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Introduction 

This paper concerns a rather concrete phenomenon in abstract operator algebras. 

The main examples of the algebras we study are algebras of singular integral operators 

(pseudo-differential operators of order zero). As everyone knows, the Fredhohn index of a 

pseudo-differential operator depends only on its symbol and the Atiyah-Singer Index 

Theorem gives an explicit formula for computing the dependence. What we are doing 

might be though of analogously. The observation behind this paper is that traces of com- 

mutators or appropriate higher commutators depend only on "symbols"; then we compute 

the dependence in one and two dimensions. I t  emerges that these considerations are closely 

related to index theory. 

The simplest type of operator system which we study is an almost commuting (a.c.) 

pair of operators on Hilbert space H; that is, a pair X, Y of bounded selfadjoint operators 

on H with trace class commutator [X, Y] = X F -  FX. The two main examples of almost 

commuting pairs are Toeplitz (or Wiener-Hopf) operators with smooth symbol and 

singular integral operators on the line. (In fact, the singular integral operators and multi- 

plications provide generic examples [14], [17], [19].) In [8] the authors considered an al- 

gebra ~ of operators generated by an almost commuting pair and gave a quite satisfying 

formula for the trace of any commutator [A, B] from ~ in terms of the "symbol" of .4 
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and of B. The formula which arises easily yields an index formula for operators in 9~. 

The object of this paper is to formulate the trace theory in general, namely, for algebras 

with more than two generators and for abstract singular integral operators in arbitrary 

dimensions. We remark that  this paper is reasonably self contained, and highly algebraic, 

and that  no knowledge of singular integral or pseudo-differential operators is required for 

reading w 1-6. 

A. Abstract singular integral operators 
A selfadjoint algebra of bounded operators which commutes modulo the trace class 

will be called almost commuting. Whereas the pseudo-differential operators of order ~<0 

on the circle are an almost commuting algebra, such operators on a higher dimensional 

manifold are not. Thus we introduce a broader class of algebras and with this in mind re. 

call some standard notions. 

Given a ring 9~ let 9~ 1 denote the commutator ideal of 9.1, let 22 denote the smallest 

ideal in 9~ 1 containing all commutators of elements in 2 with elements in 9~ 1, and in general 

let 9~, be the smallest ideal in 9~ containing commutators of elements in 9~ k with elements in 

9~,_k_ 1. The sequence of ideals ~Ij is caned the commutator filtration for 9~ and it satisfies 

[2j, 9Xk]c2j+k+x. The complete antisymmetric sum [A1, ..., Am] for elements A 1 ..... Am in 

9~ is 

e( z ) A,(1)A,(2) . . . A~(,,) 
TeSta 

where Sm is the symmetric group on [1, 2 ..... m] and e is the signum character on Sin. 

The generalizations of "commutat ive ring" in most common use (cf. Ch. 8 w 6 [12]) are 

Lie-nilpotent rings and rings with all large enough antisymmetric sums vanishing. Let  us 

adapt  these ideas to our purpose by saying that  a selfadjoint operator algebra ~ is almost 

ni~otent (in n.steps) if the nth term, ~ ,  of the commutator/iltration for 9~ consists of trace 

class operators; and by saying that  9~ is almost/initely commutative (o] degree n) if the anti- 

symmetric sum of any n operators in 9~ is a trace class operator. An algebraic identity (Pro- 

position 1.1) reveals that  if 9~ is almost nilpotent in k steps it  is almost finitely commuta- 

tive of degree 2k. We now point out tha t  something stronger holds for our chief example. 

In  the algebra P S ( M )  of pseudo-differential operators of order ~<0 on an n-dimensional 

Riemannian manifold M,  the term ~j  of the commutator/i/trat/on equals the pseudo-dif- 

ferential operators of order ~< - ] ,  and computations show that  9~n+ 1 is contained in the trace 

class (see w 7). Moreover, the Kohn-Nirenberg class of operators is almost finitely commuta- 

tive of degree 2n. In  addition to pseudo-differential operators, An, Venugopalkrishna's 

Toeplitz operators [18] on the (2n-1)-sphere satisfy these conditions and so we feel that  

the correct operator theoretic abstraction of an algebra of singular integral operators is: 
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De/inition 0.1. The se!fadjoint algebra 9~ is a cryptolntegral algebra of dimension n for 

n > 1 provided that  9~ is almost nilpotent in n § 1 steps and that  9~ is almost finitely com, 

mutative of degree 2n. For the case n = 1 the algebra 9~ must be almost commuting, 

All work in this paper will be set in a erypto,integral algebra. Frequently we shall 

refer to an operator or a fami ly  of operators which lie inside some particular crypto-in- 

tegral algebra as crypto-integral operators. As can be easily seen (w 1) every crypto-integral 

algebra commutes modulo the compact operators, Finite commutativity is a more subtle 

property and though it  is central to our discussion the almost nilpotent algebras might be 

an abstraction of the singular integral operators suitable for many purposes. Note that  in 

the dimension 1 case, finite commutativity implies nilpotency, while in higher dimensions 

this will not  be true. (There is a parallel anomaly in K-theory distinguishing line bundles 

from higher dimensional bundles.) One of the basic properties of cryptointegral algebras 

is tha t  they possess a nice functional calculus (in the operator theoretic sense) which pro- 

vides an analog of the "full symbol" of a pseudo-differential operator and is useful for 

certain purposes (see Theorem 3.3). 

B. A trace invariant 

We shall loosely refer to an "invariant"  for a family of operators or an operator algebra 

as something which is unchanged by unitary equivalence and by  trace class perturbations. 

The closure of a crypto-integral algebra 9~ is a C*-algebra, denoted C'9~, which commutes 

modulo the ideal of compact operators Y~C(H) on H. Thus the basic invariants classically 

used in this situation, to wit, the essential spectrum and the index invariant are basic for 

the enveloped crypto-integral algebra 9~. Let  us recall what these invariants axe and set 

our notation. Via the Gelfand map the commutative C*-algebra G*9~/(~C(H)fl G*~)is  

isometrically isomorphic t o  C(ea(C*~)), the continuous functions on some compact ttaus- 

doff space ea(C*9.1). The continuous function associated with the operator is called the 

symbol of the operator. An operator A in C'9~ with invertible symbol is called Fredhohn 

and its Fredholm index, defined by  dim kernel A - d i m  cokernel A, depends only on the 

symbol of A. If  X1, ..., Xk are selfadjoint generators for C*~, then they induce an embed- 

ding of ea(C*9~) into R ~ as a compact subset e(~(X 1 .... , Xk) called the (]o/nt) essential spec- 

trum of X 1 .. . .  , X k. 

This article concerns a new invariant which we now describe. Consider the multflinear 

functional 

t r  [A 1 ..... Am] 

on a crypto-integral algebra 9~ of dimension n. In  examples this is only well defined if 
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m/> 2n and we show (Proposition 1.4) tha t  it is identically zero when m >2n.  Thus the 

only trace form of interest is the 2n-linear form and we call this the /und~zmen~ (trace) 

/orm of 9~. We will denote it by  ~. 

Proposition 1.2 says tha t  the fundamental  form of an algebra vanishes when applied 

to any  operator in 9~1, the commutator  ideal of 9~. This we call the inducing proper ty  be- 

cause it implies tha t  the fundamental  form induces a 2n-linear functional on the commuta-  

t ive algebra 9~/~ 1. The commutat ive algebra 9~/9~ 1 can be thought of as similar to the sym- 

bol algebras mentioned earlier. Thus we might think of the fundamental  form ~ as a multi- 

linear function ~ on the symbol algebra for 9~. 

In  the case of the pseudo-differential operators we can compute ~ explicitly and we 

do so a t  the end of the paper  as an illustration of the abstract  theory which the paper  de- 

velops. For PS(M)  the essential spectrum is always identified with the cotangent sphere 

bundle, S*(M), of the manifold M and the algebra of symbols is C~(S*(M)). I f  the mani- 

fold has dimension n, then the formula (Theorem 7.1) for the fundamental  trace form is 

f s a. I dxi~ A da s A ... A da~ tr [ A  1, A 2 . . . . .  A ~ ]  = y . (u)  

Here the Aj are any  operators in PS(M)  and the aj are their symbols; d denotes the fa- 

miliar exterior differentiation and A denotes the exterior product on differential forms; 

and 7 is a constant. The situation for Toeplitz operators on odd spheres is similar and it 

is discussed in w 7. 

At this point we mention somewhat tangentially tha t  in the process of studying the 

higher dimensional Toeplitz operators as an example of a crypto-integral algebra we est- 

ablish a close relationship between them and PS(Tn), the pseudo-differential operators on 

the n-torus. In  fact it turns out tha t  the U*-algebra generated by  An is the same as tha t  

gotten from a natural  subalgebra PS(Tn). As a biproduct we obtain tha t  the Toeplitz 

operator index theorem due to Venugopalkrishna [18] follows from the Atiyah-Singer 

index theorem. 

Let  us return to the abst ract  situation and consider how to compute the fundamental  

form in an explicit way. I f  X 1 .. . . .  Xk are selfadjoint generators of a crypto-integral algebra 

9~ of dimension n, then all polynomials 

p(Xx . . . . .  Xk) = ~ a,,... , tXs'XS'. . .  X st ( l . I )  

in the Xj  are operators which lie in 9~ and so may  be substi tuted into the fundamental  

trace form. The resulting mnltilincar functional on polynomials can be extended (see w 3) 

continuously to C~176 ~) giving rise to a multilinear distribution ~ on R k with compact  
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support. Which order the X~ appear in (I.1) does not  effect ~ because of the inducing pro- 

perty. We summarize this construction, the main consequence of w 1, 2, and 3 of the paper, 

a s  

THEOREM I. 1/ X1, ..., Xk  are sel/adjoint generators o/ a crypto.integral algebra o/ 

dimension n then there exists a unique continuous 2n.linear /unotional ~. on C~(R~), sup- 

ported on the joint essential spectrum el X 1 . . . . .  Xk,  with the property that /or  any polynomials 

Pi, --', Psn 

~(Pl ..... p~,) = t r  [.pl(X1, ..., EL), . . .  , pg.n(X 1 .... , Xk)], 

where p j ( X  1 . . . . .  X~) is any  operator gotten by /ormaUy substituting the operators X (  into the 

polynomial p j (in any order whatsoever}. 

The functional ~ is clearly an invariant for the family of operators X i . . . .  , Xk and it 

is the precise generalization of the invariant classified in [8]. We now show how to re- 

present ~ in dimensions one and two in a manner similar to the representation just de- 

scribed for pseudo-differential operators. The authors suspect for formal reasons that  in 

general the higher dimensional representation will be altered considerably. Indeed, the 

higher dimensional theory seems like an intriguing open area. 

