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1. Introduction

Suppose that f is a nonconstant entire function. Then a classical theorem of Iversen
[10] asserts that f(z) has oo as an asymptotic value. In other words there exists a path '

going from a finite point 2, to <o in the complex plane such that
f)—>o°, asz— oo alongT. (1.1)

Tt is natural to ask whether this result still holds if f has few poles in a suitable sense.
Suppose first that f is meromorphic, transcendental and has only a finite number of poles

in the open plane. Then
f(z) = F(z) + R(z),

where E(z) is the sum of the principal parts of f(z) at the poles and F(z) is an entire func-
tion which is also transcendental. Thus (1.1) holds for F(z) and so for f(z).
If we ask for stronger results than this, positive theorems become scanty without extra

hypotheses. The following theorem is due to Anderson & Clunie [1]

THEOREM A. Suppose that f(z) is meromorphic and such that
T(r,f)=0 (logr)? asr— oo, (1.2)

and further that o is deficient in the sense of Nevanlinna, t.e.(1)

1—8(c0) = Fm 2 ) 4

1.3
bm ey < (1.3)

Then = is an asymplotic value of f(2).

(*) We use the standard notation of Nevanlinna Theory. See e.g. [7, Chapter 1].
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More strongly Anderson & Clunie proved that under the hypotheses of Theorem A
(1.1) holds for almost all rays I' through the origin.

It is natural to ask whether the condition (1.2) can be weakened. Ter-Israelyan [14]
has given examples to show that the conclusion of Theorem A is false in general if we
assume merely that f(z) has order zero, instead of (1.2). Gol’dberg & Ostrovskii [5, p. 245]

give examples of functions of f(z), such that

N(r, °) = O(r") (1.4)
and
Tli_%lo ﬂ;—f) >0, (1.5)

where <k <4, and such that oo is not asymptotic.

2, Statement of results

In this paper we prove the following two theorems.

THEOREM 1. Given any function y(r), such that

p(r) >0, asr—>oo, (2.1)

there exists f(z) meromorphic and not constant in the plane, such that

T(r, f) <y(r) (log r)?, (2.2)
for oll sufficiently large r and
o(, ) =1, (2.3)

but such that o is not an asymploiic value of {(2).

Thus <o is deficient, even with deficiency one and f(z) only just exceeds the growth
prescribed by (1.2), but the conclusion of Theorem A fails. Theorem 1 sharpens the examples
of Ter-Israelyan [14] and shows that Theorem A is essentially best possible.

It turns out that the behaviour of the functions of Theorem 1 is essentially associated
with irregular growth. We can show that functions satisfying (1.4) and (1.5) where
k<inf (4, 1) do indeed have oo as an asymptotic value. More precisely we prove
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THEOREM 2. Suppose that f(z) is meromorphic and not constant in the plane and that
for some a in the closed plane
. ® N{t,a)dt
lim {T(r,f)— %71/2 tm) } + oo, (2.4)

=0
Then a is an asymptotic value of f(2).
CoROLLARY 1. Suppose that for some K < oo, we have

— T, f)ds
im St ), e

—K<oo. (2.5)

Then if 6(a, f)>1 - K1, a is an asymptotic value of f.

COROLLARY 2. If
. T@2rf
m ——~=1,
r>o0 17, )

then any deficient value of f is asymptotic. In particular the conclusion holds under the hypo-
thesis (1.2).

We shall see that under the hypothesis (1.2) a significantly weaker condition than

deficiency suffices to make a asymptotic.

CoROLLARY 3. If f has very regular(t) growth of order A, where 0 <A<}, and d(a, f) =
then o is asymptotic. If | has perfectly reqular(t) growth the conclusion holds for d(a, f)>2A.

COROLLARY 4. If for some A, such that 0 <A <1, we have

0< lim N—(:;—“)<(1—2/1)1i_m T(rL;f)goo,

r—=>00 r—>00
then a 1s asymptotic.

The corollaries are all almost immediate deductions of the main theorem. Collingwood
[4] and Nevanlinna [12, p. 259)] conjectured that deficient values might be asymptotic.
The first counterexample was given by H. Laurent-Schwarz [11]. However, Theorem 1,
Corollary 2, shows that the result is true for functions of order zero and smooth growth.
This result also contains Theorem A as a special case, except that the asymptotic path I’
need no longer be a ray in this case. An example of this will be given in Theorem 7. Corollary
4 gives a positive answer to problem (2.8) of [8]. The question was asked whether (1.4)
and (1.5) imply that oo is asymptotic if £<}, and Corollary 4 shows that this is so.

(1) These concepts are due to Valiron [15].
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3. Some examples

In order to prove Theorem 1, we shall construct meromorphic functions as products.

In order to discuss the factors we need the following simple

Lemwma 1. If k is an integer, k> 20 and

1+{2(z+1)/3}*
{1+ (2/3)} (z+ 1)’

Py(z)=
then
(i) P(0)=1,

(it) N(r,o0,Pp)< 2%)N(T,O,P,,), O<r<oo
(i) |P2)| <%, for|z+1]|=3.
The first result is obvious. Next we note that Py(z) has simple zeros where

———2(z; D_ jornmie -0, 71,F2,...

We write 0,=(2v +1)x/k, so that the zeros occur at

z,=3e%—1.
We note that
Izvl = |%+%(eio"—l)| <%+%!0v| <1

if |0,] <3, ie. if |2v+1| <k/(3%). The interval |z| <k/(3n) contains at least k/(37z)—1
distinet odd integers 2»-+1, i.e. at least k/20, for k>20. Thus n(r, 0)>k/20 for r>1.
Since n(r, 0) =0 for r <1, n(r, =) =1 for r =1, we deduce that for P(z)

n(t, o)< 2—]:)n(t,0), 0<t< oo,
On dividing by ¢ and integrating from ¢ =0 to r, we deduce (ii).

