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§ 1. Introduction

The main idea of this work is to analyze a-priori estimates for partial differential
operators using the theory of ideals of functions. Here I deal only with the 8-Neumann
problem; however, it is my belief that this type of analysis will be useful in deriving esti-
mates by algebraic methods in diverse situations (see for example Chapter 3 of [20a]).
In particular, by means of the Spencer sequence, a wide class of differential operators can
be reduced to the D-Neumann problem (see [30] and [3la]) which in turn seems to be
amenable to these methods.

The principal results proved here are Theorems 1.19 and 1.21, they were announced
in [20b]. To introduce this paper I give a brief review of those aspects of the 3-problem
and the 8-Neumann problem which motivated my work.

(1) This woik was done in part while the author was a Guggenheim Fellow. This research was
also supported by a National Science Foundation project at Princeton University.



80 J. J. KOHN

The 8-problem. Consider the inhomogeneous Cauchy—Riemann equations on a domain
Q in € To be explicit, let 2, ..., z, be holomorphic coordinates in C* and let z,=Re (z,),
y;=Im (2,), we set

o 1f@ — 0 o 1/ — 0
—=_|l—=V-1= d —=-|— ~1—=
oz 2 (3'7”1 V 3?/1) . 0% 2 ( i + a?/f)

as usual. Now, given functions a, ..., o, on (, the problem is to solve the equations
(1.1) e, j=1,..,n

and to study the regularity of the solution. Naturally, we must assume that the o, satisfy
the compatibility conditions
oo, _

1.2

0.

Using the notation of differential forms we let «=> a;dZ; the equations (1.1) are then
expressed by 0u =« and the compatibility conditions (1.2) by 8x=0.

We will assume that Q is pseudo-convex and has a smooth boundary (see § 2). Since
the system (1.1) is elliptic, the regularity properties of % in the interior of ) are well known.
Roughly speaking, on an open set Uc < a solution » restricted to U is “smoother by
one derivative” then o restricted to U. Regularity of 4 on the boundary is more delicate.
Notice that if A is a holomorphic function on  then u + % is also a solution of (1.1); thus,
“in general” the solutions of (1.1) will not be smooth on the boundary. The problem then
is to find some particular solution with good regularity properties at the boundary. In
[20d] and [20¢] the following result is proved.

TuaEOREM 1.3. If Q< C" is pseudo-conver with a C* boundary and if «,€C°(Q) and
satisfy (1.2) then there exists u € 0=(Q) which satisfies (1.1).

This result gives global regularity of solutions. The problem of local regularity is the
following: given an open set U such that the restriction of a to U NQ is smooth can we
find a solution w whose restriction to U N Q is also smooth. The answer to this question,
in general, is negative. In {20e] and also in § 9 of this paper, we show that singularities of
u can propagate along complex-analytic varieties contained in the boundary of €. More
precisely, for certain domains QO we can find an « so that local regularity fails for every
solution «. Our construction depends on the fact that the boundary of Q contains a complex-

analytic variety and it is this phenomenon that led us to the main results of this paper.
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D. Catlin, in [5], gives an example of a pseudo-convex domain in €? for which local regu-
larity fails and whose boundary does not contain any non-trivial complex-analytic varieties.

In recent years many results have been obtained concerning the regularity of solu-
tions of (1.1), on strongly pseudo-convex domains (see [16] for a survey of this field).
These results are concerned with estimates of Hélder and L, norms. In the present work
we study pseudo-convex domains which are not strongly pseudo-convex and our results

concern estimates of Sobolev norms.

The 8-Neumann problem. This problem was formulated by D. C. Spencer to study the
0-problem and other properties of the operator . Here we give a brief description of the
problem, for a detailed account see [13].

Let L8 %(Q) denote the space of square-integrable (p, ¢)-forms on Q. The inner product
and norm are defined as usual by

(14) (a,ﬁ>=1>:, fnoenﬁudV, and |||’ = (a, @),

where a= aydz;AdZ;, B=2 Budz; NdZ;, I=(ty, ..., %), J=(j1 o) 1<4<... <i,<m,
1<)y <... <jg<m, dzy=dzy A ... Adz, and dZ;=dz;, A ... Adz;,. Then we have

? 2
(1.5) L3 YQ) = L3) 5 LeP*(Q),

by & we mean the closed operator which is the maximal extension of the differential operator
and by &* we mean the L,-adjoint of . We define H*-?< L5 Y(Q) by

(1.8) -2 = {p€Dom (5) N Dom (¢*)|8p =0 and 8*p = 0}.

Observe that 3¢ is the space of holomorphic functions in Ly(Q). The 3-Neumann problem
for (p, q)-forms can then be stated as follows: given €L Q) with o L }H?-9, does there
exist ¢ € Dom (3) N Dom (8*) with dp € Dom (6*) and &*p € Dom (0p), such that

(1.7 8% +0*0p = a.

Observe that if a solution of (1.7) exists then there is a unique solution ¢ of (1.7) such that
@ L #:¢ We will denote this unique solution by Ne. If a solution to (1.7) exists for all
o L P9, then we extend the operator N to a linear operator on L5 Q) by setting it equal
to 0 on }?:% Then N is bounded and self-adjoint. Furthermore, if =0, then from (1.7)

6 — 782904 Acta mathematica 142. Imprimé le 20 Février 1979
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we obtain 88*dNa =0, taking inner products with N« we get |[0*@Nw|2=0 and hence
5*8Na=0. Thus we see from (1.7) that if dx=0 and « L }¥*? then

(1.8) «=2988"Na.

It then follows that 4 =#*Ng is the unique solution to the equation du =« which is ortho-
gonal to the null space of 2.

If the 3-Neumann problem is solvable on (0, 1)-forms and if f€L,(2) N Dom (3) then,
applying (1.8) to «=3f we can easily deduce that the Bergman orthogonal projection
B: Ly(Q)~ 09 is given by

(L.9) Bf = f—a*Nf.
Then the following result holds (see [17a] and [13]).

TuazorEM 1.10. If QEC" is pseudo-convex and if Q is compact then the d-Newmann
problem is solvable on (p, q)-forms for all (p, ¢} and H?*¢=0 when ¢>0.

Subelliptic estimates. These estimates are defined as follows.

Definition 1.11. If 2,€Q we say that the 8-Neumann problem for (p, g)-forms satisfies
a subelliptic estimate at z, if there exists a neighborhood U of z, and constants £>0 and
C >0 such that:

(1.12) lelle < Ciop)® + %)) + el

for all € DY Here D%? denotes the space of (p, g)-forms € Dom (2*) such that ¢, €
CR(UNQ), for all components @, of g. The norm ||p]|?=3 ||p, |5, denotes the Sobolev
g-norm.

The following theorem (see [21 b] and [13]), shows what implications this estimate has
for local regularity of the 8-Neumann problem, the &-problem and the Bergman operator.

TEEoREM 1.13. Suppose that Q< C" is pseudo-convex, the boundary of Q is C® and
that (1.12) holds at z,€Q. Then if a€LEYQ) and if « is smooth in a neighborhood of z,,
(s.e. a neighborhood in Q) then N is also 0= in a neighborhood of %, Also if (1.12) holds for
(0, 1)-forms, if fEL,(Q) and if f is C in a neighborhood of x, then so is Bf. More precisely,
if o and f are in H* in a neighborhood of x, then No is in H**%*, 3*Na is in H*** and Bf is
in H* in a neighborhood of x,.

In [19a], Kerzman showed how the above theorem can be used to study the regularity
of the Bergman kernel function.
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In case Q<X and X is a complex analytic manifold with a hermitian metric the
definitions given above extend in a natural way and subellipticity has several important
consequences. It should be noted that, according to a result of W. Sweeney (see [31b]),
the validity of (1.12), is independent of the choice of hermitian metric (even though the
space D% does depend on the choice of metric). We refer again to [21b] and [13] for a
proof of the following.

THEOREM 1.14. Suppose that Q< X, where X is a complex analytic manifold with o
hermitian metric, suppose also that Q has a C® boundary and that every point in Q has a
neighborhood such that (1.12) holds. Then the space 9 is finite dimensional and oll of its
elements are C® on Q. Furthermore, the operators N, &*N and B have the same regularity
properiies as in Theorem 1.13.

We will consider the estimate (1.12) on (p, g)-forms for domains which are pseudo-
convex and when ¢ >0. It will be shown in § 2 that the validity of (1.12) is independent of p.
The estimate (1.12) is always satisfied when £<0 and it cannot be satisfied for any ¢>1.
Denote by £%(c) the subset of Q such that there exists a neighborhood U of z, for which
(1.12) holds whenever ¢ € D¥°. Then we have

EYe)= £%’) whene>¢'
For £=1 the estimate (1.12) is an elliptic estimate and we have

Q ifg<n

(1.15) 450(1)={ﬁ dgmn

the reason for this is that (1.12) is elliptic in the interior for all ¢ and for ¢ == the space
D%™ consists of (p, n)-forms all of whose components vanish on the boundary of Q. It
follows from the general theory of subelliptic estimates that if x,¢ £%(1) then z, ¢ £%¢) for
&£>14, see [17b].

The next case is when ¢ =4 and we have the following result (see [17a] and [13]).

THEOREM 1.18. If Q is pseudo-convex and if x,§ E(1) then the following are equivalent

(a) z, € E%(3)
(b) x, €5Q (bQ denotes the boundary of L2), ¢ <n and the Levi-form at x, has at least n —q

positive eigen-values.

The definition of the Levi-form will be recalled in § 2. The case ¢=3% has received a
great deal of attention in the last few years. In this case there are very precise estimates
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in terms of Holder and L, norms (see, for example [16], {15b], [19a], [23] and [22]), also
real-analytic hypoellipticity has been established (see [28], [8] and [29]). Furthermore,
asymptotic expansions of the Bergman kernel function have been obtained (see [12], [3]
and [18]). When ¢ <} such results are not known yet except in some special cases (see [6a],
[15], [22] and [26]).

The next ease for which (1.12) can be completely analyzed is when ¢=»—1. The

result is the following

TrEOREM 1.17. If Q is a pseudo-convex domain contained in an n-dimensional complex

analytic manifold X then the following are equivalent.

(8) 2, € EY1/m), m an integer.
(b) If V=X 1is a complex analytic manifold of dimension n—1 and if 2 €V then the

order of contact of V to bQ at x, is at most m.

The proof that (b) implies (a) is given in § 8 (Theorem 8.1). In the case n=2 a some-
what weaker result is given in [20e]. Greiner in [14] showed that (a) implies (b) when n =2,
a proof along the same lines establishes the general case (we do not include this proof in
the present paper, it will be part of a more general treatment of necessary conditions).

