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Introduction 

The purpose of this paper is to present an algorithm for solving the inverse Sturm-  

Liouville problem on a finite interval. The main idea is to reduce the problem to a system 

of finitely many ordinary nonlinear differential equations. 

The inverse Sturm-Liouville problem is primarily a model problem. Typically, in aa 

inverse eigenvalue problem, one measures the frequencies of a vibrating system, and tries 

to infer some physical properties of the system. Because of the difficulties in obtaining 

the higher eigenvalues in practice, only a finite amount of data will in general be available. 

On the other hand, one might have an a priori guess for the solution. The question is 

therefore whether the model, i.e., the initial guess, is compatible with the data, and, if 

this is not the case, how it should be modified. The results, which we will derive, are well 

suited to answer this kind of question. 

There arc at least four different versions of the inverse Sturm-Liouville problem. 

The best known is the one studied by Gel'land and Levitan [6], in which the potential 

and the boundary conditions are uniquely determined by the spectral function. This ease 

has also been investigated by Mar~enko [17], Krein [13] and ~ikov [22]. In the second 

version, the potential and the boundary conditions are uniquely determined by two 

spectra. This case can be reduced to the previous one as shown by Mar~enko [17], Levitan 

[15], Gasymov and Levitan [5] and ~ikov [22]. In the third version, the potential is uniquely 

determined by the boundary conditions and two-possible reduced-spectra. This ease has 

been studied by Borg [3], Levinson [14] and Hochstadt [8]. The fact, that  the boundary 

conditions are known implies that  the lowest eigenvalue in one of the spectra is super- 

fluous. Finally, Borg [3], Levinson [14], and Hochstadt [8] have shown that  if the boundary 
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conditions and one-possible reduced-spectrum are given, then the potential is uniquely 

determined, provided it is an even function around the middle of the interval. 

In  this paper we will present a constructive method for the last case. However, some 

of the results can be extended to the other versions as well. The basic result is an extension 

of a formula due to Hochstadt  [8] for the difference of two potentials and our proof rests 

on the technique developed by Hochstadt  [8]. This formula leads directly to several unique- 

ness theorems due to Borg [3], Levinson [14], Hochstadt  [8] and Hald [7], as well as a new 

weIl-posedness result. Hochstadt  [9] has pointed out tha t  his formula leads to an algorithm 

for solving the inverse Sturm-Liouville problem. The trick is to reduce the problem to 

solving a system of ordinary differential equations. However, the original suggestion 

contains an oversight and in this paper we will prove that  a modified version of Hoehstadt 's  

algorithm will always provide a solution of the inverse Sturm-Liouville problem. The 

algorithm can therefore be used instead of the Gel ' fand-Levitan technique for this par- 

ticular kind of problem. 

Finally, w e  consider the dualism between the lowest eigenvalue and the boundary 

conditions. This investigation shows very clearly why the lowest eigenvalue cannot be 

prescribed if the boundary conditions are given and of mixed type. In  addition it leads to 

a natural generalization of Borg's original formulation of the inverse Sturm-Liouville 

problem and provides a link between the four versions mentioned above. 

1. The difference of two potentials 

In  this section we will consider two Sturm-Liouville problems with different potentials 

and different boundary conditions. We will assume tha t  the potentials are even functions 

around the middle of the interval. The main result is that  if the sum of the absolute value 

of the differences of the eigenvalues of the two Sturm-Liouville problems is finite, then 

the potentials differ by a continuous function. 

T H E 0 R E M 1. Consider the eigenvalue problems 

- u "  +q(x )u  =) ,u  

hu(O) - u'(O) = O, hu(z:) + u'(z~) = 0 

- u  " +~(x)u =~u 

hu(O)-u'(o)  = o, hu(=) + u'(=) = o, 

(1.1) 

(1.2) 

where q and ~ are integrable on [0, ~] and satis/y  the symmetry  conditions q ( x ) = q ( z t - x )  
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and ~(x)=~(~-x)  almost everywhere in the interval 0 <.x <~. Let t ,  and 2, be the ei~envalues 

of (1.1) and (1.2). Let ~j and ~j be the solution~ o/ 

u"+(1-~)u = 0  (1.3) 

u(0) = 1, u'(0) = ~ (1.4) 

v(~) = 1, v'(~) = - 6  (1.5) 

with 1 = t , .  Define the/unctions # by 

#,=2. oy(1,) (L6) 

Here k,/m '(2,) = 1/ S ~ up dx where k, = ( - 1)' and u,(x) are the eigen/unctions o[ (1.1) normalized 

such that u,(O) = 1.11 2 ,  I1 , - i , I  < ~ the,~ 

h -  ~ = �89 5 ~,(0) (1.7) 
1 

q-  ~= ~ (#,u,)' a.e. (1.8) 

Remark. This result is a generalization of a theorem due to Hoehstadt [8], who assumes 

that h = h and that  only a finite number of the eigenvalues l j  and 2j are different. In this 

case eq. (1.7) is trivially satisfied, and the summation in eq. (1.8) is only over those j for 

which tj=4=2j. Our extension seems quite innocent, but is crucial in order to prove that  

the algorithm presented in Section 4 has a solution and that  this solution is unique. The 

case h = h = ~ ,  which should be interpreted as Dirichlet boundary conditions, has been 

discussed by Hochstadt [8]. The extension to infinite many eigenvalues is straightforward. 

The proof below is based on three ingredients. The first is the Cauchy integral technique 

for deriving the Sturm-Liouville expansion of an integrable function. The basic idea goes 

back to Poincard, but  the implementation is due to Kneser, Birkhoff and Tamarkin among 

others. For an elementary presentation see Titchmarsh [21]. The second ingredient is a 

very clever device by Levinson [14], who modifies the Cauchy integral technique by re- 

placing one entire function by another which has the same asymptotic expansion. Levin- 

son's proof is based on Titchmarsh's presentation, and so is ours. The final ingredient is 

closely related to Hochstadt 's approach [8]. In  his proof, Hochstadt introduces two Hilbert 

spaces each spanned by those eigenfunctions of (1.1) and (1.2) for which 1,=2, .  I t  is then 

natural to consider the mapping T which takes the eigenfunctions of one Sturm-Liouville 

problem onto the eigenfunctions of the other. Hochstadt finds an explicit representation 

of this mapping and his result follows directly from this representation. 
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Proo/. Let u(x, '1) and v(x, '1) be the solutions of eq. (1.3) with initial conditions (1.4) 

and (1.5), where ~ and ~ are replaced by  h and q. Then  u satisfies the Volterra  integral  

equat ion 
- h 1 / "  

u(x) - cos V'1x+.~. sin V~x+~,: Jo sin ~ ( x -  t)q(t)u(t)dt. (1.9) 
V~ V~ 

Le t  '1 = s  ~ where s=a+iv .  From eq. (1.9) follows t h a t  for each x, u(x, '1) is an  entire func- 

t ion of '1 of order �89 and asympto t ica l ly  we have 

[elrl x~ 
=cos  ( 10) 

u'(x,'1) = - s sin sx + O(e I'1 ~) (1.11) 

see T i tchmarsh  [21, p. I0]. Since q(x)=q(~r-x) a.e.  we find t ha t  v(x)=u(zr-x) and thus 

eq. (1.10) and eq. (1.11) provide the asympto t i c  expansions for v and  v' as well. We in- 

t roduce now the Wronskian  

o9('1) = -hu(~t, '1) - u'(zt, '1) (1.12) 

and note  t ha t  2 is an eigenvalue of (1.1) iff o9(2)=0. F rom (1.10) and  (1.11) follows t h a t  

the a sympto t i c  expansion for o9('1) is 

o9(2) = s sin sxt + O(el'l=). 

Le t  [ be an absolutely continuous funct ion and  assume t h a t / '  is square integrable.  

