A BEURLING-TYPE THEOREM

BY

BORIS KORENBLUM

Tel-Aviv University, Tel«Aviv, Israel

§ 1. Introduction and statement of the main result

In this paper we shall be concerned primarily with the linear topological space 4-*

whose elements are holomorphic functions

/(z) z.. avzv
in the unit disk U={z: |2| <1} satisfying

[f2)| < Cil~|2|)™ (2€0) (1.1)
or equivalently,

log*|a,| =0 (log») (v— o).
A~ can be thought of as the union of Banach spaces A—" (n>0), the norm in each 4-"
being defined as follows:

Ill—n = sup.cu {}f(2) | (1 = |2])"} < oo. (1.2)

The topology in A~ is introduced in a standard way [6]. Clearly, 4-* is a topological
algebra under pointwise multiplication. It is the smallest algebra containing the disk
algebra A4 (1) and closed under differentiation.

The dual of A% is the topological algebra 4* whose elements are functions F(z)
holomorphic in U and infinitely differentiable in U:

K
F@z)=2b,2> (b=0(*) VEk>0). (1.3)
0
The linear functionals in A~ are given by the formula

F(f)- hmf F) o) ———2 (14)

(1) A is the algebra of all functions continuous in Ul and analytic in U with sup-norm and
pointwise multiplication.
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Let T denote the (continuous) linear operator in A-® of multiplication by the

argument:

(T)(2) =2f(z) (f€4~). (L.5)

Since the set of all polynomials is dense in 4~ it is readily seen that every invariant
subspace for the operator T is a closed ideal in the algebra A-%, and vice versa.

For every element 04f€4-® let Z; denote the sequence {o,} of its zeros,
0<]oy| <|o| <...<1, each zero repeated according to its multiplicity. Z, will be called
the zero set of f. For every closed ideal 041 < A~* the zero set Z, is defined as the sequence
of common zeros for all elements f€I, each zero repeated according to its minimal
multiplicity. For a complete description of A4—®-zero sets see [6] where a certain
condition (7'} was established and proved to be necessary and sufficient for a sequence
a={a,}<U to be an A~—®-zero set. This condition (7') implies in particular that ever
subset of an A-%.zero set is an A-®-zero set itself. Therefore sets Z, are in fact not
different from Z; for every ideal 0==J< A-® there is an element f€A~*such that
Z,=Z,.

Our main result (Theorem 1.1) concerns the description of closed ideals 0=1< 4-%,
It states that every such ideal is uniquely determined by its zero set Z, and by its
so-called x-singular measure o;. Now, the notion of a x-singular measure o, associated
with functions f(z) of the class A~* (and, for that matter, with those of the larger class
N=A4-*°/A-*) was introduced in [6], but the definition adopted there depended heavily
on a number of other concepts, in particular on that of a premeasure of bounded x-variation.
There is, however, an alternative definition for g, {f€ A-®) which is (at least formally)
quite independent of the theory expounded in [6]. We shall use that definition to state
our main result (Theorem 1.1) but we do not see how to prove it without making exten-
sive use of the results from [6].

In this section we confine ourselves only to those preliminary notions and porposi-
tions which are indispensible for introducing the concept of a x-singular measure and

for formulating Theorem 1.1.
Definition 1.1. A subset F of the circumference oU is called a Beurling—Carleson
(B.-C.) set if
(i) F is closed;

(ii) F is of Lebesgue measure zero, | F| =0;

1
(i) ST log < e,
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where {I,} are the complementary arcs of F (i.e. the components of 8U\ F) and |I,| is
the length of I,.

It is well known [2; 3] that B.-C. sets coincide with null sets for the classes A"=
{f: €A} (n=1,2,..). Moreover [7; 8], if F is a B.-C. set, then an outer function
D(2) €A™ exists such that F={{€aU: ®({)=0Vn=>0}.

The set of all B.—C. sets will be denoted F, and the set of all Borel sets B such that
BeF will be denoted B.

Definition 1.2. A function ¢: B—R is called a x-singular measure (x-s.m.) if
(1) o is a finite Borel measure on every B.-C. set F<oU;

(ii) there is a constant C'>0 such that
2
|o(F)|<C Z |L,| (log IT”I.+ 1) (YFEF), (1.6)

where {I,} are the conplementary arcs of F.

It is clear that a x-singular measure ¢ is completely determined by the values
o(F)(F€JF); in other words, a function o: F—>R possesses (if at all) only one extension
to a x-s.m.

The total variation |o| of a x-s.m. o satisfying (1.6) is a non-negative x-s.m. with
the constant not exceeding 2C.

Notations like max {oy, 0;}, min {gy, 05}, lu.b.{s,}, 0,>0, have their familiar

meaning accepted in the measure theory.

ProPosITION 1.1. Let 0=f€EA-°, FE€F. Let further ® € A® be an outer function such
that F={(€aU: ®™(§)=0 Vn20} and u be a non-negative Borel measure on F. Consider

fr.ul2) = 12) (@) exp{ f gf}z;z(ld:h} (€ V) )

and define
Me, ;= {u: fr, L€EA~}. (1.8)
Then

(1) Mg, , does not depend on @, i.e. for any given F, u all functions (1.7) (with different @)
either belong to A~ or are outside A—%;

(i) Mg, , has a maximal element u,, so that

Me,p = {p: 0<pu<pe};
(iil) there is a constant C such that

u(F)<C ;W (log |21—”| + 1) (YFEJ). (1.9)

This proposition will be proved in section 4 in the:course of proving Theorem 1.1.
18* — 772903 Acta mathematica 138. Imprimé le 30 Juin 1977
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Definition 1.3. With every element 03=f€ A-® a non-positive x-singular measure o,

will be associated defined as follows:

ofF)= — po(F)= — max w(F) (YFET). (1.10)
eny, ¢

For f=0 we set formally g,(F)= —oo(VFEJF).
For every closed ideal 0=I€ A4~ we define

o;=lub.g,. (1.11)
JeI

In section 4 when proving Theorem 1.1 it will be shown that Definition 1.3 is
equivalent to another definition of o, as the x-singular part of a premeasure [6].

We are now in a position to formulate our main result.

TueorEM 1.1. Let I5={0} be a closed ideal in A—®; let Z; and o, be respectively its zero
set and its x-singular measure. Then
I= {fGA"°°.' Z,QZI, G,<U,}. (1.12)

Conversely, let a={x,} be an arbitrary A~—®-zero set and o, be an arbitrary non-positive
x-singular measure. Then
Ka; 0p) ={f€EA®: Z,2 a, 6,< 0y} (1.13)

18 a non-trivial closed ideal tn A-*,

CorOLLARY 1.1.1. The necassary and sufficient condition for an element f€A-*°
to be cyclic(}) i Z,=D, 0,=0.
CORALLARY 1.1.2. Every closed ideal in A~ is principal, i.e. generated by a single

element.