When ¢ <n —1 the determination of when (1.12) holds for a given ¢ seems to be ex-
tremely complicated. What we do here is to give up the attempt to analyze (1.12) for a
fixed ¢ given a-priori, but instead we find conditions for (1.12) to hold for some £>0.
When our conditions are satisfied we only have a very rough estimate on the size of &.
Setting
(1.18) E'=U &%),

. &>0
we state one of our principal results in the following theorem.

THEOREM 1.19. Suppose that Q is pseudo-convex, that x,€bQ, that in a neighborhood
of xy the boundary is real-analytic and that there exists no complex-analytic variety V of dimen-
ston greater than or equal to q such that xy€ V< bQ). Then xy€ £, i.e. the estimate (1.12) holds.

The above theorem is proven in § 6, here we will indicate the method of proof. In § 4
we introduce the notion of a “subelliptic multiplier”’, this is a C® function f defined on a

neighborhood U of %, such that there exist positive &£ and C so that

(1.20) Ifgllz < Cllidel®+ 2% 11" + liell®)
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for all p€ DF°. We denote by I%z,) the set of germs of multipliers satisfying (1.20). It is
then clear that z,€ £ if and only if 1€ I%x,) and that if z€Q, f€ I%(x,) and f(x)==0 then
z€ £% We then prove, in § 4, that I%z,) has the following properties:

TuroreM 1.21. If Q is pseudo-conver, with a C® boundary and if x,€C) then we have
(a) I%zy) is an ideal.

R R
(b I9(xg) =V I%(zy), where VI4(xg) = {f| there exists g € 1%o) and m such that |f]™< |g]|}.
(¢) If r=0 on bQ then r€ I%z,) and the coefficients of dr A dr A (88r)*? are in I%(z,).
(d) If 1y, «oes facq € I%m,) then the coefficients of Of; A ... Nof, Adr Adr A (28r)™1, with
i<n—gq, are in I%z,).

It is then natural to define the ideals I{(#,) inductively as follows

R
(1.22) Uao) = V{(r, coeff {or A &r A (20r)"~ 7))
R

1) = ViTimo), Af(20)),

where
(o) = coeff {0f, A ... ANOf;NOr Aor A (00r)2~1}.

Here f;, ..., fn_e€ If(%,) and j<n—gq, coeff. { } stands for the germs of the coefficients of
the set of forms { } and ( ) stands for ideal generated by the sets appearing inside the
parenthesis.

It then follows that If(z,)< I%x,) and hence 1€ I{(x,) implies 2, € £% In § 5 we study
the geometric meaning of these ideals, they appear to measure the maximum order of
contact that a complex analytic variety of dimension g through z, can have with the
boundary of Q. One must distinguish here between the order of contact that can be achieved
by complex analytic manifolds and by complex-analytic varieties. Consider, for example,
a pseudo-convex domain in (® whose boundary, near the origin, is given by the function r,
defined by:

(1.23) 7(21, 23, 25) = Re (23) + | — 2|2 +exp [ (|2 |2+ |22 + | 28] )]

The order of contact, with =0, of simple complex analytic curves at the origin is at most
6; but the curve defined by z; =0, 2} =2} has infinite order of contact. Such behaviour has
been studied in [2]. In this case, for x€bQ and x<4=0 the maximum order of contact of all
complex analytic curves is at most 2. In a forthcoming publication we will show that
in the domain defined by » <0 there is no subelliptic estimate for (0, 1)-forms at the origin,
ie. 0¢ &L
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Returning to Theorem 1.19, when the boundary is analytic near z, we restrict our-
selves to germs of real-analytic functions in the definition of the ideals I§(x,). We then
use the theory of ideals of real analytic functions to show that 1€ I{(z,) for some & is
equivalent to the non-existence of real-analytic varieties of ‘“holomorphic dimension’
(see Definition 6.16) greater or equal to g contained in the boundary near x,. We then
apply a theorem of Diederich and Fornaess (see [9]) to show that this is equivalent to the
non-existence of complex-analytic varieties of dimension greater than or equal to ¢. Finally,
we apply a theorem due to Fornaess {(see Theorem 6.23) which shows that not having
g-dimensional complex analytic varieties in the boundary arbitrarily close to x, is equivalent
to not having a g-dimensional complex analytic variety through , in the boundary.

In § 7 we consider the special case of domains whose boundary is given by

m
{(1.24) (21, - 2) =Re(2,) + 2 |byl2y, ..., 2,) P +a=0
=1

where hy, ..., h,, are holomorphic functions and ¢ €C. For these domains, if r(20)=0 we
construct a sequence of ideals of germs of holomorphic functions J§(2?) such that 1 €J§(29)
if and only if there is no complex analytic variety of dimension greater or equal to ¢ through
2° which lies in r=0. This is also equivalent to the condition that the dimension of the
variety {z|2,=2n, h,(z) =h,(2°) for j=1, ..., m} is less than q. Our construction leads us to
a formula for the dimension of a complex analytic variety (see Theorem 7.10).

In this article we do not take up the question of necessity. The problem is to prove
that if Q is pseudo-convex then zy € £ implies 1€ If(x,) for some k. We can prove this for
very large classes of domains, but as yet we do not have the proof in general. In [10],
Egorov announces a result which implies that if there is a non-singular complex-analytic
curve through z,€b(}, with contact m then x,¢ ££) when & >1/m. This result implies the
converse of Theorem 1.19 in the case g=1; for if a complex-analytic curve is contained
in the boundary then at every regular point z in the curve we have x ¢ £'(e) for ¢>1/m
for all m, thus x ¢ £ for all regular points and hence for all points of the curve. In [22],
Krantz shows that the type of condition considered by Egorov is necessary for subel-
lipticity in the sense of Hélder estimates when g=n— 1.

I am greatly indebted to J. E. Fornaess, R. C. Gunning and J. Mather for several
discussions which were very helpful, especially in the study of ideals of functions. I also
wish to express my thanks to L. Hérmander and H.-M. Maire who read the original version
of this manuscript and suggested several revisions, corrections and clarifications which

have been incorporated in the present text.
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§ 2. The basic estimate on pseudo-convex domains

In this section we recall the basic estimate for the d-Neumann problem on pseudo-
convex domains (for a detailed exposition of this material see [13]).

Let X be an n-dimensional complex-analytic manifold with a hermitian metric. Let
Qc X be an open subset of X and let bQ denote the boundary of Q. Throughout this
paper we will restrict ourselves to domains Q such that b€ is smooth in the following sense.
We assume that in a neighborhood U of bQ there exists a C® real-valued function r such
that dr==0 in U and r(x) =0 if and only if  €bQ. Without loss of generality, we shall assume
that r >0 outside of Q and that » <0 in Q. For € X, we denote by CT, the complex-valued
tangent vectors to X at # and we have the direct sum decomposition €7, =T%°® T%?,
where T+ and 7%* denote the holomorphic and anti-holomorphic vectors at = respectively.

We denote by AZ'? the space of (p, g)-forms at x and by {, >, the pairing of 4% with
its dual space, we will also denote by {, ), the inner product induced on 4% ? by the hermi.
tian metric and by | |, the associated norm. We will denote: by 7'+°, 71 and A4”¢ the
bundles with fibers T+°, T7%! and A% respectively; by I'(T1-°, U), ['(T°'1, U) and T'(4?9, U)
the spaces of C sections of these bundles; and by TF° T, 427 the set of germs at x
of local O sections of these bundles. Finally we will set 4?-9=T'(4%-9, Q), that is (p, q)-
forms which are C* up to and including the boundary.

Definition 2.1. If 0€ AL, we define the map int (f): A% %> A2 %! ag follows, given
@€ A2 then int (6)p is the element of A2'?~! which satisfies

(2.2) <int (0)@, 0y, =<, O Aw);

for all w € A2%°. Thus the map int (6) is the adjoint of the map given by w+>0 A w.

For each x€ X we denote by (dV), the unique positive (n, n)-form such that: | (dV),| =1.
We call dV the volume element. If z€bQ) we define (dS), to be the unique real (2n—1)-
form on bQ such that (dr), A (dS), = |dr|.(dV),. If ¢, y € A**? we define the inner products:

2.3) (@, %)= fn (@ BT

(2.4) %g, p) = f 7 9@9),

and the corresponding norms:

(2.5) l@ll2 = (p: ¢) and ®jp||2 = %@, ¢).
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The subspace DP'¢=D"4Q) of 4" is defined by:

(2.6) D% = {p€ A" (int (Or)p), =0 for z€HQ},
The operators 3: A4?+?— 479+ and 3* D? %1 4°:9 then satisfy

(2.7) (g, *y) = (@, y),

for all p € 477 and p € D7 %41, It can be shown that D?-?9= 479N Dom (2*), see [13].
The quadratic form @ is defined on D?'¢ by:

(2.8) Q. v) = @, p) + (@@, 2*y) + (@, ¥),
for ¢, y€ D"

Definition 2.9. If £€bQ we denote by CT(6€2) the space of complex-valued tangent
vectors to bQ, i.e. CT(bQ) is the subspace of CT', consisting of all 8 such that S(r)=0.
We set T%°(bQ) =CT,(6Q) N T+° and T1(6Q) =CT,(bQ) N T

Definition 2.10. The Levi-form is the quadratic form on T%°(3Q) denoted by L£,(L, L')
and defined by:
(2.11) CAL, L'y ={(8dr, LAL",, where L, L' € Ty°(bQ).
We say that Q is pseudo-convex if for each x €bQ) the form L, is non-negative.

If x,€bQ then there exists a neighborhood U of x, such that on U N Q we can choose
C= vector fields with values in 79, which at each point z€ U N Q are an orthonormal
basis of 70, Let L,, ..., L, be such a basis, then for each z€ U N Q we have {(L,);, (L,);>: =
8. We wish to write the operators @ and * in terms of this basis. Let wy, ..., w, be the
dual basis of (1, 0)-forms on U N, so for each 2€ U NQ we have {(w,);, (L;)>; =08, We
denote by L, ..., L, the conjugates of the L, (i.e. L(f) =17f)), these form an orthonormal
basis of 70 on U N Q and @&y, ..., &,, the conjugates of the w,, are the local basis of I'(4°1,
U n Q) which is dual to L,, ..., L,. If g is in ,4?? then on U N Q ¢ can be written as follows:

(2.12) Q= z’?’uwl A @y,

where I=(i,, ..., %), J =(fy, ..., Jq), the 4, and j, are integers between 1 and »n. The symbol
>, signifies that the summation is restricted to strictly increasing p-tuples I and g-tuples
J. The forms ®; and &; are given by

(213) w1=(l)h/\ P /\wip a:nd (Z)] =cT)h/\ .o /\J)Iq‘
We then have

(2.14) op=(—123' ,Z L)) 0y A @y A @5+ 22 fHL @1y 0y A @O,
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where H and L run through increasing p-tuples and {g+1)-tuples respectively. We also
have:

(2.15) o p=(— l)pH Z' ,Z L@ ) 0, N g+ > ggK%JwH A Bg,

where the summations are over increasing ruples (I and H run through p-tuples, J through
g-tubles and K through (g —1)-tuples) and

0 ifjEK

{2.16) Prix= 7K) p
Sgn(<y'K> Prixs; I 7EK,

here (jK) denotes the increasingly ordered g¢-tuple with elements (j, &y, ..., k,;) and
sgn ( <;,II§>) is the sign of the permutation taking jK to {(jK). The coefficients f}; and giix

are C® functions on U N Q.

