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Section 0 

Lot G be a connected noncompact  semisimple Lie group with finite center and real 

rank one; fix a maximal  compact subgroup K. Our concern in this paper  is Fourier 

analysis on the Riemannian symmetric space G]K. We shall analyze the local and global 

behavior of spherical functions, the boundedness of multiplier operators, and the inver- 

sion of differential operators. The core of the paper, however, is an analysis of how the 

size of a function is controlled by  the size of its Fourier transform. 

There is an extensive literature on such topics, centered about  the Paley-Wiener and 

Plancherel theorems. Our work relies heavily on these earlier ideas and techniques, to 

which detailed reference will be made in the body of the paper. The problems we wish to 

solve, however, require estimates more precise and of a different nature than  are necessary 

for the Plancherel or Paley-Wienor theorem. Thus the first two sections of this paper  are 

devoted to the construction of various asymptotic  expansions for spherical functions; 

in later sections we show how these expansions may  be applied to the Fourier analysis of 

G/K. 
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Section 1 

Let G be a connected noncompact semisimple Lie group with finite center. The Lie 

algebra of G has a Cartan decomposition ~--~ § p; fix a maximal  abelian subspaee ct of p. 

We shall assume throughout this paper tha t  cl is one-dimensional. 

We fix some order on the non-zero restricted roots; there are a t  most two roots which 

are positive with respect to this  order, which we denote by  ~ and 2~. Let  p and q be the 

multiplicity of these roots, and define the number  Q as ~ - - (p  § 

Let  K be the maximal  compact subgroup o f  G with Lie algebra ~, and form the 

Riemannian symmetric space G/K. We may  compute tha t  n ~ d i m  ( G / K ) = p §  The 

elementary spherical functions for G/K are indexed by  ~I+, which we shall identify with 

R +, through the map  ~-->2~. Corresponding to each 2 ~>0 is a spherical function denoted 

by  ~ .  

We fix an element H 0 in (I with ~(H0)= 1, and define A + = (exp tH01t > 0}; then G has 

a polar decomposition G = K A + K ,  which leads to an integration formula we now describe. 

Let  D(t) = D (exp tH0) = (sinh t) ~ (sinh 2t) q. For a correct normalization of Haar  measures 

and all sufficiently n ice / ,  

A function / is said to be K bi-invariant if / is invariant  under left and right translation 

by  K. We define the Fourier: transform for such functions by  ](~) = Sa/(g)~(g)dg. There 

exists a measure Ic(2) l-2d2 o n  R + such tha t / (g )  = S~(g) / (~) lc(2) l -2d] t  (see [5], [65]). 

We now define a concept of Fourier multiplier. To a function m in L~(R +) we 

associate a map Tin: C~(G/K)-->L~(G/K) by Tm/(g) = S~m(2)/-)eq~(g)]c()Ol-~d,~. (Alter- 

natively, if we let ~ denote the distribution ]--->~'~ m(~t)i ~qJ~(e) lc()OI -~d)~, then T,J(g) is 

given by  convolution with the distribution ~h.) The function m is said to be a multiplier 

of 1.2(G/K) if the map T m may  be extended to a bounded operator on L~(G/K). 
Finally, we shall follow the standard practice of allowing c to denote a real or 

complex constant whose nature we do not wish to specify further; its value may  vary  

from line to line. Dependence of such constants upon parameters  of interest will be 

indicated through the use of subscripts. 

Section 2 

In  this section we shall analyze the behavior of ~ (exp trio) for small t. I t  is an im- 

por tant  heuristic principle tha t  locally, spherical functions on G/K behave like spherical 
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functions on the symmetric space ~) associated to the Cartan motion group. We shall 

state and prove a precise form of this principle. 

For compact symmetric spaces of rank one, such a principle was established by Szeg5 

[12], who showed that  Legendre functions admit a series expansion in terms of Bessel 

functions. We shall extend this to G / K .  SzegS's idea may be illustrated through the 

following computation for SL(2, R). A change of contour in Harish-Chandra's [6a] 

integral formula for the spherical function yields 

qa(exp tHe) = c cos (2s) (cosh t -  cosh s) -mds. 

For small t, 

(cosh t - e o s h  s) -1/2 = (t 2-s2) -'12 +error; 

qa therefore behaves like 

cos (2s) (t 2 -  s2) -112 = Jo(;tt). ds 

(2.1) 

(2.2) 

(2.3) 

For SL(2, R), K = S O ( 2 )  and ~=R2;  spherical functions for this action are Jo(Xt)/Iztl 0. 

In general, we define 

J. (z)  
3 . ( z )  = ~ -  r (#  + �89 r(�89 2 .-1 

and 

We shall prove 

co = co(G) = s  2(q/2)-2 

where 

THEOREM 2.1. There exist R o > 1, R 1 > 1 such that/or any t with 0 <~t <. R o and any M >I 0, 

~ t n - 1 - ]  1/2 oo 

(p~(exp trio) = col" / ~ t 2m am(t ) ~J(n_2)12+m(2t) 
LD(0J m-O 

(2.4) 

rtn-l]!12 M 
q~a(exp tHe) = c o [D~0] m=O~ $2mam(t) ~J(n-2)/2+m(~t) + EM+l(~tt) (2.5) 

ao(t ) = 1 

lam(t) l<~ ~R; m (2.6) 

< c~("+!)( ; tO -(("-'~+~'§ i / I ; . t l  > 1. (2.7) 
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Remarks. 
1. The techniques we shall use in establishing this result were developed by Szeg5 

[12] to analyze the behavior of Legendre functions. When the 2:r root does not appear for 

(7, q is equal to zero, and the spherical functions may be viewed as Logendre functions 

of complex index. These were analyzed by  Schindler [11], and in this ease Theorem 2.1 

follows from her work. In the proof of Theorem 2.1 we shall therefore assume tha t  q is 

non-zero, 

2. As the proof of the theorem is somewhat technical, we decompose it into five par~s: 

I. Derivation of an integral representation for spherical functions, similar to (2.1). 

II.  Construction of a series expansion, generalizing (2.2). 

III .  Proof of (2.4) and justification of all formal manipulations in the proof. 

IV. Estimation of the size of the a~(t). 

V. Estimation of the error term E~+ 1. 

Proo/ o/ Theorem 2.1. 

Part I. 

