# ON THE CLASSIFICATION OF KLEINIAN GROUPS II—SIGNATURES

BY

### BERNARD MASKIT

State University of New York, Stony Brook, N.Y., USA(1)

Part of the classical theory of Fuchsian groups is a classification of finitely generated Fuchsian groups of the first kind. This classification proceeds roughly as follows. To each such Fuchsian group there is assigned a set of integers, called the signature; there is a simple set of conditions describing which sets of integers actually occur as signatures of Fuchsian groups. Two groups have the same signature if and only if one is a deformation of the other; i.e., there is a (quasiconformal) homeomorphism of the disc which conjugates one group into the other. The set of groups of a given signature has a real analytic structure, and can in a natural way be regarded as Euclidean n-space factored by a discontinuous group.

In this paper we give a similar classification for those Kleinian groups which have both an invariant region of discontinuity, and which, in their action on hyperbolic 3-space, have a finite-sided fundamental polyhedron. To each such group we assign a signature, which is basically a geometric object, but we also give an interpretation of this geometric object as a set of integers, similar to the signature of a Fuchsian group. We give a simple set of conditions which are necessary and sufficient for such a geometric object—or set of integers—to be the signature of a Kleinian group. Our main result in this paper is that two such Kleinian groups have the same signature if and only if one is a quasiconformal deformation of the other; there are also weaker results dealing with Kleinian groups which have an invariant component and which are assumed only to be finitely generated. Spaces of quasiconformal deformations of Kleinian groups in general have been discussed elsewhere by Bers [6], Kra [13], and Maskit [17]. The special cases arising from these particular Kleinian groups will be pursued in a subsequent paper in this series.

<sup>(1)</sup> Research supported in part by National Science Foundation Grant number MPS7507230.

<sup>2-772902</sup> Acta mathematica 138. Imprimé le 5 Mai 1977

The basic definitions appear in section 1; many of these appear in [18], but are repeated here for the convenience of the reader. The class  $C_0$  introduced there is the class of Kleinian groups described above; this is proved in section 10.

The signature of a Kleinian group is defined in sections 2 and 3. The conditions for a general "signature" to be that of a Kleinian group are given in section 4. The proof of our main theorem, and several related results, appear in sections 5–9. The main ingredients in this proof are the decomposition of Kleinian groups [19], and a version of Marden's isomorphism theorem [15], for which we give a purely 2-dimensional proof using an idea due to Koebe [12] (see also [18]), and the techniques of quasiconformal deformations due to Ahlfors and Bers [4, 7].

# 1. Definitions

1.1. In this section we give the basic definitions that are needed to define the signature.

1.2. We denote the class of finitely generated Kleinian groups which have an invariant component by  $C_1$ ; i.e., if  $G \in C_1$ , then there is a connected component  $\Delta$  of the set of discontinuity  $\Omega(G)$ , so that  $g(\Delta) = \Delta$  for all  $g \in G$ .

We remark that the point in  $C_1$  is actually the pair  $(G, \Delta)$ ; Fuchsian groups for example have two invariant components. We will however write  $G \in C_1$ , and it is understood that we have chosen a particular invariant component  $\Delta$ .

1.3. Let G and G<sup>\*</sup> be groups in  $C_1$  with invariant components  $\Delta$  and  $\Delta^*$ , respectively. We say that G and G<sup>\*</sup> are weakly similar if there is an orientation-preserving homeomorphism  $\varphi: \Delta \rightarrow \Delta^*$ , where  $g \rightarrow \varphi \circ g \circ \varphi^{-1}$  defines an isomorphism  $\Psi$  of G onto G<sup>\*</sup>. The mapping  $\varphi$  is called a weak similarity, and  $\Psi$  is called the *induced isomorphism*.

1.4. An isomorphism  $\Psi: G \to G^*$ , between groups in  $C_1$  is called *type-preserving* if both  $\Psi^*$  and  $\Psi^{-1}$  preserve parabolic elements, and if  $\Psi$  preserves the square of the trace of every elliptic element.

**1.5.** If  $\varphi$  is a weak similarity between G and  $G^*$ , and if the induced isomorphism is typepreserving, then  $\varphi$  is a *similarity*, and we say that G and  $G^*$  are *similar*. If in addition,  $\varphi$ is quasiconformal or conformal, then we say that G and  $G^*$  are *quasiconformally* or *conformally similar*.

One easily sees, using Ahlfors' finiteness theorem [2] and Bers' approximation theorem [8], that G and  $G^*$  are similar if and only if they are quasiconformally similar.

**1.6.** A parabolic element g of a group  $G \in C_1$  is called *accidental* if there is a weak similarity  $\varphi$  so that  $\varphi \circ g \circ \varphi^{-1}$  is not parabolic.

18

**1.7.** If  $G \in \mathcal{C}_1$ , with invariant component  $\Delta$ , and H is a subgroup of G, then H has a distinguished invariant component  $\Delta(H) \supset \Delta$ .

**1.8.** A subgroup H of a group  $G \in C_1$  is called a *factor subgroup* if it satisfies

- (i)  $\Delta(H)$  is simply-connected,
- (ii) H contains no accidental parabolic elements,
- (iii) H contains every parabolic element of G whose fixed point lies in its limit set  $\Lambda(H)$ , and
- (iv) H is a maximal subgroup of G satisfying properties (i)-(iii).

1.9. It was shown in [19] that every factor subgroup of a group in  $C_1$  again lies in  $C_1$ .

**1.10.** A group  $G \in C_1$  whose invariant component is simply connected, and which contains no accidental parabolic elements, is called a *basic group*.

It was shown in [20] (see also Bers [9], and Kra and Maskit [14]), that every basic group H is either elementary (i.e.,  $\Lambda(H)$  is finite), or quasi-Fuchsian (i.e., H is a perhaps trivial quasiconformal deformation of a Fuchsian group), or degenerate (i.e.,  $\Delta = \Omega$ ).

1.11. A group in  $C_1$  is called *regular* if no factor subgroup is degenerate. The subclass of  $C_1$  consisting of regular groups is denoted by  $C_0$ —other characterizations of  $C_0$  appear in [19]; we will show in section 10 that  $C_0$  consists of those groups in  $C_1$  which have a finite-sided fundamental polyhedron.

1.12. A group in  $C_0$  for which every factor subgroup is either elementary or Fuchsian is called a *Koebe group*. It was shown in [18] that every group in  $C_1$  is conformally similar to a unique Koebe group.

**1.13.** In general, if  $A \subset \hat{C} = C \cup \{\infty\}$ , and G is a Kleinian group, then the stabilizer of A in G is  $\{g \in G \mid g(A) = A\}$ .

If H is a subgroup of the Kleinian group G, and  $A \subset \hat{C}$ , then A is precisely invariant under H in G if h(A) = A for all  $h \in H$ , and  $g(A) \cap A = \emptyset$  for all  $g \in G - H$ .

### 2. Basic signatures

2.1. Throughout this section G will denote a basic group with invariant component  $\Delta$ . In this section we recall the definition of the signature of a basic group, and we recall the relationship between the signature and the conformal type of the simply connected component  $\Delta$ .

2.2. By mapping  $\Delta$  onto the sphere, plane, or disc, we see that G is similar to an elementary group or to a finitely generated Fuchsian group of the first kind. In any case,  $\Delta/G$  is a closed Riemann surface  $\bar{S}$  from which a finite number of points have been removed, and the projection map  $\pi: \Delta \rightarrow \Delta/G$  is branched over at most finitely many points. These points of  $\bar{S}$  over which  $\pi$  is branched together with the points not in  $\pi(\Delta)$  are called the *distinguished points* of  $\bar{S}$ .

To each distinguished point x we associate a branch number  $\nu$  as follows. Let w be the boundary of a disc on  $\overline{S}$  which contains x in its interior, and which contains no other distinguished point in its closure. A lifting of w determines an elliptic or parabolic element of G. We let  $\nu$  be the order of that element.

Let g be the genus of  $\bar{S}$ , let n be the number of distinguished points of  $\bar{S}$ , and let  $v_1, \ldots, v_n$  be the branch numbers of these points. Then the signature of G is the collection  $(g, n; v_1, \ldots, v_n)$ .

2.3. The signature is, of course, defined only up to permutation of the numbers  $v_1,...,v_n$ , and satisfies  $g \ge 0$ ,  $n \ge 0$ ,  $2 \le v_i \le \infty$ , i = 1, ..., n.

Not every collection of numbers  $(g, n; v_1, ..., v_n)$  satisfying these inequalities is actually the signature of a basic group. The only possible signatures which do not occur are (0, 1; v)and  $(0, 2; v_1, v_2), v_1 \neq v_2$ .

2.4. If one knows the signature, then the conformal type of  $\Delta$  is determined.  $\Delta$  is elliptic, parabolic, or hyperbolic whenever  $2(g-1) + \sum_{i=1}^{n} (1-(1/\nu_i))$  is negative, zero, or positive, respectively (here  $1/\infty = 0$ ).

# 3. Signatures

**3.1.** In this section we define the signature of a group in  $C_1$ . We define the signature primarily as a geometric object; this is closely related to the definition given in [21] which unfortunately is not quite correct.

3.2. We start by recalling some of the results of [19].

Let G be a group in  $C_1$ . Then G contains only finitely many conjugacy classes of factor subgroups; each factor subgroup is finitely generated, and hence is a basic group.

On  $S = \Delta/G$ , there is a finite set of simple disjoint loops  $w_1, ..., w_k$ . Each connected component of the preimage of  $\{w_1 \cup ... \cup w_k\}$  is stabilized either by a finite cyclic group, in which case it is a loop, or it is stabilized by a parabolic cyclic group, in which case it becomes a loop after we adjoin the parabolic fixed point. We will from here on regard the connected components of the preimage of  $\{w_1 \cup ... \cup w_k\}$  as being loops; they are called *structure loops*.