We fix r so that |or|,=1 in a neighborhood of Q. For x, €b, in a small neighborhood
U of x,, we choose w,, ..., w, to be (1, 0)-forms on U such that w, =0r and such that {w, w,>
=¢, for x€U. We then define L,,...,L,, L,, ..., L,, @,, ..., ®, as above. Note that on
U nb&2, we have

(2.17) L) = Ly(r) = éyn.

Thus L, ..., L,_,y and L,, ..., L,_, are local bases of T1-%(U N bQ) and T°-YU N bS2) respec-
tively. We define a vector field T on U N bQ with values in CT(U N bQ) by:

(2.18) T=L,-L,.

Observe that Ly, ..., L, 1, Ly, ..., L,_,, T are a local basis for I'(CT(U n bQ). We denote
the Levi form in terms of these bases by:

(2.19) cuy(@) = <88r, LA L,

for ¢, j=1, ..,n and x€ U N Q. On bQ, for ¢, j<n we have

1

n-1 n—
(2.20) [L;, Lj] = CU T+ % af[ Lk + % b;chk,

where [L,, L,))=L,L,~L,L,, as usual.
If 9 € 479 then, in terms of the local basis, the condition (2.8) is expressed as follows:
@ € D?-? whenever

(2.21) ¢u(x) =0, when n€J and z€HL.

Here ¢;; denotes components of ¢ in (2.12) relative to the local basis defined above.
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If U is an open subset of X then the space D% which is defined in connection with

(1.12) is also given by:
(2.22) D% = {p€D* | supp (p)< U NQ}.

THEOREM 2.23. (Basic estimate.) If x,€bQ and Q is pseudo-convex then there exists o
netghborhood U of x, and a constant C >0 such that

(2.24) ”‘P”: +2 ‘Z’ J;n ¢y @112 P1,12 98 < OQ(p, )
for all € D%, with ¢=>1. Here |||z denotes the norm given by:

(2.25) el = 2L @ull®+ ol
Obgerve that if w€CP(U N Q) with u(x)=0 on U NbQ, then

(2.26) 2 ||Lsu||? < const. (3, [|Lyu||2+||«||?),

where the constant is independent of «. Hence we have

(2.27) lullf < const. ||u|Z,

for all u satisfying the above. Here ||u[|, denotes the Sobolev 1-norm, i.e. the sum of the
Lg-norms of the first derivatives of u. Combining this observation with (2.21) and (2.25)
we obtain

(2.28)
"‘P”: +2, "‘I’I.nx"? +3

n-1 2
’Zl Ly(er, 1x) ! + Z' ‘ZI fm Cyy P1,1x P1,1x S < const, Qe, ),

for all ¢ € Dy with ¢>1, since the third term on the left is bounded by

(2.29) const. ([|[&%||* + 3, |lrnelli+ Il

and hence by const. Q(¢, ¢).
Notice that conversely we have

)-

for all ¢ € DE Y. This inequality is a consequence of the definitions and holds without the

(2.30) Q(g, @) < const. (”cp”§ +{>' ‘2;, fm ¢y Pr.12 Fr. 2 S

assumption of pseudo-convexity.
The estimates that we will derive will be valid for (p, g)-forms if and only if they are
valid for (0, g)-forms, by virtue of the following.
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LeMuMa 2.31. Let E be a norm on CF(U N Q) and denote also by E the norm on D¢
defined by:
E(p)? =Z E(pn)*

Then the following are equivalent. There exists C >0 such that
(2.32) E(p)P < CQ(p, ), for all p€ DY*;
and there exists C >0 such that

(2.33) B2 <0Qy,y), forall peDY°

Proof. The inequalities (2.28) and (2.30) show that @(p, ¢) is equivalent to

2
+2'> f cyPr, 1K¢t,;xds},
£ 41Jen

n-1
> Ly(¢r,sx)
j=1

@39 S{S lpull + Sloaalt+ 3

thus (2.32) is equivalent to the sum (over I) of the inequality (2.33) applied to € D¥?
With QpI=Z‘I] (p”d-)].

Remark 2.35. In the case of (0, 1)-forms on pseudo-convex domains the third term
in (2.34) i8' || 23" L,p,||? which is dominated by Q(g, ¢). It is important to note that
21| Lyg,||2 is in general not bounded by Q(p, ¢): (relative to any basis L,, w,) as can be

seen in the case of Q< C*, where r near the origin is given by
(2.36) r(z) =Re (zg) + |2 |® + |41 +28 |2 + |2s|*.

These types of bounds are studied by Derridj in [7].

§ 3. Tangential Sobolev norms

In our study of (1.12) we will use tangential pseudo-differential operators on U nQ,
with U a neighborhood of 2,€b(). These will be expressed in terms of boundary coordinates
which are defined as follows.

Definition 3.1. If 2,€bQ2 we will call a system of real O coordinates, defined in a
neighborhood U of x,, boundary coordinates if one of the coordinate functions is r. We will
denote such a system by (¢, ..., {,_;, 7) and we call the ¢, tangential coordinates and » the
normal coordinate.

For w€CP(U N Q) we define i, the tangential Fourier transform of u, by

(2.3) ﬂnﬂ=f e~ Tult, r)dt,
Rﬁn -1
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where
T = (Tl, evey 127!.—])’ t= (tl’ eeny t2n—1)’

tv=2t7, anddt=dt,, ..., dly, ;.

For each s€R we define A°u by:
(33) Atufr, )= (1+| sy, ),

where |7]2=3 1}.
Further, we define |||u|||;, the tangential s-norm of u, by

(3.4) Il = f’w fRzn_llAsu(t, »)Pdedr.

Of course, if s is a non-negative integer, then |[ju||[; is equivalent to 3, <, || Dfu||?, where
o=(0y, ..., %y,_;) and the subscript ¢ denotes differentiation with respect to the tangential
variables.

Definition 3.5. P is a tangential pseudo-differential operator of order m on CP(U N Q)
if it can bo axpressed by:
(3.8) Puy(t,r)= f e "p(t, r, T)d(r, 1) dr.
Rﬂn—l
Here p€C*(R?* x R*-1), where R*" consist of (f,r)ER?" with r<0. The function p is
called the symbol of P and satisfies the following inequalities, for multiindices o= (a, ...,
ogn), B=(By, ..., Ban_y) there exists a constant C =C(a, ) such that:

(3.7) | D*DEp(t, 7, 7)| < C(1 + |z|)" 1A,

Both, tangential s-norms and tangential pseudo-differential operators have natural
extensions to the space &(R?"), i.e. the space of C® functions all of whose derivatives are
rapidly decreasing.

ProrosiTION 3.8. If P i3 a tangential pseudo-differential operator of order m then
for each s€R there exists C,>0 such that:

(3.9) NPulll, < Clllulllsn  for ak ue @),

Furthermore, if P* is the adjoint of P then P* is a tangential pseudo-differential operator of
order m and if p and p* are the symbols of P and P* then p—p* is the symbol of an operator
of order m—1. If P’ is a tangential pseudo-differential operator of order m' with symbol p’,
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then PP’ is a tangential pseudo-differential operator of order m+m/'; if g is the symbol of PP’
then pp’ —q is the symbol of an operator of order m+m’ —1. Hence, the commutator [P, P'] =
PP’ —P'P has order m+m' —1.

The proof of the above is exactly the same as the proof of the corresponding properties
of pseudo-differential operators. The only tangential pseudo-differential operators which
are used in this paper are the elements of the algebra generated, under composition and
taking adjoints, by the A® and the tangential differential operators (i.e. operators of the
form ) a,(t, r) Df, where the a, and all their derivatives are bounded). These will arise
because the subelliptic estimate (1.12) can be expressed entirely in terms of the tangential

e-norm. More precisely, we have the following proposition.

PrOPOSITION 3.10. If 2,€bQ then x € £%¢) if and only if there exists a neighborhood
U’ of @y and constant C' >0 such that

(3.11) llelll: < C'Qe. @), for all p€ DY

This proposition is an easy consequence of the fact that bQ is non-characteristic with
respect to @, see [21b].

§ 4. Ideals and modules of subelliptic multipliers

For 2,€Q and U a neighborhood of x, we wish to study functions f € C®(U N Q) which
satisfy (1.20). For x,€bQ (or near 6Q)) the inequality (1.20) is equivalent to the following:

(4.1) lIl/®|ll3 < CQp, p), for all p€ DY,

which is a consequence of Proposition 3.10.

Observe that if /' is a function defined on a neighborhood U’ of x4, such that f=f'
on UNU’ then } satisties (1.20) or (4.1), for all ¢ € Dy iy Thus, denoting the set of germs
of O« functions at x, by C®(x,), we are led to the following definition.

Definition 4.2. For 2,€Q we define I%x,)< C®(x,), the subelliptic multipliers at
as follows. f€I%zx,) if and only if there exists a neighborhood U of #, and constants £>0
and C >0 such that (1.20) holds. Here we denote by f both the germ at x, and a representa-
tive of this germ defined on a sufficiently small U.

It is a consequence of Lemma 2.31 that the sets I%x,) are independent of p.

Definition 4.3. To each z,€Q and ¢>1, we associate the module M%(x,)< 4%(x,),
which is defined as follows. ¢ € M9x,) if and only if there exists a neighborhood U of z,
and constants C >0, ¢ >0 such that:

(4.4) lint (&)p||3 < CQ(p, @), for all p € DE.
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As above, if z, is near bQ we can replace || ||, by ||| [||s in (4.4). Here again, o stands both
for the germ at z, and a (1, 0)-form on a sufficiently small U representing the germ.

R
Definition 4.5. If J< C®(x,), then the real radical of J, denoted by VJ, is the set of
all g €C®(x,;) such that there exists and integer m and an f€J so that

lg1" <1/l
on some neighborhood of x,.

Definition 4.6. If S< A%z, then det, 8 is the subset of C®(z,) consisting of all f

that, for 2 near x,, can be expressed by:
f(x) = (Y (@) A ... Ad¥(), O(x)>,,

where g1, ..., 0*€8 and 6 € 4% (x,).
The following proposition gives information about I%x,) and M%x,) which will enable

us to prove Theorem 1.21.

ProrosiTION 4.7. If Q is pseudo-convex and if x,€Q, then I%(x,) and M%x,) have the
following properties.