CoRALLARY 1.1.3. The only “maximal” ideals in A-® are those of the form I, =
{f€A~=: f(25) =0} (20€U). A closed ideal I such that Z,=D, ;30 is not contained in any
mazimal ideal.

In the succeeding pages we shall first (in section 2) carry out & more thorough study
of x-singular measures and their relationship to premeasures of bounded x-variation [8].
In particular, we shall establish the following facts:

(a) Every x-singular measure is concentrated on a xF,-set, i.e. on the union of a
countable set of B.—C. sets.

(b) For every non-positive x-s.m.c there is an element f€ A-® such that o =g,.

(1) i.e. for f4~® to be dense in A7%,
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In section 3 we shall prove, using purely real-variable argument, a crucial approxi-
mation theorem for premeasures of bounded »-variation. Essentially, this theorem shows
that in regard to some general measure-theoretical properties premeasure with a vanishing
»-singular part comport themselves in some ways like absolutely continuous measures in
the classical theory.

Finally, in section 4 we shall prove Theorem 1.1 using the above-mentioned approxi-
mation theorem, some standard functional-analytic argument involving the dual space
A® and the notion of annihilator, and results from [6] concerning holomorphic and
meromorphic functions of the class H=A4-°/4-* and their generalized Nevanlinna
factorization. Incidentally we shall prove Proposition 1.1 and equivalence of the two
definitions for g,.

We shall adhere throughout to the following notation: The letter C will be used to
denote various positive constants which may differ from one formula to the next.
The complement of a set S<aU will be denoted 8°=0U\ 8. | S| is always used to designate
Lebesgue measure of a set ScoU.

The author wishes to thank Lennart Carleson for valuable discussions.

§ 2. Classes of harmonic functions and premeasures.

For the reader’s convenience we shall give here (in a slightly modified form) some
definitions and results from [6] which will be used later. These results center round the
representation of harmonic functions by means of generalized Poisson integrals involving
so-called premeasures. Once such a representation is established, the problem arises to
describe the class of harmonic functions under consideration in terms of premeasures. For
the class 3 (see below) of harmonic functions a downright isomorphism exists between H
and the corresponding space of premeasures. It is clear that such a close relationship
should make it possible to treat many problems concerning harmonic (and analytic)
functions by purely real-variable means.

Note that, in the light of some recent results of W. K. Hayman and the present
author [5), it is highly probable that a similar relationship exists for much wider classes

of harmonic functions than H.

Definition 2.1. A real-valued harmonic function wu(z) (2€U), u(0)=0, is called
x-bounded above (or just x-bounded) if

— oo <ufz)< Clogf——llzl (z€ D). (2.1)
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The least constant C in (2.1) will be called the upper x-bound of 4 and will be denoted

flell™.
Clearly ||u|*>0, and ||u|[*=0 implies u(z)=0. The class of all x-bounded harmonic
functions will be denoted H*.

Definition 2.2. W =H+—Y~, i.e. every u(z) €Y possesses a representation

w(z) = wuy(2) ~up(z)  (y, up €FY). (2.2)

ProrosiTion 2.1. H becomes a Banach space if it is provided with the norm
llell = mina (flocy||* + flocell ), (2.3)

where minimum is taken over all the representations (2.2).
The proof is immediate, by the use of simple compactness theorems for harmonic
functions. There is at least one minimal representation such that [Ju]| = [|u,[|* + ||us|*.

Next we turn to the notion of a premeasure.

Definition 2.3. Let J{ be the set of all open, closed and halfclosed arcs of the circum-
ference oU, including all one-point sets, 0U and . A function u: X—R is called a
premeasure if

(i) wp(I U IL)=u(l,)+u(l,) for all I, I,€ K such that

Lul,eX, I,n1,=0;
(i) p@U)=0;
(iii) lim,_ou(I,) =0 whenever I,€ X, I,°1,>...,N,1,=9D.

Clearly, every premeasure is immediately extended by finite additivity to the class

of sets

S=UI (LEX)

p=1

With every premeasure u a function @(0) =u(Is) (0 <6 <2x) will be associated, where
I,={e": 0<t<f. Thus a 1-1 correspondence is established between the set of
premeasures and the set of all real functions #(0) (0<0<2x) satisfying the following
conditions:

(a) a@—) (0<0<2m) and p(0+) (0<6<2m) exist;

(b) A6 —)=4(0) (0<6<2nm);

(e) f(2m)=0.

Clearly, 2(6) has at most a countable set of points of discontinuity, all of them jumps.
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In what follows we shall adhere to the following notation: the distance between two
points {;, {,€0U is

d(&y, L) == mm{ arg gz’ arg gl} (O<arg{<2m VC€aU),
go that 0<d({y, £,) <1 (Y, {,€0U); the distance of a point €2U from a set F<aU is
d(, F)=infd({, {').
{eF
The d-neighbourhood of a set ScoU is S°={f€aU: d(, 8)<é}.

Definition 2.4. We shall assign to every open set G<oU the quantity (which may
be + o)
(G)—-ﬁf llog d(¢, G°)| - |dc; (2.4)

Further, we define #(@)=x(aU)=0.
A straightforward computation hows that

_ || 27 )
#(Q) —? o0 log 7] +1], (2.5)
{I,} being the set of components of G.(1)

Definition 2.5. The entropy #(F) of a closed set F with respect to an open set GO F

is defined as

F
A(F) = fllogdc,FuGﬂl ldCl-xG>~~-ﬂ—H —C‘fg;cg)\ ld¢l. (2.6)

The entropy with respect to oU will be called simply entropy and will be denoted #(F):
P |
#F)= o L Ullog d(, F)-dg|.

We have #,(@)=0. If |F|=0, then #;(F)=x(G\ F). According to Definition 1.1
the B.—C. sets are exactly those sets F with %(F)<co. From (2.6) follows easily that if
F,, F,c @, then

Ro(FyU Fy) < dig(Fy) +4(Fy). .7

(}) Sometimes we shall use notation (2.5) also for sets &, not necessarily open, consisting of a
finite number of components I,EX; we set

| (logl——l+ 1) -0 if |I]=
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Definition 2.6. A premeasure u (and the associated function g(0)) is said to be
n-boundeed above (or simply x-bounded) if for all open arcs I<aU
C|I| 27
< =—"log+1]). .
p(I) < Cx(I) % (log|1|+ l) (2.8)
The least constant C in (2.8) will be called the upper x-bound of the premeasure u and will

be denoted |ju|*. The set of all x-bounded premeasures will be denoted xB+.
Clearly ||u||* >0, and |ju|* =0 if and only if u#=0.