We consider now the meromorphic  function 

~ f [u /dy+~t  f [ v / d y  
(I)(x,'1) = o9('1) 

Here  ~ and ~ are the solutions of (1.3) with initial conditions (1.4) and (1.5), and  have the 

same asympto t i c  expansions as u and v. We will in tegra te  (I) along a large contour  in the 

'1 plane. 

I n  the  s plane we let R be the rectangle with vertices a t  +d+iO and + d + / d  where 

d'=n+l]2 and we let F be the  contour  in the 2 plane which corresponds to the points  of 

R for which ~ > 0. By  using the  asympto t i c  es t imates  for u, ~ and  o9 we find t h a t  

~(x, '1) u(y, ,t) cos s(:t - x) cos sy [~ ] e  T(v- ~ 

o9('1) s sm s~ \ lsl o ] 
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This  is precisely wha t  is needed to make  T i t chmarsh ' s  a rguments  apply ,  see [21, p. 13], 

and we conclude t h a t  

1 frr 1 f r f~c~  c~ 
2zei 2~/  8 sin sze 

1 f r f ; c ~ 1 7 6  
2zti -' ~ sin szt Y)/(y)dydX 

converges uni formly  to zero on the in terval  0 ~<x~<zt as n ~  cr I t  follows f rom the residue 

theorem tha t  the sum of the last  two te rms  is the first n + 1 te rms  of the Fourier  cosine 

expansion of the  f u n c t i o n / .  I t  is therefore na tura l  to ex tend  / as an  even, 2~r periodic 

funct ion and s i nce / '  is square integrable a n d / ( - ~ t )  = / (~)  we know tha t  the Fourier  series 

for / converges uniformly,  see Zygmund  [23, p. 242]. By  using the  residue theorem to 

evalua te  the  first t e rm in the  above  expression and letting n-+ oo we obta in  

o0 ~j uj/dy+ vj/dy 
0 /(x) y 

j:o o~'(;tj) 
0.13) 

We note  t ha t  uj and  vj represent  the same eigenfunction, whereas fit and ~j are just  

solutions of eq. (1.3) with ~t =~tj. Since q(x)=q(~--x) we see t ha t  v s-- kjuj where k s = ( - 1 )  j. 

I f  q = ~ and  h--)~ then  (1.13) reduces to the S turm-Liouvi l le  expansion and  consequent ly  

kj/co'(]tj)=I/S'~ u~dx. Let  now / be equal to the  first eigenfunction u 0 of (1.1). F rom (1.13) 

and  definition (1.6) follows t h a t  

u0 = ~0 + � 8 9  f~U, uodt. (1.14) 

We can now obta in  the results s ta ted  in the theorem by  differentiat ing eq. (1.14) formally.  

To realize t ha t  l e t / j  =~ j  S~ U~Uo dr. Thus / j (0 )  = 0  and/~(0) = ~j(0). Since u s and u 0 are eigen- 

funct ions of (1.1) and  ~j is a solution of (1.3) with ~ =~j  we find by  differentiat ing ]j twice 

and using integrat ion b y  par ts  t h a t  

/~ + (]to- ~) /j= 2(~juj)'u0. (1.15) 

We can now derive (1.7) and  (1.8). B y  differentiat ing eq. (1.14) and using eq. (1.15) we 

obtain  

u ; - 4  = (~- ~o) ( % -  ~o) + Y.(9,uj)'Uo. 
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Thus eq. (1.7) follows by setting x = 0  in the first equation. To derive (l.8) from the second 

equation we use that  u~ =(q-ito)U o and ~ = ( q - ~ ) u 0  and note that  the eigenfunction u 0 

is positive in the whole interval. 

To establish the validity of the above formal argument we must show that  tho series 

under consideration actually converges. This requires a number of fairly detailed estimates. 

An important byproduct of these estimates is a well-posedness result for the inverse Sturm- 

l.iouville problem, see Section 3. 

We will show that  V~dT, and ~; are O(itj-~,). Let z, be the eigenfunction of (1.2) 

corresponding to the eigenvalue ~j. We will compare ~, with z, and let w, = (~q-z,)/(it,--~). 
Thus w = wr satisfies the differential equation 

w" + ( i t - ~ ) w  = - z ,  

w(O) = w'(O) = 0 

with it =it,. Let ~ and ~0~ be solutions of the homogeneous equation, i.e. (1.3), with initial 

conditions ~r y~ ~1 =(~j at x =0. The solution of the inhomogeneous equation is then given by 

w(x) -= f f  [~t(x) ~ (y)  - ~ (x)  ~t(Y)] z,(y) dy. (1.16) 

To estimate w we must estimate 7'1, ~2 and z,. We first observe that  ~t is the solution 

of the Volterra integral equation (1.9) with h =0 and q replaced by ~ and it =it,. Let I[q[[~ = 

Sg [q[ dx and []~[[oo =ess sup ]~]. If Vk is larger than 6[[~[[1 then we conclude from eq. (1.9} 

that  ][9~11[~ ~< 6/5 and that  I[~ ]]~ ~< (6/5)V~, see Witchmarsh [21, p. 10]. In a similar manner 

we find that  ~ll~ll~o and II~lloo are loss than 6/5. To estimate z, we replace h, q and it in 

cq. (1 .9 )  with s ~ and it,. Thus if ~/~f is larger than 6H~II1 and 6]s then we have IIz, II ~ < 7/5 
~ d  IIz, II~ ~/7/51l/it,. From these estimates and the solution formula (1.16) for w we con- 

clude that  V~Jllw, l[~ and [[w~ [[~ are less than (504/125)~. 

Since the potential ~ is symmetric we find that  z , (g-z)  = k,z,(x) and .~,(x)=fi,(zt-x). 

It therefore follows from the definition of w, and formula (1.6) that 

it, - 3 ,  
~,(x) = 2 o-7~j  ) [ w , ( u -  z) - kjw,(z)l. (1.17) 

To complete our study of ?~, we must find a lower bound for ]w'(;t,)] = [[u,[[~. Here u, 

is the eigenfunction of (1.1) normalized such that u , (0 )= l :  From eq. (1.9) we see that  

u,(x)=eos V~jx+O(x) where 101 ~<2/5 provided V~ is larger than 6lh I and 6[[qlll. If we 
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assume in addition that V~> 1/:r then we find by using the triangle inequality that t~o'().j) [ 

~>:r/100. By using the hounds for w, and w~ we conclude from eq. (1.17) that 

II ,lloo < 1613 [ a ' - i ' [  (1.18) 

][ Y; Ho~ ~< 161312, - i, ]. (1.19) 

We can now show that  ~. (~juj)' actually converges. To begin with we choose the 

integer N so that  ]/~n and ~ are larger than l /n and 6 times the maximum of Ihl, I~1, 

Ilqll, and II ll,- In this all the above estimates hold simultaneously and moreover, w e  

have, as in our bound for the eigenfunction zj, that [[u,l]~ ~< 7/5 and ]lu; [[ ~o ~< (7/5)[/~j. Thus 

by using (1.18) and (1.19) we see that 

ffj(0) ~< 404~ ~. I,;t,- i,] (1.20) 
1.  I - N  

< 4520 I s , -  i,I. (1.21) 

We can now prove the validity of the formal arguments leading to (1.7) and (1.8). 

From the solution of equation (1.15) follows that 

�89 Z / J =  �89 Z 9,(0)~v~(x)- f:G(x,y) Z (Luj)'uody �9 (1.22) 

Here G(x, y)=~01(x)~2(y ) --~p2(X)~i(y), where ~0 a and ~v~ are solutions of the homogeneous 

eq. (1.3) with ~t = ~  and satisfy the initial conditions r =Olj at x =0. To interchange the 

order of integration and summation we have used that ~ (~juj)' converges in L w, see (1.2 l). 

