be the integral lattice points Z2 in N,. Then any infinite
dimensional 7z € (D\N3)" is induced by a character y; of M ={(O, ,2)} where 2200, ¥, 2) =
e(A2), for some A€Z. Then the set {y} |d€ Dy \ D} lies in the coset-ring of Z2, so that every ir-
reducible n-space is the image of an orthogonal projection given by an idempotent measure.

(b) Let "N, be R* equipped with the multiplication (w, z, y, 2)(w’, «', ¥, 2')=
(w+w', 42, y+y +2wx’, z+2' 4+ 2wy’ +2u’). Let D=274% and M ={(0, z, y, 2)}. Then
every infinite dimensional » €(D\N,)" is induced by a character y,s.5) on M, where

A 6.0, T, Y, 2) = e(ax + By +y2), («, B, y) EZ3.

Furthermore, if 7 is non-trivial on the center Z, then y +0. (If n]Z =1, then we can factor
Z out and the situation is reduced to example (a).) Then y{r3:%® =yw+2ns+2nty, f+2ny.1)
Hence {y%.s.,)|4€Dy\D} is not in the coset-ring, so that there does not exist any ir-
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reducible idempotent measure corresponding to s, by Theorem (3.13).

(c) Now we give an example of a non-Heisenberg group N, n€(D\N)", #|Z +1, and
such that every orthogonal projection onto any irreducible zz-space preserves continuity.
Let N be R® equipped with the multiplication

(@1, Zg) Y1> Ya» 2) (@1, T2, Y1 Y2, 2')
= (@ + 21, By + 22, Yy + Y1, Yo+ Yo+ 20 Y1, 2+ 2 + 2w y5 + 205 y1 + 22, Y1),

Let D =75 and (y, M)t €(D\N)", where y|Z 1, M ={(0, 0,¥;,¥,,2)}. Then {3*|d € D,)\ D}
lies in the coset-ring of Z3.

§4. Transformations of measures on D\IV

Throughout this section we will make the hypothesis that M is normal in N and that
N=M-X (semi-direct product) where X is an abelian Lie subgroup of N.

Suppose m€(D\N)" is induced by (y, M) and Int (y, M)={x, z,, ..., %, ,} Where
zg=e¢. Let Hy, ..., H, ; be a constructed basis for the z-primary summand corresponding
to xy, ..., 2,4, and let T';: L*(D\N)->H, be an orthogonal projection, ¢ =0, ..., n—1. Then,
if feL¥D\N), T,of and T,f are not related to each other, since H, and H, are orthogonal
subspaces of L*(D\N). However, we will see that, if 7', preserves continuity, then the
unitary equivalence given in (3.11) between H, and H, induces a transformation of meas-
ures which carries the idempotent measure v, which corresponds to T, into the idem-
potent measure v; which corresponds to 7.

First, we let F denote the fundamental domain of (3.1). If ¥ is any Borel set in D\N,
we define xE ={Dxn|Dn€E and n€ F}. Then zE is also a Borel set, and if v is any Borel
measure on D\N, we deﬁne:v’(E)=v(x(Ex—1)). This seemingly artificial transformation
yields canonical, well-defined measures, under the hypotheses of the next theorem.

(4.1) TeEROREM. Suppose n€(D\N)" s induced by (y, M), and N=M-X (sd.), X
abelian and M normal. Denote Int (y, M)={x,, ..., %,_,}, where xo=e. Let H; be the lift
space corresponding to (y, M)-x,, as in section 2, and suppose T,: L D\N)—H, is an ortho-
gonal projection, where v is an idempotent measure. Then v™ is that unique idempotent meas-
ure such that T,z L*(D\N)— H, an orthogonal projection.