Definition 2.7. A premeasure u (and the associated function 4(f)) is said to be of
bounded x-variation if for every finite set {I,} of non-overlapping open arcs such that
u,I,=oU

I, 2
Z lu(l)|<C ; x(1,) = C’; |2nl (log I;:I + l) . (2.9)

The minimal constant C in (2.9) will be called the x-variation of u and will be denoted

% Var u. The set of all premeasures of bounded x-variation will be denoted »V.

ProrosiTionN 2.2 [6]. Every x-bounded premeasure is of bounded x-variation and

x Var < 2]|u||* {2.10)

ProrosiTIiON 2.3. [6]. Every u€xV is the difference of two x-bounded premeasures

M=y~ pg Wit
lesll¥ <a-xVarp (5=1,2), (2.11)

where a is an absolute constant.

ProprosiTION 2.4. 2V becomes a Banach space if provided with the norm

lull = 2 Var p. (2.12)
The proof is immediate.
Next comes a theorem which, though not stated explicitely in [6], follows directly from

the results of that paper.

THEOREM 2.1. There exists a linear operator w= Dy (the generalized Poisson operator)

which maps =V onto H:
w(z) = (Pu)z)= LUP(C, 2)p(dt]) (z€D), (2.13)

where P(l,z)=Re ({ +2)/({—2z) ((€8U, 2€U) is the Poisson kernel and the integral is

understood either as a Riemann-Stielljes integral
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2
u(z) = f P(e",z)dp(6) (2.13")
0
or as a Riemann integral

2
u(z)= — fo ,z(e)[‘% P(e®, z)] db. (2.13")

The inverse operator p=P1u is given by
. 1
-+ ) = tim o [ wo0laz), .14
r—>1— U I
where I<oU i3 an arbitrary open arc.

CoROLLARY 2.1.1. There are two positive constants A, and A, such that
MonVar pu <||Pullu <Ag-% Varu  (Yu€xV),
A flellt < |Pul*< Aollullt (YpekBr).

Remark. The existence of the limit in (2.14) for » € 3+ is the crucial point in the proof
of Theorem 2.1. Recently W. K. Hayman and the present author proved {5] that the
limit in (2.14) exists for every harmonic function u(z) (z€U), »(0) =0, such that

fl E:dr<oo

0 1—7r
where
k(r) = max u(z).

{2|=r
ProposiTiON 2.5 [6]. Let u be a premeasure of bounded x-variation. Define for every
B.-C. set F
I, being the complementary arcs of F.(*) Then o possesses a unique extension to a x-singular

measure. Moreover,
|o(F)| <% Varu-#F) (VFEF). (2.16)
If u€xB*, then 6<0.

Definition 2.8. ¢ will be called the x-singular part of the premeasure u.
We prove now a somewhat different form of (2.15) which will be needed later.

ProrosiTioN 2.6. Let n be a premeasure of bounded x-variation and let o be its
x-stngular part. Then for every FE€F

o(F) =lim p(F*) = lim p(F?), (2.17)

(1) The series (2.15) is absolutely convergent (cf. [6]).
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Proof. 1t is enough to prove the former equality. For every complementary interval
1, of F set
Le={t€oU: d(¢, I}) > 6} = (L))"
Clearly,
pE)= = 2 #Lo).

This together with (2.15) yields
/‘(Fd) - U(F) = Z ‘u'(Iv) + Z /‘(IV\IM)
11,128 11,528

The first sum tends to zero as —0; what remains to be proved is that

lim > u(I 1) =0.

850 1,520
If we assume the contrary, then there is sequence §,{0 such that

(i) |Iu(Gn)| ze>0 (n=12,..),
where
G, = U (Iv\Ivd,,H);

2du> | I”|>2‘jn+l

(i) %(G,) <2* (n=1,2,..).
Consider now
N
"=y a,
n=1

G is composed of a finite number of disjoint open arcs, say, 4.", and it is easily seen that

for the complementary arcs B
2 H(B) < AF) < oo.

v

Therefore
D (A + 3 w(BVY < #(F) + 1.

On the other hand
N
Sl AN+ ZIpB) > 2 |u(@h)|> Ne— oo (N <o),

This clearly contradicts our assumption that » Var u < co, Thus Proposition 2.6 is proved.
Our next task is to prove that every x-s.m. (cf. Definition 1.2) is concentrated on a

»xF ,-set, i.e. on union of a countable set of B.-C. sets.

THEOREM 2.2. Let ¢ be a x-s.m. Then there is a sequence {F,}¥ of B.-C. sets,
F.c F,c ..., such that for every FE€F

o(F)=lima(FNF,), |o|(F)=Llim|e|(FNnF,). (2.18)
y=>00 v=>00
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Proof. It is enough to prove the latter equality. Since |¢] is a x-s.m., it satisfies (1.6)

or, equivalently,
|o|(F) <C#(F) (YFEF). (2.19)

We shall prove the theorem by organizing a transfinite ‘‘process of exhaustion” and by
showing that this process stops after a countable number of steps. With this goal in view
we shall introduce certain parameters associated with a »-s.m.

Let G<oU be an open set such that @\GG J, or equivalently |G\ G|=0,
#(G) < oo, 20U\ G) < co. Define

m(o; G) = Sup. {lo|(F)—Cis(F)}, (2.20)
where (' is the constant in (2.19). In view of (2.19) we have
[o](F)+ o] @6 < CA(F U oG) = Csg(F) +(K) +x@UND)]
for Fc @, FEF, where 8G =G\ G. Therefore
m(o; G) < C[x(G) +%(@U\ )]~ |0 (8G).
On the other hand, putting in (2.20) F=0 we get m(o; G)>0. Thus
0< m(o; @) < CZ(0Q) — |o|(0G). (2.21)

To proceed further with the proof we need three simple lemmas. But first introduce

the following

Definition 2.9. An open set G oU will be called regular if 2(0G) < oo. The set of all
regular sets G will be denoted .
Lemma 22.1. Let {G,}T be a sequence of regular sets. Let the following hypotheses hold:
i &,<6,,, @=1,2 .
i) &= {jl 6,€G;
(i) #0G,)~>0 (v—oo).