(A) 1€I™x,) and for all q, whenever 2,€Q, then 1€ I%(x,).

(B) If 2,€bL, then r€ I%x,).

(C) If xy€bQ, then int (6)8dr € M%(zx,), for all § € A% 1(x,) such that {6, or> =0 on bQ.
(D) I%z,) 18 an ideal.

(E) If f€I%a,y) and if g€C®(x,) with |g| <|f| in a neighborhkood of z,, then g€ I%x,).

R -_
(F) I%xo) =V I%(x,).
(G) 8I%xzy) = M%z,), where 8I%xy) denotes the set of Of € AY-%xy) with f€ I%(x,).
(H) dety_g4q M(zo) < I%().

Observe that, due to (A), the properties (B) to (H) are non-trivial only when ,€b.

Proof of (A). If € D*'" then ¢ =0 on bQ2 and hence (1.20) holds with e=1. If z,€Q
choose U so that U N bQ =@, then (1.20) again holds with e=1 since supp ()< U.

Proof of (B). We choose U so that r is defined on U, and we have
(4.8) Irg||3 < const. [jre||? < const. ||p||; < const. Q(g, ¢).

The following lemma will be used in the proofs of (C) and (G).
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LEMMA 4.9, Let Ly, ..., L, be the special local basis defined in a neighborhood U of
2,€bQ and characterized by (2.17). Let u, v€CF(U N Q), then we have

(4.10) (Lyu, v)= — (w, Liv)+ 8, |  ubdS + (u, g,,),
o0
where g,€C°(U n Q).
Proof. In terms of a boundary coordinate system we have

ou ou
_ S g9 ou
Liu=3 a atk+b’ar’

where b, =4, on b}, hence
(Lyw, v) = (u, Ly v) +06,, | uddS,
o0
where
oaf a5,)

Lfv=~Lv- il
Fv Ly (%&‘k-l-ar v

so (4.10) follows.

Proof of (C). We will use the special local basis in U N described in section 2. It

suffices to prove (C) in the case 8 =@, for k=1, ..., n —1. We have:
(4.11) 657':20“(”‘/\ d)’,
1.1

where the ¢, are given by (2.19) for 4, j=1, ..., », hence for ¢, j=1, ..., n —1 they satisfy
{2.20). Then

(4.12) int (&,) 00r =Y ¢y w,.
{

If € DY, then

(4.13) P=2"9;
and
(4.14) @;=0 on b2 whenever n€J.

Now setting

(4.15) =Y c,w, fork=1,...,n=1; we have
1

(4.18) int{(¢*)p= Z ‘2 Co Pix P
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To prove (C) we will show that
(4.17) lllint () @[} < CQ(p, ¢), for all p€DE? and k=1,...,n—1.

We will first show that there exists C' >0 such that

(4.18) IZ (CocPixs D’“k)l< c (Q(‘P: P+ kZ “’”%“2 +i kZ J;nctk Uy Uy dS) ,

ik

for all p€ DY? and w4, €CX(U'NQ), k=1, ..., n—1; where, U’ is a neighborhood of U and
D is any first order differential operator. It will suffice to prove (4.18) in the cases when
D=L, and D=L, i=1,..,n. For D=L, (4.18) follows by applying the Schwartz in-
equality. Similarly, if D=L, with i <n we first apply (4.10), then the Schwartz inequality
and (2.28). Finally, if D=L, we obtain by use of (4.10):

(4.19) iZk (e @iz Ly we) = ’ g mctk Qg % dS + 0(”9’“2(2 ”'“A ”)),

here the term ¢=n does not appear in the boundary integral since ¢,z =0 on bQ. Since the

Levi-form is non-negative, we have

(4.20) , 2 cik‘piKaklg( 2 Ctk¢’tx¢kx)1/2( 2 Cu u; ),
f.k<n i, k<n f.k<n

on bQ. Then (4.18) follows by integrating the above over the boundary and invoking
(2.28).
We will use (4.18) with u; defined by

(4.21) Uy =IZ e L8 @y,
<n

where {E€ECP(U’), {=1 on U and 8° is a tangential pseudo-differential operator of order 0.

First, we show that

(4.22) %“u,,llg + Lkzq J;n e %y T 48 < const. Q(g, @).

The first term is estimated by:

(4.23) l|lell? < const. [|£S%)|2 < const. Q((S%p, {S8%) < const. Qp, @).
To estimate the boundary integral, we have on b(Q:

(4.24) S Cpuith, < const. > |u)?
k<n

t,k<n
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and, using the Schwartz inequality, we obtain
(4.25) > |ukl2= 2 ¢pl8°pzu, < const. ( D, G/kcso%xfso%x)m( > |uk12)1/2:
k<n k., j<n k.j<n ) k<n
hence

(4.26) > g <const. > ¢ L8%px L8Pk
i, k<n kj<n
Thus, by (2.28), the integral over the boundary (4.26) is bounded by const. Q({S%, {S%)
and hence by const. (¢, ¢); which concludes the proof of (4.22).
Putting all this together, and replacing D by 9/ét,, in (4.18) (with m <2n), we obtain

(4.27) ,,_%; (C:k Pixs 3%;; 8%y ‘I’m)) < const. Qg, @),
where we have replaced (9/ét,,)¢,L8%;x by £(8/6t,,)8%(cyp,z) ({ does not appear in (4.27)
since it is one on the support of ¢); the difference between these terms is O(||p||) and hence
dominated by the right hand side.

We will now conclude the proof of (C) by showing how (4.17) follows from (4.27).
Set 8= —{g/at,;) A1 in (4.27) and sum over m. Observe that

2n-1 62
(4.28) - ? 87;"‘,, A T=AT—A"Y,
and hence
(4.29) Ek: IIIFT Cix <P(x|||§/z = Is%; (o Pus Al(c/k ‘Plx))l < const. Q(p, ¢);

which establishes (4.17).

Proof of (D). Property (D) follows immediately from the following inequality. For
any g€C>(0) there exists C >0 so that:

(4.30) Mgzl < il =il

for all x€CP(UNQ). Thus if f€I%x,) and gEC®(x,) we can conclude that fg€ I%z,) by
replacing  with fp in (4.30), with ¢ € D% and U suitably small.
Property (E) is a consequence of the following lemma.

Lemma 431, If e<l, f, g€0=(U) and if |g| <|f|, then
(4.32) [llgellle < {[[ e[l +const. [ju]]
for all w€CPU N Q).

7782904 Acta mathematica 142. Imprimé le 20 Février 1979



98 J. J. KOHN

Proof. The operators [A¢, g] and [f, A¢] are of order ¢—1 and hence bounded in L,

so that we have
(4.33) gl = | Astgw)|| = llgAsw|| +O(lw])

and

llgAcull < |IfAsu]] = ||| full+OC(l«]),

which gives (4.32).
For the proof of (F) we need the following lemma.

LEMMA 4.34. If 0<8<1/m, then there exists C >0 such that
(4.35) IHlgells < [Hlg™e{fms + Yl
for all w€CF(U N Q).

Proof. Proceeding by induction we assume that the left hand side of (4.35) is bounded
by |||g*%|||xs + const. ||u|| for & <m. Then for any j, with 0<j<k and (k+7)0 <1, we have

g wllls = (g A%, g+~ A%2u) +-O(|ul|?)
<Ig**wlllocnolll g™ wlllee-na +OClJel]?)-

If m is even we obtain the desired estimate by setting k=j=m/2.
If m is odd, set k={m+1)/2 and j=(m —1)/2, we then have

g lll5 < Illg™]llms llg|lls + const. o,

which proves the desired inequality (4.35).

R
Proof of (F). If g€VI(x,) then on some neighborhood U of z, we have |g|™<|f|,
where f satisfies (4.1). Hence, combining (4.1) with 4.31 and 4.34 we obtain

(4.36) |99 ]||2m < const. Q(p, @),
for all ¢ € DY % Therefore, g € I%x,) which proves (F).

Proof of (G). By Lemma 2.31 it suffices to consider g€ D% Then, if f€I%x,) and

satisfies (4.1) we have

(4.36) int (o) p = 3 3 LN dn,
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where ¢ is given by (4.13). Thus,

(4.37) lint @ llls = I3 (LD sl
Setting
Yr= ; (L) ixs
we have
(4.38) I (s ) el = Z (AL N g, A’y)

= IZ (L Y A @i, Awg) + Ol pll2o-a || vl

= ,Z (tL Aa(ler Nyg) =2 (fA6¢JK’ L Ad'/’x)

3
+O(lll follesllwzll + @ lllos-1 v )
=(- ’Z Lygies A%(fyg)) — 12 (A*(fgsx), Lyyy)

+O(ll follls + @ lllEs-1 + | @ I®),

99

where the term |||@]|l;s_; in the second line arises in estimating ||AS[AS, L,flp|; the
third line is obtained by an application of Lemma 4.9, the boundary term does not appear

since Al@, =0 on bQ). The new error terms on the fourth line come from the last term in

(4.10), that is
(A%, 9, Ayg) = (A%(f i), g,wx) + O(||| @ Hlas—1 1wl

here the term |||¢]||ss_; comes from commutators as above. In the last line of (4.38) we

have used yx=0(||¢||). Now, from (2.15), we have
(4.39) 12 L gixll <12 gll + const. [l ]I

From the definition of ¢, we obtain

(4.40) | A2 (fpg)l| < const. (1| |flas + || #ll2s—s)s
and
(4.41) |Lwk|| < const. ||@]|=.

Setting £ =20 and combining the above, we obtain

(4.42) [Ilint @)¢ |||z < const. (|| fe [z + Qo> 9

hence property (G) follows from (4.1).
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For the proof of property (H) we will need the proposition given below. The case
g=1 is somewhat simpler then the case of other g¢.

Definition 4.43. If (a,;) is & matrix with ¢, j=1, ..., n and if I and J are two m-tuples of
integers between 1 and n; we define the m x m matrix (af}) by

atljl cen a,ljm
(4.44) (@if)={ : : ,

a,m,l e a‘m!m

where I =(iy, ..., ty) and J =(jy, ..., j,). We then define a norm ¢™(a,,) on the mth exterior
powers by

(4.45) 0™(ay) = (2| detai) )*",
LJ
where the sum runs over all m-tuples I and J; and ““det” denotes the determinant.

PRrROPOSITION 4.46. Suppose for each €U N Q, that (a,(x)) is a semi-definite matriz,
and that wy, ..., w, form a basis of the (1, 0)-forms on U N Q; then there exists C>0 such that:

(4.47) 5"_“1 (ay(z (@) 2’ |<PJ ‘ 02‘:' ‘Z!au(x) O1x() Pjx()
for all z€U N Q) and all g€ A% YU N Q).

