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In this paper we exhibit a class of Kleinian groups called Koebe groups, and prove that
every uniformization of a closed Riemann surface can be realized by a unique Koebe
group.

The first examples of these groups were due to Klein [6] who constructed them using
his combination theorem. Koebe [7, 8] proved a general uniformization theorem for
Kleinian groups constructed in this fashion.

Our existence theorem is based on the generalized combination theorems [11, 12],
and uses Bers’ technique of variation of parameters using quasiconformal mappings {3].
The uniqueness theorem is a generalization of Koebe’s original proof [7], but with weaker
hypotheses.

Detailed statements of theorems, and outlines of proofs appear in section 2. The theorems
are all formulated in terms of Kleinian groups; equivalent formulations in terms of uni-

formizations of Riemann surfaces appear in [13], where our main result was first announced.

1. Definitions

1.1. We denote the group of all fractional linear transformations by SL’. A Kleinian
group G is a subgroup of SL’ which acts discontinuously at some point of (' =C U {co}.
The set of points at which @ acts discontinuously is denoted by Q=€(G), and its
complement A =A(G) is the limit set. A component of Q(@) is called a component of G; a
component A of G is invariant if gA=A, for all geG.

1.2. We will be primarily concerned with Kleinian groups which have an invariant
component. For any g€SL’, we will not distinguish between the Kleinian group & with in-

variant component A, and the group goGog-! with invariant component g(A).
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1.3. An isomorphism y: G—G* between Kleinian groups is called type-preserving if ¢
preserves the square of the trace of every elliptic element; and if both ¢ and ! pre-

serve parabolic elements.

1.4. Two Kleinian groups G and G*, with invariant components A and A* respectively,
are called weakly similar if there is an orientation preserving homeomorphism @: A->A¥*,
where pogog~! defines an isomorphism from G onto G*. In this case, ¢ is called a weak
similarity.

If the isomorphism g—~g@ogogp is type-preserving, then ¢ is a similarity, and G' and
G* are called similar; if in addition, ¢ is conformal, then G and G* are called conformally
similar.

1.5. A parabolic element g of a Kleinian group G is called accidental if there is a weak
similarity @, so that pogo@1 is loxodromic (including hyperbolic).

1.6. If G is a Kleinian group with invariant component A, and H is a subgroup of G,

then H has a distinguished invariant component A(H)> A.

1.7, A subgroup H of a Kleinian group ¢ with invariant component A is called a
factor subgroup if H is a maximal subgroup of G statisfying

(i) A(H) is simply-connected,

(ii) H with invariant component A(H) contains no accidental parabolic elements, and

(1ii) every parabolic element of @, whose fixed point lies in A(H), is an element of H.

1.8. A Kleinian group @ is elementary if A(G) is finite; it is Fuchsian if A(G) is a
circle (or line).

1.9. A finitely generated Kleinian group & with an invariant component is called a

Koebe group if every factor subgroup of @ is either elementary or Fuchsian.

2. Statements of results

2.). Our main result is that every finitely generated Kleinian group with an in-
variant component is conformally similar to a unique Koebe group. We, in fact, prove a

stronger result.

THEOREM L. Let @ be a finitely generated Kleinian group with an invariant component.
Then there is a unique Koebe group G*, and there is a unique (up to elements of SL') conformal
similarity between G and G*.

2.2, We prove this theorem in several steps. In section 5 we use the combination
theorems [11, 12] (see section 4) and the decomposition theorem [14] (see section 3)

to prove a topological existence theorem.
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TaEOREM 2. Every finitely generated Kleinian group with an invariant component is
similar to a Koebe group.

In section 7 we combine Theorem 2 with Bers’ technique of variation of parameters
by quasiconformal mappings [3] to prove the existence part of Theorem 1.

TrEOREM 3. Every finitely generated Kleinian group with an invariant component is
conformally similar to a Koebe group.

In section 10 we prove the uniqueness of Koebe groups.

TrEOREM 4. If ¢ is a conformal similarity between Koebe groups, then p €SL/.
In broad outline, the proof of uniqueness follows Koebe’s original proof [7]. The esti-

mates in section 9 for loops invariant under parabolic transformations are new. Also, we
do not assume any knowledge of how the groups are constructed, and so we need to know
that similarities preserve factor subgroups.

THEOREM 5. Let G and G* be Kleinian groups with invariant components, and let
p: G—G* be a type-preserving isomorphism. Then H 13 a factor subgroup of @ if and only if
w(H) s a factor subgroup of w(@).

The proof of Theorem 5 is based on the following generalization of a result in [15].

THEOREM 6. If there is a type-preserving isomorphism from a Kleinian group G onto a
finitely generated Fuchsian group of the first kind, then G has a simply-connected invariant
component, and G contains no accidental parabolic elements.

Theorems 5 and 6 are proven in section 8,

3. Decomposition

3.1. Let H be a subgroup of the Kleinian group G. A set A< C is said to be precisely in-
variant under H in @ if

(i) g(4)=A4, for all g€H, and
(it) g(A)N A4 =0, for all g€G—H.

If Y is a connected subset of Q/@ and 4 is a connected component of p~1(Y), then 4
is precisely invariant under H={g€G |gA =A} in G. In this case, we say that A covers Y,
and that H is a covering subgroup of Y.

In general, for a Kleinian group & and subset A<(, H={g€@|gd =A} is called the
stabilizer of 4 in Q.
17— 752906 Acta mathematica 135. Imprimé le 15 Mars 1976
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3.2. For the remainder of this section we assume that G is a given finitely generated
Kleinian group with an invariant component A.

