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Introduction

This paper concerns the interplay between the complex structure of a Riemann surface
and the essentially Euclidean geometry induced by a quadratic differential.

One aspect of this geometry is the “trajectory structure” of a quadratic differential
which has long played a central role in Teichmiiller theory starting with Teichmiiller’s
proof of the existence and uniqueness of extremal maps. Ahlfors and Bers later gave
proofs of that result. In other contexts, Jenkins and Strebel have studied quadratic dif-
ferentials with closed trajectories.

Starting from the dynamical problem of studying diffeomorphisms on a C® surface
M, Thurston [17] invented measured foliations. These are foliations with certain kinds of
singularities and an invariantly defined transverse measure. A precise definition is given
in Chapter I, § 1. This notion turns out to be the correct abstraction of the trajectory
structure and metric induced by a quadratic differential. In this language our main state-
ment says that given any measured foliation F on M and any complex structure X on M, there
s a unique quadratic differential on the Riemann surface X whose horizontal trajectory struc-
ture realizes F. In particular any trajectory structure on one Riemann surface occurs
uniquely on every Riemann surface of that genus.

In the special case when the foliation has closed leaves, an analogous theorem was
proved by Strebel [15]. Earlier Jenkins [13] had proved that quadratic differentials with
closed trajectories existed as solutions of certain extremal problems. We deduce Strebel’s
theorem from ours in Chapter I, § 3.

By identifying the space of measured foliations with the quadratic forms on a fixed
Riemann surface, we are able to give an analytic and entirely different proof of a result of
Thurston’s [17]; that the space of projective classes of measured foliations is homeomorphic
to a sphere. This is also done in Chapter 1, § 3.
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An outline of the proof of the main theorem was published in [12] but we stated the
theorem only for foliations with closed leaves. In fact, this paper grew out of an attempt
to find a more geometric proof of Strebel’s theorem.

Then in April 1976 we heard Thurston lecture on measured foliations and diffeo-
morphism of surfaces and immediately realized our proof extended to any measured folia-
tion.

Let F be any measured foliation and let @ be the vector bundle over Teichmiiller
space of all quadratic differentials and let Er,<@Q be those which induce F. The main
ingredients in the proof are showing that Ep is nonempty and that E; maps by a local
homeomorphism to Teichmiiller space. To do the latter we use the implicit function theorem
and thus we need to give equations for E;. This is fairly easy near a quadratic differential
with simple zeroes, but multiple zeroes introduce major complications. What is needed is
a detailed local description of the deformations of multiple zeroes. A detailed outline
appears in Chapter I, § 2.

We would like to thank the numerous people who have helped us while we wrote this
paper. In particular, D. Coppersmith helped with the topological structure of E;, D.
Mumford and B. Mazur with the deformation theory and F. Laudenbach and Fati with the
topology of measured foliations.

Above all, A. Douady helped both with the outline and the details of many proofs.

The authors are thankful to NSF for financial help during the preparation of this
work.

CHAPTER 1
Statement and applications of the main theorem

§ 1. Measured foliations

Every holomorphic quadratic form on a Riemann surface induces a measured folia-
tion; in this paragraph we will define this concept. The definition closely follows Thurston’s.
A more detailed treatment will be given in Chapter II.

Let M be a compact C° surface of genus ¢>1, without boundary. A measured folia-
tion F on M with singularities of order k,, ..., k, at 2, ..., , is given by an open cover U,
of M —{z,, .., x,} and a non-vanishing C* real-valued closed 1-form ¢, on each U, such
that

(a) ;= t,on U,NU,.

(b) At each x, there is a local chart (u, v): V' —>R2 such that for z=u + 1, g, =Im (z"%dz)

on ¥ nU,, for some branch of 2> in U,n V.

Such a pair (U, g;) is called an atlas for F.
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Fig. 1

Ezample. Let X be a Riemann surface, and g a holomorphiclquadratic form on X,
vanishing at x,, ..., , to the order k, ..., k,. Pick an open cover of X —{x,,...,z,} by
simply connected sets, and in each one set ¢ =Im V;, for some branch of the square root.
Near z, a local chart z in which g =2"dz? satisfies condition (b). Holomorphic local co-
ordinates 2 in which g=2"dz%, k, >0, are called canonical coordinates and always exist.
The foliation induced by ¢ is denoted F,.

It is almost but not quite true that all measured foliations are of the type above (cf.
Chapter 11, § 2).

Away from the singularities a measured foliation clearly induces an ordinary folia-
tion, tangent in U, to the vectors in the kernel of p,. The leaves will be leaves in the ordinary
sense (i.e., maximal connected subsets of M —{x,, ..., x,} for the topology which in each
open set U, has as connected subsets the fibers of the map U,~R, z> (7, ¢,). However
if a leaf emanates from a singularity, then we include the singularity in the leaf.

The measure is the line element || induced in each U, by |¢,|; condition (a) guaran-
tees the measure is well-defined; we will say that it measures a transverse length since it
vanishes on vectors tangent to the leaves.

Near a singular point of order &, a model for the foliated surface can be built by taking
k+2 rectangles [ —1, 1] x [0, b]<R?, foliated by dy, and gluing them together according
to the pattern in Figure 1.

A leaf of F is called critical if it contains a singularity of F. The union of the compact
critical leaves is called the critical graph denoted by I'. An isolated multiple zero is con-
sidered part of I.

Let F be a measured foliation on M, defined by forms ¢, on U, and y: [a, b]>M
a C! curve. Define I:(y) =[5 |@|(y'(t))dt.

If y is a simple closed curve on M, define F(y) to be the infimum of all Ix(y,) for y,
freely homotopic to y.
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Let S be the set of homotopy classes of simple closed curves on M. The construction
above gives a map from the set of measured foliations on M to RS; we will call two measured
foliations equivalent if their images coincide. This equivalence is clearly coarser than
isotopy; we shall see that it is the finest equivalence relation coarser than isotopy with a
Hausdorff set of equivalence classes.

In fact, we will show in the course of the paper that the set F,, < RS of equivalence
classes of measured foliations on 3 is homeomorphic to R®~¢— {0}. This was first proved
by Thurston [17].

§ 2. The main result

Let ©,, be the Teichmiiller space of genus g. Consider the vector bundle p: @0,
whose fiber above a point (X, f)€@,, is the space HYX, Q®%) of holomorphic quadratic
forms on X. The union of these spaces can be given the structure of a vector bundle either
by using the Serre duality theorem to claim that H(X, Q®?%) is the dual of the tangent
space to @y at (X, f) (cf. [11], Chapter IV, § 1, or [6]), and thus that @ is the cotangent
bundle to @, or by invoking Grauert’s direct image theorem (cf. [11] for the special case
needed here).

Given any nonzero g €Q above (X, f), we can consider f*F € F,,. If 0 denotes the zero
section of @, the construction above defines a map Q —0— F,,. For any FE€ Fy, let E,<Q—0
be the fibre above F.

MaIN THEOREM. The restriction Egz—~®,, of p to Ep is a homeomorphism.

Chapters II-IV are devoted to the proof of this theorem. We will proceed in the
following steps:

(i) Eris not empty (I, § 2)

(if) p|g, is proper (1L, §7)

(ili) p|g, is injective (IV, §7)

(iv) plg, is open (IV, § 1 and 5).

Chapter II is essentially concerned with the topology of measured foliations; many
of the results are due to Thurston and are contained, explicitly or implicitly, in [17].

Chapter III is a study of the deformations of a multiple zero of a quadratic form, and
is preliminary to Chapter IV,

Chapter IV is primarily concerned with finding equations for E in @. This works well
in a neighborhood of a quadratic form which is not the square of a 1-form, but the case
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of a square introduces serious difficulties that require § 2-5. Point (iii) above then follows
from combining Corollary IL.9, a density statement analogous to that in [5] and the Strebel
Uniqueness Theorem [16].

§ 3. Applications

A holomorphic quadratic form ¢ is called Strebel if its horizontal foliation has closed
leaves. In that case the complement of the critical graph is a union of metric straight
cylinders, with respect to the metric |g|Y2, each swept out by homotopic leaves. The
leaves in different cylinders are not homotopic.

Conversely, let C be a system of » simple closed curves on M, disjoint, not pairwise
homotopie, and homotopically nontrivial. Let #.<@ be the space of Strebel forms whose
associated system of curves is homotopic to C. Denote I1: E.~®, x R" the map whose
first factor is the canonical projection p restricted to E. and whose second factor gives
the heights of the cylinders.

THEOREM 2. The map I1: E.~0y xR is a homeomorphism.

This theorem was announced in [10].

THEOREM 3. (Strebel [15, 16], Jenkins (13]). Let X be a compact Riemann surface
and let C be a system of curves as above. Let my, ..., m, be positive real numbers. Then there
exists a Strebel form g on X whose associated system of curves is homotopic to C and such that
the ratio M, of height to circumference (modulus) of each cylinder satisfies M ,=Km, where K

is a constant independent of 1. Furthermore q s unigue up to a positive real multiple.

Strebel also proved that ¢ varies continuously with the numbers m,, & fact which is
close to the part of Theorem 2 which states that ¢ varies continuously with the heights.
Both these theorems and the next will be proved in Chapter IV,

Finally we give a new proof of a result announced by Thurston.

TueorEM 4. (Thurston [17].) The set F,,<RS is homeomorphic to Ré?—¢ — {0}.

