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In  this paper we exhibit a class of Klein]an groups called Koebe groups, and prove tha t  

every un]formization of a closed Riemann surface can be realized by  a unique Koebe 

group. 

The first examples of these groups were due to Klein [6] who constructed them using 

his combination theorem. Koebe [7, 8] proved a general un]formization theorem for 

Klein]an groups constructed in this fashion. 

Our existence theorem is based on the generalized combination theorems [11, 12], 

and uses Bers'  technique of variation of parameters using quasiconformal mappings [3]. 

The uniqueness theorem is a generalization of Koebe 's  original proof [7], but  with weaker 

hypotheses. 

Detailed statements of theorems, and outlines of proofs appear  in section 2. The theorems 

are all formulated in terms of Klein]an groups; equivalent formulations in terms of un]- 

formizations of Riemann surfaces appear in [13], where our main result was first announced. 

1. Definitions 

1.1. We denote the group of all fractional linear transformations by SL'. A Klein]an 

group G is a subgroup of SL' which acts discontinuously at  some point of ~ = C  U (oo}. 

The set of points a t  which G acts discontinuously is denoted by  ~ = ~ ( G ) ,  and its 

complement A = A ( G )  is the limit set. A component of ~2(G) is called a component of G; a 

component A of (7 is invariant ff gA = A, for all g E G. 

1.2. We will be primarily concerned with Klein]an groups which have an invariant  

component. For any g E SL', we will not distinguish between the Klein]an group G with in- 

var iant  component A, and the group go Gog -1 with invariant  component 9(A). 

x Research supported in par t  by NSF Grant  rgPO 19572000. 
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1.3. An isomorphism ~0: G~G* between Kleinian groups is called type-preserving if 

preserves the square of the trace of every elliptic element; and if both y3 and ~v -1 pre- 

serve parabohc elements. 

1.4. Two Kleinian groups G and G*, with invariant components A and A* respectively, 

are called weakly similar if there is an orientation preserving homeomorphism ~: A-~A*, 

where ~ogo~ -1 defines an isomorphism from G onto G*. In  this case, ~ is called a weak 

similarity. 

If  the isomorphism g--->q~ogoq~ -1 is type-preserving, then ~ is a similarity, and G and 

G* are called similar; if in addition, q is conformal, then G and G* are called con]ormally 

similar. 

1.5. A parabohc element g of a Kleinian group G is called accidental if there is a weak 

similarity q, so that  ~ogoq  -1 is loxodromic (including hyperbolic). 

1.6. If G is a Kleinian group with invariant component A, and H is a subgroup of G, 

then H has a distinguished invariant component A( H) ~ A. 

1.7. A subgroup H of a Kleinian group G with invariant component A is called a 

]actor subgroup if H is a maximal subgroup of G statisfying 

(i) A{H) is simply-connected, 

(ii) H with invariant component A(H) contains no accidental parabolic elements, and 

(iii) every parabohc element of G, whose fixed point lies in A(H), is an element of H. 

1.8. A Kleinian group G is elementary if A(G) is finite; it is Fuchsian if A(G)is a 

circle (or line). 

1.9. A finitely generated Kleinian group G with an invariant component is called a 

Koebe group if every factor subgroup of G is either elementary or Fuehsian. 

2. Statements of results 

2.1. Our main result is that  every finitely generated Kleinian group with an in- 

variant component is conformally similar to a unique Koebe group. We, in fact, prove a 

stronger result. 

THr.ORE~ 1. Let G be a ]initely generated Kleinian group with an invariant component. 

Then there is a unique Koebe group G*, and there is a unique (up to elements of SL') con/ormal 

similarity between G and G*. 

2.2. We prove this theorem in several steps. In  section 5 we use the combination 

theorems [11, 12] (see section 4) and the decomposition theorem [14] (see section 3) 

to prove a topological existence theorem. 
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THEOREM 2. Every tinitely generated Kleinian group wish an invarian$ component is 

~imilar to a Koebe group. 

In  section 7 we combine Theorem 2 with Bets '  technique of variation of parameters  

by  quasiconformal mappings [3] to prove the existence par t  of Theorem 1. 

THEOREM 3. Every finitely generated Kleinlan group with an invarian$ component is 

cou/ormaUy similar to a Koebe group. 

In  section 10 we prove the uniqueness of Koebe groups. 

THEOREM 4. I t  qJ iS a conformed similarity between Koebe groups, then q~ESL'. 

I n  broad outline, the proof of uniqueness follows Koebe 's  original proof [7]. The esti- 

mates  in section 9 for loops invariant  under parabolic transformations are new. Also, we 

do not  assume any knowledge of how the groups are constructed, and so we need to know 

tha t  similarities preserve factor subgroups. 

THEOREM 5. Let q and G* be Kleinian groups with invariant components, and let 

~p: G~G* be a type-preserving isomorphism. Then H is a/actor subgroup of G if and only if 

v2(H ) is a factor subgroup of ~p(G). 

The proof of Theorem 5 is based on the following generalization of a result in [15]. 

THE OR E M 6. 1/there is a type-preserving isomorphism from a Kleinian group G onto a 

finitely generated Fuchsian group of the first bind, then (~ has a simply.connected invariant 

component, and G contains no accidental parabol~ elements. 

Theorems 5 and 6 are proven in section 8. 

3. D e c o m p o s i t i o n  

3.1. Let  H be a subgroup of the Kleinian group G. A set A c C is said to be precisely in. 

variant under H in G if 

(i) g (A)=A,  for all gEH,  and 

(ii) g(A) fl A = 0 ,  for all g E G - H .  

I f  Y is a connected subset of ~ /G  and A is a connected component of p - l ( y ) ,  then A 

is precisely invariant  under H ffi {g e (7 ]gA = A}  in G. In this case, we say tha t  A covers Y, 

and tha t  H is a covering subgroup of Y. 

In  general, for a Kleinian group (7 and subset A c O ,  H = { g E G [ g A = A }  is called the 

stabilizer of A in G. 

17-  752906 Acta mathematica 135. Imprim6 1r 15 Mars 1976 
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3.2. For the remainder of this section we assume that  G is a given finitely generated 

Kleinian group with an invariant component A. 