Ahlfors finiteness theorem [1] asserts that S=A/@ is a finite Riemann surface (i.e.,
a closed surface from which a finite number of points have been deleted), and that the
projection p: A—S is branched over at most a finite number of points of §.

3.3. It was shown in [14] that there is a set of simple disjoint loops w,, ..., w;, on S,
which divide 8 into sub-surfaces Y, ..., Y, so that the following hold.

(i) Each covering subgroup of each Y, is a factor subgroup of @; every factor subgroup
of G is a covering subgroup of some Y; two factors subgroups are conjugate in & if and
only if they are covering subgroups of the same Y.

(ii) If H and H' are factor subgroups of G, then H N H’ is either trivial, elliptic cyclic
or parabolic cyclic.

(iii) If 4 covers some Y, with covering subgroup H, and A’ covers some Y; with
covering subgroup H’, and A N 4’ +@, then A n A’ is a simple loop which, except perhaps
for a parabolic fixed point, covers some w; with covering subgroup H N H’.

(iv) If W covers some w, then W lies on the boundary of two regions 4 and A4’, where
A covers some Y, with covering subgroup H, and A’ covers some Y; with covering sub-
group H'. Then H N H’' is the stabilizer of W.

In particular, every covering subgroup of each w, is either trivial, or elliptic cyclic or
parabolic cyclic.

(v) Every elliptic or parabolic element of @ is contained in some factor subgroup.

3.4. It was also shown in [14] that if we appropriately choose a complete set of non-
conjugate factor subgroups, then G' can be constructed from these subgroups using
weak versions of the combination theorems. We essentially reprove this in section 5.

3.5. The properties listed in 3.3 are obviously invariant under small deformations of

the loops w;; in particular, we can assume that each w; is smooth.

4. Combination theorems

4.1. We state the combination theorems here in the formn that we will use them.
Except for conclusion (iv), these are special cases of the resultsin [11] and [12]. Under more
stringent hypotheses, conclusion (iv) is proven in [16]; that proof is easily adapted to this

case.
4.2, For any Kleinian group @, we let °Q="°Q(G) be (G) with all fixed points of

elliptic elements deleted, so that G acts freely on °Q. A fundamental set D for G is a
subset of °Q satisfying
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i) g(DYN D=0, for all geG —1,
(i) Ugeqg(D)="Q, and
(iii) @D has zero 2-dimensional measure.

4.3. ComBiNaTIiON THEOREM 1. Let H be a finite or parabolic cyclic subgroup of
both the Kleinian groups Gy and G, Assume that there is a simple closed curve W which
divides C into two topological discs B, and B,, where B,nQ(H) is precisely invariant
under H in Gy, and WNQH)<QQ,), i=1, 2. Assume that there are fundamental sets
Dy, D,, E, for Gy, Gy, H, respectively, where D, E, i=1, 2. We also assume that if H is
parabolic, then H is its own normalizer in either G, or G,. Then

(i) G, the group generated by Q, and Gy, is Kleinian;

(ii) @ is the free product of G| and @, with amalgamated subgroup H;

(i) D=D, N D, is a fundamental set for G;

(iv) every elliptic or parabolic element of G is conjugate in G to some element of either
G, or Gy; and

(v) If 2€A(G), then either z is a translate of some point of A(@,), or z i3 a translate of
some point of A(G,), or there is a sequence {g,} of distinct elements of @ so that g,.,(W)
separates z from ¢,(W), and z=1lim g¢,(W).

44. ComBiNAaTION THEOREM II. Let H, and H, be subgroups of the Kleinian
group Gy, where H, and H, are finite or parabolic cyclic. Suppose there are open topo-
logical discs B,;, B,, bounded by simple closed curves W,, W,, respectively, where B, is
precisely invariant under H, in G, t=1, 2, either B, is precisely invariant under H, in
Gy, or B, is precisely invariant under H, in Gy, and g(By) N B,=@, for all g€G,. Suppose
further that there are fundamental sets D,, E,, E,, for G,, H,, H,, respectively so that
Dic B, and WNE,<W,ND,, i=1,2. Assume also that there is an element fESL’ so
that f(W,) =W,, foH,of1=H,, and {(B;) N B;=@. Then

(i) G, the group generated by G, and f is Kleinian;

(i) every relation in G is a consequence of the relations in Gy, together with foH of 1=
H,;

(iii) D=D;—{(D, 0 B U (D, N By} is a fundamental set for G;

(iv) every elliptic or parabolic element of G is conjugate in G to some element of Gy;
and

(v) if 2z€A(Q), then either z is a translate of some point of A(Gy), or 2 is a translate of
a fized point of f, or there is a sequence {g,} of distinct elements of G, so that g,,,(W,)
separates 2 from g,(W,), and z=lim g,(W,).
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5. Topological construction

5.1. As in section 3, we assume throughout this section that @ is a given finitely gen-
erated Kleinian group with an invariant component A. We set S=A/@, and let w,, ..., wy
be the loops on § which divide it into the subsurfaces Yy, ..., ¥,.

5.2. If the number of loops k=0, then @ is a factor subgroup of itself; hence A is
simply connected, and @ contains no accidental parabolic elements. If A is hyperbolic,
then one easily sees that @ is conformally similar to a Fuchsian group; if A is not hyperbolic,

then of course & is elementary.

5.3. Proceeding inductively with the proof of Theorem 2, we first take up the case
that some w;, we now call it w, is dividing.

Let W cover w; if necessary we adjoin a parabolic fixed point to W, so that it becomes
a simple loop. Let B, and B, be the topological discs bounded by W.