L~MMA 2.2. (C o sinh 2t)-lD(t)q~ (exp tHe) 

= (cosh 2 t -  cosh 2s) (q/2)-1 (eosh s - cosh r) (v12)-I cos (~r) dr sinh s ds (2.8) 

= (cosh t)(qt2)-I f / c o s  (2s)(cosht-coshs)((r+q)~z)-IF(q,m-q;q+p;C~176 
2 eosh t ds 

(2.9) 

Proo/. Formula (2.8) was proved by Koornwinder [9]. Formula (2.9) may be derived 

through an interchange of integrals in (2.8) and an application of Euler's formula 

F(c) f [  p_1( 1 _ t)c_b_l( 1 _ tz)_adt. F(a, b;c; z) = F(b) F(c - b) 

Part II .  We shall expand the hypergeometric function in (2.9) as 

/cosh t - cosh 

the appropriate generalization of (2.2) is a series expansion for functions of the form 

cosh t -  cosh s) (n-3)/2+j 
- tvS_  s ~ �9 
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Let (u, w)=Ct, t~-s2), B(r)-{zeV[ I~l <r}, and let 

f 
2 cosh u -  2 cosh (u ~ -  w) 1/2 when w 4 0 

w g(u, w) 

sin~ u when w = 0 

PROPOSITION 2.3. [g(u, W)]" iS holomorphic in w for w in B(3~2), for all z in C and all 

u in (--~, ~). Then 
/sinh u \  ~ ~o 

[g(u, w)] z ffi | - - |  • a~(u, z) w ~. (2.10) 
\ u /kffi0 

There exists an R1>1 such that for all x > 0  and u with lu]2<R1, 

~ - ~ - - )  a~(u,x) < k RI / R;z:" (2.11) 

Proof. The analyCicity of g in the given region was proved in [11]. To prove (2.11), 

we first prove 

LEM~A 2.4. There is an R I > I  such that when u is real and ]u]a<R1, 

I cosh u -  cosh (u ~ - R 1 e*~ m 
~os~uu < 1. (2.12) s u p  

Proof. The maximum modulus principle and the continuity of the function to be 

estimated allow us to reduco (2.12) to the estimate 

s u p s  [c~ u -  c~ ( u ' -  e'~ < l .  
lul<i UP 2 eosh u 

This estimate follows by  computation. For later use, we shall require R 1 <~/2. 

We can now prove (2.11). The Cauchy formula shows 

ak(u , x) = wk+_ )] dw. 

Then 

sinh u \z  Ig(u,R e'~ 

[4 eosh u~xR-k- su [cosh u - -cosh  (u ~ -  Rld~ 
< t ~ J  1 op[ 2 cosh u I 

From Lemma 2.4, the supremum factor is bounded by 1, proving (2.12). 



256 R. J .  STANTON AND P.  A.  TOY~AS 

Part I I I .  We now estimate equation (2.4). We shall proceed formally, but  justify all 

formal manipulatlons in Lemma 2.5 below. 

where 

(~ cosh ,-eo~h s~ _ ~ ~ ~oo.h t - c ~ h  :~, 
~v ,1-~;io+q; 2cosht / - ,~0~\  -~cosht / (2.13) 

Substituting (2.13) into the expression (2.9) for ~a (eXP tHe) , we obtain: 

(c o 2(3-n)12D(t) -I sinh 2t (cosh t)(q/~)-l) -1 ~a(exp the) 

---,~0 ~: e,(4 oosh O-'.j'i cos ~(2 cosh t -  2 cosh s)('+~"~+' ~ .  (2.14) 

From formula (2.I0), this is 

cos2s(# s2)(~-a)/2+J~ | "  ~ ak(t , -~--+])( t~--s2)~'ds.  dj(4 cosh t)-J It oo /~inh ,\(n-8)/2+j n - 3  
X ] 

(2.15) 
This is 

But  

a k , + cos -- 
./=0 k=0 

f~cos = t~-2t2~ cos (2tr) (1 - rZ) (~-2)/2+~+~-(1/~) 
t l  

)z(t ~ 82)(n-3)/2 +j+ k d, 8 dr 

n - 2  . 
~ tn_2 t2(,+k)F ( - - 2 ~  + ? + k) U(�89 J(n-,)/,+,+~(2t) 

2 ]~t](n-2)/2+J+k 'n-2~2(j+k) ~(n-2)/2+j+k (]tt) 

(See Erdelyi [2], p. 156). Equation (2.16) therefore becomes 

oo / s i n h t \  (~-a)/2+~ / n - 3  j) 
(2.17) 

Rearranging the series, we obtain 

(sinh t)("-a)l~ t ("-1)12 ~ ara(t) ~m ~(n_~)/2+m(~,t) 
m=O 

(2.18) 
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where 

_ j / s inht \  j / n - 3  .~ 
am(t)=1=0 ~" d/(4cosht)  ~ - - ~ )  am_,( t , - -~-+)) .  (2.19) 

This establishes equation (2,4) of Theorem 2.1. 

LE~MA 2.5. There is a number R o > l  such that for any t with O~<t~<R o, the above 

proo/ o/ (2.4) is valid. 

Proo/. Choose any R o with 1 < R o < RI '~. As [ (cosh t - cosh s)/2 cosh t [ < ~, the hyper- 

geometric series (2.13) converges uniformly; this justifies the interchange of sum and 

integral between (2.13) and (2.14). 

The expression (2.14) is transformed into (2.15) through an application of (2.10); 

the series in (2.10) will converge uniformly when It 2 --s21 <3~  2 and It[ <~. As s<.t<Ro< 
R1/2 <~1:2 we may apply (2.10), and use the uniform convergence of the power series to 

transform (2.15) into (2.16). 

To transform (2.16) into (2.17) we must justify the re-arrangement of the double series; 

it suffices to establish the absolute convergence of the double series. Using estimate (2.11) 

of Proposition 2.3 and the trivial estimate I l < 1, we see that  a term in the double 

sum (2.17)is bounded by la l 14 eosh As t~/R1KR~/RI<I, the series 

t2 ,~y+k 

clearly converges. This completes the proof of the lemma and of equation (2.4). 

Part IV. We wish to show a 0 ~ l  and lam(t)l ~ C R f  m. The first is obvious from the 

definitions. To estimate the am, we note that  

la~(t)l ~< ~ [djl [4 cosh tl- '  llsinh t \ '  f i n - 3  

< C C - /  ,oo In, If* cosh t-' ~ RI -m 

_ ( , t  cosh iy- ,> , ,  - 

But elementary properties of the F function show that 

1=0 J=t  
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The assumption q =~0 implies that  p +q 1>2, so that  the sum is bounded independently of m, 

and the estimate (2.6) is valid. 