Then
mio; G,)>m(c; G) (v—>o0). (2.22)

Proof. Let F,=0G,=G,\G,. We have
m(o; &) = sup {|o|(F)—Csq (F)}
G,>Fe3
= GS‘;}’E,“"I (FUF,)—C#e(FU F )}~ |o|(F,) +Cl&(F U F,) % (F)]
<mio; @) — |o|(F,) +C[%(FU F,)~ 45 (F)] (YG, o F€JF),
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because the latter expression in brackets does not depend on ¥:
Ra(FU F,)~% (F) = (G \(F U F,)) ~x(G) —(G,\F) +x(G,) =%£(F,), (2.23)
and therefore
Eil) m(o; G,) < m(o; G). (2.24)
On the other hand, in view of (2.20) there is for every ¢ >0 an F€JF, F<@, such that
lo|(F) = m(o; G) +Cse(F) —e.
If v is large enough, then F< @, and
m(o; &,) 2 |o|(F)—C%c (F) = m(a; @) —&+O[As(F) 4 (F)). (2.25)
Using (2.23) we find
#o(F) — & (F) = [Ag(FU F,) %6 (F)] ~ [#6(F U F,) —%c(F)]
=%(F,) +#AF)—#%(FU F,) = 0;
therefore from (2.25) follows

lim m(s; G,) = m(s; G),
00

which together with (2.24) yields (2.22).

LEMMA 2.2.2
ii_g)l m(o, F¢) =|o|(F) (VF€J). (2.26)

Proof. Let {I,}, |I,]| = |I,| = ..., be the complementary arcs of F. We have

“(W\F)=g(log2§+l)' S 14 s ILI(bgzﬂH).

1528 11,i<20 27 |I,,|
Hence
2(F N\ F) >0, gy (F) = n(Fy\ F) —x(F3)~0 (6—0),

and

lim m(o; Fy) = |o|(F). (2.27

0
Now we have to show that

El m(o; Fy) <|o|(F). (2.28)

Assuming the contrary, a sequence §,>6,>... and the corresponding sequence {F,} of
B.-C. sets, F,= F%, could be chosen so that

|o](F,)> C&wu(F,)+ |o|(F)+a (a>0;7=1,2,..),
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C being the constant in (2.19). This implies

[6](F,)\F) = C%pon(F,) +a
and consequently

|o|(F, \F*) > C4pn(F.) + ‘—2‘> Cipos(F,\F) + g

for sufficiently large »" >». Taking S3=F,,k\F""k+1 with a sufficiently sparse subsequence
{».} and a suitable §,>0 we can therefore construct a sequence {S,} of disjoint B.-C.

sets, all contained in some F%, such that

|6[(Sy) = C4p(S,) + %

Hence,
n n n
(0,500 3 o = o U )
k=1 k=1 o1

and therefore
m(g; F%) = oo,

which contradicts (2.21). Thus our lemma is proved.

Lemma 2.2.3. Let G, denote the set of all open sets G=oU composed of a finite number

of open arcs with rational end points: G=U.11,, I,={{€aU: a,<arg{<B,}, o, and B,

rational. Then for every pair 6y, 6, of x-singular measures such that |oy| > |o,| there is at
least one G € (G, such that

m(a,; G)>m(o, G). (2.29)

Proof. There is a F € J such that |0, |(F)> |o,|(F). Lemma 2.2.2 implies that there is
a 0 >0 such that m(g,; F?)>m(coy; F?). Moving slightly the end points of the components
of F& we can, in view of Lemma 2.2.1, replace F?¢ by a G € G, so that (2.29) should hold.

We are now in a position to complete the proof of Theorem 2.2. Let ¢ =0,+0 be a
#-s.m. Take a F,€JF such that |¢|(F,)>0 and define oy(F)=0,(F)—0y(F N F,) (VFEF).
Clearly, |o;| > ]os].

We define now o,, F, by induction for all countable transfinite numbers «. Assume
the o5 and F; have already been defined for all f<u«. If |o|(F)=sups., |o|(FzN F)
(VF€F)set 6,=0 and o, =0 for all y >o; if otherwise, take any S€JF such that |o|(S)—
SUpPs<, |0 (FgN 8)>0 and set F,=(Up<, Fyp)U S, 0,(F)=0(F)—o(F N F,). We have thus
constructed a decreasing transfinite system of x.-s. measures {|o,|}. Since m(s,; @) <
m{o g G) for o> f, G€ G, and since (G, is countable, there must be a countable transfinite
y such that m(o,; §)=0 (VGE(,). Lemma 2.2.3 yields that o, =0; therefore
19 — 772903 Acta mathematica 138. Imprimé le 30 Juin 1977
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|o](F) =%1:§ |o|(FsnF) (VFEF),

which is equivalent to the assertion of Theorem 2.2 because the set

Fa-=UFﬂ

B<y

is union of a countable set of B.-C. sets.

THEOREM 2.3. Let ¢ be a non-positive x-singular measure and let
0=20(F)2 —C#F) (VFEF). (2.30)

Then there is a premeasure u such that

(i) p ts x-bounded above and
llull < ac, (2.31)

a being an absolute constant;

(ii) the x-singular part of u coincides with o.

Proof. The proof is broken into a number of steps. First we consider the simplest case

when ¢ is concentrated on a finite set of points.

Lemma 2.3.1. Let Fo={{,}{<oU, o({{,})= —0,<0 (=1, 2, ..., n),

> 0,<C#F) (VFSF,). (2.32)

L,eF

Then a mon-negative piecewise constant function p(l) exists defined and continuous on
G=0U_F, and such that

(i) f aUp(C)IdCI - il 0,=0; (2.33)
(ii) ,u(1)=f1p(é)|d<§|— CZHUVSaO%(I) (2.34)

for all open arcs I<6U.

Proof. If €' and e'® are the end points of I then u(I) is linear in 6, (i =1, 2) on every
complementary arc of F,. On the other hand, x(I) being concave in 0, (i=1, 2), the
inequality (2.34) has to be ensured only for those I's with the end points in F,, because
it will then hold for all other I’s automatically.

Assume that the points {, are arranged on 0U counterclockwise and let I, (1 <k<
I <n+1) be the open arc between £, and £, ({,,,={;). Write those inequalities (2.34) which
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correspond to the arcs I, in the form
vé‘pyuﬂ_ml < v_;zﬂ o,+aCx(ly 111) (L<k<l<n) (2.35)
(2.33) will then assume the form

n n
ygl vaIv.v+1| = vgl Oy. (236)

Moreover,
p,20 (¥=1,2,..,mn) (2.37)

We shall show that the system composed of (2.35), (2.36) and (2.37) is consistent provided
(2.32) holds and a=1. By a well-known compatibility criterion for inequalities we have to
verify that for every finite system of arcs {I;}, I;= I, ,, and for corresponding positive
numbers {1,} such that

;l,x,’(C)> 1 (C€QUNFy) (2.38)

the following inequality holds:

n

206,<24 2 0,+02 ), (2.39)
y=1 J) el f]

