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1. Introduction

The main purpose of this paper is to extend the theory of R. Nevanlinna [1] to the
class A~ of functions f(z) holomorphic in the unit disk U ={z: |2| <1} and satisfying the
condition

lfa)] <C,1—|2])™ (z€D), (1.1)

and to the corresponding class 3t of meromorphic functions A(z),

h(z)=% (f.ged™™), (1.2)
For functions belonging to these classes we obtain a complete description of zeros (and
poles) as well as a generalization of the notion of boundary measure. In our case the boundary
measure turns out to be what we call a premeasure of bounded x-variation. Although lacking
many good properties of a regular boundary measure in the classical factorization theory
of R. Nevanlinna for functions of bounded characteristic, this premeasure nevertheless
generates a regular measure of bounded variation on the so-called Carleson sels: i.e., on

those closed sets < oU of Lebesgue measure zero for which

+1)< oo, (1.3)

| Z,] being the angular lengths of the complementary arcs of F. This regular measure is
called the x-singular part of the corresponding premeasure. In another paper to follow soon
we intend to show that these x-singular measures together with zero sets completely de-

scribe all the closed ideals (invariant subspaces for the operator of multiplication by z)

(1) AMS (MOS) subject classification (1970). Primary 30A08, 30A70, 31A10, 31A20.
13 — 752906 Acta mathematica 135. Imprimé le 15 Mars 1976
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of the topological algebra A—*, roughly in the same manner as the invariant subspaces of
the H? space are described in the classical theory of A. Beurling [2].

Closely related to the classes 4—, N is the class H* of harmonic functions u(z), #(0) =0,
such that

—00<u(z)<culog1—_1—— (z€U), (1.4)

l2|
and a larger class =9+ —H+. For functions belonging to § we obtain a representation in

the form of a generalized Poisson integral

1
“(2)—%faUP(C, 2) u(|dC]), (1.5)
P(, z)=Re (L +2)/(L —2)( €AU, 2€ U) being the Poisson kernel and u(|dl|) a premeasure
defined only on arcs 18U and having bounded x-variation (x for Carleson):

v

2|l (1.6)
—_— OO
A(F) ’

# Var (u)=sup
F

sup taken over all finite F<@U, {I,} being the complementary intervals of F. This x-varia-

tion plays essentially the same role as the usual variation

O<t<2n 0

Var {‘ru(re“’) d6}=f2"|u(re"’)|d0 (0<r<l), (1.7)
1)

in the classical theory for the class %! of harmonic functions which are differences of two
positive harmonic functions. It is well known that the uniform boundedness of (1.7) is
necessary and sufficient for a harmonic function u(z) to belong to A. We get an analogous
result for § in terms of x-variations, as well as a corresponding result for meromorphic
functions of the class Jt.

Note that our results concerning the distribution of zeros for the class 4~* have many
points in common with a study of zero sets for Bergman classes of functions conducted
recently by C. A. Horowitz [3]. In particular, what we call the standard or Horowitz distribu-

tion of zeros (see no. 3.6) is essentially the same as that of the function
o]
fe)=1l(1+az) (a>1), (1.8)
k=1

examined by C. A quowitz. On the other hand, we have come to the conclusion that a
very far reaching generalization of Nevanlinna’s theory due to M. M. Djrbashian [4, 5]
could hardly be applied to the kind. of problems we are concerned with.
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The author wishes to thank L. Carleson, M. M. Djrbashian, P. Duren, W. H. Fuchs,
W. K. Hayman, C. A. Horowitz, J.-P. Kahane, Y. Katznelson, L. A. Rubel, H. S. Shapiro,
A. L. Shields and others for valuable discussions.

2. General definitions and notations

A-"(n>0) is the class of functions f(z) holomorphic in U and satisfying the condition
i) <C(1—|z|)™ (2€0). 2.1

If provided with the norm ||f||_, = min C;, 4-" becomes a Banach space. 45" is a subspace
of A~" consisting of those elements f for which

Ilzilml{(l—lzl)"lf(z)l}=0- (2.2)

Ag " is separable (in contrast to 4~").
A-®= U ,.0 47" consists of all the functions f(z) holomorphic in U and satisfying condi-

tion (1.1); in other words, every element f€ A~ has the form

[+ o]
fe)=2a.2
0
with a,=0(»")(y— o0) for some n. A~* becomes a topological space (indeed, a topological
algebra with the usual-operation of multiplication) if provided with the following set of

neighbourhoods of its zero element:

V({nﬂ}’ {Sv}) = US(’ILV, 81’)’

{n.}. {&,} (¥=1,2,...) being arbitrary sequences (n, + =, &,>0) and S(n, ¢) the e-ball in
A4

S(n, &) = {f: f€ A, ||f]_n <e}.
The sequential convergence f,—f in-4~% means that all the f, belong to the same A~" (with
some 7 >0) and ||f —f]|_,~0.

A® is the dual of 4-%; it consists of all the functions F(z) holomorphic in- U and in-
finitely differentiable in U, i.e.

F(z)= oE(J:b,,z”.
0
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with b,=0(»")(y->oc) for every n>0. The linear functionals in A—® are given by the
formula

F)= E&, a,= 2— lim F(re“’) f(re*)do, (2.3)
1]

T r>1-0
(see [6]).
N is the class of meromorphic functions having the form (1.2).
$t is the class of harmonic functions w(z)(z € U) satisfying the conditions

(i) w(0)=0;
(i) — o< u(z)<c,log 1——-L|z—| (2.4)

H=H+—9*, i.e. each u(z) €PH has the form u=u, —u, with u,, u, €EH+.

R is the set of all open, closed and half-closed ares of the circumference U, including
all the single points, oU itself and @.

For every I€R put

I
n(I)—I '( III+I) (2.5)

|Z| being the angular length of I; if I is a single point or @ put x(I)=0. Obviously
0 <x(I)<1=x(2U).
A function u: - R is called a premeasure if

(i) (I U Ip) =u(1,) +u(l,) for all I,, I,€R such that I, ULER, I, n I,=D;
(il) p(0T) =0;
(iii) lim u(I,) =0 for every sequence {I,}°(I,€R) such that I,>I,> .., nI,=0.
=00

With every premeasure u a function f2(0)=pu(I)(0<8<2m) can be associated with Ip=
{¢:eoU,0< arg £ <6}.

Thus a one-to-one correspondence is established between all premeasures and all real
functions 4(0)(0 <0 < 2x) satisfying the following conditions:

(i) A(0—0)(0<6<2x) and (6 +0)(0 <0 <2n) exist;

(i) A(0—0) =a(6)(0<6<2n);
(iiii) p(27)=0.