The representations are given in terms of smooth differential forms and we now in- 

troduce the necessary notation. Suppose that  ~2 is an open set in R k. We will be using 

C~-exterior forms with compact support in ~2. We write such a form eo as co=Y~/~,...t~ 

dx~, A ... ,'~ dx~j with i x< i2< ... <ij .  The/~ .... (~ are then called the coefficients of o~. An ex- 

terior form is said to have compact support in ~ provided tha t  its coefficients have com- 

pact support in ~ ,  tha t  is, they belong to C~(~). The set A~(g2) of k-forms with compact 

support is a locally convex linear topological space in the topology acquired from ~)-- 

08~ see Chapter 1, w 2 [10]. Let  CAJ(~) denote the closed forms in AJ(~) and EAJ(~2) 

denote the image under exterior differentiation of AJ-I(~2). A mulffflinear functional l(, ,) 

on CAJ(R k) will be said to have compact support if there exists a compact set M in R k so 

that  l(wl, ..., w , ) = O  if the support of any wq does not intersect M. The representation 

theorem for ~ is 

THEOREM II.  1/ X 1 . . . .  , Xk  are sel/adjoint generators o/ a crypto-integral algebra o/ 

dimension ~ with ~ = 1 or 2 and with essential spectrum E,  then there is a continuous linear 

/unctional I on CA2$(R k) which vanishes on EA2~(R ~ -  E) so that the trace ]orm satls/ies 

~.(/, g) = l(d/ A dg) 

in the one dimensional case (~ = 1) or in the two dimensional case (~ =2) it satis/ies 

~(t ,  g, h, j) = Z(d/ ^ @ A dh A dj). 
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The distinctive behavior of the representing functional l suggests tha t  there  is a rela- 

tive homology class 2 in H ~ ( R  ~, E) associat~l with 1. Indeed this is true and a precise 

description of the homology group H ~ ( R  k, E) is given in w 6. One would expect tha t  the 

homology class, since it is canonically arrived at, has some nice properties. In  fact, for the 

one dimensional case, the homology class can be used to compute the index of operators 

in the algebra generated by  X 1 .... , Xk. Thus one obtains quite a strong index theorem 

which we now state although for an absolutely precise formulation of the terminology used 

in the statement one must see w 6. In connection with the index theorem we shall use 

matrices of operators and corresponding matrix symbols. Our conventions are as follows: 

If  ~ is an operator algebra, let Mm(~[) denote the m x m matrices with entries from 2,  

The elements of Mm(~ ) are considered to be operators on H ( ~ H |  ...(~H. Let  Zm(R k) de- 

note the m • m matrix functions on R k with entries in C~ and ff G is a topological 

space, let GMm(G ) denote the continuous m • m matrix values functions on G. The symbol 

of an operator U in Mm(9~) is the matrix function in CMm(G) whose entries are the sym- 

bols of the entries of W. 

THEOREM III.  Suppose that X 1 ..... X k are sel/adjoint operators which commute modulo 

the trace class and that ~ in H2(R~/E) is the homology class induced by the/undamentaltrace 

form. I] ~ is the G* algebra generated by X 1 ..... X~ then the index of an operator iv in M,n(9~) 

with unitary symbol having an extension to a matrix function ] = (f~j)m i~ ~.m( R k) is 

index F = ~ ~.(d/,j A d[~j). 
t , t -1  

Connections between this and other work are described extensively in [8] but  we re- 

view them briefly. The closest antecedent of the work on almost commutating pairs is 

J .  D. Pincns [14], [15]; subsequently he and R. Carey fit the results of [8] into their theory 

[6], [16]. More recently they considered almost commuting pairs in a type IIoo factor. 

We remark that  the results (besides w 7) of this paper along with proofs hold in a type 

IIoo factor after simple transliteration of terminology. The only modification required is 

a straightforward one in the proof of Lemma 1.3. Further  related work on almost-com- 

muting pairs has been done by C. Berger and Shaw, by  K. Clancy and by C. R. Putnam. 

However, this paper goes in a direction rather different from all the above workers. Per- 

haps the most closely related work is tha t  of Brown, Douglas and Fillmore [3], [4]. Theo- 

rem I I  associated with one- or two-dlmensional cryptointegral algebras, a first or third 

homology class. The theory of Brown, Douglas, and Fillmore, applies also in this situation 

and yields an odd homology class. Theorem II'I says precisely that  for dimension one these 
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are the same class and the authors conjecture tha t  for dimension two the homology class 

coming from Theorem I I  is the third component of the Brown, Douglas, Fillmore homo- 

logy class. This is true in the available examples. Although a full exposition would over- 

burden this paper, we remark in passing that  (1/(2~i))dTj k A d[~ is the 2-homogeneous com- 

ponent of the relativised Chern character of [, considered as an element of Kx(X ). I t  is 

this fact which in Theorem I I I  permits identification of the absolute class in HI(X ) cor- 

responding to 2 with (1/(2~i)) times t h e  index class, in the sense of Brown, Douglas, and 

Fillmore [3], [4], for C'9~. 

We would like to thank our colleagues L. Brown and R. G. Douglas for interesting 

discussions. In particular we thank L. Brown and L. H6rmander for several suggestions 

which simplified this presentation. Comments of Professor HSrmanders' led to consider- 

able streamlining of w 2. 

w 1. Crypto-integral operators and the fundamental  trace form 

In this section we describe some of the basic, easily proven properties of the trace 

form. These properties all depend on simple algebraic facts. 

If 9~ is an algebra and 2 D 9 ~ 1 ~ 9 ~  ... is its commutator filtration described in the 

Introduction, then the sequence of ideals 2 t  not  only has the property 

[At, AA eg.i~+j+v 

for any A,EP~ or AsEP~j it also satisfies 

AtA~EP~+j, 

as we now demonstrate. The proof proceeds by induction and begins with an argument 

which establishes 9~19~jc~j+ 1. Since 9~ 1 is the ideal generated by  commutators of elements 

in ~i and since ~Ij is an ideal in 9~, it suffices to show that  a term of the form [A o, Bo]A j is 

in ~lj+l, where A0, BoeP~ and AjeP~j. The identity [.40, BoAj]-Bo[Ao, Aj] =[A 0, Bo]A ~ 
implies this. Suppose 9~t_19~jcP~j+i_ 1 for all ~'. Since 9~ is generated by  elements of the 

form [A~_l_k, Ak] for k=0 ,  ..., i -  1 it suffices to show that  [A~_I_ k, Ak]Aj is in ~t+j where 

again we use the convention AjE~Ij. The identity used above applies again to give the 

result. 

A consequence of this is tha t  the commutator ideal of any almost nilpotent algebra 

is contained in ~C(H). For if A, B are selfadjoint operators in 9~, then [A, B] is skew- 

selfadjoint and large powers of it  are trace class. Thus [.4, B] is a compact operator. 

Since we shall be working a great deal with antisymmetrizations, we list some pro- 

perties of them. 
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PROPOSITION 1.1. Let A 1 . . . .  , A t be operators in 2 .  Then 

(a) [A1 ..... Az] 

= AI[A2 . . . . .  A l l - A z [ A 1 ,  As, ..., Az] + . . - + ( - 1 ) ~ l A l [ A , ,  As, ..., Al-1] 

= (--1)l+l([A~ .. . . .  A I ] A I + . . .  +(-1)~-1[A1 . . . .  , Az-1]Az). 

(b) I f  1 is even 

[.41 ... .  , A,] = 1/2([A,, [As, ..., A , ] ] - [ A  s, [A 1, ..., A , ] ] - . . . - [ A  l, [A 1 ... .  , A,_I]]). 

(C) 1 / [  i8 even, then  [A 1 . . . .  , Al] is a sum o/1/2-loldloroduz, ts o / s imple  commutaJors [A,,  Aj]. 

P r o o / .  

(a) follows by  inspection after some slight thought  about  signs. 

(b) is immediate from (a). 

(c) Let  ~z denote the symmetric group on {1, 2 ... . .  l} and let 2V be the subgroup generated 

by  interchanges of the pairs ( 2 ~ -  1, 2j}. Given any z in Sz it is not  hard to see tha t  the 

s u m  

oe,V 

is equal to the product 

e(z) [Am~, A~(2~] ..- [Aru-,), A~m]. 

Let  z run over a sequence of coset representations for N in Sz and par t  (c) of the pro- 

position follows. 

The radical of an antisymmetric multilincar functional ( , )  is the set 

{A: (A,  AI, ..., An) = 0  for all A 1 . . . .  , An in 2}. 

We would like for a trace form 

(A1 ..... Am)m ~ tr [.A 1 . . . . .  Am] 

to induce a form on 2 / 2 r  This is obtained by  

PROPOSITION 1.2. I [  9.I is almost nilpotent in / c+ l  steps and i~ 2 is a lmost / in i te ly  

commutative o/ degree 21 with l >1 k, then the commutator ideal 21 o / 2  is in the radical o/ 

( , ,  ,)s~. 

Pro@ Proposition 1.1, par t  (b) says tha t  [A 1 ..... A21 ] is a sum, a typical te rm of 

which is ~ = [ A 1 ,  [A 2 . . . .  , A2t]]. Then parts  (a) and (e) of Proposition 1.1 imply tha t  

[As . . . .  , A~I] is in 2,_~. Thus ~ is always in 2k. Now if A 1 is in 21, then ~ is in 2k+, and is 

consequently trace class or if another Aj is in 21, then [A2 .. . .  , Asz ] is in 2 ,  and so ~ is 

trace class. The proposition is a t  this point an immediate consequence of the following 

lemma and the fact tha t  2 is a selfadjoint algebra. 
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LEMMA 1.3. I f  X is selfadjoint, if C is compact and if IX, C] is trace class, then 

t r  IX, C]=O. 

Proof. Observe tha t  the commutator  [X, G+C*] in the basis which diagonalizes 

G+C* is an infinite matr ix  with only zeros on its diagonal. Thus t r  [X, G+G*] =0.  Like- 

wise t r  [X, C * - G ]  = 0 and the lemma is proved. 

The most  glaring oddity about  Proposition 1.2 is tha t  it is false for (,  ,)~ unless w is 

even. This phenomenon is fundamental  a n d n o t  merely technical. I t  is a manifestation of 

a finite dimensional fact. Suppose tha t  H is finite dimensional; then (,  ,)~ is identically 

zero: when w is even and not identically zero when w is odd. This proves to be reasonable 

from a topologist 's point  of view since one comes to suspect tha t  only the even relative 

homology classes for E are important  anyway. 

Next  we find tha t  most of the even forms  ( )2z are identically zero. 

PROPOSITION 1.4. Suppose that ~ is a *-closed algebra which is almost nilpotent in 

b § 1 steps. Then i]l >k and 1 > 1, the ]orm (, ,)sz is identically zero. 

Proo]. I f  1 >k ,  then the operator [A s ..... Asz ] which appears in the argument  for Pro- 

position 1.1, is in ~k. Thus ~ =[A1, [A s . . . .  , A~z]] is always trace class and Lemma 1.3 

imphes tha t  t r  ~ = 0. 

Henceforth we shall work only with the 2n-trace form on an n-dimensional erypto- 

integral algebra 9~; recall it is denoted by  ~ and called the ]undamental trace form for 9~. 

The fundamental  trace form is the only interesting trace form on 9~; the two propositions 

show tha t  all higher ones are zero, in examples (w 7) the lower ones are not  well defined, 

and the odd ones do not depend solely on the "symbols"  9~]9~ 1. 