Two structure loops may be tangent at a parabolic fixed point; otherwise they are simple and disjoint. They divide  $\Delta$  into regions called *structure regions*.

For each structure region A, there is exactly one factor subgroup H, so that A is precisely invariant under H in G.

For each factor subgroup H, there is at least one structure region A so that A is precisely invariant under H in G.

Two factor subgroups of G are conjugate in G if and only if the structure regions they stabilize are equivalent under G.

Every structure loop W lies on the boundary of two structure regions A and A' stabilized by H and H', respectively. Then  $J = H \cap H'$  is the stabilizer of W, and if J is non-trivial, then J is a maximal elliptic or parabolic cyclic subgroup of G.

The loop W bounds topological discs  $B' \supset A$  and  $B \supset A'$ ; the disc B is precisely invariant under J in H, and the disc B' is precisely invariant under J in H'.

**3.3.** We remark at this point that while the factor subgroups are intrinsically defined, the loops  $w_1, ..., w_k$  are in general not even unique up to homology. The properties of these loops that we will use are all given above. It is clear that these properties are not affected by minor deformations, hence we can assume that every structure loop is smooth, except perhaps at a parabolic fixed point.

**3.4.** The signature of G is the collection (g; K), where g is the genus of  $\Delta/G$  (by Ahlfors' finiteness theorem [2],  $g < \infty$ ), and K is the 2-complex described below.

Let  $H_1, ..., H_s$  be a complete list of non-conjugate factor subgroups of G, and let  $\sigma_i = (g_i, n_i; v_{i1}, ..., v_{in_i})$  be the signature of  $H_i$ . Let  $K_1, ..., K_s$  be disjoint closed orientable surfaces, where  $K_i$  is of genus  $g_i$ , and  $K_i$  has  $n_i$  distinguished points on it, labelled with the branch numbers  $v_{i1}, ..., v_{in_i}$ . The surfaces  $K_1, ..., K_s$  are called the *parts* of K. We say that  $H_i$ , or any conjugate of  $H_i$ , lies over  $K_i$ .

There are also at most k 1-cells in K. We fix i, and let W be a structure loop lying over  $w_i$ . If J, the stabilizer of W is trivial, then there is no 1-cell corresponding to  $w_i$ . If |J| > 1, then let A and A' be the regions on either side of W, and let H and H', respectively, be their stabilizers, where H lies over  $K_i$ , and H' lies over some  $K_i$ . Let B be the topological disc bounded by W where  $B \supset A'$ , and let B' be the other topological disc bounded by W. Then B is precisely invariant under J in H, and so, after appropriate conjugation in G, B projects to a disc on  $\Delta(H)/H$ , which we identify with  $K_i$ , and this disc contains exactly one distinguished point with branch number |J|. Similarly B' projects to a disc on  $K_i$ , where this disc also contains exactly one distinguished point on some  $K_i$ , and a distinguished point on some  $K_i$ , where both

distinguished points have branch number |J|. In this case, K contains a 1-cell called a *connector*, where the end points of the connector are the two distinguished points picked out by  $w_i$ , and the connectors are otherwise disjoint from the parts of K, and from each other.

**3.5.** Looking at the orientation near W, one easily sees that the two endpoints of any connector are distinct.

It was also shown in [19] that G could be successively built up using the combination theorems [22, 23]. In the group  $\tilde{H}$  generated by H and H', not only does W not bound a disc which is precisely invariant under J in  $\tilde{H}$ , but J does not correspond to a distinguished point in  $\Delta(\tilde{H})/\tilde{H}$ , and so there is no disc precisely invariant under J in  $\tilde{H}$ , whose boundary lies in  $\Delta$ . We conclude that each distinguished point of each part of K is the endpoint of at most one connector.

**3.6.** We remark next that the connectors establish a partial pairing among the distinguished points of the parts of K. This pairing satisfies the following:

- (i) A distinguished point is paired with at most one other distinguished point.
- (ii) A distinguished point cannot be paired with itself.
- (iii) Two distinguished points can be paired only if they have the same branch number.

We also note that a connector can have its two endpoints on the same or on different parts of K; in particular, K may or may not be connected.

3.7. It is also worth remarking—here again we use the step by step construction of the group using the combination theorems (see [19]), that K can be constructed directly from  $\Delta/G$ , once we know the branch points of the projection  $\pi: \Delta \rightarrow \Delta/G$ , and we know the loops  $w_1, \ldots, w_k$  and the orders of their lifting.

Let  $\bar{S}$  be the closed Riemann surface containing  $\Delta/G$ . Let  $x_1, ..., x_n$  be the distinguished points on  $\bar{S}$ , where  $x_i$  has branch number  $v_i$ ; i.e.,  $x_i$  is either not in  $\Delta/G$ , in which case  $v_i = \infty$ , or  $\pi$  is branched to order  $v_i$  over  $x_i$ .

Let  $w_1, ..., w_k$  be the loops on  $\Delta/G$ ; we regard these loops as lying on S, and we remark that they do not pass through any of the distinguished points. Each loop  $w_i$  defines, by lifting to  $\Delta$ , a conjugacy class of elements of G; let  $\alpha_i$  be the order of any element in that class (note that this element is parabolic if  $\alpha_i = \infty$ ).

We cut S along the loops  $w_1, ..., w_k$ , and pass discs through the resulting boundary loops as follows. If  $\alpha_i = 1$  then we just cut S along  $w_i$ , and sew in two disjoint discs along the resultant boundary loops. If  $\alpha_i > 1$ , then we again cut and sew in disjoint discs, but now we consider the centers of these discs to be distinguished points of order  $\alpha_i$ , and we adjoin a connector with its endpoints at these two distinguished points.

The resultant 2-complex is K.

**3.8.** The 2-complex K is of course defined only up to homeomorphism. We will regard two 2-complexes as being the same if there is a branch number preserving homeomorphism between them.

**3.9.** The signature can also be regarded as a set of numbers. We write  $\sigma = (g; \sigma_1, ..., \sigma_s; P)$ , where again g is the genus of  $\Delta/G$ ,  $\sigma_i$  is the signature of  $H_i$ —the  $\sigma_i$  are called the *factor* signatures, and P is a  $\sum n_i \times \sum n_i$  symmetric incidence matrix, with at most one 1 in any row, which describes the pairing of 3.6.

Of course  $\sigma$  is defined only up to permutations of the  $\sigma_i$ , and permutations of the  $v_{ij}$ , for fixed *i*. Each such permutation yields a different *partial pairing matrix P*.

We will interchangeably use the different versions of the signature  $\sigma$ .

**3.10.** As we have defined it, the signature appears to depend on the choice of the loops  $w_1, ..., w_k$ . In fact, as we will show in section 5, the signature depends only on the similarity class of the group in  $C_1$ .

3.11. One might try to define the connectors in terms of intersections of factor subgroups, as was unfortunately suggested in [21]. If there is a connector with one endpoint on  $K_i$  and the other on  $K_j$ , where the distinguished points have branch number  $\nu$ , then there is a conjugate H' of  $H_j$  so that  $H_i \cap H_j$  is a maximal elliptic or parabolic cyclic subgroup of order  $\nu$ .

For Fuchsian groups, there is a one-to-one correspondence between distinguished points and conjugacy classes of maximal elliptic and parabolic cyclic subgroups. Hence if every factor subgroup of G is non-elementary, the partial pairing matrix is determined by the intersections of factor subgroups.

However, the odd dihedral groups (i.e., the finite basic groups with signature (0, 3; 2, 2, n), n odd) have only one conjugacy class of elements of order 2; likewise, the finite basic group with signature (0, 3; 2, 3, 3) has only one conjugacy class of elements of order 3. For groups which contain sufficiently many of these triangle groups as factor subgroups, the signature need not be determined by the intersections of factor subgroups. A particular example is given below.

Let S be a closed Riemann surface of genus 5, and let  $p_1: \tilde{S}_1 \rightarrow S$  be the highest regular covering of S for which each of the loops indicated in figure 1, when raised to the indicated

power lifts to a loop. We can realize this covering by a group  $G_1$  in  $C_1$  [24]. Then  $G_1$  has signature (5;  $K_1$ ), where  $K_1$  is shown in figure 2.



We similarly define  $G_2$  by the system of loops and powers given in figure 3, and observe that  $G_2$  has signature (5;  $K_2$ ), where  $K_2$  is shown in figure 4.



The two groups  $G_1$  and  $G_2$  have the same factor signatures, and the same intersection of factor subgroups—in both  $G_1$  and  $G_2$  every element of order 2 is in the intersection of four non-conjugate factor subgroups, but the groups have different signatures.

# 4. Admissable signatures

**4.1.** Not every pair (g; K), where  $g \ge 0$ , and K is as in 3.4-3.6 is the signature of a group in  $C_1$ . In this section we give a set of necessary and sufficient conditions for this to be so.

4.2. We already have two conditions for factor signatures:

- (i)  $\sigma_i \neq (0, 1; \nu), i = 1, ..., s$ , and
- (ii)  $\sigma_i \neq (0, 2; \nu_1, \nu_2), \nu_1 \neq \nu_2, i = 1, ..., s.$

4.3. Since each factor subgroup is maximal, if any one of them is trivial, it must be the only one. Hence,

(iii) if for some  $i, \sigma_i = (0, 0)$ , then 1 = i = s.

**4.4.** If a factor subgroup  $H_i$  is cyclic, then its factor signature is  $\sigma_i = (0, 2; \nu, \nu)$ . If a distinguished point on the corresponding part  $K_i$  is paired with some other distinguished point, then there is another factor subgroup H', so that  $H_i \cap H'$  is a non-trivial maximal cyclic subgroup in G. We conclude that  $H' = H_i$  and so the connector with one endpoint on  $K_i$  also has its other endpoint on  $K_i$ .