Ahlfors finiteness theorem [1] asserts tha t  S-~A/G is a finite Riemann surface (i.e., 

a closed surface from which a finite number of points have been deleted), and that  the 

projection p: A - ~  is branched over at  most a finite number of points of S. 

3.3. I t  was shown in [14] tha t  there is a set of simple disjoint loops w 1 .. . . .  w k on S, 

which divide S into sub-surfaces ]71 ..... Ys, so that  the following hold. 

(i) Each covering subgroup of each Y~ is a factor subgroup of G; every factor subgroup 

of G is a covering subgroup of some Y~; two factors subgroups are conjugate in G ff and 

only if they are covering subgroups of the same Y~. 

(ii) If H and H' are factor subgroups of G, then H ~ H'  is either trivial, elliptic cyclic 

or parabolic cyclic. 

(iii) If  A covers some Y~ with covering subgroup H, and A'  covers some Y; with 

covering subgroup H', and ~ N AT' ~ O, then ~ N ~ '  is a simple loop which, except perhaps 

for a parabolic fixed point, covers some w s with covering subgroup H N H'. 

(iv) If W covers some wj then W lies on the boundary of two regions A and A', where 

A covers some Yf with covering subgroup H, and A'  covers some Y~ with covering sub- 

group H'. Then H N H' is the stabilizer of W. 

In particular, every covering subgroup of each wj is either trivial, or elliptic cyclic or 

parabolic cyclic. 

(v) Every elliptic or parabolic element of G is contained in some factor subgroup. 

3.4. I t  was also shown in [14] tha t  if we appropriately choose a complete set of non- 

conjugate factor subgroups, then G can be constructed from these subgroups using 

weak versions of the combination theorems. We essentially reprove this in section 5. 

3.5. The properties listed in 3.3 are obviously invariant under small deformations of 

the loops wj; in particular, we can assume that  each wj is smooth. 

4. Combinat ion  t h e o r e m s  

4.1. We state the combination theorems here in the form that  we will use them. 

Except  for conclusion (iv), these are special cases of the results in [11] and [12]. Under more 

stringent hypotheses, conclusion (iv) is proven in [16]; that  proof is easily adapted to this 

case. 

4.2. For any Kleinian group G, we let ~ ~ be ~(G) with all fixed points of 

elliptic elements deleted, so that  G acts freely on ~ A /undamental set D for G is a 

subset of ~ satisfying 
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(i) g(D) [I D = O ,  for all g E G - 1 ,  

(ii) U ,~a g(D) = o~, and 

(iii) 3D has zero 2-dimensional measure. 

4.3. CO~BINATIO~ THEOREM I. Let H be a ]inite or parabolic cyclic subgroup o] 

both the Kleinian groups G1 and Gs. Assume that there is a simple closed curve W which 

divides ~ into two topological discs B 1 and B~, where Bt fi ~(H) is precisely invariant 

under H in G~, and W fl~(H)=~(G~), i = l ,  2. Assume that there are ]undamental sets 

D1, Ds, E, ]or G 1, Gz, H, respectively, where D~= E, i=  l,  2. We also assume that i] H is 

parabolic, then H is its own normalizer in either G 1 or Gs. Then 

(i) G, the group generated by G 1 and G~, is Kleinian; 

(ii) G is the ]ree product o] G 1 and G~ with amalgamated subgroup H; 

(iii) D = D 1 fl D~ is a ]undamental set ]or G; 

(iv) every elliptic or parabolic element o/ G is conjugate in G to some element o/either 

G x or G~; and 

(v) 1/ zeA(G), then either z is a translate o I some point o l A(G1), or z is a translate of 

some point o] A(G~), or there is a sequence {gn} o/distinct elements of G so that gn+i(W) 

separates z / t o m  gn(W), and z =  lira gn(W). 

4.4. COMBX~ATIOX TH~.OR~M II .  Let H1 and H~ be subgroups o/ the Kleinian 

group Gi, where H i and Hz are ]inite or parabolic cyclic. Suppose there are open topo- 

logical discs B1, B2, bounded by simple closed curves Wi, Wz, respectively, where Bt is 

precisely invariant under Ht in Gi, i = l ,  2, either Bi  is precisely invariant under H i in 

G1, or B~ is precisely invariant under H~ in Gi, and g(B1) fl B$=~, /or  all g~G 1. Suppose 

]urt,~er that there are ]undamental sets D i, El,  E~, ]or G~, HI, H~, respectively so that 

DI~  E~, and W~ ~ E ~  W~ fi D~, i = l ,  2. Assume also that there is an element ]ESL' so 

that ~(W1) = W~, [OHlO]-I =H~, and ](B1) fl B~ =(D. Then 

(i) G, the group generated by G 1 and [ is Kleinian; 

(ii) every relation in G is a consequence o] the relations in Gi, together with ] O H l o ] - l =  

Hz; 
(iii) 

(iv) 

and 

(v) 

D = D 1 - {(D 1 N B1) U (D~ D B~)} is a ]undamental set [or G; 

every elliptic or parabolic element o] G is conjugate in G to some element of G1; 

i] zEA(G), then either z is a translate of some point o] A(G1), or z is a translate of 

a ]ixed point of ], or there is a sequence {g,} o] distinct elements o] G, so that gn+i(W1) 

separates z ]rom gn(Wi), and z = lim g,(Wi). 
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5. Topologieal construction 

5.1. As in section 3, we assume throughout this section tha t  G is a given finitely gen. 

erated Kleinian group with an invariant  component A. We set S=A/5 ,  and let w 1 ... . .  w~ 

be the loops on S which divide it into the subsurfaces Y1 ..... Ys. 

5.2. I f  the number  of loops /r then 5 is a factor subgroup of itself; hence A is 

simply connected, and 5 contains no accidental parabolic elements. I f  A is hyperbolic, 

then one easily sees tha t  G is conformally similar to a Fuchsian group; if A is not  hyperbolic, 

then of course 5 is elementary. 

5.3. Proceeding inductively with the proof of Theorem 2, we first take up the case 

tha t  some w t, we now call i t  w, is dividing. 

Let  W cover w; i f  necessary we adjoin a parabolic fixed point to W, so tha t  it becomes 

a simple loop. Let  B 1 and B 2 be the topological discs bounded by  W. 