The bulk of the next  two sections is devoted to developing analytical properties of 

crypto-integral algebras; this is then applied to trace forms in w 3b. 

w 2. Commutator identities 

The purpose of this section and the next  is to provide a decent functional calculus 

for crypto-integral algebras. This goal depends to some extent on certain straightforward 

but  somewhat involved algebraic identities concerning commutators  in an associative 

algebra. In  this section we formulate the relevant identities. 

The main point is to give a more precise description of the commutator  filtration. 

To fix ideas and give the flavor of the arguments, we will begin with the basic case. 

Thus let ~ be an associative algebra. Then ~ is implicitly defined over some ring of 
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scalars, which the reader may  take to, but  in fact need not, be C. Let  2~, i =0, 1, 2 . . . .  be 

the commutator filtration for ~. Suppose {Aa, ~ E I~ is a set of generators for ~. Then we 

want to write down, in terms of the Aa, a convenient set of generators for ~t- 

Let  us define some objects with which we will be working. A product 

r 

M =A~,A~.. . .  A~r= 1-~ A~, 
t = l  

is called a monomml in the Aa's. We call a commutator [Aa, Ap] a basic commutator in 

the Aa's of weight 1, and inductively, if X is a basic commutator of weight k in the Aa's, 

then lAp, X] is a basic commutator of weight k + 1 in the Aa's. If  X 1 ..... Xs are basic com- 

mutators in the Aa's, and the weight of X~ is w~/> 1 then 1-~=l X ( i s  a basic commutator 

p r o d ~  in the Aa's of weight Z~-I wt. 

The first result we will establish, undoubtedly far from the strongest of its nature, is 

PROPOSITION 2.1. The ideal ~ is generated by basic commutator products in the A~'a, 

o~ weights s, with i <~ , <~ 2i - 1 .  

This proposition is not at all difficult, but  is best approached in gradual steps. We 

will state the steps as lemmas, most of them self-evident in context. In the following dis- 

cussion we abbreviate "basic commutator (product)" by b.e(p), and we often suppress 

the phrase "in the Aa's." 

LEMMA 2.2. The product o/two b.c.p's o/weights s and t is a b.c.p o/weight s§  

LEMMA 2.3. The c o m m ~  ol two b.c.'s of weights s and t is a sum o/b.c.'s of weights 

s + t + l .  

Proo/. The proof will be a repeated application of the Jacobi identity. Let  X and Y 

be basic commutators in the A~'s, and suppose X=[Ap,  Z]. Then [X, Y]--[Ap, [Y, Z] ]+  

[Z, [Ap, Y]]. If we write Z = [Av, W], and so forth, the lemma follows. 

The next  two statements are  consequences of the basic identity for commutators in an 

associative algebra: 

[AB, O] = A[B, C] +[A, C]B. (2.1) 

LEM~A 2.5. The commutator o/ two b.c.p.'s o/weights , and t is a sum o/ b.c.p.'s o] 

weight s + t + l .  

LEMMA 2.6. The commutator o /a  b,c.p, o/weight s and a monomial is a sum o/terms 

o/the ]orm M1XMz, where M 1 and M 2 are monomials, and X is a b.c.p, o] weight a + l .  
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Now return to consideration of Proposition 2.1. We proceed by  induction on i .  We 

make some preliminary reductions. Observe tha t  if X is a b.c. of weight greater than  i, 

then X may  be regarded as a sum of terms, each of the form M1YM~=, where Y is a b.c. 

of weight exactly i, and the M~ are monomials. Also if X is a b.c.p, of weight greater than  

2 ( i -  1), then either some basic commutator  among the factors of X has weight at  least i, 

or all have weight at  most ( i - 1 ) .  In  either case X may  be expressed as a sum of terms of 

the form M 1 YM~, where Y is a b.e.p, of weight ] with i < ~ < 2 ( / - 1 ) ,  and the Mk are mono- 

mials. From these observations and the discussion a t  the beginning of w 1, we see tha t  to 

prove Proposition 2.1 we have only to verify the following fact: Consider terms LIXL~ 

and M 1 YM~ where the Lk and Mk are monomials, while X and Y are b.c.p. 's the sum of 

whose weights is a t  least i - 1. Then the commutator  of these two terms is a sum of other 

terms of the form 

N1ZN 2 where the N k are monomials and Z is a b.c.p, of weight at  least i. (2.2) 

We first compute 

[L1XL ~, M 1 YM~] = L1X[L ~, M 1 YM~.] + LI[X, M 1 YM,]L~ + [L 1, M1 YM,]XL,  

= L 1XM 1 Y[L+=, M~] + L 1M 1 Y[X, M~=] L~ + M 1 Y[L 1, M~] XL~ 

+ L 1XMI[L~, Y] M 2 + L 1MI[X, Y] M~L~ + MI[L1, Y] M~XL~ 

+ L1X[L ~, M1] YM~ +LI [X ,  M1] YM~L~ + [L x, M1] YM~XLa. 

Then from the lemmas above, we see this is a sum of terms of the form ~ Z ~ Z ~ , ~ Z a N a ,  

where the N~ are monomials, and the Z~ are b.c.p. 's the sum of whose weights is a t  least i. 

Thus what  we need t o  show is how to bring all of the  Z~'s together. Consider for example 

the product ZIN~Z~. We may  write 

Z I N 2 Z  2 = N 2 Z 1 Z  2-{- [Z1, N 2 ] Z  2. (2.3) 

The first term on the right-hand side is what we want, while the second te rm is, by  Lemma 

2.5, a sum of the form .N~Z~ N~.Z~, where Z~ has weight one more t h a n Z  r Thus successive 

applications of identi ty (2.3) puts  (2.3) into the form (2.2) thereby establishing Proposi- 

t ion 2.1. 

Next  we refine Proposition 2.1 slightly to obtain a result suitable for our applications. 

We still have our algebra ~ generated by  a set {A~: ~E I}. As hinted earlier, we have been 

suitably vague about  the ring A over  which 9~ was an algebra. We will now go so far as 

to assume A contains certain elements {2ap; ~ E I ,  ff E J},  where J is another indexing set. 

T h e 2  ap may  b e t h o u g h t  of as indeterminates. We proceed by  considering a new ring 9~', 

which has as generators the Aa's, and  also elements (A~-2~B) -1. (To be precise, we adjoin 
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to ~ elements Bap and divide by relations Bap(Aa-2ap)=l .  ) Then, as an extension of 

Proposition 2.1, we have 

PROPOSITION 2.7. The ideals ~I~ are generated by basic commutator products in the 

Aa's el weights s, with i <~s<~2(i-1). 

We will not give the details of the proof which proceeds very much as above. We 

do, however, give the essential additional identity needed. If  A is invertible, then 

[A -1, B] = --A-I[A, B]A-L (2.4) 

Hence also [(A-2ap) -1, B]-- - ( A - 2 a p ) - l [ A ,  B] (A-2ap) -1. 

COROLLAR~" 2.8. SUprl~OSe the number o/ ~'8 is finite; order them, and set R#= 

Ha (Aa-2aD) -1. Then any basic commutator product o/weight i in the R# may be expressed 

a8 a sum o/terms M1XM2, where u is a basic commutator product o/weight ]>~i in the A a 

and M 1 and M 2 are monomiale in ~he A a and the (A a -2a#) -1. 

We want to know a similar fact about the complete antisymmetrization [R D ...... RD2n]. 

Using Proposition 1.1 part  3, and successive applications of (2.4) we obtain the following 

result. 

L ~ . ~ A  2.9. The complete anti~jmmetrization [ R D ...... RD~n] may be written in the/arm 

(Rp, ... RD~,,)~U + V where U is the complete antisymmetrization o] the R~ a and V belongs 
! 

to ~n+a. 

Note that  U may be expressed as a sum of complete antisymmetrizations in mono- 

mials in the Aa's , with monomials in the 2ap's as coefficients. Further manipulation of the 

sort that  produced Lemma 2.9 shows that  the complete antisymmetrization of mono- 

mials in the Aa's may  be written modulo ~+1  as a sum of terms of the form M Y ,  where 

M is a monomial in the Aa's aud Y is a complete antisymmetrization of the Aa's. 

w 3. Functional calculus 

In  this section we will investigate the extent to which one can take functions of crypto- 
e 

integral operators. The map (functional calculus) (1.1) on polynomials p ' p(X1 ..... Xk) 

given in the Introduction can be extended by standard methods to functions p whose 

Fourier transform is in/fl(R~). However, the range of this extended mapping will in all 

probability not lie in any one crypto-integral algebra. So one asks to what extent  is it 

reasonable tha t  a crypto-integral algebra should be closed under forming functions of its 

members? The answer is, one may form differentiable functions. By way of motivation 

observe that  if X1, ..,, X2, are nice generators of PS(U), where U is open in R n, then the 

range of the map e above is dense in PS(U) because the Xj satisfy strong commutation 
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relations. Thus, the functional calculus gives a parametrization of PS(U) by  C ~ functions 

which is alternative to the usual one given by  the "full symbols." 

A major biproduet of the functional calculus is tha t  the trace form ~ extends from 

polynomials to a continuous mnltilinear functional on C~(R~), This is discussed in Par t  B 

of the section. 

A. Functional calculus 

According to our definitions, and Proposition 2.1, and the remarks following Lemma 

2.9, we have the following criterion for erypto-integrality. 

Criterion 3.1. In  order for a selfadjoint family Y of operators to generate a crypto- 

integral algebra of dimension n it is necessary and sufficient that: 

(1) the commutator of any two elements of Y be compact; 

(2) any b.c.p, of weight m, with n + l  <~m~2n be trace class; and 

(3) the complete antisymmetrization of any 2n elements of Y be trace class. 

Of course (1) is redundant, but  it seems harmless to emphasize it. The condition (2) 

guarantees almost nilpotency in n steps by  Proposition 2.1, and (3) then insures almost 

finite commutativity by the remarks following Lemma 2.9. 

Looking at this criterion, we see that  it  imposes conditions on only a finite number of 

elements of Y at a time. Therefore the subsets of ~(H) satisfying Criterion 3.1 form an 

inductive family in the sense of Zorn's lemma and so maximal such sets exist. These 

maximal sets will clearly be algebras, for a set of operators is contained in the algebra it  

generates. 

Thus let ~ be a maximal selfadjoint set (algebra) satisfying Criterion 3.1. We will 

show ~ is closed under C ~ operations on its elements. We will work with the C ~ comple- 

tion of the standard (Dunford) functional calculus. Let  us recall the general procedure. 

Let  TE~(H) be any operator, and let a(T)~_C be the spectrum of T, so a(T) is a non- 

empty compact set in C. Let  R~(T)= (T-~) - I (~  Ca(T)) be the resolvent of T. Then Ra is 

an holomorphic ~(H)-valued function on C - a ( T ) .  Now let / be a complex-valued function 

which is holomorphic on some neighborhood U of a(T), and let 7 be a smooth curve in U, 

such that  the winding number of ? with respect to every element of a(T) is 1. Then one 

defines 

,(T)=~ f /(A)R~(T)dA. 
19-752905 Acta mathematica 135, Imprim6 le 16 Mars 1976 
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I t  can be verified that  er:/--*/(T) is an homomorphism from the algebra of (germs of) 

holomorphic functions on a(T) to ~(H). 

