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§ 1. Introduction

We define the set of conjugate powers of elements U and W in any group @, denoted
CPLU, W), by
CP,(U, W)= {(x,y)€EZ% U*~, W*}

113

where ‘“~;” denotes the conjugacy relation in @. In this paper we show how these sets
CPy(U, W) can be effectively computed for most finitely generated (henceforth f.g.)
Fuchsian groups. The Fuchsian groups are the discrete subgroups of the group of all 2 x2
real matrices with determinant +1.

By a result of Poincaré [11] (see also [8]), the class of f.g. Fuchsian groups consists

of free products of cyclic groups, together with the groups
G={a,,b,,....,a,b,¢,...,¢; ¢, ..., c0, B>
where R is the word a,b,a,6{" ... a,b,a; '8¢, ... ¢, r, 820, n,>1 for each 1 <i<s, and
2r— 2+ 'il(l —n 1> 0.
It therefore follows that the groups

G= <01, ¢y 1, ¢, (1 ¢0)™) (1

are Fuchsian when n; ' +nz' +75" <1. The methods used in this paper do not apply to these
groups. They do, however, apply to a more general class than the remaining f.g. Fuchsian
groups. Let us denote this new class by I'; and indicate how it is constructed.

To construct I'; we start with a class I'y consisting of free groups and certain tree-
products of one-relator groups with torsion. We then get I', by forming all free products
of groups from I'y with a cyclic subgroup amalgamated. Thus, G €T, if and only if
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G = Gl ‘X‘C G2

for some G, G, €T, and (possibly trivial) eyclic subgroup C of G, and &,. We include the
trivial group in I'g, hence, I'y S T';. The precise definition of I'y is given in Section 2, and
from this it follows that all f.g. Fuchsian groups, except those given by (1), belong to I';.

For the present and later use, let
(r,8)+{(a, b)Z = {(r +ax, s + bx) EL? x €L}

for any integers 7, s, @, and . If r, s =0, then we write just (@, b)Z for this set. Also, for
any subsets ® and @ of Z2 we let ® + @’ be the obvious set of sums.

As our first result we have

THEOREM A. We can effectively compute the order of elements in any G from Ty.

For the next result, let |U | denote the order of the element U in @.

THEOREM B. Given U, WeGET,, we can effectively compute integers a, b, and ¢ such

that
CP(U, W)= (a,b)Z U (ac, —bc)Z
if U], [W]=oo;
CPU, W)y=(a, )Z+(|U|Z)x (|W|Z)

if U], |W]<eo.

Note that the sets CP,(U, W) are easily described if |U| <|W| =co, or vice versa.

We give the proof of Theorem B separately for I'y and T';. In the first of these we also
show that 0<¢<1, while in the second 0<c<2 or 0<¢<|C| according as G=0, %G,
with C infinite or finite.

The following is immediate from Theorems A and B.

CoroLLARY C. 4ll groups in I'; have solvable conjugacy and power-conjugacy problems.

In Section 7 we indicate how these results can be generalized by iterating the process
of forming free products with a cyclic subgroup amalgamated. The class I" obtained from
I'y through this process generalizes a class studied by the author in [5]. From the results
in this paper, together with those in {5], it also follows that the HNN groups

(Gy, p; rel Gy, pS;p7! = 8,)

have solvable conjugacy and power-conjugacy problems, where S;, S,€G,€T, |8 =|8,],
and p¢G,.
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This work is the result of considering a question of M. Anshel on the conjugacy problem
for free products with cyclic amalgamations of one-relator groups with torsion. M. Anshel
and P. Stebe [1] obtained a partial solution of this problem using different techniques.

§ 2. Some basic definitions

We state our definitions with respect to a fixed alphabet {a,, a,, ...}, but want them
to carry over to any alphabet. Thus, let us call U a word on {a,, @, ...} if U is a word on
{a,, a5, ..}V {ai, az', ...} in the usual sence. We use upper case Roman letters in the range
P, ..., W, or variations of these such as P’, P,, etc., strictly to denote freely reduced words.
If U is such a word, then J(U) denotes its length. As a special symbol, we also use A for
the empty word. If a, or a; ! occurs in U, then we say that U involves a,; and to display

the letters in U, we use the notation
gen (U) = {a;; U involves a,}.

Let us call any non-trivial cyclically reduced word simple if it is not a proper power.

Hence, we can define I as the class of all groups

G={ay, a, ...; R, ..., Bi® (2)
with k>0 (k=0 means G has no relators), where each n,>1, each R, is simple, and

gen (R;) Ngen (Ey) & gen (R)) (3)

for all ¢ <j <" with é==¢". When £>0, we call R,, ..., R, the roots of G, which is meaningful
a8 long as we work with specific presentations for the groups in I'j. Recall that we also
include the trivial group in [,

With this definition of T, it is easily verified that all f.g. Fuchsian groups, except
those given by (1), must belong to I',. Recall that I'; consists of all free products of groups
from T'y with a cyclic subgroup amalgamated.

Requiring all groups G to be given by specific presentations, we may denote the set of
generators in the presentation of G by gen (G). Elements of G can then be represented by
freely reduced words on gen (G). We also include 1 as a special symbol for the identity
in any group. For any U, W€Q@, U=W means U and W define the same element in (the
abstract group) G, while U = W means they are identical as words.

Let us examine in some detail the groups (2). Those with just one relator form the
class of one-relator groups with torsion, a subclass we denote by I',. Most of the problems

we need to consider for I'y can be reduced to problems concerning I',.
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Suppose now that G€T is given by (2) with 2>2. For each 2<i<k let G,€T,, be
the group
G, = <gen (R,); R[*);

and similarly, let G1 €T, be the group
Gy =<{gen(R,); RI*>.
If we then let G,€T", be obtained from @ by adding the remaining generators of G, we

can write G as the tree-product (see A. Karrass and D. Solitar [4])

G =Gy %p, ... %5164 4)
where each F, is given by
F‘ = G,ﬂ Gi+1'

From the Freiheitssatz and the condition (3) imposed on the roots R,, it follows that each

Fy={gen (G)Ngen (G()>
as a free group.
Note that when k>2 we can also write G in the form

G=G0G %0 (5)

where F=F,_, and @' is the subgroup generated by Uf gen (G,). Of course, & belongs

to I'y and has k— 1 relators. Moreover, if k>3, then @ can also be written as a tree-product

(4) of length k1. We utilize these facts to prove results about the class Iy in Section 6.
Before pursuing the various problems in I'), let us consider these for the subeclass I',,.

3. Conjugate powers in one-relator groups with torsion
Jjugate p group

Any group G €I, with root R of length >2 can be presented in the form
G ={t, ay, by, ...; B> (6)

where ¢, a,€gen (R) and R begins with a;'. If R has exponent sum zero on ¢, then @ can

also be realized as an HNN group
G =(H, t; B tSt-1 = 6(8) (VS € X)) )

where H belongs to I',, and has the root B with I(R) <I(R).

We only sketch here how (7) is obtained from (6), referring the reader to the paper
[7} by J. McCool and P. E. Schupp for the details. The first step is to set for each integer
i, a;=tlagt™, b,=t'by 1", etc., and then rewrite R as a word E on these new generators.
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If » is minimal and 4 maximal among the subscripts of a-symbols involved in R, then let
H have generators

gen (H) = {a,, ..., a,} U {b;; t€Z} U ...
and relator R". By the Freiheitssatz, the subgroups X and Y generated by gen (H)—{a,}
and gen (H)—{a,}, respectively, are isomorphic under :X—Y induced by a,~a,,,,
b;—~by,,, etc.