We choose base points & on W, and o=p(d), and after deleting the points of ramifica-
tion from S to get a subsurface §’, we define the subgroup 7, of 7,(8’, 0) to be generated by
those loops on §’ at o0, which do not cross w, and whose liftings starting or ending at &
do not enter B,.

Having chosen base points, there is a natural homomorphism from 7,(8’, o) onto G.
We let G, be the image of 7, under this homomorphism.

Let H be the stabilizer of W in @. One sees at once that B, is precisely invariant under
H in @;; in fact, except perhaps for a parabolic fixed point, B, is precisely invariant under
Hin G,

The loop w divides § into two subsurfaces X, and X,, where near W, X, =p(B,) and
Xy=p(B,;). Near W, there is a connected component 4, of p~1(X,). One sees at once that
@, is the stabilizer of 4, in G. Since 4,/G4 U (B, Q(H))/H is already a finite Riemann sur-
face, A(@,)/G,=X, is X, with a disc or punctured disc sewn in along the boundary loop w.

We originally had 8 cut up into subsurfaces Y, ..., ¥,, by the loops w=w,, ..., w.
Those of the loops ws, ..., w, which lie in X, cut it up into subsurfaces ¥, ..., ¥;. Since each
covering subgroup in @, of each ¥, is a factor subgroup of G, one easily sees that it is also
a factor subgroup of G,.

From the way we have constructed G, it is clear that if g €G; doesn’t lie in a covering
subgroup of some ¥, then g is loxodromic, and there is some lifting W, of some w, which
separates the fixed points of g. We conclude that g does not lie in any factor subgroup of
G, and so the covering subgroups of the ¥, are precisely the factor subgroups of G,.

It now follows from our induction hypothesis that @, is similar to a Koebe group G7;
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we denote the similarity by ¢,: A(G,)—>A(GT) =A}. The same reasoning shows that there is
Koebe group G3, and a similarity @,: A(Gy) ~A(GS) =A3.

Since B; is precisely invariant under the cyclic subgroup H in G,, ¢(B,) is precisely
invariant under Hf =p,0Hog;! in Gf, and so there is a circular disc contained in g(B;)
which is also precisely invariant under H; in Gf. After an obvious deformation, we can
assume that ¢(B,) is a circular dise.

We normalize Gf and G so that Bf =g,(B,) is [¢|>1, and so that B} =g, (B,) is
|z} <1. We further normalize and deform @, and @, near W so that ¢, |W =g, |W. Now
H*=g@,0H, 097 =p,0 Hy0p5" is a common subgroup of Gf and G;.

The only non-trivial hypothesis of 4.3 that we need to verify is that H* is its own
normalizer is either G or G3. In order to see that H is its own normalizer is either G, or Gy,
we look at the covering regions which border on W, and the factor subgroups J;, J, which
stabilize these regions. We easily observe that if H is parabolic and H is not its own nor-
malizer in G4, then H is not its own normalizer in J,, and so J; must be elementary. If
J, and J, were both elementary, then J, U J, would also be elementary, contradicting the
maximality of J,. We conclude that the hypothesis of 4.3 are satistied both for the groups
@, and @, with common subgroup H and for Gf and Gf with common subgroup H*.

One sees at once that the factor subgroups of GF and of G5 are factor subgroups of G*,
the group generated by G and G and as above one easily sees that every factor subgroup
of G* is a conjugate of one of these. Hence G* is a Koebe group.

We can combine ¢, and ¢, to obtain a similarity ¢: A—A*, the invariant component
of G*. We define ¢ |4,=g;, 1=1, 2, and observe that ¢ is continuous across W. We then
use conclusion (ii) of 4.3. to define ¢ on A so that p(A)=A* and poGogp~1=G"*. It then
follows from conclusion (iv) of 4.3 that g€@ is parabolic if and only if pogog is. Hence ¢
is a similarity between G and the Koebe group G*.

5.4. Proceeding with our induction, we now take up the case that none of the loops
Wy, ..., W is dividing. Each loop w; when raised to some least power «; lifts to a loop; if
o;= o0, then the corresponding element of G is parabolic. We assume that o; <o, < ... <ot
We let w=w,, let W, be some connected component of p~(w), and we let H, be the stab-
ilizer of W, in @; if H, is parabolic, we adjoin the fixed point of H, to W, so that in any
case W, is a simple closed curve. W, divides (' into two topological discs; we will call one
of them B,.

We choose base points o on w, and & on W,, let 8" be as in 5.3, and let v, be the sub-
group of 7,(8’, o) generated by loops on 8§’ at o, which do not cross w, and whose liftings,
starting and ending at 3, do not enter B;. Let G, be the image of 7; in @ under the natural
homomorphism.
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Since w is non-dividing, @, +@. The translates of W; under @ cut up A into regions;
let A be that region which has W, on its boundary and which does not intersect B,. Let f
be some element of G— G,, where W,=f(W,) lies on the boundary of 4. Let Hy=foH,of,
and let B, be the topological disc bounded by W,, where B,N 4 =0.

One easily sees that 4 is invariant under G,, that B, is precisely invariant under H,
in Gy, i=1, 2, that }(B,) N B,=@, and that ¢(B,) N B,=9 for all g€G,.

We let X =8~ {w}, so that X has two boundary loops. We observe that X =A(G,)/G,
is X with two dises or punctured dises sewn in along the boundary loops. The loops
Wy, ..., wy, divide X into regions ¥, ..., ¥;; as in the previous case, one easily sees that the
covering subgroups of the ¥, are precisely the factor subgroups of G,. Hence there is a
Koebe group Gf with invariant component AY, and there is a similarity ¢,: A(Gy)—>A7.