On the other hand, u = u 0 - 4  0 satisfies the differential equation u" +(~-~)u=(q-~t)Uo 
with the initial conditions u(0)= 0 and u'(O)= h-)~ and consequently 

uo - uo = (h - h) rf2(x ) - f (  G(x,  y )  (q - ~) u o dy. 

The theorem now follows from (1.14) by comparing the last two equations and using the 

uniqueness theorem for ordinary differential equations with summable coefficients, see 

Neumark [19, w 15, Satz 2]. This completes the proof. 

2. Uniqueness and regularity results 

The explicit formula (1.8) for the difference between two potentials is well suited for 

deriving some well-known uniqueness results. We will show that the potential and the 
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boundary conditions are uniquely determined by the full spectrum. Moreover, we will 

prove that  if the boundary conditions are known then the  potential is uniquely deter- 

mined by the reduced spectrum. Here the reduced spectrum is the full spectrum with the 

lowest eigenvalue omitted. Finally, we will show that  the assumption ~ ]2 j -  ~j I in Theorem 

1 is quite restrictive. In particular, it implies that if the comparison spectrum (~j} corre- 

sponds to a Sturm-Liouville problem with constant coefficients, then the Fourier series 

for the potential q(x) will be absolutely convergent. 

COROLLAI~Y 1. Consider the eigenvalue problem (1.1) where q is integrable in [0, ~]. 

I /q (x )  =q(zt-x)  almost everywhere in 0 <x <zt then q(x) and h are uniquely determi~ed by 

the spectrum. 

Proo/. Assume that  we have two Sturm-Liouville problems with the same eigenvalues 

)tj=),j. From equations (1.3) and (1.4) follows that  fij is an eigenfunction, and since the 

potential ~ is symmetric we conclude that  ~j = kjfij. This shows that  all ?]j vanish identically 

and the right hand sides of equations (1.7) and (l.8) are zero. This completes the proof. 

From the symmetry of the potential follows that  the eigerrfunctions are either odd or 

even functions around zt/2. We can therefore decompose the eigenvalue problem on [0, ~] 

into two problems on [0, ~r/2] with either Dirichlet or Neumarm boundary conditions at 

x=~t/2. It  has been shown by MarSenko [17, 18], Krein [12] and Levitan [15], that  the 

potential and the boundary conditions are uniquely determined by two spectra, and can 

be reconstructed from this data. The result is sometimes credited to Borg, see I~vitan 

[15], and Gasymov and Levitan [5]. However, Borg proved a different, but equally precise 

result, namely that  if the boundary conditions are given then two-possible reduced-spectra 

determine the potential uniquely. I t  is not obvious that  the two problems are equivalent, 

although our results in Section 7 indicate that  this is indeed the case. For symmetric 

potentials we have 

COROLLARY 2. Consider the eigenvalue problem (1.1) where q is i~degrable on [0, 7t] 

and satis/ies q(x) =q(ze - x) a.e. I /q(x)  is replaced by another symmetric potential ~(x) and the 

two problem8 have the same reduced spectrum (i.e. the/uU spectrum with the lowest eigenvalue 

omitted) then q = ~ a.e. 

Remark. The case h = 0  was discussed by Borg [3, p. 69]. For h:#0 the result follows 

from Borg's theorem concerning two spectra; but was first stated explicitly by Hochstadt 

[8]. The proof below is due to Hochstadt [8]. A less precise version of the theorem has been 

given by Levinson [14]. 
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- l  

- 5  

1 4 

Figure 1. Dependence on the constan~ h in the boundary conditions on the eigenvalue ~l 

Proo/. Let ;~j and ;~j be the eigenvalues corresponding to q and ~. If  h = ~ and ),j = ~j 

for ? '= l ,  2 ..... then we ~ e  from Theorem 1 that  0=?~0(0 ) and q-~=(?~oU0) '. We willshow 

that  ?/0 vanishes identically. From (1.6) follows that  ~0(n-  x ) =  -g0(x) and thus ?/0 vanishes 

at  x __10, ~/2 and n. Since ~t 0 < ~1 = ~1 we conclude from Sturm comparison theorem that  ff 

Y0 ~0  then the eigenfunction ~(X/) , I )  wi l l  have at least two zeros in (0, ~). But  this con- 

tradicts Sturm's  oscillation theorem [4, p. 210], and the result follows by contraposition. 

I t  should be pointed out that  the problems discussed in Corollary 1 and 2 may  both 

arise in applications. Thus the inverse eigenvalue problem for a cylinder can be reduced 

to solving two inverse Sturm-Liouville problems, see [7]. In  this case the boundary condi- 

tions in the second eigenvalue problem can be determined from the spectrum of the first 

eigenvalue problem by using Corollary I. 

We have seen in C~)rollary 2 that  the lowest eigenvalue plays a special role. Thus the 

question arises whether the potential can be uniquely determined by  the boundary condi- 

tions and say, ),0,/t2, ),a . . . . .  In  general the answer is no. To see this let ~tj=j z for all j4 : l .  

For each h <0  there exist two potentials having the requested boundary conditions and 

eigenvalues, see Figs. 1 and 2. The natural comparison potential is ~=0,  and from Theorem 

1 follows tha t  the graph in Fig. 1 is 

c o t  . 

In  Fig. 2 we give the two potentials which correspond to h =  - 1 ,  i.e. ;t 1 =0.316 and ).1 = 

2.365. For h = 0  there is only one potential, namely q - 0 .  This is a direct consequence of 

a theorem by Borg [3, p. 70 and p. 88], and closely related to a result 6f Ambarzumian [1]. 

The same phenomenon occurs for other eigenvalues as well. 

The proof of Theorem 1 reveals more than stated in the theorem. To reahze this we 

Observe tha t  both ~ and u~ are equal to absolutely continuous functions almost every- 

where. Thus after modifying ~ and  u~ on a set of measure zero we see that  '~ (?~juj)' con- 

verges uniformly to a continuous function. This implies that  if ~. [ ; t j-~j[  converges then 
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q(x) 

1 

0 

- -  2 . 3 6 5  

Figure 2. Two potentials having h and 20, 2z, 2a .. . .  in common 

the difference between the potentials is a continuous function a.e., even though the poten- 

tials are only summable. In particular we have 

COROLLARY 3. Consider the eigenvalue problem (1.1) where q is integrable on [0, ~] 

and satis]ies the symmetry condition q (x )=q(z -  x) almost everywhere. Let Q = 1~re S~ q(x)dx. 

The Fourier cosine series ]or q(x) converges absolutely i/ and only i/ 

R e ~ r k .  Let ,~ be the eigenvalues of (1.1) with the potential q(x) replaced by the 

constant Q. Borg has shown, see [3, p. 26], that  if 1 < p < 2  and ~ la ,- i ,  l, converges then 

the potential is in /2"  where 1/1o + l ip '= 1. Borg's proof cannot be extended to p = 1, as it 

is based on the Hausdorff-Young theorem and the asymptotic expansion 

a,-i,= 

where a2j is the 2#h coefficient in the Fourier cosine expansion of q(x). Our corollary is 

therefore an extension of Borg's result. 

Free]. Borg has shown, see [3, p. 21], that  if qeL  ~ then ~ I ~ j - ] j l  converges iff • la2jl 

converges. Since 
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see Borg [3, p. 15], we conclude that  ~ ] t ~ - t j l  converges iff (2.1) is satisfied. We have 

seen that  if ~ I t s -2 j ]  < oo then q(x) is continuous a.e., and hence in L 2. The same conclu- 

sion holds if ~ I a2Jl < c~ The proof is therefore completed by using Borg's result. 