Suppose now that G is given by (7). If S is any word on gen (H), let S**) denote the
word obtained from S by shifting each subseript by z. If also gen (8'®) S gen (H), then
S® =787,

Let any word S in a group G be called free in G if gen (S) generates the free group
{gen (S); > in G. By the Freiheitssatz, if G €', has the root E, then § is free in & if and
only if gen (R)d gen (8). From a result of B. B. Newman [10] it follows that if § is free
in G, then gen (S) generates a malnormal subgroup of G. Recall that H is malnormal in
Gif forany U, WeH, U=VWV-1<+1 implies VE€H.

From B. B. Newman’s Lemma 2.1 in [10], we deduce

Lemma 3.1. Let UEGET,, be +1. Then, up to cyclic permutation, there exists at most
one cyclically reduced free word 8 in G with U~g8S. Moreover, if 8 is such a word, then
U =W?* implies S =85 with W ~; S,.

Proof. Suppose that S, and S, both satisfy the lemma. If R is the root of @, then
gen(R)d gen (8,) for i=1,2. Thus, for some a, b€gen (R), a¢ gen (S,) and b¢ gen (S,).
If gen (R) S gen (S,) U gen (8,), then b€ gen (8,) and a € gen (8,). Since 8, ~¢S;, this violates
Lemma 2.1 in [10], hence, gen (R)d gen (8;) U gen (S,). But then 8, and S, belong to the
malnormal subgroup F of & generated by gen (8,) U gen (8,), and therefore Sy ~p 8,. This
proves the first half.

To complete the proof, suppose that S is free in @ with U=W*=VSV-. If we set
Wo=V-1WV, then W§=38, and therefore W, SWg!=8=1. If F is the malnormal subgroup
of @ generated by gen (8), then W,€ F and the result follows. ]

The proof of the next lemma is given in Section 5 where the necessary techniques

are developed.

Lemwma 3.2, If UeGeT,, then we can effectively decide if there exists any free word

S in G conjugate to U. Moreover, we can effectively compute such an 8, provided any exists.

Let us establish some terminology concerning elements of the HNN groups (7).
Words on gen (@) without any ¢’s are called ¢-free. If U involves ¢, then U can be written

in the form
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U=Uyt"U, ... t*U,

with each U, t-free. (Lower case Greek letters denote +1.) The number of ¢’s occurring in
U is called the t-length of U, denoted {,{U}. If U contains no subword ¢*U,¢t~% with ¢,=1
and U,€X or g;=—1 with U,€Y, then U is called t-reduced. If all eyclic premutations of
U are t-reduced, and U is either ¢-free or begins with ¢+, then U is called cyclically t-reduced.
Let us also call U and W t-parallel if I,(U) =Il,(W) =k, and they contain identical k-tuples
of 1.

To study the sets CPo(U, W) in I',. we need

LEMMA 3.3. Let G be presented by (7). If U, W €H, then U ~; W implies

U=V, V, WViit—=Vs!
for some t-free Vo and V,.

Proof. By Britton’s Lemma [2], if V is t-reduced and involves ¢, then U=VW V-1
implies U ~;8,; and W ~58, for some cyclically reduced free words S, and S, in H. It thus
suffices to prove the lemma for U=8, and W=S8,. Now, if V=V*V, ... i*V,, then
we may assume the words t*V,£7% to be t-reduced for each 1 <i<k with V% A. It remains
to show that V,=A for each 1 <<¢<k. To this end, let s be maximal with V,%A. But then

Al V‘ Sé‘k(k ’ml/f]t"‘ = oo = TeEo

for some free word 7. Lemma 3.1 now implies that 7'=P TP-! with Ta cyclic premutation
of SF¥*~®_ By malnormality of the subgroup generated by gen (7'), we easily see that
tV 7% cannot be t-reduced, a contradiction. O

LEMMA 3.4. Let U€GET, be 51, and suppose that (x, y) ECPgU, U). Then

() |U| = oo implies |o] = |y];

(ii) |U| < oo implies U*=U".

Proof. We use induction on the length of the root R of G. If this length is 1, then @
is a free product of a finite cyclic group and a free group. Both (i} and (ii) are easily estab-
lished in this case.

Suppose now that /(R)>2 with the result established for all &' €I, having roots
R’ satisfying [(R') <l(R). Assume first that G can be realized as the HNN group (7). If U is
cyclically ¢-reduced and involves ¢, then | U | = oo and the result follows from Collins’ Lemma
(p- 123 in [3]). If U€H, then Lemmas 3.1 and 3.3 imply U*~g,UY only if U*~,U".
Since (&) <I(R), it remains to consider the case where no generator in gen (R) has ex-
ponent sum zero in K. But J. McCool and P. E. Schupp showed in 7] that G can then be
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imbedded in an HNN group of the type (7) with the root B of H satisfying I(&)<I(R).

The case just considered can therefore be applied. m

Note that U=abab-! is of infinite order in @=<a, b; a?> €L, and satisfies U ~; UL,

B. B. Newman proved in [10] that the centralizer of any nontrivial U€GET is
cyclic. Hence, if we denote the centralizer of U in @G by C4(U), then for any U€G €T +1,
C(U)=(T> for some T. Here {T"> denotes the subgroup generated by 7.

Pending a proof of Lemma 3.2, we can now establish

ProrosiTION 3.5. Let U, WE€G €L, be of infinite order. Then we can effectively compute

integers a, b, and ¢ with 0 <c<1 such that
CP(U, W)= (a,b)Z U (ac, —bc)Z.
Moreover, a and b are relatively prime if a==0.

Proof. Note that we can determine the order of elements of G. Let us show first that
CP,(U, W) has the asserted form. Because of Lemma 3.4 it suffices to show: If (xz, y2)€
CP,(U, W) for some z, y, z€Z with 220, then (z, y)€CP4(U, W). This is trivial if x=0.
If =0, then

U = VW¥y-1 = (VWV1)2
for some V. Let Co(U*)=<(T", and note that U and VW V- must therefore belong to (T">.
Now, if U=T? and VWV-1=T? then T%* =T% Since ITI = oo, we must have

Ut T~ T — (VW V-1 = VWY Y-L,

By a result of B. B. Newman [9], G has solvable conjugacy problem. Hence, it suffices
to determine a’, b’ >0 such that a, b==0 implies |a| =a’ and |b| =b’. For this, let us proceed
by induction on the length of the root R of G. The case with I(R)=1 is trivial, so suppose
that I(R)>2 with the result established for all G’ €I’y having roots R’ with I(R') <I(R).