For i=1, 2, Bf =¢,(B,) is a topological disc which is precisely invariant under H; =
gi0H o1 in GY. B} contains a circular disc with the same properties; hence after a minor
deformation, we can assume that Bf is a circular disc. Next one easily constructs an ele-
ment f*€SL’ so that f* maps the boundary of Bf onto the boundary of B, {(Bf) N B; =@
and f* conjugates HY into H3 inducing the same isomorphism as ¢,0fopi'. We next deform
@, near W, so that g of |W,=f*op, |W,.

We remark next that the choice of w,; to minimize the order «, guarantees that if H,
is parabolic, then no factor subgroup of @ can be elementary, and so H, is its own normalizer
in G,. Hence B, is precisely invariant under H, in Gy, B} is precisely invariant under Hy
in GF, g(By) N By=0 for all g€@,, and g*(B¥) N Bf =0 for all g*€GT.

We conclude that the hypotheses of 4.4 hold for both ; with subgroups H, and H,,
and for GY with subgroups Hf and H3.

Let G* be the group generated by G and f*. As in the preceding case, we observe that
G* is a Koebe group.

We have ¢; defined on 4. We define ¢: A—A*, the invariant component of G*, by
@ |4 =@, and then we use conclusion (ii) of 4.4 together with the fact that @, of | W, =f*oq, | W,
to define ¢ as a homeomorphism of A onto A*; it follows from conclusion (iv) of 4.4 that
g€G is parabolic if and only if poGQogp* is. This concludes the proof of Theorem 2.

6. Extended Kleinian groups
6.1. In what follows we will be dealing with extended Kleinian groups; thatis, discontin-
uous groups of possibly orientation-reversing conformal self-maps of ¢.

6.2. We collect here some of the basic facts about Kleinian groups which also hold
for extended Kleinian groups. The proofs, which are straightforward generalizations of
those in the classical case, are omitted.
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Let G be an extended Kleinian group. We define the set of discontinuity Q and the
limit set A exactly as in the classical case.

We normalize & so that 0 €Q and so that oo is not a fixed point of any element of
@. Then every g€G can be represented by a matrix

ab
(c d)’ ad~bc=1,

where either ¢(z) = (az +b)(cz +d) or ¢(z) = (aZ +b){(cZ +d)-.

The isometric circle of g is the circle centered at g=(co) with radius |c|~. Every ele-
ment g€ can be written as g =eor, where r is inversion in the isometric circle of g, and e
is a Euclidean motion.

If we choose R so large that U = |z| > R is precisely invariant under the identity in G,
then

dia® g(U) = ke |4,
and so

Zle[t< oo,
where the sum is taken over all non-trivial elements of G.

6.3. If G is a Koebe group, then there is a natural extended Koebe group G>@,
where G is generated by G together with the reflections in the limit circles of the
Fuchsian factor subgroups.

Leuma 1. If G is a Koebe group with invariant component A, and G is the extended
Koebe group, then A is precisely invariant under G in G.

Proof. One easily sees that we can write a general element of @ as r,or,_j0...01 09
where each r; is an inversion in a limit circle C,; of some Fuchsian factor subgroup H,,
g€Q and r;r; ;.

For each ¢, we let A; be the component of H,, which does not contain A.

Observe that g(A)=A; r,0g9,(A)=A;, which is disjoint from A. Then since 7,1,
ry07,09,(A)< A,. Continuing in this manner, we see that if g€ G —@, then g(A) N A=D.

The proof above actually shows more.

LemMaA 2. Let Hy, ..., H, be a complete list of non-conjugate Fuchsian factor subgroups
of Gy, let {g;} be a collection of generators for H,, and let r, be inversion in the limit circle of
H,. Then the relations in G, together with the relations {g,;or,=r,0g,;, r; =1} form o complete
set of relations for G.
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64. Lemma 3. Q(&))G=A/G.

Proof. Since A is precisely invariant under G in @, we need to show that the translates
of A cover Q(G).

If 2 is not in A((), and not in A, then z€Q(Q), and so [14] there is a limit circle C,
of some Fuchsian factor subgroup which separates z from A. Let r; be inversion in C;
if z¢7,(A), then there is a limit circle 0, on the boundary of r;(A), where C; separates z
from C,. Continuing in this manner, we get a sequence of limit circles C;, C,, ..., where O,
separates z from C,_;.

It follows from Lemma 1 that if we look at all translates under @ of all the limit circles
of Fuchsian factor subgroups then any two of them are either disjoint or tangent. Since
there are only finitely many inequivalent Fuchsian factor subgroups, and each of them is
finitely generated and of the first kind [14], the spherical diameter of C',->0, and so z€ A(G).

7. The existence theorem

7.1. In this section we prove Theorem 3. Let G be a finitely generated Kleinian group with
invariant component A. Let G* be a similar Koebe group, with invariant component
A*, and let ¢: A*~A be the similarity. It was observed by Bers [3] that we can assume
that ¢ is quasiconformal; i.e., ¢ has locally square integrable derivatives satisfying:

@; =u(2)p,, whereesssup |u|=k<1. (1)
7.2. Since ¢ is a similarity, the dilatation u(z), defined in (1), satisfies

pog(:)g'@)fg'(2) = k(); )
for every g€G*.
7.3. We let G* be the extended Koebe group and we define y for z in Q(G*) as follows:
If z€A, then u is defined above.
If z€Q(G*), then by Lemma 3, there is a g€ G* with g(z) EA. If g preserves orientation,
we define u(2) by (2).
If g reverses orientation, we define u(z) by

1i0g(2)g ()]’ (2) = p(2), (3)
where g'(z) =g;.
One easily sees that these definitions are consistent, so that u is well defined.
If zEA(G*), we set u(z)=0.
The function yx is measurable and ess sup |u [ <1.
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74. It was shown by Ahlfors and Bers [2] that given u(z) measurable with ess
sup || <1, then there is a quasiconformal homeomorphism w of 0, satisfying (1), and that
if v is any other solution of (1), then v=fow, where fESL’.