Let  $A_i$  be a structure region stabilized by  $H_i$ , and let W be a structure loop on the boundary of  $A_i$ , where W is also stabilized by  $H_i$  (the existence of the connector guarantees that there is such a loop). Then as we observed above, the structure region A' on the other side of W is also stabilized by  $H_i$ , and so there is another structure loop W' on the boundary of  $A_i$ , where W' is stabilized by  $H_i$ , and there is an element  $g \in G - H_i$ , which commutes with H. We note that if H is parabolic, then the maximality of H precludes the existence of such an element g.

We summarize the above in the following two conditions:

(iv) If some part has factor signature  $(0, 2; \nu, \nu)$ , then any connector with one endpoint on this part also has its other endpoint on this part.

(v) If some part has factor signature  $(0, 2; \infty, \infty)$ , then no connector has an endpoint on this part.

**4.5.** Similar to the above, we observe that if H and H' are distinct factor subgroups of G, each having signature  $(0, 3; 2, 2, \infty)$ , then H and H' cannot have a common parabolic element. For if they did, the subgroup generated by H and H' would be the basic group of signature (0, 4; 2, 2, 2, 2) and this would contradict the maximality of both H and H'.

We restate the above in terms of the signature.

(vi) If some part  $K_i$  has factor signature  $(0, 3; 2, 2, \infty)$  and some other part  $K_i$  has factor signature  $(0, 3; 2, 2, \infty)$ , then there is no connector connecting the distinguished point with branch number  $\infty$  on  $K_i$ , with the distinguished point with branch number  $\infty$  on  $K_i$ .

4.6. We let p be the number of connected components of K, and we let m be the number of connectors in K. Let g(K) be the genus of K; i.e., if we replace each connector by a tube, then we get a disjoint union of closed orientable surfaces; g(K) is the sum of the genera of these surfaces.

One easily sees that

$$g(K) = \sum_{i=1}^{s} g_i + m - (s - p).$$

It was shown in [19] that  $g \ge g(K)$ . This yields the last condition: (vii)  $t = g - g(K) \ge 0$ .

4.7. A signature satisfying (i)-(vii) is called *admissable*. We have proven half of

THEOREM 1. A signature  $\sigma = (g; K)$  is the signature of a group in  $C_1$  if and only if it is admissible.

With minor adaptations, the proof of the second half of this theorem is given by the constructions in [20] and [24]. One needs to verify, as one builds up the group using the combination theorems, that the admissability conditions rule out all cases of two basic groups being combined to yield a larger basic group, and that the factor subgroups of the combined groups are precisely the conjugates of the factor subgroups of the smaller groups.

The first of these facts is easy, and the second was verified in [19].

# 5. Independence of signature

5.1. In this section we prove that the signature depends only on the similarity class of a group in  $C_1$ , and we will prove the converse in section 6. We state the result as

THEOREM 2. Two groups G and  $G^*$  in  $C_1$  are similar if and only if they have the same signature.

5.2. For the remainder of this section we assume that G and  $G^*$  are similar groups in  $C_1$ , where G has signature (g; K), and  $G^*$  has signature  $(g^*; K^*)$ .

5.3. The fact that G and  $G^*$  are similar gives us at once that  $g^* = g$ . Further, it was shown in [18] that similarities preserve factor subgroups; hence K and  $K^*$  have the same parts, with the same factor signatures.

The only thing remaining is to show that the connectors are the same. If there is a connector in K, then it is defined by a structure loop W in  $\Delta$ , whose stabilizer J is non-trivial. Let  $A_1$  and  $A_2$  be the structure regions on either side of W, and for i=1, 2, let  $H_i$  be the factor subgroup which stabilizes  $A_i$ .

Let  $\varphi: \Delta \to \Delta^*$  be the similarity, and let  $\Psi: G \to G^*$  be the isomorphism induced by  $\varphi$ . For i = 1, 2, let  $H_i^* = \Psi(H_i)$ .

5.4. We first take up the case that  $H_1 = H_2$ . This can occur only if  $H = H_1 = H_2$  is cyclic; i.e., H = J. In this case,  $A_1$  has two structure loops W and W' on its boundary which are both invariant under H. The element of G which maps W onto W' commutes with H. Thus  $H^*$  is finite and there is a loxodromic element of  $G^*$  which commutes with  $H^*$ ; hence the fixed points of  $H^*$  are not in  $\Delta^*$ . Thus each of the two distinguished points of  $\Delta(H^*)/H^*$ 

26

are paired with something, but as observed in 4.4, they can only be paired with each other.

5.5. We now assume that  $H_1 \neq H_2$ . In this case, since J is a non-trivial common maximal cyclic subgroup, neither  $H_1$  nor  $H_2$  can be cyclic.

One easily observes that each non-cyclic factor subgroup stabilizes a unique structure region. Let  $A_i^*$  be the structure region stabilized by  $H_i^*$ , i=1, 2.

5.6. We know that  $H_1^* \cap H_2^* = J^*$  is non-trivial; it suffices to show that there is an element  $g^* \in G^*$ , so that  $\tilde{A}_1^* = g^*(A_1^*) \neq A_2^*$ , and so that there is a structure loop  $W^*$  on the common boundary of  $\tilde{A}_1^*$  and  $A_2^*$ , where  $W^*$  is stabilized by  $J^*$ .

Let  $W_1^*$  be the structure loop on the boundary of  $A_1^*$  which separates  $A_1^*$  from  $A_2^*$ ; similarly, let  $W_2^*$  be the structure loop on the boundary of  $A_2^*$  which separates  $A_1^*$  from  $A_2^*$ .

Since  $A_1^*$  and  $A_2^*$  are both invariant under  $J^*$ , it follows that  $W_1^*$ ,  $W_2^*$ , and any structure region lying between them, are all invariant under  $J^*$ .

We assume that there are one or more structure regions lying between  $W_1^*$  and  $W_2^*$ . If necessary, we replace  $A_1^*$  by some transform of it, so we can assume that none of these structure regions are equivalent to  $A_1^*$  under  $G^*$ .

Let  $A_3^*$  be the structure lying between  $W_1^*$  and  $W_2^*$ , where  $W_1^*$  lies on the boundary of  $A_3^*$ . Let  $W_3^*$  be the structure loop on the boundary of  $A_3^*$ , where  $W_3^*$  separates  $A_3^*$  from  $A_2^*$ .

Let  $H_3^*$  be the stabilizer of  $A_3^*$ . Since  $A_3^*$  has two structure loops on its boundary which are invariant under  $J^* \subset H_3^*$ , but which are not equivalent under  $H_3^*$ , we must have either that  $H_3^*$  has signature (0, 3; 2, 2, n), n odd,  $|J^*| = 2$ , or that  $H_3^*$  has signature (0, 3; 2, 3, 3),  $|J^*| = 3$ .

5.7. Now let  $H_3 = \Psi^{-1}(H_3^*)$ , and let  $A_3$  be the structure region stabilized by  $H_3$ . Note that  $H_3 \cap H_1 = H_3 \cap H_2 = J$ , and so  $A_3$  has at least one structure loop on its boundary which is stabilized by J.

There are two possibilities as to the relative positions of  $A_1$ ,  $A_2$  and  $A_3$ , but the argument is the same in both cases; we assume that  $A_1$  lies between  $A_2$  and  $A_3$ . Then  $A_1$  has two structure loops on its boundary stabilized by J; we conclude that  $H_1$  is also a finite non-cyclic group.

5.8. We remark at this point that the statement that W bounds a disc which is precisely invariant under J in say  $H_1$  is equivalent to the statement that W is precisely invariant under J in  $H_1$  and that all the translates of W under  $H_1-J$  lie on the same side of W.

We note next that there is a structure loop  $W_4$  on the boundary of  $A_1$  which is in-

variant under J and which separates the elliptic fixed points of  $H_3 - J$  from the elliptic fixed points and limit points of  $H_1 - J$  and  $H_2 - J$ .

We conclude that  $\varphi(W_4)$  is invariant under  $J^*$  and separates the fixed points of  $H_3^* - J^*$ from the fixed points and limit points of  $H_1^* - J^*$  and  $H_2^* - J^*$ .

Let  $B^*$  be the topological disc bounded by  $\varphi(W_4)$  which does not contain any of the fixed points of  $H_3^* - J^*$ . Moving only inside  $B^*$ , we can deform  $\varphi(W_4)$  to a new loop  $W^*$ , where  $W^*$  projects to a power of a simple loop,  $W^*$  is invariant under  $J^*$ , and  $W^*$  intersects both  $W_1^*$  and  $W_3^*$ . Then, looking only at  $\Delta(H_3^*)$ , we can extend  $W^* \cap A_3^*$  to obtain a path  $V^*$  connecting the fixed points of  $J^*$ , where  $V^*$  projects to a simple path on  $\Delta(H_3^*)/H_3^*$ . One easily sees that this is not possible for any of the possibilities listed in 5.6 for  $H_3^*$  and  $J^*$ .

### 6. Signatures and similarities

6.1. In this section we prove the second half of Theorem 2. We assume throughout this section that G and G<sup>\*</sup> are given groups in  $C_1$ , with the same signature  $\sigma = (g; K)$ ; our goal is to prove that G and G<sup>\*</sup> are similar. The proof proceeds in a step-by-step fashion, with the similarity  $\varphi$  defined first on one structure region, then on neighboring ones.

6.2. We call two structure regions,  $A_1$  and  $A_2$  immediately connected if there is a structure loop W lying on the boundary of both  $A_1$  and  $A_2$ , where the stabilizer of W is non-trivial.

Two structure regions are *connected* if they can be connected by a finite chain of immediately connected regions.

Modulo the action of G, there are exactly p connectedness classes of structure regions, where p is the number of connected components of K.