Suppose first that G can be realized as the HNN group (7). J. McCool and P. E. Schupp
[7] proved that H has solvable generalized word problem with respect to X and Y, hence,
we can effectively cyclically t-reduce words in G. Suppose therefore that U and W are
cyclically t-reduced. If only one of them is t-free, let a’, b’ =0. If both U and W involve ¢,
let @', >0 be minimal such that L(U*)=L(W"). If U, WEH, we use the inductive
hypothesis and compute CP,(U, W). From Lemmas 3.1 and 3.3 it follows that CP,(U, W)=+
{(0, 0)} implies CPy(U, W)=CPq(U, W). Suppose therefore that CP,(U, W)={(0, 0)}, and
consider U ~; W If x, y=£0, then U ~yxS; and W ~4 8, for some cyclically reduced free
words 8, and 8, from X or Y (see Lemma 3.1). But then 8f ~;8%, and so by Lemma 3.3,
87 must be a cyclic permutation of (8;*) for some 2. By Lemma 3.2 we can compute S,

and 8, and therefore also determine z. It is now elementary to compute a’ and b'.
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Finally, suppose that G cannot be realized as the HNN group (7). By the remark
at the end of the last proof, @ can be imbedded in such an HNN group with the inductive
hypothesis applying to the base group. Since this imbedding is clearly effective, and

we only need to compute the integers a’ and b’, the above case applies. O

The sets OP(U, W) with |U|, |W| <oo are considered in Section 6.

§ 4. Some more definitions

In this paper we use two constructions of generalized free products
G = Gl * HGz

of groups @; and @, from I';. In the first of these we amalgamate a cyeclic subgroup H and
get @ in [';; in the second (see (5) in Section 2) the amalgamated subgroup H is free
on gen (@,) N gen (G,) and @ belongs to 'y,

For both of the above constructions we choose the natural presentation for @, hence,

gen (@) = gen (G,) U gen (Gy).
Now, any word U on gen (G) can be written in the (not necessarily unique) form
v=0, ..U, (8)

where gen (U,) is contained in gen (G;) or gen (G,) for each i. If U% A and gen (U, U, ,)
is not contained in gen (G,) or gen (G,) for any 1 <¢ <k, then we call each U, a syllable of U.
The number of syllables in U is called the s-length of U, denoted I(U).

Words U€@ are called s-reduced if either I,(U)<1 or no syllable of U belongs to H;
that is, for no decomposition (8) of U into syllables U ... U does U;€H for any 1 <i<k.
If also all cyclic syllable-permutations (henceforth s-permutations) of U are s-reduced,
then we call U cyclically s-reduced.

Both for generalized free products @ in I'y and T, we need to determine for given
cyclically s-reduced words whether or not these are conjugate in G. The main tool to deal
with such problems is Solitar’s Theorem (Thm. 4.6 in [6]). In part, this theorem asserts
for cyclically s-reduced words U and W of the same s-length > 2, that U ~; W if and only if
U=8W_,8-! for some cyclic s-permutation W, of W and S€H. If we write U=U, ... U,
and W,=W, ... W, in terms of syllables, and examine the identity

U,.. U SWi;* .. Wil =8,

then we note that U, SW;'=8,€H, U,_,8,W;!,=8,€H, etc. Thus, we are led to consider
the sets
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{(S, 8YEH xH, U, SW;* = 8'}

in groups from I';. However, for some of our applications we need to consider a more

general situation.
Let G be a given group with subgroups H and K. For any U, W €@, consider the follow-

ing subset of the direct product H x K:
gph (U, W; H, K)={(8, TY€H x K; USW = T(in G)}.

This is the graph of the function G—@, given by V-~UVW, restricted to the (possibly
empty) subset of H mapped into K.

For any subgroup N of H x K and element (S,, T,) €H x K, let N(S,, T,) and (S, T) N
denote the right and left translates of N by (S,, 7). For the next lemma, note that
gph (U, W; H, K) is a subgroup of H x K if and only if W =U-1.

Lemma 4.1 If (S,, Ty) € gph (U, W; H, K), then

gph (U, W; H, K) = [gph (U, U™ H, K)1(S,, To) = (So, To)[gph (W=, W; H, K)].

Proof. If US,W =T, then USW =T if and only if USW(US,W)1=USS;'U-1=
TT,'. Hence (S, T)€ gph (U, W; H, K) if and only if (SS;*, TTs*)€ gph (U, U-1; H, K).
The other half of the proof is similar. ]

Much of the remaining work in this paper concerns the sets gph (U, W; H, K) for
free and cyclic subgroups H and K of groups in the subclass I', of I';. In the special case
when H=<{8)> and K={T) as infinite cyclic subgroups of &, then we identify H and K
with Z, and set

gph (U, W; H, K) = {(z, y) €2% US*W =T"}.
If this set is non-empty, then Lemma 4.1 implies that
gph (U, W; H, K) = (r,8) +(a, b) Z

for any r,s with US'"W =1T*, provided (a, b)Z=gph (U, U-%; H, K). In the next two
sections we show how we can effectively compute such integers 7, s, @, and b.

Let us also consider the graphs for free subgroups H and K of G€I’, generated by
subsets of gen (G).

LeEMMA 4.2, Let H and K be free subgroups of GEL, generated by subsets of gen (@),
and set N=H 0 K. Then, if gph (U, U-L; H, K) is non-trivial, there exists at least one pair
(P, Q)€H x K with U=QP-! and

gph (U, U} H, K) = (P, Q)[gph (1, 1; N, N)](P, @)~
19 — 772905 Acta mathematica 139. Imprimé le 30 Décembre 1977
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Proof. Suppose first that U = QP-!, and note that in this case, (S,T)€gph (U, U~; H,K)
if and only if P-1SP=Q3T'Q=S8"€ N=H N K. Moreover, if USU~1=T 1 for some (8, T)€
H x K, then Lemma 3.1 implies that §=8,8'S;! and T=T,T'T;* with &, T'€N. But
then, since N is malnormal in @ and (77'US,) S (T1'US;)t=T"'%+1, we must have
Ty1US,;=8,€N. This in turn shows that U=@QP-* for Q=7T,8,€K and P=8,€H. O

In view of Lemmas 4.1 and 4.2, we may say that gph (U, W; H, K) has been com-
puted whenever elements (S,, T',), (P, @)€EH x K have been effectively determined for
which gph (U, W; H, K)==@ if and only if US W =7T,, and gph (U, U-!; H, K) is non-
trivial if and only if U =0P-! and H N K==(1). We assume here that H, K, and @ satisfy
the hypotheses of Lemma 4.2. The problems involved in actually computing these sets
are considered in Section 5.

Conjugacy between elements of Gy %,G, belonging to the factors G, and G,, will be

considered in Section 6.

§ 5. Graphs in one-relator groups with torsion

Consider the graphs gph (U, W; C,, C,) for cyelic subgroups 0;={8)> and C,={T"
of G€T',. To obtain results about such sets we proceed by induction on the length of the
root of @. The HNN construction (7) allows us to apply the inductive hypothesis, but this
construction also introduces new problems. To illustrate this, suppose S and T to be t-free
while U=U,oU, ... *U, and W-1=Wslt* W' %W, with £>2. If now U and W
are t-reduced and satisfy US*W = T%, that is, if

Uyt Uy .. t*U STW it~ .. Wt W, = Y¥,

then U, S*W,=8, inXor ¥, U,_,8W,_,=8,in X or Y, etc. Thus, we need to consider
graphs gph (U, W; H, K) in groups Q€T for the following combinations: H and K cyclic,
H cyclic and K free on a subset of gen (&) (or vice versa), and finally, both H and K free
on subsets of gen (@).

For the remainder of this section, let us use the following convention: All subgroups
denoted by F, F', F,, ete. of given groups G€T", are assumed to be freely generated by
recursive subsets of gen (G). Cyclic subgroups are denoted by C, C,, etc.