7.5. Let w be some solution of (1) as above. If g is an orientation-preserving element
of @*, then it follows from (2) that

(w°9)2 = ‘u(z)(wog)z’

hence there is an element y(g) ESL’, with wogow=y(g).
Similarly if g €@* is orientation-reversing, then it follows from (3) that

(wog)z = u(z)(weg),;

hence there is an orientation-reversing conformal transformation y(g) =wogow™i.

7.6. The group G' =y(G*) is a Kleinian group with invariant component A’ =w(A),
and since w is & homeomorphism, y is type-preserving; hence w |A* is a similarity.

Elementary factor subgroups are obviously preserved under isomorphisms, and each
non-elementary factor subgroup is the stabilizer of its limit set, hence both ¢ and
preserve factor subgroups.

For each Fuchsian factor subgroup H* of G*, there is an inversion r* € G*, whose fixed
point set is A(H*). Hence the fixed point set of y(r*) is A(y(H)). Since p(g*) is an orientation-
reversing fractional linear transformation, its fixed point set is either finite or a circle. We

conclude that G’ is a Koebe group.

7.1. Since ¢ and w are both similarities, pow=1: A’>A is a similarity between G
and G. One computes, that for zEA’, (pow1); =0, and so pow! is a conformal similarity
between G’ and @. This completes the proof of Theorem 3.

8. Isomorphisms

8.1. In this section we prove Theorems 5 and 6. We start with some observations
about Fuchsian groups.

8.2. LemMMa 4. Let yp: G—~@Q be a type-preserving isomorphism between finitely gener-
ated Fuchsian groups. Then G and G are of the same kind.

Proof. It is well known that if @ is of the second kind then @ can be written as a free
product of cyclic groups where every elliptic or parabolic element is a conjugate of some
element in one of these cyclic groups. If @ is of the first kind and purely hyperbolic, then
it cannot be decomposed as a non-trivial free product; if it is not purely hyperbolic, then
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it contains elliptic or parabolic elements g, ..., ¢,, belonging to distinct conjugacy classes

of maximal cyclic subgroups of @, where g,0 ... og, lies in the commutator subgroup.

8.3. LEMMA 5. Let @ be a finitely generated Kleinian group with an invariant compo-
nent. If every factor subgroup of G is cyclic, then there is a type-preserving isomorphism of
G onto a Fuchsian group of the second kind.

Proof. It was shown in [14] that the intersection of any two factor subgroups is a
maximal cyclic subgroup of G, hence in this case the intersection of distinet factor sub-
groups is trivial. Again using [14] we conclude that we can choose a complete set H,, ..., H,
of non-conjugate factor subgroups, so that @ is the free product, in the sense of combination
theorem I, of H,, ..., H,. The construction of a Fuchsian group of the second kind which
is a free product of elliptic and parabolic cyclic groups is classical (it is also a straightfor-
ward application of 4.3).

8.4. We now prove Theorem 6. Let y: G—G' be a type-preserving isomorphism from
the finitely generated Kleinian group G onto the Fuchsian group of the first kind G'.
Let A be some component of &, and let G, be the stabilizer of A; by Ahlfor’s finiteness
theorem [1], G, is finitely generated and has A as an invariant component.

We first show that G, contains a non-elementary factor subgroup. If not, then [14] A
would be the only component of G, so that G,=@G. Then by Lemma 5, we would have
a type-preserving isomorphism of & onto a Fuchsian group of the second kind, which, by
Lemma 4, cannot occur.

Now let H be a non-elementary factor subgroup of G. Then there is a type-preserving
isomorphism of H onto a Fuchsian group of the first kind, and so by Lemma 4, y(H) is of
the first kind.

Since y(H) and ¢(@) are both finitely generated and of the first kind, [G': H] <o, and
so A()=A(H).

It was shown in [17] (see also Bers [4] and Kra and Maskit [9]) that H is either quasi-
Fuchsian (i.e., a perhaps trivial quasiconformal deformation of a Fuchsian group) or de-
generate (i.e., Q(H) is connected and simply-connected). Hence either G =H, or H is quasi-
Fuchsian, and [G: H]=2.

It remains only to show that the latter case cannot occur; we assume it does. Using
the Nielsen realization theorem [5] (for proof, see Marden [10], or Zieschang [18]), there

is a quasiconformal homeomorphism
w: C—>C, where wogow!=y(g), forall g€H.

We assume that G operates on the upper half plane; we let r denote reflection in the
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real line, and we let § be some element of @ —H. We observe that y =rowojow ! maps U
onto itself, and that for every g€y(H), yogoy—t=y(j)ogop(j), which is impossible since
y(j) preserves orientation while y reverses orientation.

This concludes the proof of Theorem 6.

8.5. We now prove Theorem 5. We have a type-preserving isomorphism y: G—G*,
and H is a factor subgroup of G. We need to show that y(H) is a factor subgroup of G*, in
fact, it suffices to show that y(H) satisfies conditions (i)—(iii) of 1.7.

If H is elementary, then one easily sees that y(H) is also elementary with the same
number of limit points.