Obviously, 2(0) has at most a countable set of points of discontinuity, all of them of the
first kind (jumps).
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A premeasure p (and the associated function) is said to be x-bounded from above if
there is a C >0 such that

wD) <Cu(I) (VIER). (2.6)

A premeasure u (and the associated function) is said to be of bounded x-variation if
there is a C'>0 such that for every finite set {I,}, I,€R, U, I,=0U, 1, N I,,=D (v, +v,)

2| < C 2 L), 2.7)

Cy=min C is called the x-variation of u: Cy=x Var u.
A set @+ F<aU is called a Carleson set if

(1) F is closed and of Lebesgue measure 0;

(i) #(F) = 3 #(I,) < oo (2.8)

v

(see also (1.3)). #(F) will be called the Carleson characteristic of F.
The distance d({,, £,) between two points on U is determined by the shorter arc:

d(Cl’ C2) = }Zmln {&I‘g £2’ arg %}’

go that the distance between diametrically opposite points is 1. The distance between a
point {€0U and a set F<oU is

d(¢, F)y=inf d(¢, ).
l'eF
For every Carleson set F

1
=5 [ logac b1, (29)

which is easily verified; therefore F, < F, implies Z(F,) <Z(F,).
Let F be a Carleson set, ¢ =1, 0<a <1 be some constants. Put

GF;WI:{Z: 2€U,1—|z|> ad® (i, F)} v {0}. (2.10)

J2|
Let a={a,} be a (finite or infinite) sequence of points in U, 0= |a; | <]ay| <...<1,and F

a Carleson set. Put

0o F) =0, (F; q,a)=“v > logli (2.11)

€GFiq,a “vl '
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Let f(z) be meromorphicin U and {o,}(0+ | oy | < | ez} < ...) be its zerosrepeated accord-
ing to their multiplicities; then the sequence o ={a,} is called the zero set of f. In the same

manner the pole set f={B,} of a function is defined.

3. Zero sets for classes 4", A~

3.1. The main theorem

Definition 1. For n>0, ¢>1, 0<a <1, a={a,} put
me = m(n; g, @) = inf {ni(F) ~ 0,(F: g, )}, (3.1.1)
inf being taken over all the finite sets @+ F < dU or (what is equivalent) over all the Carle-
son sets F.
Definition 2. A sequence o= {a,} is said to satisfy condition (T,)(n >0) if
my(n; 1,a) > — oo (3.1.2)
with some a, 0 <a <1. We shall write in this case « € (T,).

Definition 3. A sequence a={«,} is said to satisfy condition (7) if it satisfies condition
(7,) with some n>0:

n>0

Obviously, condition (7') is equivalent to

0«(F; 1, a)

SuUp —— 5o 3.1.3
ST (3.1.3)
THEOREM 1. Condition (T,)isnecessary for atobethe zero set of a function f(z) € 4~V ~9

and sufficient for it to be the zero set of a function f(z)€A~%"* (£>0 arbitrary).

CoRroLLARY 1. Condition (T) is necessary and sufficient for o to be the zero set of a
function f(z) €A,

CoROLLARY 2. Every subset of an A~® zero set is an A~® zero set.

Remark 1. A simple argument shows that condition (7',) does not in fact depend on the
constant a, so that for every « it holds either for all @ €{0; 1) or for none (see also below,

§3.3)
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Remark 2. It F consists of N equidistant points on U, then »(F)=log N +1; on the
other hand, in this case G, , contains the disk |z| <1 —(C/N) with some constant C >0.

Thus we get from (3.1.3) the following necessary condition:
100—1—0(1 1) 0—0) (3.1.4)
leyici-o ©|ag| €5 ( ’ o

which in its turn implies
Sl -] |)*e <o (Ve>0). (3.1.5)

Both the conditions are known [3, 4]. They are easily derived directly from Jensen’s

inequality as well.

Remark 3. If all the zeros lie on a single radius, say, (0; 1) then we have to choose for

F the one-point set {1} to get the following necessary (and sufficient) condition

1
2. log ol < oo
(see [7]).

3.2. Proof of the necessity

Let oo={a,} be the zero set of a f(z) €A—". Take a finite set ¥ <2U and consider two
domains Gg,;,, and Gr,»,, with some b <a. Obviously, Gr.;, , < Gr.s . It follows from (2.1)

and (2.10) that
HOIES Crofmin le=C)72"  (V2€Gr2,0). (3.2.1)

Let w=w(z) be the function that maps conformally int Gr.o, onto U so that w(0)=
0, w'(0)>0. Let z=z(w) be the inverse function and F, be the image of F under w=1w(z)
(we assume that w=w(z) is extended to Gy by continuity). Applying some well-known

results about the distortion under a conformal mapping [8] we easily obtain that for each

&£>0 a b(0 <b<1) exists such that
z w(z) )
arg |- —1}— —==—1
¢ (c ) v (w(c)

moreover, these inequalities hold for all the finite F (even for all the Carleson F). Thus the

image of G'p,y, , is contained in some G, 1, o, With &, =£,(e) >0 (¢—>0). If «,, is the image of

2—

1_£<|w(z)—w(é’)|<1+8’

<& (VLEF,z€Gry2s);

o under w =w(z), then we have
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Oy (Fw; 1’ a"—el) 2 (1 _82)6¢(F; l; a)’

— f log* |f(z(w)| - |duo| <log* €+ 20[4(F) + &)
T JoU

with &,, &3>0 (¢—0). Applying Jensen’s inequality to f(z2(w)) and taking inf over all the
finite F we get

inf {2n&(F) ~ (1 — &) 0o(F; 1, @)} > — oo

Fi

with g,>0 being arbitrarily small, and this is equivalent to « satisfying condition (T';,,),
which proves the necessity part of our theorem.

3.3. Some auxiliary results
Lemma 1. If a={a,} satisfies condition (T,), then
my(gn; q,0) > —o0 (¢g=1, 0<b<1). 3.3.1)
Proof. For each Carleson set F a larger one F;<dU can be found so that
Gr.0.0< Grite, #F)<qR(F)+C (3.3.2)

with some constant C. To do that we have to add to F a countable set of points in each
complementary interval of F so that all the angular points of 8Gr,;,, , fall either on 8U or
on 8Gr,, . By a straightforward calculation we then verify (3.3.2), and this together with
(3.1.2) yields (3.3.1).

LEeMMA 2. Let u,, u, be two real measures of bounded variation on 80U, and R,,={z: z€U,
2|2} =Co} be the radius going from O to a point £,€0U. If for every open arc I<dU with {,
at its center

pa(l) < po(1), (3.3.3)
then
f Pz, ) m(|dL]) < f P(z, ) pol|dC]) (€ Ry,), (3.3.4)
U oU
P(z, {) being the Potisson kernel
P& 0) =Re%§ (c€aU, 2€T).

Proof. The required result is easily obtained by partial integration.
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Lemma 3. Let
0+BET, L=yp, B(z)=f__gz-'%',
S(z)= -—gi:‘logﬁ. If for some 2€U 1—|ﬂ|<i|€—z|,
_18N?
then [log B(z)—8(z)|<C (IIC—_'Z') s (8.3.5)

C being an absolute constant and the value of log B(z) being that obtained by analytic continua-
tion from the value log |B]| <O at z=0 along the radius to the point z,

Proof. We have

log B(z) =log ﬁ-l— log (1 — g__:g) —log (1 _ CE(_liﬂ))

Using Taylor’s formula with the second-order remainder term we easily obtain the required

result.