In  our applications, T will be selfadjoint, so that  a ( T ) ~  R, and er may be extended 

considerably. Now recall some details of this business. We consider a slightly generalized 

situation. We fix some interval [a, b ]~R,  and we assume we have some function S(;t), 

which is holomorphic on (3- [a, b] and takes values in, for example, some Banach space E. 

We will moreover assume that  S(2) has "polynomial growth near [a, b]," i.e., tha t  

HS(4)]] ~<min ( [ 4 - c [ :  ce[a, b]) -k for some k>0 ,  where H H is the norm in E. Now let ~'t 

for t > 0  be a family of curves going around [a, b], such that,  as t-+0, the curves squeeze 

down very smoothly on [a, b]. (For example, the Yt could consist of two parallel lines 

with circular caps at distance t from [a, b].) Then if / is a complex-valued function holo- 

morphic on a neighborhood of [a, b], the integral 

es(/) = fr,/(4) s(~) d4 

is defined and independent of t, as long as t is small enough. 

A major point about es is that  it may be written as an E-valued distribution acting 

on R 1 test functions and having support in [a, b]. To check this the first step is to select 

some point, say a, in [a, b], and write 

S(4) -- \ ~ ]  Q(2) + ~-1 • ej(4 - a) -j, 

where each ej is in E and Q(4) is E-valued and uniformly bounded. To obtain this represen- 

tation begin naively by integrating S(4), then to make the indefinite integral a single- 

valued function subtract the residue - e 1 ( 4 - a ) - l ;  having done this integrate again and so 

on ]c more times. Now take the expression just obtained for S and substitute it into the 

integral which defines es. After integrating by parts k §  1 times and shrinking the 7t's 

down to [a, b] one obtains a distribution E s on R 1 with the property es(/)=Es(/IR,) for an 

/ which is holomorphic near [a, b]. Clearly es can be identified with Es thereby insuring 

that  it has a unique continuous extension to C~176 as an E-valued distribution supported 

on [a, b]. We may recover S from Es by the rule S(]t)= Es(r(4)) where r(2) is the function 

r(4)  (~) = (~ - -4 )  -1  in Coo(R). 

These remarks have rather straightforward extensions to several operators. Thus let 

T1 ..... Tk be selfadjoint operators (denote the family by T), each of whose spectra is con- 

tained in the interval [a, b], and let 7t be as above. Then for any / on L r holomorphie in 

a neighborhood of [a, b] *, we may define 
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for any t small enough. 

We will call this the normal-ordered Dunford functional calculus for the T~. I t  ex- 

tends in the manner suggested above from holomorphic functions to (]~(R~). We call the 

extensiOn the normal-ordered C ~ Junctional calculus, and denote it again by er. 

THEOREM 3.3. Let 91 be a maximal sellad]oin$ set in ~(H) saHs[ying Criterion 3.1. 

Then: 

(a) 9/is an algebra; 

(b) i/{A~}~.I is any collection o/sel/ad]olnt elements in 9I, then 9I contains the normal 

ordered C ~ Junctional calculus in the A~; and 

(c) q SeMm(9~) is any sel/ad]oint element, then Mm(~) contains the C~176 cal- 

culus in S. 

Remark. I t  will become clear from the proof that  appropriate analogues of (b) hold for 

other sets of elements of 9~: In particular, note that  we don't  really need the A~ %o be self- 

adjoint for (b). I t  would suffice that  they have real spectra and that  their resolvents have 

polynomial growth. 

Proof. Point (a) is already proved. To prove (b) we must show that  adding any ele- 

ment of the prospective functional calculus to 9~ preserves the conditions of Criterion 3.1. 

We will ignore condition (i), since, as we remarked, it  is redundant. 

First, we note we may add the resolven~ of the At to 9/. This is immediate from Pro- 

position 2.7 a n d  Lemma 2.9. Next put (1 1 ..... ;t~)=t and write R~(t)=II~_I (A~-I~) -1, 

for 1, r hi. Consider any b.c.p, of weight at  least n + l ,  in the RA(;t) for various 1, or con- 

sider the complete antisymmetrization of 2n of the RA(t ). Corollary 2.8 and Lemma 2.9 

now imply these expressions are holomorphic trace class valued functions of the ;~'s away 

from the singularities of R~, and that  they have polynomial growth near the singularities 

of R A. Part  (b) of the theorem now follows from properties of the functional calculus al- 

ready discussed. 

Remark. In fact, we see that  each b.c.p, of weight at least n + l ,  as well as the com- 

plete antisymmetrization of 2n operators, define, when composed with eA, trace-class valued 

multilinear distributions of compact support on R k. 

Now we consider (c). We need an identity analogous to (2.4), Let S be in Mm(9~), 

and let Stj be the entries of S. For a given B6~ ,  let B be the element of Mm(~ ) such that  
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Btj =~o B, where ~l~ is Kronecker's ~. Then it is easy to verify that  IS, B]~j = [S~j, B]. Now 

let Rs(2 ) be the resolvent of ~. Then [Rs(2)~ j, B]=[Rs(2) ,  B], j=-(Rs(2)[S ,  ~]Rs(2))~j= 

- ~ t  Rs(2)~[~,  B] Rs(2)t r With this analog of identity (2.4) one may show, for example, 

that  if ~ is the algebra generated by 9 /and  the R~(2)~ then the ideal ~ equals ~2~ ~ ,  in 

analogy with Proposition 2.7. Thus one concludes ~ = 9 / b y  maximality o~ 9/. An analog 

of Corollary 2.8, Lemma 2.9 and basic properties of the functional calculus allow one to 

finish part (e). 

The next result is complementary to Theorem 3.3 and parallel to results in [8] w 3. 

It 's  proof involves nothing new, so we omit it. Let 2V~ denote the Schatten p-class of 

operators. These are operators with the property that  the p-th power of their absolute 

value is trace class. Note that  9~+xc N 1 implies 9/xc N,+ 1. 

PROPOSITION 3.4. The map ca: C~~ defined by (3.2) /or any set A =  

{A 1 . . . .  , An}~_9/ o/ sel/ad~oin~ elements has the following properties 

(i) eA(/)*--ea(f)EN~+l N g/r Here f is the complex conjugate o/ /. Moreover the map 

ca(/)*-ca(f)/s an Nn+x-valued distribution o/compact support. 

(ii) e~(/)ea(g)-ea(/g) ~Nn+x N 9/1, and the corresponding bilinear map is continuous in  l 

and g to N,+ r 

(iii) [ea(]), ea(g)]~Nn+l f~ 9/1, and again is continuous in / and g. 

If  n = 1, then we can write N 1 rather than N~ in the above. 

B. Trace forms 

If  we compose the fundamental trace form with e A we get a 2n-linear functional on 

C~(R k) which we will denote by ~ .  This much is evident from the foregoing: 

PROPOSITION 3.5. The 2n-linear functional on C~(R k) given by ~A(fl . . . .  ,/2,,)-- 

t r  ([e~(fl) . . . .  , e~(f~n) ]) is a well de/ined continuous and antisymmetric form. 

Now we show that  ~:a has support on ea(A 1 . . . . .  Ak). We begin by observing the be- 

havior of ~:a under coordinate transformations. Let gl . . . . .  gmEC~(R ~) be real-valued 

functions. We may interpret the gt as defining a map 0: R~-~R m by the formula 

O(x) = (gl(x) . . . . .  g~(x)) for x E R ~. Put  B~ = �89 + ea(g~)*). Then e,4(g~) - Bt  E9/1 by Pro- 

position 3.4. Now consider the map eB: C~~ ~)-~9/defined by the B~. By Propositions 

3.4 and 1.2, we see that  if {pj}~21 are polynomials on R m, then t r  [eB(pl ) .... , eB(P~n)] = 

tr  [eA(ploO) . . . .  , ea(p~o0)], so by centinuity (Proposition 3.5) we deduce 

PROPOSITION 3.6. With notations az above, ~:s =~:Ao0. 

Now let E = e a ( A  1 . . . . .  Ak)~R k. 



TRACES OF COMMUTATORS OF INTE(~RAL OPERATORS 287 

PROPOSITION 3.7. The 2n-linear/orm ~a on G~(R ~)/8 supported on E, in the sense 

that ~:a(h ..... /~n) =0  q any/~ vanishes in a neighborhood o / E .  

Proo/. I t  suffices to prove the result for real-valued/~EC~0 (R~). By definition of es- 

sential spectrum, if / vanishes on E, the operator cA(I) is compact. Then �89247 ea(/)*) = B 

is compact selfadjoint, so if g E U~(R) vanishes in a neighborhood of the origin, the oper- 

ator g(B) has finite rank. Therefore, by Proposition 3.6, Proposition 1.1 and Lemma 1.3, 

r~ ~2n c C~(Rk). However, it  is not  hard we conclude that  ~A(go/1, ]3, .--,/2~) =0  for any ~/~]~-~- 

to show that  any h ~ C~(R ~) which vanishes in a neighborhood of E is a linear combination 

of functions of the form go/, where / vanishes on E and g~C~(R) vanishes near zero. Thus 

the proposition is proved. 

w 4 Gener~li~.ed WaIlach's lemma 

In  the preceding sections we have shown that  it is natural to associate with a family 

of crypto-integral operators a mulffflinear form on G~~ n) which is supported on the joint 

essential spectrum of these operators. Now we turn to the problem of classifying the trace 

forms. 

The point behind classification of the two-form is tha t  t r  JR, S] = 0 if R and S com- 

mute. From this  we may conclude easily tha t  for polynomials p, q in P ( R  n) we have 

~(p, q) =0  if p and q are both functions of a third polynomial. This property of ~: is es- 

sential. We call it the collapsing property. In  particular the collapsing property implies 

is antisymmetric. This was exploited via Wallach's lemma in [8] to get the representation 

theorem in [8]. Our representation scheme which has been successful in dimensions one 

and two generalizes this procedure. 

The core of this scheme is elegant enough to warrant presenting it  for all dimensions 

even though our application is to dimensions one and two. That  is what we do in this 

section. The considerations in this section are almost purely algebraic and they make sense 

in a fairly broad algebraic context, We are informed by Larry  Brown that  the main result 

can be derived alternately from the theory of K~hler differentials in algebraic geometry. 

We give here  a first principles proof. I t  is self contained and though its relationships with 

existing algebraic theories is not explored---surely some exist. 

Denote by S T the 10-multilinear map from C~(R n) to A~(R n) given by  the formula 

S~(/1,/3 .. . . .  /~) =d]l A d/~ A ... A d/~. One sees by Poincare's lemma that  the associated map 

of the p- th  tensor power of C~(R n) to A~(R n) is surjective to the closed p-forms. For  

if yJ is a closed (p+l) - form,  then ~2=d~ by Poincar~'s lemma, and if we write 

=~<ij+lg~, ~ ... i~dxf,/~,dx~ A ... A dxt~, then we obtain yJ = ~  S~+l(g~,... ~, x~,, ..., x~). An ele- 
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mentary computation shows that i f / t  and/j ,  with i #], are both functions of some third 

function, then Sv(/1 , ...,/~) =0. Thus S~ has what we might call the "p-fold collapsing 

property". The elegant fact is that S v is the universal p-linear form with this property. 