Remark. The quotient PF,, of F) by the positive reals acting by multiplication may
be identified with the unit sphere in the space of quadratic differentials on any fixed
compact Riemann surface. Thurston states in [17] that PF,, forms a boundary for Teich-
miiller space in a natural way. By Teichmiiller’s theorem the sphere in the space of quadratic
differentials also forms a boundary for Teichmiiller space (depending on a choice of base-
point). Kerckhoff [14] has shown that these topologies on the union of Teichmiiller space
and PF,; do not coincide.
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CHAPTER 11
Measured foliations and their realizations
§ 1. The orientation cover of a foliation

Let F be a measured foliation on M, with singular points z,, ..., #, of multiplicity
ky, ..., k,. We will construct a double cover My of M ramified at the singular points of odd
multiplicity, whose points above z correspond to the two orientations of F at 2. In various
guises, the surface M will be an essential tool throughout this paper.

Let F be defined by the forms ¢, on U, and let U =M — {x,, ..., 2,}. Consider the sub-
set of the cotangent bundle 7*U of all +¢,(x), which clearly forms an unramified double
cover of U. The cover is trivial near z, if and only if %, is even so we may compactify it
forming M, by adding one point above z, if k, is odd and two points if k, is even. Call
7: My~ M and v: My~ M the canonical projection and involution.

On M, the measured foliation n*F is defined by the “‘tautological” closed form g,
with zeroes only at the n—(z,). It is easy to check that the index of such a zero is k,/2 at
both of the points in z—(z,) if k, is even, and k,+1 at the point z—(x,) if &, is odd.

A parametrized curve y: [a, b]—> M is increasing if p(y'(t)) >0 for all t€(a, b).

Remark. The surface M may have two connected components. This occurs precisely

if 7 is orientable, i.e. F is defined by a global closed one-form.
The following result is a first use of M.

ProrosiTION 2.1. Every measured foliation on M has 4g—4 singularities counting
multiplicities.

Proof. Suppose k,, ..., k,, are odd and k,,,, ..., k, are even. The Riemann-Hurwitz

formula gives
x(Mp) = 2(2—29)—m.

On the other hand, the sum of the indices of the zeroes of ¢ is
m n
>+l +2 > k2.
i=1 J=m+1
By the Hopf index theorem for forms,
m n
S+ 1)+2 3 k2= — (M) =2(2g ~2)+m. Q.E.D.
=1 F=m+1

This result agrees of course with the fact that a quadratic differential has 4g —4 zeroes

counting multiplicities.
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§ 2. Realizable foliations

It turns out that there are measured foliations which are not given by a holomorphic
quadratic form,

Example. Take two cylinders, foliated by horizontal circles, and with the measure
given by the height function, and glue them together according to the pattern in Figure 2.
If this measured foliation were induced by a quadratic form ¢, the cylinders would be
straight metric cylinders for the metric |¢|%/%; in particular the top and the bottom of each
would have the same length. If one writes the corresponding equations for the lengths
in Figure 2, one gets

Ltlg=l+l+l+],

Litly=l+l;+1l+1,.

This system has no positive solutions.

Of course, there are equivalent metric foliations which are induced by quadratic
forms; for instance that obtained by collapsing I, and I, to points. The object of paragraph
2 is to show that this is always the case.

If y is a critical segment of F (i.e. a compact critical leaf which is an interval, not a
circle), we can choose a map f: M- M homotopic to the identity, which is a diffeomorphism
on M —y and collapses ¥ to a point . The measured foliation f, F obtained from F by
collapsing y is defined by the open cover f(U;—y) with the 1-forms (f-1)*¢,. If z, and =,
are the endpoints of y, of order k, and k, respectively, it is easy to check that the point
x=f(y) becomes a singularity of order %, +k,.

Clearly f, F is equivalent to F'; we shall see in Chapter IV that the equivalence rela-
tion we have put on measured foliations is the minimal one under which isotopic foliations
and those related by the collapse of a critical segment are equivalent. In the mean time
we will call this minimal equivalence relation strong equivalence.
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Fig. 8 Fig. 4

Given any measured foliation F, we shall show that there is a strongly equivalent
one which is induced by a holomorphic quadratic form ¢ (for some complex structure on
M): we will say that g realizes F.

Let F be a measured foliation on M, and ¢ the closed form defining 7*F on M.
For any two points x and y in M at which ¢ does not vanish, we say « leads to y if there
exists an increasing curve y: [0, 1] M such that y(0) =z, p(1) =y.

ProrosiTiON 2.2. Let F be a measured foliation on M. The following conditions
are equivalent:

(a) F can be realized by a quadratic form on M, holomorphic for some complex structure
on M.
(b) F can be realized by a q as above, whose vertical foliation is Strebel.

(c) Every point x leads to every point y in the same connected component of Mp.

Proof. (b) implies (a) is obvious. To see that (c) implies (b), suppose first that My
is connected. Pair up the sectors in M at all the singular points, and for each pair pick for
one the sector above it in M, in which increasing curves leave the singularity, and for the
other the sector above it in M in which increasing curves go to the singularity (Figure 3).
For each such pair of sectors, choose an increasing curve y on M joining their singularities,
starting in one sector and ending in the other. Consider the images of these curves in M;
these are transverse to F. If any of these curves intersect (even themselves) at nonsingular
points, they can be changed so as to be disjoint and simple and still transverse by cutting
them and reconnecting them as suggested by Figure 4. In the process we may create some
simple closed curves avoiding the singularities; if so, erase them.

Let I"< M be the graph formed by all the curves drawn. Then M cut along [ consists
of surfaces with boundary, with a foliation transverse to the boundary, and without
singularities. Then the double of each component must be a torus by Proposition 2.1, and
80 each component must be an annulus.

For each such annulus, pick a measured foliation tangent to the boundary, and trans-
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verse to the original foliation. The two foliations together define charts M —R? away
from the singularities, and these charts are the canonical coordinates for a unique quadratic
form on M, holomorphic for that structure.

In case My is not connected, F is defined by a closed form @ on M which orients F.
At each singularity of F, the sectors fall into two classes according to whether increasing
curves leave or arrive in that sector, and there are the same number of sectors in each
class. Thus they can be paired up, and the proof continues as above. This shows that (c)
implies (b).

Finally, let ¢ be holomorphic quadratic form on the Riemann surface X =M, and z, y
two points in the same connected component of M such that x does not lead to y. Consider
the set NV of points to which « does lead. Then it is easy to see that N —z—{x,, ..., x,} is an
open subset of M ,—nz,, ..., x,}, whose boundary in M is a union of closed leaves.

Clearly ni*q is the square of a complex valued 1-form w, an M, such that ¢ =Im w,.
Define a vector field y on M by w,(x)=4. This vector field has poles at the zeroes of w,,
80 it only generates a flow almost everywhere, i.e., on the complement of the critical
vertical leaves. Since it points into N everywhere along the boundary, this almost every-
where defined flow sends N into its interior. This is incompatible with the fact that it

reserves the measure jw,|2. Q.E.D.
P a

We now come to the main result of this chapter.

TaeEoREM 2.3. For any measured foliation F on M, there is a strongly equivalent F’
which can be realized by a guadratic form.

Proof. Without loss of generality, we can suppose that F has only ordinary singulari-
ties, so that M is connected.

A non-empty open subset N of My~ {z,, ..., 2,} will be called stable if y € N whenever
there is an £ € N which leads to y. A stable subset is minimal if it contains no smaller stable
subset. It is easy to check that except at singularities the closures of stable subsets are
submanifolds with boundary of My, and that the boundary is a subset of I'. Moreover,
every point of a minimal stable leads to every other point.

LemMA 2.4. Either there is only one minimal subset Mz, or 7u: MM maps the union
of the minimal subsets injectively onto M. The first case occurs if and only if F is realizable.

Proof. The last statement follows immediately from Proposition 2.2. Suppose N, and
N, are two minimal subsets, and that z€1(N,) N N,. Then for any y€N,, y leads to 7(x),
so z leads to 7(y), so t(N,)< N, By symmetry, N,=1(N,). But this is clearly impossible
if the boundary of N, is not empty, i.e. if N,=+Mp. Q.E.D.
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Fig. 5
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This lemma suggests that we should try to simplify the set of minimal subsets for F.
In order to make this precise, we shall say that one foliation F with minimal subsets
Ny, ..., N, is better than another F” with minimal subsets Ny, ..., Ny, if #<m, or n =m and
there are more elements of rry( Mz — f‘) which are subsets of |J,N, than there are elements of
70o(M o — f’) which are subsets of |J;NN;, or these numbers also are equal and there are more
segments of I contained in UV, than there are segments of [ contained in U .. This
rather cumbersome definition does have the property that if we can make a foliation better
by contracting and expanding appropriate segments of its critical graph, then iterating
the process will eventually make the foliation realizable.

Suppose F is a measured foliation on M, and that N is a minimal subset of M, with
N =1 ;. Then there must be a segment y of I" with extremity x such that near x, n{N)=
M —y (see Figure 5). Indeed, if all other sorts of singularities were of another type, N
could be contracted into itself, contradicting minimality. Let F’ be the foliation obtained
by collapsing y and expanding it the other way; we shall show that F’ is better than F.
Call 4, B, C, D the components of M —TI" near y, and let 4, B, 0, D by those corresponding
components of M, —I"such that 4, B, (< N, and D is connected to Band (' in M, —n1(y).
Label I, IT, IIT the cases when neither D or (D)< N, D< N and (D)<= N.

(a) In cases I and II, suppose that ¢(D) leads to a minimal subset N'==N. It is then
easy to see that for F’ the minimal subset N disappears (it empties into N'), and that no
new minimal subset is created, so in this case F' is better than F.