Proof. At each x we define the inner product ¢ , ), by (w,(x), w,x)); =8, Let (s.(x))
be a unitary matrix such that

(4.48) ay(2) = 3 Inla) on(a (@) 8y(),

where 4,(%), ..., A,(x) are the eigenvalues of @,,(x). Then we obtain

(4.49) gl g“u(x) Pix( )‘P;x ()= Z Z M) | @i(2) ),
where

(4.50) ) =3 500 (75 ) s Sy P
and

sgn ('1 " %«) =0 if (i ..o iq) T

sign of permutation x of (1, ..., ¢) for which i, = jm;, Where J = (4, ..., 7,).
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It follows from (4.48) that there is a ;>0 such that

(4.61) & (x)< O, >, A (@) ooe Ay, o),

Ish <o <Ry _g41<0

Now, we let

n
(4.52) C, =max > ().
z 1
Then for any strictly increasing g-tuple J we have:

(4.53) Y x) < 0, 070 (Z) > Anl®),

hel

since each term in the sum in (4.51) must have at least one factor whose subscript is in J.
Since (s ) is unitary, we have (s,)! =(.;,) and hence

iy

AN - /
(4‘54) ¢J(x) = z sgn ( J G) LT A siqhqlph:...hq-
Therefore, there is a C, such that
(4.55) 2 e F< 0, 3 i)

for all x€U N . The estimate (4.47) then follows by combining (4.55), (4¢.53) and (4.49);
thus concluding the proof of the proposition.

Proof of (H). Suppose o®€ M%zx,), with k=1, ..., n —q+1, satisfying (4.4); that is, if
(4.56) =3 dw,
]

then, for each (¢ —1)-tuple K =(ky, ..., k,_,), we have

(4.57) Ill; ol < CQe, ¢)

for all p € D} We will show that the function that takes z€ U N Q to (g A ... Ao™ 9+, 6,
is in I%zx,) for all 6€ A™4+1-0(U 0 Q). It will suffice to show this in the case 6 =wy, for all
H=(hy, ..., by_qy,) with 1 <k, < ... <hy,_,,, <n. We then have

(4.58) (O* A ... AG™ L, ) = det (aF,).

Let K be the ordered (¢ —1)-tuple consisting of all integers between 1 and n which
are not in H. Since @,z =0, whenever ¢ €K, the sum in (4.57) runs over all € H. Then, we
have

(4.59) : Ill; ot puellle = gﬂ (F TN o, Ay} + O(lll @l ),
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where the error term estimates

(4.60) , ;Zey{([Ae’ Oﬂ Pik> AE(O';C%K)) + (O'fAs‘PiK, [As, Oﬂ %K)}-
Let

n—-q+1
(4.61) ay(x) = kgl O{c(x) &;c(x)

Applying Proposition 4.46 with ¢, replaced by Ap,x, we obtain

(4.62) 8" Hay(x) 2 |Agi(@) P < C g ”Zk 07 (2) 7 (2) A° @ix (%) A°@x ().

Furthermore, we have

(4.63) 8 g, (x)) > g]det ok (@)%

Integrating the above and estimating commutators as in (4.60), we obtain

(4.64) lldet (o) @lll. < 2" 2 oF gulllc + const. ll g l-;-

Therefore, we conclude from (4.57), that det (or’,if) € I%x,), thus completing the proof of (H).
The proof of one of our principal results now follows immediately from Proposition 4.7.

Proof of Theorem 1.21. The only properties of I%zx,) which are not explicitly stated in
Proposition 4.7 are {c¢) and (d). These are obtained by combining (C) with (H) and (G)

with (H), respectively.

§ 5. Subelliptic stratifications and orders of contact

We define the ideals I{(x,) below and then show that this definition coincides with the
one given by (1.22). If x,€bQ we define the sequence of ideals I{(z,)< ... < Iy} < I%(x,)

and the sequence of modules M{(x,)< ... € M(xs) = Mx,) by:

(5.1) M{(x,) ={or, int (0)23r for all 0EAL with 6 18r}
B
(6.2) I(zo) = V(r, detn_q.1 Mi(q))

and inductively

(5.3) Mi(wo) = { M _1(20), BT} _1(%,)}

R
(5.4) Uy = V(I-1(%0), detn—qr1 Mi(2,)).
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ProrosiTioN 5.5. The ideals Ii(x,) are also given by (1.22).

Proof. If we choose (as usual) wy, ..., @, to be an orthonormal basis of 43;° with w, =8r
and if
357’ = Z Cyy (4N A d-)j.
Iy

then define 1,, ..., 7,_; by:
7,=int (®,)20r =3 ¢, w,.

Then M,(x,) is generated by: 7, ..., T,_, and w,. Hence I{(x,) is the real radical of the ideal
generated by the determinants of the (n —g) x (» —g) minors of (c;;) with ¢, j <n, and the
function 7. This establishes (1.22) for k=1. The general case then follows by induction.

If V is a complex-analytic variety defined in a neighborhood U of x, we denote by
J=(V) the ideal of germs of holomorphic functions that vanish on' V and by %.(V) the
ideal of germs of complex-valued real-analytic functions that vanish on V. We will make
use of a result of R. Ephraim (see [11]) which asserts that when V is irreducible then

F2(V) is generated by J.,(V) and J,(V), where J.,(V)={f|f€ J.(V)}.

Definition 5.6. If V is a germ of a complex-analytic variety at x,€b(2 then we define
the order of contact of V to bQ) at x,, denoted by O(zy, V), by

(5.7) O(2, V) =0,,(r/#:(V)) = max Og(r—yg),

9635, (V)

where O,,(f) denotes the order of vanishing of f at x,. Let 1¥%(x,) denote the set of germs of
g-dimensional, irreducible varieties containing z,. Then we define 0%z,), the g-order of x,,
by:

(5,8) O%x,) = max Ofz,, V).

V € ¥9(z0)

Let U9%zx,) be the set of all germs of g-dimensional complex manifolds containing z,.
Then we define the regular g-order of x,, denoted by reg 0%z,), by

(5.9) reg 0%z,) = max O(zy, V).

Ve w¥(zo)
Observe that
(5.10) reg O%x,) < O%(xy).

In fact, for 7 in €® given by
r(z) = Re (2;) + |21 —23|2,
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we have reg OYz,) =6 and O%x,)=cc. This type of phenomenon has been studied in [2]
and [6a]. In [8a]), D’Angelo shows that, if reg 0%(x,) <4 then Ol (x,) =reg O ().

LemMmA 5.1, If O%uxy)=m then there exist germs of holomorphic functions hy, ..., h, at
z, and polynomials A, B, suck that

f=ZA1ha+ZB¢ﬁs+0(|zl”‘)o

Proof. By definition of 0%z,) there exists a germ of a ¢g-dimensional irreducible variety
V € Wx,) such that Q(z,, V)=m. Let h,, ..., b, be the generators of J, (V) then, by the
above cited theorem of Ephraim, we conclude that Ay, ..., by, Ay, ..., f; generate 7,(V).
Thus the function g which attaing the maximum in (5.7) can be expressed in terms of these

generators, which concludes the proof.
LeMma 5.12. Given N >0 there exists a holomorphic coordinate system 2,, ..., 2, with
arigin at x, such that

(5.13) r=2Re(z,)+ O  aus2*7F +0(z|").
lee|>0.181>0
lee+B8]<N

Proof. Choose any holomorphic coordinate system wj, ..., w, with origin «,. Then by

expanding in Taylor series we have

r=Re( > cw)+ >  bywadf+O0(w.
|| <N Iallth'l’il;o

Let 2, ..., 2, be any holomorphic coordinate systems with origin at z, and with z,=

3> a)<n €, ", then substituting in the above, we obtain (5.13).

LeMMa 5.14. Qiven N > O(x,, V), where V is a germ of an irredubible complex-analytic

variety through zy; then
O:,(24/ J=(V)) = O(2o, V).

Proof. Let ky, ..., h, be generators of J, (V) then, by 5.11,
(5.15) r=3 A,h+3 Bk +0(|z|™), with m=0(z,, V).
From (5.13) we have:
Zo— 2 Ahy=2 Bih— 3, + 3" a,52°2 + Of|2]™).

We can write 4,=F+ G, when F, is holomorphic and @, has a power series expansion

all of whose terms have one of the z, as a factor. Then

zn~'ZF¢ha=G+0(|z|"‘),
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where ¢ is a polynomial each of whose terms contains at least one Z,. Hence all partial
derivatives of the left hand side up to order m vanish at x,, which completes the proof.

In the following proposition the main assertion that (b) is equivalent to (d) is proven,
in the case ¢g=1 by J. D’Angelo in [6b].

ProrosiTiON 5.16. If Q is pseudo-convex then the following are equivalent

(a) 1€If(x,)

(b) The Levi-form at x, has at least n —q positive eigen-values
(c) reg O%xy) =2

(d) O%=,) =2

Proof. That (a) is equivalent to (b) is an immediate consequence of the definition
of I{(z,). It is also clear that (d) implies (¢), by (5.10) and since from (5.13) we see that
reg O0%x,) =2. We will first prove that (c) implies (b). Choosing the coordinate system
245 -.-» %y 80 that (5.13) holds with N =3 we have

(5.17) r(2) =2Re (z,) + 3 7,,2(0) 2,2, + O(| 2]*).

We will assume (c) holds and that (b) does not hold. Thus
n-1

(5.18) dim{z|z,, =0, > 7.3(0)2,=0,j=1,...,n— 1} =q.
-1

So by (5.17) the order of contact of the linear space defined in (5.18) is greater or equal to
3, which contradicts (c).
Now assuming (a) we will prove (d). Let V € W(x,) and let h,, ..., &, be generators of
J:(V). Suppose O(z,, V)>2, then, by 5.11:
r=3 Aih+3 Bh,+0(z]*)
(6.19) 80r=—20A,Adh,+ 3 8B, A dk,+ 0+ O(|z|),

where 6 =0 on V. From (5.17) we have,
{5.20) or =dz,+0(|z|).

By virtue of (5.14) we know that z,|, =0(]z|®), hence

k

(5.21) (@r)s, = (d2,);, = ? ¢ (dhy)q,-
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Let & and # be (1, 0)-forms with constant coefficients such that

(5.22) (°4 ),, = a,dz, +a, and (9B,),, = bdz,+p,

_ (o4 _ 3__31)
W= (az) and b"(azn

(5.23) (65"')% = Z (dhy)z, A 34+ Z Bi A (dﬁi)xo + Z ay(dhy)z, A dZ, + Z b, dz, A (dhy)s,-

with

Then, from (5.19), we have

The restriction of (8dr),, to T °(bQ) is given by the first two terms on the right of (5.23).
This is a semi-definite hermitian form which vanishes on the intersection of the annihilators
of the (dh;).,. Hence we have, using (5.21)

(5.24) (00r)g, = 2. ay(dhy), A (Ahy)z,
Then .
(5.25) orNor A (@or) =3 dhy A ... Adhy_, AWy .+ O(2]).