Before turning to the various problems involved in computing the relevant graphs,
we need a definition and a lemma. But first, let us recall the “Spelling Theorem” of B. B.
Newman [9] concerning groups G€I', with relator R" (R simple). This theorem asserts
for any U, S€@ with 8 free in @ and U not free, that U=S implies U=U, U'U, with
U’V a cyclic permutation of R*" for some V with }(V)<I(R). Let us therefore call the
process of replacing U’ by V-1 an R-reduction of U where we assume U’ to be maximal
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so that U,V-1U, is freely reduced. Further R-reductions of U, V-1U, are also called

R-reductions of U, etc.

LeMMA 5.1. Let S and T be free in GET where G has the relator R™. Then at most one
R-reduction is posstble in 8T (none if n>2).

Proof. The remark about » is obvious, so suppose that n=2. If an R-reduction is
possible in ST, then §=8,8’, T=T'T,, and S'T"V = R¥ for some cyclic permutation R,
of R where (V)<l(R). But then gen (R)=gen (S')Ugen (T"), and therefore R} =UV
with V=V, V,, 8 =UV,, and T'=V,U. Moreover, for some minimal subwords W, of V,
and W, of V,, we must have @==gen (V,)~gen (V,)Sgen (W,) for 1<i=j<2. Clearly,
if W,W and W,W’ are cyclic permutations of B* and R" respectively, then 7=1"=¢
and W=W’'. This follows since gen (W,)Sgen (W,) only if ¢=j. Suppose now that
8, V21ViIT, is the result of an R-reduction. Any new R-reduction of this word must
involve all of Wi or W3!, hence, must be with respect to a cyclic permutation of B~%. By
the uniqueness of W, and W, we then get a contradiction to the necessary fact that
S, UV, V,UT, was freely reduced. 0

Most of the combinatorial difficulties involved in computing the sets gph (U, W; H, K)
in Ge€Ty for H=F, or C, and K = F, or C,, are handled by the next three lemmas.

Lemma 5.2. Let Q€T have the root R with exponent sum zero on t where B involves t.
Then, if we can effectively compute the sets gph (U’, W'; F1, F3) in any &' €T, having root
R’ with [(R") <l(R), we can also effectively compute the sets gph (U, W; F,, F,) in G.

Proof. We must show that given any U, W €@, we can effectively determine at least
one pair (S, T)€ F; x F, such that gph (U, W; F,, F,) = if and only if USW =T

Let G be realized as the HNN group (7), and note that the hypothesis of the lemma
applies to H.

Case 1. t¢ F, U F,. It follows that gen (F,)< gen (H) for i=1,2. We may restrict our-
selves to t-reduced words U and W with U and W-! ¢-parallel. Consider U=U " U, ... t*U,
and WisWalt Wit . t*W;! with k>0, and suppose that (S, T)EF, x F, satisfies
USW =T. It then follows from

UgtU, ... t*U, SWyt™ % . Wt Wy=T 9
that U, SW,=T'€F;, where Fo=X if g,=1, and F2=7Y if ¢,= — 1. By assumption, we
can effectively compute gph (U,, W,; F,, Fs) in H. If this set is finite, then S is uniquely
determined, so suppose that

gph (Uk: Wk; Fl Fi-,') = (Pr Q)[gph (l’ 1’ F: F)](P_ISO: Q_ITO)
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as an infinite set, where U, =@QP-! and F=F, N F; as guaranteed by Lemma 4.2. Since
we now have U, SW,=T'=QTQT, for some TEF, let us replace t*U, SW,t~* by
QP TOQP) 1 TEP in (9). This produces a new equation U'S'W’' =T where U’ and
(W')1 are t-parallel, S'= T € F; =t*Ft~* and l,(U’) <l(U).

The above discussion shows how we can compute the sets gph (U, W; F,, F,) in G
for any free subgroups F, and F, of H with gen (F,) recursive subsets of gen (H) fori=1, 2,

using induection of I(U).

Case 2. t€ F,,t¢ F,. (The case with t¢ F', t € F, is similar.) By relabelling the generators
if necessary, we may assume that a,¢ F,. The elements of F, can then be written as -
reduced words St* with SEF;=F N H. Since USK W =T € F, implies that |z| <I,(U)+
I(W), it suffices to consider gph (U, t*W; Fy, F,) for each such z, using Case 1.

Case3.t€EF, N F,. Let F{=F, N H for i =1, 2, and note that we can effectively compute
gph (V,1; Fi, F)and gph (1, V; F5, F)in H for any VE€H and F =X, Y. But then, if U and
W are t-reduced, we may assume for any (S, T)EF, x F, that T-1US is ¢-reduced if
U¢H, and SWT-!is t-reduced if W ¢ H. This in turn implies T-1USW =1 or WT-1US =1
if T7-1US8 is t-reduced and S and 7 are not both f-free. A similar statement holds when
SWT-! is t-reduced. Since we can decide by Case 1 if USW =17 is possible for any
(S, TYE Fy x F;, we need only consider U, W€ H.

Suppose now that U, W € H. Asin Case 2, we may assume that a, ¢ F, and write elements
of F, as t-reduced words St* with S€ F;. Elements of F, can be written as t-reduced words
Tyt T, ...t T, with T,€ F; for each i. If now

USEW = TotT, ... t7T,,

then |2| =r and x=1,|x| for each i. By symmetry, it suffices to treat the case with z=r>0
and thus each 7,=1. Note that we must have WT"=P€X for some 7T'€F; Since
gph (W, 1; F3, X) can be effectively computed in H, we may as well assume that W=P#A.
Moreover, let PT" be freely reduced for all 7" € F;. The words Tyt7T, ... tT, may be written
such that each 7', is either empty or begins with a!! for 1 <i<r. Suppose now that T, %A
and 7';= A for each 7> ¢ in the above. We then get

USEP" 9 = TotT, ... t7T,. (10)

If g>1, then we must have P""97;'=P,eX. From the restrictions above (on PT"),
it follows that P, must result after one R-reduction of P*~?T;'. By the proof of Lemma
5.1, P"? must contain a certain unique subword W, which then uniquely determines

r—q. Due to the shifting of subscripts in P{®, no R-reduction is possible in PPT,?,
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therefore 7',_,=A. Similarly, we must have T,=A for each 1<i<gq. From the above
equation (10) we now get
USPP=T,.

Since P, must involve a-symbols (from the ER-reduction), we get ¢ <u—v. For each such
g we can decide if USPQ =T, is possible in H. It remains to consider the case with ¢=0
in (10). Then USP® =T, and if P involves a-symbols, then the remark about P, applies.
If P involves no a-symbols, then the words SP® and T, are both free in H. Since U-!
must result after free reductions and possibly one E-reduction of the word SP”Tg?, it

follows that r is uniquely determined, hence, we can solve USP" =T, in H. O

LeEMMA 5.3. Exactly like Lemma 5.2 with Fy and F, replaced by C; and Cy. Also include
the assertion from Lemma 5.2 about gph (U’, W'; Fi, Fy).

Proof. The case with C, finite is trivial, so suppose that C; ={8) with |§| = c°. Lemma
3.1 together with Lemma 4.1 show that if gph (U, W; C,, F,) is infinite, then USU-1€EF,
and therefore UW € F,. It suffices therefore to find just one z such that US*W € F, if and
only if gph (U, W; Oy, F,)=+D.