It remains to prove (iii). We note that for |2+1] =3, we have, since £ <20,

1+ (3 -9

P& TR @

<${1+ @<+ 1 =4

This proves (iii) and completes the proof of Lemma 1.
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We now choose sequences of positive numbers 7, and of positive integers k,, and g,

and set

P@)-TI Pk,(,f)q”‘ @3.1)

v=1

We shall see that if the above sequences are suitably defined the product P(z) converges
to a meromorphic function for which oo is a deficient but not an asymptotic value. We

divide the proof into a number of steps.

3.1 Subsidiary results

Let r, be positive numbers and g¢,, k, positive integers, for »>1, which satisfy the

following conditions

g =r=1, (3.2)
and for y>1
%ﬂ > 107, (3.3)
20 <k, < T2t [ (1og Toxt (3.4)
"= 320000 7, € ) '
100%, log (”—;—‘) < g;£< 200k, log (fri) (3.5)

In view of (3.3) the last term in (3.4) is greater than 30. We assume that g¢,, 7, and k,_,
have already been chosen. Then if r,,; is chosen to satisfy (3.3) a choice of k, is possible to
satisfy (3.4), and then a choice of g,, is clearly possible to satisfy (3.5). Thus g,, , and &,
can be chosen inductively to satisfy the above conditions. We shall show that in this case
the product P(z) has the required properties.

Before proceeding we need some inequalities.

Leuwma 2. If k,, q,, r, satisfy the above conditions then we have

@7 _100¢u17, g
AR bl g 3.6
E,, r, 99 r,, 99 (3-6)
and
7 q
k,q,1 g P 3.7
Z,, »q» log (,) <99 3.7)

In fact we deduce from (3.5) and (3.4) that

Gv+1 1 74 . 9r+1 1 ¢,
TR 2 e THL T
¢ 100 7’ M 5. 1007
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Thus
o0 ©
b Qu w1 100gu41 1 g
3 100yt = —— durt o~
v=§+1 Ty Tut1 y;§+1( ) 99 Tu+1 99 Ty

and this proves (3.6).

To prove (3.7) we write

8, =1log (7%) .

Then (3.5) shows that

1
kv QV6V<'E6QV+1'
Thus for ¥ <y we have
qk, _ 1
< (100)"# .
o A0 s e ) s 1)

Also §,> 2, in view of (3.3). Thus if
0= max 0,
r<sgpu—1

we have

u-1
0,0,11...0,_1 2247182 (u—v) =120, =log (r,/r.).

Since the k,,; are all greater than one we deduce that

vt
gk, _ (100)

q. log ('I‘M/T,) )

Thus

p—1
3 g,k log (rJr) < 3. (100y g, <L,
vep v=1 99
This proves (3.7) and completes the proof of Lemma 2.

We next need some more inequalities for P (z)

LeMma 3. We have
llog Pu(z)| <2|z|, if |2| <3} (3.8)
and

2\ k-1
(3) <|P@)|<|of, if |2]>6. (3.9)
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To prove the first inequality we write

1@+ @)+ 1) —1}

Pulz)= QO+ @ e+l
so that
Py—1= e -+ Efz_ 1 { 2 {(Hl)k_l}_z}
k 1+ @)) (z+1) (z41) |8+ 2% ‘

Suppose now that |z| =%. Then

o+1 7h:

|Pue) =1 <H{EH @+ D+ <z 5

+3=%-@F+i<L
since k> 20. Thus
o] oo
[log Py(2)| = |log {1+ (Py(z) — 1)} < %lpk(z)— 1< ;4’”:%

Hence in view of Schwarz’s Lemma we deduce (3.8).
Next if |z|> 6, we have

51z 7l:)
6 <[z+1|< 6 "
Thus
2 2|1z+1 gk+t gF+1nk-1 ) _ _ .
Pl <y () = e b B e =g el <l

This proves the right hand inequality in (3.9). Similarly

]sz)l )"]z+1|’c -1

1
+ (3 )"
>1(%)“ Blzl\*7_ 18]z}
4\3 6 4\ 9
_4_1_ 1—0 k-1 (M)k—l - M)k-l
4 \9 2 2] 7
since % >20. This completes the proof of (3.9) and of Lemma 3.

3.2 Properties of P(2)

We are now able to prove that P(z) satisfies the desired conditions. Because of its

generality we state our result as
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TurEoREM 3. Suppose that k,, q,, r, satisfy (3.2) to (3.5) for v=1. Then the product
P(z), given by (3.1), converges locally uniformly in the plane to a meromorphic function with

the following properties for u=1.

- 5 3.10
log | P(z)| < 30 o |z+7,] T (3.10)
log | P(z)|>20q,, tf |2|=6r,. (3.11)
1q.k, log ;’ < T(r, P) < 100k, g, log 71 if 61, <r<3r. (3.12)

u “

Further
8(c0,P)=1—20 hm (1), (3.13)
y=>00

In particular P(z) has no finite or infinite asymptotic values, but oo is a deficient value for P(z).

Suppose first that
[z] =7 <#r,4 (3.14)

Then for »>u we deduce from Lemma 3, (3.8) that

r4
g, log Py, (;)

Thus in view of (3.6) we deduce that if

a1 3

then the product @(z) converges uniformly from |z| <}r,,, to a regular function without

,
<2q,—.
qu

14

zeros which satisfies

o0
|log Q(z)| <2r > @<2ﬂ)w<§_ qur

. (3.15)
y=u+1 Ty 99 Tut1 99 L

Thus P(z) is meromorphic in the open plane,
Next suppose that

k,2k, v>=w,,
where k and v, are taken as fixed. Then in view of Lemma 1, (ii) we have

N(r, o0, P, )< 27:—) N(r,0,P,), »>%.
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Thus we have ag r— oo,

»

N(r, o0, P(z)) =Z (r, o0, Py)

g 20
<ZN(T00P)+ ZNrOPk)

y=1
gk? N(r,0,P(2))+ O(log r)
2100 (r, P)+ O(log 7).