Since V is g-dimensional at most n —gq of the d, are linearly independent at regular points
of V. Hence dh, A ... Adhy,_,,,=0 on V and hence [or A &r A (98r)"~?],,=0 so that 1 ¢ I{(x,)
which is a contradiction and concludes the proof.

Definition 5.26. A is an admissible vector-field in a neighborhood U of x, if (4, &r) =0
and <4, 8r> =0. In particular for z€b<Q, 4, € T>°(bQ) + T 1(bQY).

LemMma 527, If ¢, is a component of the Levi-form and if A,, ..., A,, are admissible
vector fields then A, ..., An(cyy) € It i(7,).

Proof. Since
67‘/\57‘/\857‘= Z chi /\ (I)//\ wn A J)n

i,i<n
each ¢ ,€I77(x,) when 3, j <n. Further

804] Aor= z (Lk C”) Wy, A Wy.
k<n

Hence Lyc,, €15 "(2,) and also Lyc, € It (x,); but Lyc, =L,¢, and |Lé,| =|Lyc,y|, hence
L,c,, € I3 (2,). Since the admissible vectors are combinations of the L, and L, the lemma
follows for m =1. For m =2 we apply the same argument to dAc,;, when 4 is an admissible

veetor field and similarly conclude the proof by induction.
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LeMMa 5.28. Let F be a real-valued C® function defined in a neighborhood of the origin
in R™. Suppose that F >0 and F(0)=0. Let X be a real C® vector field defined in a neighbor-
hood of 0 ER™ Then either X'F(0)=0 for all j or there exists some integer k such that X’F(0)=0
if j <2k and X**F(0)>0.

Proof. Tt suffices to consider X such that X==0 in a neighborhood of 0. Choose a
coordinate system a, ..., x, so that X =8/0x,, then

F(x)= > a,0, 2y, ..., ,) 2} + O(|=[*1).

=1

Choosing m to be the smallest number such that ,,(0, ..., 0)=3=0 we see that F(x,, 0, ...,0)=0
implies that m is even and a,(0, ..., 0) >0 which concludes the proof.

Lemma 5.29. If f, 91, .., 9 are complex-valued C® functions in a neighborhood of 0 ER"
such that
m
(5.30) | [ < const. 3 |g;[%
1

Jurthermore, if X is a real C® vector field and X'f(0) =0 for j <k and X*f(0)==0 then for some
7 and some q <pk we have X%,(0)==0.

Proof. Assume that X%,(0)=0 for j=1, ..., m and all ¢ <pk. Let F =const. 27 |g,|2—
|£]%, then

X?PF(0) = const. 3, | X**g,(0)[* — | X*f(0)
1
and the result follows from 5.29.

Definition 5.31. C¥(x,)< CT,, is defined inductively as follows:

C(x,) =germs of admissible vector fields. C¥(xg) = £ 1(g) + [ L), £ o)) L(me) S
CT,, is the subspace obtained by evaluating all elements of C¥(x,) at x,. Note that t‘(xo) =
TLObQ) + T%(B2). We say that x, is of finite type if for some integer m we have £m(z,) =
€T, (bQ) and if m is the least such integer we say that z, is of type m.

Observe that if f€C%°(x,) and A € £*(x,) then fA4 € L*(x,) since

f[Bp Bz] = Bz(f) B1 +[fBl’ Bz]:
so that if B,€ Cl(x,) and B,€ £ (x,) then f[ B,, B,]€ L¥(x,).

LEMMA 5.32. 2, €bQ vs of type greater than or equal to m, with m = 3, if and only if when-
ever A, ..., A, € CMx,), with k<m—2, then A, ... Aycy(xy) =0 if ¢, j <n. Furthermore, z, ts

of type 2 if and only if c (7)) £ 0 for some %, j with i, j<n.
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Proof. With our usual notation (see 2.20) we have
[Lb L.f] = CUT mod El(xo),

if ¢, j<n. For any S €CT,, we have 8 =aT mod L}(x,). Thus by induction we obtain, when
L, i<n
(5.33) [Ay, [Aas oo [4is [Ls L] ] = (A4y .. Arley) + Buyyleyy) T mod Lo+ (w),

where Ry, is a polynomial in the A4, ..., 4, of degree less than k. The desired conclusion
then follows by evaluating (5.33) at x,.

LEMmMA 5.34. Suppose that x,€bQ is of type greater than p and that {€C®(x,) has the
properties that f(x,)=0 and that A, ... A,f(x) =0 whenever k<p and A,€ L x,). Then if
A4y, ..., 4,€ LMx,) and if 7 is a permutation of {1, ..., p} we have

(5-35) Al ses Apf(xo) = An(l) see A,,(,)f(wo).

Furthermore, if for some choice of A, ..., A,€ LHx,), we have A, ... A,f(x,)0 then there
exists A€ L(x,) such that A?f(xy)=3=0. Finally, if in the last statement the A, ..., A, are real
then there exists a real A € L\x,) such that APf(z,)=+0.

Proof. From (5.33) it follows that
(5-36) Al ves Aﬁ = A"(]_) Iy A"(p) +‘ ’Z P’](CU) T + Pp,

where the P,; and P, are polynomials in 4,, ..., 4, of degree less than p. Hence (5.35)
follows by applying (5.36) to f and evaluating at z,.

If 4, .. A f(x)=£0, let A=3 s;A4,. Then A*f(x,) is a homogeneous polynomial in the
8/s and the coefficient of s, ... 8, equals p! A, ... 4,f(x,)==0. Hence the polynomial is not
identically zero and so for some choice of the s, we have A?f(x,)3-0. If the A4, are real we
can choose the s, real and obtain a real A as required.

ProroSITION 6.37. 1€ 15, Y(2,) if and only if x, is of finite type.

Proof. By Lemmas 5.32 and 5.34 it will suffice to prove that 1 €I (x,) is equivalent
to the existence of A € £'(x,) such that A4%(c,;)==0 with p >0 and some %,  <n. From Lemma
5.27 it follows that if AP(c,;)==0, with 4 € LY(x,) ¢, j <n and p >0 then 1 € I} 1(z,).

Suppose that 1 € I5,}(z,) then there exists a function /¥ € I%-}(,) such that, for some
i <n, L;fP=0. Then there exist functions f, ..., f2 € I~}(x,) and p,, such that

n-1 k
Ifopn< S S (L AP
§=1j=1
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Let A be either Re (L,) or Im (L)) so that 4fV==0. Then, by 5.9, there exist s, j and ¢ so
that AL,f?=0. Let f®=f% and let B be either Re (L,) or Im (L,) so that A¢Bf® 0.
Now suppose that , is of type greater than g, =¢+1 then, from Lemma 5.34, we conclude
that there exists a real 4,€ £Y(z,) and an integer g, so that 4§ f®=0. Similarly we obtain
f® ez, and a real 4,€LY(x,) such that A$f®¥-0. After repeating this procedure
m—1 times we obtain f™ V€If )(z,) and a real A, ;€ LYx,) so that A%m;f" D40,
further

P i S [
t.i<n

hence Ai‘,,-w,,:}:O, for some £, 4, j; which, by 5.32, concludes the proof.
PROPOSITION 5.38. x, 18 of type m if and only if reg O™ (x,) =m.

Proof. Choose coordinates z, ..., z, With origin at , so that r =Re (z,) + F +0(]z|"*!),
where F is a mixed polynomial vanishing at 0. Let

o r, 0
————— =1,..,n-1,
T oy 1., 02, P=5 e
12
Y1, 02,
T-L,-L,

Let V={z,|2,=0}. Then, by Lemma 5.14, O(x,, V)=m if and only if reg 0" '(z,) =m.
We also have O(x,, V)=m if and only if there is some ¢, j <n and &, ..., g,y With o; + ... +
%g,_p=m —2 such that

(6.39) By ... Bepng? F,5(0) +0

and this expression equals zero whenever ¢, j<n and o; + ... +0ty,_g <m —2, where

0 0
Bl=a_z‘, Bi+n—1=a—z‘, 1=1, ’n—l
We will show that if O(zy, V)>=m then
(5.40) B ... BE»53 F, 3(0) = AP ... §43%c,(0),

whenever ¢, j <n and e; + ... + oy, Sm —2, where

A‘——"Lt, AH’”"1=L" i=1, rey n—l.
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The desired conclusion follows from (5.40) by applying Lemma 5.32. To prove (5.40) we

first note that for ¢, j <n we have

3,
c‘/=lesj_;zel
2n

7. 723, _ _
En_,;.?anZI+ ﬁanzn'+ O(lzlm 1)=F2'_51+hqu‘+guF§j+ O(Izlm 1),

where A, g,,€ C®(x,). Furthermore

Bt‘*'hin,i, i=1,...,n—1
0z,
A, =
B‘+glel—n+la7’ ?;=7b,...,2'n—2,
n

where &, g,€C®(x,). Now (5.40) is easily established by induction on &=a;, + ... + g, _,.

§ 6. The real-analytic case

In this section we will suppose that r is real-analytic in a neighborhood of z,€bQ.
We will deal only with real-analytic functions. We will denote by &/(x,) the set of germs of
real-analytic functions at x,. If §< o/(x,) then (S) denotes the ideal of germs of real-analytic

R
functions generated by S and VS denotes the set of all f€.9/(x,) such that there exists an

m and a g€S8 with |f|™<|g]|. In this section I{(x,) will denote the ideal of germs of real-

R
analytic functions defined by (1.22) where ( ) and |/ are interpreted as above. Before we

enter into an examination of the ideals If(x,) we will state some properties of ideals of
germs of real-analytic functions.

Let I be an ideal of germs of real-analytic functions at 0 €R?. Let W(I) denote the
germ of the real-analytic variety defined by I; that is, if f;, ..., f, are generators of I which
are defined on a neighborhood U of 0, then UN W) ={z€U|f{x)=0,j=1, ..., k}. If
z€ Y(I) we denote by J, V() the ideal of germs of real-analytic functions at x which
vanish on W(I). The following is proved in [24].

TrrorEM 6.1. (Lojasiewicz). If I i3 an ideal of germs of real-analytic functions at

R
0€R?, then J,8(I)=V1.

As usual we will complexify R? by the embedding of R? into C? given by z,=2x,, where
Zy, ..., &, are coordinates in R? and z,, ..., 2, are coordinates in €. If { is a real-analytic
function on an open set U< RP then there exists an open set U < C? such that U NR?=U
and a holomorphic function f on U such that f=f on U. We call f the complexification of f,



SUBELLIPTICITY OF THE ¢-NEUMANN PROBLEM ON PSEUDO-CONVEX DOMAINS 111

and if I is an ideal of germs of real-analytic functions then we denote by I® the ideal of
germs of holomorphic functions generated by the complexifications of the elements of 7.
We will also denote by W(I®) the germ of the complex-analytic variety defined by I°¢
and if z€ Y(I®) we will denote by J,1(I) the ideal of germs of holomorphic functions at
2z that vanish on WIC).