Part  V. To estimate EM+I, we examine the regions I~t141 and I~tl > 1 separately. In  the 

former region, we bound IJ~(2t) l by 1. Then 

t n - 1  112 ao 

IE~+ll<~c~ -D~ ,=M~+I t2'la'(t}l" 

From (2.6) we see this is bounded by 

[ t \2(M+l)  00 . . [ R ~ t c t 2 ( M + l  ) c ~ ~JB;2~<~cl--I Y 

In the region 12tl >1, we again start with the estimate 

]tnl ].2 
I~,,+~l<,ol~l ~ t~la,(OI I:1,.-~.,,~+,(aOI. 

i./-//~) i t=M+I 

For the first ~erm in the series we employ st~ndnrd estimates on Bessel functions, to 

obtain 

P ( ~ +  M+ 1)P(�89 2('-2"2 2 M 
l Y, n-,~,,~+~+l(aOI < c l atl~,,_,,,~+.,,., , 

For higher terms, we" must employ sharper estimates. Szeg6 [12] has shown 

�89 ~ r(~ + �89 - k) 

an estimate which is valid for all real z and integers k with 0 ~<k ~</z. We set k-- (n -2) /2  + 

M +2, and find 

where 

+ 2Cn12)+l~l122MRg2(M+l) .R~ t n - -  3 \(nl2)+M+l 1 

This establishes estimate (2.7) and completes the proof of Theorem 2.1. 
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Section 3 

In  this section we derive estimates on the growth of the spherical functions and their 

derivatives near infinity. Our approach depends upon a key result of Harish-Chandra: 

THV.ORE~a 3.1. 

q~ (exp trio) = c(2) e ~a-~)t r + c(--2) e (-a-~)t ~_~(t) (3.1) 

where 

(3.2) 

oo 
Cx(t)= ~ rk(2)e -ski (3.3) 

k=O 

Fo(2)= l  

k 

(}+ l)(k+l--i2)rk+l= E ~(e+2j--i~)rj+ E q(e+2j-/2)rj. 
1=0 ] ~ k + l - 2 l  

l~9, j>~O 

(3.4) 

Remarks .  

1. The series (3.3) converges when [Im 2] <Q, uniformly on compacta not containing 

e x p  (0 Ho), the group identity. This follows from unpublished work of Harish-Chandra; 

see Helgason [7], p. 201. Theorem 3.1 was proved in [6a]. 

2. Our notation differs slightly from that  of [6a]; our Fk is Harish-Chandra's F~.  In  

Harish-Chandra's notation, F~+I=0.  

From equation (3.1); we see that  

~t  (exp trio) = c(2) e ~t e -Qt + c( - 2) e -t~t e-et § error terms; 

estimates on the size of a function ~ may therefore easily be obtained by Euclidean 

Fourier transform techniques, if one has some knowledge of f and some control of the 

above error terms. Gangolli [5] showed that  there exist positive numbers c and d such that  

]Pk(2)] ~<ck a. Such estimates are optimal, and suffice to prove Paley-Wiener type theorems 

(see Helgason [7]). In  the Paley-Wiener theorem, one knows that  f(2) is rapidly decreasing 

when Im 2 =0; estimates on Fk(2) which are uniform in 2 are sufficient to achieve control 

of ~. We are concerned with controlling ] under weaker hypotheses on ]; it is essential to 

estimate precisely the growth of F~ in 2. 

We shall prove 
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THEOREM 3.2. There is a constant A=A(G) such that,/or any M>~O and any X with 

ImX~>O 
M 

r~(X) = ~ r~+ E~+~, (3.5) 
m~O 

where 7~ is the sum of terms gz, and I/g~ is an mth degree polynomial in 4. Further, 

5 m e 2k 

I),~(X) I ~< A IR e hi m (3.6) 

A2 ~ 5 me2:+~ 
[D,~o~ ~'~1 ~< [Re h I (3.7) 

5M +1 e 2k 

IE~,+,I-<AIRe XIM+-- (3.8) 

Remark. As with Theorem 2.1, the proof of this result is rather technical. We decompose 

it into four parts: 

I. Construction of a reeursion simpler than (3.4). 

II. Solution of recursion and expansion in the form (3,5). 

III .  Estimation of the ~ .  

IV. Estimation of the error term EkM+I. 

Proo/ o/ Theorem 3.2. 

Part I. 

PROPOSITIO~ 2.3. 
k 

(k + 1) (k + 1 - iX) rk+l = (5 + k) (5 + k - iX) Fk + q ~ ( - 1 )  k + / + l  (5 "~ 2~" - -  iX)  F j .  
jffi0 

(3.9) 

Proo/. I t  suffices to prove that  the right-hand side of (3.9) equals the right-hand side 

of (3.4). This latter is 

k-1  

~(5+2k-i~)r~+q(5+2k-ix)r~+ ~ ~(5+2i-ix)r,+ ~ q(5+2j-ix)r, 
j=o j f k - 2 l  

/>0.1 ~ 0 

+ 2 q(o+21- iX) -q(5+2k- iX)F~, -  2 q ( 5 + 2 j - i X ) F r  
t - -k+1-2/  ]~k-2 l  
/>0, t/>0 l>O, i />0 

This is 
5(5+2k-iX)P~+k(k-iX)P~,+q ~ (5+2j - iX)F~ 

/ = k + l - 2 l  
l>O, i/>0 

k 

= (5 + k) (5 + k -  ix) r~ + q Y ( -  1)~+-1 (5 + 2 i -  ix) rj. 
1ffi0 
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~OROLLARY 3.4. 

where 

k - 1  

r~+~--~r~+ 5 ~r, ,  (3.10) 
t=0 

2 ~-I /c+l - 1  + 
o~ = 1 + ~--~ + /c+ 1 -  i;t (3.11) 

~ + i  1~ ~+1-i~/" (3.12) 

Part I I .  When q=0,  (3.9) is trivial to solve, and yields 

= r ( 1 -  i~) F(e + k) F ( ~ -  i2 + k) k~ ( 
F~ r(e-  ~) r(e) r(~+ 1) r ( 1 - ~ -  ~Jo ~a'~ i+ 

To facilitate estimates of D~Fk, we expand the product expression into a sum of 2 k 

monomials, and it is trivial to estimate the derivative of each monomial. 

When q is non-zero, (3.9) admits of no simple solution (see, however, Corollary 3.8). 

l~k+l may he expressed as a sum of 2 ~ terms, each of which is a product of ~ ' s  and fl~'s. 

These products may in turn be expanded into monomials, through (3.11) and (3.12). A 

gk+l is a term in this expansion for which (gkm+l)-i is a polynomial in 2 of degree m. If  q=O, 

there are k 1 such; if q=~0, there are ~ i 1 such. Let y~+l be their sum. 