Z,(¢) being the characteristic function of an arc I. Clearly, we can confine ourselves to the
case when all the 1, are rational. Moreover, replacing some of the arcs I, by shorter ones
or discarding them altogether we can reduce (2.38) to an equality. Multiplying then
(2.38) and (2.39) by the common denominator of the 4, and replacing {I,} by another
system of arcs (with some arcs repeated several times, if necessary), we shall give the
required result the following form: for any system of open arcs {I,} which have their end

points in F, do not contain £, and cover F; exactly n times,
Sayl)=n (C€FY),

the inequality holds

n

nY0,<2 > 0,+02 %) (2.40)
=1 18l ]
or, equivalently,
2 (n— 2 1)o,<C x(l). (2.41)
pe=1 $yely ]

For n=1 this is certainly true because (2.41) is then equivalent to (2.32), F being the set of
end points of all the ares I,. The general case is proved by induction which is made
possible by the fact that every n-covering {I,} of 86U _F, (with {; not covered at all) can

be split up into n simple coverings.
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Thus we have proved the existence of a function p({) which satisfies (2.33) and (2.34)
for any I not containing {,(a==1). If [,€I, write (2.34) for the two components of
IN{G:

W) <Ox(Iy), p(Iy) <CuIy).
Then

W) = plly) + (L) — 0 < Ole(Ty) + ()] < 0[:41) + '”21—;?—2] < a0u1)

with s=1-+log 2. Thus (2.34) has been proved with ¢=1+log 2.

Next in the proof of Theorem 2.3 comes the case when ¢ is supported by a B.-C.
set F,. Let I, (v=1,2,...) be the components of F§ and let (2.30) hold for any closed
FeF, Consider the closed set

8,=oUUL=UJ" @=1)
v=1 y=1

which has exactly n components Ji® (v=1, 2, ..., n) that are either points or closed arcs.
Choose in each Ji™ one point [\ € F,, and let F™ ={{{"}],. Place at each {™ the mass
—-gM=g(F,nNJ) and apply Lemma 2.3.1. First check condition (2.32). For any subset.
F< F™ let M, denote the union of all those J{™ that have non-void intersection with F
Then
(}): oW = —o(Fy N Mp)< CR(Fy N My). (2.42)
tMer

On the other hand,

AFNM)<HE)+ > w(l),

van+l

and since
X
Hm 2 x(I,)=0
n—> y=n+l
we obtain

S < (C+e)AF) (YFSF™),

Cf,”)e F

& >0 being arbitrarily small if » is large enough. Now we can apply Lemma 2.3.1. and find a
premeasure (in fact, a measure) u™ with contant non-negative densities between the
points {™ such that

EPEEPH = — 0P =a(Fy N ™), 4™ < (C+e) (1+]1og 2).

Using a Helly-type selection theorem [6] (or just a self-evident diagonal process) we can

find a weakly convergent subsequence {u™'} such that for every arc I<oU whose end
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points are outside F

lim " (I) = u(I),
$—>00

where y is a measure with constant non-negative density on each I,. Clearly, |u|*<
C(1 +log 2). It remains to prove that u,=o.
Let F< F, be a closed set. Using Proposition 2.6 we find that
o F) = lim u(F) (2.43)
—>0
On the other hand,
w(F%) =lim pu"O(F?)

$—=00

if 4 is such that the end points of the components of F? are outside F,. We can now estimate
u™(F?) as follows:

- 2 aV<SuMFY< = 3 o+ (C+e)(1+ log 2)[#p(Fo) + #(FY)].

derd e g0
Cf,“ §F' 55 deF
Letting n—> oo we get

o(FoN F) < u(F?) <o(FyN F8)+0(1 +log 2)[£:8(Fo) +%(FF))-

Since F,€F we obtain

lim £(F,) =0, lim %(F5) =0
6-»0 O 550

and hence, bearing in mind (2.43),

lim pu(F%) = pu,(F)y=o(F) (YVFEF). (2.44)
40

To complete the proof of Theorem 2.3 we have to consider the general case when,
according to Theorem 2.2, there is a sequence F,c F,=.. of B.-C. sets such that
o(F)=lim,,0o(FNF,) (VFEZF). For every F, there is a (pre)measure u™, ||u™|*+<
C(1 +log 2), which has non-negative piecewise constant density on F and whose singular
part is

UP(F) =0 (F)=a(FNF,) (YFEF).
Using again the Helly-type selection theorem [6] we can extract a subsequence {u!"'}

which converges weakly to a premeasure u. Repeating the same argument we used in

proving (2.44) we shall arrive at the following conclusion:

U F) =lim o, (F)=0(F) (VFeF).

Thus Theorem 2.3 has been proved.
We shall later need the following result which can be proved using the same technique:
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CorROLLARY 2.3.1. Let 0,<0,<...<0 be a sequence of x-singular measures and let
0, (and consequently all the ¢,) satisfy condition of the type (2.30). If in addition

lim o,(F) =0 (VF€EY), (2.45)

then there is a sequence {u,}? of premeasures such that

@) [l ||+ <aC;
(ii) the x-singular part of u, is equal to o,;

(iil) SUprex|un(I)| >0 (v o0). (2.46)

§ 3. An approximation theorem for premeasures

Definition 3.1. A premeasure y of bounded x-variation is said to be x-absolutely

continuous below if there is a sequence {u,} of premeasures, u,€xB*, such that
(i) pt+p, €xB*, [|u+p|r<C (Vo) (3.1)
(if) suprex|(u+p)(I)] >0 (v—>co). (32)

THEOREM 3.1. A premeasure u€xV is x-absolutely continuous below if and only if its
x-singular part is non-negative:
He = 0. (3.3)
Proof.
A. Necessity. Let u be x-absolutely continuous below, i.e. let there be a sequence
{u,} satisfying (3.1) and (3.2). Take an arbitrary set F € F and let {I,} be its complementary
arcs. We have

— (14 u,)o(F) = Z (u+ w,)(1,) = EN (1 + ) (1,) + ,EN (4 + w)1,)

<2 (ﬂ+#v)(ln)+0n>§N‘r‘f(1n)-

ngiN

Using (3.2) we get
=lim (u+ @ )o(F)< C 2 #(I,)>0 (N->o0),
0 »>N

because #Z(F)< oo, Thus
lim (4 +,), (F) > 0. (3.4)

V=200

Since u,€x B+ its x-singular part is non-positive; therefore
(u+w)o(F) <u(F) (VFEF). (3.5)

From (3.4) and (3.5) follows
U F)=20 (VFEF)
which proves (3.3)
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B. Sufficiency. Let N=>=1 be entire. Consider the set L, of half-open arc
Ly ={e" (2nk)/N <0< (2nl)/N} (0 <k <I<N); let u(y) = - If g1 i8 22-absolutely continuous
below then (3.1) and (3.2) imply that the following system of inequalities and equations is
consistent:
T < Mn(I),