Lemma 4. If an arc I1<0U is divided into N non-overlapping arcs I,, I, ..., I, then
(L) <oe(ly) +n(Ly)+ ... +x(IN)<x(I)+|2inllog N. (3.3.6)

This follows immediately from the fact that »(I) is a concave function of |I].
By this lemma, if in (3.1.1) inf is taken only over those finite F' that contain some

fixed point w€dU then m, is changed to another value m}, and the following estimate
holds:

me(n; ¢, @) <mZP(n; ¢, a) =inf {nZ(F) — 0(F; q, a)} < m.(n; ¢,a)+ nlog 2.

weF

Condition (7',) is therefore equivalent to
me (n; 1, @) > — oo, (3.3.7)
and this, according to Lemma 1, implies

my(gn; ¢,0) > —oc  (g=1, 0<b <1). (3.3.8)
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3.4. The main lemma

Definition. Let n>0, ¢=>1, 0<a<1, w€dU be fixed. For a given finite sequence

o={ot,} (a, € U) a non-negative measure u on U will be called w-admissible if

(i) u({w})=0;
(ii) for each open arc I<aU, w¢ I, the following inequality holds:

osuI)< 2 logi + nx(l) (8.4.1)
ayeHy ,“vl
with
H,={z:2€U,1—|z|< ad® (z/|z|,06U\I)}. (3.4.2)

The set of all w-admissible measures will be denoted by IR or simply by 3*.
(3.4.1) implies that u({}) =0 for any {€8U and not just for { =w.

THE MAIN LEMMA. For any finite a={C,}

1
sup u(@U)=my (n; ¢, a)+ > log ) (3.4.3)

remw

and there is at least one “‘maximal w-admissible measure” u, for which
w 1
w(eU)=mi(n; g, a)+ 2 log Tl (3.4.4)

Proof. Define a finite set Fy=oU consisting of w and all the points { €8U for which
8G’(;) n {d,} #@,

and let {I,} be the set of complementary arcs of Fy. For each u €IR” let iz denote measure
which has the following properties:

(i) a(l)=p(ly) (Yk);
(ii) & has a constant Lebesgue density in each 7.

In view of the concavity of x(I) expressed by the first inequality (3.3.6), it is easily
proved that y € I8* implies 4 € I with u(0U) = i(8U). So the problem of finding a maximal
w-admissible measure is in fact a finite-dimensional one with as many unknown quantities
(densities) as there are points in F,. Therefore sup in (3.4.3) is attainable, and among
maximal w-admissible measures there is at least one, say, p, with 1y =pu,.

The set of all w-admissible measures u that have the property ji=u is a convex body
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in a finite-dimensional vector space. This body is defined by inequalities (3.4.1) with I’s
having their end points in F; and not containing w. Let A be the set of all such arcs.

A finite system {I,} (I,€%, I, are not necessarily all different) and a corresponding
system {4} of non-negative numbers will be called a w-admissible covering if T, A, X (£)>1
(vZeol), X () being characteristic functions of the closed arcs I,. Using some elementary

facts from the theory of convex bodies we find that

sup u(@U)=inf {Z As( > log %|) +nY lsn(Is)}, (3.4.5)

uemWw oy € Hy

inf being taken over all the w-admissible coverings (H;=H;,). Infimum in (3.4.5) is not
altered if only coverings with rational A, are admitted; therefore our lemma reduces to the
following proposition:

For each system of ares {I,} (I,€¥) with

>X()=N (V(€aU,N>1 entire) (3.4.6)
s
the following inequality holds:

Z( 2 log_l)+"z”(ls)>N(m;”+zlongil)

s \aweH; IOCu|
with equality sign attained for N =1 and for the I; that are the complementary arcs of the
set F< F,, w€F, for which
W F) —0y(F; q, a) =mg(n; ¢, a).
This proposition is trivial for N =1. The general case is proved (*) by induction which

is possible owing to the fact that the point w is not contained in any of the open arcs I,

and therefore the coverings {I,} do not contain eycles.

3.5. Proof of the sufficiency

Let a={«,} satisfy condition (7,) and ¢>2 be some fixed number. We have to con-
struct a function f(z) €4~™ (n, =gn) with zeros at «,. Take a finite part « of «. We will show

first that an analytic function f(z) exists which has the following properties:

(*) We can assume that in (3.4.6) the equality sign holds a.e.
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the constants ¢, C being independent of a particular choice of &< «. Using a standard argu-
ment (involving classical compactness theorems for analytic functions) it will then be
possible to get the required function f(z) as a limit of f(2).

Choose a point w€oU. Let u be a maximal w-admissible measure with respect to &

and to the parameters #,; ¢, a. By our main lemma
uwoU)— Ze logl l mg (ny; ¢, @) ZmP(ng; q,a) > — oo (3.5.1)
ayea

Consider the function

f(z)=eXp{fa “z deI)} —z-lﬁl (3.5.2)

aexl — %2 o,

and check it for all the above conditions.

(iii) f(0) = exp {u(@U) + aze;log |o|} = exp {m% (ny; ¢, a(} > exp {mf (ny; ¢,0)} =¢

(ii) Take a pont { €U and project every «, €a that lies outside the domain G4, o = G¢
to the circumference dU. Place at the point {,=a,/|«,| thus obtained a negative mass

=log|a,|, and let u, be the resulting measure. Put

v

8(z) exp{ c+z,u1(|d5|)—exp{ E log|o¢v|é”tz}.

By Lemma 3 we have for z€ R, and a <1/4:

1 o, —2z (l—|oc,|)2} _ 2-(2/a)y _
s 1,752 |<emp{o 3, (%) <empio 3 amlalieo) -0,

with €| <oo (see (3.1.5)). Therefore

gizmldcl)wlexp{f P(C,z)llzddd)} (2= p+ 1)
U ouU

for z€ R;. On the other hand, for every open arc I containing neither { nor w we have:

IF2)] < €, 8(2) exp {fa

1
poly = p(I)+ py(I) < p(I) —3& log k:l <myx(1),

according to (3.4.1). By Lemma 4 we then have for all the open arcs I < U (with no reserva-

tions):

1|

pa(l) <n1[x(l)+ log 3]
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Applying Lemma 2 we get the estimate:
|| <Cyl1—=]2))™™ (2€ERy)

with C; dependent neither on {€6U nor on a<a.

(i) follows from (3.5.2).

Thus our theorem is proved completely.

3.6. Some properties of 4~> zero sets

THEOREM 2. Let a={a,}, &' ={a,} be two sequences of points in U, and let for some
q, 0<q <1, and all the v the following inequalities hold:

oo, —ar] < g(l— |, |)- (3.6.1)
Then «€(T) implies o' €(T), and vice versa.
Proof. We can choose two constants @, b (0<b<a <1) so that for every finite F<aU

%, €Gp.1,,= a;EGF:I.b
and

% €EQri1,4 = 6 EGp1, 1o

Therefore
0,(F;1,a) <(1—g) 6, (F; 1,b), o0,(F;1,a)<(l4+g)0,(F;1,b).