Part I I I .  

A ~'~ e ~k LEPTA 3.5. Ir~(~)l< ~ - - ~ , ~  �9 

Proo/. From (3.11) and (3.12) wesee o~k=ak+bJ(Ir --i2), where 

I,~l < 1 + p / ( 2 ~ + 2 ) ,  Ib,~l <p/2 for k>~ko and Ib,,I ~Ao for k<ko; 

fl~=c~+d~[(k+l-i~), where Ic2l <q/(k+l), IdOl < q ( e + 2 i - 1 ) / ( k + l ) .  (3.14) 

We shall establish the lemma by induction on k, for all j. Assume first that  re=O, 

and that  the lemma is valid for all y~ with j<]c. From (3.9), yok+' =aky~+ ~.~:1c~7Jo. Then 

(3.14) and induction show that  17~+11 <~Ae2k(1 +(p+q)/2(k+l)). When ( p + q ) ] 2 < k + l ,  

lye k+l ] < A  e ~(k+l). The smaller yo k+l may easily be estimated by choosing 

(~+q)12 ( P + q ~ >- "2 "Q 

This proves the lemma for m=O and all k. 
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When m >0,  it  is clear tha t  y ~ = 0  for k <  m. We shall therefore prove that  (3.6) holds 

for a l l  m with 0<m~<k and all k. Assume (3.6) is valid for ~ when l<~lr and j~<l. I f  

m = k + 1, ~'k+l"/~+1 _ _ - -  [blr k + l -- i2)] y~. Now I m  2 >I 0, so tha t  

IRe~l < lk+~-g~l  and 
~k ~2k ~k+l  ~2(k+l) 

~ k + l  ~ ~ ~ ~' ~ ~ A ~ '  

This estimate is valid when k >~k0; to handle the cases k<k o, we must  choose A >~Ao k*. 

When m < k + l ,  

Thus 

Ae 2~ / ) m p p p_+ 2q q k 
Ir~+~l<lRe al~e [ l+2(k+a)  ~ 

Ae~ Q m [ 
2 (-V~-~) < IRe al "~" 

The estimates on b k are again valid only for large k; for smaller k extra  factors of A o are 

required in A. 

k ~ ~m e 2/r 
LE~MA 3.6. [Daea~,,,l<A2 i R e - ~ m + . .  

Proo/. The proof is the same as tha t  of the previous lemma, but  employs obvious 

estimates such as I Da(bd(k + 1 --i~)) I = I bJ( k + a -i~)~ I" 

Part IV. 
. QM+I s 

L~,~M.r 3.7. I~+~l~ A iR--yal~+~. 

Proo[. We prove the lemma by induction on k, for all M > 0. The k = 1 case is trivial. 

Assume the result is valid for all 2" ~<k. The terms which contribute to E~++ 1 are: 

k - 1  

(i) ~E~+I+ ~ fli~E~+l ~ 
]~M+I  

(if) 
k-1 df 

k +  1 - i 2  k+ 1 " i~  ~ "  J fM 
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Note 

]~kE,~+~l < (1 + 2(b+ 1 ) P  t-k]~l ) A I ~ ) M + I  e2k 

( P ) 0"+le ~k 
< 1 + ~  i AIRe~I~+I" 

~M§ e21 1+ §247 
k bk k ~ P 0 Me2k ~ )M+xe2k 

We must therefore have 

/r ~ l+e-V---1-1+(e~-li-(/c+lj ~ ' ( e 2 - 1 ) ( k + l )  

which holds for sufficiently large k. 

This completes the proof of the lemma, and completes the proof of Theorem 3.2. 

We may use the above results to derive some further information on the behavior of 

spherical functions. One would like to have, for example, a representation of F~ as a 

quotient of F functions, similar to (3.13), but  (3.9) clearly shows the q=~0 case to be 

more complex than any q = 0  ease. To solve the recursion (3.10), we note 

r l ~ o r o  ~ ~o 

r~ = ~ r~ +fl~ ro  = ~1 ~o +fl~ 

r~ = ~ 1 ~  + ~fl~ +flo ~ +f l~o .  

F~+ 1 may be expressed as a sum of 2 k+l terms, each of which is a product of a /s  and fl~'s. 

I t  is useful for computational purposes to know which products may occur; we shall give a 

simple combinatorial characterization, which allows one to write down Fk+l without 

having solved (3.10) for Fj, j<]~. 

We would like each term occurring in Fk+l to have k § 1 factors; as this is clearly false 

we develop a substitute notion. 

De/inition. The type of ~j is one; the type of fl~ is l -  m + 1. The type of a product is 

the sum of the types of its factors. 
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COROLLARY 3.8. Let 
. . .  . . .  ( * )  

be one o/the 2 k+l terms which occur in solving (3.10)/or Fk+z. The collection o/integers ], l, m 

such that :r or flZm is a/actor in (*) satis/ies the /oUowing conditions: 

(a) O<~j<k, l <~l<~k, O<~m<l. 

(b) I f  film is a/actor in (*), no acj or fl~, is a /ac tor , /or  any j, l', m' in [m, l]. 

(c) The integers ~1 . . . .  , ~, 11 . . . . .  ln, mz, ,.., ms are distinct. 

(d) The type o~ (*) is k + 1. 

Conversely, i / (*)  is a product the indices o~ whose/actors satis/y (a)-(d), then (*) is one o/ the 

2 k+l terms occurring in the solution el (3.10) /or F~+ 1. 

Proo/. That conditions (a)-(d) are satisfied may easily be proven by induction on k. 

For example, (3.10) shows that  the type of a term in Fk+l may be the type of a term in 

F~ plus the type of ~k, or it  may be the type of a term in Fj plus the type of fl~; either of these 

is k + l .  

The converse is of greater interest; we establish it by induction. To analyze F1, we note 

that  (a) requires the terms in (*) to have indices bounded by zero. The candidates for 

F1 are thus ~r ~ and ~o~; ~ contradicts (a)-(c), while ~o/~o contrives to contradict all 

(a)-(d). The assertion of the corollary is the true statement that  Fz=~  0. 

Assume the result holds for all Fj with ]~<k. Let (*) be a candidate or Fk+z; that  is, 

let (*) satisfy (a)-(d). We claim that  (*) contains a factor ~k or fl~. Let us assume this result 

for the moment. If  ~k occurs, fl~ does not, by (c). Let (**)=(*)/~k. Then (**) satisfies 

(a)-(d) with k replaced by k - l :  conditions (a) and (c) show that  (a) holds for (**); the 

validity of (b) and (c) is not affected by deleting a term, and type (**)=type (*)- 

type ~k =k. Therefore by induction hypothesis (**) is a term occurring in F~, and by (3.10), 

(*) occurs in l~k+l through ~Fk.  