M+ Ty S min{o”(lm): 8}, 3.6)

-1
xk,=gkxs_s+1, Zw=0 (0<k<I<DN)

for any £>0 and some M =M, In fact, setting x,,=u,(I,;) and writing out all the
requirements of Definition 3.1 regarding the intervals I €y as well as all the additivity
conditions and u,(@U)=0, we obtain (3.6). Conversely, if for any ¢>0 and for some
M =M, (3.6) has solutions for N=1,2, ..., then p is »-absolutely continuous below. To
prove this we have to form for every solution {z,,} of (3.6) a measure x having constant
density @, s41/| s s41| over every I, .1 Using then the Helly-type selection theorem for
premeasures [6] and effecting transition to the limit with N—co we shall obtain a

premeasure ¥ which meets the following conditions:

w(I) < Mx(I); p(I)+ax(I)<min {Cx(I), e}

for all open arcs I=8U which do not contain the point {=1, the last restriction being
easily removed if (1-+log2)C, 2¢ is substituted for C, ¢ respectively (cf. the proof of
Lemma 2.3.1). Consequently, if ;4 is not x-absolutely continuous below then for every
C>0 there is an £>0 such that, however large M, (3.5) has no solutions for some N.
Repeating the argument used in the proof of Lemma 2.3.1 we shall arrive at the conclusion
that for such combination of C, e, M there is a covering of 2U by a finite system
of disjoint half-closed arcs {I,} such that

2o min {u(I,) +Mx(l,), Cx(I,), e} < 0.
Let {I,} be those arcs among {I,} for which
min {(1,) + Mx(1L,), Cx(1,), e} =u(1,)+ Mx(L,),
and let {I;}={I,}\{1.}. Clearly, u(l,) <0. Setting F,,= U, I, we find
W) < — (M= C)x(Fy)—Cx(Fp)—C > x(I))—e > 1, (3.7)

15518 15128
where § is defined by the equation.

2.6(1 gﬁ..).]_):
27\ %875 &
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Put now C=2xVar u and let M ->oco. Bearing in mind the definition of x»-variation
we easily arrive at the following conclusion:

(@) {L:|I/[|>6}+D for M>2C,

(b) 2x(I)=0(1) (M~ oo);

(0) %(Fp)—>0 (M—oo);

(d) w(Fu)< —2xVaru[x(Fy)+ > x(I))]—e. (3.8)

5
11,)<d

We shall assume for convenience that F, is a closed set composed of a finite number of
closed arcs and that x(F,,) stands for »(int F,;); the parameter M will be assumed to run
through a sequence M,<M,<..., lim M,=oco. To simplify the notation we shall write
F, for Fy . Our aim now is to extract a subsequence {F, } which will converge in some
sense (to be specified) to a B.-C. set F, and to show using (3.8) that u, cannot be non-

negative on F. For that we need

LemMma 3.1.1. Let {F,} be a sequence of sets, each one composed of a finite number of
closed arcs. Let the following hypotheses hold (n— oo):
(i) [F.]—0
(i) »(F3)=0(1).
Then there is a subsequence {F,,v} and a B.—C. set F such that for every § >0 and some N =N
(a) Fn <P,
(b) F<F,

fOT 1’>N5.

Proof. Let {I,,} be the complementary arcs of F, arranged so that |I,| > [I;,] =
We show first that |I,,| are bounded away from 0. In faect,

ey _ |Iknl 27 ) Al 2 )
#(F%) Z llk |+1 - log lIm|+l
and therefore
27 27tx(F'5)
lo +1< 3.9
BIL, ST 39)

Since |FS|-2n and %(F;)=0(1) (3.9) shows that |I,,| is bounded away from 0. We can
therefore choose a subsequence
{F,} ={Fa}

such that
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Iin—~>Jy (n—>o0), (3.10)

where {I),} are the complementary arcs of F,, J, is some open arc, |J,| >0, and (3.10)
means that the end points of Ij, tend to the corresponding end points of J,. If
|J1] =27 then {F} is the required subsequence and F=Ji. If |J;| <2x then the same
argument shows that

log 2T 4 1< 2meFT)
Cll S FE- (11l

(3.11)
and since the denominator of the latter faction tends to 27— [J{| >0 the lengths |I5,|
must be bounded away from zero. Therefore a subsequence {F,}={F, } exists such that
I;,->J,. Continuing this process we shall either arrive after a finite number of steps at

a subsequence {F3’ such that

I ~J, (n—>o0;k=1,2,..,3)

and 2., |Jx| =2z in which case {F'}’} is the required subsequence and F = (U}, J})° is

a finite set, or the number of steps is infinite. In the latter case
®
PARALEZS (3.12)

In fact, just as (3.9) and (3.11) it is easily seen that

log 2% 1. 274
OglJ:l = s-1 ’

27— 2 ‘Jkl
=1

where A is the upper bound for x(F%), and that proves (3.12) since clearly |J,| = 0(s— ).
Taking the diagonal subsequence {F"}%., we get the required result. Thus our lemma is
proved.

Now we can continue the proof of Theorem 3.1. As (3.8) shows, the assumption that
¢ is not absolutely continuous helow implies the existence of a sequence {¥,}¥ of sets,

each F, being composed of a finite number of closed arcs, such that
(i) #(F,)—>0 and a fortiori |F,|~>0 (n—>o0);
(i) #(F,)<Ad<oo (n=12,..);
(i) p(F) < — ClUF) + 310120 L] e, (3.13)
where C=2x Varpu, {I,,} are the complementary arcs of F,, and 8 and ¢ are some

positive numbers. Using Lemma 3.1.1 we can form a subsequence {F, } converging to a

B.-C. set F in the sense that for every o > 0 F¢ contains all but a finite number of F,, and
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is contained in all but a finite number of F¢ . Assume for simplicity that {F,} already is
such a subsequence. We claim that the x-singular part u, of the premeasure u cannot be
non-negative on F.

If the contrary is true, then u,(S)>0 (VS F, S€F) and in particular x.(S,)>0
with S,=F,N F. Using Proposition 2.6 we find lim,,ou(8%)>0.

Therefore we can replace in (3.13) F, by #,\ 8% and choose g, so small that (3.13)
should still hold though perhaps with a smaller ¢ and only for sufficiently large ». Thus a
sequence of numbers g,{0 can be chosen as well as a sequence of sets {F,}?° (each one
composed of a finite number of closed arcs) such that

F,c Fe\ F o+
and
p(Fy) < —Clx(Fy) +2(G)] e, (3.14)
where G, = (Fo\ Fo+1)\_F,.