Let @ be realized as the HNN group (7), and note that the hypotheses of the lemma
apply to H.

By changing U and W if necessary, assume that 8 is cyclically t-reduced.

Case 1. t¢ Fy. If S¢ H, then US® W € F, forces a bound on ||, so we need only consider
the case with S€H. It then suffices to consider {-reduced U and W with U and W-! ¢-
parallel. The result is now easily obtained by induction on I,(U) (see Case 1 in the proof
of Lemma 5.2), using the remark above concerning gph (U’, W’; C;, F3) when this is
infinite.

Case 2. t€ F,. By relabelling the generators if necessary, we may assume that a,¢ ¥,.
Elements of F, may therefore be written in the form 7% with T€ Fo=F,N H.

If SEH, then US*W =Tt implies |y| <I,(U) +1(W). For each such y we can use in-
duction on I,(U), just like we indicated for Case 1, and consider US*(Wt-¥)=1T'.

For the remainder of the proof, assume that =8, ... ¢S, with r>1. Tt suffices to
obtain a bound on |x|,so by symmetry, we need only treat the case with z>0. We may
assume x to be large enough for us to t-reduce US*W and obtain a ¢-reduced word U’S* W’
with 2’ >0. But then we may also assume all ¢’s in S to be equal. By symmetry, let us
only consider the case with each g;=1. If now U'S*W' =Tt =¢T"¥ with 2, y>0, then
we must have SW't™*=Q€Y and t “U’' =@, € Y for some z and 2’. All the above reductions

are effective, so we may as well assume that U=Q,€Y, W=Q€ Y, and 2’ =z. We now have

Qu(tS, ... t8,)°Q = Tt=".
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If >0, then we must have S,Q=P,€X, 8, ,P{’=P,_ €X, etc. By changing @, and Q
if necessary, we may therefore assume S, to be a word on gen () for each ¢. Note that the
P/s are unique.
Let us now write
tS, ... 18, =8,t81 ... tS, =8
where each S is either empty or begins with a;f' for 1 >0. Next we write

187 ... 1S, Sy = SotS} ... tS/ = 8"

with S” satisfying the same conditions as §’. Note that if S; A for some >0, then
we either get So=A or §(S”)<l(S’). Thus, after a finite number of steps, that we can
keep track of, we must arrive at either Syt" with §, involving no a,’s, or ¢3; ... t§, with
each S, empty or beginning with a'. By changing ¢, and @ if necessary, we may assume
that S=8,t"=8,t" or S=tS, ... t8,=t8, ... t§, with the conditions just mentioned satis-
fied. We may also assume that 8,80’ is freely reduced, otherwise we can replace S, with
a shorter word Sp.
Suppose now that Qg(S,t")*Q =Tt for some x>0. We then arrive at

Q08,8 ... 8§ QD =Te Fy,.

If @ involves some a;, then ar<u—w. Freely reducing both sides gives an equation in
Y 0 F; that can be solved by inspection. Finally assume that S=tS, ... tS, with at least
one 8;%A. Let ¢ be maximal with S %A, and note that S, ?=P€XN Y. Since S,
begins with @', it must be completely absorbed in Q7 2, hence I(P) </(Q). Repeating this
argument, note that if S¥Qt~* =P, €X for each k>0, then I(P,_,) <I(P,) for each such k.
From this it is easy to bound x. O

LemMMa 5.4. Ezactly like Lemma 5.2 with F; and F, replaced by C; and C, for 1=1, 2.
Also include the assertions from the previous two lemmas about gph (U’, W'; Fy, F3) and
gph (U’, W'; Cy, Fy).

Proof. Let C;=(8)> and S,=(T>. If 8 or T is of finite order, then we can easily list
all pairs (8%, T%) with US*W = T". Suppose therefore that | S| =|T]|=oco.

Let @ be realized as the HNN group (7), and assume S and 7 to be cyclically ¢-reduced.
If now T €H with S¢ H, then US*W =T" forces a bound on |z|. For each such z we can
decide if US*W =V, €H, and then if V_€(T). Just let Cy=<1> in H, and consider
gph (V,, 1; C,, C,). The case with SE€EH and 7' ¢ H is similar. Two cases remain.

Case 1. 8, T € H. It suffices to consider ¢t-reduced U and W with U and W-1 {-parallel.
Since we can compute gph (U’, W’; C,, F3) in H, the result is easily obtained by induction
on ,(U).
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Case 2. S, T¢H. Note that |y|l(T)<I(U)+1(W)+ |x|l(S) whenever US*W =T",
hence, it suffices to bound |x|. By symmetry we need only treat the case with x,y>0.
Let @, b>0 be minimal such that 8* and 7° have the same t-length. Then US*W =Tv
if and only if U,8W,=T" where x=aa’ +r, y=by +s, 0<r<a, 0<s<b, U,=US,
and W, = W7 *. Since there are only finitely many such pairs (r, s) to consider, it suffices
to treat the case with a=b=1.

Following a remark in Case 2 of the last proof, we may assume that US*W is{-reduced
for all z>0. Suppose now that §=t*8, ... t*8, and T=¢"T, ... t*T, satisfy US*W =T*

for some x >0. This implies
SWIT(T")1=QEF,

for some z >0 and terminal segment 7T of 7 beginning with #+!; and
(P AT 20U =Qy€F;

for some 2’ >0 and initial segment 7" of T' for which 7=7" T and T begins with ¢+!. Here
F;=Y if g, =1, Fy=X if ;= —1. Without loss of generality, we may assume that U =¢),

W =@, and then consider
Qy(tS, ... 78, Q= (T, ... tT,)*.

Note that we must have y=x and S and T ¢-parallel. Suppose now that e,,, = —¢, for some
1<:<7, and let 8’ and 7" be the terminal segments of S and T beginning with ¢#+1. If
we set
S'§QT Ty 1=P,eF'

for z=0, 1 where F’ depends on ¢,,,, then we must have S,P,P;'S; '€ F’ as well. Hence,
by malnormality of F' we get 8,€F’ if P,=+P,. Since S,€ F’ would violate the assumption
that 78,67 is t-reduced, we must have either all ¢,’s equal or P, =P;. The latter implies
S*QT-* =@ for all x, thus bounding z by 0.

By symmetry, it suffices now to treat the case with S=t8, ... t8, and T=:T, ...¢tT,.
If SQT-14Q, then for each ¢ we must have gph (S, T;''; ¥, X) infinite; otherwise no z>1
can satisfy @,9°Q =7T". But then, by Lemma 4.2 we must have each 8,=P,Q" for some
(P, @,)€X x Y. By assumption we can effectively compute such pairs, and by changing
@, and @ if necessary, we may assume each S, to be a word on gen (Y). By a similar argument
we may also assume each 7', to be a word on gen (Y).

We can now assume that we have applied the cyclic reduction process from the last

proof to S and T, and consider the following subcases:

Subcase 1. S=8,t" and T=T,t", with S, and T, involving no a,’s, and §,S;° and
T, T§ freely reduced. From @,8°Q = T* we then get the equation
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Q08,55 ... 8P =T,T ... T§™"

in Y. It is easy to bound z if I(S,)==I(T,). Also, if I(S,)=I(T,), then we can decide by
inspection if the equation can hold for any x with (z—2)(8,) > UQ,) + Q).