Evidently P(z) has infinitely many poles and zeros so that

T(r,P)
— 2 —“.>0c0, asr-oo,
log r
We deduce that
li— N(T, OO,P) < _2_0_
— T(r,P) "k’
ie.
6(00,P)>1—2—ko.

123

If k,— o0, we may take k as large as we please and obtain (o, P)=1. Otherwise we

may take

1
k=lm %k, -
y>o k

so that £ is an integer and k> 21 in view of (3.4). Thus we again deduce (3.13). Thus (3.13)

holds in every case and since

1
2 —_—
6( oo s P) 21’
P(z) has o as a deficient value.
Suppose next that
]z + rﬂl = —’
so that
Lu <r< %‘
4 4

(3.16)
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Thus (3.14) and so (3.15) holds. Using Lemma 1 (iii) we deduce that

w )l

p—1 r
log IP(Z)l <§I#{10g i%+21_2}+ zlqv(kv —1) log;"

9, 2¢
log | P(z)| < g, log — 10799 + qulog

Using (3.9) and (3.16) we deduce

Also in view of (3.3) and (3.16)

7 e og T
IOg 7‘,,< log 7‘,,+1< IOIOg < p.
Thus (3.7) yields
11 ¢ q
—Dlog—< —— .2 14
2,0k =1) log "< 1599 90
We deduce that
q
log [ P(z)| <g,{log s+ +%} < —qul—ao—2}< — 56
This proves (3.10).
Next suppose that
6rﬂ <7’<%’rﬂ+1, (317)

Then (3.15) and (3.9) yield

i r 2 qur
> - ryj_=
log | P(z)] 2. a(k,—1) log (%) % 7,

r 2 r
> - —)-= 5
9 {(k“ 1) log (27‘,) 99 r#}

Setting r=6r,, we deduce

log | P(2)| = qﬂ{20 log 3— ;—;} >20q,,

which proves (3.11).

Since every path I" going to o meets both the circles |z| =6r, and |2+r,| =37, for

| =
large y, it follows from (3.10) and (3.11) that log | P(z)] is unbounded above an/c;. below on
T', so that P(z) cannot tend to any finite limit nor to o as z~>oc in I'. Thus P(z) has no

asymptotic values.
It remains to prove (3.12). We obtain first a lower bound for T(r, P). We note that

P(2) has q,k, zeros on the circle

lz+7,|=%r,
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Thus
5r,
n(r,0,P)>q,k,, r> 3"

2

r

N(r,0,P)>q,k, f —q.k, log =¥ >1q,k, log —,
¢ 5 7““

5r,i2 t
since (r/r,)>6>(3)%%. Further

T(r,P)> N(r,0,P)> }q,k, log ;

]

and this proves the left hand inequality in (3.12).
To obtain the right hand inequality, suppose that (3.17) holds. Then for v <u, Py (2/r,)

has no zeros in |z| <}r, and at most &, zeros altogether. Thus

T 9
N (r, 0, Pk(;)) < f k,(?= k, log ;—’

© ]
N(r,0,P@)< Z . g, log %1——— 21 k, q,,{log %‘ +log f_r}
»=1 v V= v u

Thus

In view of (3.7) we have

u
k,q, log X< 3£
b o <G
Using also (3.5) we deduce that
kuqu
< .
DAL 005"~ T0 005

Thus in the range (3.17) we have

N(r,0, P(z))< +k 2 2,(1+107%) log 2

Tu

<2k

uQu

log ;'u.
Next in view of (3.9) we have in the range (3.17)

z
P, (z)

>1, 1l<v<uy.
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()

Thus
<9 z &7 200r 2007 g1

2
v=u+l Ty 99 T+l

log

1 o0
- < — 'y
P(z)’ 2. —g¢log

v=p+l

in view of (3.8) and (3.6). Thus

r 200 r
T(r,P)y=N(r,0,P)+m(r,0,P)<2k,q, log - + 99 Gu+1 —
u wt

Also in view of (3.17), (3.3) and (3.5) we have

; 40k, 47
r(log (7, ) ,‘+1/{6 log (é‘;l)}< 7,11/{5 log (r,.1fr)}< < Pudulur1
143

“ q,u+ 1
Thus

4
T(r,P)< 2k”q”(1og ;’1) (1 + 0—30) < 100k, g, log ( )
. u Tu

This proves the right hand inequality of (3.12) if  lies in the range (3.17) and completes
the proof of Theorem 3.

3.3. Proof of Theorem 1

To prove Theorem 1, we show that we can choose the quantities k,, ¢, and 7, in
Theorem 3 so that k,— oo, with 4 and hence d(°, P)=1, while at the same time

T(r, P) <w(r) (logr)?, r=}rs,, (3.18)
where y(r) is any function satisfying (2.1). To do this we choose
ky, =21, k/‘=20,u, n=2,

and suppose that g, ,, 7, , have already been chosen for u>2. We then choose 7, s0 large
that (3.4) is satisfied, i.e.

1 > 20 000k,
r# 1 o8 (Tﬂ 1) .

and further such that
p(r) >5-10%3%, ,, r= %r,, (3.19)

This choice is possible in view of (2.1). We then define

[100]0,, qu-1 log —] (3.20)

,u 1
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where [x] denotes the integral part of x. Then

100k, _1¢,_1 log (Tﬁ) <, <200k,_19,_1log (_ﬁ‘_)’

n-1 Tu-1

so that (3.5) is satisfied. Thus (3.2) to (3.5) are all satisfied and so P(z) satisfies the con-
clusions of Theorem 3 with 6(co, P)=1. Further we have from (3.12)

T(r,P) <100k,q,logr, §r,<r<}r,.,. (3.21)

If »>6r, this follows immediately from (3.12). If

[=7} I:ﬁ

<r<br,
we deduce from (3.12) that
T(r, Py < T(6r,, P) <100k

19, log 6 <100k,q,log r,

since r=$r;>6. Thus (3.21) holds in this case also and so generally. Further we deduce

from (3.20), for §r,<r<}r,., u=>3,

100k, g, < 104 k% g, _, log (%‘)

=4.10%u%q,_; log (%‘)
<y(r) log r

in view of (3.19). Now (3.18) follows from (3.21) and the proof of Theorem 1 is complete.