(b) In cases I and II, suppose 7(D) leads only to N. Let P be the set of points to which
7(D) does lead. Call P’ the corresponding subset for F’ and let N’ be a minimal stable
subset contained in P’. Then either N'> N or N'>7(N), for otherwise N’ was a minimal
subset for F. In particular N’ is the only minimal subset of P’. If N'> N, then N'==N
since NV is not stable for F’, so N’ is strictly larger than N and we are done. If N’ =7(N)
and 7(D) leads to N, N’ contains points of N and 7(XN) which is impossible unless N’ = 3.

(c) Case III is easier: For F' the subset N is still a minimal subset, which contains one
more segment of I’ than before, and everything else is unchanged. Q.E.D.
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§ 3. Quasi-transversal curves

On the surface M consider a measured foliation F defined by an atlas (U,, ¢,), and
a closed curve y: [0, 1] M. Define the transverse length of y to be

1
Le(y)= fo lp (' ()] dt.

Define F(y)=inf l(y,), where the inf is taken over all curves ¢, homotopic to .
It is not quite clear that this inf is actually realized; since travel along the leaves of
the foliation is free, it is conceivable that a very long path homotopic to the original one

might have arbitrarily small transverse length.

Example. Consider the one form on a cylinder defined as the dot product with a unit
vector field perpendicular to the vector field whose integral curves have the equator as
limit cycle, as in Figure 6. Given points # and y on the two boundary components and
any homotopy class of paths between them, the inf of the transverse lengths of curves
from x to y in that homotopy class is zero, even though no curve realizes it.

Of course, in the example above, the form is not closed. The object of Proposition 2.5
is to show that such phenomena cannot happen for measured foliations. For this we need
the concept of quasitransversal curves defined for curves that are immersions except pos-
sibly at the singularities. A closed curve ¢: S'— M is quasitransversal to F if at every point
t€ S either p(t) is a singularity of F or y is locally near ¢ transversal to F or an inclusion
into a leaf of F. If y(t) is a singularity, then at least an open sector on both sides must
separate the incoming and the outgoing parts of the curve. In particular, at a simple
singularity, if y comes along one critical leaf it either leaves by another, or it leaves trans-
versally in the opposite sector.

ProProsITION 2.5.

(a) Every closed curve is homotopic lo a quasi-transversal one.

(b} If y is quasi-transversal, Ip(y) = F(y).

(¢) If vy and y, are two homotopic quasi-transversal simple closed curves, then either they
are both entirely formed of leaves and are homotopic among such curves, or they include
the same leaves and each transversal part of y, is homotopic with endpoints fized and
through tramsversal curves to a transversal part of y,.
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Proof. For part (a) suppose first that F is induced by a quadratic differential ¢. Then
the geodesic homotopic to y for the metric |¢]/? is a quasi-transversal curve except at
those singularities where it enters and leaves in adjacent open sectors. A small pertruba-
tion near these points makes it quasi-transversal. (For details about the metric |¢|/2 and
its geodesics see [1], [3], [10].) By Theorem 2.3 all we need to show is that if ¢ is quasi-
transverse to F' and F' is obtained from F by collapsing or expanding a critical segment,
then there is a 9’ homotopic to y which is quasi-transversal to F'. A few drawings will con-
vince the reader that this is so.

(b) If I5(y) =0 we are done, so suppose not. Consider the covering space M, in which
curves homotopic to ¢ are the only simple closed curves; this covering space is homeo-
morphic to an open cylinder, with y as an equator. In this covering space any non-critical
leaf intersects y transversally at most once. Indeed, if a leaf intersects o transversally
twice, then the portion of the leaf between the intersections together with a segment of y
bound a disc. Doubling this disc along the quasi-transversal segment gives a foliated disc
with the boundary a leaf. This is impossible. Thus every leaf which intersects y transversally
either is critical or goes from one end of the cylinder M., to the other. Let ' be a curve
homotopic to y, so it can be lifted to a closed curve on M. Then every non-critical leaf
intersecting y must intersect »’, and it is clearly possible to choose such an intersection
point in a piece-wise continuous way. This defines a piece-wise continuous map of the
non-critical portions of p to 9 which is an isometry of y onto a subset of ’.

{c) Keeping the notations above, suppose now that y’ also is quasi-transversal. Let x
be an extremity of a leaf «<y, at which « becomes transversal. Then one of leaves emanat-
ing from x must intersect y’; suppose it does so at a point x’+x. Define similarly y and ¥y’
for the other end of the leaf «. Then the quadrilaterial formed of «, the leaves zz’ and yy’
and an appropriate segment of 9’ is bounded by a leaf and a quasi-transversal segment,
which is impossible, as above. So z=2', y =y’ and « is included in both y and 9. Thus the
leaf segments of ¢ and o' coincide, and sliding along leaves provides the desired homotopy

between the transversal segments.

Remark. If y is a simple closed curve, it may be impossible to choose & quasi-transversal

curve homotopic to y which is simple.

§ 4. The set S and Hy(Mr, I'r)-

In this paragraph all homology groups will have real coefficients. If ¥ is a vector
space with an involution v, we will denote V- the odd part of V,i.e. V—=ker (v+Id: V> V).
For any element y €8, define 7 € H,(M , I'7) in the following way: replace ¥ by a quasi-
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transversal curve in its homotopy class and orient the transversal segments of z~(y) so
that they are increasing. The sum of these oriented segments is a singular one-chain on
M ; whose boundary is in OO(f‘F), go the one-chain defines a class € H, (M, fp) which is
well-defined by Proposition 2.5. Clearly 7, = —¥ so y € H (M, f‘F)‘.

Let T'< S8 be the set of homotopy classes of curves admitting a quasi-transversal
representative y€M —I. If F(y)>0 the construction above gives y €H, (M F—f‘F)"; if
F(y)=0 and y is quasi-transversal then y is an equator of a cylinder foliated by closed
curves: define 9 € H,(M F—f})‘ to be #~(y) oriented so that increasing curves cut it from
right to left.

ProPOSITION 2.6.

(i) The classes y for y €S generate Hy(Mp, i‘F)'.
(ii) The classes 7 for y€T generate Hy(M,—T'7)".

Proof. First replace F' by an equivalent foliation which is realizable and has simple
singularities. This is possible, because, if f: M —~M is a map collapsing a critical segment
and F'=f, F, then j,: H (M, I')~>H, (M, I'z) is an isomorphism, and the lifts 7 and
7" of y for F and F’ respectively correspond under f.

Now the exact sequence
Hy(Ts) > Hy(M ) > Hy( Mg, ) > Hy(Ts)

gives a surjective map H,(My)~—>H (M, f‘F)‘ since each component of I' contains a
simple singularity, so its inverse image in M is connected and 7, is the identity on Ho(f‘p).

Pick a simple closed curve o on My and set §=a—7(x). The classes of such curves 8
generate H, (M, I's)~. If « had been put in general position with respect to 7{a) avoiding
the singularities, the oriented curve 8 may fail to be simple but will have transverse self
intersections. The trick of reconnecting the segments at intersections as in Figure 4 does
not change the homology class. Thus we can suppose that §=8, U,V ... U, where the
B, are disjoint embedded curves and each one has two connected components which are
reversed by .

Without loss of generality, we can suppose that y =z(f) is connected and simple, that
y is formed of a sequence of transverse curves, and contains no singularities, i.e. y =8, %
N1 % ... %0,%n, where the §, and 7, are transverse segments and % denotes juxtaposition.
Moreover we can suppose that in 8 the 2-1(§,) are increasing and the zz~1(z,) are decreasing.

For each 7, pick a transverse curve 7; with the same endpoints as 7, such that »,%;
is a transversal closed curve. This is possible by Proposition 2.2 (¢). Now the curve y’' =
0y %My % ... %¥0,3%7, is transversal and §’ differs from by >, 5, % .
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Another use of the disconnecting and reconnecting argument will turn 9’ and the
ny%7; into unions of simple closed curves. The simple closed curves cannot bound a disc
as that would result in a foliation of the disc with transverse boundary. This proves (i).

For part (ii), it is sufficient to prove the result for each connected component of M —1I".
These are of two types: open cylinders foliated by compact leaves, for which the result is
trivial, and open foliated surfaces with no closed leaves. For these the proof of part (i)
works verbatim, except that the existence of the curves 7; needs a different justification.

Let N denote one such component of M —I". We claim that every point N leads to
every other in the same component. Indeed if not, the set of points in N, to which a given
point does lead is a submanifold of &, with boundary, and this boundary must consist of
closed leaves, of which there are none. It is clear that the endpoints of any #,, lifted to
¢ s0 that 7, leads from one to the other, are in the same component of XN, therefore their

images by 7 are also in the same component, and there is a path 7, leading from one to the
other. Q.E.D.

§ 5. Poincaré duality and Hy(Mpr, T'r)-

In this paragraph we begin to show that if two measured foliations are equivalent
they are strongly equivalent. We need to extract some information about a measured
foliation F from its image in RS. Specifically, we will “synthesize” H,(Mp, fF)‘.

Recall that R®c RS is the set of maps S—R with finite support, i.e. finite linear
combinations of elements of S.