6.3. If H is any subgroup of G, a decent fundamental domain D for H is a connected set bounded by a finite number of smooth arcs, where no two points of D are equivalent under H; every point of  $\Delta(H)$  is equivalent to some point of D; every structure loop which intersects D either lies in the interior of D, or it intersects  $\partial D \cap \Delta(H)$  in exactly two points; if two structure loops are equivalent under H, then at most one of them intersects D.

It is clear that every factor subgroup of G has a decent fundamental domain.

6.4. We first remark that if  $H \subset G$  and  $H^* \subset G^*$  are factor subgroups lying over the same part of K, then there is a similarity  $\varphi: \Delta(H) \to \Delta(H^*)$ , where  $\varphi$  preserves the endpoints of connectors.

**6.5.** Our first goal is to define a similarity on  $\Delta(H)$ , where H is the stabilizer of a connected class of structure regions.

Let  $K_1, ..., K_r$  be the parts of a connected component  $L_1$  of K, where the ordering  $K_1, ..., K_r$  has been chosen so that there is a connector  $c_1$  connecting  $K_2$  to  $K_1$ , there is a connector  $c_2$  connecting  $K_3$  to  $K_1 \cup K_2$ , etc. Let  $d_1, ..., d_q$  be the connectors of  $L_1$  other than  $c_1, ..., c_{r-1}$ .

**6.6.** We choose some structure region  $A_1$ , with stabilizer  $H_1$ , where  $H_1$  lies over  $K_1$ . Similarly for  $G^*$ , we choose some structure region  $A_1^*$ , with stabilizer  $H_1^*$ , also lying over  $K_1$ . We have already observed that there is a similarity  $\varphi_1: \Delta(H_1) \rightarrow \Delta(H_1^*)$ .

We choose a decent fundamental domain  $D_1$  for  $H_1$ .

Corresponding to the connector  $c_1$  which joins  $K_2$  to  $K_1$ , there is a structure loop  $W_1$  which intersects  $D_1$ , where the structure region  $A_2$  on the other side of  $W_1$  lies over  $K_2$ , and where the order of  $J_1$ , the stabilizer of  $W_1$  is equal to the branch number of either endpoint of  $c_1$ .

As above, we choose a decent fundamental domain  $D_2$  for  $H_2$  where  $W_1$  is one of the structure loops intersecting  $D_2$ , and so that  $D_1 \cap W_1 = D_2 \cap W_1$ .

We observe that  $\langle H_1, H_2 \rangle$ , the group generated by  $H_1$  and  $H_2$  is formed from  $H_1$  and  $H_2$  by using combination theorem I [22]; in particular,  $D_1 \cap D_2$  is a fundamental domain for the action of  $\langle H_1, H_2 \rangle$  on  $\Delta(\langle H_1, H_2 \rangle)$ .

It is clear that we can invariantly deform  $\varphi_1$ , so that  $D_1^* = \varphi_1(D_1)$  is a decent fundamental domain for  $H_1^*$ . Then there is a structure loop  $W_1^*$  which intersects  $D_1^*$ , where the stabilizer  $H_2^*$  of the structure region  $A_2^*$ , on the other side of  $W_1^*$ , lies over  $K_2$ , and where the stabilizer of  $W_1^*$  has the same order as  $J_1$ .

Since  $H_2$  and  $H_2^*$  both lie over  $K_2$ , there is a similarity  $\varphi_2: \Delta(H_2) \to \Delta(H_2^*)$ , and this similarity can be chosen so that  $\varphi_2 \circ J_1 \circ \varphi_2^{-1} = J_1^*$ . We invariantly deform  $\varphi_2$  so that  $\varphi_2(W_2) = W_1^*, \varphi_2 \mid W_1 = \varphi_1 \mid W_1$ , and so that  $D_2^* = \varphi_2(D_2)$  is a decent fundamental domain for  $G_2^*$ .

We now define the similarity  $\varphi_{12}$ :  $\Delta(\langle H_1, H_2 \rangle) \rightarrow \Delta(\langle H_1^*, H_2^* \rangle)$ . If  $z \in D \cap A_i$ , then we set  $\varphi_{12}(z) = \varphi_i(z)$ ; if  $z \in W \cap D$ , then we set  $\varphi_{12}(z) = \varphi_1(z) = \varphi_2(z)$ . As defined,  $\varphi_{12}$  is continuous in D. If  $z \in j(D)$ ,  $j \in J$ , then we set  $\varphi_{12}(z) = j^* \circ \varphi_{12} \circ j^{-1}(z)$ , where  $j^* = \varphi_1 \circ j \circ \varphi_1^{-1} = \varphi_2 \circ j \circ \varphi_2^{-1}$ . Every other point  $z \in \Delta(\langle H_1, H_2 \rangle)$  lies in some  $g(D) = g_n \circ g_{n-1} \circ \dots \circ g_1(D)$ , where the  $g_i$  alternately belong to  $H_1 - J$  and  $H_2 - J$ ; for such a point, we set

$$\varphi_{12}(z) = g_n^* \circ g_{n-1}^* \circ \dots \circ g_1^* \circ \varphi_{12} \circ g_1^{-1} \circ \dots \circ g_n^{-1}(z),$$

where  $g_i^*$  is either  $\varphi_1 \circ g_i \circ \varphi_1^{-1}$ , or  $\varphi_2 \circ g_i \circ \varphi_2^{-1}$ , whichever is defined.

Using combination theorem 1 again, we see that  $D^* = D_1^* \cap D_2^*$  is a fundamental domain for the action of  $\langle H_1^*, H_2^* \rangle$  on its invariant component, and that  $\langle H_1^*, H_2^* \rangle$  is the free product of  $H_1^*$  and  $H_2^*$  with amalgamated subgroup  $J^*$ . Hence  $\varphi_{12}$  is a weak similarity.

The admissability criteria for the signature guarantee that  $\langle H_1, H_2 \rangle$  is not elementary. An easy adaptation of the argument in [25] (see [18]) shows that every parabolic element of  $\langle H_1, H_2 \rangle$  is conjugate to some element of  $H_1$  or of  $H_2$ ; similarly every parabolic element of  $\langle H_1^*, H_2^* \rangle$  is conjugate to some element of  $H_1^*$  or of  $H_2^*$ . Hence  $\varphi_{12}$  is a similarity.

6.7. If  $L_1$  has a third part  $K_3$ , then the connector  $c_2$  has an endpoint lying on  $K_1 \cup K_2$ . Hence, there is a structure loop  $W_2$ , which intersects  $D_1 \cap D_2$  where  $J_2$ , the stabilizer of  $W_2$  is non-trivial, and where  $H_3$ , the stabilizer of the structure region  $A_3$  lying on the other side of  $W_2$ , lies over  $K_3$ . We proceed exactly as above and find  $H_3^*$ , which also lies over  $K_3$ , and we find decent fundamental domains  $D_3$  for  $H_3$ ,  $D_3^*$  for  $H_3^*$ , and we find a similarity  $\varphi_{123}$ :  $\Delta(\langle H_1, H_2, H_3 \rangle) \rightarrow \Delta(\langle H_1^*, H_2^*, H_3^* \rangle)$ , where  $\varphi_{123}(D_1 \cap D_2 \cap D_3) = D_1^* \cap D_2^* \cap D_3^*$ .

Continuing as above, after r-1 steps we obtain similar subgroups  $H_{r+1} = \langle H_1, ..., H_r \rangle$ , and  $H_{r+1}^* = \langle H_1^*, ..., H_r^* \rangle = \varphi_{r+1}(H_{r+1})$ , where  $\varphi_{r+1} = \varphi_{1,...,r}$ . We also have decent fundamental domains  $D_{r+1} = D_1 \cap ... \cap D_r$  for  $H_{r+1}$ , and  $D_{r+1}^* = \varphi_{r+1}(D_{r+1})$ , for  $H_{r+1}^*$ .

Corresponding to the connector  $d_1$ , we can find structure loops  $U_1$  and  $V_1$ , where  $U_1$ and  $V_1$  both intersect the boundary of  $D_{r+1}$ , and  $U_1$  and  $V_1$  are equivalent under the action of G, but not under the action of  $H_{r+1}$ . Then there is an element  $f_1 \in G - H_{r+1}$ , where  $f_1(U_1) = V_1$ .

There are in fact several such elements in G; we choose  $f_1$  and deform  $D_{r+1}$  in the neighborhood of  $V_1$ , so that  $f_1(U_1 \cap D_{r+1}) = V_1 \cap D_{r+1}$ .

Since  $\varphi_1, ..., \varphi_r$  have been chosen to preserve the endpoints of connectors, there are structure loops  $U_1^*$ ,  $V_1^*$  intersecting  $D_{r+1}^*$ , where  $\varphi_{r+1}$  conjugates the stabilizer  $I_1$  of  $U_1$  onto the stabilizer  $I_1^*$  of  $U_1^*$ , and  $\varphi_{r+1}$  conjugates the stabilizer  $J_1$  of  $V_1$  onto the stabilizer  $J_1^*$  of  $V_1^*$ . There is also an element  $f_1^*$  in  $G^* - H_{r+1}^*$  which maps  $U_1^*$  onto  $V_1^*$ . We deform  $D_{r+1}^*$  near  $V_1^*$  so that  $f_1^*(U_1^* \cap D_{r+1}^*) = V_1^* \cap D_{r+1}^*$ .

We now invariantly deform  $\varphi_{r+1}$  so that  $\varphi_{r+1}(U_1) = U_1^*, \varphi_{r+1}(V_1) = V_1^*, \varphi_{r+1}(D_{r+1}) = D_{r+1}^*$ , and so that  $\varphi_{r+1} \mid U_1$  conjugates  $f_1$  into  $f_1^*$ .