If  ~ occurs in (*), we set (**)=(*)/fl~. If ]=0,  type (*)----typefl~+type ( * * ) = k + l §  

type (**). Condition (d) requires type ( * ) = k + l :  therefore (*)=fl~. But fl~ occurs in  F~+l 

through fl~F 0. If j>0 ,  the proof that  (*) occurs is the same as that  for a~. 

To complete the proof of the Corollary, we must show that  either ak or fl~ occurs in (*). 

Assume neither occurs. Let m0=max {l[ ~z or fl~ is a factor in (*)). Condition (a) implies 

m e ~< k; condition (c) and our hypothesis imply that  m 0 < k. We shall show that  type (*)~< 

m0+ 1; this contradicts (d). 

To calculate the type of (*), we replace each fl~, occurring as a factor in (,) by  a formal 

product ~ + ~  ... ~ .  The type of fl~ is the number of factors in this formal product. 
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When we have replaced each fl~ in this manner, we form the set S, the set of integers j which 

appear as indices of an ~j or an ~ .  We wish to show: 

(i) to each integer in S corresponds precisely one ~# or ~ .  

(ii) S has at most m o t  I elements. 

Then (i) and (fi) together imply type (*)~<number of integers in S ~<m 0 + 1. But  (i) follows 

immediately from conditions (b) and (c); (fi) follows from (a) and the definition of m0. 

This completes the proof of the corollary. 

Theorem 2.1 gives an asymptotic expansion for ~ (exp trio) when $ is small. For large 

t we may use Theorem 3.2 to derive a similar expansion. 

COROT.LARY 3.9. There exist/unctions Am(X, t) and ~M+I(2, t) such that,/or any M >~ 0 

and t >I R o, ~ with Im ~ ~> 0 
oo 

r ~. Am(~t,t)e -2~ 
m ~ 0  

M 

r = Z A~(2, t) e -2~ + ~M+1(2, t), 
m = 0  

where 
~m ~2m 

e2(M+l) ~M+I 
[D~M+I] <~A ~ 4 ~  2~G/~(t) 

G~(t)= ~ i~e 2j(i-t). 
1=0 

Proo/. If  we set Am(2, t)=~=0~m+J(2)e -~jt, the result follows from Theorem 3.2. 

and 

Section 4 

In the previous sections we obtained series expansions for spherical functions; we 

note that  the expansions which characterize local and global behavior differ radically, 

both in statement and proof. In  this section, we shall apply Theorems 2.1 and 3.2 to the 

Fourier analysis of K bi-invariant functions; we shall see once again that  th~ local analysis 

is essentially that  of ~,  viewed as the symmetric space of the Cartan motion group, while 

the global analysis has no Euclidean analogue. 

We establish notation to be used in the remainder of the paper. N will denote the 

least integer greater than n/2. Let  ~(g) denote a smooth K bi-invariant function with 

0~<~p~< 1; ~v (exp trio)=1 if ltl < Ro'2; ~ (exp trio) =0  if Itl >~Ro- 
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iV r PROPOSITIOlq 4.1. Let 1o(2) be an even C (a+) [unction satis[ying the estimates 

D~/~(0) = 0  when O < ~ N  

] ~ p ( ~ )  I < ca(i + 121 )-4 when 0 < ~ < zr (4.1) 

Then there exists an Li(G/K) [unction eo(t ) such that 

T(exp the) ~(exp the) -- v/(ex p the) f :~ (X)  ~0a(exp the) l c(2)[-~ d~ 

-- <exp tHo)co( ) 

Remarks. 
1. I t  is not clear from the hypotheses tha t  ~ exists, other than in a distributional sense. 

Throughout the remainder of the paper we shall always assume tha t  functions satisfying 

estimates such as (4.1) are in fact rapidly decreasing in 2, though none of our estimates 

will depend upon the rate of decrease. This will allow us to define ~ pointwise, and to 

perform various formal manipulations such as integration by  parts. To pass from this 

to arbi trary functions satisfying (4.1), we need a basic theory of approximate identities. 

Such a theory m a y  easily be developed, in a manner analogous to the Euclidean theory. 

Pointwise results may  be obtained using the work of Clerc and Stein [3] on maximal  

functions. 

2. The proof of Proposition 4.1 requires repeated integrations by  parts. I t  is therefore 

essential to estimate derivatives of ]c(~)] -~. 

L~M~A 4.2. ID~l~(i) l-2[ < c ~ ( i +  121)=-1-% (4.8) 

Proo[. The lemma may  easily be derived from the following formulae, each of which 

is a consequence of equation (3.2): ]c(2)1-2= 

k - 1  

c 1-I 62 + 22) 
J=0 

~ k-i 

c2 tanh .... l-[ [(�89 + ])2 + 22] 
2 j=o 

when q = 0 and p = 2k 

when q = 0 and p = 2k + 1 

when q = 21 + 1 and p = 4k + 2 

when q = 21 + 1 and p = 4k. 
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Proo/ o/ Proposition g.1. We shall employ Theorem 2.1, with M chosen to be/V. Define 

eo(t)=W(exptHo)co[~-(~] ~lt2mam($) ~,n_,,,~+.(at),(a) Ic(a)l-'aa 

+ ~0(exp trio) f:  E~+l(at)p(~)I c(a)I -~ dZ. (4.4) 

The estimates (2.6) allow us to bound am(t ) by a constant. Each term in the ex- 

pression (4.4) is a compactly supported K bi-invariant function; the integration formula 

(1.1) shows that  e.(t) will be in L x if each term 

= t 2m ~Y(n_2)/2+ra(2$) p(2) 1C(2)[=2 d~t, 1 ~< m~< N ~m(t) 

= fE~+~2t)p(;t)I c(2)1-2 d;~ ~N+I(~) 

can be bounded by c/] D(t) ] or c/t ~-1. The term eN+l is easy to estimate; from the estimate 

(2.7) on EN+I, we see 

] SN+I(')[ ~ CN[[ ~19 [[o0(f~/t ~2(N+l) d~--~ dlltf~176 ,2(N+l)(2,)--((n+l)/2+N, (I '~ [21) n-1 d2).  

The latter integral is convergent, as N > ( n -  1)/2; then 

I e~+~(t) I < c[t =r + t<~-l"=-N~ +1-''~-1,'='] < a .  