3. Well-posedness 

In this section we will show that  the difference between two symmetric potentials 

can be bounded in terms of the difference between the corresponding spectra. We have 

already obtained one result in this direction namely the inequality (1.21). I n  general we 

have 

THEOREM 2. Consider the eigenvalue problems (1.1) and {1.2) where q and ~ are in- 

tegrable on [0, ~] and satis/y the symmetry conditions q(x) = q(:r - x) and ~(x) = ~(zr- x) almost 

everywhere in the interval O<~x<~zr. Let i j  and "2j be the eigenvalues o/ (1.1) and (1.2). Let 

M = m a x  (Ih], I~,l, IIqll,, II~ll~). Then 

oO 

Ih-~ l<  15.10 e+sSM+l~M' ~ 2,1 

IIq- 15. la,- 2,1 

Remark. There is a deplorable lack of estimates of this kind in the literature on the 

inverse Sturm-Liouville problem. For the inverse Sturm-Liouville problem with Dirichlet 

boundary conditions, Barcilon [2] has given a quite explicit well-posedness result, under 

the assumption that  the potentials are symmetric and have a small L 2 norm. A more 

general result, proved for two spectra, is hidden in Borg's paper, see [3, p. 78, formula 

(29)]. Roughly speaking Borg proves that  if the potentials are symmetric then 

t 

provided the right-hand side is sufficiently small. Here the constant K depends only on 

q and can be characterized as a lower bound for the quotient of two infinite quadratic 

forms, but no specific estimate is available. Finally, Hochstadt [10] has obtained a well- 

posedness result in L ~176 assuming that  h--]~ and that  only a finite number, of the eigen- 

values differs. Hochstadt 's proof is based on eq. (1.8) and so is ours. 

Proo[. The proof of Theorem 1 is based on the asymptotic behavior of the solutions of 

eq. (1.3). For example, the estimates (1.18) and (1.19) of ffj and yj are only valid for the 
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solutions associated with the higher eigenvalues and will here be replaced by quite crude 

bounds for the Solutions corresponding to the lower end of the spectrum. L e t z  be the 

solution of the differential equation {1.3) with initial conditions {1.4). Then 

I=(~,~)1 < max (1, Ihl) exp (R~(x)) 

[z'(x, 2) 1 ~. max (1, I hi) R exp (R~(x)). 

(3.1) 

(3.2) 

The estimates (3.1) and (3.2) are obtained when the existence of solutions of eq. (l.3) is 

proved by using the method of successive approximations. See K. Jiirgens [11, w 4, p. 3]. 

Specifically, one may choose 

e(x)= f~max (1,1~1) dt 

R ~> ~ - +  I).1. (3.3) 

Let N be chosen such that  the estimates (1.18) and (1.19) are valid for j>~N. We will 

derive a bound for ] < N .  Assume that  R is so large that  (3.3) holds for 2 equal to ).j and 

2s for ~=0, 1 .... , N - 1 .  To estimate the functions wj in eq. (1.16) we note that  the solu- 

tions ~x and ~e of the homogeneous eq. (1.3) satisfy 

I~0(x)] ~< exp (R~(x)), lq;'(x)] < R exp (RT(x)). 

From these estimates and inequality (3.l) we conclude by using that 1 <~'(x) and inte- 

grating with respect to y that  

Iw~(~)l < max (1, ]&])R ' exp (3R~(x)) 

I w;(~)l < max (1, I~1) exp (3Ri(x)). 

(3.4) 

(3.5) 

Our next step is to bound the denominator co'(2,)= • Ilu,[I ~ in eq. (1.17) from below. 

This is accomphshed by showing that  the function u s cannot oscillate arbitrarily quickly. 

Let r(x)=S~ max (1, Iq])dt. Since u s are the solutions of (1.3)-(1.4) with ]~and ~replaced 

by h and q we see that  us(x ) also satisfy the inequahties (3.1) and (3.2) with .s and ~ re- 

placed by h and r. Let 
C = max (1, ]hi) R exp (Rr(~]2)). 

Thus l u'l for all x in [0, ~/2] and since C >z~/2 we conclude that  u(x)>~ 1 - C x  for all 

x < lie. By squaring and integrating with respect to x we find that  Ilus II ~ ~> 2/(3c). Thus 

1 
i o/(~.,)1 < ~ max (1,1hl)R e ~  (Rr(~/2)). (3.6) 
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We can now estimate ~j and ~; for ) '<N. By combining eq. (1.I7) with the inequalities 

(3.4), (3.5) and (3.6) we see that  

11~7,ll~ < 61~,- ~,l max (1, Ihl) max (1, I~1) exp (Rr(~]2) -I- 3R~(g)) 

I1~;11| as sbove �9 R. 

Since ~ (~juj)' is an even function around rr/2 it follows that  it is sufficient to estimate 
' t the sum in the interval O ~ x ~ / 2 .  We have already seen that  uj and uj are bounded by 

the right-hand side of (3.1) and (3.2) with ~ and ~ replaced by h and r. By using the esti- 
~ l  

mates for ~j and yj we find that  

11"0 (~, u,)' oo ~ 12 ~o l~',-- i,l m~,x (1, l h l) * max..(l, l h l) R exp (2Rr(~/2) + 3R~(~z)). 
(3.7) 

The corresponding estimate for �89 ~ ~(0) follows from our bound for ~j. Since r(x)~x 

and R 1> 1 we see that  if h and ~ are zero and q and ~ vanish identically then the constant 

in (3.7) is at least 12 exp (4~)-3.4.10 s. This is much larger than the constant 4520 in 

(1.21), and we have therefore proved our theorem in principle. 

To complete the proof we must give a specific choice of ~V and estimate R in terms of 

h, h, q and ~. Since the bound for h - ~  is smaller than the bound for q - ~ ,  we will restrict 

our attention to the latter. We will first give a lower bound for the eigenvalues ~ and ~o. 

Let u be the eigenfunction corresponding to ~0. By multiplying eq. (1.1) with u and in- 

tegrating with respect to x we find 

_- f o  (u" + qu 2) dx + h[uZ(n) + uZ(O)] 

f~  u s dx 
(3.8) 

Since ~ruZ(~)=~ (~u~)' dx we see by using Schwarz inequality that  

~(~)  ~:~II~II = + 211~II II~'II. (3.9) 

The same inequality holds with us(~z) replaced by uS(0). By writing q as (~{ q)' a.e. and 

integrating j" qu 2 by parts we obtain 

[ j ~ = ~ [  ~ ilqll, (.=(~) + 2il.ll.ll.,ll) (3.10) 

18-  782902 Acta mathematlm 141. Imprim6 le 8 Dqkembre 1978 
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where Ilqll  = Sglq[ d~- We can now combine (3.9) and (3.10) and find by  using eq. (3.8)that 

2011ull'>  llu'll -  (21hl § llqll )ll ll - <21hl § 211qlh) 211 ll llu'll . 

This shows that 20 is larger than -S/(2zt) -4S2/9. Here S = 6M where M is the maximum 

of Ihl, J~l ,  Ilqlll and Jlqllx" The lower bound for 20 is equally valid for ]0. Consequently, 

we have for all the negative eigenvalues t j  and ]j  in the two spectra that  

1 § s .  <3,11) 

We will now investigate the positive eigenvalues. In particular we are interested in 

finding the integer N which separates the lower eigenvalues from the upper  eigenvalues. 