3.4. Some further examples

We can use Theorem 3 to construct some other examples which will serve to illustrate

Theorem 2.

THEOREM 4. Given ¢>0 and 0 <A <1, there exists a meromorphic function P(z) having

very reqular growth of order A and no asympiotic values, while 6(oc, P)>1 —e¢.

Theorem 2, Corollary 3, shows that for A<} the conclusion is not possible with
d(oo, P)=1, nor if very regular growth is replaced by perfectly regular growth (see [15]).
We assume ¢ <1, and choose a positive integer k, such that

k,=lo>2—£, y=1,..., 0. (3.22)
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Thus if P(z) can be chosen in Theorem 3, so as to satisfy the other conditions of Theorems

3 and 4, we shall have

6(oo,P)>1——%>l—s.

Having chosen %, we define ¢ to be a large positive integer and set

qv — qv—l’ TV — av—l (3.23)

where a is given by
q=d. (3.24)

We check that (3.2) to (3.5) are satisfied. This is obvious for (3.2). Also (3.3) is equivalent to

qyi > 107, (3.25)
and (3.4) to
1/
M7 20000k, (3.26)
log ¢
Finally (3.5) is equivalent to
100k< 24 < 200k (3.27)
log ¢q

All these conditions are satisfied if ¢ is large enough. For we can then choose k to
satisfy (3.22) and (3.27) and since 4 <1, (3.26) is a consequence of (3.27) for large ¢. Also
(3.25) holds for large q.

We now deduce from Theorem 3, (3.12), that

]gq"‘l log 6 < T'(r,P) < 100kg"~ " log %, 6r.<r<¥r.

Since T'(r, P) increases with r, the right hand inequality is valid also for
%7‘,, sr< %'r,u+1

and the left hand inequality for 6r, <r<6r,,,. We deduce that
k u—2 u a
34 log 6 <T'(r, P) < 100kq" log ) TuST< i1,
ie.
171 <T(r,P)<cyr
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where ¢,, ¢, are constants depending on % and g. Thus

w— T(r,P)

. T, P)
¢ < lim < lim < ¢y,
7->00 r->00 'rl

so that P(z) has very regular growth of order A ([15]). This proves Theorem 4.

3.4.1. We have next

THEOREM 5. Given 0 <A<1, there exists P(z) having regular growth of order A and no
asymptotic values, while at the same time §(oo, P)=1.

We choose

(r— 1) (r—1)32
H b

& =q r=q

where ¢ is a sufficiently large positive integer. Then (3.2) and (3.3) are satisfied if ¢ is large
enough and also

Tyya[Ty > .

The conditions (3.5), (3.4) become

100z, 22 BT garoa  gg0g, 1) 08 G ”“lll)log g

and

20 000k, w < g@ b

and these are again compatible if ¢ is large enough. Further now k,~ o0 with » and so
8(o, P)=1 in Theorem 3. It remains to prove only that P(z) has regular growth of order A.
In fact we have from (3.12)

log T'(r, P) = (u—1)2log g +O(u), r,<r<r

u HH
= 1 log r+0 (log r)*2.

Thus
log T'(r, P)
log »

~>A, asr—oo,
so that P(z) has regular growth of order 4 ([15]). This proves Theorem 5.

4. Functions of slowly increasing growth

In this section we provide an example to show that under the hypotheses of Theorem
2, Corollary 2, unlike those of Theorem A, there need not be radial asymptotic values.

9 — 782901 Acta mathematica 141. Imprimé le 1 Septembre 1978
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We consider entire functions f(z) such that

Ler.) -1, asr—oo, (4.1)

T,/
We provide first the following characterization.

THEOREM 6. If f(z) vs an entire function then f(z) satisfies (4.1) if and only if f(z) has

genus zero and further for some finite @ and hence for every a, we have
n(r, a) =o{N(r,a)} asr—> oo, (4.2)

Suppose first that (4.1) holds. Then it follows from a classical result of Nevanlinna

{12, p. 264] that for all @ outside a set of capacity zero we have
N(r,a)~ T(r,f) asr—> oo, (4.3)

We fix a value of a satisfying (4.3) and such that f(0)==a. Then we deduce from (4.1) and
(4.3) that
N(2r,a)

Ny L (4.4)

Thus

2r
n(r,a) log 2< f M = N(2r,a)— N(r,a)=0o{N(r,a)},

which yields (4.2). We deduce that for r, >r; >1y(e, @) we have

N{ry,a) " nir,a) dr Ty
1 = —— —< ¢ log =
o8 N(r,a) [, N{r,a) r £l08 7y

ie.

N(ry,a) < N(ry,a) (;g) . (4.5)
1
Thus in particular we deduce, combining (4.3) and (4.5) that
T(ry, f) = O(r5) as ry—> o,

so that f has order and so genus zero. Thus the conditions of Theorem 6 are necessary.
We next prove that the conditions are sufficient. Suppose then that f satisfies (4.2)

for some value ¢. We may without loss of generality suppose that @ =0, since otherwise
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we consider f(z) —a instead of f(z). This will not affect (4.1) nor the genus of f. We also write

n(r) instead of n(r, 0). Then since f(z) has genus zero

fe)=ae T1 (1 + z) (46)

where z, are the zeros of f(z). If there are only a finite number of zeros then f(z) is a poly-

nomial and so (4.1) holds trivially. Otherwise

T f)
log r

and so if fy(z) =f(2)/(az?), we deduce that
T(r, ) =T(r, fo) + O (og r) ~ T(r, fo)-
Thus we may suppose that e =1 and p=0 in (4.6). We write

A(r) = inf log |f(z)|, B(r)=sup |log ).