We observe that  $H_{r+2}$ , the group generated by  $H_{r+1}$  and  $f_1$  is formed using combination theorem II [23]. Similarly,  $H_{r+2}^*$ , the group generated by  $H_{r+1}^*$  and  $f_1^*$  is formed using combination theorem II. We conclude that  $D_{r+2}$ , the connected part of  $D_{r+1}$  cut out by  $U_1$  and  $V_1$  is a decent fundamental domain for  $H_{r+2}$ ; the connected part  $D_{r+2}^*$  of  $D_{r+1}^*$ cut out by  $U_1^*$  and  $V_1^*$  is a decent fundamental domain for  $H_{r+2}^*$ ; there is an isomorphism  $\Psi$  of  $H_{r+2}$  onto  $H_{r+2}^*$ , where

$$\Psi(g) = \varphi_{r+1} \circ g \circ \varphi_{r+1}^{-1} \quad \text{for } g \in H_{r+1}, \text{ and } \Psi(f_1) = f_1^*.$$

We define  $\varphi_{r+2}$  in the obvious fashion by restricting  $\varphi_{r+1}$  to  $D_{r+2}$ , and then using the

isomorphism  $\Psi$ . As in the preceding case, the argument of [25] is easily adapted to show that  $\varphi_{r+2}$  is actually a similarity.

**6.8.** We repeat the above argument q times until we arrive at a group, which we now call  $G_1$ , a decent fundamental domain  $E_1$  for  $G_1$ , and a similarity  $\psi_1$  between  $G_1$  and  $G_1^*$ , where  $\psi_1(E_1)$  is a decent fundamental domain for  $G_1^*$ .

We note that  $G_1$  lies over all of  $L_1$ ; more precisely, every factor subgroup contained in  $G_1$  lies over some part of  $L_1$ , and  $G_1$  stabilizes an entire connectedness class of structure regions lying over  $L_1$ . Let  $B_1$  be the relative interior in  $\Delta$  of the union of the closures of these structures regions, so that  $B_1$  is precisely invariant under  $G_1$  in G. We note that every structure loop which intersects  $E_1$ , and which lies on the boundary of  $B_1$ , is contained in the interior of  $E_1$ . Such a structure loop is of course stabilized only by the identity.

From here on we will consider only regions such as  $B_1$ , which essentially are connectedness classes of structure regions; we call such a region a *super structure region*, and its stabilizer is called a *super factor subgroup*. The structure loops on the boundary of a super structure region are called *super structure loops*.

Repeating the argument of 6.6–6.8, we have shown that if  $G_i$  and  $G_i^*$  are super factor subgroups of G and  $G^*$ , respectively, where  $G_i$  and  $G_i^*$  lie over the same connected component  $L_i$  of K, then there is a similarity, which we now call  $\psi_i: \Delta(G_i) \to \Delta(G_i^*)$ .

6.9. Before preceding with the construction of the similarity, we need an auxilliary construction in which we change some of the super structure loops.

There are a total of p connected components of K. If p > 1, then there is a super structure loop in the interior of  $E_1$ , where  $B_2$ , the super structure region on the other side of this loop lies over say  $L_2 \neq L_1$ . Call the super structure loop  $W_1$ ; let  $G_2$  be the stabilizer of  $B_2$ , and let  $E_2$  be a decent fundamental domain for  $G_2$ , where  $W_1$  lies in the interior of  $E_2$ .

Let  $W_1$ ,  $U_1$ , ...,  $U_u$  be an enumeration of the super structure loops contained in the interior of  $E_2$ . We choose non-intersecting paths  $V_i$  connecting  $W_1$  to  $U_i$ , i = 1, ..., u, where except for their endpoints, the  $V_i$  are disjoint from all super structure loops. Let  $W'_1$  be the boundary of a small neighborhood of  $W_1 \cup U_1 \cup ... \cup U_u \cup V_1 \cup ... \cup V_u$ , where  $W'_1$  is homologous to  $W_1 \pm U_1 \pm ... \pm U_u$ .

We replace  $W_1$  and its translates under G, by  $W'_1$  and its translates.

We observe that the new set of super structure loops are mutually disjoint, just as the old ones were, and so they also divide  $\Delta$  into super structure regions, where, except for  $B_1$  and  $B_2$ , these new regions are the same as the old ones. For  $i=1, 2, G_i$  is the stabilizer of both  $B_i$  and  $B'_i$ , so the relationship between super structure regions and super factor sub-

groups remains unchanged. The essential difference is that modulo  $G_2$ ,  $B'_2$  has only one class of super structure loops on its boundary; the loops  $U_1, ..., U_u$  now lie on the boundary of  $B'_1$ . We note also that  $E_i$  is still a decent fundamental domain for  $G_i$ .

We repeat the above process as often as necessary until we have altered  $B_1, ..., B_p$  to new super structure regions, which we again call  $B_1, ..., B_p$ , so that for  $2 \le i \le p$ ,  $B_i$  has only one class modulo  $G_i$  of super structure loops on its boundary.

We perform the same operations with the super structure loops  $B_i^*$  ( $B_1^*$  has already been chosen,  $B_2^*$  is chosen so that  $B_1^*$  and  $B_2^*$  have a common super structure loop on their boundary, after changing  $B_1^*$  and  $B_2^*$ ,  $B_3^*$  and  $B_1^*$  have a common super structure loop on their boundary, etc.) so that for  $2 \le i \le p$ , each  $B_i^*$  has only one equivalence class under  $G_i^*$ of super structure loops on its boundary; there is a super structure loop on the common boundary of  $B_i^*$  and  $B_1^*$ , and this common super structure loop lies in  $E_1^*$ .

**6.10.** Having performed the above operations, we relabel  $B_2^*, ..., B_p^*$ , together with  $G_2^*, ..., G_p^*$ , so that for  $1 \leq i \leq p$ ,  $G_i$  and  $G_i^*$  both lie over the same connected component of K.

6.11. We return now to the construction of the similarity.

Let  $W_1$  be the super structure loop lying in  $E_1$  which separates  $B_1$  from  $B_2$ . We observe that  $G_{12} = \langle G_1, G_2 \rangle$  is formed from  $G_1$  and  $G_2$  using combination theorem I [22, 25], that  $G_{12}$  is the free product of  $G_1$  and  $G_2$ , and that  $E_{12} = E_1 \cap E_2$  is a fundamental domain—in fact a decent fundamental domain—for  $G_{12}$ .

Similarly, let  $W_1^*$  be the super structure loop in  $E_1^*$  which separates  $B_1^*$  from  $B_2^*$ . We note again that  $G_{12}^* = \langle G_1^*, G_2^* \rangle$  is formed using combination theorem I, it is the free product of  $G_1^*$  and  $G_2^*$ , and  $E_{12}^* = E_1^* \cap E_2^*$  is a decent fundamental domain for  $G_{12}^*$ .

We deform  $\psi_1$  inside  $E_1$  so that  $\psi_1(W_1) = W_1^*$ ; we also deform  $\psi_2$  inside  $E_2$  so that  $\psi_2(W_1) = W_1^*$ , and so that  $\psi_1 | W_1 = \psi_2 | W_1$ .

We define the similarity  $\psi_{12}$ :  $\Delta(G_{12}) \rightarrow \Delta(G_{12}^*)$  by setting  $\psi_{12} | (E_{12} \cap E_i) = \psi_i$ , i = 1, 2, and then using the natural isomorphism between  $G_{12}$  and  $G_{12}^*$  to define  $\psi_{12}$  on all of  $\Delta(G_{12})$ .

We again observe, using [25], that every parabolic element of  $G_{12}$  is conjugate to an element of either  $G_1$  or of  $G_2$ . Similarly, every parabolic element of  $G_{12}^*$  is conjugate to some element of  $G_1^*$  or  $G_2^*$ ; hence the isomorphism induced by  $\psi_{12}$  is type-preserving, and so  $\psi_{12}$  is a similarity.

If p>2, we repeat the above process until we arrive at a subgroup  $G_{1...p}=G_{p+1}$ , which covers all of K. The construction also yields a decent fundamental domain  $E_{p+1}$  for  $G_{p+1}$ , and a similarity

ON THE CLASSIFICATION OF KLEINIAN GROUPS II-SIGNATURES

 $\psi_{p+1}$ :  $\Delta(G_{p+1}) \rightarrow \Delta(G_{p+1}^*)$ , where  $E_{p+1}^* = \psi_{p+1}(E_{p+1})$ 

is a decent fundamental domain for  $G_{p+1}^*$ .

We observe that since  $G_{p+1}$  lies over all of K, the super structure loops lying in the interior of  $E_{p+1}$  are necessarily pairwise identified by elements of G. Similarly, the super structure loops lying in the interior of  $G_{p+1}$  are pairwise identified by elements of  $G^*$ .

6.12. We pause at this point to remark that if G were a Schottky group, then K would consist only of a sphere with no distinguished points, and so in this case, all our constructions up to this point, will have been vacuous.

**6.13.** There are 2t super structure loops in the interior of  $E_{p+1}$ ; one easily sees that t = g - g(K), as in 4.6. These 2t loops are paired by elements of G which we label as  $f_1, \ldots, f_t$ ; we label these super structure loops as  $U_1, V_1, \ldots, U_t, V_t$  where  $f_i(U_i) = V_i$ .

We observe that these super structure loops bound a region  $E_{p+2}$ , which is a fundamental domain for the Schottky group  $G_{p+2}$  generated by  $f_1, \ldots, f_t$ .

The group  $\tilde{G} = \langle G_{p+1}, G_{p+2} \rangle$  is formed from these groups using combination theorem I [22, 25]. Hence  $\tilde{G}$  is the free product of  $G_{p+1}$  and  $G_{p+2}$ , and  $\tilde{E} = E_{p+1} \cap E_{p+2}$  is a decent fundamental domain for  $\tilde{G}$ .