Let N be chosen such that S+0.22<N<~S+1.22. We will investigate the Wronskian 

to(2) in the interval N-0 .22~<V~<N+0.22 .  Since S~>0 we see that  I/~ is larger than 

61h l, 6]lqll, and 1/~. We can therefore use our estimate I lu i l~ .7 /5  from the proof of 

Theorem 1 and conclude from the definiti0n (1'.12) and~eq. (1.9) t h a t  

o~(t)/V~ = sin ]/-~lzt § 0(I/~) 

where 10 ] ~< 19/30 for all ]/] ~> S. Thus for each integer ]/> N there exiats a Vtj in the interval 

( ]-0.22,  ]+0.22) such that to(t])=0. There can only be one root in each interval because 

the eigenvalues are simple and depend~continuously on t~ae potential and. the boundary 

conditions. If iN-1 is positive then V2N-1 is certainly less than S + 1,44, but. a closer look 

at the graph of sin V-LTt reveals that  2V~-u_I is actually less than S + 0.44. Thus 

(3.12) 

By combining (3.11) and (3.12) we are lead to a choice of the constant R in (3.3) namely 

R = 1.1 +6  max (Ihl; Ihl, IIq]l,, II~H1). 

I t  is now straightforward to derive the estimates given in the theorem. We need only 

observe that max (1, x)-<<exp (x/e), that R~<exp (0.1 +6M)  attd that  ~(zt) <~7t+ I1~]]1 and 

use the inequahty (3.7). This completes the proof. 

We remark that Corollary 1 can be obtained from Theorem 2 by inspection, but we 

cannot derive Corollary 2 in this manner. I t  should be emphasized that Theorem 2 does 

not show that if h and q are known then we can bound h - ~  and q - f i n  terms of ~. I~j-~j[ .  

This is only true if >~ ]/s-~tj] is sufficiently Small and will be proved in Section 6. 
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~ 5  
i 

- 1  

2O 

Figure 3. Dependence of the  constant  h in the  boundary  conditions on the  eigenvalue ~o 

The estimates (3.1) and (3.2) can be sharpened considerably provided the potential 

is contmuous, see Titchmarsh [21, p. 6]. Such an improvement  will render the term M 2 

in the exponent superfluous. One might therefore question whether there exists a constant 

independent of M as in (1.21) such tha t  Theorem 2 is still valid. We will now show tha t  

this cannot be the case. 

L e t  h = O  and ~ - 0 .  We will only perturb the lowest eigenvalue 2o and assume tha t  

~tj = ?'2 for j ~ 1. By using the algorithm presented in Section 4 we find the graphs in Fig. 3 

and 4. I t  follows from eq. (1.7) "that 

t (<;) 
2O-<. 0 

0 < 2 , < 1 .  

This shows tha t  h-* - ~ a s 2O~ 1 and the bound in Theorem 2 must  therefore depend on 

h. This conclusion can also be derived from Fig. 1. Fig. 4 shows that  the potential q becomes 

large near 0 and ~ as 2O~ 1. Since 2j =]2 for all j >~ 1 we conclude from Corollary 3 tha t  

4h = - . ~  q d x  and since h-~ - c~ we find tha t  IIqH,-~ ~ .  The bound in Theorem 2 must  there- 

fore depend on Ilqllk as well. 

4. Hochstadt's algori thm 

In  this section we will derive an algorithm which is weN-suited for solving the inverse 

Sturm-Liouville problem numerically. I~ ~s based on a very clever idea due to Hochstadt  
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F igu re  4. P o t e n t i a l  co r respond ing  to  2 o = 0.8 

[9]. The fundamental observation is that  by using Theorem 1, the constructive problem 

can be reduced to solving a system of ordinary nonlinear differential equations. Hoch- 

stadt formulated his result for two spectra, but the specialization to symmetric potentials 

and one spectrum is immediate. 

Assume that  ~ and ~(x) are given and let ~j be the eigenvalues of eq. (1.2). We want 

to find a potential q(x) and a constant h in the boundary conditions such that  the eigen- 

values of (1.1) are ;to ..... ~t, and ~tj = ~j for j > n. Thus we perturb only a finite number of 

eigenvalues and let A0 be the corresponding index set. From eq. (1.8) we see that  q can be 

expressed in terms of ~, ~j and uj. Because all the eigenvalues ~ are given we can in principle 

compute the denominator o/(2j) in eq. (1.6). A more elegant method is given below. To 

find ~j we solve eq. (1.3) with initial conditions (1.4) and (1.5). The constant h in the 

boundary conditions can now be obtained by using eq. (1.7), i.e. 

h=a+�89 ~gj(0). 
A0 

To compute the potential q(x) we need in addition the eigenfunctions u s. These are naturally 

unknown, but  can be obtained by solving the following system of nonlinear differential 

equations 
ui" + [;~ - q(x) - ~ (gj u , ) ' ]  u, = 0 (4.1) 

A, 

u,(O) = 1, u;(O) = h  (4.2) 



THE INVERSE STURM--LIOUVILLE PROBLEM WITIi SYMMETRIC POTENTTAL~ 279  

for all i in A 0. Here we have used eq. (!.8). I t  is always possible to use this technique, the 

question is whether it will give the solution of the inverse Sturm-Liouville problem. For 

example, what guarantees that  the asserted eigenfunctions us satisfy the right.hand 

boundary condition in eq. (1.2)? 

These questions are not just academic. To realize this  we note that  Hochstadt bases 

his algorithm on a representation theorem in which h = ~, see [9]. Thus Hochstadt uses 

in eq. (4.2) instead of h. Numericalexperiments by the author show that  for this choice 

the computed potentials are not in general symmetric and the functions u s do not satisfy 

the right-hand boundary condition. Moreover, if the perturbation of the eigenvalues is 

sufficiently strong then the solution of (4.1) may fail to exist in the whole interval. Hoch- 

stadt's version is therefore a recovering procedure and our modification is crucial for the 

success of the algorithm. 

The above outline is somewhat inconvenient from a numerical point of view. For 

example, we need not find ~j since ~j(x) =~j(~ - x )  for all x. To evaluate ~o'(~j) we note that  

o(~)=aH (~-~j)H (1- ~) A, A " (4.3) 

This follows from Hadamard factorization theorem. By replacing a and it s by d and ~j 

we obtain the corresponding faetorization of iS, where (5 is the Wronskian for eq. (1.2). 

Here we have assumed that  ~ are different from zero for all ~ in A. Otherwise the factor 

1-2/0 must be replaced by ~. Consequently 

~o(2) = a r ~  ~-2~ ( 4 . 4 )  

To determine the constant a we use that  ~ j = ~  for all ~ sufficiently large and that  

(-1)J~o'(~j)-~x/2 as ~-~ ~ and similarly for ~5. Thus a = d .  By differentiating eq. (4.4) we 

find that  if ~j is not an eigenvalue of eq. (1.2) then 

~'  - ~' ~(~') - ~ ( ~ ' )  ( 4 . 5 )  
= !J, k 

If  2~-*~j then the last term must be replaced by ~5'(~). Let zj be the eigenfunction of 

(1.2) corresponding to ~ .  We will consider the function wj= (~-z j ) / (~ j -~ j ) .  Since ~(~)= 

-h~(~z) -4 ' (~)  we conclude that  the last quotient in (4.5) is equal to ~ ~w~(~) -w~(~) where 

w~ satisfies the differential equation 

~ ,  + (~,- q)w,= - ~  
w~(0)  = w ; ( 0 )  = 0 
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see also Section 1. If ] j~ t a  with k4=j then we replace ~j and,zj in the above arguments by 

~ and zk. 

We can now give .the complete recipe for solving the inverse Sturm-Liouville problem 

with symmetric potentials. 

Step 1~ For each j in A o determine a k in A0 such that 

12j- ~k[ = min 12j--,~, 

Step 2~ For each j in A o,solve 

a ; /  q-~ '  
w:/ o 
w j j  - 1  

. �9 ~ !  

o 0 us 

0 0 

o ~ - ~  ,_w, 

[i] 
Step 3~ For each j in A o compute 

VI (4, - ~,) 
~'(). j )-  ,*J 

I-[ ( ~ -  i , )  [ - ~wj(~)  - w;(=)]  

Step 4~ Set 
h = h +  Y (~j(:~)- ( -  1)')/~o'(~j) 

A ,  

Step 5~ Solve the system of differential equations 

r ] io 1 o ~ ~-~ j  0 o 

0 o 0 

LUj 0 0 ~ + Z  ~' - ' (y, u, + Yt u , )  -- ~j 
i o .  