[2]=7r |2l=r

and use a technique due to Barry [2]. We have

We proceed to estimate

[[Bo-am®<3 [Ty Hleld

—tr,| ¢

We consider separately the ranges r,<4r, and r,>4r and denote the corresponding sums

by >, >, respectively. Then in >, we have(l)
I 1 1+
- 0 8 1—x

" loe |LFH| 2 _ ® log |1 8| dr
r & 1_t/7'v h 8
7Z
1< E n(2r) =o{N(r)},

dx
x

=T
7 0 1—t/r, 2"

Thus

(*) See Barry [2].
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since (4.2) and hence (4.4) holds with a =0. Also in 3, we have

1+itfr, t . 1 _§i
log (l_t/n)<2n(1+(%) + 3?2+ 3y
Thus
2r 1+t/1‘,, dt 8 [ 8r ’
J e (200) <5 [ i
Thus

Sa<8r > l=31‘J‘m%aln(t)

ro>4r Ty 4r

a0

= —§n(4r)+ 3rf n(r)gg

4r
o0
o {rﬁ N(ttz) dt}
in view of (4.2). Using also (4.5) with &=}, we deduce that

Sa=o {rN(r) [ (j)/?} o {N ()}

On combining this with (4.7) we deduce that

2 dr
f {B(r)—A(r)}7=o{N(r)}, as r— oo, (4.8)
Evidently
A(r) < N(r) < T(r) < B(r).

Hence (4.8) shows that for all sufficiently large u, there exists r,, such that 2#<r, <2+*},
and
A(r,) = B(r,)—eN(r,) > (1 —&) N(r,). (4.9)

Thus for any finite a, we have for u>pu(a), 4(r,)>1+ |#| and so
m(ry, @) =0, N(r, a)=T(r,)+01), N(r,)=T(r,)+0(1). (4.10)
Also for r, <r<r7,,;, we deduce that

N(r,) < N(r) < N(ry,,) < N(4r,) ~ N(r,).
N(r) < T(r) < N(r.,) +0(1) ~ N(r).
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Thus
T(r)~ N(r)

a8 r—> o0, 50 that (4.4) with a =0 leads to (4.1). Again (4.10) yields for any fixed a, r, <7 <7,
T(r,)+0(1) < N(r,, @) < N(r,a) < T(r) +-O(1) < T'(4r,) +0(1),
and in view of (4.1), we deduce that
N(r,a)~T(r) asr— oo,

Thus (4.4) holds for every a and so does (4.2). This completes the proof of Theorem 6. For
future reference we also note that (4.9) leads to

(1—¢&)B(r) <(1+o(1))N(r), asr—->oo
ie.
B(r)~ N{r)~ T(r) asr—>oo. (4.11)

4.1.

We can now construct our desired example.

THEOREM 7. There exists an entire function f(z) satisfying the hypotheses of Theorem 6,
but such that
fim |f(z+ re”)| =0 (4.12)
r—>0

for every fixed complex z, and real 6. Thus f(z) cannot have any radial asymptotic values.
We consider the sequence of rationals
L shsd i
and denote the rth member of this sequence by 8,. We set
z, =1,  y=12 .. (4.13)

where the positive numbers r, and positive integers p, are to be determined as follows. We

as_sume
4 2 4 4
1 s 111+1>‘7w ( 1 )

and then define p, inductively by p,=1,

Pp,1logr,

where [x] denotes the integral part of .
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We now define f(z) to be the entire function of genus zero with zeros of multiplicity
p, at z=z,, and such that f(0)=1. Then

r,>2% log r,>2"log 2,
so that

Pr o asv— oo, (4.16)
Pr-1
Thus

v

n(r,,0)= > p,~p,, as¥r-—>oo

u=1
and so we have for r,<r<r,,

n(r7 0) ~ Py,
and

,
>4p, 1 logr
Tyl

4 r
N(r,0)= 2, p,log —Zplog
u=1

¥

in view of (4.14). Thus (4.14) shows that

n(r,0)=0 {
so that

satisfy the hypotheses of Theorem 6, with a =0 in (4.2).
We suppose that 0<60 <27z in (4.12) and note that for any positive integer ¢, we can
find 6, =p/q, such that

|27, — 0] < z
q
Also vy <I+1+2+ ... +(g—1)<g?, so that ¢>»¥/2. Thus

T
'1’112’

1276, — 0} <

for infinitely many ». We set z, =z,4-7,¢%, and deduce that

5= 5 <ol 1 [0 e < Tt [

for some arbitrarily large ».



ON IVERSEN’S THEOREM FOR MEROMORPHIC FUNCTIONS WITH FEW POLES 135
We now note that in |z —z,| <r,, we have, in view of (4.11),

log |{(z)] < B(2r,) < (1+0(1)) N(2r,) <{1+0(1)} N(r,)

p—-1
=(L+0(1)) 3 pulog > < (2-0(1) 3 pulog r,<3p, 1 log 7,
n=1 T a1
when » is large. Thus by Schwarz’s lemma we deduce

log |/(z3)| < 3p,-1 log 7, + p, log {lz_r:z“l}

< 3p,_1 log ?‘,~% log v

< —{}+o(1)}p,_1 log r, (log »)'*

in view of (4.15). This inequality holds for a sequence of points z, =z,+r,e* which tend
to oo, and this completes the proof of (4.12). In particular f(2) cannot tend to oo along any
ray I'. In view of (4.9) f(z) cannot be bounded on I' and so f(z) has no radial asymptotic
values. This completes the proof of Theorem 7. By allowing 7, to tend to oo sufficiently
rapidly, we can in addition satisfy (2.2).