T h e  remaining estimates are more subtle. We shall apply the formula 

~5 -1D.(y~,(z) ) = -- C~, :~,+ I(Z) 

(see Watson [13], p. 18). When m>~2, 

1 N eAt)=cmt~m f p(,t)lc(2)}-~(-- h Dat) ~m-2+~(2t)d2; 

here e is zero when n is even and is �89 when n is odd. Integration by  parts shows that  

em(t)=cmt2(m-N) f (D~.~)~(p(2)lc(2)l-~)~m_~+~(2t)d2. 

a typical term in the expansion of the integrand is majorized by  

~(1 + IZl} ~-~-~ ~<c(1 + lal)=~; therefore [emff) l ~<ct u(~-N) ~Ct l-vS. 

18- 772908 Acta mathematica 140. Imprim~ le 9 Juin 1978 
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If m = 1 and n is odd, we proceed as above, obta2ning 

~(t) = c,~ fp(;L) j c(~)]_ ~ t ( ~ D ~ )  (cos At)d2, 

from which follows let(t) l ~<e. When m =  1 and n is even, we integrate by  parts n/2 times, 

to obtain 

The integral splits into two parts, [3~[ < l  and [~t[ >~1. The first part  contributes 
Cllt l l  ct jo , .  + I AI)-ldA < ctllog t I; ~or the second part we estimate I Yo(2t) ] ~< el~tl-l'~, and the 

second part  then contributes a term ct. This completes the proof of the proposition. 

COROLLARY 4.3. Let p(2) be an even CN(a'+) function satisfying the estimat~ 

/)~p(o) =o ,  O < ~ < N  

Then for all t <-Re, 

~(exp tH0)--c 0 P(2)Y(,-2)/,(2t)]c(2)] -~d2+ 2 em(t)Te(t) (4.5) 
m=l 

where 
le(t)l < e  
]e~(t)] < eft ~-~ 
[em(t)[ <et2(m-1)-N, m > l .  

Proof. The corollary follows immediately from the proof of Proposition 4.1. 

Proposition 4.1 allows one to replace the inverse spherical transform on (t/K by the 

radial inverse Fourier transform on R n, at  least locally and up t o / f l  error terms. The 

following result (see [3]) shows that  globally, the Fourier transform must behave in a 

manner entirely different than any Euclidean analogue. 

THEO~]~t  4.4. Let ] be a K bi-invarlant function in LS(G/K) for some 1 < s < 2 .  Then 

](2) may be extended to a /unction analytic in the strip e,---(2[ [Im~[ <( (2 / s ) - l ) e} .  I f  [ 

is in I~, f is continuous on the closure of e 1. 

We shall establish a partiM converse to Theorem 4.4. 

PROPOSITION 4.5. Let p(2) be an even, Weyl-group invariant function analytic on the 

8trip e~. Assume that 
[D~p(a+i~')]<<.c~.~(l +[a[) -~ for O<~a<~N (4.6) 

and all ~ + iz in e 1. Then ~(g) (1 - y~(g)) is in Ls(G[K) for all s, 1 < s < 2. 



E X P A N S I O N S  ~ O R  S P H E R I C A L  ]~UNCTIONS O N  N O . C O M P A C T  S Y M M E T R I C  S P A C E S  269 

Remarks. 
1. The first result of this kind was proved by  Clerc and Stein [3], who established it 

for symmetric spaces G[K with G complex. Many of the techniques employed below origi- 

nated in the work of Clerc and Stein. 

2. A simple modification of the proof below allows one to show tha t  if 10 satisfies the 

estimate (4.6) in the strip es0, then ~(1 - v2) is in L e for s o < s < 2. 

Proo] o] Pro:posltion 4.5. We shall show tha t  for every e with 0 < r < 1, there exists a 

constant c, and a function K~(t) such tha t  

I~(exp tH0) (1 - w(exp tHo))l < e, e-(1+~)Qt(1 + K.($)) (4.7) 

where S~[K~(t)I~dt < co. Assuming these results, we choose 8 > 1 and compute 

I1~(1-~,)ll.<-<c.(f~-"+"'~'lD(t)l dt) ~'~+ c.(~ e-c'+~'~"lK.(Ol'lD(Ol dt) ~''. 
We estimate ID(t) I <ce~; the first integral may  be made finite by  choosing r > ( 2 / s ) - l ;  

the second may be estimated using HSlder's inequality. The proposition therefore follows 

from (4.7)i 

To establish (4.7), we note tha t  ~ (exp tH0)= a s  p ~ a n  even 

function we may use (3.1) to write this as ~-o~ p(2) ~-1(-2) e (ta-Q)t r d2. When t >/R~ I~ > 1, 

the expansion r P~(2)e -2kt converges ~m~formly, and as 1o is rapidly decreasing 

(see the first remark to  Proposition 4.1) we may  interchange sum and integral. Then 

,(1-v/)~,~< (1- v/)k~o l f~_ ,(2)c,-l(- 2) F1,(2) e('a-~)' d21e-2"~: 

The integrand of each term in this sum is holomorphic in the strip 0 ~<Im 2 <e; we may 

change contours of integration, 2 +i0-->2 + i t  e, for any r with 0 < r  <1. Then ] ( 1 - ~ ) p ]  is 

bounded by  

(1 e~atp(2 + ire) c-1( - 2 -  ire) Pk(2 + ie e) d2 e -~kt. 
k~0 

Let  q(2, r ) = p ( 2 + i r e ) c - l ( - 2 - i r e ) .  To establish (4.7) it  suffices to prove tha t  

~=~ol f~o eUt gC2,e)Fk(2 + ire)d2le-'~ <. c~ + K,(t). (4.8) 

Let  r be a smooth even function on R 1 with 0 < r  r  when ]2[ >2; r  

when [2 [ < 1. Then 
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}f e'~(1 - ~(~)) q(~, e) rk(~ + ie~) d2} < 2 sup I q(L e) F~(~ + %)1 < c, k ~, 
1~,1<2 

from Gangolli [5]. Terms of the above form therefore contribute ce ~ l~e -~kt <ct, and may 

therefore be ignored. 

To estimate 

If(~p(~)emq(2,e)Fk(~+ieQ)d21, (4,10) 

we employ Theorem 3.2, with M = N .  Then (4.10) is bounded by 

,~o f r +iee)q('t'e)d'~ 
+ supa ]p(2 + geQ) l fr lE ,l(a)l z -  i o)l da. 

As 12] >1, we may use (3.2) and standard estimates on quotients of F-functions to 

estimate I c( - ~ -  leo)[ -1 <~ c t ]21 ('-1)'2. Then (3.8) shows that  the final term above may be 

bounded by 

Such terms therefore contribute at  most 

co 
(~e(1 - -  ~)) ~ e 2k(1- t )  <~ ce(l  - -  ~)) ~ e x p  (2]~(1 --  RI'~)) ~< c~ 

k=o k=O 

to (4.10), and may therefore be ignored. 