We choose base points 6 on W, and o ~p(~), and after deleting the points of ramifica- 

tion from S to get a subsurface ~' ,  we define the subgroup ~t of ~1(S', o) to be generated by  

those loops on S '  a t  o, which do not  cross w, and whose liftings starting or ending a t  

do not enter B t. 

Having chosen base points, there is a natural  homomorphism from ~1(S', o )onto  5. 

We let 5t be the image of ~t under this homomorphism. 

Let  H be the stabilizer of W in 5. One sees a t  once tha t  B t is precisely invariant  under 

H in Gt; in fact, except perhaps for a parabolic fixed point, Bt is precisely invariant  under 

H in 5t. 

The loop w divides S into two subsurfaces X 1 and X~, where near W, X 1 =.p(B~) and 

X~=p(B1). Near W, there is a connected component At of p-l(X~). One sees at  once tha t  

5~ is the stabilizer of At in 5. Since A~/5t U (Bt fl ~(H))/H is already a finite Riemann sur- 

face, A(Gt)/5t =~:~ is Xt with a disc or punctured disc sewn in along the boundary loop w. 

We originally had S cut up into subsurfaces Y1 .... .  Ys, by  the loops w =Wl . . . . .  wk. 

Those of the loops w~ .... .  wk which lie in ~:x cut it up into subsurfaces ~1 .. . . .  1~;. Since each 

covering subgroup in 51 of each ~t is a factor subgroup of G, one easily sees tha t  i t  is also 

a factor subgroup of G r 

From the way we have constructed 51, it is clear tha t  if g E 51 doesn't  lie in a covering 

subgroup of some ~ ,  then g is loxodromic, and there is some lifting W 1 of some w t which 

separates the fixed points of g. We conclude tha t  g does not lie in any  factor subgroup of 

51, and so the covering subgroups of the ~t are precisely the factor subgroups of 51. 

I t  now follows from our induction hypothesis tha t  51 is similar to a Koebe group 51"; 
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we denote the similarity by ~1: A(G1)-~A(G*) =A*. The same reasoning shows that  there is 

Koebe group G~, and a similarity ~ :  A (~ )  A(G2) _~A~. 

Since B, is precisely invariant under t h e  cyclic subgroup H in Gt, ~(Bt) is precisely 

invariant under H* = ~ t o H o ~  1 in G~, and so there is a circular disc contained in ~t(B~) 

which is also precisely invariant under H* in G*. After an obvious deformation, we can 

assume that  ~t(B,) is a circular disc. 

We normalize G~ and G2* so that  B~=~(B1)  is Iz I~  I, and so that  B~-~I(B~) is 

]z I~1.  We further normalize and deform ~ and ~ near W so that  ~ ]W=ffi~2 ]W. Now 

H * - ~ 1 o H l o ~  1 ~ 2 o H 2 o ~  1 is a common subgroup of (~* and G* 3 "  

The only non-trivial hypothesis of 4.3 tha t  we need to verify is tha t  H* is its own 

normalizer is either G~ or G*. In  order to see that  H is its own normalizer is either G~ or (~, 

we look at the covering regions which border on W, and the factor subgroups J~, J~ which 

stabilize these regions. We easily observe that  if H is parabolic and H is not  its own nor- 

realizer in (~, then H is not its own normalizer in J~, and so J~ must be elementary. If  

J~ and J2 were both elementary, then J~ U J~ would also be elementary, contradicting the 

maximality of J~. We conclude that  the hypothesis of 4.3 are satisfied both for the groups 

G~ and (~2 with common subgroup H and for G* and (~  with common subgroup H*. 

One sees at once that  the factor subgroups of G* and of G* are factor subgroups of G*, 

the group generated by  G~ and G~ and as above one easily sees tha t  every factor subgroup 

of G* is a conjugate of one of these. Hence G* is a Koebe group. 

We can combine ~ and ~2 to obtain a similarity ~: A-~A*, the invariant component 

of G*. We define ~ 1~4~=~, i = l ,  2, and observe that  ~ is continuous across W. We then 

use conclusion (if) of 4.3. to define ~ on A so that  ~(A)ffiA* and ~ o ~ o ~ - ~ ( ~  *. I t  then 

follows from conclusion (iv) of 4.3 tha t  g~(~ is parabolic if and only if ~o~o~ -~ is. Hence 

is a similarity between G and the Koebe group G*. 

5.4. Proceeding with our induction, we now take up the case that  none of the loops 

w~ . . . . .  w~ is dividing. Each loop w, when raised to some least power ~ lifts to a loop; if 

~ :~  ~ ,  then the corresponding element of ~ is parabolic. We assume that  ~ ~ ~2 ~. . -  ~ ~ .  

We let w---~v~, let W~ be some connected component of p-~(w), and we l e t / / 1  be the stab- 

ilizer of W~ in G; i f / /1  is parabolic, we adjoin the fixed point of H~ to W~, so that  in any 

case W~ is a simple closed curve. W~ divides 0 into two topological discs; we will call one 

of them B~. 

We choose base points o on w, and ~ on W~, let S~ be as in 5.3, and let ~ be the sub- 

group of ~ (~ ' ,  o) generated by loops on ~ '  at  o, which do not  cross w, and whose li~ings, 

starting and ending at  ~, do not  enter B~. Let  ~ be the image of ~ in G under the natural 

homomorphism. 
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Since w is non-dividing, GI~=G. The translates of W 1 under (7 cut up A into regions; 

let A be that  region which has W I on its boundary and which does not intersect B r Let  ] 

be some element of G-G1, where W2 ~ ](WI) lies on the boundary of A. Le t / / 2  = / o H  lo]-1, 

and let B 2 be the topological disc bounded by We, where B2 N .4 = O. 

One easily sees that  A is invariant under G1, tha t  B, is precisely invariant under H~ 

in G1, i = l ,  2, tha t  ](B~) (] B2---0 , and tha t  g(B1) (] B z = O  for all gEG r 

We let X = S - { w } ,  so that  X has two boundary loops. We observe that  X-~A(G1)/G 1 

is X with two discs or punctured discs sewn in along the boundary loops. The loops 

we .. . .  , wk divide ~ into regions :Y1 ..... ]~;  as in the previous ease, one easily sees that  the 

covering subgroups of the ~'~ are precisely the factor subgroups of G 1. Hence there is a 

Koebe group G* with invariant component A~, and there is a similarity ~1: A(G1)-~A~. 