GENERALIZED WALLACH'S L~.MMA: .Let ~ be a (continuous) p.linear/unctional on 

C~~ R ~) having compact support, and suppose q~ has the p-]old collapsing property. Then there 

is a continuous linear/unc2i<mal l with com~c~ support on the closed p-]orms on R n such that 

Proo I. To prove this, we resort to a string of sublemmas. 

We first establish an algebraic form of the lemma, then pass to the C a~ form by con- 

tinuity. As before P(R n) is the algebra of polynomials on R n. We write PAP(R ") for the space 

of differential forms with polynomial coefficients. I t  is not hard to show that the Poincar4 

]emma holds algebraically. In fact, it is rather pretty: the closed p-forms with homo- 

geneeus coefficients of degree m and the co-closed ( p - l )  forms with degree (re+l)  coef- 

ficients form isomorphic irreducible G/, modules. Therefore 8p: | is onto 

the closed forms. Let us now consider a p-linear functional ~ on P(R") with the p-fold col- 

lapsing property. 

SUBLEMMA 1. Let r(qJ) be She set o / / E P ( R " )  such that ep(/, g, . . . .  , gv) = 0 / o r  any choice 

o/g,, 2 <~i <p. Then r(q~) is a subalgebra o/P(R' ) .  

Proo/. Indeed, suppose ]1 and ]~ are in r(~). Then letting g~ be arbitrary we have 

q~C(=h+~l=+g,~), ( = h + , 8 l , + g , ) ~ ,  g~ . . . . .  g~) = o 

by the collapsing property. Expanding this out gives 

~(g,, = ~  +2=8 / l t ,  + ~ ' ~  + : = f i g s + ~ / , g ~ + ~ ,  g, . . . .  , g,) = 0. 

This equation holds identically in = and 8- Considering the coefficient of ~8, we see that 

/x]~ fi r(~), which implies the lemma. 

SUBn~.MMA 2. Given (/t}r-1, w/th/tEr(~)/or i>~2, then q~ is identically zero on the sub- 

algebra generated by the/t. 

Proo]. By Sublemma 1, it suffices to show ]z is in the radical of ~ restricted to this 

subalgebra. Consider the equation 

0 ---- ~( ' I  + ~ ~J,, ('i'4" _~2 ~,',) n, gs, g4 ... . .  ' , ) ,  
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where the gi are arbitrary. Since II ~r(~) for i >~2, this gives 

~( l l ,  ( l l  + ~ a , l , ) " ,g ,  . . . . .  g~) = 0 .  

B y  choosing the constants ~t properly and summing, we can achieve in the second place 

an arbitrary polynomial in the/~, 1 < i ~<p. This establishes the sublemma. 

S~ZBLEM~A 3. Suppose q~(t~ ..... /~) is always zero i/ 12 . . . . .  IS is an arbitrary ]c-tuple 

chosen/rom x~, x~, ..., x~_x ( the/irst  n - 1  standard co-ordinate/unctions). Then ~(/1 ..... /~) 

is always zero i/11 .. . . .  ]~-1 is an arbitrary (]~- l ).tuple chosen/rom Xl, x~ .. . .  , xn_ r 

Proo/. Select x~,, x~ ...... xik_~ and consider the ( p -  k + l)-llnear functional ~ on P ( R ' )  

given by 

iv(g1, g~ ..... g~_~+~) --~(x~,, x~, ..., x~_l, gl, g~ ..... g~-~+~). 

Then iv clearly has the ( p -  k + 1)-fold collapsing property, and by hypothesis, r(iv) contains 

x~ for 1 <~i<~n-1. By Sublemma 2 the functional iv is trivial, and this implies the desired 

result. 

Using Sublemma 3 repeatedly, and then appealing to Sublemma 2 again we obtain 

SUBLEM~A 4. Jr/ /or some k>~l we have qJ(/1,/~ ..... /~)=0 whenever 11,/3 .. . . .  /k are 

chosen among Xl, x~ .. . . .  xn-1, then we have x~Er(q)) ]or i ~ n - 1 .  Hence q~ is trivial. 

Now we come to the main step. We will construct inductively a sequence of linear 

ftmctionals mj, 0 ~<~'~<n-p, on appropriate subspaces of pA~(Rn), which will define func- 

t ionals on the closed p-forms by restriction. Each of the P-linear ~unctionals r 

Z~=o mjoS~ will have the p-fold collapsing property.  We will show inductively that  

r ..... , /~)  is identically zero whenever 11 ..... /~-1 is a (p -1 ) - tup le  of elements chosen 

from x 1 .. . .  , x~+~_ 1. Then Sublemma 4 will show tn-~ is identically 0, and the algebraic form 

of our lemma will be proved. 

Suppose, then, tha t  we have defined ms for i </c. We define mk+l as follows. First, let 

mk+l be zero on any/dx~ A... A dx~p unless i 1 < i S <...  < i~_x = p  + J~. (Of course then i~ > p +/r 

On the other hand, suppose i 1 .. . .  , i~_ 1 are as just specified. Take /EP(R ' )  and define 

iv( l )= { ^ . . .  ^ 1 A 

The map iv depends also on the ij, but  we suppress this in the notation, The y(]) evidently 

form a certain linear subspaee of P A  ~. On this subspaee define m~+1 by 

m ~ + l  (v~(l) ) = r  (x~,, x~. . . . .  , x~, _ 1 ,1 ) .  (4.1) 
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We should verify this equation is actually a definition. This amounts to showing 

tha t  if ~(])=0,  then the right side of (4.1) also vanishes. But  if lP(/)=0 then clearly, 

depends only on x 1 ..... xp+k, so by  our inductive hypothesis, Sublemma 4 shows tha t  

r ...... x~_l, f )=0 .  Thus mk+l is well-defined. 

Now let us verify r162 has the desired properties. Choose i1< 

i~<...<i~_z~<p+/r I f  ip_z<p+k,  then mk+loS~(x t ...... x~_~, f ) = 0  by  construction, so 

r ..... , x~_~, ])=~k(x~ ..... , x~_l, 1) and this vanishes b y  induction. If,  however 

i~_ x =1o + k, then 

r . . . . . .  ~ , , - 1 ,  I) = r  . . . ,  x , , _~ ,  f)  - m~§ . . .  A . . .  A a ~ , , _  1 A e l )  

z_ . 

By our definition of m~+ 1, the terms in this sum with j--<p + k are zero, and the sum 

of the terms for j > p + k  is just r ...... x~_~,/). Thus r ..., X~_D f) = 0  if 

i x <i~ <. . .  < i~_ x < p  + k, as desired. This completes our construction 

Now we describe how to pass from the algebraic to the C ~ version of the lemma. On 

P(R,)  we have 

r 5 mjoS,.  (4.2) 
t=0 

The definition of the mj and the fact tha t  the map 

p>~+k.~p_ 1 \Ox~J 

is an open map  from Coo onto the T-forms ]E~>v+~,g~dx~,A ...Adx~,_~Adx~ satisfying 

Og~[Ox~=Og~[Ox~ for i, j > p + k  imply tha t  m~ extends to a continuous linear functional of 

compact  support  on CAV(Rn). Thus (4.2) and the representation theorem hold on C~0 (R' )  

or alternatively on Coo(R '~) since g and l have compact support. This concludes the proof 

of generalized Wallaeh's theorem. 

To close out this section, we give a condition tha t  further reduces the collapsing pro- 

perry and which is useful in concrete situations. 

PROPOSITZO~T 4.2. In  order for a p-linear functional q~ on Coo(R n) to have the p-]old 

collapsing property, it is sufficient that q~(h ..... ]p) = 0 whenever 

(i) any ft is constant; or 

(ii) It =fj  for any i ~ j ;  or 

(iii) l , = f i  for some i ana  i. 

Proof. Clearly it is enough to work with a bilinear functional. Then it will be enough 
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to show that  if ~ is antisymmetric and 1Er@), and ~(1, p) =0  for a n y / ,  then ~(fl~, ira) = 0  

for any ] and any n, m. Consider the formal sum Z gt] ~. Then the equation ~(E g ~ ,  

(Z ~j~)2) =0  is a formal identity in the a~. Pu t  r fl~) =c~.n. Then we compute the coef- 

ficient of ~ j a k  in the above equation to be 

2c~.j+~+2c~.~+j+2c~.k+~ if i ~7" # k ,  

2c~. ~+~ +c~.~ if i =7" # k ,  

c~.~ if i = j = k .  

Therefore, we see in all cases we have the equations ct.t+~+c~. ~+j+cj.~+l=O, with the sup- 

plementary equations %. i=c~.l =c~.~=c~.ft-cj. t=O. We consider these equations when 

i=1 and 7" and k are arbitrary. For  7"+k=n we get the system of equations 

0 = 2Cl. n + On-l. 1, 

0 = Cl.n-~-(~2. n_l'~-Cn_2.3, 

0 = Cl.n-{-Cs.n_2-bOn_a.4, 

O~Cl.n-~- 2Cn/2.(n/2)+l, o r  Cl.n ~-C(n_l)/2.(n+8)/2 ~ 

according as n is odd or even. I~ote this is a system in el. j for i <7" since ct. j =  -c j .  ~ if i ~>7". 

The matrices of these systems are (21 )(1 ) 
1 1 - 1  1 1 - 1  
1 0 1 - 1  1 0 1 - 1  
i and ! . 

1 1 - 1  1 1 - 1  
1 2 1 1 

I t  is easy to establish by elementary row operations begdnnlng at  the bottom and working 

up, tha t  these matrices have full rank. Thus the only solution to the system is c~. j = 0  for 

all i, 7.. This finishes the proposition. 

w 5. Representat ion of  the  trace forms 

Theorem I I  can be proved very quickly by  putting together the results that  have al- 

ready been proved. This section is devoted to doing this. 

Proo[ o[ theorem. One dimensional case, ~ = 1. As we saw in w 4, the fundamental trace 

form ~: when restricted to polynomials has the collapsing property. By continuity, see 

Proposition 3.5, the form ~ on C~(R ~) also has the collapsing property. Wallach's lemma 

implies the existence of the required continuous linear functional. The fact tha t  ~ is sup- 

20--752906 Acta mathematica 135. Imprim6 Io 16 Mars 1976 
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ported on E, see Proposition 3.7, is equivalent to the statement on support required by 

the theorem. 

Two dimensional case, 6--2. The collapsing property is less apparent, than it was be- 

fore. We use Proposition 4.2 to establish it. Conditions (i) and (ii) of this proposition are 

obviously satisfied. Condition (iii) depends on an algebraic identity 

[AS, B, 0, D] ~ A[A, B, 0, D] +[A, B, C, D]A +[[A, B], [A, [C, D]]] 
+[[A, 67, [A, [D, B]]] +[[A, D][A, [B, q]], (5.1) 

which we verify in the next paragraph. Each of the last three terms in this expression is 

clearly in ~Ia and consequently each is trace class. Thus tr  [A s, A, (7, D] has the form 

tr [ , ]+t r  [ , ]+t r  [,] where each commutator is trace class. Lemma 1.3 implies that  

tr  [A s, A, (7, D] =0. This is condition (iii). 