If H is non-elementary, there is a type-preserving isomorphism of H onto a Fuchsian
group of the first kind, hence by Theorem 6, y(H) satisfies (i) and (ii) of 1.7.

If g* is a parabolic element of G*, and the fixed point of g* lies in A(p(H)), then the
group H generated by w(H) and g* has a connected limit set, and so A(H) is simply-connect-
ed. If the Riemann map from A(H) induces a type-preserving isomorphism on y(H),
then the image of y(H) must be of the first kind and [H: y(H)] < c°; hence some power of
g* lies in y(H), and so the fixed point of y~1(g*) lies in A(H).

If the Riemann map does not induce a type-preserving isomorphism on y(H), then
w(H) contains a parabolic element ¢’ which is accidental as an element of H. As in the
decomposition theorem, let W be a simple loop which is precisely invariant under the
cyclic group generated by ¢’ in H. Now W separates A(H) into two non-empty sets, and
since ¢’ is not accidental as an element of p(H), A(p(H)) is contained in one of them. Hence
the fixed point of ¢’ is also the fixed point of some hog*oh~1, where h€ H, and hog*oh—1 ¢ H.
Since ¢’ and hog*oh-! have the same fixed point, they commute. Hence y~'(g’) and
pY(hog*oh~1) have the same fixed point, and so y~i(kog*oh1)€EH.

9. Structure loops

9.1. Throughout this section G is a Koebe group, with invariant component A; G
is the extended Koebe group; wy, ..., w, is the set of loops on S=A/G; as in 3.3, they
divide 8 into the regions Y, ..., Y.

Each connected component of p—(w,) is, after adjoining a parabolic fixed point if
necessary, a simple closed curve, called a structure loop. We define the structure loops so
that the set of structure loops is invariant under G.

The purpose of this section is to prove certain uniform estimates for structure loops.
Since there are only finitely many equivalence classes of structure loops [14], it will suffice

to prove each lemma for a given structure loop W and its translates under G.
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9.2, We will use the following notations and normalizations throughout this section.

Let H be the stabilizer of W in G; then H is either finite or parabolic cyclic.

If H is finite, we normalize G so that o €Q(F), o is not fixed by any element of &,
and so that W and all its translates under @ are uniformly bounded.

We decompose ( into cosets Gi=3,g, H, so that the set {g,(W)} is precisely the set of
distinct translates of W. We write

a, b
n=(2 )

and let &, be the distance from g;(o0) to W. Since W< Q(G), there is a 6 >0, so that &, >4.

If H is parabolic, then we normalize @ so that o0 €Q((), oo is not fixed by any element
of G, W and all its translates are bounded, H has its fixed point at the origin, and H is
generated by h: z—>2z(z+1)".

Let H be the stabilizer of the origin in . Since H is the intersection of two factor sub-
groups and at most one of them can be elementary, H contains a reflection in a circle in-
variant under H. Hence H contains a rank 2 free abelian group 4, where [H: H]<4, and
H is geperated by h and £: z2—>2(ipz +1)72, 9>0.

Let ¢t denote the map z—z-1. We choose a fundamental domain D for H, where every
point of ¢(D) is closer to ¢(W) than to any translate of {(W) under toHot. We set y =W N D.
We assume that D has been chosen so that y is connected, and so that co€D.

We decompose @ into cosets G =3,¢,H; since the set {(g,0%)1(c<)}, keH, isinvariant
under f1, we can assume that g; (o) € D. We again write

a, b
ne(2d)

Since we are interested in uniform estimates, it will suffice to consider those translates
of W of the form §,,(W)=g,0h%W).

In any case, we assume as in 3.5 that W is smooth except perhaps at a parabolic fixed
point; an easy example shows that the derivative need not be continuous at a parabolic
fixed point.

We denote the Euclidean diameter of any set 4 by dia (4).
In each inequality below, k denotes some positive constant.

9.3. LEMMA 6. If {W,} is an enumeration of the structure loops of G, then

2] dia? (Wj) < oo,
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Proof. We first consider the case that H is finite. Inverting in the isometric circle: of

g, yields
dia g,(W) <2|c, |28;" <k|e, |2

Hence
2, dia? g, (W) < kX, e, |4 < oo.

In the parabolic case, we let 8,, be the distance from tog;(c°) to toh% W), and we ob-

serve that
0=k, and G, =kg g¢=+0. 4)

We write §,,(W)=(g,0t)0(tofi%ot)(t(W)), and observe that |d, | is the radius of the
isometric cirele of (g,ot), and so

dia goo(W) <2|d, | 2052 (6)
Since D is relatively compact in C— {0},
< |dy|]e, [ 2 <k (6)
Combining (4), (5), and (6), we obtain
Zpg dia? foo(W) <k Zpo|dy| = 857 <k Zyle| ™ Bolg] P <hBylep| 7 < 0.
9.4. Lemma 7. Every structure loop has finite length.

Proof. It suffices to consider the case that H is parabolic, and W is normalized as in
9.2. Then near 0 the length of W is given by

sz(zn|dz|=zf|m+1|—21dzl<>:|r|-2f|z+r-1|—2|dz|<kz|r|-2,
¥ ? v
where the sum is taken for |r| sufficiently large.

9.5. For any structure loop W, let L{W) be its length.

LeMMA 8. There is a constant k so that for any structure loop W, L(W)<k dia (W).
Proof. We first take up the case that H is finite. Then

L)~ [ lase el =1l 2] [z =g5*eo) sl
<le,| =2 852 L(W) < kley | =2 L(W). ()
We also observe that if dia W= |x—y|, then

dia (g,(W)) = |g,(2) —g,(») | = o —y | e, |2 |e —g5 (=) |2 fy —g5 ' (e2) | > ke, |2 dia (W).
8)
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Combining (7) and (8), we obtain

L{g,(W)) dia~ (g,(W)) < kL(W) dia~ (W).