ProprosiTioN 6.2. Let I be an ideal of germs of real-analytic functions at 0 ER? such

R
that 1=V1. Then we have
(6.3) dimg Y(I) = dim¢ W(IC).
Proof. In Narasimhan [25], Proposition 1, page 91, it is shown that

(Jo W) = To BTy WD)
Applying 6.1 we have

(6.4) FoWIO) = IC.

Then (6.3) follows by Proposition 3 of [25], p. 93.
H. Cartan in [4] shows that in R® if I=(2(2? +y%) —2®) then, for any z=:0, the ideal
Jio. 0.2 B(I) is not generated by Jig. 0.0 V(). For our purposes this difficulty can be over-

come by means of the following result.

ProrosiTioN 6.5. If I is an ideal of germs of real-analytic functions at 0 ER? and if
R
I=VI, then there exists a sequence of points x> € W(I) such that 2 converges to 0 and such

that each x* has a neighborhood U, with the property that if y€U, N V() then I, V() is
generated by the elements of 1.

Proof. Let m =dimg W(I), then we can choose a sequence z” € WY(I) with lim, ., =0
such that W(I) is regular and of dimension m at z (see Theorem 1, page 41 of [25]). Let
U, be a neighborhood of *’ such that every y€ U, n W(I) is a regular point of W(I) and
W(I) has dimension m at y. Let U < (C? be a neighborhood of 0 such that for every 2€ U n
W) the ideal J,W(IC) is generated by elements of I€ (such a U exists by Oka’s theorem).
If yeUNnU,Nn Y(I) then y is a regular point of W(I) and so there exists h,, ..., h,_,, € IC
so that (dhy), A ... A{dh,_,),=+0. The restrictions of 4,, ..., h, . to R are elements of I
which generate J,¥(I). Hence the neighborhoods U, =U 0 U, have the desired property.

Returning to our ideals I(x,) we let Wi be the germ of a real-analytic variety at x, given

by
(6.6) HENER T HENE
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Definition 6.7. If I is an ideal of germs of analytic function at x, and if 2 € W(I) then
we define Z1%(I) the Zariski tangent space of I at x as follows

(6.8) ZyI)y = {LeTy°|L(f) =0 if feI}.
If V is a germ of a real-analytic variety at x, then we define
(6.9) Z:V) =2%3, 7).

The following is then immediate.

LeEMMA 6.10. If I is an ideal of germs of real-analytic functions at xq, and if x€ V(1)
then

(6.11) Z:(W( ) < 23°(D).

If 9,(]) is generated by elements of I then equality holds in (6.11).
PROPOSITION 6.12. If x€ WY x,) then x € Vi.1(2,) if and only if

(6.13) dim (ZY°(I4x,)) N 'N,) = q,

where N, is defined by:

(6.14) N, = {LeT°(0Q)|<(28r),, LA Ly = 0}.

Proof. 1 L,, ..., L, is the usual local basis of T with {(L,, 8r) =9, and ¢,,=(22r, L, A L>
8o that (c,;) with ¢, § <z on bQ is the Levi form; then x € W{.1(x,) if and only if the following
system has at least g linearly independent solutions.

n-1
2 ey(x)0i=0, j=1,...,n—1
i=1

(6.15) .
«-21 [L{:{i=0, [EIi(xy).

For z€ Wiz,) and L=>7.1 {,L, the above system characterizes those L such that
L €Z2%I%xy)) N N,, which concludes the proof.

Definition 6.16. If V is a real-analytic variety contained in bQ we define the holo-

morphic dimension of V by

(6.17) hol. dim (V) =min dim Z>%V) n H,.

zeV
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Prorositiox 6.18. If VeUNbQ is a real-analytic variety and if hol. dim (V) =q
then V< Wi(z,) for all m.

Proof. If €V then dim N,>g¢ hence x€ Wi(x,), so that V< Wi(z,). Assume that
V < Wix,), then, applying (6.10), we obtain for z€V:

(6.19) Zz(V) < Zx (Viay)) = Z3 *(I(,)).

Then, intersecting the above with 1, and applying Proposition 6.12 we conclude that
x € Vi1(xe) hence V< Wi 1(x) so that V< Wi(ax,) for all m.

ProrosiTion 6.20. If for every real-analytic variety V< U N bQ we have hol. dim (V) <g¢
then Vin(x,) =2.

Proof. We will show that, if Wi(xz,)+9, then
(6.21) dim Wi(zo) > dim Va(wy).

Suppose (6.21) does not hold. Then, these dimensions are equal and hence in an open set
W with the property that every y € W N Wi.1(»,) is a regular point at which the dimension
of Vi.1(z,) is maximal, we have W N Wi(x,) =W N Vi.1(x,). Now by 6.5 we can choose
such a W< U so that for each y€ W N Wi(x,) the ideal J, Wi(zy) = I, Wis1(x,) is generated
by the elements of I{(,). Hence by Proposition 6.12 we conclude that hol. dim W n Wi{xz,) =g,
which is a contradiction. Hence (6.21) holds and the conclusion follows since dim W{(x,) <
dim 6Q =2n—1.

It then follows that if in some neighborhood U of , there is no V<= U NbQ with
hol. dim ¥V >gq then 1€ If,(x,) and hence a subelliptic estimate holds at x, for (p, g)-forms.
Observe that if W is a complex-analytic variety with W< then hol. dim W =dim W
since then Z3'°(W)< M, for all z€ W. The converse of this is the following deep result of
Diederich and Fornaess (see [9]).

TueorEM 6.22. (Diederich and Fornaess). If Q is pseudo-convex, if r is analytic
in a neighborhood U of x2,€bQ and if there exists a real analytic variety V< U NbQ with
hol. dim (V) =g then there exists a complex-analytic variety W< U N bQ with dim W =q.

Using this theorem we see that a subelliptic estimate holds if there are no complex-
analytic varieties of dimension greater or equal to ¢ in some neighborhood of z,. Actually,
this is equivalent to the condition that there is no variety in bQ of dimension ¢ which
contains z,, by a result that was obtained by J. Fornaess and which is given below. The
proof given here is also due to Fornaess; it uses the methods developped in [9].

8 — 782904 Acta mathematica 142. Imprimé le 20 Février 1979
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THEOREM 6.23. (Fornaess.) If W, is a sequence of complex varieties with dim W, >gq,
W,.<bQ and z, a cluster point of this sequence them there exists a complex variety W such that
dim W>q, W<bQ and € W.

Choose a neighborhood U of #, such that the Taylor series of r about x, converges in
U. Let 7 be the complexification of ». Now we need the following result which is proved

in section 6 of [9].

ProPOSITION 6.24. There exists a neighborhood U’ of xy such that U'< U and such
that if W is an irreducible complex-analytic variety in U’ N bQ then there exists a complex
analytic variety W' such that W= W < U’ N bQ and such that W is closed in U’; that is:
W' n U’ =W'. Furthermore, for any complex analytic variety W< U’ 0 bQ we have #(z, ) =0

whenever z, wEW.

Proof of Theorem 6.23. We may suppose that the W, are closed irreducible varieties
contained in U’ N bQ. Let p be a cluster point of the W,, then we can find a subsequence,
which we also denote by {W,} such that p{’€W, and p=lim, . p§’. Now, let p®
be a cluster point of this subsequence whose distance from p® is maximal. We then
choose a further subsequence {W,} such that p{’€ W, and lim,_, o z5’ =p®. Proceeding
inductively and using diagonalization we finally obtain a sequence {W;} and for each m
we have piP €W, and lim,.,o p§”=p™. If C denotes the set of cluster points of {W,};
then the sequence {p™} is dense in C. For every k we have p, p’ € W, hence #(p{,
#L)=0 and hence if p and p’ €C we have 7(p, 5')=0. Let W’ be defined by

(6.24) W= ﬂc {p€U'|#(p, p') = 0}.
Pe
Thus W’ is a closed complex-analytic variety contained in U’ and W’ > C; furthermore, if
w' €W and c€C then we have
(6.25) F(w', é) =F(c, ") = 0.
Let W be defined by
(6.26) W= N {weU'|#(w, ®)=0}.
wew
Then C< W< W’ and if we€W we have r(w) =#(w, @) =0. Hence W is a closed complex-
analytic subvariety of U’ N bQ, it remains to show that dim W >q. Consider the stratifica-
tion Wo< W,< ... W,=W, where the W, are the singular points of W ,,, forj=1,...,1—1.

Let d be the smallest integer such that C — W, does not cluster at z,. Let W1, ..., W*
be the irreducible germs of W,. Then (W!—W,_1) N C clusters at z, for some 1€{1, ..., s}.
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Fix such an <. It suffices to show that dim W*'>g. Choose p™ € W!—W,_; and a neighbor-
hood U” of p™ such that U” N W! consists of regular points of W!and U” N C in contained
in W' Let #,, ..., 9, be holomorphic coordinates with origin at ™ such that A< U” and

W‘ﬂ A= {(’l’]l, eery nﬂ)GAInHl =..=Np= O},
where A={(n,, ...,7,)€C"||n;| <1,7=1, ..., n} and ¢=dim W*. Then on points of CNA
we haven,.1=... =7, =0. Let A={n| |n;] <3,7=1, ..., n}. It then follows, if £ is sufficiently
large, that

W.nAc {ed||n,| <t i=t+1,..,n}
Hence the map
Tty Wkﬂ A_> {(771, aey nt)”njl < %, 7. = 1, ceny t}

is proper. This is only possible if dim W, <¢. Hence dim W >q since dim W,>q and t=
dim Wi<dim W.
The above results are then summarized by the following theorem.

THEOREM 6.27. Assume that Q is pseudo-convex, 2,€ b{) and r is real-analytic in a
neighborhood of xy. Then the following conditions are equivalent:

(a) 1€I(x,) for some k.

(b) There exists a neighborhood U of z, such that U N bQ does not contain any complex
analytic varieties of dimension q.

(c) If W is a germ of a complex-analytic variety at x, such that W < bQ then dim W <q.

Theorem 1.19 then follows since (a) implies that x,€ £°.

§ 7. Some special domains

-In this section we consider domains Q< C* whose defining function r is given, near the
origin, by:
(7.1) 7(2y, -+, 2,) =Re (z,,)+’zllh,(z1 o 2) [P+,

where ky, ..., b, are holomorphic functions, a €R and (0, ..., 0)=0; so that
m
am —> lh,(O, s 0, 0)J2.
=1

Then we have

m
(7.2) Tz, = 21 bz Bz,
I
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and hence
2

Z h‘lzk Ck .

k=1

(7.3) > Tzkrz,CkZ£= 2
ki i=1 J=1

Thus, the domain is pseudo-convex.