This, together with (3.1.1) and (3.1.2), yields:
a€(Ty)=> ' €(Tr) (n' =(1+q)n),
o €(T,) = a€(Ty) (0" =(1—q)7'n)
which proves our theorem.

Definition 1. To each measurable set G< U we shall assign the number
xS(G)=f ﬂ—< =) (dA= id:z:dy, z=m+iy) (3.6.2)
¢l— |z| 27

and call it the x-area of G.

An easy calculation shows that for domains @ of the type Gy.;,, (F<oU finite)

[#8(G) —#(F)| <C <o (@=Gr1,q),
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C being independent of F. Therefore condition (T') is equivalent to the following:

(" sup ;’“(Gl < oo, (3.6.3)
sup being taken over all the domains @ of the form Gp.,,, (F<oU finite) and

1
5.(G)= log —. 3.6.4
G4(0) %ZGG g I Olvl ( )
We obtain yet another form of condition (7') if we choose domains @ in (3.6.3) and
(3.6.4) by means of the following construction. Divide the disk U into a countable set of

“cells’:

1 cell of rank 0:
C={z:|z|< 4};
2 cells of rank 1:

CO={z2:3<]|z|<},0<Argz<az}, CV={z:}<|z2|<} a<Argz<2};
4 cells of rank 2:
GO ={z: 3<|z|<}0<Argzx<in}, C={z:}<|z|<} in<Argz<na},
CO={2:3<|z|<fn<Argz< }n} CW={z}<|z|<} $n<Argz<21},

and so on, so that ¥ - 770 §@¥s - ¥ are the two cells of rank r+1 (1 —2-"-1< 2| <
1-—-2-"-2) adjacent to the cell §¥?*-+-¥" of rank r. All the cells (except €) are thus enumer-
ated by means of finite binary sequences y =(y,y, ... ¥,), =1, 2, ...

Take an arbitrary set of cells having the same rank, and consider the smallest starlike
domain composed of cells and containing the initial ones; we shall call all domains thus
obtained the canonical ones. It is easily shown that condition (7') can be put in the follow-
ing equivalent form:

. (@)
T sgp S(6) < oo, (3.6.5)

&.(G) being defined by (3.6.4) and sup taken over all the canonical domains.
According to Theorem 2 what matters for a sequence a={a,} to satisfy (or otherwise)
condition (7') is the number of zeros in each cell:

= 2 1 (p=(y172.¥:)- (3.6.6)

ape(E(y)
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Definition 2. A table of the form

0) 71y
7\ /N
ooy Moty ey 71y

with ., defined by (3.6.6) is called an «-array; each place in the table is called a node and

will be identified with the corresponding subscript v =(y, ... ,); the number =, is called

Y
the nodal number of rank r, r being also the rank of the node y: r=r(y).

Definition 3. A branch is a set of nodes of the type:

B ={(y1)s 1v2)s V1y2ya)s - (1¥2V3 - ¥}

Every branch is uniquely determined by its node of the highest rank r; r is called the rank
of the branch B.

Definition 4. A tree T is the union of a set of branches having the same rank r which
is called the rank of the three: r=r(%).

Definition 5. Let a={a,} be a sequence («,€ U) and n,, be its array. To every tree ‘T
a number is assigned:
0(T)= > m, - 277 (3.6.7)

veg
which is called the x-value of the tree ¥.
Definition 6. A sequence x={a,} is said to have a standard or Horowilz disiribution

if all the nodal numbers #., of its array are equal to 1. In this case the a-value of a tree T

is called its standard value:

)= 3 27" = Tg) 2-%p,, (3.6.8)
k=1

el

by, being the number of nodes of rank k.
The numbers b, have the following property:

by <bp,<2b, (k=1,2,...,r(T)-1).
Definition 7. An a-array is called bounded if for all the trees T the inequality holds

1,{T) < CKT) (3.6.9)
with some constant C.
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THEOREM 3. 4 sequence a={a,} («, € U) 48 an A~ zero set iff its a-array is bounded.

Proof. It is clear that there is a one-to-one correspondence between all the trees and

all the canonical domains composed of those cells whose indices belong to the tree:
Gz=Cu(UE).
yeX

We have

ch(T) < #8(Gg) < Ch(YT),

‘va(sz) < &a(Gi) < Cva(I)
for all T and all «, with ¢, C being some absolute positive constants. Therefore the bounded-
ness of an a-array is equivalent to « satisfying condition (1) (see (3.6.5)), and the theorem

is thus proved.
The function

H(z)= il (1+ ez?) (3.6.10)

examined by C. A. Horowitz [3] is the example of an 4-* function with the standard

distribution of zeros. Now we will consider more general functions
a
Hiz)=T1 1 +ez2)* (5,=0) (3.6.11)
k=1
and use them to prove the following

THEOREM 4. In order that an A~ zero set a={a,} exists with prescribed moduli of the
zeros,
|| =0, (0<py<p@y<..),

it 18 necessary and sufficient that

%10 l—0(100 1 ) (3.6.12)
v=1 gev OI_QN ’ e
or (what is equivalent)
N
S log 5 = 0(log N). (3.6.13)
y=1 4

Proof. The necessity of (3.6.12) is already proved (see (3.1.4.)). To prove the sufficiency
observe first that (3.6.12) is equivalent to

8,=3> N, 2°*<0r (r=1,2,...) (3.6.14)

k=1
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with
N,= > 1.

1-2- <oy <1-2-7—1

Now, consider the array
Ny =[27"YN,q,] + 1. (3.6.15)

To prove the theorem it is sufficient to show that this array is bounded, because the total
number of its zeros in each annulus 1 —2-"< |z| —1~2-""!exceeds N,. This could be done
directly by checking (3.6.9), but we prefer to prove this result by actually constructing a

function which has the required array of zeros. It is easily seen that the function
a0
1‘[ 1+ e?)Ne2—H+1 (3.6.16)

has exactly n,, zeros in each cell of 7. What remains to be proved is that H(z)eA-=. Ob-
viously, IH ()| <H(|z|); therefore we have to estimate H(z) on the radius z=p(0<p<1).

Using partial summation and bearing in mind (3.6.14) we get
e o] = o]
log (o) Z (N 27%+ 1)log (1 + ep?) = Z (S + k) [log (1 + eg*) — log (1 +eg2**")]

<(C+1) 5‘ k[log (14 e0®) —log (1 + e2** )] =(C +1) 2-: g (1 + eg?*)

=(C + 1) log H(p),

H(z) being the Horowitz function (see (3.6.10)). Now,
0 o0
H(p)=[1 (1 +eg®) =1+ 2 e¥p",
k=1 k=1

s(k) being the sum of the digits in the binary expression of k. Clearly, s(k) < log, £+1, and
therefore H(z) €4~ (see als [3]).

To prove the equivalence of (3.6.12) and (3.6.13), observe that (3.6.12) implies
(0102 - 0x)° =1 —pn, k=1, 2, ..., with some ¢>0. Therefore

(0102 - Ok31) ~* — (0102 - 0x) ° = (1 —0%+1) (0102 - O41) ¢ = O(1).