The idea is to find the kernel of the map R —H,(#, ')~ defined by y—>7, a map
which we have seen to be surjective. By Poincaré—Alexander duality [9] the algebraic
intersection number gives a non-singular pairing of H, (M, f‘p) with H (M F—f‘p), noted
(xf)—>a- B, and this is still true of the odd parts, as the odd part of one is orthogonal to
the even part of the other. Let 77 8 be as above the set of homotopy classes « such that
«c BTy Using again Proposition 2.6, the argument above can be restated as follows:

PrOPOSITION 2.7. The kernel of the canonical map RS —H,(M,, T'p)~ is the kernel
of the map R® —>RT defined by y—(y'>9-9').

In order to use this proposition, we need to extract from the image of F in R® the

following information.

(a) When is an element of 8 in 7'?
(b) Iy, €8 and », €T, what is p;-p,?
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Let 8’ be the set of homotopy classes of finite disjoint unions of simple closed curves.
Recall [17] that the geometric intersection number 4(cx, §) of two classes «, S €S is the mini-
mal number of transverse intersections of curves in the homotopy classes of & and g re-
spectively. Given «, S €8 with geometric intersection number n, we will define 2" elements
of §’ indexed by (g, ..., &,) where ¢,— + 1. Suppose a N g ={x,, ..., z,}. At each z, label +1
(resp. —1) the two opposite quadrants of M — e U § in which « meets § on the left (resp.
right); this labeling does not depend on orientations for « or § but only on the orientation
of M. (See Figure 7.) Let y,,,
where, and which at «, turns off x onto § in both of the quadrants labeled &,. These elements

¢, be the element of 8’ which follows both & and g every-

of 8’ will be called the combinations of « and §. Now the answers to the questionsv (a) and

(b) are contained in the following proposition.

ProrosiTIiON 2.8. Given €8, a 13 in T if and only if either

(i) F(x)>0 and for all BES, there is a unique combination y,,,
Fly.,.....,) mazimal. In that case &-}f}=2 e

(i) F(x)=0 and there exists ¢>0 such that for all B with i(«, B)>0, F(8)>¢. In that
case &+ f =2i(e, B).

of « and f with

ey

Proof. For both (i) and (ii) it is easy to see that if « is in 7, the conclusion is true.
This will be shown in step I. It is harder to show that if « is not in 7', then the conclusion

is not satisfied. This will be shown in step II.

Step 1. (i) If €T and F(x)>0, we may represent « by a curve transversal to F,
by a quasi transversal curve such that the intersections of « and § are transversal. Then
Figure 8 makes it clear that for exactly one ¢, ..., &, i8 y,,, ..., quasi-transversal, and for
all others the transverse length is less.

Moreover, both inverse images of x,€a N § contribute ¢, to &-5.

(ii) If « € T and F(x)=0, « can be realized as the equator of a cylinder foliated under
F by equators, and of transverse height 2>0. Then if ¢(e, §) ==, § must cross the cylinder
from top to bottom n times, and F(f)=nh>0.
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Moreover, if § is realized so as to intersect « transversely in n points, then each point
of w~1( N B) contributes 1 to &- 3. ‘

Step 11. We will need two facts whose proofs are left to the reader; the techniques of
[7] can be used to prove (b).

(a) Let F be a realizable foliation, and y a non-critical curve. Then either y is closed,
or < M is a region whose boundary is contained in T

(b) If « and g are two transversal simple closed curves on M, which intersect in more
than i(«, §) points, then there is an embedded disc in M bounded by a segment of « and a
segment of B.

(i) Let « be a quasi-transversal curve homotopic to a simple curve, with « N '+,
and F(a)>0. Then o must cross a 1-cell of I", or follow one, or do both of these things.

Suppose there is a quasi-transversal curve § homotopic to a simple curve, transversal
to a, which follows some 1-cells of I" which « crosses, or crosses some 1-cells of I which «
follows, or both, and that these are only points of « N SN I,

Consider the two combinations of « N § obtained by choosing the following quadrants:

The unique choice which makes the combination quasi-transversal, as in step I, at
points not in T;

The same choice +1 or —1 at all points of a1 gNT.

It is not hard to show that both of these combinations are arbitrarily close to quasi-
transversal curves of maximal length F(x)+ F(B).

It remains to show that such a f exists. Suppose F realizable.

If « follows a 1-cell y, such a f exists by Proposition II.2. Indeed a transversal curve
exists which leaves  on one side and returns on the other; such a curve can be made simple
by disconnecting and reconnecting at the intersections.

If « is transversal to I', the argument is more delicate.

Let y be a critical segment of I" which o crosses; we need to find a quasi-transversal
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other lifts of o

Fig. 10

simple closed curve which follows y. Let 4 and B be the end points of y, which we may
assume distinct. If the leaves in the sector opposite to y at A are closed, the argument is
easy, 80 suppose not. Then the critical ones among them are dense, 8o we may assume a
neighborhood of y looks like Figure 9, where C is different from A or B. Follow the leaf §;
it is possible to return to C either along a critical leaf, or by following § till it returns near
C and making a short transverse leap. In either case there is a quasi-transverse path that
leaves 4, goes to C transversely, follows d, returns to C as above, and returns to 4 trans-
versely.

Repeat the argument for B and patch the paths together.

(ii) Now suppose « is in I', and not homotopic to the equator of a cylinder. Consider
a covering space M of M in which a lift & of « is the only simple closed curve (remark
that & actually is simple).

If we draw the lifts of « “infinitesimally separated”, M might look like Figure 10.
Statements about intersections are to be understood in the sense of this “infinitesimal
separation”, i.e. intersections are considered to exist only if they cannot be avoided by an
arbitrarily small isotopy. In particular, there are distinct points 4 and B on & from which
critical leaves leave & on opposite sides, which do not intersect other lifts of « near a.
Let 8, be the leaf leaving 4. Then 4, can be joined to some other lift 4’ of 4 without inter-
gecting any other lifts of o by a path with either transversal length, or arbitrarily short
transversal length, by fact (a). Pick a similar curve §, leaving & from the point B. There
are several cases to consider depending on whether the images 8, and d, of 6, and 8, in M
are simple or not, and intersect or not, and whether they return to the same side of « that
they left « or not. If they are not simple, they can be made simple by disconnecting and
reconnecting.

16 — 782905 Acta mathematica 142. Imprimé le 11 Mai 1979
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If they intersect, it is possible to follow 6, from A to the first point of intersection,
then 8, back to B, and a segment of « from B to 4, to produce a simple closed curve § on
M with algebraic intersection «-f=1. If 8, (or 8,) returns to « on the opposite side from
which it left, the same construction is possible.

Finally if both 4, and J, are disjoint and simple, it is possible to follow §,, & segment of
¢, 6; and the other segment of « to produce a simple closed curve §, with i(e, 8)=2 by
fact (b). Indeed, the intersection points exist, and any disc bounded by a segment of «
and a segment of # would be visible in M. Q.E.D.

CoROLLARY 2.9. If F and F’' are two measured foliations on M with the same tmage
in RS, then there is a unique isomorphism

HI(MF= fr)_ - H1(Mr', f‘r)_
such that the diagram
Hy(Hp, Te)~
R(S)
N N
HI(MF” FF’)—

commutes.

Proof. This is precisely the content of Proposition 2.7 and Proposition 2.8.

§ 6. Foliations with closed leaves

Although it seems quite difficult to get any precise geometric information about a
measured foliation from its image in R¥, this is not the case for foliations with closed leaves.
In this paragraph we will see that the image in R® determines the cylinders and their
heights; this will be useful in Chapter IV, § 3.

Lrmya 2.10. Let F be measured foliation with closed leaves, and F' another measured
foliation with same tmage in RS. Then

(i) F’ also has closed leaves,
(ii) For each cylinder for F there is a corresponding one for F' with homotopic equator,
(iii) Corresponding cylinders have the same height.

Proof. (i) Foliations with closed leaves are distinguished by the fact that the image of
S in R for such foliations is discrete.

(ii) The equators of cylinders for F' are homotopic to those simple closed curves y
such that F(y) =0, and for any y such that (y, y')%0, F(y’)=0.
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(iii) We have seen that the image of ¥ in R® determines the homotopy classes y,, ..., ¥
of the equators of the cylinders. It is not hard to see that for any j=1, ..., n there is a
simple closed curve y; such that i(y,, ¥;) =1 or 2, and i(y;, y;) =0 for k==j. Then the height
of the cylinder with equator y, is either F(y;) or 1/2F(y;) depending on the intersection
number. Q.E.D.

Remark. It is fairly easy to prove that in this case F and F' are equivalent.

§ 7. The map Er—> @y is proper
LemMa 2.11. The map Q- {0}—R defined by q—(y— F(y)) is continuous.

Proof. In each homotopy class there is either a unique geodesic in the metric |g|%/2
or an annulus swept out by geodesics. An application of Ascoli’s theorem shows the trans-

verse length varies continuously in @ —{0}.
LevMma 2.12. The map p: Ep—@,, ts proper.

Proof. Suppose K is compact in ®, and ¢, € B N p~1(K) is a quadratic form on X,,. If
llgall =S x. |¢x] is not bounded above then since the images of g, in R® coincide, the images
of g»=4,/]|¢.|| in R® converge to zero. However g, is in the unit sphere in @ which is proper
over @, 8o some subsequence converges to g,3=0. By the continuity of the map to R®, the
image of g, is zero. This is clearly impossible. A similar argument shows that ||g,|| bounded
away from zero. Therefore a subsequence converges to g, and since E is closed, as it is

the inverse image of a point, ¢,€ Ep.

CHAPTER HI
The space E;

§ 1. A versal deformation of z*dz®

Let P, be the space of quadratic differentials on € of the form (2*+p(z))dz2, with p
a polynomial of degree at most k—2. We wish to show that P, is a universal deformation
of 2*dz?; this is ordinarily stated in terms of germs, but we will prove a slightly stronger
statement which pays attention to domains of definition. The germified statement follows
from Proposition 3.1 by a straightforward inductive limit argument.