In order to prove the above theorem we first need the following lemma.
(4.2) LEMMA. If g=d(g,)+...-d,(g,) EN, using the coordinates of (3.1), and if ¢p,: D\N—~

D\N by ¢,(Dn)=Dgn’, where n' € F N Dn, then @, is an automorphism of the Borel structure
of D\N.
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Proof of lemma. It is necessary only to show that ¢, is one-to-one and onto. Thus,
given a €N, we must show there exist unique d€D and f€F such that dgf—a. Denote
d=d,(n) ... dy(n,), where (n, ..., n;)€Z'. Then we must show there is a unique solution
to the equation

dy(m)) -.. dy(n)di(g) - di(g1) A i{f) -.. dulfy) = di(@) ... dy(a)s

having 0<f,, ..., /;<1. But it is proved in [7] that there exist polynomials P, ..., P, such
that

dyny) ... dy(ny)di(g)) ... dy(gy)di(f) .- dy(fy)
=d(ni+ G+ PiNigs oo Ng3 Grogs woos G153 Fics oons f1) oot dy(my 21 +F1).

Clearly, n, and f, are uniquely determined. But then 7, and f, are uniquely determined.
We procede until the lemma is proved.

It is a simple consequence of the above lemma that
[, tovaomawop,om= [ jomaoiom
D\N D\N

for any Borel measure v and for any function f€L?(D\N).

Proof of Theorem (4.1). To complete the proof it will suffice to show that
o 1 if e(mfy+ ... +nyprt41) €{X%|dED,\D}.
()" (n)=

0 otherwise,

gince this characteristic function has already been identified in the proof of Theorem
(3.10) as the transform of the measure corresponding to 7';: L} D\N)—H,. Note that if
(p)r=e(nit;+...+mt;) such that e(nit;+..+n;.t,,,)€{y*|d€Dy\D} then (pi*)p=
(@' (@no@m))r=e(n t;+... +-n1t,) such that

e(mi b+ .ot nji1ty4n) €{X%|d€ D,\D},

and every element of the latter set arises in this manner. Hence

bp(n) = fwn(Dn) dv(Dn) = f #(Dn)dv*(Dn)= (v)~(n') =1,
if
e+ ...+ nj1ti1) E{X%|d€ Dy\D},
where we have applied lemma (4.2). Similarly, (v#)"(n') =0 otherwise. This completes the
proof of the theorem.

(4.3) CororLLARY. If v is the measure in Theorem (4.1), then v is both left and right
% D-invariant.
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Proof. As a result of Theorem (4.1), v* is right D-invariant. But, v™ is right D-in-
variant if and only if, for each d€ D, v*(Ed)=v*(E), for each Borel set E< D\N. How-
ever, v*(Ed)=v{Dz,d'ndz;’'|Dn€E, d'ndx;* € F} =v{D"d'(*n)*d|Dn€E, d'ndx;’€F}=
v*(E) if and only if » is both left and right #D-invariant. This proves the corollary.

Note that the right #D-invariance of v is also an easy consequence of the fact that
T, projects L2(D\N) onto a space of left #D-invariant functions. However, the left *.D-

invariance of v is not so easy, and the above proof uses the strength of the coset-ring
theorem.

(4.4) CorOLLARY. Under the hypotheses of Theorem (4.1), the measure v, correspond-
ing to T,: L*(D\N)—H,, as described in (2.1) is given by

n-1
V= 2 ¢ 6z ) v,
1,1=0

where (x-v,)(E) =v,(Ez), and T,, projects L} D\N) onto H,.

Proof. We need only note that
(V, Vi T, g)(Dn) =V, Vi f . PDm ) D)

= f o(Dn, 2,27 n) dvy(Dny) = f @(Dnym) dv(Dry 27 ' 2,).
D\ N D\ N
This completes the proof.

(4.5) COROLLARY. Under the hypotheses of Theorem (4.1), if Ty L*D\N)~H, and
T: L¥(D\N)— H, are orthogonal projections, we have (T',f) = (To(f-xi'!))-x,, forall fE L2 (D\N).

Proof. (T,f)(Dn)=(T#1f)(Dn), where T,=T,. But
(To(f+ xi—l) ~z ) (D)= (Tf - xz‘l))(st n)= J.D\ Nf(Dx{Inl z;n)dv(Dn,)

= [ JDmn)do D) = (2.2 D).
This completes the proof.