We now define 
N oo 

I 
Let  1~(2) = r q(2, e)y~(~ + ice). Then 

m~o k-o _oot 2zr *at/~(2)d2 dt 

=R~ zcls ~ exp ( -2kR~ 's) eUtD~/~(2)d2 
m=O k~O 

N ~ [(Doe )1/2 
(4.11) 

This last equality holds by the Plancherel theorem for R 1. 
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To estimate (4.11), we note tha t  DN/~ m a y  be expressed as a sum of terms 

D~(p)DP(O.c-1)D~(~,~) where g + f l + 6 = N .  We employ the estimates (3.6), (3.7) and the 

hypotheses (4.6), as well as obvious estimates on I ~ functions, to show 

I D~(p) D~(O �9 c -x) D~(7~) I ~< c~ 121 -~ 121 ((~-1>:~)-~ e2k I/~ I -m-p 

when [:t[ > 1; for :t < 1, ~ = 0. Then 

[ p \112 N [ CoO "~1/2 
m=o ~=o 2kR~l~) e~k A n-l-2N dA 

( -  tjIJ ) 
/ /,oo \ 1/2 

 ~ " 

As N is an integer greater than n/2, this integral is finite, and the proof of the proposition 

complete. 

Section 5 

This section is devoted to the proof of 

THI~OREM 5.1. Let p(~) be an even, Weyl-group invariant /unction holomorphic in the 

region {~[I I m  ~ [ <  ~}, and satis/ying in this region the estimates 

ID~p(o+i~)l <e~.,(l+M)-~ for0<~<lV. 

Then p is a multiplier o/ Ls(G/K) /or 1 < s <  ~ .  

Remark. The first results of this kind were established for the group S 1 by  Marcinkiewicz 

[10]. The first results established for non-compact symmetric spaces G/K were those of 

Clerc and Stein [3], who considered the case of complex G. Several of the techniques 

employed below originated in [3]. 

Proo/ o/ Theorem 5.1. Let kl(g ) =~(g)y~(g), and k~(g) =~(g) (1 -yJ(g)). We shall show tha t  

IIk,~/ll, ~<~ll/ll, for 1 < s < ~  and i = 1 ,  2. We e x a ~ n e  first k~. In the pre~ous section, 
we showed tha t  k x behaves like the Euclidean inverse Fourier transform of p; we now 

relate convolution with k 1 to an Euclidean convolution. 

LEM~A 5.2. Let k be a compactly supported K bi-invariant /unction. I/convolution with 

D(t) k (exp trio) is a bounded operator on LS(R1), then convolution with k is a bounded operator 

on L~(G/K). 

Proo/. This result is due to Coifman and Weiss [4]. 

I t  therefore suffices to prove 
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LEMMA 5.3. There are/unctiOns k0(t ), co(t) suc~h that 

D(t)]r (exp trio) = ko(t) +eo(t), 

where co(t) is in/-~(R 1) and k o satisfies 

ID: f~  e-2~a~ Ico(x)dxl <<. c~(l + 'yl) -~ a = o , 1 .  (5.1) 

Therefore, k o satisfies the conditions of the Marcinbiewicz multiplier theorem, and convolution 
with D(t)]c 1 (exp the) is a bounded operator on LS(R1), 1 <s  < c~. 

Proof. We shall choose (I) as in the proof of Proposition 4.5. Then 

~(exp the) = ~p(exp the) fO(~) ~0a(exp tH0) p(2) ]c(2) 1-2 d2 

§ ~(exp tHe) f (1  - r ~(exp tHe) p(2) ]c(~)]-2 d2. 

The second term is bounded by y~. Y~lp(z)l I~(~)l-~d~<e~; ~ is bounded and compactly 

supported, and therefore in If(G/K); we may henceforth ignore the second term. To treat 

the first term, we note that  (I)0t)P0t) satisfies the hypotheses of Proposition 4.1; we choose 

and 

Then 

/ t n - 1  ~ 1/2 /~ 

co(t) = ~ (exp the) D(t) eo(t ). 

II ~0 I1,. ~, < f l  e0(t)I l D(t) l dt = II e0 I1~. o,,~. 
a 

To show that  k o satisfies (5.1), we shall consider separately the cases n odd and ~ even. 

When n is odd, we may write ~r = e(z-lDz) (n-1)13 (cos z). After ( n -  1)/2 integra- 

that  it  suffices to rove (n 1)/2 tions by parts, we see " " p (D~, l/X) - ((I)(~)T(~) [c(~)[ -2) satisfies (5.1), 

which follows immediately from the estimates (4.3) on l e(2) 1-2 and the hypotheses on p. 

When n is even, we may write 

and 

Yr = c(z -1D=) ("-2)/~ 3o(Z), 
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(see Watson [13], p. lS0). Let q(~t) = (Da" (1/2)) (n-~)/2 (r I c(~t) 1"3); then 

/C0(OXp ~Ho) = (~/)(exp ~Ho) [~u 1/3 $ fq(2)  o(a) 

1/2 
=cw(exptHo) [~] t fs in/~,  [ q(1)(#=-t2)-~mdJ.d/~ 

U -  I J Jo 

=c~v(exp trio)[D(')] Im f cos  d 

To establish (5.1) it  then suffices to show that  (d/d#) ~ q(2)(/~3 _j~2)-l/2d~ satisfies (5.1); 

this is again a straightforward computation. 

To complete the proof of Theorem 5.1, we must show that  II/c3,/ll. < .ll/ll. for 

1 < s < cr The appropriate substitute for Euclidean techniques is the following result of 

Clerc and Stein [3]. 

LV.MMA 5.4. Let /C be a K bi-invarian~ /unction in Lr(G/K /or all r satls/ying 

1<r<1+(~, where ~>0. Then II/c.lll,< ,ll/ll,/or x<s<~.  
To prove Theorem 5.1, we note that  Proposition 4.5 shows k3 to be in all L r with 

1 < r < 2 ;  an application of Lemma 5.4 completes the proof of the theorem. 