For i =  1, 2, B* =ql(Bt) is a topological disc which is precisely invariant under H~ = 

~loH~oq-1 in G~. B[  contains a circular disc with the same properties; hence after a minor 

deformation, we can assume that  B* is a circular disc. Next one easily constructs an ele- 
$ 

ment f*E SL' so that  ~* maps the boundary of B~ onto the boundary of B~, ](B~) O B~ = (~ 

and ~* conjugates H~ into H~ inducing the same isomorphism as ~lo]o~v~ 1. We next  deform 

ql near We so that  ~vlo [ [Wl=/*oql  [W1. 

We remark next  that  the choice of w 1 to minimize the order ~1 guarantees that  if H 1 

is parabolic, then no factor subgroup of G can be elementary, and so H 1 is its own normalizer 

in G I. Hence Bt is precisely invariant under H~ in G1, B* is precisely invariant under H* 

in GI*, g(B1) N/~2 = O for all g E G1, and g*(/~*) fl J~  = O for all g* ~ G*. 

We conclude that  the hypotheses of 4.4 hold for both G 1 with subgroups//1 and Hz, 

and for G* with subgroups H* and H*. 

Let  G* be the group generated by (71" and/*.  As in the preceding case, we observe that  

G* is a Koebe group. 

We have ~1 defined on A. We define ~: A-~A*, the invariant component of G*, by 

[A = ~1 and then we use conclusion (ii) of 4.4 together with the fact that  ~ o~ [ W1 ~-/* o~1 [ W~ 
to define ~ as a homeomorphism of A onto A*; it follows from conclusion (iv) of 4.4 tha t  

g e G  is parabolic if and only if ~oGo~ -~ is. This concludes the proof of Theorem 2. 

6. Extended Kle'mian groups 

6.1. In what follows we will be dealing with extended Kleinian groups; tha t  is, discontin- 

uous groups of possibly orientation-reversing conformal self-maps of ~. 

6.2. We collect here some of the basic facts about Kleinian groups which also hold 

for extended Kleinian groups. The proofs, which are straightforward generalizations of 

those in the classical case, are omitted. 
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Let  ~ be an extended Kleinian group. We define the  set of discontinui ty ~ and the  

limit set A exact ly as in the  classical case. 

We normalize ~ so tha t  cr E ~ and  so tha t  cr is no t  a fixed point  of any  element of 

(~. Then  every g E ~ can be represented by  a mat r ix  

where either g(z) = (az + b) (cz + d) -x or 9(z) = (aS + b) (c~ + d) -1. 

The isometric circle of g is the  circle centered a t  9-1(co) with radius le I-1. E v e r y  ele- 

men t  g E (~ can be wri t ten as g = e o r, where r is inversion in the  isometric circle of g, and e 

is a Eucl idean motion.  

I f  we choose R so large t h a t  U = [z [ > R is precisely invar iant  under  the ident i ty  in 0 ,  

then  

dia 2 g(V) >~ k [e [..4, 

and so 

Z ]c ]-a < 0% 

where the  sum is taken  over all non-trivial  elements of 0 .  

6.3. I f  G is a Koebe group,  then  there is a na tura l  extended Koebe group ~ ~ G, 

where 0 is generated by  G together  with the reflections in the  limit circles of the  

Fuchsian factor  subgroups. 

LEMMA 1. 11 G is a Koebe group with invariant component A, and ~ is the extended 

Koebe group, then A is precisely invariant under G in 0. 

Proof. One easily sees t h a t  we can write a general element of ~ as r, orn_lo ... or loy  

where each r t is an  inversion in a limit circle C~ of some Fuchsian  factor  subgroup H t, 

gEG and r t # r t+  1. 

For  each i, we let A~ be the  component  of Hi, which does no t  contain A. 

Observe t h a t  g (A)= A;  r lOgl(A)cA1,  which is disjoint f rom A. Then  since r ~ # r  1, 

r~orlogl(A)=A 2. Continuing in this manner,  we see tha t  if g E ~ - G ,  then  g(A) f~ A = O .  

The proof above actual ly  shows more. 

L]~MMA 12. Let H 1 . . . . .  H~ be a complete list o] non-conjugate Fuchsian ]actor subgroups 

o/ Gj, let {gtj} be a collection o[ generators/or Hi, and let r~ be inversion in the limit circle of 

H t. Then the relations in G, together with the relations {gtjort = rtoglj, ~ = 1} [orm a complete 

set of relations/or 0. 
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6.4. LEMMA 3. ~(O)IO=A/c/. 
Proof. Since A is precisely invariant under O in (7, we need to show that  the translates 

of A cover ~((~). 

I f  z is not  in A((~), and not  in A, then zE~(G), and so [14] there is a limit circle C1 

of some Fuchsian factor subgroup which separates z from A. Let  r z be inversion in C1; 

if z Erx(A), then there is a ]imlt circle C~ on the boundary of rt(A), where Cr separates z 

from Cz. Continuing in this manner, we get a sequence of limit circles Cz, C2 ..... where C, 

separates z from Cn_z. 

I t  follows from Lemma 1 that  if we look at  all translates under (~ of all the limit circles 

of Fuchsian factor subgroups then any two of them are either disjoint or tangent. Since 

there are only finitely many  inequivalent Fuchsian factor subgroups, and each of them is 

finitely generated and of the first kind [14], the spherical diameter of C,-+0, and so z EA(~). 

7. The ex~Zenee theorem 

7.1. In this section we prove Theorem 3. Let  O be a finitely generated Kleinian group with 

invariant component A. Let  G* be a similar Koebe group, with invariant component 

A*, and let ~: A*-~A be the similarity. I t  was observed by Bets [3] that  we can assume 

tha t  ~ is quasiconformal; i.e., ~ has locally square integrable derivatives satisfying: 

~=p(z)~z ,  where ess sup IF] = k < l .  (1) 

7.2. Since ~ is a similarity, the dilatation p(z), defined in (1), satisfies 

/a. g(z) g'(z)/g'(z) =/a(z), (2) 
for every g E G*. 