Our proof rests on the inverse function theorem for Banach spaces. Let U be a simply
connected neighborhood of 0 in €, and let B(U) (resp. BY(U)) be the Banach space of
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functions analytic and bounded in U, with the uniform norm (resp. analytic functions on
U with bounded derivatives, with ||f]| =sup,cs(|f(2)| + |f'(2)|)). Similarly, let B(U, Q®?)
(resp. BY{U, Q¢%?)) be the Banach space of quadratic differentials of the form f(z)dz? with
f€B(U) (resp. f€ BYU)).

PrOPOSITION 3.1. There is a unique analytic map «=(0y, o) from any sufficiently
small neighborhood of 2*dz2 in B(U, Q%2) to a neighborhood of (id, 2*dz?) in BY(U) x P,, such
that

(@) (oa(p) =9

Proof. Consider the map F: BYU) x P,,— B(U, }%?) defined by (f, g)—f*q. The map F
is well defined as we can find a bound for f*g in terms of a bound for ¢ and a bound on
both f and f'.

We wish to compute the derivative of F. The tangent space to B(U) at the identity
should be thought of as vector fields y(z)d/dz with y € BY(U), whereas the tangent space to
P, is the space P, of polynomial quadratic differentials of degree at most k£ — 2. An easy
calculation shows that the derivative of F at (id, 2"d2?) is

(x> p(2)d2?) > Ly(2* d2*) + p(2) d2?,

where L, is the Lie derivative. If we can show that the linear map above is an isomorphism,
the proposition will follow from the inverse function theorem.

A calculation to first order shows that L, (2*d2?) =kz"*""y(z) +22%)'(2). Thus we must
show that given any @ € B(U) there exist a unique y € BY(U) and p polynomial of degree
at most £ —2 such that

k() +22 () + () = 9(2).

Clearly p must be the & —2 jet of ¢ at 0; set y(z) = (p(2) — p(2))/z" !, we must show that there
is & unique solution y € BY(U) to the differential equation ky +2zy’ —y. Using the integrating
factor 1/22%2-1, we find that the unique solution analytic at zero is

x(z)=2""" fo $p(C) L2 tde.

It is clear from the formula that y is bounded if y is bounded, and ¥’ =(2z)~(y — ky) gives
a bound for y'. Q.E.D.

§ 2. Statement of the main result

Let E, be the set of g€P, such that any two zeroes are connected by the critical
graph I',. Pick 4 >0 on the real axis and let U< P, be the set of ¢ having all their roots in
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Fig. 11 Fig. 12

the disc of radius 4. We can define a continuous function s: E, N U~ R by s(q) =Im {5« l/é
since a branch of Vg can be chosen continuously at A4, and any two paths from 4 to I,
differ up to homotopy by a path in I', which contributes only to the real part of the integral.
We shall consider E, < P, x R embedded by g>(g, s(q)). (Actually, it is U which isembedded
in P, x R, but as the result we are after is local, we will frequently speak of E, when we
only mean a neighborhood of 2¥dz2.)

The object of the rest of this chapter is to show that E, is a C! submanifold of P, xR

and to compute its tangent space at z*dz2.

Example. If k=2, it is easy to show that ¢=(22+a)dz? is in E, if and only if a is purely
imaginary. In that case the critical graph looks like Figure 11, depending on whether a/:
is positive or negative. The function s(t)=Im L' V22 +itdz has an asymptotic develop-
ment s(t) = — }t log |¢| +O(t) and is not differentiable at ¢ =0; its graph looks like Figure 12.

Thus although E, is a submanifold of both P, and P, x R, the induced C* structures
do not coincide.

We do not know whether E, is in general a differentiable submanifold of P,, but if it
is, the induced differentiable structure does not coincide with the one we shall describe

here. The extra differentiable function s will be crucial for our purposes.

Remark. It appears likely that for k>4, k even, E, is a topological submanifold of P,

with a tangent space at each point which does not depend continuously on the point.

THEOREM 3.2. (a) The space B, is near 2*dz? a O submanifold of P, x R, of real dimen-
sion k—1.
(b) The tangent space to E, at 2*dz2 is the space of pairs (p, 8) with p=(ay_y7* 2+ ... +
ao)dz%, such that ay—= ... =ay_, =0 and s arbitrary, if k is even; agg= ... =a@,4,_g=0
and s=Tm [ (p/V7*)dz, if k is odd.
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Remark. If k is odd then E, is in fact a submanifold of P,.
The proof of Theorem 3.2 will require the remainder of this chapter. The organizing

principle is the following criterion.

ProPoSITION 3.3. Let UcR"™ x R™ be closed in a neighborhood of 0 with U N ({0} x
R™) ={0} and satisfy O has a basis of neighborhoods V in U such that

(i) V—{0} is connected and +O.

(i) For all €U, uz0, U is near u the graph of a C* map R"—~>R";
(iili) lim, .o T, U exists and is R™ x {0};

(iv) Either n>2 or the projection U—R™ is injective.

Then U is a C* submanifold of R" x R™ near 0, and T, U =R" x {0}.

Proof. The projection map 7" U —{0}—R" is a local homeomorphism near 0 by (ii).
Since U is closed and U N ({0} x R™)={0}, it is onto a neighborhood W of 0. Taking W
small enough and ¥V’ the component of T-1(W) containing 0, the map V' — {0}~ W —{0}
is a covering map. If n>2, R*—{0} is simply connected so the covering space is trivial
and single sheeted by (i). Condition (iv) guarantees that the same is true if n=2. Thus U
is in a neighborhood of {0} the graph of a map f: R*-R™ which is C* in R" - {0}.

One form of L’Hospital’s rule says that if f: R*~R™ is continuous, differentiable
except at 0, and lim,_,(d,f exists, then f is differentiable at zero and dyf=lim,,od.f. By
(iii), this result can be applied to the map f above. Q.E.D.

Remark. The curve y?=2® in €2, with the projection (2, y)—>=, shows that (iv) is neces-
sary if n=2.

For an appropriate decomposition of P, xR, E, will satisfy near (2*dz2, 0) the condi-
tions of Proposition 3.5.

The justification of (ii) will be given in § 4, with preliminaries in § 3. The justification
of (iii) will be given in § 5, and will follow easily from (ii) and a homogeneity property of E;.
The justification of (i) will be given in § 6, and will require an entirely different approach
to E,. We shall show that K, has a natural simplicial structure, and that with this structure
it is a piecewise linear manifold. The study of E; needed to justify (iv) will be given in
§ 7, using elementary but delicate analysis of the differential equation defined by a quadra-
tic form.

As the entire proof is by induction on %, the following assumption will be in force till
the end of the chapter.

Inductive assumption: k is an integer >1, and the statement of Theorem 3.2 is true for
all &' <k.
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Remark. The space E, <P, x R=R is just the point 0, and Theorem 2.2 is true in that
case. We have already constructed E, in the example above, but the construction will in

principle be repeated in the general proof.

§ 3. Preliminaries on the topology of Riemann surfaces

In this paragraph we will collect three results that will be useful in the proof of Proposi-
tion 3.6 (which will be quite elaborate enough without interruptions).

We will identify elements of P, with the associated polynomials. All homology groups
will be with coefficients Z, but cohomology groups will have coefficients in whatever
sheaf is indicated.

Let g,€P, be a polynomial. We will denote X, the curve in (2 of equation y2 =g(z).
This curve is non-singular if and only if ¢, has only simple zeroes. Denote X, the normaliza-
tion of X,, and X,, the non-singular compactification of X,,. In all cases, the projection

on C will be denoted by 7.

Remarks. (a) The Riemann surface X, is “the Riemann surface of Va,”, in particular
it carries a canonical differential cvg,.
(b) X, is obtained by adding one or two points at oo to X, depending on whether k

is odd or even; these will be denoted oo or oo, and oo, respectively.

(i) Period matrices.

The following fact is just one way of saying that the imaginary part of the period matrix

of a compact Riemann surface is non-degenerate.

ProrositioN 3.4. If X is any compact Riemann surface, the map HYX, Qy)—~

¢ > (}‘ —>Imf w)

18 an isomorphism of real vector spaces.

Proof. Recall from [10, p. 71] that HY(X, C)=H%X, Q;)®H%X, Qx) under the de
Rham map. The map described in the proposition sends ¢ to its imaginary part, i.e.
@ 4i(@—o), and is injective since the sum above is direct. Both spaces have real dimen-
gion 2¢, thus this map is an isomorphism. QED.

CorOLLARY 3.5. (a) If k is odd, the map

HY(X,,, Q) > Hom (Hy(X,); R)

defined in Proposition 3.4 s an isomorphism.
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(b) If k is even and Q(Roo) is the sheaf of meromorphic differentials on X, holomorphic
except at oo, and oo, and having there at most simple poles with real residues, the map

HO(Xao’ Q(Roo)) > Hom (HJ(XQD); R)
defined in Proposition 3.4 is an isomorphism.

Proof. Part (a) is clear, since removing one point from a compact surface does not
change its first homology group.