Now we verify the crucial identity. First note that  

[A s, B, (7, D] -- [A 2, B] [(7, D] + [(7, D] [A s, B] + [A s, D] [B, (71 + [B, (7] [A s, D] 

+ [A2, (71 [D, B] + [D, B] [AS, (7]. 

The first, third, and fifth terms can be written 

A([A, B] [(7, D] +[A, D][B, C] +[A, 6r] [D, B])+[A,  B]A[(7, 1)] 
+[A,  D]A[B, (71+[A, (7]A[D, B], 

and the first 3 terms of this expression differs from A[A, B, (7, D] by A[((7, D][A, B ] +  

[B, (7][A, D] +[D,  B][A, C]). This along with similar reasoning applied to the second, 

fourth, and sixth terms of the original formula give that  

[A 2, B, C, V]-A[A,  B, (7, D] - [A,  C, D, B]A 
= [A, B]A[(7, D ] +  [A, D]A[B, C] +[A, (7]AID, B]-A[(7, D][A, B] 

-A[B,  C][A, D]-A[D, B][A, C] +[(7, D]A[A, B ] + [ B ,  C]A[A, D] 
+[D, B]A[A, ~ - [ A ,  B][(7, D]A-[A, DI[B, (71A-[A, (7lID, B]A, 

which equals 

[[A, B], A[C, D]]+[[A, D], A[B, C]]+[[A, (71, A[D, B]] 

+[[C, D]A, [A, B]] +[[B, C]A, [A, D]] + [[ D, B]A, [A, (7]], 

and these six terms combine to give the last three terms of (5.1). 

w 6. The trace form homology elnss and index theory 

The preceding section described how to associate with a family X 1 ..... Xe of one or 

two dimensional erypto-integral operators a linear functional on closed differential forms 
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which vanish on boundaries of forms, supported off of the joint essential spectrum of 

the family. This suggests tha t  we may  associate a relative homology class to the family 

X1 .. . .  Xk. Indeed one can. 

Paragraph A of this section discusses the precise topological setting for this con- 

struction. The machinery in paragraph A allows one to obtain the relative homology class 

immediately from Theorem I I  and shows tha t  in a reasonable sense this can be identified 

with an absolute homology class of E. 

As was described in the introduction, this homology class for the one dimensional case 

is closely related to index structure. In  paragraph B we prove an index theorem. 

A. Relative deRham eohomology on R" 

The appropriate cohomology for our purposes is sheaf cohomology. I t  would take us 

too far afield to go through the basic definitions of sheaf theory, so we confine our atten- 

tion to constructing the sheaves we will use. All the theory we will need can be learned 

quite quickly from [9], w 2; a fuller account is found in [7]. 

I f  U s is an open subset of R =, then the assignment U~COO(U) defines a presheaf on 

R". The associated sheaf is called the sheaf of germs of smooth functions on R ~. I t  is a 

sheaf of rings. We will denote it by COO(R~). Then Coo(R n) is the space of global sections of 

C~~ and C~176 is the space of local sections over U of Coo(R"). 

Again for U open in R ~, let Av(U) be the smooth exterior forms of degree p on U. 

Then Av(U)is a module over Coo(U). I t  is a free module of rank ( : )  with basis dxt, A dxi, A 

.../~ dx~,, for any p-tuple of integers ij, with 1 <~ij<~n and ir The direct sum A*(U) = 

| Av(U) is a graded ring over C~ with associative multiplication (the s tandard 

wedge product) sa t i s fying/dx~=dx~/for /EC~~ (we agree tha t  A ~ 1 7 6  U 

varies, the Av(U) fit together to form a presheaf and we denote the associated sheaf by  

J~V(R=). The Av are sheaves of modules over the sheaf C~. The sections of :/~P(R =) over an 

open U_= R n is just AP(U). The direct sum of t h e / ~  forms a sheaf/~* of graded algebras 

over ~oo. 

We have the exterior differentiation mappings dr: A~(U)~Av+I(U), which fit together 

to give A*(U) the structure of a graded differential complex, and  one has the formula 

d~+q(a A t )  = (d~, ~) A fl + ( - 1)v o: A dq fl for ~ q Av(U) and fl E Aq(U). The classical Poineard 

lemma [9] says tha t  the sequence 

i d o d 1 d,~_: (6.1) 
0 -+ C ~ A~ ) , AI(R ~ ) . . . .  , A"(R N) -+ 0 

is exact .  In  general, we have d~.d~_l=O , so tha t  im d~_x_~ker d~; the quotient H~(U)= 
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ker d~[im d~_ 1 is the p- th  deRham cohomology group of U. Thus the Poincar~ lemma just  

says H~( R ~) =0. 
I t  is evident tha t  the d~'s behave well with respect to restriction, so tha t  they define 

sheaf maps ~p: ~p_~/~+l. On this level, the Poincar6 lemma asserts tha t  

is an exact sequence of sheaves. Here C denotes the constant sheaf with stalk @. Now the 

sheaves A~ allow partitions of unity so they are what  is known as fine or soft sheaves. 

Thus, the sequence (6.2) is a resolution of the constant sheaf @ by  fine sheaves. In  particular, 

the deRham groups HP(U) are just the sheaf cohomology groups of U with coefficients in 

the constant sheaf @. 

Now consider a compact set X ~  R n. We let AP(U]X) be the space of smooth p-forms 

on U _  R n which vanish in a neighborhood of X, and we let A~(R~]X) be the associated 

sheaf. I t  is easy to check tha t  the stalks of AP(R~]X) are the same as the stalks o f / ~ ( R  n) 

off of X, but  tha t  they are zero on X. Also A~(R~/X) is the space of global sections of 

A~(R~[X). We see A~(R~]X) is a subsheaf of /k~(R"). Let  A~(X) be the quotient sheaf 

~k~(Rn)]AP(R~]X). Then the stalks of 2~(X) are zero except on X, s o / ~ ( X )  may  be con- 

sidered to be a sheaf on X. 

The sheaves ]k~(Rn/X) and ,~ (X)  are evidently soft sheaves. Moreover, we clearly 

have dv(A~~ so tha t  a~ v preserves ]k*(Rn/X)(= ~v.oAV(R'*/X)). Thus 

gv factors to a sheaf map Jv: fi2(X)-~s The Poincar~ lemma again applies and says 

tha t  

O_~C,x_>~kO(x) C~o .AX(X) ~x ... ~-x,/k~(X)-+0 (6.3) 

is an exact resolution by  fine sheaves of the constant sheaf ~ on X. Thus this resolution 

may  be used to compute the sheaf cohomology groups of X with coefficients in C. Of 

course, for reasonable X, they are the same as any other cohomology groups of X with 

coefficients in C. 

The sheaves ]k~(Rn]X) also give a fine resolution of a certain sheaf Y on Rn; namely, 

Y is the sheaf which is the constant sheaf C on R n - X  and the zero sheaf on X. We denote 

the cohomology groups of Y by H~(Rn/X) and call them the relative (deRham) cohomology 

groups of X in R n. Clearly the sequence 0-~ Y - ~ - ~ C i x - ~ 0  is an exact sequence of sheaves. 

By  definition, the sequence O~]~(Rn/X)-~A~(R~)~]k~(X)-+O is also exact for each p. 

Moreover, all of these exact sequences arc compatible with the resolutions of Y, ~ and Cx 

constructed by  exterior differentiation, so tha t  they fit together to form an exact sequence 

of exact fine resolutions of an exact sequence of sheaves. Thus, we obtain in the usual 
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manner a long exact sequence of cohomology groups: 

-~ H'(R')-~ H~(X) , H~+I(R'/X)-~ H'+~(R')-~ . . . .  (6.4) 

Since H~(R n) =0 for all p ~> 1, we have the canonical ismorphism H~(X)~H~+I(Rn/X). Let 

us be explicit about  this isomorphism. I f  ~r then we may  pick a form ~EAP(R n) 

which represents g. We write ~ = [~]. By  the definition of the differential i n / ~ ( X ) ,  we see 

tha t  d ~  vanishes in a neighborhood of X. Thus d~EA~+I(R~/X). Moreover, clearly, 

d~+l(dpqJ)=O, so d ~  represents a class [dpq~]~H~+l(R~/X). The formula ~*( [~] )=[d~]  

holds. 

I t  is clear tha t  H~(X) and H~(R~/X) are complex vector spaces. We let H~(X) and 

H~(R']X) denote the dual vector spaces. We refer to these as the (deRham) homology 

groups of X or of R ~ relative to X. Again, they are in reasonable cases canonicany identi- 

fiable with more classical homology groups. Of course, the adjoint of ~* gives an isomor- 

phism ~,~: H~+I(R'/X)-~H,(X). 

B. The index theorem 

Theorem I I  yields a relative homology class in the sense of the preceding subsection 

as we now see. Suppose tha t  X 1 . . . .  , X~ are self adjoint crypto-integral operators of di~ 

mension ~ where ~ is one or two. The representation theorem says precisely tha t  there is 

a linear functional l on CA~a(R k) which vanishes on dA~S-I(R~/E). Thus the restriction of 

l to A~(Rk/E) m a y  actually be factored to H2~(Rk/E). In other words, 1 m a y  be used in 

this way to define a relative homology class ~8 in H~(Rk]E). By the boundary isomorphism, 

we get a class ~,(2a) in H2$_I(E ). 

Now we turn to the index theory for the one dimensional case. Ins tead of proving 

Theorem I I I  immediately, we look first a t  an algebra with two generators since every- 

thing in this case is extremely graphic and provides good motivation for the general case. 

Consider X 1 and X~ self-adjoint operators with trace class commutators.  Set T = X 1 +iX~ 

and consider (~ and R ~ to be identified in the natural  way. I f  U is a partial  isometry in the 

C* algebra generated by  X 1 and X~ whose symbol extends to a smooth function u on R ~, 

then since index U=tr  (UU*-U'U)  a purely formal application of the representation 

theorem yields 

index U ~- l(du A d~) = 2(du A d~). (6.5) 

In  fact, the first equality was proved in [8]. The fact  tha t  1 vanishes on d(AI(RZ/E)) says 

tha t  1 is a constant  multiple kj of Lebesgue measure on each component  Uj of R z -  E. I t  
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is not hard to use the formula above and evaluate the ks; they are 

- 1  
kj = 2~i index (T - zjI) 

where z s is any point in U s. Now it is folklore tha t  (integration over) the connected com- 

ponents of C - E  gives an integral basis for H2(R2/E). Thus we intuitively associate an 

assignment of integers 2s to each component of C - E  with a class 2 in H2(R~/E). This is 

precisely what was done above. So, in summary, we conclude that  the homology class 2 

canonically associated with the fundamental trace form corresponds to the index informa- 

tion contained in T. The operator T was important here because it  generates C*~(X1, X2). 

When n > 2  the C*-algebra does not have one generator and the relationship described 

here cannot hold. However, the basic phenomenon carries over in a simple and complete 

fashion via Theorem I H  which will now be proved. 