7.3. We let (~* be the extended Koebe group and we define p for z in ~(~*) as follows: 

I f  zEA, then p is defined above. 

I f  z E~((~*), then by Lemma 3, there is a g E (~* with g(z) EA. If g preserves orientation, 

we define F(z) by (2). 

I f  g reverses orientation, we define F(z) by  

pog(z) g'(z)/g'(z) =p(z), (3) 
where g' (z) =g';. 

One easily sees that  these definitions are consistent, so that  p is well defined. 

If z~A(O*), we se t / J (z )  =0 .  

The function/~ is measurable and ess sup [p [ < 1. 
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7.4. I t  was shown by Ahlfors and Bers [2] tha t  given p(z) measurable with ess 

sup IP ] < 1, then there is a quasiconformal homeomorphism w of ~, satisfying (1), and that  

if v is any other solution of (1), then v =low,  where fESL'.  

7.5. Let  w be some solution of (1) as above. If  g is an orientation-preserving element 

of G*, then it follows from (2) tha t  

(wog)~ =/~(z)(wog)~, 

hence there is an element ~(g)ESL', with wogow -1 =rj(g ). 

Similarly if g E (~* is orientation-reversing, then it follows from (3) tha t  

(wog)~ =/~(z)(wogL; 

hence there is an orientation-reversing conformal transformation ~(g)=wogow -1. 

7.6. The group G' =~(G*) is a Kleinian group with invariant component A' =w(A), 

and since w is a homeomorphism, ~ is type-preserving; hence w IA* is a similarity. 

Elementary factor subgroups are obviously preserved under isomorphisms, and each 

non,elementary factor subgroup is the stabilizer of its limit set, hence both r 2 and ~-1 

preserve factor subgroups. 

For  each Fuchsian factor subgroup H* of G*, there is an inversion r* G(~*, whose fixed 

point set is A(H*). Hence the fixed point set of ~(r*) is A(~2(H)). Since ~(g*) is an orientation- 

reversing fractional linear transformation, its fixed point set is either finite or a circle. We 

conclude that  G' is a Koebe group. 

7.7. Since ~ and w are both similarities, Wow-l: A'-~A is a similarity between G' 

and G. One computes] that  for zEA', (Wow-1)~ =0,  and so Wow -1 is a conformal similarity 

between G' and G. This completes the  proof of Theorem 3. 

8. Isomorphisms 

8.1. In  this section we prove Theorems 5 and 6. We start  with some observations 

about Fuchsian groups. 

8.2. L~.~!~A 4..Let ~: G-->G' be a type.trreserving isomorph~m between finitely gener. 

ated Fucheian groups. Then G and G' are of the same bind. 

Proof. I t  is well known that  if G is of the second kind then G can be written as a free 

product of cyclic groups where every elliptic or parabolic element is a conjugate of some 

element in one of these cyclic groups. If G is of the first l~ind and purely hyperbolic, then 

it  cannot be decomposed as a non-trivial free product; if it  is not  purely hyperbolic, then 
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i t  contains elliptic or parabolic dements  gl . . . .  , gn, belonging to distinct conjugacy classes 

of maximal cyclic subgroups of (7, where gno ... og 1 lies in the commutator  subgroup. 

8.3. LEMMA 5. Let (7 be a/initely generated Kleinian group with an invariant comlao- 

nent. I /  every/actor subgroup o /G is cyclic, then there is a type.preserving isomorphism o/ 

(7 onto a Fuchsian group o/the second kind. 

Proo/. I t  was shown in [14] tha t  the intersection of any two factor subgroups is a 

maximal  cyclic subgroup of (7, hence in this case the intersection of distinct factor sub- 

groups is trivial. Again using [14] we conclude tha t  we can choose a complete set HI  ..... H ,  

of non-conjugate factor subgroups, so tha t  (7 is the free product, in the sense of combination 

theorem I, of H 1 ... . .  H,. The construction of a Fuchsian group of the second kind which 

is a free product of elliptic and parabolic cyclic groups is classical (it is also a straightfor- 

ward application of 4.3). 

8.4. We now prove Theorem 6. Let  ~: (74(7' be a type-preserving isomorphism from 

the finitely generated Kleinian group G onto the Fuchsian group of the first kind G'. 

Let  A be some component of (7, and let (70 be the stabilizer of A; by  Ahlfor's finiteness 

theorem [1], (70 is finitely generated and has A as an invariant component. 

We first show tha t  (70 contains a non-elementary factor subgroup. I f  not, then [14] A 

would be the only component of G 0, so tha t  G O = G. Then by  Lemma 5, we would have 

a type-preserving isomorphism of (7 onto a Fuehsian group of the second kind, which, by  

Lemma 4, cannot occur. 

Now let H be a non-elementary factor subgroup of (7. Then there is a type-preserving 

isomorphism of H onto a Fuchsian group of the first kind, and so by  Lemma 4, ~0(H) is of 

the first kind. 

Since ~p(H) and V((7) are both finitely generated and of the first kind, [(7 : H] < ~ ,  and 

so A((7)=A(H). 

I t  was shown in [17] (see also Bers [4] and Kra  and Maskit [9]) tha t  H i s  either quasi- 

Fuchsian (i.e., a perhaps trivial quasiconformal deformation of a Fuehsian group) or de- 

generate (i.e., ~ (H)  is connected and simply-connected). Hence either (7=H, or H i s  quasi- 

Fuchsian, and [(7 : HI  = 2. 

I t  remains only to show tha t  the lat ter  case cannot occur; we assume it  does. Using 

the Nielsen realization theorem [5] (for proof, see Marden [10], or Zieschang [18]), there 

is a quasiconformal homeomorphism 

w : O ~ O ,  where wogow-l=~v(g),  for all gEH.  

We assume tha t  G' operates on the upper  half plane; we let r denote reflection in the 
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real line, and we let j be some element of G - H .  We observe that  g-----rowo)oW - 1  maps U 

onto itself, and that  for every gE~(H), Xogof l=~( j )ogo~( i -1 ) ,  which is impossible since 

y(j) preserves orientation while g reverses orientation. 

This concludes the proof of Theorem 6. 