5. Proof of Theorem 2; a topological lemma

We shall deduce Theorem 2 from the following result which is essentially topological.

LEMMA 4. Suppose that f(z) is a meromorphic funciton not having o as an asymptotic
value. Then f(z) is bounded either on a path I' going to oo, or on the union of a sequence I'y
of analytic Jordan curves which surround the origin and whose distance from the origin tends
to oo with N.

Let z, be the branchpoints of f(z), i.e. the points where f'(z)=0. We assume that
| f(z.)| is never equal to a positive integer. If this condition is not satisfied we consider
af(z) instead of f(z) where a is a positive number unequal to the numbers m/|f(z,)| where
m, n are positive integers. Let n be a positive integer. It follows from our assumption that
the set |f(z)| =n consists either of disjoint closed analytic Jordan curves or of Jordan arcs
going from oo to oo. If there are any such arcs Lemma 4 is proved. Thus we may assume
that the set |f(z)| =7 consists entirely of closed analytic Jordan curves g,(n).

Consider next the open set |f(z)| >n. We distinguish two cases. Suppose first that this
set contains an unbounded component G, for every n. Then G, is unique, since G, clearly

lies exterior to all the closed curves g,(n). If @, were another unbounded component of
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[f| >n and z,, 2z, were points of G,, G, respectively we could join z,, 2, by a path not
meeting any of the g,(n) and on such a path |f(z)| >n, which contradicts the assumption
that z,, 2, lie in separate components of |f(z)| >n». Thus @, is unique. Evidently G, ;< G-
Let z, be a point of @, such that |z,| >n, |{(z,)| >n. Then z,,,€G,,, < G,, so that we can
join z, to z,,, by a path y, in @,. Let R be a fixed number such that f(z) has no poles on

|z| = R and choose 7, so large that

ne>R and n,>max |f(z).
{z2|=R

Then, for #>mn,, p, contains z, where |z,| >R and y, cannot meet |z| = E. Thus y, lies

outside |z| =R for n>mn, so that y, goes to oo with n. Thus

Cs

= Vn

n=1

is a path from z; to oo, and |f(z)| >n on y,, so that f(z)—> o as 2~ oo along I'.

This contradicts our assumption that oo is not an asymptotic value of f(z) and so this
case cannot occur. Thus, for some fixed 7, every component G, of the set |f(z)| >n is
bounded.

We may assume that f(z) has infinitely many poles, since otherwise the hypotheses of
Lemma 4 imply that f(z) is rational, and finite at co, in which case the conclusion is trivial.
Since each component @, is bounded and each pole lies in one of these G, there must be
infinitely many components @,. The outer boundary g, of @, will go to oo as y— oo for
fixed n. If g, surrounds the origin for infinitely many v, we have established the conclusion
of Lemma 4. Thus we may assume that for » >y, g, does not surround the origin. Choose
R, so large that the disk |z| <R, contains g, for »<#,. Then for R> R, the circle |2| =R
cannot lie in any @, since otherwise the outer boundary g, of @, would be a curve surroun-
ding the origin. We also assume that |z| = R does not touch any of the g,.

Let G,, y=v, to », be those components which meet |z] =R. By our construction
¥, >%,, so that the origin lies outside each g, for »>», and so outside the corresponding
components G,. If E is the union of |z| = R and the closures of the G, for ¥, <v <v,, then K
is a compact connected set and so the domains complementary to E are simply connected.
Let D, be that component of the complement of £ which contains the origin. By construc-
tion the boundary yy of D, is a sectionally analytic Jordan curve on which [f(z)| <n. For
v& consists of arcs of g, and of arcs of |z] =R on which |f(z)| <n.

Clearly v surrounds the origin, since any path I going from 0 to o must meet |z| = R

and so goes outside D,. Thus I' meets ;. Also, for any positive integer M we may choose
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R so large that @, lies in |z| <R for =1 to M. Then », > M and so yy, is far away from the
origin if R is large. Taking I'y =y, where Ry~ oo, we obtain a sequence of Jordan curves

with the properties required by Lemma 4 and the proof of that Lemma is complete.

5.1. An example for Lemma 4

It is clear that if f(z) is bounded on a sequence of curves I'y as in Lemma 4, then f(2)
cannot have o as an asymptotic value since any path going to c© must meet the I', for
all large N. On the other hand f may very well be bounded on one path and go to o on
another, so that the first condition of Lemma 4 does not by itself preclude oo from being
an asymptotic value. This makes it natural to ask whether the first condition can be

omitted from Lemma 4. The following example shows that this is not possible in general.

Example. Let
o= 3 {4 cos (e tim)} .

n=1

Then f(z) does not have o as an asymptotic value, but f(z) is not bounded on the union
of any sequence I'y of curves satisfying the conditions of Lemma 4.
We note that if |y|>2, then

1 |cos (x+iy)| = HeM —e ) > 3.

Thus the series for f(z) converges locally uniformly, and f(z) is meromorphic in the plane.
Also if z==+14y, where |y —4n| >2 for every n, we have

|f2)] < % (=2

In particular this inequality holds for y <2, and for y =4v —2, »=1 to 0. Thus if |f(z)| >2
on a path [’ going to oo, we must have 4y —2 <y <4y +2 on I for some fixed y>1. Thus '
must meet the lines z=mn for some arbitrarily large positive or negative integers m.

If z=mn +1iy, where 4v —2 <y <4y +2, we have

|cos (z—4iv)| = cosh (y—4v) =1, |}cos(z—4in)|>$3 n=E».
Thus

|[f2)|< 2+ 721 (3)"=2"+2.

Hence f(z) cannot tend to oo as z—cc on I", and o is not an asymptotic value of f(z).