Proo] el Theorem I I I :  Suppose that  X = { X  1 . . . . .  Xk} is an almost commuting family 

of operators, and let 9~ be a maximal selfadjoint set containing the X, such that  [R, S] is 

trace class for any R, S in 9~. Suppose R = {Rts } and S = {S~j} are in Mm(9~ ). Then [R, S] 

is not necessarily trace class, or even compact. Nevertheless, the formal trace of [R, S] is 

~ . s  RtsSsf-Y~ts SfsRst=Y~,.s [Rtj, Ss,], and this is trace class, so we may take its trace. 

Thus <R,S>=Zt.jtr[R,s, Sj~ ] is a well-defined bilinear form on Mm(9~), Moreover, ff 

[R, S] happens to be trace class, then <R, S> = t r  [R, S]. In particular, if UEMm(9~) is a 

Fredholm partial isometry, we have <U*, U> = - i n d  U. 

Consider an operator F in the C*-algebra generated by Mm(9~) whose symbol I m 

CMm(E) is invertible. Write / in polar form / =  u[/], where u is a unitary valued function 

in CM~(E) and [1] = V]~. Standard approximation arguments allow us to choose a map 

r Rk-~Mm(C) such that  the entries 9is of 9 are smooth functions, ~ takes on unitary values 

in a neighborhood of E, and such that  ~ [ E is arbitrarily close to u. Our functional calculus, 

Theorem 3.3 part  c, allows us to associate with q0 an operator e~(q~) in Mm(9~ ). Since 9 and 

] are in the same homotopy class, the index of F equals the index of ex(cp). 
The representation theorem yields 

<e~($), ex(r = ~ ~(dcftjd~ts) 
LS=I 

If  the operator ex(~) were a partial isometry, then its index would simply equal 

~ex(r ex(r Even though it is not a partial isometry, we shall see that  it  is reasonably 

close to one. Namely, let UT  denote the polar decomposition of ex(~). The operator U is a 

partial isometry with the same index as ex(~). Moreover, ex(~) - U is a compact operator. 
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Replacing ex(r by its adjoint and taking a trace class perturbation if necessary, we may 

assume that  ex(~), and therefore T, is invertible. Then T2=ex(r is in Mm(9~ ) and 

invertible. Now Theorem 3.3 implies that  T, T -1 and hence U belongs to Mm(9~). Thus 

Lemma 1.3 implies (ex(r ex(r [U, U'J, completing the proof of Theorem III .  

w 7. Examples 

In  this section we shall see how the foregoing theory looks when specialized to some 

concrete examples. The first subsection treats pseudo-differential operators of non-positive 

order. We prove that  they form a crypto-integral algebra of the appropriate dimension, 

and that  the fundamental trace form just gives the fundamental class on the cotangent 

sphere bundle of the manifold. In  the second subsection we state analogous results for 

Tocphtz operators on the 2 n - 1  sphere which follow from forthcoming work of the sec- 

ond author.  We also discuss how Toeplitz operators compare to pseudo-differential 

operators and derive the Toeplitz index theorem from the pseudo-differential operator 

index theorem. 

A. Pseudo-differential operators 

We begin with a discussion of pseudo-differential operators. There are quite a few 

different classes of such operators. The ones appropriate here are the original ones of 

Kohn-Nirenberg [13] or an extended class intermediate between these and the ones of 

H6rmander [11]. Now we set conventions. Suppose U is an open set in R n. For any in- 

teger m, denote by  SIn(U) the set of all smooth functions to(x, ~) on U • R ~ such that ,  for 

every compact K c  U and multi-indices ~, 8, we have 

~xb~p(x,~)l <~ C~,~.K(l + l~,) m-'~'. (7.1) 

The subclass A(U) of S~ which we shah use has the property that  for any S~ func- 

tion la in A(U) there is a smooth function a ' (p)  (x, ~) which outside the disk I~1 ~ 1 is homo. 

geneous of order 0 in the ~ variable, and a positive number e such tha t  

ID(x, ~) - a ' ( p )  (x, ~) ES-*(U). 

For any p in A (U) N SIn(U) the pseudo-differential operator P with total symbolp is the map 

from L~(U) functions of compact support to locally L ~ functions defined by extension of 

the formula 

Pu -~ (2~)-" IT(x, ~) ~t(~) ei~'~ d~ 
J 
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from a dense set of functions. The operator P is said to have order m and the symbol of 

P,  denoted a(P)(x, 0), is the function on U • {~: I~1 =1} defined by a(P)(x, O)=~'(p)(x, 0) 

for x in U and ] 01 = 1. The function p will be called the "full symbol" of P.  

Let Mn=M be a smooth, compact, n-dimensional manifold. Let  w be an everywhere" 

positive smooth density on M. Using w we may define an inner product {,)w on C~(M) by 

the formula (/, g)w=S~f~w. Let  ~ be the corresponding Hilbert space. The pseudodif- 

ferential operators behave well under coordinate changes [11] and so one can define a class 

PS(M) of bounded operators on ~ whose localizations are pseudo-differential operators 

having full symbol in A(U) as above. 

Let  T*(M) be the cotangent bundle of M. Let  S*{M)~_ T*(M) be the cotangent sphere 

bundle of M, and D*(M)~_ T*{M) the associated disk bundle. Then D(M) is a manifold of 

dimension 2n, with boundary ~D(M)=S*{M). To pin down S*(M) and D*(M) as actual 

physical subsets of T*(M), the reader may  assume a Riemannian metric on M has been 

specified. Actually S*(M) is more properly and invariantly thought of as the bundle of 

rays in T*(M), forming a natural boundary for T*(M); but this doesn't matter. I t  is known 

that  the commutator ideal of PS(M) consists of compact operators, and that  the joint 

essential spectrum of PS(M) may be identified with S*(M). Note that  the symbol, a(P), 

of an operator P in PS(M) is well defined and is a function on S*(M). 

T~EOR~.M 7.1. 

{a) Given a compasS, ~nooth, n.dimensional mani/old M, the associated algebra PS(M) 

is crypto-integral o/ dimension n. 

(b) Given o,laerators A 1 ..... A~,~_PS(M), let ]a ..... ]~n c_ C~(S*(M)) be the symbol8 o/the 

A~. Then 

tr[A1, A2, ... , A~] = ~' Jsf*(M)[1 d/~ A d/a A. . .  A d/2, (7.2) 

where 7 --- n!(2~i)-'. 

Remark. The right hand side of (7.2) is antisymmetric in the /~  because of Stoke's 

theorem, or integration by  parts. A more balanced formula may be obtained by consider- 

ing extensions f~ of the ]~ from S*(M) to D*(M). (One may choose such extensions in a 

systematic manner if one wishes.) The Stokes' theorem again implies 

tr[A 1 . . . . .  A~] = ~ f~xM)df~ A. . .  A df~o 

Remark. This theorem along with the Atiyah-Singer index theorem gives one an ex- 
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plieit formula for the index of any Fredholm operator in Mm(PS(M)) in terms of the trace 

of an antisymmetrization of operators in P S i M  ). 

Proo[. We will first prove the theorem for pseudo-differential operators having com- 

pact support on an open set U. The general case will then follow from the behavior of 

PS(M)  under localization. The Hilbert space on which these operators act is taken to be 

La(U) where one uses Lebesgue measure. H one instead were to use an equivalent measure, 

this would have the effect of conjugating the operators P involved by  an invertible operator 

A, namely sending P to A P A  -t ,  and all considerations involving traces are insensitive to 

this. 

First observe that  if T is a trace class pseudo-differential operator with full symbol 

t(x, ~) on U • R ~ having compact support in U, then t r  T is the trace of the integral oper- 

ator with kernel 

q(x, s) = (2~) -~ f t(x, ~) e-t(a-x).~d~. 
J ~  

Thus 

t r T  t(x, $)d2dx. 

I t  is straightfoward to check that  if t(x, 2) is dominated by (1 +]~] )-(n+o, then T is trace 

class. Also recall tha t  the composition of two operators P,  Q with full symbol p, q compactly 

supported in U is a pseudo-differential operator whose full symbol equals 

From this it  follows that  the product of operators of order m and n yield an operator of 

order at most n + m  and that  the commutator of two such operators is order n + m - - 1 .  

These facts immediately guarantee that  the order zero pseudo-differential operators axe 

almost nilpotent in n + 1 steps. The fact tha t  the antisymmetrization of 2n operators is 

trace class is more subtle and will emerge from the forthcoming discussion. 

The next  step in the proof is to show that  the total symbol of the operator [A 1 .. . .  , A~,] 

has the form 

inn!J(a:, a~ . . . . .  a2n) (x, 2) + E(ax, ..., a~,~) i x, ~), (7.3) 

where the aj are full symbols of the Aj, J is the Jacobian matrix of the {aj)~21, and E has 

order - ( n + 1). In fact E is a sum of products of derivatives of the a~ where each product 

contains at  least n + 1 derivatives in the 2 directions. 

To verify i7.3), we recall from part  3) of Proposition 1.1 that  the antisymmetrization 
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O~ A 1 . . . .  , A ~  is a sum of 2-nn! terms like 

lax, Aa] [A3, A4] ... [A~n_ 1, A2n]. 

Clearly the full symbol of this product has order - n  and  the leading te rm is 

" ' "  o~ ox o~ l" 

Upon expanding this out, one obtains (2n) n terms, of which n n have the form 

in Oal ~ 2  ~a3 ~ 4  ~2n-1 ~an 

where 1 </j<z~. The other (2 ~ -  I )n  n terms are obtained from this last expression b y m a k -  

ing interchanges in i of the pairs (a2j-x, az~) and multiplying by  ( - 1 )  i. Hence, keeping 

Proposition 1.1 in mind, we see there are altogether n!n n terms in the n-th order symbol of 

[A 1 ..... A2, ] and these terms are obtained from the standard te rm above by  performing 

arbi t rary permutat ions in the /~ and inserting the appropriate sign. I f  we fix il, i2, -.., ix 

and perform the permutation, we see the result will be identically zero unless is~=i k for 

k=~j. I f  however we do have $s=4=ik for k=4=j, then the i s are just 1, 2 ... . .  n in some order, 

and we just obtain 1 copy of ind(al . . . . .  a2n ). Summing over all possible permutat ions il, 

.... ix, we do obtain ,~n!d(a a . . . . .  a2n), as claimed. 

The first consequence of (7.3) is tha t  [A x ... . .  A~n] is trace class as we shall now de- 

monstrate.  Since the full symbol of A s is in A(U) the function es(x, ~) = (as(x , ~) -~(aj))  (x, ~) 

is of order - e j  for some positive e~. I f  gx ... . .  g~n-1 are functions of order less then or equal 

to zero, then d(g x . . . . .  g~-x, e~) has order - ~ z - e j  and so [A a ... . .  Azn ] will be trace class if 

J(a(al) . . . . .  ~(azn)) is integrable on U x R n. However, this function vanishes identically out- 

side of D(U) since it is the Jacobian of a map which outside of D(U) has rank only 

2~z-1, by  homogeneity of the a, 's.  Consequently it is integrable. 