[ ~; - 2(a;(~) + ( ;  l)'t)/o, (4,) 

L h,  

L U j  .J 
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2 
/ / c o r r e c t  potential  

computed potential 

Figure 5. Reconstruct ion of the Mathieu equation from five eigenvalues 

Step 6~ S e t  

q=~+7~  (9; ,,, + 9j,~). 
Ao 

I t  should be pointed out that  it is not really necessary to compute ~j in Step 5 ~ since 

it can be expressed in terms of us already found in Step 2 ~ However, ~j and y'~ are needed 

in eq. (4.1) anyway and it is easier to recompute them than storing ~2j and fi~ for all j in A 0. 

TO illustrate the' power of the method we have tried to reconstruct the Mathieu equa- 

tion from its first five eigenvalues. The result is given in Figure 5. The correct potential 

is 2 cos (2X) and the comparison potential is identically zero. 

We 'will now Compare HoChstadt's algorithm with the Gel 'fand-Levitan technique [6]. 

The numerical solution of the Gel 'fand-Levitan equation requires the solution of a sequence 

of linear systems of equations followed by a numerical differentiation. Assume that  the 

potential is wanted at N points in the interval [0, g]. In the most obvious implementa- 

tion of the Gel 'fand-Levitan technique all matrices are full and the number of operations 

grows like N4/12, but  a less obvious approach can reduce the work to Na/3. The cost of 

solving the integral equations becomes critical long before the loss of accuracy in the 

numerical differentiation becomes a problem. On the other hand, the cost of Hochstadt 's  

algorithm is 10Nn. Here n is the number of perturbed eigenvalues and we have assumed 

that  the differential equations are solved by a method which requires two function-evalua- 

tions per step. Thus if only a few eigenvalues awe perturbed and the potential is wanted at  

many points, then Hochstadt 's algorithm is the most economical of the two. 
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5. Efis tence o! so lu t ions  

I t  is easier to prove that  the solution of the inverse Sturm-Liouville problem is unique 

than giving necessary and sufficient conditions for its existence. The first existence result 

is due to Borg [3, p. 71]. He proved that  if the boundary conditions are fixed and the 

reduced spectrum is slightly perturbed (in P), then there exists a symmetric potential 

which gives rise to the perturbed eigenvalues. Later existence results have been based on 

the technique due to Gel'land and Levitan [6]. They gave necessary and sufficient condi- 

tions (with a slight gap) for a given stepfunction to be the spectral function of a regular 

Sturm-Liouville operator. The gap was closed by Krein [13]. The conditions are formulated 

as differentiability properties of a certain function ~ ,  see eq. (5.2) below. The theory has 

been further extended to non-self-adjoint operators by Mar5enko [18]. By using Mar~enko's 

technique ~ikov [22] succeeded in formulating the necessary and sufficient conditions in 

terms of the eigenvalues and the normalizing constants separately. However, ~ikov admits 

potentials which fall outside the class studied in Theorem 1, and for this reason we cannot 

use his otherwise very convenient results. Finally, it should he mentioned that  ~ikov 

obtains similar necessary and sufficient conditions for two spectra to give rise to a potential, 

thus extending the sufficient conditions due to Levitan [15]. In this section we will show 

that  the inverse Sturm-Liouville problem under consideration does have a solution. The 

modified version of Hochstadt 's algorithm will therefore always be successful. 

LEMMX 1. Consider the eigent~du~ problem (1.2) where the/unction ~ is inteqrable and 

satisfies ~ (x )=~(g-x )  almost everywhere in [0,~]. Let 2o, "~1 .... be the eigenvalues o/ (1.2). 

Let ),o <~x <... be given and assume that 2j = "~j /or all j >1 N. Then there exist a constant h and 

an integrable /unction q(x), which mtis/ies q(x)=q(z~-x) almost everywhere, such that ,~j 

are the eigenvalues o/(1.1). 

Proo[. Let h and H be two real constants and let q(x) be an integrable, but  not neces- 

sarily symmetric function. We will consider the eigenvalue problem 

- u "  +q(x)u = ~u (5.1) 

hu(O)-u'(O) = O, H u ( ~ )  + u ' ( ~ )  = O. 

Let ~n and u~ be the eigenvahies and eigenfunctions of (5.1) with un(0) = 1 and let Qn = j0r~ ~n" 2 dx 

be the normalizing constants. Assume now that  two sequences (~}  and (~n} are givem 

From a theorem by Krein [13] follows that  ~t n and ~n are the eigenvalues and the normalizing 

constants of a boundary value problem of form (5.1) if and only if 
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cos V ~ x  cos nx~ (5.2) 

has two absolutely continuous derivatives, see also Gel'land and Levitan [6, w 11], Levitan 

[I6, p. 103] and ~ikov [22]. Here the sum is taken over those n for which t , > 0 .  To prove 

Lemma 1 we will first show that  (1)(x) is twice differentiable. Secondly, we will prove that  

the constants h and H in eq. (5.1) are equal and that  the potential is symmetric. 

Let l j  be the perturbed eigenvalues of eq. (1.2). Since ~tj=t~ for j~>N we conclude 

from the proof of Weierstrass's factorization theorem, see [20, p. 246], that  the function 

(o(~t) defined by eq. (4.3) is an entire function. Here we let a =d  where d is the constant in 

the corresponding factorization of the Wronskian r for eq. (1.2). Thus eq. (4.4) holds 

and 

Y (~, - ~,) 
o~'(~,)_ ^. + o{~o~. (5.3) \z;/ 

We have seen in the proof of Theorem 1 that  if o~(i) is the Wronskian of eq. (5.1) 

with a symmetric potential and h = H then ( - 1)~r = .[~ up dr. I t  is therefore natural to 

choose 9 j - - ( -  1)Jc0'(lj). From the asymptotic expansion (1.10) follows that  ( -1)JcS ' ( l j )= 

~/2 +0(1/~). Since the lj 's  are real and distinct we conclude by using eq. (5.3) that  9j >0  

for all j and that  
1 ~,= (~ + 0(~) .  (5.4) 

We can now show that  the function (I) in eq. (5.2) is twice differentiable. Let in and 

~n be the eigenvalues and normalizing constants of (1.2). We define the function ~)(x) 

by replacing ~, and ~ in eq. (5.2) with 2n and ~ .  Since ~ is integrable it follows from Krein's 

theorem that  ~) has two absolutely continuous derivatives. I t  is therefore sufficient to 

consider the difference (1)- ~) and to show that  

. Q~ ~,I~ / 

has two absolutely continuous derivatives. Here we have used that  in =~tn for all n ~> N. 

From equations (5.3) and (5.4) follows that  

_ cos/  c o s  
(5.5) 
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where A =(2/r~)~A, (2j--2j). The last sum in (5.5) is three times differentiable and the 

third derivative continuous. The ~econd derivative of the first sum in (5.5) is absolutely 

convergent and can be ~Titten in the form 

2~J0- fx sin I ~ t  d t _  2 ~ " ~  

It  follows fr6meq.  (2.2) and (2,3) that 1/2~ ~ n-~ 0(1/n). Since the part ial  sums of'n -1 sin nx  

are bounded we can use Lebesgue theoremon  do~fiinated convergence to interchange the 

order of summation and integration. This shows that  F" is' absolutely continuous. We 

can therefore conclude ~from Krein's theorem that  there exist ' two constants h a n d  H and 

an integrable function q(x) such that' 2, and 'Qn are  the eigenvalues and the  normalizing 

constants of eq. (5.1). 