Let J,, F. and X, denote the systems of arcs I of which ¥,, &, and F® are composed

respectively; let

S EATTEANE 30

=1 k=1

Further let J, be the system of ares that form U\ F?. Summing (3.14) we get
S+ 31wz 3 uEl > o Sur+ 3@ +ne

=C > x()-C 2 x(1)+ns=C[HZw x(I)—I > x(l)—lzx(l)]+ns.

Ies, leXy +1 €Xp +1 €Jo
Since
2. #([)>0 (n—>oo),

IeXn 41

we obtain (for large enough =)

2 lud=0 > )

Ies, V7, Tes U3,

We have arrive therefore at a contradiction, because §,U T, is a system of non-overlapping
arcs covering 0U, and C =2xVar u. This contradiction completes the proof of Theorem 3.1.

CorOLLARY 3.1.1. Let u€xV and p,>0. Then the function
+
f@) =exp{f ‘:——"u(ldcl)} (z€0) (3.15)
oul—2

possesses the following properties:
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(i) 4t ¢s analytic in U and belongs to the class N=A-2[A~® (cf. section 4);

(ii) (0)=1;

(iii) there is a sequence of functions {g,(z)}7° belonging to A~ such that h,(2)={(2)g,(2)
belong to A~ with some N >0 and

=k, _y>0 @—>o0). (3.16)

Proof. u is x-absolutely continuous below. Taking {u,} as in Definition 3.1 and
defining

L+z

sultz

gv<z)=exp{ m(ldé‘l)} (2€0) (3.17)

we obtain the required sequence. In fact,

aal=exp] [ P& amazh}< a=fep v

(see Corollary 2.1.1) so that g,€A-°. For the same reason fg,€A *° where C is the
constant in (3.1). We have further

+ 2l 4 10+
fergte=exp] [ SE2 G wtae)=exe{ - [ 7[5 G 2a0)+ ponan,

and from (3.2) follows easily that f(z)g,(z)—>1 uniformly on compact sets F< U. Therefore
(3.16) holds for any N >1,C.

§ 4. Proof of Theorem 1.1

Corollary 3.1.1 implies in particular that an element f€.4-* possessing representation
(3.15) with p€xB*, u,=0, is cyclic, i.e. the closed ideal I, generated by f is 4-= itself.
Clearly, this covers an important special case of Theorem 1.1, provided that equivalence of
the two definitions of F can be proved (cf. section 1). For the reader’s convenience we
shall give here some results from [6] related to the representation of functions of the
classes 4-°, N.

ProrosiTion 4.1. [2]. Every function f(z)€A-®, f(0)==0, possesses a unique
representation in the form
C+2

f(z) = 1(0) B.(2) exp{ f ?u(ldﬂ)}, (4.1)
aU z

where éa(z) is the “‘generalized Blaschke product” associated with o= {e,} =2
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s %z | (@l ]) +2 1
Ba(Z)_avea 1-&z o« ox {(oc,,/loc,,|)-—z © lec, | (4.2)
and p€xB*r. Moreover,
Sup ||u||* <o (V€A™ ||f|-n<C) (4.3)

for any n>0, C>0.

Remark. A corresponding result for the class ¥ holds as well with u€xV and the
quotient of two generalized Blaschke produects instead of ﬁa(z) in (4.1).
Let f(z) €A~", f(0)==0, a={e,} =Z;. Define
1
y(Fy=—- 2> logi— (VF€JF).
(/| D F ’0(,,'
Then 7, is a non-positive »-singular measure satisfying condition (1.6) with the constant

C=an, a being an absolute constant. This result follows immediately from the deserip-
tion of 4 ®-zero sets (cf condition (7',) and (7T') in [6]).

Definition 4.1. 7, will be called the Blaschke »-singular measure associated with f.

Definition 4.2. [6]. Let f(z) €4-®, f(0)=5=0, be represented in the form (4.1). Let u,

be the x-singular part of the premeasure u and 7 -be the Blaschke %-singular measure. Then
0= e =1, (4.4)
will be called the x-singular measure associated with f. If f0}=f(0)=...=f*-10)=0,
f¥(0)==0 (k=1) and f,(2) =27%f(z) then by definition
a,=0y,.
Clearly o,<0 for all f€A4—*®.
It will be shown later that Definition 4.2 is equivalent to Definition 1.3.

The notion of a x-singular measure g, associated with an ideal 0=3=I< 4~-® ig reduced

to ¢, by means of (1.11).

Definition 4.3. C® is the linear topological space of all infinitely differentiable func-
tions F({) on oU:

F(@)= }_ b, (b,=0(v|*)Yk>0).

Definition 4.4, C~= is the linear topological space of all forma series

-]

f=2al,

—00
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where
a, =0(|v|*) for some k=1Fk,>0.

The spaces 4° and A~* will be thought of as subspaces of C® and C-* respectively.
The multiplication of elements belonging to - will be understood as formal
multiplication of the corresponding series, whenever this leads to meaningful formulas

for the coefficients of the product.

ProProsITION 4.2.
(iy C*C-*< O-%;
(ii) C®C*®c O=;
(iii) A-*A4-*< A~%;
(iv) if f€C™®, g, €0-= (v=1,2,..) and g,—glyv—>o0) in the topology of C—,
then fg,—fg in C~%;
(v) if g,—~>g and h,~h (v—>o0) in A=®, then g,h,—~gh in 4->.

The proof is obvious.

Definition 4.5. The annihilator of a closed ideal 1< 4-® is the subspace A4; of C®
whose elements F satisfy
Ffed-» (Vfel). (4.6)
Let

Fy)= 35,0

be some element of 4;; then for any f€1,

fz)= é.avz”

(4.6) yields
Zob_k_va,,=0 (k=1,2,...). (4.7)

This shows that F € 4; implies Fy+A®< 4;; in particular, A°< 4,. Thus what really
matters in Definition 4.5 is the non-analytic part of F({), i.e. the coefficients {b,}-F. It is
easily seen that the quotient space A4,/A% is isomorphic to the subspace 47 of A® con-
sisting of those functionals F* for which F*(f)=0 (Vf€I) (see formula (1.4) for the defi-
nition of 4® as the dual of A~%).

ProrositrioN 4.3. For each closed ideal I< A—*

I={fed-=: FIEA"™YFE A}. (4.8)
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This is a direct consequence from Definition 4.5 and from the Hahn-Banach theorem
for linear topological spaces (see, e.g., [4], chapter 2).
Now we prove some lemmas which will lead eventually to the proof of Theorem 1.1.

LevMa 4.1. Let 0FF€C® and fy, {5, 01, 9. €A™®. If Ff,=¢,, Ffy=g, then f,9,=f>9,.