8.5. We now prove Theorem 5. We have a type-preserving isomorphism ~: G~G*, 

and H is a factor subgroup of G. We need to show that  ~(H) is a factor subgroup of G*, in 

fact, it suffices to show that  ~(H) satisfies conditions (i)-(iii) of 1.7. 

If H is elementary, then one easily sees tha t  ~p(H) is also elementary with the same 

number of limit points. 

If H is non-elementary, there is a type-preserving isomorphism of H onto a Fuchsian 

group of the first kind, hence by Theorem 6, yJ(H) satisfies (i) and (if) of 1.7. 

If g* is a parabolic element of G*, and the fixed point of g* lies in A(~(H)), then the 

group/~ generated by ~(H) and g* has a connected limit set, and so A(~) is simply-connect- 

ed. If the Riemann map from A(/~) induces a type-preserving isomorphism on ~(H), 

then the image of ~(H) must be of the first kind and [/J[: ~(H)] < co; hence some power of 

g* lies in ~0(H), and so the fixed point of ~0-1(g *) lies in A(H). 

If the Riemann map does not induce a type-preserving isomorphism on ~(H), then 

~p(H) contains a parabolic element g' which is accidental as an element of ~ .  As in the 

decomposition theorem, let W be a simple loop which is precisely invariant under the 

cyclic group generated by g' in /~ .  Now W separates A(/t)  into two non-empty sets, and 

since g' is not accidental as an element of ,p(H), A(~(H)) is contained in one of them. Hence 

the fixed point of g' is also the fixed point of some hog*oh -x, where hE/~, and hog*oh -1 ell. 

Since g' and hog*oh -1 have the same fixed point, they commute. Hence ~p-l(g,) and 

~p-l(hog*oh -1) have the same fixed point, and so ~-X(hog*oh -1) EH. 

9. Structure loops 

9.1. Throughout this section G is a Koebe group, with invariant component A; 0 

is the extended Koebe group; wl . . . . .  w~ is the set of loops on S=A/G; as in 3.3, they 

divide S into the regions Y1 ..... Ys. 
Each connected component of p-l(w~) is, after adjoining a parabolic fixed point if 

necessary, a simple closed curve, called a structure loop. We define the structure loops so 

that  the set of structure loops is invariant under 0 .  

The purpose of this section is to prove certain uniform estimates for structure loops. 

Since there are only finitely many equivalence classes of structure loops [14], it will suffice 

to prove each lemma for a given structure loop W and its translates under 0.  
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9.2. We will use the following notations and normalizations throughout this  section. 

Let  H be the stabilizer of IV in ~; then H is either finite or parabolic cyclic. 

If  H is finite, we normalize (~ so that  oo ~ ( ( ~ ) ,  ~ is not  fixed by  any element of (~, 

and so tha t  1V and all its translates under (~ are nnir bounded. 

We decompose (~ into cosets ( ~ = ~ H ,  so that  the set ~(Hr)~  is precisely the set o~ 

distinct translates of Hr. We write 

and let 6~ be the distance from g~l(~)  to Hr. Since Hrc  ~((~), there is a 6 >0, so that  6~ ~>6. 

If  H is parabolic, then we normalize (~ so that  c~ E~((~), ~ is not fixed by any element 

of ~, Hr and all its translates are bounded, H has its fixed point at  the origin, and H is 

generated by h: z-~z(z § 1) -1. 

Let  ~r be the stabilizer of the origin in (~. Since H is the intersection of two factor sub- 

groups and at  most one of them can be elementary, H contains a reflection in a circle in- 

variant under H. Hence H contains a rank 2 free abelian group ~ ,  where [H: ~]~<4, and 

/~ is generated by h and ~: z-~z(i~z+ 1) -1, ~>0.  

Let  t denote the map z-~z -1. We choose a fundamental domain D for H,  where every 

point of t(D) is closer to t(Hr) than to any translate of t(Hr) under toHot .  We set ~ ~ W ~ D. 

We assume that  D has been chosen so that  7 is connected, and so that  co ED. 

We decompose G into cosets (~ = ~rg~.H; since the set ~(gpo~)-l(~)~, ~EH,  is invariant 

under J~, we can assume that  g~l(~)~D. We again write 

Since we are interested in unifor--m estimates, it will suffice to consider those translates 

of W of the form ~ ( W )  ~g~o~(W). 

In  any ease, we assume as in 3.5 that  W is smooth except perhaps at  a parabolic fixed 

point; an easy example shows that  the derivative need not be continuous at  a parabolic 

fixed point. 

We denote the Euclidean diameter of any set A by dia (A). 

In  each inequality below, k denotes some positive constant. 

9.3. LEMMA 6. 1~ ~W~} is an enumeration of the structure loops of ~, the~ 

~Ej dia~ (Hrj) < oo. 
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Proo/. We first consider the case that  H is finite. Inverting in the isometric circle:of 

g~ yields 
din g~(w) < 2 Ic~, I- '~;~ < k I~ I -'~" 

Hence 

z,, dia~ g~(W) < kr,,, I~ I- '  < oo. 

In the parabolic case, we let ~q be the distance from tog;~(o o) to to~q(W), and we ob- 

serve that  
~o/>k,  and ~ > / / ~ /  q~O.  (4) 

We write ~r~(W)=(groQo(to~%t)(t(W)), and observe that  Idr I -x is the radius of the 

isometric circle of (gpot), and so 

din ~ ( w )  < 2 Jd~ J-%~. (5) 

Since D is relatively compact in U-(0} ,  

k-1 < I d~ 1 I~ 1-1 < ~ (6) 

Combining (4), (5), and (6), we obtain 

9.4. Lv ,~Mi  7. Every structure loop has finite length. 

Proo]. I t  suffices to consider the case that  H is parabolic, and W is normalized as in 

9.2. Then near 0 the length of W is given by 

Z fr Ih'(z)] ]dzl--Z fe Irz+ 11-2 lazl<Zlrl-=f~ Iz + r-al-~ ]azl <~kZlrl-*, 

where the sum is taken for Ir I sufficiently large. 

9.5. For any structure loop W, let L(W)be its length. 

LEMMA 8. There is a constant k so that/or any structure loop W, L(W) <~k din (W). 