Now we will generalize Corollary (4.5) by eliminating the hypothesis that 7', is given
by a measure.

(4.6) THEOREM. Suppose (y, M) induces n € (D\N)", where M is normal and N =M -X
(semi-direct), with X abelian. Let {H,, ..., H,_,} be a constructed basis for the m-primary
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summand corresponding to Int (y, M)={e=x,, x,, ..., %, ;}, and let T L D\N)-H, be an
orthogonal projection, 1=0, ..., n—1. Then, letting f-x, denote fopz, (as in Lemma (4.2)), we
have (Tf)=(To(f 27 ")) ;.

Proof. Denote S(f)=(Ty(f-xr*))-x;. Clearly 8 acts as the identity on H,, so we need
prove only that 8: Hy 0. It suffices to show that f€ Ht implies f-2;' € Hy or that

f XD (D) du D) = f Dby 2) D) (D) =0

for each f€ H; and hy€ H,, where y is the translation-invariant measure on D\N. But this
follows from Lemma (4.2). Specifically, we need only note that u is invariant under ¢,,
since IV is unimodular. This completes the proof.

§5. Applications to compact solvmanifolds

We will show in this section that the methods and results developed in section 3 for
compact nilmanifolds are also true on suitable compact solvmanifolds. The author is in-
debted to J. Brezin for pointing out the generalizations in this section.

The compact solvmanifolds which we are able to treat must possess global coordinates
similar to those in (3.1)—(3.3), so that (3.4) and (3.5) will remain true. Also, the funda-
mental domain F for the compact solvmanifold D\S will have to have a rather delicate
relationship to the multiplication in 8, enabling us to prove (3.6). To be specific, suppose
8 is a connected, simply connected, solvable Lie group and D a cocompact discrete sub-
group. Suppose 7z €(D\S)” is induced by a character y of a normal subgroup M such that
(M 0 D)\M is compact. Then the z-primary summand of L% D\S) is constructed by means
of lift maps exactly like those of section 2 [1].

(5.1) Definition. We will call D\S a type F solvmanifold relative to M provided that
D\S has the following four properties.

(1) There exist one-parameter subgroups d,(t), ..., d,(¢) of 8 such that S =d,(R)-...-d;(R)
and S;=d,(R)-...-d,(R) is normal in 8, , for each ¢=1, ..., 2.

(2) D=d|(Z)-...-d\(Z), so that d,[0, 1)-...-d,[0, 1) is a fundamental domain for D\S.

(3) There exist integers § and k such that [M, M]=8; and M =8, 0<k<j<l.

(4) If 0<§,<1 and 0<4d,<1, then there exists a set S;,4,<[0, 8,)', having positive
measure in the invariant measure of D\S, such that, if ¢€[0, 1 —4,)! and # €8S;,.4,, then

dy() ... - () dyltr) - ... - dy(t) = i) - ... - dy(8)),

where #; >0 for each 1=, ..., 1.

Properties (1)—(3) enable us to use (3.1)-(3.5), exactly as before. However, in order
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to use (3.5) effectively, it will be necessary to have a result very similar to Theorem (3.6).
That is, the formula 9z(n) =(T,¢,) (Dd(0)-...-d,(0)) is not computationally useful by it-
self since our knowledge of the structure of L?*(D\S) can determine T',p, only almost
everywhere—not at the specific point Dd(0)-...-d,(0). But (3.6) provides a ‘‘semi-con-
tinuity’’ property at this point which enables us to determine #p(n) from the structure
of L2(D\S). The purpose of property (4) is to enable us to prove a theorem very similar to
(3.6), except that Ss, s, replaces the ae-slab which worked when the multiplication was
given by polynomials. Since Sj,, s, has positive measure, regardless of how small we choose
8, and §,, our new version of Theorem (3.6) is just as useful as the old version, and the
proof requires no further changes and need not be duplicated here. It is then elementary
to check that Theorems (3.9)—(3.12) apply just as well to type F solvmanifolds as to com-
pact nilmanifolds.