Proof. (Ffy)fo=F(ffo)=g1f (Ff)fy=F(fofy) = g2fr; therefore g,f;=g,f;. All the
multiplications and transformations are easily justified.

LeMMa 4.2. Let 0F=F€C®, f,€A4~® and Ff,€ A~°. Then Ff€A-° whenever f€A->

8 such that Z,2Z;,, o;<0y,.

Proof. First take up the case Z,=Z; . Using Proposition 4.1 we can represent f, and f
in the form (4.1); then dividing f, by f we obtain

folz) _ itz }
@) lexp{ aUé___zlu(|d§'|) , (4.9)

where p€xV and u,=os,—0,20. Applying Corollary 3.1.1 we can find a sequence
{9,}T, 9,€ A=, such that

fo_fgveAAoo’ i‘lg’f_,l (y—> o)

in the topology of A-®. Multiplying by f we get f,g,—~f (v— o°). Since by the hypothesis
Ffoed-=, we find (Ffy)g,=F(fog9,)€EA~* and therefore, using Proposition 4.2, Ff=
lim, ., F(fyg,) €A,

If Z,5Z, we can construct [6] a function g€A-* such that Z,=Z\Z,, o,=0.
Then F(fog)=(Ff)g€A~®, Z;,,=Z,, 01,,=07,26,, and the case Z,>Z, is thus reduced
to that already proved.

Lemma 4.3. Let (as in Proposition 1.1) F€F, o, be a non-negative Borel measure on
F and ®(z) (z€U) be an outer function belonging to A® and vanishing on F together with all

tts derivatives. Define

I(z)=exp{~favg-i—200(|dt|)} (z¢ F), (4.10)
DOIHE) (E=0UNF)
IF(C)={ (4.11)
0 ((EF),

and

Yi(2)=

{(I)(z)l(z) (€ UNF) (4.12)

0 (€ F).
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Then
(i) YEC», W eAd4%;
(i) WV, =d2ed;
(iii) an element €A~ has the property Yf€ A~ if and only if ¢,< —a,.

Proof. (i) Since ®™(z) =0[d"(z, F)] (z€ U) for any n>0, N >0 and It"(z) =0[d~?"(z, F)]
(z€UNF), ¥(r) and Wy (r) are infinitely differentiable on oU. Note that ¥(z)=
®(z) I7Y(z) (€ U) does not belong to 4-* barring the trivial case ¢,=0.

(i1) Obvious.

(iii) Let f€ 4~* and ¥'f=g€C-=. Multiplying by ¥, we get ®*f=g¥',. If g€ A~ then
equating the x-singular measures on both sides of the equation we find o;,=0,— 0, < —a,.
Conversely, if 0,< —o, then applying Lemma 4.2 we infer from ¥V, € 4-® that ¥f€ 4-=
because V', has no zeros and its x-singular measure is —g,.

Incidentally, Lemma 4.3 proves the equivalence of Definition 1.3 and Definition
4.2, as well as Proposition 1.1.

We are now in a position to complete the proof of Theorem 1.1. First prove the
second part of the Theorem. Let a={«,} be an 4~%®-zero set and let ¢, be a non-positive
x-singular measure. By Theorem 2.2 there is a sequence of B.-C. sets F,< F,< ... and a
sequence {0,}7" of non-positive x-singular measures, g, being in fact the part of ¢, supported
by F,, such that for any B.-C. set F ¢o(F)=1im,,,0,(F)=lim, 0o F N F,). Form as in
Lemma 4.3 for all F, and the corresponding ¢, the function

‘F,(C)=<I>V<C)exp{~ Mg}zoy(ldcl)}, (4.13)

®,(z) being an outer function of the class A° with the null set F,, and for every zero
«, let 7,(t) =( — a,)%, k, being the multiplicity of that zero. Then Lemma 4.3 shows that
o, 00)={f€A-: W f€A~° 7 f€A~ Vy=1}.

Therefore I(«,a,) is a closed ideal in A-*. Its non-triviality follows from the fact
that (by Theorem 2.3) there is a premeasure u €x B+ with u, =0,, and by the results of [6]
there is a function f(2)€A4-* with Z,=a, ¢,=0; therefore

w0 -ferespf[
ou
meets both conditions Z,=«, a,=0,.

Take up now the first part of Theorem 1.1. Let 70 be a closed ideal in 4~* and
A; be its annihilator. Let F=+0 be a fixed element of A4,

~
&

p(ldg I)}

Fi=g,64-2 (Vf€I). (4.14)
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By Lemma 4.1 the function

~—

hz) =9

(2)

does not depend on the choice of f€I. Since A(z) belongs to the class H=A4-®/4-® it

possesses [6] a unique representation in the form

h(z) =2 %E—; exp{ LU -‘é{fu’(ld@!)}, (4.15)
where o ={a,} is the zero set and g’ ={8,} is the pole set of h(z) and yu'A€xV. Therefore
B'SZ,, e < —oy, i.e. each zero of f which is outside Z, must also be a zero of g, and the
part of o, which goes beyond o; must also be a part of ¢, . Fix now a f,€ [ and assume for
simplicity that fo(0)=3=0. Let Z,\Z;={2,}, a5, —0,=0' <0; let further ¢’ be concentrated
on a set S=U,F,, F,cF,c ... (F,€F) so that ¢'=glb.{o,}, where o, (F)=0¢'(FNF,)
and 02g,>0,> .. 2¢’. Multiply (4.14) by [({—2}({—2,)...({ —2,)]t ¥',({) where ¥,€0®
has the form (4.13) and apply Lemma 4.2; then we arrive at the conclusion that Ff€4-=
whenever

Z,=ZU{z,}Pn, o;=0;t(0"—0,), n=1,2, ...
By use of Theorem 2.3, Corollary 2.3.1 and the technique developed in [6] for constructing
function of the class A—® with given zero sets, we can form the following functions:
{a) ged-=* suchthat Z,=Z, o,=0;
(b) p,€A~° such that Z, ={2,}7:1, 0, =0;

(¢) g.€4~* such that Z, =0, ¢, =0’ —0,
and ensure that p,—~1, ¢,—1 in the topology of 4~®. We have for all n>1
Fgpngn€A=;

taking the limit when n~ oo and observing that p,q,—~1 we obtain that Fg€A-® and
therefore by Lemma 4.2
Ffed-> (V| Z,27Z;, 0,<0)). (4.16)
Since F is an arbitrary element of A4, this yields
{feA-=: FfeA—= YFe€Ad} 2 I{Z,,0)).
Using (4.8) we find I2I(Z,, o;). On the other hand, if € then by the definition of Z;

and ¢; we have
ng ZI’ gy < Oy
and therefore f€ [(Z,, ;). Thus
I=1(Z,, o))

and Theorem 1.1 has been proved.
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