Subcase 2. S=8S,¢" as in Subcase 1 and T'=¢T, ... tT,%t" with each T, empty or begin-
ning with ai'. (The case with 8 and T interchanged is similar.) From @,8°Q=T* with
>0 we then get

QoS0 S5 ... S Q = (¢T, ... iT,)*.
But then QT '=P€X N Y, and therefore all of 7' must be absorbed in Q. If T, %A,
then I(P)<l(Q). Since T,%A for at least one j, we must have Q7T '=@,€Y with
U(@,) <UQ). This forces a bound on .

Subcase 3. S=t8S, ...t8,%¢" and T =tT,...tT,=%t" where each §; and T; is either

empty or begins with a2*. If now
Qu(tS, ... t8,)°Q = (T, ... tT,)*

for some x>0, then we must have S,QT;'=P,eXNnY, S, POT =P, ;€XNY, etc.
All of 8, and 77! must be absorbed in the free reductions of 8,Q7 . Hence, unless S, and
T, are empty, we must have I(P,) <[(@). Since at least one 8, is non-empty, it follows that
SQT-1=Q, €Y with 1(Q,) <l(Q). This forces a bound on #, and completes the proof of the

lemma. 0

We can now establish all the needed results about computability of graphs in any

Ge€T,. Recall our assertions about free groups F, and F, in G.

ProrosiTIiON 5.5. We can effectively compute the sets gph (U, W; H, K) for any
U, WeGeT, where H=F, or C, and K = F, or C, as subgroups of G.

Proof. We use induction on the length of the root R of @Q. If I(R) =1, then G=Cx F
for some finite cyclic group C and free group F. F, and F, must be subgroups of ¥, which
we may assume to be nonempty. All three types of graphs can be effectively computed in
C and F. But then, by modifying the techniques in the three last lemmas, we can also
compute these sets in @. It is of course considerably easier to work with free products than
with HNN groups.

Suppose now that I(R)>2, and that the proposition holds for all & €I, having roots
R’ with [(R') <l(R). If R has exponent sum zero on one of its generators, then the above
lemmas apply. Finally assume that the exponent sum is non-zero on all generators in R, and
in particular, assume that =0 and y==0 are the exponent sums of ¢ and a, respectively in E.
Then let GET,, be obtained from @ by replacing the generators ¢ and g, by f and d,, and
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then replacing the root R by the cyclic reduction of R, where R is obtained from R by
replacing each ¢ by d,{~¥ and each a, by #*. This construction also defines an imbedding

¥ -G

Now, @ can be realized as an HNN group with stable letter { and base H €I, having root
of length less that I(R) (see [7]). For any VE€G, let ¥ be the f-reduced form of W(V)€G.
Similarly, if H is a subgroup of &, let H be the image in G of H under ¥'.

The case with C, or C, finite is trivial, so suppose that both are infinite. Then

goh (U, W; 0y, Cy) = gph (0, W: 0, 6,)

in Z2, so this set can be effectively computed since V' is clearly effective. Next, consider
gph (U, W; C,, F,) with C, ={S)>. By relabelling the generators of G if necessary, we may
assume that t¢ F,. If also ay¢F, let F,=F, in G; otherwise let F, be generated by
gen (F,)—{a,} together with {. Now compute gph (U, W; C,, F,) in G. The case with this
set finite is easy, so suppose it to be infinite. By an earlier remark, we must have 0801~
8,€F,and OW = T,€F,. But then, US*W =T € F, if and only if (0801 OW =S5 T, =1
We can now decide if any x € Z and 7’ € F, can satisfy this equation in F,.

It remains to consider gph (U, W; F,, F,). Up to relabelling of the generators, the
following three cases exhaust all possibilities.

Case 1. t,a,€F,, t¢ F,. Let F, be generated by (gen (F,)—{t, a,})U{f, do} in G,
while F, is the group just considered above. Now compute gph (U, W; F,, F,) in G. The
case with this set finite is easy, so suppose that

geh (0, W; F,, Fy) = (P, Q)(gph (1, 1; F, F)I(P%S,, @)
as an infinite set where U =QP-!, (P, Q)€F, xF,, and F—~F,nF, (see Lemma 4.2). If
now USW =T for some (S, T)E F, x F,, then
8 =P8P-18, and T =@Q3QT,
for some S€F. Since d,4F, it is easy to decide if these equations have a solution in F,
and F,.

Case 2. t§ F, U F,. This is essentially like Case 1, only easier.

Case 3. gen (R)={t,a,}, tEF,, ay€F, The cases with F, or F, cyclic have been
considered, so suppose that F,={t;> % Fy and F,={ay;)> * F; with F{ and F; non-trivial.
Hence, we must also have @=G;* F for some non-trivial free group ¥ where G,=
{t, ap; B™>. Let us assume that no terminal segment of U or initial segment of W belongs to

F,, and similarly for U-* and W~! with respect to F,. It is now easy to decide if USW =T
is possible for any (8, T)€F, x F, with U, W, 8, and T s-reduced. O
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Note that we have also shown: All groups in I'y, have solvable generalized word
problem with respect to cyclic subgroups. This because U€C, if and only if gph (U, 1;
F,, C,)FD where F, is the trivial group.

We can now prove Lemma 3.2 as well.

Proof of Lemma 3.2. Let U€G €T, where G has the root B. We must decide if U ~, §
is possible for any free word § in G; then we must show how such an § can be effectively
constructed whenever solutions exist. We proceed by induction on [( R), observing that the
problem is trivial when I(R)=1. Suppose now that the result has been established for all
G’ €T, having roots R’ of length less than I(R), where I(R)>2.

First we consider the case when G can be realized as the HNN group (7). Let U be
cyclically t-reduced. Note that if S is free in G€T'y and the t-reduced form 8’ of § belongs
to H, then §' is also free in H€TL,. Suppose now first that U is i-free. By the inductive
hypothesis, suppose that we have determined a free word 8 in H with U ~4 S. Moreover,
assume this S to be cyclically reduced. Suppose also that there exists a free word 7' in
GeT, with U ~;T. The cyclically t-reduced form 7" of T' must belong to H, moreover, for
some V=V #*V, we must have 7" = VSV ~! (see Lemma 3.3). It now suffices to set V,, V, =
A, and check if T'=8“ for any x€Z and free word T in G€T,. Finally, suppose that
U=t"U, ... t*U, with k>1. By Collins’ Lemma (p. 123 in [3]), if U ~¢S with § cyclically
t-reduced, then we must also have [,(S)=k. Replacing a, successively by the elements
from gen (R)—{t} in the HNN construction of @, we may assume that § involves no a-
symbols. Hence, S can be written §=8,#* with |z| =k. It is now enough to consider the
case with U =tU, ...tU, and 8§ =8,¢*. By Collins’ Lemma, if U ~ 8, then we may assume that

tU; ... tU, = QS,t* Q1 (11)
for some Q€Y. But then U,Q=P€X, U, PV =P €X, etc. By Proposition 5.5 we can
effectively compute pairs (P, @)€X x Y with U,=P,Q;! for each 1 <¢<k (if (11) can
be satisfied), hence, we may as well assume each U, to be a word on gen (Y). We can now
use the cyclic reduction process on U that we applied to the generator of C, in the proof
of Lemma 5.3. If we arrive at a word without a-symbols, then we are done. Suppose there-
fore that we arrive at the word V=tV, ...tV, with each V, empty or beginning with
a' and V, %A for at least one ¢. If now

LV, ... tVy = Q8, Q1
then V,Q=P.€X, V, PP =P, ,€X, ete. Thus, Q=V;'P,, PP=V; P, ,, ..., PP =

V{!P,. After these t-reductions we arrive at

P;l) = QSo.
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But this equation cannot be satisfied for any 8, without a-symbols. To see this, note that

P =Q8, is an equation in ¥, and
Q= VN (Vi) V. (V) H Py
contains strictly more a,’s than P{V.