To complete the proof we must show that  h = H  and q(x)=q(~-x)  a.o. Let ~ be the 

Wronskian of equation (5.1), i.e. ~(2)= -Hu(z~) -  u'(z0..Here u(x) satisfies the initial condi- 

tions u-- 1 and u' = h at x = 0. Since ~ is an entire function of order �89 it i8 completely deter- 

mined, except for a multiplieative constant by its roots. We will factor ~ as in (4.3) with a 

replaced by ~, We will show that  ~ =a  and thus ~(2) =o9(2). Let v =v(z, 2) be the solution 

of the differential equation in (5.1) and satisfy the inRial condition V = 1 and v '=  - H  at 

x =~. If 2 =2j.then vj(x) = kjuj(z) in the wholeinterval. By using the asymptotic expansion 

(1.10) with x---z~ we conclude that  kj= (-1)J+O(1/~). We note now that  the derivation,of 

equation (1.13) is independent of the symmetry of the potentials and that  the dependence 

on h = H  is not essential. Thus if q =~ and ] =us then eq. (1.13) implies tha t  

kj fn 
)ou~dx'= 1. (5.6) 

From the asymptotic expansion (1.10) follows that  ~ u~ dx+ze/2 and we can therefore 

conclude that  ' ( -  1)J~'(2j)-~/2 as  j-+ r But  by construction this holds for <o(2) as well 

and consequently g - a  =d  and v(2)=o9(2). Since the  normalizing consfants ~)j are equal to 

(-1)Jog'(2j) we infer from eq. (5.6) that  k~= ( - 1 ) (  

We observe now that  the derivation of eq. (1.14) only.depends on the symmetry of 

the potential via the requirement k+ = ( - 1 ) (  We may therefore also use it in this case 

and by replacing u 0 by u~ where rn is not in 2t o we get 

fX um=~tm + i ~, fft ujumdt (5.7) 
A,  J 0 

, . . . . .  f =  (5 .8)  um= Um + �89 ~, yj uj um+ YS uj u m dr. 
do A, 
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By se$~ing x = 0 i n  Cq. (5:8). we arrive at  o%,(1,7).. Since ~ x ) =  ~(zt-~ x)~ we find from defini- 

tion (,1'.6) that  ~j(x) . . . .  kj~j(~-~) .  Thus by setting x = re in eq. (5.8) and using %he orthogo- 

nality of: the. eigeafunctions we obtain 

H - 1/-- �89 ~ ?~,(0). 
A0 

By comparing this result with eq. (1.7) we conclude finally that h =H. We will now show 

that  q(x)=q(zt-x) a.e. We note first that  the difference between the potentials q and 

is given by eq. (1.8). This follows by differentiating eq. (5.8) and using equations (1.2), 

(5.1), and (5.7) as in Section 1. We can therefore find the eigenflmctions u~ by solving the 

nonlinear SYStem of equations (4.1) with initial .conditions (4,2). Let ~j(x)= v j (~-x) .  Since 

~(x) = ~ ( ~ - x )  and ~j(x)= - ] c j~ j (~ -x )  we see by using vj=kjuj and manipulating eq. (4.1) 

that  
+ [~, - ~(x) -= ~ (~, ~,)'] ~, = 0 

A0 

~,(0) = 1, $;(0) = h .  

Thus 'u~ and ~ satisfy the same differential equations and have the same initial conditions. 

We can therefore conclude that  u~(x)=St(z)=vt(zt-x)for all i in A0.: This completes the 

proof because, 
q (x ) -2 t  = u~' (x) =. vi' (~ - x) = q(x - x) - X~. 

u~(x) v , (~-  x) 

I t  should be .noted that  She perturbation, of a finite number of eigenvalues implies 

that  infinitely many of the normalizing constants are perturbed. But this is not important 

since we do not use the Gel 'fand-Levitan technique to solve the inverse eigenvalue'problem. 

We also remark that  the comparison spectrum and the normalizing constants need not 

satisfy the asymptotic requirements used by Levitan [15]'. On the other  hand, the per- 

turbation is of a very special kind. 

I t  is well known that  the smoothness of the solution is closely connected to the number 

of terms in the asymptotic expansion of the eigenvalues and the normalizing constants. In  

our problem we find that  as long as only a finite number of eigenvalues are perturbed then 

q and ~ have the same regularity properties. The reason is that  the difference q -- ~ has al- 

ways one derivative more than ~. 

6. Well.lmsedness revisited 

In the previous section we proved a global existence theorem, in the sense that  the 

perturbation of a finite number of eigenvalues may be arbitrarily large. In this section 
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w e  will show that  if the spectrum corresponding to a symmetric potential is perturbed 

slightly, then there exists a potential which gives rise to the perturbed spectrum. This is a 

local result and is similar to Borg's existence theorem, see [3, p. 71]. The main difference 

lies in the choice of norms and that  we obtain a very explicit well-posedness result. 

THEOREM 3. Consider the eigenvalue problem (1.2) where ~ is an integrable /unction 

and satisfies ~(x)= ~ (~ -  x) almost everywhere. Let ~j be the eigenvalues and set M = max ([ s 

~-I:t.' -'~t1 4 2 .10  : '~  $9M-11M* (6.1) 
t=0 

Then there e~ist a constant h and an integrable [un~ion q with q(x) =q(~ x) /or almost all x, 

such that 2j are the e~envalue~ o] {1.1). In  addi~ior~ 

lh-~l< 2-108+$8M+llM' ~-1'~I - ~11 (6.2) 
.~=0 

I I q -  ~11~-< 2 . 1 0  s+asM+llM' ~ [Jl t -- NIl (6.3) 
t=0 

Remark. I t  follows from the example in Section 3 that  we cannot replace the bound 

in (6.1) by 1 and still have estimates like (6.2) and (6.3). The bounds are very pessimistic, 

and in practice one should investigate the sensitivity of the solution by using an a posteriori 

perturbation analysis. The proof below is based on the existence result for the perturba- 

tion of finitely many eigenvalues and the well-posedness result in Theorem 2. 

Proo/. We will first consider the case in which 2j = 2~ for all j sufficiently large. Ac- 

cording to Lemma 1 there exist a constant h and an integrable function q(x) such that  2j 

are the eigenvalues of (1A). Let  6 = m a x  ( [ h - s  ~][q-~[[~). From Theorem 2 follows 

that  
4 1ha 10 e+ss<M+~'+n<M+~)' 5 [2,-:2,[ 

~-~ e a+b~+c~* 8. 

The question is now: what is the largest value of e = ~  [ t s -2 j [  for which we can estimate 

in terms of e? Since e exp (a +b~ +cJ 2) is a convex function of ~ we see that  it is enough 

to find the value of ~ for which e exp (a + b~ + c~ ~) is equal to ~ and its derivative is equal 

to 1. These conditions lead to 

= 0/e ~+~+~'. (6.5) 
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Let  z = 8c/b ~. From the explicit values of b and c follows that  0 < z < 0.03. By using the, mean 

value theorem in eq. (6,4) we see that  (~ = b-l(1 =l-Oz) -'1~' where 0 <0 < 1 and conclude that  

~>0.98]b. We also note tha t  bO+c5 ~ is equal to �89 + z - 1 ) ] z  and thus less than 1. By  

combining these results we find from eq. (6.5) that  if 

I ~, 0.98 

then we can estimate ~ by e a+' ~ 12,-2,1. Tins argument is only valid if the solution of 

the inverse problem depends continuously on the perturbed eigenvalues, but  th is  is a 

direct consequence of the algorithm in Section 4. Observe here that  we cannot  use Theorem 

2 unless we have an a priori bound for Ihl and IIqll,. To obtain the constants i n  (6.1), 

(6.2) and (6.3) we go back to base 10 and use elementary estimates. 