For the case that H is parabolic, we again let &,, be the distance from tog,(>°) to

toh9(W), and we invert in the isometric circle of g,ot to obtain
dia gApQ( W) 2 6;; ldp ]“2'

We also compute
Ligpo(W) =Z7. -0 J: ( )l (Goe0h 0ty (2)] |dz]
Y.
=|d,| 2 Zﬁ_wf |z—tog,}(oo) + r+ipg| % |dz|.
)

One easily sees that for z€#(y),

|z—tog;'(0)|> %, and |z—tog;'(o0)+r+ipq |2 > k(r®+0%g?).

Combining (10) and (11), we obtain
Ligoo( W) <kld;®|, and Lido(W)) <k|d,|-*[g |
We also easily observe that
0o <k, and 8, <k|g]
Combining (9), (12) and (13), we obtain

L{gpo(W)) dia= g W) < k.

(9)

(10)

(11)

(12)

(13)

9.6. If = and y are distinct points on a structure loop W, then we denote by E(x, y) the

length of the shorter arc of W connecting x to y.

LeMMA 9. There is a constant k so that for all pairs of points x, y lying on a structure loop,

B, y)<k|z—y|.

Proof. We first take up the case that H is finite, and observe that for x and y lying on

a fixed loop W, which is smooth,

B, y)<k|zr—y|.
Then

B0y, 9,) = [1ge) 1821 =1eol* [la—52)] sl
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Since |z—g;"(o°) | is bounded from both above and below,

E(g,(x), 9,(¥)) < ko, | 2E(x, y)< ke, |2 [e—y |
<k lgy(e) —gp )] |z =95 (o) |y — 977 (0) | < Jgy() — () |-

We turn next to the parabolic case. We assume first that ¢ 4-0, and that = and y both lie
on the same side of #(y). We assume for simplicity that x and y both lie to the right of
t(y), that y lies to the right of x, and we first take up the case that |y|< |¢|. Then

B(§og08(), G ()) | Gg0t() — Gpe0t(y)| ,
< |w—togy(ce) +1pg| [y —tog; (oo )+ ipq| lw—yl“f [z —togy(co)+ipg| 2 |dz|
x

<Hal* eyl [ ol lael <k, (i

If |y| > ]g| and |y} < 2|x|, then
E(§,024x), §oq®t(¥))| Gra®t(@) — Gipe0t(y)| )
<lx~t°g;‘(oo)+ieqlly-tog;‘(oo)ﬂoqlIx—yl“f |2 —togs (o) +igg| ~* ||
v v
<klz||y| Im—yl‘lf |z| 2 |dz| < k|x|? ]x—yl‘lf |) 2 |dz) < k. (15)
x z
Continuing the case that = and y both lie on the same side of (y), |y|> |q|, weassume

[y[>2|x| and we choose an appropriate fundamental domain 9’ for the action of H on
W, where one endpoint of #{3') is at i(z). Then

E(§,q0t(x), 00t )) | foa®(@) — Gpe0tly)|
Y
< f lgﬁqot(x) - épqot(y) ' - {(gAPQot), (z)l ldzl
<Ha+ ioally+ieg) lo—y| VBt [ Jovig o] 12
")

<Eklz+ioq| |y +iog| |z —y| " ZXa|z+iog+r|®
<klw+iog| |y +igq) |a—y| 7 Ba(|e]?+o* ¢ + %)
<klx+igg|Z)a(|x)|? + 0> + ) < k|x + g | (|z)? + P ) 1< k. (16)

We next consider the case that « and y lie on opposite sides of i(y), or in #y), and
|2 —y]<g. Then

E(§,,04x), .08 §,008() — G, 0ty)| " < klz—y| 7 |z +ipg) |y + iog] L lz+ipq] 2 |dz|

v
<Hla=glal* [ lal-*|del <. an
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We next take up the case that « and y lie on opposite sides of ¢(y) and |z—y|>|¢]|.
Then

E(§,008x), §,q°HY)) | e 0t(x) — Fpe0b(y)| ~*

< (f_; f w) [95008() = Goa0t®)| " | (g0t (2)| |d2]. (18)

We bound these two integrals separately. For the integral on the right, we choose a
fundamental domain 9’ for the action of H on W, so that #(y) lies on one endpoint of .
Then

00
[ eoti0) = ot 1 Gt @] 12
Sklz—y| ™|z +ioq| |y + igg| Zﬂlf |2+ i0q+ 7|2 |de|
t)

<k|y+igq| E‘f’_lf |2+ s0q+r| % |dz]
tHy)
<kly+iog) Z2a(ly|*+ 7+ ¥ < kly +ieq| (Jy|* +0**) <k (19)

The integral on the left in (18) is bounded similarly.

For ¢=0, and x and y lying on the same side of #(y), then we can simply set ¢=0 in
(15) and (16). If x and y lie on opposite sides of #(y), or if one or both of them lies in #(y),
and [z—y|<2, then we integrate along the finite arc of {(W), and we obtain the desired
result as in (17). Similarly, if |x—y|>2, then we integrate along the infinite arc of { W),
and the desired bound is obtained as in (19).

Finally, the case y= oo, or £= oo, can be treated by taking the appropriate limits in
(16), and (19).