Summing up these relations from k=1 to k=N -1 we get (p,0, ... o5) "¢ =O(N) which is
equivalent to (3.6.13). Conversely, if (3.6.13) holds, then we have

1 log N N 1
Nlog —=0(log N),1—oy=0{28 _
%8 o (log ), 1= ew (N )’IOgN 0(1~9N)

and, finally, log N =0 (log 1/(1 —gy)). This together with (3.6.13) yields (3.6.12).
14 — 752906 Acta mathemathica 135. Imprimé le 15 Mars 1976
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4. Premeasures of bounded x-variation
4.1. General properties

Definition. A sequence of premeasures {1} is said to be x-weakly convergent to a

premeasure g (u; X2, u) if

(i) 4 have uniformly bounded x-variations,
xVarp, <C<oo (k=12 .

(ii) lim 2,(0)=p20) (0<6<2n)
k—>00

at every point of continuity of the associated function () (for the definition of the as-
sociated function see Ch. 2).

Of course, in this case the limit premeasure u is of bounded x-variation too,
% Var u<C.

TaEOREM 1. (Helly-type selection theorem). Let {u, }T be a sequence of premeasures having
uniformly bounded x-variations. Then there exists a subsequence {ui,} (ky <ky<...) which is
x-weakly convergent to a premeasure u.

We omit the proof because it runs on the same lines as that of the classical Helly

selection theorem.
THEOREM 2. If a premeasure y is x-bounded from above,
W) <Cn(I) (VIER),
then it is of bounded x-variation and » Var u <2C.

Proof. Let {I,} (I,€R) be a finite set of arcs, U, [,=0U, I, NI, =Dy, +v,). We
have
2| ul)) =2 max (u(L,), 0) + 2 max (— u(L,), 0) = 8, + 8,.

Obviously, S, —8;=0 and 0<8,<0X, x(1,), so 8;+8,<2C%, »(1,), and the theorem is
thus proved.

THEOREM 3. Let y be a premeasure, Iy={(:|{| =1, a < Arg { <B}beanarc, I, =0U\I,.
Define the premeasure o as follows:
[Tu I

o) = u(1 U 1)+ =7 ully), (4.L.1)
| Zo]
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so that the associated function 6(0) is linear in the closed interval a<O0<f and cotncides with
() outside the open interval a <0 <f. Then

% Var o <x Var u. (4.1.2)

Proof. Let C=x Var u < oo, and let {{,}{, {y =4, be some points on 80U arranged coun-
terclockwise with first k of them belonging to I, (and all the others lying outside I,):

<O =Arg{ <O, =Arg{, <...<0,_, = Arg { , <B.

Fix all the points {{,}} ' and consider the function

N-1
f(607 617- LRE] ek—l) = Zo |6(CV+1) - 6(Cv) | (1) (4'13)
in the »-dimensional simplex &:
0 <0, <0, <..<0, , <p.

It is easily seen that this function is convex in &, because #({) is linear in I,. On the other
hand, the function

ﬁ(em 01’ srey Ok—l) = ﬁ({CO’ C]_s very CN})

is concave. At the vertices of & (where 0;, 1=0, 1, ..., k—1, are equal either to « or to f)

we have

(04, 0;. ..., 0,_1)= éo | 281 — 2(EN| < CRELY,

so this inequality must hold in & as well:

N-1

2 | 6(8) — 6(8n | < 028},

ji=1

which proves our theorem.
CoROLLARY. If p is x-bounded from above,
w) < Cxn(I) (VIER),

then the same inequality holds for o.

(1) We will write sometimes §({) =6‘(eie) instead of 6(8).
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THEOREM 4. Let F={(,}7 be a finite set of points on 8U, {I,}° be the complementary
arcs of F and u be a premeasure of x-bounded variation. Let p, be the measure whose associated

function @,() is linear in each I, and coincides with a(l) for € F. Then

x Var y, <x Var y, (4.1.4)
and Iulﬂ[u as max|Z,|—~0.

This theorem is a direct consequence of Theorem 3.

4.2, The decomposition theorem

THEOREM 5. Every premeasure u of x-bounded variation,
% Varpy=C < oo,
is the difference of two premeasures that are x-bounded from above: ()
w=p—pg, (1) <(1+1log2)Cx(l) (VIER,j=1,2). (42.1)

Proof. Take a finite set F<@U containing some fixed point w, and let y, be the corre-
sponding piecewise linear measure constructed as in Theorem 4 (that is, having a constant
density in each of the complementary open arcs {I,} of the set F). Now, let us first show

that p;=pf® —u®, ui” and u® having the same structure and satisfying the inequalities
uP(I) <Cu(l) (G=1,2vIER, wel). (4.2.2)

Using the concavity of »(I) and the piecewise linearity of 4{”(f) we easily come to the
conclusion that to ensure the inequalities (4.2.2) for all I, w¢ 1, it is sufficient to do this
only for the I's whose end points are.in F. Thus the problem becomes a finite-dimensional
one with a finite system of ineqeualities 4.2.2) and a system of equalities expressing the
requirements that 4" be additive, that u{"(@U)=0 and p,(I,)=n"U,)—uP(1,) (V).
Applying the method already used in § 3.4, we can easily prove that this system of ine-
qualities and equations has a solution for every F. Letting max |I,| tend to 0 and using

the Helly-type selection theorem, we obtain a decomposition

== s, () <Cx(I) (G—1,2;vI€ER, we¢l).

(1) In fact, a somewhat sharper result u;(I)< Cx(I) holds.
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For those arcs I that contain w, we get the following estimate, according to Lemma 4,
§3.3:

udI) < C[x(l) + 192‘(;—3 |I|] <01 +log2)x(I) (j=1,2).

4.3. The y-singular part of a premeasure

TaEOREM 6. Let 4 be a premeasure of bounded x-variation. Define for every Carleson
set F

pslF) = =2 u(L), (4.3.1)

{1,} being the set of complementary arcs of F. There exists a unique countably additive finite
measure on the o-ring generated by all Carleson sets F < F (1) which coincides with p, for those
sets (F, being an arbitrary fixed Carleson set).

Proof. Fix a F,, and let {I3} be the set of complementary arcs of Fy. Let () be the

function associated with the premeasure u. Define a function f,(0) as follows:

(i) for e®€Fy  p,(0) =p(0);
(i) for e®€Iy, IN={C: |¢] =1, a,<arg {<B,}, @,(0) is linear between fi(, +0) and
la(ﬁv—o) =/2(/3v)

Prove that 4,(0) is of (classical) bounded variation. Let g, {5, Lo, --., §x=p be a finite
set of points on 28U arranged counterclockwise. Writing ,($), a({) instead of 2,(0), a(6)
(0=Arg¢, |£| =1), we have to prove the boundedness of the sum

1

8= 3 |pulGr1) — plL)| < C< oo (4.3.2)

TT
=

for all sets {{,}. Without loss of generality we can assume that none of the , belongs to F\.
Let {I;} be the set of those (open) arcs among I? which contain at least one point ¢,, {I}
be the set of closed arcs which lie between I, and F,< F, be the (finite) set of all the end
points of the arcs I;. Taking into account the linearity of &, in every I,, we get the following
estimate for the sum (4.3.2):

S<z|[u(I})|-|-jZ|[u(I}')|<xVar,u-;’é(FI)<nVar‘u-;’%(Fo).
7

(1) This o-ring is the ring of all Borel sets B&F,.
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Thus the function 4,(0) is of bounded variation, and therefore it generates a countably addi-
tive finite measure defined for all the Borel sets; let 4, denote this measure. As y,(@U) =0,
we get from (4.3.1) the following conclusion (¥ < F, being an arbitrary Carleson set):

m(F)= =2 (L) = =2 p(l,) = py(F).
Thus our theorem is proved.
Definition. u, will be called the x-singular part of the premeasure u.