For part (b) suppose first that g, is a square. Then the result is trivial as both sides
are 0. The case when ¢, is not a square follows from the five lemma and the following

commutative diagram (the subseript ¢, is dropped for convenience)

res

0—— HYX, Q) HYX, Q(R)) R >0

0 —— Hom (H,(X); R)— Hom (H,(X); R) —— R xR —R——0

where the map res is w-—>Tes,, (W)= —Tresy,(w); the bottom exact sequence is extracted
from the transpose of the homology exact sequence of the pair (X, X). The last two terms
are computed by excision; the last map is addition and the map from Hom (H,(X); R) is
onto the line x4y =0. The vertical maps are given by the imaginary parts of integrals as
in Proposition 3.4. The left-hand map is an isomorphism by Proposition 3.4, the right-
hand map is an isomorphism onto x +y =0 because the integral around a loop is 2n¢ times

the residue, so the map in the center is an isomorphism. Q.E.D.

(ii) The pair (X, X)

Topologically, X, can be obtained from X, by identifying the pairs of points above
the even zeroes of ¢, It is more convenient (and équivalent up to homotopy) to think of
X,, as X, to which line segments joining the above pairs of points have been added. Thus
we can think of X, as a subset of X,

The long homology sequence of the pair looks rather different depending on whether
g, is & square or not; in both cases X, is connected, but X, has two connected (contractible)
components if g, is a square, and one otherwise.

If g, is not a square, and has m even zeroes, the exact sequence

0 —)‘Hl(xqo) *HI(X%) g Zm_’ 0
can be extracted from the long exact sequence, where H,(X,,, X,,)= Z™ is computed by

excision; the inclusion of the line segments described above can be taken as generators
of Z™,
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If g, is a square and has m even zeroes (and no odd zeroes of course) the exact sequence
0~ H(X,)~>Z"~>Z—~0

can be extracted from the long exact sequence, where again the generators of Z™ can be
represented by the line segments, and, if they are all oriented going from one component
of X,, to the other, the last map may be taken to be addition.

(iil) Vanishing homology and the local system H,(X,).

Pick small disjoint dises D, around the zeroes of ¢, and consider the space U< Py, of ¢
which vanish in each disc as many times as ¢, (counting multiplicities). The H,(X,) form
the fibres of a local system over U only if g, has only simple zeroes. However, each X,
comes with a canonical homotopy class of maps to X,, given by collapsing the inverse
images of the dises D, to points. The kernel in H,(X,) of the induced map to H,(X,,) is
called the vanishing homology, and the quotients of the H,(X,) by the vanishing homology
do fit together to form a trivial local system over U, which we shall denote by abuse of
notation H,(X,,).

§ 4. Local equations for E,

The object of this paragraph is to prove that E, satisfies condition (ii) of Proposition
3.3, for an appropriate decomposition of P, x R. This will use the inductive hypothesis
for k’ the order of the zeroes of go. The main tool in the proof is the non-degeneracy of the
imaginary part of the period matrix for a Riemann surface; (i.e. Corollary 3.5) this is used
in Lemma 3.8 and is the crucial computation to show that the implicit function theorem
can be applied.

Because the statements for k£ even and odd are different, we shall frequently have to
go through arguments twice; this seems to be inherent in the problem, as the arguments
are sometimes different in essential ways. The case when g, is a square will also require

separate treatment.

Notation. If k is even, denote
Hy = {Z+ay_o2" 2+ ... +a,¥*} xR

L, = {ay_1 21+ ... +ag}.
If % is odd, denote

_ f K Jo— (k—1)/2
Hy = {2" + @, 222+ ... +ag 2%}

L = {80522 P2+ ... +-ao} xR.
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In both cases, P, x R=Hj, x L. In either case H, is an affine space. Denote by H, the linear
part. The terms “high coefficients”” and “low coefficients” will be used accordingly; the
term “middle coefficient”” will be used only if % is even, and refers to ay,_;.

ProPoOSITION 3.68. For any q,€P, different from 2°dz? but sufficiently close, B, < P, xR
18 locally near q, the graph of a C* map H,~L,.

The proof is divided into two steps and will take the remainder of this paragraph.
The first describes an intermediate space F) consisting of ¢ € P, with a critical graph which
is locally connected near the zeroes of ¢, (see Figure 13). The second step deals with con-

necting up the critical graph.
Step 1. It is convenient to reformulate the inductive hypothesis to state: for all k' <£k,

P i holomorphic on X,# 4+ and s is a,rbitrary} if & is even;

V& dz

0
V_f'—d is holomorphic on X, and s= Imf V"ﬁd } if " is odd.
2tdz 4aV¥de

Tk o By = {(P, 3)

= {(p, 3)

Indeed it is clear that 1[)/(l/z7 dz) is holomorphic if and only if p vanishes at least to the
order k'/2 (k' even) or (k' —1)/2 (k' odd).

Let g,€ E, be sufficiently close to z*dz?, ¢,=+2"dz?, and let 2y, ..., 2, be the zeroes of
qq, of order k,, ..., k,; suppose k,, ..., k, even and k,_,, ..., k, odd. Pick disjoint discs D,
centered at x; and points 4,€x~1(@D,nT,). Let U<P, be a simply connected neighbor-
hood of ¢, consisting of forms g with &, zeroes in D,, i=1, ..., n.

By Proposition 3.1, there is an analytic map

f: U—]] P
-1

classifying the deformations of the zeroes of g,. Denote still f: U x R*>[[{.; (P, xR) the
map above extended by the identity on the second factor and consider

Fk=f_1(111Ek‘)CkaRn.

LeMmma 3.7. (a) F 18 a C submanifold of P, x R™.

(b)
T, Fr= {(p, 81 ey &)

P wolw k k R
= €EH X, Q|- 00, +-005}), ,=Im p/qu, t=m+1,...,n
qu 2 2 A
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Fig. 13

if k is even

Ty Fr= {(p, 81y vees 8p) v €EHY(X,,, Q((k—1)o0)), s,=Imf ‘=p/l/—q—o, t=m+1, ..., n}
4

V%
if k 18 odd.

Proof. Statement (a) follows from the fact that f is a submersion, which in turn comes
from the fact that there is no restriction on the zeroes of a polynomial. Part (b) follows
from the (restatement of) inductive hypothesis, which says precisely that p/Vg, is holo-
morphic on X,,. The computation of the order of the pole at o is left to the reader. Q.E.D.

Remark. Elements of F, have critical graphs that are locally connected near the zeroes
of g, cf. Figure 13.

We shall denote I'i(g) the part of the critical graph of g € F,, which contains the zeroes
of ¢in D,

Step 2. Recall the local system X, defined in § 3, (iii). Notice that for any ¢ in F,, the
integral of w, over a vanishing homology class is real. Thus the map

g: F,—~Hom (Hy(X,); R) given by g(g): y—>Im f Wq
4

is well defined. The map g is C? because of the differentiable structure on F; (any time a
loop goes through z, to get from one sheet of X, to the other, the function s, is called in).

An essential remark is that E,=g¢-2(0). This is clear pointwise: for any two zeroes,
%y, &, of g there is a cycle y going through both of them which covers & line in € once for-
wards and once backwards. The integral , w, is real, so I'j(q)=TI}(g), and the critical
graph of ¢ is connected. However, this remark demands a bit of amplification. The space
E, of Theorem 3.2 lies in P, x R, whereas g~1(0)= P, x R". Pick curves y, on X,, joining
A to A;; if they are chosen outside of z~1(D,) they define unique homotopy classes of
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curves on all X,. Define differentiable functions k(g) =Im {,, w, on Py. On g=X(0), 8,+h,=
8,+h, for all 4, j. Therefore if P, xR is embedded in P, xR" by (g, s)>(g, s—2y(q), ...,
s—h,(q)), the space ¢g~1(0) lies in the image. So in order to prove Proposition 3.6, it is
enough to show that g-1(0) is a C* submanifold of P* x R®, and that, for P, x R embedded
in P, x R" as above, H, gives local coordinates on g-1(0).

Let V=H%X,, QR>)) xR"<T, F,. We remark that if  is odd H¥X,, Q(R))=
HYX,,, Q) as there is a single point at co. Suppose first & is even and ¢, is a square.

Consider the diagram

0 R" 14 0
l qun gIV
0 R——R" Hom (H,(X,,); R) ——0

where the bottom exact sequence is described in § 3, (ii), and the bottom inclusion R—~R"
is the diagonal map. The diagram commutes so dy,g|y is an isomorphism restricted to any
subspace complementary to the diagonal. By the implicit function theorem E, is a C!
submanifold of P, and the high coefficients and s are coordinates on Ej, near g, since d 3
does not vanish on the diagonal. Comparing with the remark made in the last paragraph,
the vector in P, x R with non-zero component only in the R direction is tangent to Ej to
go- This proves Proposition 3.6 if g, is a square.
Now suppose g, is not a square.

LemMa 3.8. The map dgg|y: V—>Hom (Hy(X,,; R) is an isomorphism.

Proof. Consider the diagram

0 R™ |4 HYX,, QRoo0)) ——0

1d0nglv t
0 —— R™ —— Hom (H(X,,); R) — Hom (H,(X,; R)—— 0

where the bottom exact sequence is the transpose of the one described in § 3, (ii) and the
right-hand vertical map is the isomorphism described in Corollary 3.5. The diagram com-
mutes by differentiation under the integral sign, and the lemma follows from the five
lemma. Q.E.D.

By the implicit function theorem, K, =¢-1(0) is a ' submanifold of F, embedded in
P, xR" and any set of coordinates complementary to ¥V will be local coordinates on Z,
in particular the high coefficients and the imaginary part of the middle coefficient if & is
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even. This proves Proposition 3.6 if % is odd. If £ is even, we need to show that the imaginary
part of the middle coefficient can be traded for s as a coordinate. Lemma 3.9 and the
implicit function theorem allow precisely this. Let A(g) =Im ay;, ;.