Section 6 

Multiplier theorems such as Theorem 5.1 find application in estimating the 12 

behavior of differential operators on G/K. Let oJ be the radial part of the Laplace- 

Beltrami operator on G/K; then co~a = -(23 +~2)~a. Define ma(2 ) = (~ +~2)-~m, and define 

a bi-invariant distribution k a on G/K by ~a=ma. If / is a good bi-invariant function, 

k2~eo/=o~(/c~/)= - f .  On K bi-invariant functions, the ]c a behave like fractional inte- 

gration kernels, /ca-)e- =(-~o) -~/e. From the results in sections 1-5, we should expect 

that  the local behavior of the /c a is the same as that  of fractional integration for the 

Laplacian on R"; we should also expect that  the global behavior of the/ca has no Eu. 

clidean analogue. We shall prove: 

THEOREM 6.1. Fix g>0 .  Then 

114-111, <  11111, (6.1) 

/or all / in I2(G/K) q and only q p = q  and 1 < p <  c~, or la<q and one o/the/ollowing condi- 
tions hold: 
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n 
1 

274 

Case (e), 0 < g < n 

-g 1 Fig. 1 

P 

(a) ~ > n  

(b) ~ = n  and q<oo  

(c) 0 < ~ < n  and one o/ the /ollowing holds 

(i) P >n/a 

(ii) l <p<n/a and 1/p-~/n<~l/q 

(iii) p = l  and 1 - a / n < l / q < l .  

Case (b), ~r = n 

1 
p 

Remarks. 1. Theorem 6.1 m a y  best be understood through reference to Figure 1. 

Open circles and open areas represent points (lip, I/q) for which (6.1) does not hold; 

hatched areas and straight lines represent points for which it  does. 

2. Set k==/=+g=, where/=(g)=k=(g)~(g). We shall first prove 

L~M~A 6.2. 

(I) g= is in I2 i/ and only i/ 1 <p ~ co. 

(II)  When =>n, /~ is in 12 when 1<<.p~r162 

( I I I )  When a=n, c1<~ ]/a(exp tHo)/logtl <c2, and/a is in 1_2 i /and only i/ l ~ < p < ~ .  

(IV) When 0 < ~ < n ,  Cl <~l/~(exptHo)/ta-n [ <~c 2 and /a is in 12 i/ and only i/ l~<p< 

nl(n-:O. 

Proo/. To prove (I), we note tha t  g~ EL 1 implies tha t  ~ is continuous on tho closure 

of e 1. But  (IV) shows t h a t / ~  EL1; therefore g~ EL 1 implies ~ is continuous on el, which is 

manifestly false. 

To establish the remainder of par t  (I), note tha t  m~ satisfies the hypotheses of 

Proposition 4.5, and therefore g~ is in 12 for 1 < p  <2.  I f  suffices to prove, then, tha t  g~ is 

in L% This follows immediately from Corollary 3.9 and n integrations by  parts. 
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Part  II is equally simple. When ~ > n ,  m~ is in Ll(a+, is therefore a 

bounded compactly supported function, which is in a l l / 2  classes. 

To establish the estimates of parts (III) and (IV), we apply Corollary 4:3 to the function 

~o(X)=(D(X)m~(X). Then f~=~yJ+bounded terms. As we wish to show that  k~ has a 

singularity near t =0,  we may ignore any bounded terms. Equation (4.5) then shows that  

the main singularity of 1~ near t = 0  comes from y For 

Ixl >2, the measure I (X)I behaves like X =-1, therefore 

/ (exp the) |,~(~-2>/~(),t) (X ~ + ~) -~/2  A~-I dX -- ,,o~'(~-~)/2 K(~_~)/2~t),"" 
3 

where Kg is a Bessel function of the third kind; the estimates (III)-(IV) for such functions 

are classical; see [1]. 

Proo] o/Theorem 6.1. The theorem follows from Lemma 6.2 and standard convolution 

arguments. When 1o =q, the positive results follow from Theorem 5.1. The k~ fail to be 

bounded on L 1 or L ~176 because the multipliers of L 1 or L ~ are functions continous on the 

closure of e 1. 

When 10 #q, we must have 10 <q; this is a necessary condition for any translation- 

invariant operator to be bounded f r o m / 2  to L q when the object G/K is noncompact (see 

ttSrmander [8]). 

When a > n, we see from parts I and I I  of Lemma 6.2 that  the k, are in I2  for 1 <10 <~ ~ .  

Therefore IIk */}10< IIk ll01l/lll and, dually, IIk ./ll -< ll/ll llk ll ,. An application of the 

Ricsz-Thorin interpolation theorem to these two results yields part (a) of the theorem. 

When a = n, k~ is in a l l / 2  classes but L ~, and all the above arguments are valid but 

for the estimate IIk=~lll~<ll/lllll~ll~. I t  is easy to see this is false, if we c h o o s e / t o  

be the ~ function (to be precise, we choose a sequence of L 1 functions which approximate 

the ~ function). 

When a < n, we use the decomposition k~ = f~ + g~. As 9~ is in all L v classes for 1 < p ~< co, 

the above arguments show that  {{g~/{l~<r whenever p<q;  the boundedness of 

k~ ~e - is therefore completely determined by that  of 1~ ~- - .  To analyze this operator, we 

not  that II/  111 < IIf ll ll/lll and IIf= /ll < II/ ll ll/ll '; we may apply the !~iesz-Thorin 

interpolation theorem to these estimates. When p =n/(n-~),  /~ is not in L v, but/~ ~ - is 

weakly bounded from L 1 to L v a n d / 2 '  to L~176 to this we may apply the Mareinkiewicz 

interpolation theorem. This yields the positive results of part (c) of the theorem. 

The negative results of part  (c) of the theorem are equally simple to prove. The 

estimates II/= /ll < ll/lI  and IIf  /ll < llfll . fail for p>~n/(n-a), as may be seen 
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by choosing / to be a ~-function. When p=~l or q~=oo, we may use the relationship 

/ca~k~=/ca+ p. For ]lk~/cp]]q~cllkpll~ to hold for some pair ID and q, and some ~ < n ,  all 

f l>n/p',  part (IV) of Lemma 6.2 shows that  ~, ID and q must be related; a computation 

exhibits this relationship as part  (e) (ii) of the theorem. This completes the proof of 

Theorem 6.1. 

The multipliers I~ ~ +~21 -~+~, corresponding to (-co) -~+u, also satisfy the hypotheses of 

Theorem 5.1, and presumably an analysis similar to that  of Theorem 6.1 may be per- 

formed. We may use these oparators to define first order invariant "pseudo-differential" 

operators, such as kBoeo, whereas the only invariant differential operators on G/K are 

polynomials in ~. I t  would be of interest to know whether the class of "pseudo-differential" 

operators defined on Cc~(G/K) through the spherical Fourier transform, co-ineides with 

the class of pseudo-differential operators on the manifold G/K, and, if so, what connection 

there is between the two different concepts of symbol. 
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