We observe next that  $\tilde{E} \subset \Delta$ , and so  $\Delta(\tilde{G}) \subset \Delta$ . We conclude that  $\Delta(\tilde{G}) = \Delta$ . Since the elements of G permute the super structure regions, and since each super structure region has the same stabilizer in both G and  $\tilde{G}$ , we conclude that  $G = \tilde{G}$ .

The remarks above hold equally well for  $G^*$ . That is,  $E_{p+1}^*$  contains 2t super structure loops  $U_1^*$ ,  $V_1^*$ , ...,  $U_t^*$ ,  $V_t^*$ ; for each i=1, ..., t, there is an element  $f_i^*$  with  $f_i^*(U_i^*) = V_i^*$ ; the region  $E_{p+2}^*$  bounded by  $U_1^*$ , ...,  $V_t^*$  is a fundamental domain for the Schottky group  $G_{p+2}^*$ ;  $G^*$  is the free product, formed using combination theorem I, of  $G_{p+1}^*$  and  $G_{p+2}^*$ .

We have a similarity  $\psi_{p+1}$ :  $\Delta(G_{p+1}) \rightarrow \Delta(G_{p+1}^*)$ , where  $\psi_{p+1}(E_{p+1}) = E_{p+1}^*$ . We deform  $\psi_{p+1}$  inside  $E_{p+1}$  to obtain a new map  $\varphi: E_{p+1} \rightarrow E_{p+1}^*$ , where  $\varphi(U_i) = U_i^*$ ,  $\varphi(V_i) = V_i^*$ , and  $\varphi \circ f_i | U_i = f_i^* \circ \varphi | U_i$ , i = 1, ..., p. Then using the isomorphism between G and  $G^*$ , we can extend  $\varphi$  to a weak similarity between G and  $G^*$ . That  $\varphi$  is in fact a similarity follows from combination theorem I [25].

### 7. Extensions of maps

7.1. In this section we restrict our attention to groups in  $C_0$ , and we show that two groups in  $C_0$  have the same signature if and only if one is a topological deformation of the other.

**7.2.** THEOREM 3. Let G and G<sup>\*</sup> in  $C_0$  have the same signature. Then there is a quasiconformal homeomorphism  $\varphi: \Omega(G) \rightarrow \Omega(G^*)$ , where  $\varphi \circ g \circ \varphi^{-1}$  defines a type-preserving isomorphism of G onto G<sup>\*</sup>.

3-772902 Acta mathematica 138. Imprimé le 5 Mai 1977

*Proof.* From Theorem 2 it follows that G and  $G^*$  are similar; we denote the similarity by  $\varphi_0$ .

It was shown in [19] that if  $\Delta_i \neq \Delta$  is a component of G, then there is a quasi-Fuchsian factor subgroup  $H_i$  of G so that  $\Delta_i$  and  $\Delta(H_i)$  are the two components of  $H_i$ . It was also shown in [19] that if  $H_i$  is a quasi-Fuchsian factor subgroup of G, with components  $\Delta(H_i)$  and  $\Delta_i$ , then  $\Delta_i$  is a component of G.

Let  $H_1, ..., H_q$  be a complete list of non-conjugate quasi-Fuchsian factor subgroups of G, and let  $\Delta_i \pm \Delta(H_i)$  be the other component of  $H_i$  i=1, ..., q. As we have already observed (see also [18]),  $H_1^* = \varphi_0 \circ H_1 \circ \varphi_0^{-1}, ..., H_q^* = \varphi_0 \circ H_q \circ \varphi_0^{-1}$  is a complete list of non-conjugate quasi-Fuchsian factor subgroups of  $G^*$ . Let  $\Delta_i^* = \Delta(H_i^*)$  be the other component of  $H_i^*, i=1, ..., q$ .

By the Nielsen realization theorem [10] (for proof, see Marden [16], or Zieschang [27]), for each i=1, ..., q, there is a homeomorphism  $\varphi_i: \Delta_i \rightarrow \Delta_i^*$ , where  $\varphi_i \circ h \circ \varphi_i^{-1} = \varphi_0 \circ h \circ \varphi_0^{-1}$ for every  $h \in H_i$ .

Using Bers' approximation theorem [8], we can assume that  $\varphi_0, \varphi_1, ..., \varphi_q$  are all quasiconformal. We define  $\varphi$  by  $\varphi | \Delta = \varphi_0, \varphi | \Delta_i = \varphi_i$ , and we define  $\varphi$  on the rest of  $\Omega$  by using the action of G, and the isomorphism between G and  $G^*$ .

7.3. A homeomorphism  $\varphi: \hat{C} \to \hat{C}$  is called a global homeomorphism.

**THEOREM 4.** Let G and G<sup>\*</sup> be groups in  $C_0$ , and let  $\varphi: \Omega(G) \to \Omega(G^*)$  be a homeomorphism, where  $g \to \varphi \circ g \circ \varphi^{-1}$  defines an isomorphism of G onto G<sup>\*</sup>. Then  $\varphi$  is the restriction of a global homeomorphism.

**Proof.** We first extend  $\varphi$  to the limit sets of factor subgroups. Let H be a factor subgroup of G, and let A be the structure region stabilized by H. Let  $W_1, \ldots, W_u$  be a complete list of inequivalent—under H—structure loops on the boundary of A. Each  $W_i$ bounds a topological disc  $B_i$  which is precisely invariant under the cyclic group  $J_i$  in H. We replace  $\varphi$  inside  $B_i$  by some homeomorphism which agrees with  $\varphi$  on  $W_i$ , which maps  $B_i$  onto the appropriate topological disc bounded by  $\varphi(W_i)$ , and which conjugates  $J_i$  into  $\varphi \circ J_i \circ \varphi^{-1}$ . We then use the action of H and  $\varphi \circ H \circ \varphi^{-1}$  to replace  $\varphi$  in the translates of the  $B_i$ .

After the above replacements, we have a new homeomorphism  $\varphi'$ , where  $\varphi'$  maps  $\Omega(H)$  onto  $\Omega(\varphi \circ H \circ \varphi^{-1})$ , and  $\varphi \circ h \circ \varphi^{-1} = \varphi' \circ h \circ (\varphi')^{-1}$ , for all  $h \in H$ . If H is elementary then  $\varphi'$  trivially extends to  $\Lambda(H)$ ; if H is quasi-Fuchsian, then so is  $\varphi \circ H \circ \varphi^{-1}$ , and we can approximate  $\varphi'$  by a quasiconformal homeomorphism [8], and then use [14] to extend  $\varphi'$  to  $\Lambda(H)$ .

34

For  $z \in \Lambda(H)$ , we set  $\varphi(z) = \varphi'(z)$ , and we observe that  $\varphi$  is continuous across  $\Lambda(H)$ .

If  $z \in \Lambda(G)$ , but z is not a limit point of any factor subgroup of G, then [19] there is a structure loop W, and a sequence  $\{g_n\}$  of elements of G, so that  $g_n(W)$  nests about z; i.e., for each n > 1,  $g_n(W)$  separates z from  $g_{n-1}(W)$ , and

$$\lim_{n\to\infty}g_n(W)=z.$$

The images  $\varphi \circ g_n(W)$  have the same separation property, and it was shown in [22] (see also [25] and [18]) that the loops  $\varphi \circ g_n(W)$  accumulate to a single point w. Set  $\varphi(z) = w$ .

Since  $\Omega$  is dense in  $\hat{C}$ , it suffices to check that  $\varphi$  is continuous from inside  $\Omega$ , and this is immediate. Since the above construction can also be used to define  $\varphi^{-1}$ ,  $\varphi$  is one-to-one, and hence a homeomorphism.

7.4. We remark that in the statement of Theorem 4, we did not require the isomorphism to be type-preserving. We obtain, as a corollary to Theorem 4, that such an isomorphism is necessarily type-preserving.

### 8. Uniqueness for Koebe groups

8.1. In [18] we showed that a Koebe group is uniquely determined—as a Koebe group by its similarity class and by the conformal structure on  $\Delta$ . In this section we show that a Koebe group is uniquely determined—as a group in  $C_0$ , by its similarity class and by the conformal structure on  $\Omega$ .

THEOREM 5. Let G be a Koebe group, and let  $\varphi$  be a global homeomorphism where  $\varphi \circ G \circ \varphi^{-1} = G^*$  is a Kleinian group, and where  $\varphi | \Omega(G)$  is conformal. Then  $\varphi$  is a fractional linear transformation.

The remainder of this section is devoted to the proof of Theorem 5.

8.2. We remark first that the maximality conditions given in [19] imply that  $G^* \in C_0$ .

We denote the spherical diameter of any set A by dia (A). Let  $W_1, W_2, ...$  be a complete listing of the structure loops of G, then it was shown in [18] that

$$\sum_{i} \operatorname{dia}^{2}(W_{i}) < \infty$$

LEMMA 1. Let  $G^*$  be any group in  $C_0$ , and let  $W_1^*$ ,  $W_2^*$ , ... be a complete listing of the structure loops of  $G^*$ . Then

$$\sum_i \operatorname{dia}^2(W_i^*) < \infty.$$

Proof. Let  $W_1^*, ..., W_k^*$  be a complete list of inequivalent—under  $G^*$ —structure loops.

We observe that if the stabilizer  $J_j^*$  of  $W_j^*$  is finite, then there are fundamental domains E for  $J_j^*$ , and D for  $G^*$ , and there is a neighborhood N of  $W_j^*$ , so that  $E \cap N = D \cap N$ . Then by Koebe's Theorem (see [25]),

$$\sum_i \operatorname{dia}^2 g_i(W_j^*) < \infty$$

where the  $g_i$  range over a complete list of left coset representatives of  $J_i$  in  $G^*$ .

We now assume that  $J_j^*$  is parabolic.