We will show that many three dimensional compact solvmanifolds are type F, and
we will use Theorems (3.9)~(3.12) to classify all the irreducible idempotent measures on
these manifolds. It is proved in [2] that there are only two types of three dimensional com-
pact solvmanifolds which are not nilmanifolds. Every such solvmanifold comes from a
solvable Lie group which can be identified with a semi-direct product R?-R, where R? is
normal in R2:R under an action of R on R? given by a one-parameter subgroup 4° of
SL(2, R), and where D can be identified with the integral lattice points of R3. If 4 is a
matrix in SL(2, Z) having positive unequal eigenvalues p and p~! then we will call the

01
A=(-1 0)’

then we will call the group S,. In either case, the group multiplication is given by
(v3t)- (u; 8) = (v + A*u; £+ 8). In either case, all the infinite dimensional 7z € (D\S)" are induced
by integral characters of M ={(v; 0)}. [1].

group S,. If

(6.2) TurorEM. D\S, and D\S, are both type F' solvmanifolds, relative to the normal
subgroup M ={(v; 0)}.

Proof. Properties (1)—(3) are trivial, so we will concentrate on property (4).

Let us consider D\S, first. The matrices A° have eigenspaces Rw, and Rw, corre-
sponding to the eigenvalues p* and p"' respectively. By choosing the one-parameter co-
ordinate subgroups d,(t) and d,(t) in R? sensibly, we can insure that one eigenspace
extends into the interior of the first quadrant d,[0, c0)-d,[0, o) or else both lie along the
axes bordering the first quadrant. In either case, it is clear that, for any first quadrant
vector u, lying between two suitable first quadrant rays As will again lie in the first
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quadrant. Thus (4) is clearly satisfied, provided only that we make a sensible choice
of dy(2) and dy(1).

The compact solvmanifold D\S, is also type F, but the verification of property (4) is
more delicate. In this case, (v, vy; ) (uy, Ug; 8) = (v, +u, €08 §t+u, sin §ouf, v, +u, cos jot —
%, 8in dnt; t+s). Given 0<d; <1 and 0<d,<1, let us restrict ¢ to [0,1—4,) and see

whether there are acceptable conditions on (u,, u,) which will guarantee that

k14 .
(a) ulcos—t-l-uzsmy—zt}(),
2 2
and
by b4
(b) ugcosét—ulsinét20.

Note that sin int is bounded away from 1 and cos int is bounded away from O for
0<t<1-¢,. Thus, any first quadrant vector « will satisfy (a) and, if u, <u,, (b) is also satis-

fied. Hence the existence of S, s, is assured, and (4) is satisfied. This completes the proof.

(5.3) Example. Suppose (y, M) induces 7 €(D\S,)", an infinite dimensional irreducible
representation. We will show that {3°|d € D,/\D} does not lie in the coset ring of Z2=
(Dy\M)™, so that, by Theorem 3.12, the orthogonal projections onto all non-singular ir-
reducible 7zz-spaces fail to preserve continuity and hence cannot be given by idempotent
measures. In particular, let us write y =n=(n,;, n,), where y(u; 0)=e(n,u, +n,u,). Then
x*=(4)*n, where’A denotes the transpose of A, as may be easily calculated. But there is

a non-singular linear transformation W such that

, M\ _ w- ¢ 0 n
canfie)=w (5 ()

which does not have bounded gap in each coordinate. Hence {y?|d€Z = D,,\D} does not
lie in the coset-ring of Z2.

(5.4) Example. Let (x, M) induce 7 €(D\S,)", an infinite dimensional irreducible re-
presentation. We will show that {3°|d€D,\D} is in the coset-ring of Z2, so that every
orthogonal projection onto any irreducible 7-space is given by an idempotent measure.
Let us denote y again by n=(n;, n,). Then the set {y*|d€ D,\D} is finite, and hence in
the coset-ring, since

" AV 10\’ _( 01
(4) (0 1) because 4 = —10)
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Thus we have shown that on compact solvmanifolds D\S;, there are essentially no

irreducible idempotent measures, whereas on compact solvmanifolds D\Sz, there are as

many irreducible idempotent measures as one could desire.
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