Proof. We first take up the case that  H is finite. Then 

< I~,1-' ~;'L(W)< kl~,l -* Z(W,). (7) 

We also observe that  if din W = I x - y  [, then 

din (g~(w)) >1 Ig~(~) -g~(y) I ~> I ~ - y  I I~ I-' ]x-g~l(~176 ]-1 ly_g;~(~) i-1 >/~ I~ I -~ din (W). 
(8) 
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Combining (7) and (8), we obtain 

L(g~(W)) dia -1 (g~(W)) < ~L(W) dia-~ (W). 

For the case that  H is parabolic, we again let 5vq be the distance from tog~l(vo) to 

to~q(W), and we invert in the isometric circle of gpot to obtain 

dia Ova(W) ~/t;~ Ida, I-". (9) 

We also compute 

z , (~ , , , tw) ) -~__ . (  I(~oh'ot)'(,)l Id, I 
J t(y) 

=ld: l - :~r ._ |  Iz-tog;l(~176 (10) 
. I t  (y) 

One easily sees tha t  for z E t(y), 

]z-tog;'(~)l>~k, and Iz-tog;'(o~)+r+ieql2>~k(r2+o2q~). (11) 

Combining (10) and (11), we obtain 

L(~po(W)) <~/c]d~[, and L(~rq(W)) ~</~ [d r ]-2 [q ]-1. (12) 

We also easily observe that  

o~o<k, and ~ . < k l q l .  (13) 

Combining (9), (12) and (13), we obtain 

L(d~.(W)) dia-~ ~o(w) < k. 

9.6. If x and y are distinct points on a structure loop W, then we denote by E(x, y) the 

length of the shorter arc of W connecting x to y. 

LEMM/L 9. There is a constant k so that for all pairs of points x, y lying on a structure loop, 

E(~, y) < k I ~ -  Y I. 

Proo[. We first take up the ease that  H is finite, and observe that  for x and y lying on 

a fixed loop W, which is smooth, 

Then 

E(a~(x),g~(y)) = ilg;(~)l Id=l = I~1 -~ [l~-g;~( oo Idol 
J J 
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Since Iz-g~l(c~) I is bounded from both above and below, 

~(g~(x), g~(y)) < k I~ I-~E( ~, U) < k I~ I-3 Ix-y  I 
<~ k Ig~(x)-gp(Y)l Ix-g[ ,Z(~176 lY-g~,Z(~176 l <~ k Jg~(x)-g~(y) I" 

We turn next  to the parabolic case. We assume first tha t  q ~=0, and that  x and y both lie 

on the same side of t(~). We assume for simplicity tha t  x and y both lie to the right of 

t(y), tha t  y lies to the right of x, and we first take up the case that  ] y l ~  Iq]" Then 

E(g~,q t(x), gpq ot(y ) ) I g~q ot(x ) - g~,q ot(y ) [ 

<~ l~[q[~ [x-y[ -1 ]ql-21dz[ <~ lc. (14-) 

If ]y]>]ql  and ]yi~<21xl, then 

<<. (x-tog;~(oo)+ioq[ ly-~og;X(ooI+ioq[ Ix-y1-1 Iz-tog;X(oo)+ioq[ -" [dz[ 

f' f,' ~ k l ~ l l y l l ~ , - y l  -~ I ~ l - = l e ~ l < k l ~ l ' l ~ - y ]  -~ I~ l - ' l e~ l<k .  (15) 

Continuing the case that  x and U both lie on the same side of t(r), [y I> [q [, weassume 

l u i > ~  l~ I and we choose an apvropriate fundamenta~ domain ~' for the action of H on 
W, where one endpoint of t(~') is at t(x). Then 

E ( ~  t(~), ~ ~(y))l~,,qo~(:~)- ~o~(y) I 

(z) l Id=l 

<klx+ieq l lY+iqq l lx -y l -~V~ f Iz+i~q+rl-~ldzl 
Jt (~,') 

~1~ + ~ l  [~ + ~ [  [~-u l  -~ z,"o~l~ + ~q + ~1 -~ 
< ~[~ + i~[ [y+ i~q[ Iz-yJ- '  Zg=~(J~[' + o ' q ' + r ' )  -~ 

<.k]x+ieq]Z~=~(Ixl~+o~q=+r~)-~<k]x+ieq)(Ix]'+q'q~)-~'~<k. (16) 

We next  consider the case that  x and y lie on opposite sides of t(~), or in t(~), and 

] x - y ] ~ <  q. Then 

E(~pqo~(2c),O, qo~(y))}~pqo~(~ ) _ O,,oe(~]) 1-1 ~< ]r U ] -1 19/~.~ ioq } }y..~ ieq } j~" 

< ~ l x - y [  -~ [ql ~ I "  Iql -~ I'~1 < ~. (17) 
J t  
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We next  take up the case tha t  x and y lie on opposite sides of t(r  ) and I x - y  I>I[ q [. 

Then 

E(grqot(x), g~ot (y)  ) [~qot(x)  - grqot(y) I 

< la .ot(-)-a ot(v)l I(mot) (=)1 Id=l. (18) 

We bound these two integrals separately. For the integral on the right, we choose a 

fundamental  domain ~ '  for the action of H on W, so tha t  t(y) lies on one endpoint of ~' .  

Then 

~ A - -1  A n ]g~ot(x)-g,,,ot(y)] ](g,,,,ot) (z)] ]dz] 

-< kl -vl-' + iQql iv+ _-Ii, I= + +,'1-" Id=l 

<kJv+ieq] ZT=z(lVlz+r~+o=q~)-l<k]y+ioqJ (lyl= + 02q=)-"2 < k. (19) 

The integral on the left in (18) is bounded similarly. 

For  q=0 ,  and x and y lying on the same side of t(y), then we can simply set q = 0  in 

flS) and (16). I f  x and y lie on opposite sides of t(V), or if one or both of them lies in t(~,), 

and I x -  y [ < 2, then we integrate along the finite arc of t(W), and we obtain the desired 

result as in (17). Similarly, if [ x - y  [~>2, then we integrate along the infinite arc oft(W), 

and the desired bound is obtained as in (19). 

Finally, the case y - -  0% or x = oo, can be treated by  taking the appropriate limits in 

(16), and (19). 