We note first that H, has the following homogeneity property: if

g=1(2—1)) ... (2—7,)dz2€E, thenfort=0, ¢ =(—tr)(z—1try)...(2—tr,)dz2€H,.
We will speak of the line through g.

LemMma 3.9. Suppose k is even and q is not a square. If q is sufficiently close to 2dz2,
then 8s[oh==0 at q.

Comment. The partial derivative is taken in the local system of coordinates above.

Proof. Since ¢ is not a square it has an odd zero. If y € H,(X,) covers a circle of radius
A4, [, w,=2mires,, w, and the change of variables {=2-1 and a power series develop-
ment of the square root show that res, w,=4ay,_, +higher order terms in the high coef-
ficients. But a drawing shows that {, w, is real so & Re a;,_, + Re (higher order terms) =0.
We conclude that & (Re ay;_;)/ok=0.

Now suppose ¢,—>7"dz2, 8s/oh(g,) =0. Let 2, be an odd zero of ¢,. Find ¢, on the same
line as ¢, so that §,— ¢, ¥ 2°dz2. Also ¢, =g, t,—~>0.

Case I. g, not a square. Let (P,(2), 8) = (1241 + ... +a,, s) tangent to E, at ¢,. Then
P, converges. The vector p,(z) = (1281 +1,ay, o+ ... +t}*2ay, s,) is tangent at ¢, by homo-
geneity. The condition 0s/0h=0 means s,=Im §i* (p,(2)/g:*(2))dz=0. Now p,(2)/q5*(z)
converges to ¢/2. This contradicts Fatou’s lemma.

Case I1. g, is a square. Let (p,(z), 1) =(iay,_,2¥*7%, ..., ay, 1) tangent to E, at §,. Now

2t
n'tn pn(z
1= Imf ,1,2(2)

Since (0, ..., 0, 1) is tangent at g,, the coefficients a, all converge to zero. Again (p,, 0)=
(1041 2P+t oy, o282 .. 41,00, 0) is tangent to E, at ¢,. Let w,, ..., w, be the set of
zeroes of g,. With the substitution u =t,/z,

. t -1
0=Im J‘zn_pl‘ﬂ dz= —Tm fllzn uiktn (Za}k-l (u) + ... Vdu
A

q}z/z(z) t,lA theu? - "“"1)1/2 (1= uwk)l/2
12,
" [ Q-1 _ du
= -1 .. k-2 i
m i ( +ag_et...+ayu A= wo) ... (1= o
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We break this up into two integrals, the first from 1/4 to 1/,, the second from ¢,/4 to
1/A. The first integral is 1 by the change of variables z =1/u. Therefore

174
Tii-1 2 du

Imf (————+...+a ut® ) =1.

tja \ U 0 (1 —uw,)2... (1 — uow,)*®

The denominator has limit 1 as —0 and n— oo,

Since a; goes to zero, 1 =lim, o [/ [0y /uldu = —lim, a1 log t,. We have

Zp _1

s ¢

But —(log t,)p.(2)/g2*(z) has limit ¢z again contradicting Fatou’s lemma.

§ 5. The tangent space to E; at z*dz®

The object of this paragraph is to prove that E, satisfies condition (iii) of Proposition
3.3. This will follow from Proposition 3.6, homogeneity, and the computations in the

following two lemmas.

Lemma 3.10. For a sufficiently small neighborhood V of 2dz2, if (p, 1) = (tay,_,2¥*1 +
.. +ayg, 1) is tangent to By at g a nonsquare, then ay,_, <0. In particular 8s/oh <O0.

Proof. Let @y, ..., w; be the roots of ¢, ¢' is the line joining ¢ to zd22. By Lemma 3.9
the vector (p, 1) = (@, 2¥*1 +a;_,2¥ 2+ ... +a,, 1) is tangent to B, at q for ¢ near z*dz2.
By homogeniety there exists f(¢) >0 such that 1=Im % f(¢)p,/(g")"/?, where f(1}=1 and
Pi2) =ty _1 22 Htay,  2¥-2 4 . +t¥%-1q,. The change of variables u =t/z gives

g1

14 1(8) ( "
1=f(t)~Im J
tiA

(1 —uw,)V2 ... (1 — up,)'™

+ gzt ... +a0u*"“~’)
du.

The second term is of order a,,_, f(¢) log ¢. Since f(t)>0, a;,_; <0. Q.E.D.

LeEMMa 8.11. Suppose g,—>2*dz2, q, not a square and (p,, 1) is tangent to E, at q, where
Pn(2) = (lay_y 21+ ... +ay). Then lim,,8,=0; 1=0, ..., }k— 1.

Proof. Find g, so that ¢, =¢'r and ¢,—>¢,+2"dz%. Suppose w is an odd root of ¢, and
(Pn> 1) = (841 2¥* 1+ ... +4d,, 1) tangent at §,. Then again by homogeneity a,,_,=
fm) e tit, §=1, ..., 3k for some positive function f(n).
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Assume first ¢, is a square. Then the coefficients d,,_, go to zero and computing as

before,
1 =f(n) +f(n) log £, 84,y +f(n) C(t,)

where C(t,)—~0. By Lemma 3.10, d,;,_; <0. Therefore f(n) is bounded and lim,,.p,(z) =0.

If g, is not a square, the coefficients converge; &,,_, to a nonzero limit. Again 1=
f(n) +f(n) log ¢,y — f(n)dy,_ log 1A + f(n) O(t,) where once again C(t,}—~>0. This time
lim, ,,f(n) =0 and the lemma is proved.

ProPoSITION 3.12. The tangent space T, E,—~H, as q—2°dz2.

Proof. We start with & even. Suppose g is not a square and », tangent at ¢, has 0 in
all components of H, except a 1 in the R direction. Then by Lemma 3.11, the L, com-
ponents go to zero as ¢g—>2°dz22. This automatically holds if ¢ is a square as the L, direc-
tions are already zero. Now we let (p, 0) =(c2!+ay;_, 21+ ... +a,, 0) be tangent to E) at
g where k—22>1>Fk/2. If ¢g—0 along the square locus the homogeneity shows that the
coefficients @y, ..., @y g0 to zero. Otherwise we pull back q as in the previous two lemmas
by a factor 1/¢ to ¢ with odd root w and we suppose §—g,3=2"dz?. Let (cz' +dy_, 21+ ... +
dy, 0) tangent at ¢. The coefficients d,,_,, ..., d, are bounded. We compute

tow (11 gLl bk w1 {
+¢ Ay +...+t4
o=l f = = LZ d dz.

4 q

By the change of variable u =t/z we find the above integral has limit

I cdl- i1
I—3+1
since
©(c2t+ ... +dy)
Im| —————dz=0.
J‘A @ i
Now

(p, 0) = (czt +et+1-¥g,, 201t | L tlag, 8)— (b1 2V 1+ ... +by, 8)

for some tangent vector (by,_;zt*-1+ ... +b,, 8). By Lemma 3.11 the coefficients b, go to
zero since ¢ is bounded. Therefore (p, 0) converges to {(cz}, 0). This proves the proposition
if £ is even. The proof is trivial for k odd as there is no middle coefficient. The tangent
vector (@,2" +ay_a)2 2% 32 + ... +a,, 8) converges by the change of variables to
a, Al—}k—l)

(a, Z, —Im

We have justified (iii) of Proposition 3.3.
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§ 6. The simplicial structure of E;

In this paragraph we shall exhibit a simplicial complex 8, such that E, is the cone
over S,.,. Roughly speaking, ¢ € £, lies in a low dimensional simplex if its zeroes are very
degenerate; any attempt to draw deformations of critical graphs will make it clear that
some such structure must exist. Then we will show that S, is homeomorphic to the sphere
of dimension n —4, which justifies (i) of Proposition 3.3.

The following elementary lemma from linear algebra will be necessary in Proposition
3.14. The indices should be interpreted circularly, i.e. n+1=1.

LrMMa 3.13. Let ay, ..., a, be reals, such that D71 (—1)a,=0 if n is even. Then there
exist ty, ..., t, ER with £, >0 such that if a,=t; ; +1,, the system of linear equations x,+x, , =
@,4 con be solved for real z,, ..., z, with 2,20, all i=1, ..., n.

Remark. Of course, all the interest of the lemma is the positivity of the «,.

Proof. Set (the upper indices refer to » odd, the lower even)

2%, = ay+ay—az+ ... Fa,

22y = ~a,+a3+a;— ... T a,

22, y=Fa,ta,.. +a, ,+a,

22, =ta,Fay...—a, ,+a,

Adding successive equations shows that we do have a solution to the system of equations;
the last one says z, =0 if » is even, so although the difference of the last and the first gives
22, ~2x, =2a,, it still works. Now increasing ¢, changes z; by ¢, without changing the z,,
ji. QE.D.

Let n =2 be an integer and let D be the closed unit disc in C; we shall be interested in
closed graphs I'< D satisfying the following conditions:

(1) I is contractible.

(ii) The nth roots of 1 are nodes of I, are the only points in éD, and bound only one
edge.

(iii) Every node in the interior of D is the boundary of at least 3 edges.

Remark. Let T be the graph obtained by adding the unit circle to I'. Parts (i) and (ii)
show that »(T') =1 —n; if ¢, and ¢, are the number of nodes and edges of T', (ii) and (iii)
show that ¢, ¢y, cg<2(n—1), and ¢, <3(n—1). There are therefore in the interior at
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) PE

Fig. 14 Fig. 15

most n—2 vertices, and » —3 edges which do not intersect the boundary. A few drawings
will convince the reader that these inequalities are true, and strict if and only if there is
a vertex which bounds at least four edges.