Let A and A' be the structure regions on either side of  $W_j^*$ , and let H and H' respectively be their stabilizers.

If H and H' are both quasi-Fuchsian, then H and H' have non-invariant components, and so the hypotheses for Koebe's theorem [25] are valid.

If, say, H is elementary, then the signature of H is  $(0, 3; 2, 2, \infty)$  and H' cannot be elementary. Hence H' is quasi-Fuchsian, and so by passing to a subgroup of index 2, we reduce this case to the preceding one.

8.3. We now normalize G so that  $\infty \in \Delta$ ,  $\infty$  lies in the interior of some structure region, and  $\infty$  is not an elliptic fixed point.

We also normalize  $G^*$  so that near  $\infty$ ,

$$\varphi(z) = z + O(|z|^{-1}). \tag{1}$$

We fix some number R so large that |z| > R is precisely invariant under the identity in G, and so that |z| > R is contained in the interior of some structure region for G.

8.4. LEMMA 2. For |z| > 2R,

$$\sum_{i} \left| \int_{w_{i}} \frac{\varphi(\zeta) \, d\zeta}{\zeta - z} \right| < \infty \, .$$

*Proof.* We denote the length of  $W_i$  by  $L(W_i)$  and we use D(A) to denote the Euclidean diameter of A.

For each *i*, we choose a point  $\zeta_i$  on  $W_i$ , and observe that

$$\left|\int_{W_i} \frac{\varphi(\zeta) \, d\zeta}{\zeta - z}\right| = \left|\int_{W_i} \frac{(\varphi(\zeta) - \varphi(\zeta_i)) \, d\zeta}{\zeta - z}\right| \le R^{-1} L(W_i) \, D(\varphi(W_i)). \tag{2}$$

It was shown in [18] that there is a constant k > 0 so that

$$L(W_i) \le k D(W_i). \tag{3}$$

Combining (2) and (3) with Lemma 1, we obtain

36

$$\begin{split} \sum_{i} \left| \int_{W_{i}} \frac{\varphi(\zeta) \, d\zeta}{\zeta - z} \right| &\leq R^{-1} k \sum_{i} D(W_{i}) D(\varphi(W_{i})) \\ &\leq R^{-1} k (\sum_{i} D^{2}(W_{i}))^{1/2} (\sum_{i} D^{2}(\varphi(W_{i})))^{1/2} < \infty \,. \end{split}$$

8.5. For the structure region containing the point at  $\infty$ , we call |z| = R the outer structure *loop*; all other loops on its boundary are called *inner structure loops*. For any other structure region A, the outer structure loop is that loop on the boundary of A which separates A from  $\infty$ ; all other structure loops on the boundary of A are *inner*.

LEMMA 3. Let A be a structure region for G with outer structure loop U, and inner structure loops  $V_1, V_2, \dots$  Then for |z| > 2R,

$$\int_{U} \frac{\varphi(\zeta) \, d\zeta}{\zeta - z} = \sum_{i} \int_{V_i} \frac{\varphi(\zeta) \, d\zeta}{\zeta - z}.$$

*Proof.* Let H be the stabilizer of A. If H is finite, then the sum on the right is finite, and our lemma reduces to Cauchy's theorem.

If *H* has one limit point, then we can assume without loss of generality that this limit point is the origin. For *r* sufficiently small, the circle |z| = r intersects only inner structure loops; for each such intersection, we deform |z| = r so that it remains in the closure of *A*, and so that it runs along the shorter arc of the inner structure loops. We call this deformed loop  $Y_r$ . For each *r*,

$$\int_{U} \frac{\varphi(\zeta) d\zeta}{\zeta - z} = \sum_{i=1}^{N_{r}} \int_{V_{i}} \frac{\varphi(\zeta) d\zeta}{\zeta - z} + \int_{Y_{r}} -\frac{\varphi(\zeta) d\zeta}{\zeta - z}, \qquad (4)$$

where  $V_1, ..., V_{N_r}$  are the inner structure loops lying between U and  $V_r$ .

It was shown in [18] that for Koebe groups the ratio of chord to shorter length of arc of structure loop is uniformly bounded from below. Hence,

$$L(Y_r) \le kr. \tag{5}$$

Our result in this case follows from Lemma 2, together with (4) and (5).

If H is Fuchsian, then we can assume without loss of generality that the limit set of H is the unit circle. For r > 1 and sufficiently small, we define Y, exactly as above. Equality (4) and inequality (5) hold, exactly as above, and so we can conclude that

$$\int_{U} \frac{\varphi(\zeta) d\zeta}{\zeta - z} - \sum_{i} \int_{V_{i}} \frac{\varphi(\zeta) d\zeta}{\zeta - z} = \int_{|z| - 1} \frac{\varphi(\zeta) d\zeta}{\zeta - z},$$

where we have used the continuity of  $\varphi$  up to  $\Lambda(H)$ . Since  $\varphi$  is holomorphic in |z| < 1, the integral on the right is zero.

8.6. Since every structure loop is the outer structure loop of exactly one structure region, we can use Lemmas 2 and 3 to conclude that for |z| > 2R,

$$\int_{|\zeta|=R} \frac{\varphi(\zeta) \, d\zeta}{\zeta-z} = 0. \tag{6}$$

We combine (1) and (6) to obtain that for |z| > 2R,  $\varphi(z) = z$ . Hence  $\varphi$  is the identity.

## 9. Uniqueness

9.1. In this section, we prove our main result—that if two groups in  $C_0$  have the same signature, then one is a quasi-conformal deformation of the other, and we also derive several other consequences of Theorem 5.

Several of the results in this and the next section were announced in [21].

**9.2.** LEMMA 4. Let G and G\* be groups in  $C_0$ , where G is a Koebe group. Let  $\varphi: \Omega(G) \to \Omega(G^*)$  be a quasiconformal homeomorphism, where  $\varphi \circ g \circ \varphi^{-1}$  defines an isomorphism of G onto G\*. Then  $\varphi$  is the restriction of a global quasiconformal homeomorphism.

**Proof.** Using the existence of global homeomorphic solutions to the Beltrami equation, due to Ahlfors and Bers [4] (see also Bers [7, 8]), there is a global quasiconformal homeomorphism  $\psi$ , where  $\psi \circ G^* \circ \psi^{-1} = G'$  is a group in  $C_0$ , so that  $\psi \circ \varphi$  is conformal on all of  $\Omega$ . By Theorem 4,  $\psi \circ \varphi$  is the restriction of a global homeomorphism. Then by Theorem 5,  $\psi \circ \varphi$  and  $\psi$  are both global quasiconformal homeomorphisms, and hence  $\varphi$  is also.

9.3. Our next result is the quasiconformal version of Theorem 4.

**THEOREM 6.** Let G and G\* be groups in  $C_0$ , and let  $\varphi: \Omega(G) \to \Omega(G^*)$  be a quasiconformal homeomorphism, where  $\varphi \circ g \circ \varphi^{-1}$  defines an isomorphism of G onto G\*. Then  $\varphi$  is the restriction of a global quasiconformal homeomorphism.

**Proof.** It was shown in [18] that there is a Koebe group G' similar to G. Using Theorems 2 and 3, there is a quasiconformal homeomorphism  $\psi: \Omega(G') \to \Omega(G)$ , where  $\psi \circ g' \circ \psi^{-1}$  defines an isomorphism of G' onto G. By Lemma 4,  $\psi$  and  $\varphi \circ \psi$  are both restrictions of global quasiconformal homeomorphisms. Hence  $\varphi$  is the restriction of a global quasiconformal homeomorphism.

**9.4.** THEOREM 7. Two groups G and  $G^*$  in  $C_0$  have the same signature if and only if  $G^*$  is a quasiconformal deformation of G (i.e., there is a global quasiconformal homeomorphism  $\varphi$  so that  $G^* = \varphi \circ G \circ \varphi^{-1}$ ).

*Proof.* If  $G^*$  is a quasiconformal deformation of G, then they are similar, and so by Theorem 2, they have the same signature.

If G and  $G^*$  have the same signature, then by Theorems 3 and 6,  $G^*$  is a quasiconformal deformation of G.

9.5. Our final application is a conformal version of Theorems 4 and 6.

THEOREM 8. Let G and G<sup>\*</sup> be groups in  $C_0$  and let  $\varphi: \Omega(G) \rightarrow \Omega(G^*)$  be a conformal homeomorphism, where  $\varphi \circ g \circ \varphi^{-1}$  defines an isomorphism of G onto G<sup>\*</sup>. Then  $\varphi$  is the restriction of a fractional linear transformation.

*Proof.* It is classical that a quasiconformal homeomorphism which is conformal a.e. is in fact conformal. Hence, it suffices to show that for  $G \in C_0$ ,  $\Lambda(G)$  has 2-dimensional measure 0; we prove this in section 10.

### 10. Finite sided fundamental polyhedra

10.1. Every Kleinian group can be regarded as a group of isometries of hyperbolic 3-space, and so every Kleinian group has at least one convex fundamental polyhedron. It was shown in [5] (see also Marden [15]) that if one convex fundamental polyhedron for G has finitely many sides, then they all do.

Our main result in this section is:

THEOREM 9. A group  $G \in C_1$  lies in  $C_0$  if and only if G has a finite sided fundamental polyhedron.

This theorem was announced in [26], and a proof for B-groups was given by Abikoff [1].

10.2. The proof of this theorem makes essential use of the criterion of Beardon and Maskit [5].

Let x be a fixed point of a parabolic element of the Kleinian group G, and let J be the stabilizer of x in G. We say that x is a cusped parabolic fixed point if either (i) J has rank 2, or (ii) there are two disjoint open circular discs (with boundaries tangent at x), whose union is precisely invariant under J in G.