10. Uniqueness 

10.1. In  this section we prove Theorem 4. We assume tha t  G is a Keobe group normal- 

ized so tha t  ~ EA, so tha t  ] z [ > 1 is precisely invariant  under the identi ty in G and so 

t ha t  all structure loops lie in Izl < 1. We also assume tha t  we are given a second Koebe 

group G*, with invariant  component A*, and tha t  we are given a conformal similarity 

~: A-~A*, between G and G*. We normalize ~ so tha t  near 

~(~) = �9 + o(  I z I -9 .  (20) 

10.2. Let  (~ and ~* be the respective extended Koebe groups. Using L e m m ~  1, 2 and 3 

together with Theorem 5, we see tha t  we can extend r to be a conformal homeomorphism 

~: ~((~)-~((~*) ,  where ~ogo~  -z defines a type-preserving isomorphism of (~ onto ~*. 
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10.3. The structure loops for 5 divide ~ into sets called structure regions. I f  a 

structure region A intersects A, then A N A is a covering region of some Y(cA/G;  hence 

A h A is precisely invariant under a factor subgroup H of G. 

If H is elementary, then of course A = (A f A) U A(H). 

If  H is Fuchsian, then denoting reflection in A(H) by r, we see that  A = (A N A) U 

r(A n A) tJ A(H). 

If  H is elementary, we se t / r /=  H. If  H is Fuchsian, we l e t / / b e  the group generated 

by H and r. In  either case A is precisely invariant u n d e r / / i n  5 .  

10.4. Every structure region A is equivalent under 5 to one with non-trivial inter. 

section with A. Hence for every structure region A, the s tab i l i ze r / /o f  A in 5 is either ele- 

mentary or a Fuchsian group extended by  a reflection. 

10.5. One sees at once that  if W is a structure loop for 5 ,  then ~0(W) is a structure loop 

for 5*. Using (20) one sees tha t  the structure loops (~(W)} are also uniformly bounded. 

10.6. We enumerate the structure loops for 5 as (Wz). 

Lv.~aMA 10. For any ~ with IF ] >2, 

proo[. For each W~, pick some point zp on W~, and observing that  ] z -~  I>1,  we have 

- e.lt < L(w,) dia 

Hence, using Lemmas 6 and 8, we obtain 

~< k Z ,  dia W~ dia ~o(Wv) ~< k(Y., dia' W,) ~tg (Z, dia z ~0(W~)) ~r < oo. 

10.7. The circle I z [ = 1 is also considered to be a structure loop; it  is contained in 

some structure region A, for which it  is the outer structure loop. The other structure loops 

on the boundary of A are called the inner structure loops. 

For any other structure region A, the outer structure loop is that  structure loop on the 

boundary of A which separates A from 0% the other structure loops on the boundary of 

A are called the inner structure loops. 

We orient all structure loops, including Iz [ = 1 so as to have positive orientation as 

loops in C. 

1 8 -  762906 Acta mathematica 135. Imprim6 le 15 Mars 1976 
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10.8. LEMMA l l .  For any structure re#ion A with outer structure ~ W, and inner 
.tr,,a,.re {V.},  ,,d/or a,,y [r 

f  (z) dz 9(z) dz 

Proof. I f / ~ ,  the stabilizer of A is finite, then the sum is finite, and ~(z)(z-~) -z is 

holomorphic in A. 

If  ~ is elementary but  not  finite, it  has a single limit point a. For  ~ > 0 sufficiently 

small, the circle ]z-a ]=Q lies inside W, and intersects only finitely many of the Vz. 

Let U o be ] z - a  ] =~ where each are of this circle which does not lie in .4 has been replaced 

by the shorter arc of the appropriate inner structure loop, so that  U o lies in .~. We reorder 

the loops {Vv} so that  the first n of them lie outside Uq. Then 

As ~-~0, L(Uo)~O by Lemma 9, and of course the integrand is bounded. Hence letting 

e-~0 and n - ~ ,  we obtain the desired result. 

We next  consider the case t h a t / ~  is extended Fuehsian with limit circle ]z-al=cr. 
For Q > o  and Q sufficiently small, the circle Iz - a  I =~ lies inside the outer structure loop 

of A, and intersects only finitely many inner structure loops. As in the preceding ease, we 

replace circular chords of I z - a  I =Q by shorter arcs of structure loops to obtain a new loop 

Ur lying in the closure of A. 

We denote reflection in A(/~) by  r. We order the inner structure loops so that  the first 

n lie either outside U e or inside r(Ue) , and we observe that  

fw r & f v j  (z)dz r q~(z)dz fr r 

As 0 - ~ ,  the sum on the right converges to the sum over all inner structure loops of .21. 

We remark that  9 is continuous across A(/~). For we can extend 9 to be a homeo- 

morphism on D(/~) which conjugates/7 into ~0o/~o9 -z. Using the fact that  every point on 

A(/7) either is a parabolic fixed point, or it  can be realized as a nested sequence of translates 

of some axis in H, we see that  9 is continuous across A(H). 

Using Lemma 9 again, the lengths of the loops U o are bounded, and so 

f% q~(z)dz r r -~0. 
z - r  jr<%) z - r  
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10.9. W e  now prove  Theorem 4. Using (20), we see t h a t  for [ ~ ] > 2 ,  

269 

(2~tl -1 ~(z) dz 
~(~) = ~ -  ) ft~,ol z "  ~ " 

(21) 

The  circle Iz I = 1 is t he  ou te r  s t ruc ture  loop for some s t ruc tu re  region A 1. B y  L e m m a  

11, we can  replace  t he  in tegra l  in (2I) b y  the  sum of in tegra ls  over  t he  inner  s t ruc tu re  

loops of A 1. Each  of these  inner  s t ruc tu re  loops is in  t u r n  an  ou te r  s t ruc tu re  loop for ano the r  

s t ruc tu re  region.  Hence,  if we enumera te  t he  s t ruc tu re  loops as {W~}, where  each W~q 

is s epa ra t ed  f rom oo b y  p o ther  s t ruc tu re  loops,  t hen  as  a consequence of L e m m a  11, we 

ob ta in  

z -~  J~+l.~ -~ 
Hence,  for every  p,  

w q J(z)dz 

I t  follows f rom L e m m a  10 t h a t  as p - ~  r 

Hence  ~o(~) = ~. 
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