138 ' W. K. HAYMAN

Suppose now that 'y is a Jordan curve surrounding the origin, whose distance from

the origin is at least 4N. Then I'y must meet the line y =4N. On this line we have

|4 cos (z—4iN)| <%, |%(cosz—4in)| >3, n=+N.
Thus
[fz)| =2 — > |} cos (z—4din)| "> 2V —2.
nEN

Thus
sup |f(z)| > 2" -2,
zel'y
and so f(z) is unbounded on U Ty,
Our example shows that there exist functions f(2) satisfying only the first condition,

but not the second condition of Lemma 4.

5.2, Quantitative consequences of Lemma 4

In order to prove Theorem 2 we shall show that the conclusion of Lemma 4 is not
compatible with (2.4) when a =oco. We first need an inequality for the Green’s function

of a simply connected domain.

LeEMMA 5. Suppose that D is a simply connected domain containing the origin and let
d be the distance from the origin to the complement of D. Then if ¢(0, w) is the Green’s function

of D at the origin, we have for w in D

log” 1< 010,) < || )
where
A(t) =log t1+2’ t<1
Aty =212 =1,

The first inequality is obvious, since D contains the disk |w|<d and g(0, w)>0 for
|w| >d. To prove the second inequality suppose that &=g(w) maps D onto [£|<1, so
that ¢(0)=0. Then

9(0, w) =log

o)
‘P(—w) .
Let

w=yp)=a,5+0a,82+ ...
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be the inverse function to £ =g(w), so that p(£) is univalent in |§| <1. It then follows from
classical results, [6, pp. 3 and 4] that |a;| <4d and

joullel _ da| 4
(1 &l ™ T~ [~ (log 1/[E)*

lw| <

Thus

1/2
1\:g(o,w)<z(i) S el |w|=d.

!
%8 le [w],

If |w| <d, we may assume |&| <e~?, since otherwise Lemma 5 is trivial. Then

a1|5 < 4‘”5'

lu)l< (1_672)2 == (1_672)2

<e*d|&|.

Thus
1

log £

l=g(0,w)<2+log ﬁi‘

This proves Lemma 5.

We shall deduce Theorem 2 from the following more precise result.

THEOREM 8. Suppose that f(z) is meromorphic in the closure D of a simply connected
domain D containing the origin, and that |f(z)| <M < oo, on the finite boundary T'y of D. Let
d be the distance from the origin to Ty, which is assumed not to be empty. Then either

© n(t, o) dt
t3/2 ’

1Miﬁ<bgdﬂ+”+dmf (6.1)

d

where n(r, o) is the number of poles of f(z) in {|z] <r}N.D or D ts unbounded and (1.1)

holds for some path tending to o in D.

We assume without loss of generality that the right hand side of (5.1) is finite, since

otherwise there is nothing to prove. Thus if b, are the poles of f(z) in D we have

® 1 1/2
L tmdn(t,oo)= > b < oo

16,1>d

Using Lemma 5 we deduce that
9(z) =2 g(2,b,)

v

converges uniformly in any bounded subset of D to a function which is harmonic in D,
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except at the points b, and vanishes continuously on the finite boundary of D. Let a,(p)
be the zeros of f(z) —¢'? in |z| <d and set

9o(2) = 2. 9(2, ,(®)).
»w

We define
up(z) = log | f(2) — €| +g,(2) — g(z) — log (M +1). (5.2)

Then u,(z) is subharmonic in D and u,(z) <0 on I'y. We now distinguish two cases. Suppose

first that f(0)==o0, and
u,(2) <0, 0<@<2m =2€D. (5.3)

In view of Lemma 5 this leads to

log |#(0)— €|+ 3 log+|aﬁ)—|—g(0)<1og (M +1),

i.e.
log |{(0) — €| + N(d, €') < g(0) +log (M +1).

We integrate the left hand side with respect to ¢ and use an identity of Cartan (see e.g. [7],

Theorem 1.3, p. 8). This yields
T, f) <g(0)+log (M +1).

Next it follows from Lemma 5 that

1/2

d
go)< > {log b

Io,l<d v

d 00 1/2
=f (logc—l+ 2) dn(r,00)+f 2(§) : dn(r, oo)
0 r a \7

_J’d "(ram)d"_*_dl/sz n(r,oo)dr.

o r d ,’.3/2

b,

+2}+2 >

1,1>d

Thus
© n(r

oo)d

5
,,.3/ 2

T(d,]‘)=m(d,f)-|—N(d,f<N(d,f)+d1’2f r+log (M +1).

d

which is (5.1).

If we write
N, oo [ 2R,
0 t
we may write (5.1) in the equivalent form
o0
d
T(d,f)< }d* fd W—f;’;’«)—” +log (M +1), (5.4)

after an integration by parts.
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We suppose next that (5.3) is false. Since u,(z) is subharmonic in D, D must be un-
bounded in this case. We choose ¢, such that (5.2) is false for some z in D and set

v(z) = max (u,(2), 0), 2€D
v(z) =0, z2¢D.

Then »(2) is subharmonic in the whole plane and not constant, and now we deduce from a
theorem of Talpur [13], that there exists a path T, going to oo, such that

v(z)—~+°°, asz—>oco alongl.

Since v(z)=0 outside D, I" must lie in D from a certain point onward, so that we may
assume that I' lies entirely in D. Thus

Up(z) >+ o0, asz—>o onl.
We recall the definition (5.2) and note that g(z) >0 in 0 and

g(2) >0 asz—>co in D.
Thus we deduce that
log |f(z) —€'?| > + oo, asz-—>oo alongT,
and this yields (1.1).
It is worth noting that in this situation we can actually prove rather more. Since v(2)

is bounded on a connected unbounded set it follows from [3, Theorem 3], that

v(l2])
v(|2[)

- 0

as z2— oo along some path I', where y(t) is any positive increasing function of ¢, for £ >,
which is such that

F ynd_ (5.5)

373
6w U

Also since v(z) has bounded minimum on circles |z| =r, it follows from a result of Heins [9],
that the limit
T(r,v)

7‘1/2

lim

=00

exists and is positive, where

1 271
T(r,v)= Py j v(re®)dh.