CoroLLaRY. The x-singular part u, of a premeasure y is non-positive if y is x-bounded

from above.

Proof. We have to prove that for every Carleson set F u,(F)<0. This is trivial if F

is finite. In fact,
ps(F)= =2 (1) =CZF p({L}) <0,

because a premeasure which is x-bounded from above assumes non-positive values on single-

point sets. If F is infinite, then we first consider a partial sum (4.3.1):

N N N N
- leu(lv) = z ,u(Jv) <C Zl K(J,.) = C[Q(Fl) - z H([,,)] ’
v= y=1 v= y=
J, being the (closed) arcs which lie between I,(v=1, 2, ..., N) and F, the set of end points
of these I,. If N> oo then
N
#(F) > #(F), 2 #(1,)~>#(F),

ye1
and consequently u,(F)<0.
From (4.3.1) the following inequality is easily derived which holds for all Carleson
sets F:
|#s(F)| <% Var u-%(F). (4.3.3)

Remark. It can be proved that the x-singular part of a premeasure of x-bounded varia-
tion is concentrated on a x Fs-set. More precisely, if u is a premeasure of »-bounded varia-
tion, then a sequence F, < F,< F,< ... of Carleson sets exists such that

,us(F) = lim ﬂs(F n Fr)

y—>0

holds for all Carleson sets F, hence for all Borel sets F contained in a Carleson set.
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5. Classes H*, § of harmonic functions

5.1. Boundary premeasures and generalized Poisson integrals

209

THEOREM 1. Let u(z) belong to the class §; in other words, u(z) is harmonic in U,

#(0) =0 and
1
<clog
u(z) <clog 1— 7]
with some ¢>0. Let

[0 0]
u(re®y= 3 a,m"e"® (a,=0,a_,=4d,).
—0o0

Then
(i) |ay| <Ciclog (14 |»|),
C, being an absolute constant;
(ii) for every arc I<oU the following limit exists

lim él_ a(rl)|dt| = 5(I);

r->1-0 47T J 1

(iii) for each £>0 there is a C, (dependent only on &) such that for all IcoU

o(I) <[(2+e)x(I)+C,| I|]c;
(iv) there is an absolute constant C, such that

&(I) < Cyen(l) (vI<oU).
Proof. We have

pPpem _
a, f u(re®y e " dh(0< r< 1).

- 27 0
Therefore
r~|v| 27 T_lvl 27
la,| <— f |u(re'®)| d ~ J u*(re') d6,
27 Jo T Jo
because
27 ) 27 1 2r
f u”(re®) df= f u”(re®®) db == f | u(re®®) | d6.
0 0 2 0

Using (5.1.1) we get

1
< 277" —_—.
la,] <2¢r~"'log =

Putting r=1—-1/(|»| +1)(|»| >0) we obtain (5.1.3). Thus (i) is proved.

(5.1.1)

(5.1.2)

(5.1.3)

(5.1.4)

(5.1.5)

(5.1.6)
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To prove (ii) and (iii) show first that the integral (5.1.4) is bounded for 0 <r <1. Let
I={¢: [¢]| =1, a< Arg{<B}. Put

v=f—a, 1=(0) = min (6~ §~0), 0 =0(0) = , (0—2) (F—0) (x<0<).
We have for a <0 <p:
' ” 2
1H(6) <e<t(6), ') <1,¢"(6) = —~.

Therefore for the function ¢(8) =1 —[o(8)]” (p >2) the following estimates hold:

Y 2 -1 2 -
lg' )= pltO)P 1, |g"6) | < p(p— 1) [H(O)]" >+ }2 [4(0)17 1 < pP[H(6) 17 2.

Using these estimates and integrating by parts we get for |»| >1, 7<1:

g s
(1~ g6} a0 = | [ 1q(611-q'6) a0
- I 1)a

|

”l*l g wl=2| /o2 1 (* Wi=1] 7
o [ o Iq<e>|d0+mf[q<e>] |4'®)] 0

2 rB8 p}lI¢]-1
+ﬁ f {1— [5(22)] } [£(0)]”%d0

/2 1 /2
< 2p2 [f e—(t/2)l’(|"|~2)t217—2dt + I__I f e—(t/2)P(|Vl—1)tp—2dt]
0 Yl Jo

1
<p2‘t max {e—(t/2)p(|v|—2)t2p—2+ T g WRp(vl-1yyp-21
O<t<ao 14

A simple calculation yields:

s
U {1 - [q(6)1""} €"’d0

<SC, |y 2P (|p|=1,2..;7<]1) (5.1.7)
with C,>1 dependent only on p. Now, for 0 <7 <1 we have

L J u(rl)|dg|= 1 fﬁ u(re®®) df = 1 Jﬂ u[rg(0) ] df + 1 fﬁ {u(re'®) — ulrqg(0) e"]} db
27 ), 27 ). 27 ), 1 27 ). :

(5.1.8)
For the first of these integrals we get an upper bound using (5.1.1):

2n a ) h 2/[ « 1— q(ﬂ) h 27 « ) = ’
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C being an absolute constant. Using (5.1.2), (5.1.3) and (5.1.7) we obtain:

1 [# 0 0 1 @ 8 o .
‘ﬁf ey mulO)e ]}delgﬁz “vf {1 —[g(6)]"'} e"°d6
C,Coecr Z log (1+|v|) ,
s 127: E’omm—(l!m! =Cper (5.1.10)

with C, < co dependent only on p>2 and 7=8—a<1.
Now, (5.1.8), (5.1.9) and (5.1.10) yield

—;;J‘Iu(ré)]dd <[pr(I)+C,|I|lc (5.1.11)

for 0<r<1, p>2 and II | <1, the last restriction being unessential owing to Lemma 4

{§ 3.3). So we have proved that the measures
1
olI)= - f uirl)|dz| (O<r<1)
2n I

are uniformly x»-bounded from above. Using the Helly-type selection theorem (Theorem 1,

. w .
§ 4.1) we can find a sequence r;<ry< .., r,—1, such that o‘—%—*a(v—>°°), o being a

premeasure satisfying (5.1.5). Now, for |z| <r<1 we can write

u(z) = LUP(C, ;) o (|d¢]). (5.1.12)