The case remains where G cannot be realized directly as the HNN group (7). We then

use the imbedding
¥ GG

from the proof of Proposition 5.5. Suppose now that there exists a free word S€@ and a

free word T €@, such that
U~eS and U~gT.

If t¢gen (S), where W(t)=d,-¥, then § is also a free word in @, hence, by Lemma 3.1
8 must be a cyclic permutation of 7. We assume here that 8 and 7 are cyclically reduced.
Since the imbedding ¥ depends on the particular choice of £, a,€gen (R), we must repeat
this imbedding for each such choice, and then check if 7'€¥"((¥) for some such ¥". O

§ 6. The main results for the class T,
In this section we complete our study of the class I'y. To this end, let G €I, be given by
G={ay,ay, ...; B, ..., Rg5> (12)
subject to the conditions on (2) in Section 2. In that section we also showed that if k>2,
then G can be realized as a tree-product

G =01 %p, ... ¥r 16y (13)

where each G,€T,, and each F, is free on gen (@) N gen (G,,,). Moreover, if G €l is the
subgroup of @ generated by Uf-{ gen (G,), then

O =@ %G, (14)

where F =F,_,. Note that G’ has k —1 relators, hence, this gives us a means of proving
results about 'y by induction on & in (12).

B. B. Newman proved in [10] that if J is malnormal in H, and H,, then H, and H,
are malnormal in H, % ; H, Using this result together with transitivity of malnormality,

it is easy to prove by induction on k:

LeEMMA 6.1. Let GET, be given by (12) with k>2. Then the subgroups G, in (13) and @’

in (14) are malnormal in G.

Suppose now that G is given by (12) with k>1. If k=1, let ¢, =G; otherwise let the
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subgroups G, be defined by (13). Now, if U is a word on gen (&) with gen (U’) < gen (&)
for some subword U’ of U and 1<i<k, then we call any R, -reduction (see Section 5)
of U’ in G an R-reduction of U. If no R-reductions are possible in U, then we call U R-
reduced. 1f also all cyclic permutations of U are E-reduced, then we call U cyclically R-
reduced. Note-that these reductions are effective.

Let £>2 and consider G as the generalized free product (14). Then, if U is an R-
reduced word on gen (@), we claim that U is also s-reduced (see Section 4) as an element of
G’ % p Gy. This is so because any s-reduction of U must involve an R-reduction. Similarly,
if U is eyclically R-reduced, then it must also be cyclically s-reduced.

Using the above ideas we can prove Theorem A for the class I',. We state this as a

lemma.

LrEMMA 6.2. We can effectively compute the order of elements in any G from Ty,

Proof. We use induction on k where G is given by (12). The result is well-known for
k<1, so suppose that k=2 with the lemma established for all G’ €I', having less that
k relators. Write G=Q % @, as in (14), and consider U €G. By the remarks above, we
may assume that U is cyclically R-reduced. Now, if U belongs to G or G, then the inductive
hypothesis applies, while otherwise, |U|=oo. O

Our next result generalizes Proposition 3.5 and establishes Theorem B for the class
I

TaEOREM 6.3. Given U, WEGEL, we can effectively compute integers a, b, and ¢
with 0<c<1 such that
CPy(U, W) =(a,b)Z U (ac, —bc)Z
i UL, [ W] =oo;
GPL(U, W) = (a, Y Z+(|U|Z) x (| W|2)
if |U], | W] <o

Proof. We use induction on the number k of roots in the presentation (12) of G. The
case with k=0 is trivial. Also, k=1 with |U|, | W| = o is covered by Proposition 3.5.

To complete the case with k=1, let U and W be of finite order in GE€L', where G
has the relator R". Now, if U or W equals 1, then we can clearly take a, 6=0. Suppose
therefore that U, W=1. Hence, U ~; R? and W ~; R? for some 0<p, ¢<n. From Lemma
3.4 it follows that U* ~; W* if and only if R?* = R%®. The integers p and g can be effectively
computed, hence, we can decide if U and W are power-conjugate, that is, if U* ~;W¥=£1 for

some z, y€Z. If U and W are not power-conjugate, let a, b =0; otherwise determine the mi-
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nimal ¢>0 in Z with R?*=R%® <1 for some b’ €Z. Then determine the minimal b >0 for
which R = R®. It remains to show that U®~; WY implies U*=U% and WY=W" for
some z€Z. But this is easy enough, just use the Euclidean algorithm and write x =az +r

with 0 <r <ga. Then observe that

R — Rp(:c—az) =~ RpPrRPe: quR-qbz — Rq(y—bz)

By minimality of a, it follows that B?”=1, and hence,

U= ~g RP% = Rre: ~e U«
and
Wy ~c R — Reb? ~e We=,

The result now follows from Lemma 3.4.

Suppose next that @ has k>2 roots, and that the theorem is valid for all G’ € I'; with
less than k roots. We can then write G =G’ % G, as in (14) and apply the inductive hypo-
thesis to both @’ and G,. Let U and W be cyclically R-reduced. By Lemma 6.1 it is clear
that

CPy(U, W)y=CPy(U, W)
if U, We@” for @ =& or Gy.. Moreover, if U and W belong to distinet factors, then U* ~;W¥
implies U® and WY must both be conjugate in their factor to some 7€ F. By symmetry
we may assume that W€G,. If W¥=:1, then W must be conjugate in G, to some T EF
with T'=T%. By Lemma 3.2 we can effectively determine such a T, if it exists, so because

we then get
CPL(U, W)y =CPg(U, Ty},

it remains to consider W¥=1. But in this case (i.e. WY ~;T € F implies T'=1) we may set
a, b, c=0. The case with [{(U), (W)>2 remains. Since we can easily determine minimal
integers a’, b’ >0 with [(U%)=I(W"), we may as well assume that I, (U)=I(W). Now,
by Solitar’s Theorem we know that U~ W* for some =0 if and only if U*=S(W?*),S8-!
for some s-permutation (W?*), of W* and S8€F. Since (W*), =W for some s-permutation
W, of W, note that if x>1, then

USW;'=8,€F

for each 1 <i<z. But then we must have S =.3,; otherwise USS;!U-1=8,8;'=1, and by
malnormality of F in @, we then get U€F. The case with x< —1 is similar, so we can .
conclude that U®~;W* for some =0 if and only if U~;W. Thus, it suffices to deter-
mine whether or not U~;W*® for = +1. Let us just considere=1. Now,if U=U,.. U,
and W=W, ... W, in terms of syllables and U ~; W, then
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U,...U8(W,... W)'=8

for some s-permutation (W, ... W,), of W. There are only finitely many such s-permuta-
tions, so let us just consider the trivial one. By considering 8 =U-1SW if necessary, we
may assume that U,, W,€G,. In this factor we can effectively compute gph (U,, W, *; F, F)
by Proposition 5.5. Moreover, this set can contain at most one pair (S, T'), otherwise
U,, W,eF. Now all we need to do is to check if USW-18-1=1 for this S. 0

The final result we need for the class I’y is the following generalization of part of

Proposition 5.5.