ProPOSITION 7.4. If W is a germ of a complex-analytic variety such that W < bQ then
the functions z, and h, are constant on W. In particular, if W contains the origin then W is
contained in the variety V given by V ={2,=0, hy(2;, ..., 2,) =hy(0, ..., 0) for j=1, ..., m}. Note
that V< bQ.

Proof. Let 2°=(23, ..., 22) be a regular point of W. Let 2, =2, —2;, then by Lemma 5.12
we have 2,=0 on W. We choose coordinates z1, ..., 2, with origin at 2° so that, in a neigh-
borhood of 2° the variety W is given by 25,1=... =2,=0. Let k; be the function given by
hi(z') =h,(2(z')), then we have

(7.5) r(z’) = Re(z) + § |h;(2') [+ @ + Re (21).
j=1

Evaluating r on W we obtain
(7.6) S|k, ooes 2, 0, ..., 0) 2= —a — Re(27).
=1

Applying 0%/2,.0%, to (7.6) and summing on k gives

LT . 2
(1.7) S S|, .0, ..., 0)| =0.
¥=1j-1]|02

Hence the h, are constant on W.
Applying Theorem 6.27 we find that the following conditions are equivalent.

{(a) 1€ 1¥0) for some .
(b) dim ¥ <q.
(c) dim {z, =25, h;=h,(2°)} <g, where 2° is close to the origin.

Observe that
(1.8) or A (98r)" = }dz, A (S ok, A OB+ ...,
1

where the dots represent forms in which either ok; or 6—h, appears as factor at least n —g+1

times.
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Definition 7.9. Let J{(0) denote ideals of germs of holomorphic functions at 0 defined
by

J4(0) = V(coeff. {dz, A dhy, A ... Adhy,_})

and

JY0) = V(J%_1(0), coeff. {df, A ... Adfu_g,1} Where f€EJZ 1(0) U {2,, b,}).

We set
J0) = 9 JY0).

ProrosiTioN 7.10. The conditions (2), (b) and (c) are equivalent to 1 €JU0). Further-
more, if 14J%0) then dim V >gq, where V ={z|2,=0, h)(z) =h,(0), j=1, ..., m}.

Proof. We will show that (b) is equivalent to 1€J90). The proof is along the same lines
as that of Proposition 6.20; it is much simpler because it is based only on properties of
ideals of holomorphic functions.

Suppose that dim V <g, define F, by

(7.11) F. = {LeT>°|L(z,) = L(h;) = 0}.

Suppose 1¢J{(0) and let 4 be an open subset of reg WJ(0)) which is so close to the
origin that (c) is satisfied for all 2°€ 4. If 2€4 and z€ VY(J{,1(0)) then, since (by Oka’s
theorem) J,(W(J(0)) is generated by J§(0), we have (by Cramer’s rule)

(1.12) dim (Z3*WJIHON N F) = q.

If there were an open subset A'< A with A’'< WY(J{,1(0)) then A’ would contain an
open subset 4” on which the left hand side of (7.12) is constant. Hence, by the Frobenius
theorem, 4" is a complex manifold of dimension greater or equal to ¢. On the other hand if
29€ A” then for each zEreg A” we have T;'%(A”") is a subspace of the tangent space to {z|z,=
2y, hy(z) =27}, which contradicts (c). Hence 4 cannot have an open subset contained in
W(J%+2(0)) and therefore dim W(JE.1(0) <dim WJE(0)). Thus we conclude inductively that
WJ0)) =D, so that 1€JY0).

If, conversely, dim V >g¢, then (7.12) holds at all points of 2€ V', where V'’ denotes
the union of components of V of dimension greater or equal to ¢. Hence V’'< WYW(J{(0)) for
all k£ and thus 1 ¢J0).

Observe that in the above proposition z, plays the same role as the k;; hence, we

obtain the following result, whose proof is analogous to the one given above.
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THEOREM 7.13. Let hy, ..., h,, be germs of holomorphic functions at 0€C" and let V=
{z|hs(2)=0, §=0, ..., m}. Define the ideals of germs J§ as follows

Ji=V(coeff. {dhy, A ... Adh,,_}),

where (§o, ..., fn_q) Tange over all (n —gq+ 1)-tuples of integers from 0 to m; inductively we let

1= V(TG {coetE. (dfg A .. A dfud}, HETLU {tgy --vy Brr)).

We set J2= ), Ji. Note that JOcJic ... <J" Let q, be the unique integer such that 1 €J¢
if g>qy and 1¢J9 if g <g,. Then dim V =gq,.

§ 8. Estimates of (p, n—1)-forms

In this section we prove the following which is an extension of the main result in [20e].
TrEOREM 8.1. If Q is pseudo-convex z, € bQ and if reg O™ 1(zy) =m then 2,€ £*-1(1/m).
Proof. If p€ D% 1, where U is a neighborhood of x,, we can write

(8.2) P=uBA ... \O" 1+ A",

where =0 on b{2, then we have

3 Q0. 90~ 2 Ll + 3 Ll + ult+ ol

Thus to show that z,€ £*1(1/m) it suffices to prove that

n-1 n
84 el < const. (‘S I ull+ 5 12l +ul)

for all w €CP(U N Q).

We first reduce the estimate (8.4) to an estimate on the boundary, following a proce-
dure developed by L. Hérmander (see [17b]) and which was applied to the D-Neumann
problem by W. Sweeney (see {31a]).

Applying Proposition 5.8 of [31a] we conclude that there exists a pseudo-differential
operator P of order one operating on C3(U N b<2), such that (8.4) holds if and only if:

n-1
®3) Nl const. ('3 CLale + Al + T2l + ),

for all u€CP(U N bQ), where ’|| || denotes norms on U N Q.
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Setting:

L+L, i=1,..,n-1
(8.6) =q .
V— l(Li—n+1_Ll—n+1), 1=y .i0s 2”""2:
we have, by Lemma 5.32, that [X,,, [X,, ..., [X,,_;, X, ]]...] for p<m span the tangent
vector fields on U NbC, when U is small. In [17c], Hormander proves that this condi.

tion implies that for each ¢ <1/m there exists C such that
2n—2

8.7) NulE< o( S IE, - '||u||2), for all u€CX(U N bQ).
-1

In [27], E. Stein and L. Rothschild, proves that (8.7) holds also for £ =1/m. From this
(8.5) follows, since

2n—

n-1 2
©9) 3 Izl + N Ll +lulf~ 3 Ul + Yl

The operator P that appears in (8.5) can be described quite explicitly using the results
of [17b] and [31a). The principal symbol of P, denoted by p is given by

n-1
(8.9) Pt )= = o(T, 7) + Vier. o+ 3 fadly )l

where t€ U N bQ, 7€ AT (bQ)), T =L, —L, and a,(T, ) denotes the symbol of T evaluated
at 7.

§ 9. Propagation of singularities for 3

In [20e] we discussed propagation of singularities for 8 on Levi-flat domains in C2,
here we will give a natural generalization of this for domains in C* whose boundary contains
a germ of a complex-analytic curve.

Definition 9.1. If « €Ly Q) we define the singular support of « to be the closed subset
of Q, denoted by sing. supp. («), as follows. If z€Q then x ¢ sing. supp. («) if there exists
a neighborhood U of z such that the restriction of a to U N Q (denoted by a|vna) isin C=.

An immediate consequence of Theorem 1.13 is the following.

TuroreEM 9.2. If Q is pseudo-convex and «€LEYQ) with du=0 then there exist
uw€ L8 Y(Q) such that du = a. Furthermors, if z,€ E° then there exists a neighborhood U of z,
such that

(9.3) U N sing. supp. (u) < sing. supp. («),

where w€LE "1 (Q) is the unigue solution of u=a which is orthogonal to the null space of 3.
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Definition 9.4. Let x,€ bQ we say that Q admits a local holomorphic separating func-
tion at x, if there exists a neighborhood U of z, and a holomorphic function g on U such
that g(z,) =0 and whenever Re g(z)=0 then 2¢ U N Q.

The example in [21a] shows that this condition is rather restrictive. Recent results of
Bedford and Fornaess (see [1]) indicate that peak functions can substitute for separating
functions in many applications.

ProrosiTioN 9.5. Suppose Q) is pseudo-convex, that xy€ b and that the following
hypotheses are satisfied:

(@) Q admits a local holomorphic separating function g af xq such that dg==9.
(b) There is a complex-analytic curve V such that x,€V and V<bQ.
(¢) g vanishes on V.

Then for any neighborhood U of x, there exists an open set U'< U and a form a€L3Y(Q),
with 8o=0, such that U’ N sing. supp. () =@ and for every w€Ly(Q) which satisfies ou =«
we have U’ N sing. supp. (u)=+=D.

Proof. Let z,, ..., z, be holomorphic coordinates with origin at x, such that z,= +g,
where the sign is chosen so that Re (z,)<0 in Q (near z,). Let ¢ € U Nreg (V) and let
0€ CP(U), such that g(z) =1if |z—a| <y and o(z) =0 if |2—a| >2y; wherey is so small that
if 2 satisfies |2 —a| <3y then: zEU; Re (2,) <0 if zEQ and also if z€ V then z€reg V.

We define « by:

(—2,)" Y3 inUNQ

9.6 = 0]
(9.6) * {0 outside of U N Q,

where we choose the principal value of (—z,)~/%. Observe that da =0, that €L} *(Q) and
that

9.7) sing. supp. («) = {z€EUNQ|y <|z2—a| <2y andz,=0}.

Let K be a small closed neighborhood of the above set and let U’=U — K. Then we have
U’ Nsing. supp. («) =D. Suppose there exists a function u€L,(Q) such that du=o and
suppose that U’Nsing. supp. (x) =@. Let h=u—(—z,)""*p. Then & is holomorphic. For
small 8 we restrict h to the set {z]|z—a| <4y, z,=a, for j=2,...,n—1 and z,= —6} and

we obtain the function of one variable f; defined by

(21, Qgy vvs By, —0)
6)—0 1 B2 o 1 .

(98) f&(zl) = u(zla Doy oovy gy —
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The assumption that U’ N sing. supp. (v) =0 implies that u(a,, ..., a —4) is bounded

» “n—1>

independently of & and that u(z,, ay, ..., @,.;, —0) evaluated on the set {z,| |2, —a,| =3y} is
bounded independently of §, (for 4 <y). Hence from (9.8) we conclude that f5(z,) is bounded
independently of § on the circle |2, —a, | =3y (since ¢ =0 there) and that |f5(a,)| >1/6'*— M,
where M is the bound of |u(a,, ..., @,;, —9d)|. Since f; is holomorphic the value fy(a,) is
an average of the values of f, on the circle |z, ~a,| =3y; which, for small §, is a contradic-
tion. Hence U’ N sing. supp. (u)=+D.
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