Letting 7 tend to 1 and taking into consideration the definition of »-weak convergence of
measures, as well as the smoothness of the Poisson kernel, we obtain the representation of

u(z) in the form of a generalized Poisson integral:
u(z) = f P 2)o(dL]) z€D), (5.1.13)
8U
the integral being understood in the following sense:
f P, z)o(|dl))= — f a(0) l:~ P, z)] do (6.1.14)
aU 0 do
with §(0) =a(le), Iy={(: |v| =1, 0< Arg { <6}. The boundary measure ¢ in (5.1.13) satis-
fies (5.1.5), and consequently (5.1.6), too. What remains to be proved is the existence of

the limit in (5.1.4), and this is the consequence of the following theorem which is analogous

to the classical Fatou theorem about the limit values of a Poisson integral:
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THEOREM 2. Let
u(z) = f P, 2) (| dL)) = — f (0)[ P(e"”, )]de (€U) (5.1.15)
oU

be a generalized Poisson integral with the premeasure p of bounded x-variation, p(0) =u(ly),
Iy={C: |{| =1, 0< Arg £ <0}. Then for each open arc 1< U the following limit exists:

tim - | u(r0)|d] =t + D) (51.16)

I being the closure of 1.

Proof. Let I={(: |{| =1, a< Arg { <B}. Integrating (5.1.15) and using some elemen-

tary properties of the Poisson kernel we get:

1 1 (> #1d
a5 | weonacl= = [ s [ [[[2 pree, re) aghas
= f (0){ f [ P(e®, re“’)] d¢}d0
=%t{ fo p(0) P(®, re*) d6 — f £(0) Pe® re“’)dﬂ}
Using the classical Fatou theorem we obtain

Jlim —fu(ré‘”d@'] (ﬁ+02)+’2(/3)_ﬂ(“+02)+/2(a)’

which is equivalent to (5.1.16).

COROLLARY. Premeasure u of bounded x-variation in the representation (5.1.15) is

uniquely determined by the harmonic function u(z).

5.2. Harmonic functions and their representation by generalized poisson integrals

TrEOREM 3. Every harmonic function u(z) belonging to the class § can be represented
by a generalized Poisson integral of the form

27 d
we= [ o - [ 5P| aoras, G21)
oU ]
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W being a premeasure of bounded x-variation which is uniguely determined by u(z); moreover,

lim o f uirt)|ag] =T 4D (5.2.2)
r>1-0270 J; 2
for every open arc I<dU. Conversely, every premeasure u of bounded x-variation determines
a harmonic function u{z)<$) by means of (5.2.1).
If u(z) €D+ and satisfies (5.1.1), then u is x-bounded from above; moreover, the following
inequality holds:
wI) <[2+&)n(l)+C:|I|lc (VIER, £>0), (6.2.3)
which implies
() < Con(Iy (VIER), (5.2.4)

C being an absolute constant. Conversely, if u(I)<cx(l) (V I€R) with some ¢>0, then for

the function u(z) the inequality holds:

u(z)<c (log I%Izl + a) (=€), (5.2.5)

with an absolute constant a >0.
Proof. Let u in (5.2.1) be x-bounded from above: u(I)<cx(I) (¥ IER). A straightfor-

ward computation then shows that the function u(z) satisfies (5.2.5). All the other state-
ments of the theorem follow from Theorems 1 and 2 (Ch. 5) and Theorem 5 (Ch. 4).

THEOREM 4. Let u(z) be harmonic in U, uw(0) =0. The necessary and sufficient condition
for u(z) to belong to  is

sup # Var u, < oo, (5.2.6)
O<r<1
[, being defined as follows:
1
wl)=5- f w(rl)|de| (VIER). (5.2.7)
T Jr

Proof. Let u{z) €H. By Theorem 3, (5.2.1) holds. Consider the Banach space V. of all
premeasures u of bounded x-variation with the norm ||g|| =x Var . This norm is invariant
under rotations T'( €aU):

\Tell = llell, (o)) =p({CI}) (VIER).

Using (5.2.1) and (5.2.7) we readily obtain the following representation of the premeasure

My in the form of an abstract integral in the space V,:

1
w=ge | PN Tula,
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and this yields the required estimate:
1
T JaUu
Conversely, let (5.2.6) hold. We have for 0 <r<1:
1
MM—;J.P@@Mﬁwm—f P(, 2) ol dE)). (5.2.8)
T Jou oU

By Theorem 1 (Ch. 4), we can choose in view of (5.2.6) a x-weakly convergent sequence
{un}:
W
MPry—— U (‘T,, t 1),

4 being a premeasure of bounded x-variation. This justifies the transition to the limit in
(5.2.8) which yields

ma=] P(L, 2) u(|dE));
oU

thus u(z) €.

6. Meromorphic functions of the class % and their factorization
6.1. Generalized Blaschke products

Definition 1. Let a={«,} be a (finite or infinite) sequence of complex numbers,
0<]ay| <|og|<...<1, and let

S(l—Ja]?<oo. {6.1.1)
The following product
%
- w2 Jul |lwl™F 1
= N ki 2 log — 6.1.2
e 012

||

which converges in view of (6.1.1), will be called the generalized Blaschke product with the
zero set o. If = we put Ba(z) =1.

THEOREM 1. Let f(z) €A-, [(0) %0, and let a={w,} be the zero set of f(z) or its subset
Then
F(z) = f(2)[ B,(z)] * €4, (6.1.3)
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Proof. Take an arbitrary point {,€8U and estimate the modulus of F(z) along the radius
Ry, ={z:r{y, 0 <r<1}. Consider two domains: Gy =G4, 4 and Giy.aq, o With some g>2

and 0 <a <}. Obviously, G, < @,. Now prove the following

LeMMA. For 2, €6y, 2,€ U\G, the following inequality holds:

2, — 2, |
1—22,

>1-0(1—|z,)), (6.1.4)

with C >0 dependent only on q and a.

Proof of the lemma. (6.1.4) is trivial if at least one of the points z,, 2, lies outside a fixed
neighbourhood V,={z: |z —{,| <&} of the point {,. We can therefore assume that z;,2,€ V.
Mapping conformally U onto the halfplane Im w >0 with w({,)=0 we therefore reduce
{6.1.4) to the following inequality:

Wy — W,

>1-CImw,(|w,| <1, |w,|< 1, Imw, >a|Rew;|% 0< Imw,<a|Rew,[*).

W, — w,
Put w;, =z +ty, wy=u+1v, 80 that y>a|z|?% 0<v<a|u|?*. We have

wy —wy?_(u—a)f+ -y _ alul

v
S P A P P L i——
(w—x)?+ (z+y)* 1 y(u—x)2+(v+y)2 1 y(u—x)2+a2|u12"

Wy — Wy

An easy computation shows that
a|uf*

C, < oo

max a,q .