The trace of [A 1 ..... A2n ] is just the integral of inn!(2~)-nJ plus the integral of E. We 

wish to show E does not contribute to the trace. Define A~ to be the pseudo-differential 

operator with symbol aj(x, ~/t) which we denote by  a~. The function a ~ - a  1 has o rde r  - e  

and so if the corresponding operator Di appears in a commutator  [If1, [A~ .. . . .  Azn]] or 

[A~, []T1, A 3 . . . . .  Azn]] the commutator  is trace class and has trace zero. Repetition of this 

principle and Proposition 1.1, par t  2, yield tha t  t r  [A~, A t .... ~,] is independent of t. Of 

course ~v• d(a~, .,., a~n) is also independent of t. However, 
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for t > l ,  so if we make the change of variables ~=~/t and then take the limit t~oo ,  we 

happily find tha t  ~ E = 0. Therefore 

�9 n n! 
tr[Az, A2, ---, A3.] = ~ (-~),~ f v  • R. J(al' as,..., a2n), 

which by  Stokes theorem is 

- 
~ l i m  aldaz A daa A ... A da2,, 

which in turn is 

~ l i m  [ a(Az) da(A2) A ... A da(A~.). ( [. 

(2~) r-~J~ Jl~l=r 

However, this last integral is independent of r for r > 1 since the integrand is exact. This 

gives the desired trace formula (7.2) for U. 

Now we pass to the general case. The point is tha t  PS(M) is pseudo-local in the fol- 

lowing sense. Throughout this section M h will denote the operation of multiplication by  

the function h. The function space on which it acts will vary  but  in a way which wil lal-  

ways be clear from context; here this space is C~176 Suppose ] and g are two smooth 

functions on M with disjoint supports. Then, for any  T EPS(M), the operator MsTMg is 

a smooth integral operator, and in particular is trace class. Also, if U_~ M is any  open set, 

then the algebra 9~(U)={MITMg:/, gEC~(U), TEPS(M)} depends only on the diffeo- 

morphism type of U, not on the embedding of U in M. This is the excision property for 

pseudo-differential operators. 

I f  M is any  compact manifold let {U~} be a finite covering of M by  coordinate disks. 

For convenience we will assume tha t  given U~, then the union of those U s for which 

Ui N U s # r  is contained in some suitable coordinate disk. I t  is not hard to see tha t  such 

covers exist. Let  {h~} be a parti t ion of unity subordinate to the covering {U~}. Then given 

any  TEPS(M), we may  write T=F~t. j MmTM~. In  this way, we may  replace any  basic 

commutator  product in elements of PS(M) by a sum of basic commutator  products which 

either contain only terms of the form AMmBM~C where h~ and hj have disjoint support,  

or are basic commutator  products in operators all belonging to ~(V) for some suitable 

coordinate disk V. The former type are clearly trace class. Whether  or not a given type  of 

expression involving commutators  in elements of PS(M) is always trace class is reduced 

to the same question asked only of elements of 9~(g) for some standard disk V. In  other 

words, such a question is a local question. From our investigations on U, we may  conclude 

tha t  PS(M) is erypto-integral of dimension n = dim M for any  manifold M. 
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l~ow we may turn to the fundamental form on PS(M). I t  is clear tha t  both the right 

and left hand sides of (7.2) have the following properties: 

(i) They are equal if all As, 1 ~< i ~< 2n are in ~(V) for some disk V~ M. This of course 

follows from the computation o n / ~ .  

(ii) Suppose for some i and j, A~=Mg, B~Mh, and Aj=Mg~BjM~ where some pair 

from gt, gj, h~ and hj have disjoint supports. The right hand side of (6.1) is zero 

because/l  and/ j ,  the symbols of At and A~, have disjoint supports. Secondly, the 

product A1A 2 ... Azn and any permutation of it is trace class. Consequently the 

antisymmetrization of A 1 .... , A~, can be written as the sum of trace class com- 

mutators and so the left hand side of (6.1) is zero. 

(iii) Each side is determined by its values on ~(V) for disks V and by  property (ii). 

This follows from the partition of unity argument mentioned above. 

From (i), (ii) and (iii) above, statement (b) of Theorem 7.1 follows immediately for a 

general manifold M, so the proof of that  theorem is complete. 

Remark. The localization property used here to reduce the computation on a general 

manifold to the computation on /~" is in fact a general phenomenon in crypto-integral 

algebras. Precisely, suppose 9~ is a crypto-integral algebra closed under C ~ functional 

calculus. Suppose ~___~ is a commutative subalgebra. Suppose T 1 and T z E ~  and T 1 and 

T 2 have disjoint supports in the maximal ideal space of Ca~. Then T1AT ~ is trace class 

~or any A E~ for it  is not hard to show that  there is an S in 9~ commuting with T 1 and T~ 

such that  STI=T1, and STz=O. Then [S, T1AT~=T1ATz, so T1AT~6 A~>09/~ (so 

TIAT~ is of order - oo) and in particular is trace class. 

B. VenugopAlkrishna's Toeplitz operators 

Let  us briefly recall the definition of these operators [18]. Let  D ~  C a be the unit disk 

in complex n-space, and let S zn-1 =~D be the unit sphere. Let  tt2(D) be the subspace of 

Z2(D) consisting of holomorphic functions in D. Let  P be the projection of L 2 onto HL 

For any continuous function / on D, define the Toeplitz operators ~r on H2(D) by ~I=PMr.  

The algebra of Toeplitz operators is denoted A,  and the symbol of T r is [is~n-x. One 

can perform the same construction for a pseudo-convex domain with smooth boundary. 

However, in the case of D, one has a pleasant orthogonal basis for H z, namely 

b - + - ] k M  (7.4) 
L k! j e ,  

where k is the conventional multi-index with entries in (Z+)". This basis allows one to 

identify H2(D) with lz((Z+) n) (see [5] for details). If aEZ n, then we define translation by a 
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to be the operator on l~(Z n) whose action on l E l~(Z n) is [T j ]  (b) =l(b-  a). One can compute 

that  ~z~ when viewed on l~((Z+) n) has the form Mn T~ where et is the standard i th basis 

vector in (Z+)n and the function It is 

Xt ~,/1/2 
/t(~) = (x~ + . . .  + xn + -- ,  . (7.5) 

Toephtz operators and pseudo-differential operators are very closely related. For, if 

M is a manifold and UcS*(M) is a coordinate ball, then the C*-algebra generated by 

pseudo-differential operators whose symbols are constant outside U is isomorphic to the 

C*-algebra generated by An. One can see this on general grounds by combining the Atiyah- 

Singer Index Theorem [1], the theory of Brown-Douglas-Fi|lmore [3], and Venugopal- 

krishna's Index Theorem [18]. We take a more concrete point of view instead and write 

down explicitly such a correspondence between An and a natural subalgebra of PS(Tn), 
the pseudo-differential operators on the n-torus. A benefit of this approach is a demonstra- 

tion that  Venugopalkrishna's index theorem follows from the Atiyah-Singer index theorem. 

By means of the Fourier transform the pseudo-differential operator PS(T n) can be 

conveniently regarded as being an algebra of operators on l~(Z n) generated by the follow- 

ing two types of operators: 

(i) translation operators: if a, bEZ n, and ]El~(Zn), then Ta(f)(b)--/(b-a ) is trans- 

lation by a; 

(ii) multiplication operators: Mg with 9 the restriction to Z n of a smooth function on 

R n which satisfies 

]~9(~) ~< Ca(1 + I~1) -I~l (7.6) 

as well as the obvious analog of the asymptotic condition which characterizes functions in 

A(U). 
This approach to pseudo-differential operators is workable and the original proof 

of Theorem 7.1 was given in this framework. Also treating these operators as weighted 

shifts is gratifying to operator theorists who have had a long standing affection for weight- 

ed shifts. Now we turn to Toephtz operators. 

The function It of (7.5) defined on (R+)n has radial asymptotic limits and its deriva- 

tives ~]Ox k satisfy the appropriate growth condition (7.6) provided that  I x]/x t is bounded. 

Thus the generators Ta=MnTe~ for the Toeplitz algebra seem something like PS(T n) 
operators but they have a "rough symbol" along the hyperplane xt=0.  We shall identify 

certain Toeplitz operators with operators in PS(T n) whose interesting action is just that  

of the Toeplitz operators. Let ~ denote all polynomials in T~, T* r Put  w =YI~=I 1~ where It 

is as in (7.5). Note w vanishes on the coordinate planes xt=0.  Also the operator M w can 
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be written I-l~-x (~a~*,) and consequently is in 0. Furthermore, any continuous function 

fl of Mw is in the C*-algebra generated by  ~. Pick fl to be a one-one C ~ function from R + 

to R + which along with all of its derivatives vanishes at  the origin. The salient feature of 

fl is tha t  fl(w)/t is smooth and satisfies (7.6) thereby insuring that  the operator fl(Mw)vz~ = 

M~(w)It Tet in the Toeplitz algebra is also in PS(Tn). 

Let A be the selfadjoint polynomial algebra generated by the constants and the 

operators fl(M~)va. Then if REMm(A) is Fredholm, it is clear that  the index of R is the 

same whether R is considered as operating on l~((Z+) n) or on l~(Zn). In the latter situation 

of course the index of R is computed by the Atiyah-Singer Index Theorem. On the other 

hand, A is contained in Am and it  is clear tha t  the symbols represented by A are uniformly 

dense in the functions constant on the zeros of Wls2n-1. Thus it is clear from standard argu- 

ments that  each homotopy class of symbols for Mm(A=) contains a symbol from Mm(A). 

(One shrinks the zero-locns of Wls2n-1 to a point.) Thus Atiyah and Singer compute the in- 

dex homomorphism for Am and this computation is just the content of Venugopalkrishna's 

result. 

We also remark that  one can construct a subalgebra of PS(T  n) which is reduced by  

12((Z+)n), which restricts faithfully to 12((Z+)n, and which modulo the compacts are dense 

(uniform norm) in An. There are several constructions one can use to obtain such sub- 

algebras, all of which are straightforward and follow after a few moments of thought. 

Now we forsake the C*-algebra generated by An and discuss finer structure. To show 

that  Am is a cryptointegral algebra it suffices to show that  the T~, and their adjoints satisfy 

Criterion 3.1. This can be done by getting growth estimates analogous to (7.6) for t h e / i  

with differences /t(x+e~)-/t(x) replacing derivatives O/ax. Although this is the method 

which the authors used to verify tha t  An is crypto-integral, we shall not present it because 

it  has been outmoded by recent work of the second author which will appear elsewhere. 

The new approach springs from a very concrete s tudy of Fourier analysis on the Heisen- 

berg group, in which pseudo-differential and Toephtz operators fit into a common frame- 

work. The Kohn-Nirenberg formalism has a natural interpretation in this setup and stand- 

ard procedures for pseudo-differential operators apply also to Toeplitz operators. One 

can use this to prove the analog of (7.1) for An: 

THEOREM 7.2. (a) An is a crypto-integra-alilebra o/dimension n, (b) I / g l  ..... g~n are 

smooth functions on the 2n-dimensional unit disk D in C n, then 

1 fDdg~Ada~A ...Adg2n. tr[% . . . . . .  ~g2,] vol (D) 

Re,hark. vol (D) equals (2ni)n]n! with respect to the volume formd51 h dz 1 h... h dSn h dzn. 
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