0
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From this we deduce that if f(z) is meromorphic in the plane, f must have at least order },
mean type. We can sum up by saying that if (5.1) is false then log* f must grow at least
like |2|%2 in an average sense and at least like y(|z|) along a path in D, where y(t) is any
function satisfying (5.5).

We have proved Theorem 8 with the hypothesis that f(0)=Foc. If f(0)=oc, we apply
Theorem 8 to f(z,+2), where z, is small. If for some z, (5.1) fails to hold we again deduce

(1.1). Otherwise we allow z, to tend to zero and then we deduce (5.1) for f(z).

5.3. Completion of proof of Theorem 2

Suppose now that f(z) is meromorphic in the plane and does not have oo as an asymp-
totic value. Then it follows from Lemma 4, that |f(z)] <M on a path I' going to oo or on
the union of a sequence I',, of Jordan curves surrounding the origin. Suppose e.g. the former
holds and that the path goes from z, to oo. Then for d > |z,| the path meets |z| —d. Hence
there exists an arc of this path joining a point z; =d €’ to o and lying otherwise in |z| >d.
Thus we may apply Theorem 8 and in particular (5.1) or equivalently (5.4) with any
d> |2y, which contradicts (2.4).

Similarly if [f(z)] <M on the sequence I', of Jordan curves surrounding the origin,
we obtain (5.4) with d=d,, where d, is the distance from I', to the origin and this again
contradicts (2.4). Thus f(z) must have o as an asymptotic value and Theorem 2 is proved

when g = co. If @ is finite we apply the above argument with (f(z) —a)~! instead of f(2).

5.4. Proof of the corollaries of Theorem 2

We proceed to prove the corollaries of Theorem 2. Suppose then that (2.5) holds and
that § =d(a, f)>1—K-. Then we have as oo

N, a) <(1-=358+o(1) T, f),

12 © Nt a)d 1/2 © Tt f)d
), TR 0oy [T TR < k) o 7t

in view of (2.5). Since K(1--48)<1 and T'(r, f)~ o with r, we deduce (2.4). This proves
Corollary 1.

To prove Corollary 2, it is enough to show that under the hypothesis of Corollary 2,
we have (2.5) with K =1. We recall from section 4 that (4.1) implies (4.3) and (4.5) for some

finite @ and every positive e. Thus, writing 7(r)=T'(r, f), we have

T(t)<(1+£)T(r)(§)£, 37> ro(e).
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This yields for r>ry(e)
f T(t)dt _ 1—|—£ r)f _(1+&)T(r)

t‘3/2 t3l2 & % 8) 7.1/2

Thus

i dt 1+e
,fizTr) Pﬂ S1o%e

Since ¢ is any positive number we obtain (2.5) with K <1, and we deduce from Corollary
1 that any deficient value is asymptotic.
If f(z) satisfies (1.2) i.e.
= IO _
roo (log r)?
we deduce that
1 " n(t, n(t, o) dt

< —
nir,a) < log r ¢

< (44 + o(1)) log .
Thus if f(z) is transcendental, we deduce that for every a with at most one exception

N(r,a)
log r

—>OO,

and so
n(r,a)

N(r,a)

-0, asfr-—>co,

Thus in view of Theorem 6, f(z) satisfies (4¢.1) and so every deficient value is asymptotic.

However the condition (2.4) yields more than this. We have

© N{t,a
Tf % f (t3/2)

r

=mmm—ﬂmfw9@£%£@£&@+mh

=

" n(t,a)dt
=m(r,a)-—-r'/? J n( t%z)
r

+0(1)
=m(r,a)— (44 + o(1)) r'? fw log tdt

3/2
.t

=m(r,a)— (84 +o(1)) log r.
Thus the condition (2.4) is satisfied in this case as soon as

lim ™)
r>o 10T

>84
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If o is deficient we deduce that

 mir,a)
i )

>0,

so that

m(r’a)=m(”',a).T(r’f)_>oo as r— oo,

logr T(r,f) logr ?

We have thus proved Corollary 2 in a somewhat stronger form.
We next prove Corollary 3. We recall (c.f. [15]) that f(z) has very regular growth of

order 4 if there exist positive constants c,, ¢, such that
eyt < T(r) <cyr?

for all sufficiently large r, where T'(r)=T(r, f). This implies

f‘” UL F dt _ 2 .

{372 , 274 (1-22)
Thus
2;5) fw Tt(:’Ldt< cl(li% o~ %
Hence in view of Corollary 1, ¢ is asymptotic if
a(l=22)

da,f)>1—-K1=1-
Ca
In particular the conclusion holds if §(a, f) =1.
The example of Theorem 4 shows that we cannot in this corollary replace d(a, f) =1
by d(a, f) >1—e¢, for £ independent of ¢,, ¢,. If f has perfectly regular growth [15], we may

choose the ratio c,/c, as near one as we please. In this case the conclusion holds as soon as
d(a, f) >1—(1—-24) =24.

I do not know whether this conclusion is sharp, or whether all deficient values are neces-
sarily asymptotic for this class of functions.

It remains to prove Corollary 4. We suppose that

(1—24) lim

r—>00

¢y, lim = €y,
r>o T

T(r.f)_ = N(ra)
=
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where 0 <¢,<<¢; < o°. Then

e [P NG a)dt 0
%rﬂf _—(ts,z) <r”2(§?+o(1))J~ t* 3’2dt={1f221+o(1)}1"1

7 r

< {°—2+ 0(1)} T(r,f), asr—oco.
1

Since ¢,/c, <1, we deduce that (2.4) holds and so Corollary 4 follows from Theorem 1.
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