Seret (uw— )+ a?|z[
-1 ugl

which proves the lemma.
1t f€eA-", then by Theorem 1, Ch. 3, and Lemma 1, § 3.3,

2, (1—|“v|)<01<°°7

apeGy

with C; dependent only on =, ||f||_., ¢, @. Using (6.1.4) we obtain that the Blaschke product
&y —2 I av'

B,(z)= —— 6.1.5

() «.EIG, 1-a2 a ( )

satisfies the inequality:
| By(z)| = C, >0 (2€0Gy).
Therefore the function
Fi(2) = f(2)[ B,(2)] !
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has the property
|F1(z)| < Callfll—nlz_Col TN (2€0G),

and by the Phragmen-Lindeléf principle a similar inequality holds in Gy:
| Fy(2)] < Cllfll_alz—C6] 72" (2EG,). (6.1.6)

On the other hand, applying Lemma 3, § 3.3, we can evaluate from below the modulus of
that part of the generalized Blaschke product Ba(z) which is determined by the zeros a, ¢ Gy:

oy

2 oz ful | "

B e e P e ]
||

We have for z€ R,,:

|1~32(z)|,>/exp{—05 > (l_——lmvl):}>exp{—06 ZG (1-|a|)"®?}=C,<0, (6.1.7)
xy &Gy

ay¢Gy | Oy
z

lol

with C', dependent only on =, ||f||-., ¢, a.
Now, taking into account (6.1.6) and (6.1.7) we obtain for z€ R,

|F@| < | By(a)] - | Bo@)| = < Cullf| O3 |2 —Lo| 27 = Calz—o] *0,  (6.1.8)

with Cg dependent only on , ||f]|_,. ¢, a. Thus our theorem is proved, since this estimate holds
for all the radii R;,. In fact a sharper result holds true:

CoROLLARY 1. If f€EA~™, ||f||_s<b, then FE€ A"~ and
| Fll—gne < € < o, (6.1.9)

with C dependent only on n, b and ¢.

COROLLARY 2. 4 generalized Blaschke product belongs to the class N iff its zero set a
satisfies condition (T').

Proof. The zero set o« of function fEN, f=g/h (g, REA~®), is a subset of the zero set
of g and therefore, by the Corollary 2 of Theorem 1, Ch. 3, an A~*®-zero set itself. Con-
versely, if «a€(7'), then by Theorem 1, Ch. 3, a function f€ A4~ exists for which « is the
zero set. By the theorem we have just proved, the function

F(2) = {(2)[ By (2)]
belongs to A—® ag well, and consequently B,(z)=f(z)/B(z) belongs to the class .
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6.2. Meromorphic functions

TaEOREM 2. Every meromorphic function f(z), f(0) +0, f(0) % oo, belonging to the class

N, admits a unique representation in the form

fe)=11 {f (te (ldz:l)} (6.2.1)

/s(z)

A=0 being a complex number, « and f being two disjoint sequences satisfying condition (T)
and u a premeasure of bounded x-variation; in fact, A=f(0), a is the zero set and B is the pole
set of f(z). Conversely, every funciion of the form (6.2.10) under above resirictions belongs to
the class N.

This theorem is a direct consequence of Theorem 1, Ch. 6, and Theorem 3, Ch. 5.

THEOREM 3. Let f(z) be @ meromorphic function in the unit disk U, f(0)=1, a={o,} be
the zero set and §={8,} the pole set of {(z). The following conditions are necessary and suffi-
ctent for f(2) to belong to the class N:

(i) o and B satisfy condition (T');

(i) sup % Varu, < oo (6.2.2)
O<r<l
where
r
p D)= floglf(rC |-{a¢]— <, 10g| I “le<r logm(vle R).
el GollBobel >

Proof. Let f(z) =g(2)/h(z), g(0) =h(0) =1, g(2), h(z) EA~™. We can assume that the zero
set of g(z) is o and that of k(z) is §; otherwise we could, by Theorem 1, Ch. 6, divide both
g(z) and h(z) by 1§y(z) with y ={yp,} consisting of the common zeros of g(z) and h(z). It is
evident that the functions g,(z) =¢(rz) and h,(z)=h(rz) have uniformly bounded norms in
A-" for 0 <r<1. Therefore if the functions f,=g,/h, (0<r<1) are factorized according
to the formula (6.2.1), then the corresponding premeasures y, must have uniformly bounded

»-variations. Thus we have proved the necessity of (i) and (ii). To prove the sufficiency we

C—i—z }
= d
=g z)exp{f u )

with o ={a,/r} (Jo,| <7), B’ ={B,/r} (|B,] <7). To carry out the transition to the limit for
r—~1—0 we have to use the Helly-type selection theorem (Theorem 1, Ch. 4) which yields

Do [ 2 uaz,

first factorize f,:

&)=




218 B. KORENBLUM

u being some premeasure of bounded x-variation. In view of Theorem 2, Ch. 6, this
implies f(z) €N.
Now we can introduce the notion of the x-singular measure associated with a function

fE€N. For convenience, we assume that f(0) =0, f(0) =+ oo,

THEOREM 4. Let f(2) EN and let (6.2.1) be the factorization of {(z). Define for every Carle-
son set F<olU

1 1
D(F)= — 1)+ log — — log —, 6.2.3
Ly ( ) z‘u( ) (ap/lf"ZvI)EF glavl (ﬁu/I%DEF glﬂt’l ( )

v

{I,} being the set of complementary arcs of F. There exists a unique countably additive finite
measure on the o-ring of all Borel sets B contained in a fixed Carleson set F which coincides

with uP(F) for all the Carleson sets F< F,.

Proof. Let F, be a fixed Carleson set. In view of the condition (7') which is satisfied
by both a={a,} and §={B,}, we have

logl—l~< o0

1
log — < oo.
| wv.'l%)en =81

(ay/jav|)eF,
Therefore

1 - 1
%(B) = — B)= log —
&(B) Z logl“ul’ B(B) (ﬂu'lgl)eB Oglﬂvr

(op/|oyl)eB

are countably additive measures defined for all the Borel sets B< Fy, and so is the -
singular part p, of the premeasure u, in accordance with Theorem 6, Ch. 4. For Carleson
sets F< F, we have

HO(F) = p(F) + &(F) - B(F). (6.2.4)

which proves the theorem.

Definition. ud=p,+a&—p will be called the x-singular measure associated with the
function fEN.
This notion seems to be very useful, perhaps even indispensable, for the description

of closed ideals (invariant subspaces) of the topological algebra 4=,
THEOREM 5. The x-singular measure associated with a function f€ 4~ is non-positive.

Proof. If f€ A-=, then the premeasure u in the factorization (6.2.1) is %-bounded from
above. Therefore its x-singular part g, is non-positive (see Theorem 6, Ch. 6, and the

Corollary). Using (6.2.4) we find for every Carleson set F':

pF)<a(F)= 3 1og|017|. (6.2.5)

(ap/lay|)eF
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On the other hand, if we divide f(z) by

2 ‘“”} O<r<1)

B,(z)= —
® |a1»_|I<r1~ocvz oy

then the function
f+(2) =f(z) [BAz)]*

has the same singular measure:

u? =y,
and (6.2.5) yields:
1
D(F) = udP(F) < logi——~0 (r—>1-0),
PO =S S e &lal” ( )
which proves the theorem.
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