Let y be a limit point of G. We say that y is a point of approximation if there is a sequence  $\{g_n\}$  of distinct elements of G, and there is a point  $z \in \Omega$ , so that the spherical distance  $d(g_n(y), g_n(z))$  does not converge to 0.

THEOREM (Beardon and Maskit). A Kleinian group G has a finite sided fundamental polyhedron if and only if every limit point of G either is a cusped parabolic fixed point, or is a point of approximation.

**10.3.** LEMMA 5. Let x be the fixed point of the parabolic element  $g \in G \in C_0$ . Then x is a cusped parabolic fixed point.

Proof. It was shown in [19] that g lies in at least one factor subgroup H.

Let J be the stabilizer of x in G. If J has rank 2, there is nothing to prove, so we assume from here on that J has rank 1.

If H is cyclic, then H corresponds to two distinguished points on  $\Delta/G$ ; liftings of neighborhoods of these points yield the required discs.

If H is elementary, but not cyclic, and g goes not lie in any other factor subgroup, then the maximal cyclic subgroup containing g represents one distinguished point on  $\Delta/G$ ; lifting a neighborhood of that point, and then applying an element of order 2 in J to the resultant disc, yields a pair of discs with the required property.

If H is elementary, but not cyclic, and g also lies in some other factor subgroup H', then H' is necessarily quasi-Fuchsian. Let  $\Delta' \neq \Delta(H')$  be the other component of H', and let U be a circular disc in  $\Delta'$  which is precisely invariant under J in H'. Let  $j \in J$  have order 2; then  $U \cup j(U)$  has the required property.

If H is non-elementary, then it is quasi-Fuchsian. If g does not lie in any other factor subgroup, then  $J_0$ , the maximal cyclic subgroup containing g, represents two distinguished points on  $\Omega(G)$ ; one in  $\Delta/G$ , and the other coming from the other component of H. If glies in H and H', then  $J_0$  represents two distinguished points, one each coming from the other components of H and H'. In either case, appropriate liftings of neighborhoods of the two distinguished points yield the required pair of discs.

10.4. We now prove half of Theorem 9. Let  $G \in C_0$ , and let  $x \in \Lambda(G)$ . By Lemma 5, we can assume that x is not a parabolic fixed point.

It was shown by Marden [15] (it also follows easily from [5] and standard facts about Fuchsian groups) that quasi-Fuchsian groups have finite-sided fundamental polyhedra. Hence, if  $x \in \Lambda(H)$  for some factor subgroup H, then x is a point of approximation for H, and hence for G.

If x is not a limit point of any factor subgroup, then [19] there is a structure loop W, and there is a sequence  $\{g_n\}$  of elements of G so that  $g_n(W)$  nests about x (i.e.,  $g_{n+1}(W)$ separates x from  $g_n(W)$ , and  $g_n(W) \rightarrow x$ ). We assume without loss of generality that  $g_1 = 1$ ; then W separates  $g_n^{-1}(x)$  from  $g_n^{-1}(W)$ . We choose a point  $z \in W \cap \Omega$ , and we observe that

40

if J, the stabilizer of W is finite, then the points  $\{g_n^{-1}(x)\}$  are bounded away from W, and so

$$d(g_n^{-1}(x), g_n^{-1}(z)) \ge k > 0.$$

If J is parabolic, then we choose a fundamental domain D for J, where D is bounded by two tangent circles, and we choose  $j_n \in J$ , so that  $j_n \circ g_n^{-1}(x) \in D$ . Then by Lemma 5,  $j_n \circ g_n^{-1}(x)$ is bounded away from W, and so  $d(j_n \circ g_n^{-1}(x), j_n \circ g_n^{-1}(z)) \ge k > 0$ .

We have shown that if  $G \in C_0$ , then G has a finite sided fundamental polyhedron.

10.5. We now assume that  $G \in C_1 - C_0$ . Then there is a degenerate factor subgroup H in G.

It was shown by Greenberg [11] that degenerate groups do not have finite-sided fundamental polyhedra, hence there is a point  $x \in \Lambda(H)$ , where x is not a cusped parabolic fixed point of H, and x is not a point of approximation for H.

Since parabolic fixed points cannot be points of approximation, we can assume that x is not a parabolic fixed point.

Suppose there were a sequence  $\{g_n\}$  of distinct elements of G, and a point  $\zeta \in \Omega$ , so that

$$d(g_n(x), g_n(\zeta)) \ge k > 0$$

After passing to an appropriate subsequence, there are two possibilities to consider: either the sets  $\{g_n(\Lambda(H))\}$  are all equal, or they are all distinct.

Since x is not a point of approximation for H, the sets  $\{g_n(\Lambda(H))\}$  cannot all be equal.

We suppose the sets  $\{g_n(\Lambda(H))\}\$  are all distinct. We choose some point  $z_0 \in \Delta$ , and observe that for each *n* there are a finite positive number of structure loops which separate  $z_0$  from  $g_n(\Lambda(H))$ ; let  $W_n$  be the one which lies closest to  $g_n(\Lambda(H))$ . Then the  $\{W_n\}$  are all distinct. It was shown in [22] that under these circumstances, the spherical diameter of  $W_n$  converges to 0. Hence

$$d(g_n(x), g_n(z)) \rightarrow 0$$
, for every  $z \in \Lambda(H)$ .

We choose a subsequence, which we again call  $\{g_n\}$ , so that  $g_n(z_0) \rightarrow \zeta_0$ . Then [22], there is a subsequence, which we again call  $\{g_n\}$  so that  $g_n(z) \rightarrow \zeta_0$ , for all  $z \in \hat{C}$ , with at most one exception. The one exception must be x, which cannot be, for the diameter of  $g_n(\Lambda(H)) \rightarrow 0$ , and  $\Lambda(H)$  contains more than one point.

This concludes the proof of Theorem 9.

10.6. We combine Theorem 9 with a Theorem of Ahlfors [3] (see also Beardon and Maskit [5]), and obtain the following:

COROLLARY. If  $G \in C_0$ , then  $\Lambda(G)$  has 2-dimensional measure 0.

#### References

- ABIKOFF, W., On boundaries of Teichmüller spaces and on Kleinian groups, III. Acta Math., 134 (1975), 211-237.
- [2]. AHLFORS, L. V., Finitely generated Kleinian groups. Amer. J. Math., 86 (1964), 413-429.
- [3]. Fundamental polyhedrons and limit point sets of Kleinian groups. Proc. Nat. Acad. Sci. USA, 55 (1966), 251-254.
- [4]. AHLFORS, L. V. & BERS, L., Riemann's mapping theorem for variable metrics, Ann. of Math., 72 (1960), 385-404.
- [5]. BEARDON, A. F. & MASKIT, B., Limit points of Kleinian groups and finite sided fundamental polyhedra, Acta Math., 132 (1974), 1-12.
- [6]. BERS, L., Spaces of Kleinian groups. Several Complex Variables, I. (Proc. Conf. University of Maryland, College Park, Maryland 1970), pp. 9-34, Springer, Berlin, 1970.
- [7]. —— Simultaneous uniformization. Bull. Amer. Math. Soc., 66 (1960), 94-97.
- [8]. --- Uniformization by Beltrami equations. Comm. Pure Appl. Math., 14 (1961), 215-228.
- [9]. On boundaries of Teichmüller spaces and on Kleinian Groups, I. Ann. of Math.,
  (2) 91 (1970), 570-600.
- [10]. FENCHEL, W. & NIELSEN J., Discrete groups. To appear.
- [11]. GREENBERG, L., Fundamental polyhedra for Kleinian groups. Ann. of Math., (2) 84 (1966), 433-441.
- [12]. KOEBE, P., Über die Uniformisierung der algebraischen Kurven III. Math. Ann., 21 (1883), 141-218.
- [13]. KRA, I., On spaces of Kleinian groups. Comment. Math. Helv., 47 (1972), 53-69.
- [14]. KRA, I. & MASKIT, B., Involutions on Kleinian groups. Bull. Amer. Math. Soc., 78 (1972), 801-805.
- [15]. MARDEN, A., The geometry of finitely generated Kleinian groups. Ann. of Math., 99 (1974) 383-462.
- [16]. Isomorphisms between Fuchsian groups. Lecture Notes in Mathematics no. 505, Springer. To appear.
- [17]. MASKIT, B., Self-maps on Kleinian groups. Amer. J. Math., 93 (1971), 840-856.
- [18]. —— On the classification of Kleinian groups: I—Koebe groups. Acta Math., 135 (1975), 249-270.
- [19]. Decomposition of certain Kleinian groups. Acta Math., 130 (1973), 243-263.
- [20]. ---- On boundaries of Teichmüller spaces and on Kleinian groups, II. Ann of Math., (2)
  91 (1970), 607-639.
- [21]. —— Classification of Kleinian groups. Proc. International Congress, Vancouver, 1974, vol. 2, pp. 213-216.
- [22]. ---- On Klein's Combination theorem. Trans. Amer. Math. Soc. 120 (1965), 499-509.
- [23]. --- On Klein's combination theorem II. Trans. Amer. Math. Soc., 131 (1968), 32-39.
- [24]. —— Construction of Kleinian groups, Proc. Conf. Complex Analysis (Minneapolis, 1964), 281-296, Springer, Berlin, 1965.
- [25]. —— On Klein's combination theorem III, Advances in the theory of Riemann surfaces (Proc. Conf. Stony Brook, New York 1969), pp. 297-316. Ann. of Math. Studies no. 66, Princeton Univ. Press, Princeton, N.J., 1971.
- [26]. —— Good and bad Kleinian groups, a Crash Course on Kleinian Groups, San Francisco 1974, 94-107, Lecture Notes in Mathematics no. 400, Springer, Berlin-New York, 1974.
- [27]. ZIESCHANG, H., Über automorphismen ebener diskontinuerlicher Gruppen. Math. Ann., 166 (1966), 148-167.