Assume now that  {~tj} are given and satisfy the inequality (6.1). Let  qn(x) be the sym- 

metric potential which corresponds to the eigenvalues 20, 2x ..... ~ ,  ~n+x .. . .  and let h n be the 

constant in the boundary conditions. By Using (6.3) and the triangle inequality we see that  

j=n+l 

where K only depends on []~[ and [[q[[r The same estimate holds for [h,~-hm[. This shows 

that  {hn} and {qn} are Cauchy sequences. There exist therefore a constant h and an in- 

tegrable function q(x) such that  h,-~h and qn-~q. I t  follows from the symmetry of qn t ha t  

q(x) = q ( ~ - x )  a.e. Because the eigenvalues depend continuously on the boundary condi- 

tions and the potential, see K. Jiirgens [11, w 5. Th. 3], we conclude that  2 s are indeed the 

eigenvalues of eq. (1.1). Finally we note tha t  since all ha and qn satisfy the inequalities 

(6.2) and (6.3) the same inequalities are valid for their limits. This completes the proof. 

7. Preseril~ boundary eonditlons 

In  this section we will show that  if the constant h in the boundary conditions is given 

then the lowest eigenvalue is superfluous. More precisely we will prove that  to each per- 

turbation of a finite number of the eigenvalues in the reduced spectrum there corresponds 

a potential. This is in some respects more general, in others less general than Borg's result, 

see [3, p. 71]. For example, in our case there is no restriction on the size of the perturba- 

tion of the eigenvalues and the boundary conditions can be perturbed as well. On the 

other hand, Borg permits a small perturbation of all the eigenvalues. Another difference 

lies in the class of potentials considered. Borg admits all square-integrable functions as 
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compa~son: potentials;: while we restrict= Our at tention tO potentials, which are: essentiall:~ 

bounded: This restriction is imposed by our method, of proof, and the result':can presumably 

be: ex tende4 to  all intograble comparison: potentials. 

L E ~  2. Consider the eigenvalue problem (1.2) where ~ is es8entiaUy bounded and 

satis/y ~(x)= ~(~-  x)/or almost all x. Let ~o, ~1,: .... be: the eigenvalues o/(1.2). Let the constant 

h and 21 <23 <... be given and assume that ,~ = "~/or all j >~ N. Then there exists an essentially 

bounded/unction q(,x),, which satisfies q(x) w q ( ~ - x )  almoat everywhere, such<that ]~ are the 

eigenvalues o] (1,1). 

Proo/. Le~ ~0 < 2 r  From Lemma 1 follows that  there exist a constant h and a function 

q such that  ~j are the eigenvalues of (1 ::l). Since ~ is essentially bounded we conclude from 

Theorem 2 that  IIqllo~ is fifiite. To prove Lemma 2 it is sufficient to show that  if h* is given 

and 2~ = ~j for all' j >~ 1 then there exists a ~0 ~ ~1 Such' that  

o) (7.1) 

Assume namely that  there exists a 3. 0 in ( - 0% ]1) such that  (7.1) is satisfied. According 

to Lemma 1 there exist a constant h and a function q such that  ~0, 2~1 ... are the eigenvalues 

of (1:1). We can then use eq. (4.5) and conclude by comparing eq. (1.7! and (7.1! that  h = h*. 

That  ~0 is uniquely determined from h and ~1, ~3 . . . .  follows from Corollary 2. 

Let h =h* be given. To show that  eq.. (7.1) does have a solution we will show that  the 

graph in Fig. 3 is quahtatively correct. Sinc e ~ is symmetric we see that  u ( z ) ~ -  1 and 

o5-->0 as 207~2r Thus the right-hand side of (7.1) converges t o -  co when ~0~]~. We will 

now show that  the right-hand side of (7.!) tends toward + oo as ~,--> - oo. Since 05 = -~ f i  - 

fi' we can rewrite eq. (7.1) as 

" ' "  1 ' "  

Consider the auxiliary equations ~0" + (l~01 -+. J[, ll = 0 with initial conditions ~0 -~ 1 and 

~0: = / / a t  x =0. If 20 is less than - ( 3 ] ~  I +0.1) 3 -Jl~lloo then it !ollows from Sturm's compari- 

son theorem that  
1 ~ 2 

~ < -  ~<- . ( 7 . 3 )  

W e  will~ now show :that ,1~2' is less t han  (4]~:}](~26 I':-~ [I qH o~) when :-~:2o~iS sufficiently 

large: ]~y combining~ this Tesutt with (,7.2): and (7.3) we see that  the right-hand side of  (7A,)' 
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tends to + o~ as 2o-+ - ~ ,  and the proof will be complete. Let q be a bounded function 

and let q0 be the solution of q0"= ( q - 2 ) ~  with initial conditions ~0 = 1 and q0' =h  at x = 0. 

We will' assume t h a t  

Let  ~v =qr T~ estimate q and to we use the  method of Successive approximations and define 

(Pn+l = 1~+ f[~,dt 

If ~o and  ~P0 are conHnuous funcgions theh~n and ~bn coriVerge uniformly to ~'and y~/Specifi: 

cMly we' choose 

% = i + h x +  ~-x ~ 

O~ 

~po=h+ ~x 

where g = : [ 2 [  = [ [q~  >~0. ThuS:~ l  -~o .  I t  follows f r o m  ( 7 . 4 ) t h a t  ~0 > 0..,Sjn,oe [~[ -~q> 

we can estimate :~  by 
, x x[ 3h~ 

Thus Yh >~Oo and we find by induction thab "~n ~>~o and ~Pn ~>~o and consequently ~ >~0 

and v2>~o. By evaluating ~o.at x=7~ and using (7 4) we see finally t h a t  1/~(~.) is less than 

4/(7ca). This completes the proof. 

The proof of Lemma 2 provides a numerical method for solviiig the inverse Sturm-  

Liouville problem with prescribed boundary conditions. A more practical ,technique is to 

find the ;root 2~'~f t h e  nonlinear equati0n in 'S teF4  ~ see Secti6rt:4. Here we nOte that  the 

calculations in Step 2~ need only be perforzned once for each,j > 0, and that  the modifica- 

tions in Step 3 ~ are  trivial: 

The resultw presented in this section ar e incomplete. : w e  have not ~rbved a global 

well-posedness result like Theorem2 nor a local existence result 5ke Theorem 3, In the case 

h=)~ Borg has obtained a local existence and well-posedness reSu{t; see :[3, "~). 71]. The 

graph in  Fig. 3 indicates that  if h - h  is very Iarge then the lowest eigenvaIue 20 is quite 

sensitive to small changes ofvh. 
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8. Fur ther  results 

The theory for the inverse Sturm-Liouville problem with fixed boundary conditions 

is in many ways simpler than the theory for mixed boundary conditions. The reason is 

that  the potential is uniquely determined by all the eigenvalues and can be constructed 

from this data, see Borg [3, p. 71]. We will therefore not present any details, but mention 

that  Hochstadt 's representation of q - ~  for the inverse Sturm-Liouville problem with 

Dirichlet boundary conditions can be extended by using the same method as in the proof 

of Theorem 1, thus permitting all eigenvalues to differ, see [8]. In this connection it  would 

be of interest to discover the weakest possible assumptions on the eigenvalues under which 

Theorem 1 is valid. The representation theorem leads naturally to Hochstadt 's algorithm, 

see [9]. Since the boundary conditions are fixed there is no need to modify the original 

algorithm. Finally we note tha t  Borg has given a local existence and well-poseduess result 

in the case q is a square integrable function and ~ ] i ,-- ~j]2 is finite and small. If q is only 

integrable then one can derive a well-posedness result like Theorem 2 but we have not 

been able to cast the result in an equally explicit form. 
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