LeMMA 64. For any cyclic subgroups C; and C, of GEL,, and elements U, WE€Q,
we can effectively compute gph (U, W, C,, C,).

Proof. The case with O, or C, finite is trivial, so suppose that C; =<{8) and C,=(T"
with |8}, | 7'} = oo. In this case we identify C, and C, with Z and set

gph (U, W; Cy, Cp) = {(z, y) €Z%, US*W = T"}.
As a consequence of Lemma 4.1, we know that this set is either empty or takes the form
gph (U’ W; 01? 02) = (7’, 8) +(a1 b)z

Let us proceed by induction on the number & of roots in G. The case with k=0 was treated
in [5], while k=1 is covered by Proposition 5.5. Suppose now that k>2 with the lemma
established for all G €T having less than k roots. Then write @ =@ % G, as in (14), noting
that the inductive hypothesis applies to both factors. By standard arguments, we may
assume that § and T are cyclically B-reduced, U and W R-reduced. The case with [(S)=

1 <I(T), or vice versa, is trivial since we can then bound || or |y|. Let us now consider

Case 1. 1(8), I,(T)>2. By considering a finite number of cases, we may assume that
8 and T have the same s-length, and that gph (U, W; C,, C,)==Q if and only if US*W =T%
for some z, y = 0. It suffices to bound « since this also yields a bound on y. Assume therefore
that x is large enough so that we can s-reduce US*W and obtain an s-reduced word U’S“ W'
with «' 22. (We accomplish this by R-reductions.) If now U'S*W'=T", then

SW'T»T;'!<PeF
and
T'T-vU =Q€F
for some syllable-segments 7', and 7'y of T for which 7"T, =T =T,T", where y,, y, >0. Since

we now have
QST IP=T"TVT =T%"?
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where Ty=T"T,=T, T’ (comparing s-lengths), it suffices to show that we can take 2’ —1 =1,
But clearly, if ' —1>1, then
S'PT;'=PEF

for each 1 <i<a’ —1, hence, malnormality of F in G implies P=P,.

Case 2. 1(8), 1(T)=1. Suppose that U=U, ... U, and W=W, ... W, as s-reduced
decompositions into syllables where we allow U=U,=A and W=W,=A. Suppose further
that

U, .. USW, ... Wy=T"

for some x and y. If U, 8, W, and T belong to one and the same factor, then the inductive
hypothesis applies, and otherwise we must have U,8%, 8°W,, or U,8*W, in F. If this is
an equation in G, then by Proposition 5.5 we can compute the corresponding graph.
Moreover, unless the third possibility occurs with U,SU,'=S,€F and U,W,€F, the
is unique. Also, in this case with x not unique we can shorten U and W by a syllable,
and repeat the argument with § replaced by S € F. If S¢G, and U, or W,, as the case
may be, belongs to &, then let U, and W, be the remaining segments of U and W. We
now get Uy'T*W'€ F, and hence, if Uy, W, ¢G,, then we arrive at the graph gph (U,, W ;
F, F)in G, where U =U, or U,_j(Aif p=1)and W,=W, or W, (A if ¢=1). By Lemma
4.1, at most one pair S;, T €F can satisfy U,S,W,=T,, otherwise U,, W,€F. By Pro-
position 5.5 we can compute this pair (S, T,), and hence, also determine x and y. It remains
to consider the case with U,, W, €G,. But this is just like the first part. g

The following corollary is immediate.

CoROLLARY 6.5. The groups in 'y have solvable generalized word problem with re-

spect to cyclic subgroups.

With these results for I'y we can turn to the main theorems for I',.

§ 7. Proofs of the main theorems
With the results thus far established in this paper and techniques used in [5], the follow-
ing is easy to prove, hence we omit the proof here.
Lemma 7.1. Let G=0, ¥ GL€I',. Then for any U, WEG we can effectively compute
gph (U, W;C,0)in Q.

Note that by Corollary 6.5 we can effectively s-reduce and cyclically s-reduce elements
in any @ =@, %, G,€T,.
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Proof of Theorem A. Let U€@ =G, %;G,€T;. To compute | U], let us first cyclically
s-reduce U and obtain U’. If now I(U’)>1, then |U|=cc. If instead U’ belongs to G,
or G,, then we can apply Lemma 6.2. O

We can also give the

Proof of Theorem B. We have already proved this for all groups in I', so assume that
G =G % ;G,€T"; with C non-trivial. Let U, W €G be cyclically s-reduced, and consider
first

Case 1. I(U), I(W)>1. As usual, we only treat the case with U and W of the same
s-length. Moreover, by Lemma 7.1 and Solitar’s Theorem, it suffices to obtain a bound on
x>0 for which U?~gW* is possible for =+ 1. By a result in [5], we may take <2 if
is infinite. Also, if C'={8) in G with | S| <eo, then U*~; W* implies

UIS*W = 84
for each 1 <7<z, where
Uz = §7 W ;z S—z
Here W, is some cyclic s-permutation of W. But then, if 2> | S|, we get $% =8% for some

7 <1, hence,
U'S*W = UIS*W .
implies
U = Wi g2
with 7 —j<a.
Case 2. 1(U), I{(W)=1.If U, We@G, (=1 or 2) and some (x, y) ECPU, W) does not

belong to CPg(U, W), then
UP g8 = T2~ T = 8~ WY

where C'— (8> in G and C=<T)in G, (j=i). If | T'| < oo, then T”=T* and therefore §*=S*.
Hence, we must have | T'| = o, But then 2’ = —z and thus (z, —y) €CPg,(U, W). Since by

Theorem 6.3,
CP(U, W)=(a', YL VU (a'c’, —~b'c\E

with 0 <¢’' <1, we must have ¢’ =0. Therefore, if T ~g, T-1, then we get
CPU, W) =(a,b)Z U {a, —b)Z

with a’=a, b=b'; if T + ; T}, then CPo(U, W)=CPg(U, W).
Finally consider U €@, and W €@, with ¢=Fj. Since U*~; W? if and only if

U* g, % = T g, W,

we can construct CPo(U, W) from OPg(U, 8) and CPq(T, W). O
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As for the generalizations alluded to in the introduction, let I' be the smallest class
containing I'y which is closed under the formation of free products with cyclic subgroups
amalgamated.

Using techniques from this paper and from [5], we can generalize Lemmas 6.4 and 7.1
to groups in I'. Also, if @ =@, % - G,€T", and | U| <c in @, then we must have U conjugate
to an element of a factor. Continuing, we note that U must be conjugate to an element of a
subgroup @ of G with G’ €T,

It follows from the above that we must get

TueorEM B'. Given U, WEGET, we can effectively compute integers a, b, c,, ..., ¢,
such that

CP (U, W)=(a,D)Z U [CJ (ac,, ——bc,)Z]

if U], |W]=oo;
CPy(U, W)= (a,b)Z+ (|U|Z) x (|W|Z)

< o0,

if |[U], |W

Note that the generalized version of Lemma 6.4 implies we can cyclically s-reduce

elements of any G €T, hence we can compute | U| and | W| in Theorem B'.
The corresponding generalization of the results in [5] about HNN groups are straight-

forward.
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