10. Uniqueness

10.1. In this section we prove Theorem 4. We assume that G is a Koebe group normal-
ized so that oo €A, so that |z|>1 is precisely invariant under the identity in G and so
that all structure loops lie in |z] <1. We also assume that we are given a second Koebe
group G*, with invariant component A*, and that we are given a conformal similarity
@: A—>A*, between @ and G*. We normalize ¢ so that near oo

@) =2+0(|z|). (20)

10.2. Let G and G* be the respective extended Koebe groups. Using Lemmas 1, 2 and 3
together with Theorem 5, we see that we can extend ¢ to be a conformal homeomorphism
@: Q(G)~Q(G*), where pogog-! defines a type-preserving isomorphism of G onto G*.
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10.3. The structure loops for G divide ¢ into sets called structure regions. If a
structure region 4 intersects A, then AN A is a covering region of some ¥,<=A/G; hence
AN A is precigely invariant under a factor subgroup H of G.

If H is elementary, then of course A =(4 N A) U A(H).

If H is Fuchsian, then denoting reflection in A(H) by r, we see that A=(ANA)U
(4 N A)U A(H).

If H is elementary, we set H =H. If H is Fuchsian, we let H be the group generated
by H and r. In either case 4 is precisely invariant under # in G.

10.4. Every structure region 4 is equivalent under G to one with non-trivial inter-
section with A. Hence for every structure region A, the stabilizer H of 4 in G is either ele-
mentary or a Fuchsian group extended by a reflection.

10.5. One sees at once that if W is a structure loop for @, then (W) is a structure loop
for G*. Using (20) one sees that the structure loops {p(W)} are also uniformly bounded.

10.6. We enumerate the structure loops for @ as {W,}.

LeMwma 10. For any ¢ with | |>2,

f P(z)dz
wp 2 ¢

Proof. For each W, pick some point z, on W,, and observing that |2—(|>1, we have

f #le) = 9le) 4,
Wy 4

2

»

< oo,

- < L(W,) dia g(WV,).

Hence, using Lemmas 6 and 8, we obtain

(2) dz
s
10.7. The circle |z]|=1 is also considered to be a structure loop; it is contained in
some structure region A, for which it is the oufer structure loop. The other structure loops
on the boundary of A4 are called the inner structure loops.
For any other structure region A4, the ouier structure loop is that structure loop on the
boundary of A which separates 4 from oo; the other structure loops on the boundary of
A are called the inner structure loops.

<kZ, dia W, dia (W) <k(Z, dia? W,)V2(Z, dia? g(W,))"? < oo.

We orient all structure loops, including |z|=1 so as to have positive orientation as
loops in C.
18 — 762906 Acta mathematica 135. Imprimé le 15 Mars 1976
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10.8. LEMMa 1). For any structure region A with outer structure loop W, and inner
structure loops {V,}, and for any { with | |>2,

f z)dz zf <p(z)dz

Proof. If H, the stabilizer of A4 is finite, then the sum is finite, and @(z)(z—{) is
holomorphic in 4.

If A is elementary but not finite, it has a single limit point a. For p >0 sufficiently
small, the circle |z—a|=g lies inside W, and intersects only finitely many of the V,.
Let U, be |z—a|=p where each arc of this circle which does not lie in A has been replaced
by the shorter arc of the appropriate inner structure loop, so that U, lies in A. We reorder
the loops {¥,} so that the first » of them lie outside U,. Then

J‘ pl2)dz _ i qz(z)dz+ @(z)dz
w

2= v, 2-C U, z—{

As p—0, L(U,)~>0 by Lemma 9, and of course the integrand is bounded. Hence letting
>0 and n-> oo, we obtain the desired result.

We next consider the case that H is extended Fuchsian with limit circle |z—a|=o0.
For ¢ >¢ and g sufficiently small, the circle |z—a|=p lies inside the outer structure loop
of 4, and intersects only finitely many inner structure loops. As in the preceding case, we
replace circular chords of |z—a |=g by shorter arcs of structure loops to obtain a new loop
U, lying in the closure of 4.

We denote reflection in A(H) by . We order the inner structure loops so that the first
n lie either outside U, or inside r(U,), and we observe that

f OLI f p)dz [ pl)dz_ f plz)dz
w T

z=0 pa ¢ w274 (ve)Z—C.

As g0, the sum on the right converges to the sum over all inner structure loops of 4.

We remark that ¢ is continuous across A(H). For we can extend ¢ to be a homeo-
morphism on Q(#) which conjugates # into po Hog=1. Using the fact that every point on
A(H) either is a parabolic fixed point, or it can be realized as a nested sequence of translates
of some axis in H, we see that ¢ is continuous across A(H).

Using Lemma 9 again, the lengths of the loops U, are bounded, and so

j’ pz)dz plz)dz 0.

A z2—- LA z—{
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10.9. We now prove Theorem 4. Using (20), we see that for [{[>2,

o(0) = — (2i)? f we)dz @1)

lz2l=1 &~ s

The circle |z|=1 is the outer structure loop for some structure region 4;. By Lemma
11, we can replace the integral in (21) by the sum of integrals over the inner structure
loops of 4,. Each of these inner structure loops is in turn an outer structure loop for another
structure region. Hence, if we enumerate the structure loops as {W,,}, where each W,
is separated from oo by p other structure loops, then as a consequence of Lemma 11, we
obtain

wpe ¢ ¢

s, [ eRE_y [ pad

Hence, for every p,
@(C)=¢—(2mi) %,

It follows from Lemma 10 that as p— oo,

@(z)dz
Z -0.
‘ Woq ¢

Hence ¢(§)=_.
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