Two of these graphs I'; and ', will be called equivalent if there is a homeomorphism
of D onto itself which is the identity on 8D and sends I'; onto I',. The remark above shows
that there are only finitely many equivalence classes; in the future when speaking of
graphs, we will mean ‘“‘equivalence classes of”.

Recall that a finite simplicial complex X =(V, {) is a finite set ¥ of vertices, and a set
{ of subsets of V called simplices which contains the singletons, and contains every subset
of a set in . The topological realization of X is the set | X | ={f€R"} such that (i) f(») >0,
(i) Syevf(v)=1, (iii) support f€(; with the induced topology from RY (which is a finite

dimensional vector space).

Define the simplicial complex 8,: The vertices are the n-graphs with exactly one
interior edge, and the m-dimensional simplices correspond one-to-one with the graphs with
m+1 interior edges, its vertices being the graphs obtained by collapsing all but one edge.

Example. The simplex of dimension 2 corresponding to Figure 14 has as its vertices the
three graphs in Figure 15.

Remark. A point of |8, is a graph I" with interior edges y;, ..., ¥,, and homogeneous
coordinates a,, ..., &, with ¢,>0 and > a,=1.

Recall that if X is a topological space, the cone CX over X is the quotient of X x [0, co)
by the equivalence relation collapsing X x {0} to a point.

We shall now construct a map f: E,—~C|Sj,s|. Pick ¢¢2dz? in E, and let y,, ..., y,,
be the bounded segments of I',.

There is exactly one unbounded critical leaf asymptotic to each ray 0 =2am/(k+2),
m=0, ..., k—1. Therefore the homomorphism z—>z/(|z|2+1)t of C onto the open unit disc
maps the critical graph of ¢ to a (k+2)-graph of the sort considered above.

The cone factor of f(g) will be =73, {,,|¢|% and the |8,,| factor will be the point

17—782905 Acta mathematica 142. Imprimé le 11 Mai 1979
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Fig. 16

of the simplex corresponding to the graph of ¢, with homogeneous coordinate (f,, |¢|2/2)/t
for the vertex corresponding to y,.
We set f(zdz?) to be the summit of the cone.

ProrosiTION 3.14. The map f: E,—>C|Syss| 18 @ homeomorphism.

Proof. The map f is clearly continuous: we shall show that it is bijective. The continuity
of the inverse follows from the homogeneity of both spaces.

Pick a point (', 1) €C|8y,,| where I' is a (k+2)-graph and I associates a homogeneous
coordinate to each interior edge. We shall construct a Riemann surface X with a quadratic
form ¢ by gluing k+2 copies H,, of the upper half plane according to the pattern (I, 7).
To be more explicit, for each m=1, ..., ¥+ 2 consider the injective path in the graph from
FHmETD) o PMHmEDIGAD, thig will go through interior edges yp,, ..., ¥m, With homoge-
neous coordinates l,,, ..., I, Mark off on the real axis in H,, contiguous line segments of
length I, ..., I, a8 indicated in Figure 16:

In the union of the H, identify isometrically the line segments that correspond to the
same edges of the graph I' (including the unbounded ones).

The resulting space Xy carries a unique structure of a Riemann surface restricting to
the standard one in the H,, and a unique holomorphic quadratic form ¢ restricting in each
H,, to dz2.

LEMMA 3.15. The one point compactification Xy of Xr is conformally equivalent to
the Riemann sphere. The quadratic form q can be extended as a meromorphic form to Xp

with a pole of order k+4 at infinity.

Fig. 17
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Fig. 18

Proof. We shall need the following fact: if k is-even, (2* +iaz¥~1)d2? is}in E,; its critical
graph for k=6 is drawn in Figure 17. For any 9 bounded segment of the critical graph,

1z T
[lab= s lal

The idea of the proof now is to show that the complement of a critical part of I',
in Xr is isometrically isomorphic to the complement of a compact part of the critical
graph of 2*dz2 if k is odd, and of (2* +iazt*-1)dz2 for an appropriate value of ¢ if k is even.

If X is cut along the compact segments of I', the result is a union of H,, each con-
nected to the next along some ray on the right of the real axis, the unattached part is a
segment of length p, (Is, + ... +1n, in the above notation); clearly the lengths p,, com-
pletely classify the complement of the critical graph.

If % is odd, we wish to cut out further points y,, on the mth ray of I';, and out to
points z,, on the mth ray of zdz? so that the resulting surfaces with quadratic differentials
will be isomorphic. Consulting Figure 19 we see that this means y,, + Py + Ymi1 =% + Ty
Lemma 3.13 guarantees this can be done.

Fig. 19
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/2t
Fig. 20

If & is even, a similar proof works, but the fact that one is now comparing to
(#° -+ iazt*-1) dz? allows one to subtract
2.
2 2(-1)'p,
from p,, for even m which makes the alternating sum vanish. Lemma 3.13 can then be
applied by choosing a=(1/m) > (—1)'p,.

Thus ¢ can be written in the coordinate {: X173 C as a polynomial quadratic differential
of degree k. A unique translation will make the coefficient of the linear team vanish, and
a multiplication unique up to a & +2 root of 1 will make the leading coefficient 1. The root
of one is uniquely specified by requiring that the ray of I", previously going to 1 be asymp-
totic to the positive real axis. Q.E.D.

The next proposition is purely topological; it requires only the definition of §,. In
order to prove (i) of Proposition 3.3, all we need is that §, is connected, so we will be a bit

sketchy on the full proof, as we get it also from the general inductive argument.

ProPOSITION 3.16. The simplicial complex S, 18 homeomorphic to the sphere of dimen-

sion n—4.

Proof. We shall construct a homeomorphism by induction. Suppose that Proposition
3.16 is true for all n’ < n. We shall give a decomposition of S, into two ‘“‘polar’ zones homeo-
morphic to balls of dimension n—4 and a “temperate’ zone which is homotopy equivalent
to §,_;. The polar zones U, and U, will be the closure of the stars of the two vertices v,
and v, drawn below:

Each of these is simplicially equivalent to the cone over S, ;; recall that the cone
of summit v over a simplicial complex (V, {) is the simplicial complex (V’, {’) where V' =
V U {v}, and g€’ if and only if either c€(, or o=7VU {v}, with 7€(. Indeed, each vertex
of §,_; can be identified with a vertex of U, (resp. U,) other than v, (resp. other than v,)

by joining the node where the edge coming from 1 meets the interior of the graph to e™ "
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Fig. 21 Fig. 22

(resp. ™™=V} and adjusting the positions of the points on the unit circle so that they form
the nth roots of 1 (keeping 1 fixed). Then the vertex v, (resp. v,) and the vertices of S,
constructed above clearly span a simplicial complex equivalent to the cone over §,_;.
So by the inductive assumption U, and U, are balls.

Consider the simplicial complex S found by removing the stars of the vertices v, and
v, from §,,.

Map 8,—S,_, by simply erasing the segment joining 1 to the interior graph, and re-
adjusting the roots rotating counterclockwise, This is well defined since there will still
be at least one interior edge. In the topological realization, the fibres are easily seen to be
intervals, sometimes degenerate (i.e. points). Collapsing these intervals gives a homotopy
equivalence of S, with the (n —4)-sphere, and a little extra work shows that S, is homeo-
morphic with the sphere. (Topologically |S,| =|8,| ~(|U;| U |Us|) is the complement of

the open stars.)

§ 7. The space E;

The object of this paragraph is to prove (iv) of Proposition 3.3, i.e. that the map which
sends (z3+az+b)dz2€ By to the linear coefficient a is single sheeted. The proof is nothing
but a detailed look at the differential equation (z8+az+b)(z)2=1, using elementary
techniques, mainly drawing the field of slopes.

Essentially, everything can be deduced from the following two drawings: let ¢ >0 be

real, and consider the orthogonal families of curves
Im (22—az)=u
Re (23 —az) = v;

they are represented in Figures 21 and 22, and the arrows on the first (second) correspond

to increasing v (resp. u).
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Fig. 23 Fig. 24

Remark. For any given value of u (resp. v) a curve of the first family generally has three
branches, which are usually disjoint, but sometimes degenerate. In particular, for « =0,
the curve consists of the real axis and the hyperbola 3% —y%=a.

ProrosiTIiON 3.17. Let >0 be real. Then (28 —az—b)dz? is in Egy if and only if
2]
b 3l 3-

Proof. By symmetry, it is enough to prove the result if Im 5>0. The case when b is
real will be left to the reader, and is in any case a straightforward limiting case of the case
Im b>0.

If Im 4>0, there is exactly one root of the polynomial 2—az—b on each of three
branches of the cubic Im (2* —az) =Im b which in this case looks like Figure 23. Call the

one in the second quadrant « the one with negative imaginary part § and the one in the
first quadrant y.

Lemma 3.18. Re a<Re f<Re y.

Proof. Start with b real, and follow the roots as the imaginary part increases. A look
at the arrows in Figure 22 shows that for each of the possible initial positions of the roots,
they evolve in such a way as to satisfy the lemma. Q.E.D.

Now consider the differential equation (28 —az~—b)(2')2=1. The slope field is drawn
in Figure 23. It is clear that the only way in which the quadratic form could have a con-
nected graph is if both « and # were connected to y by the critical graph. Thus two of the
critical rays emanating from y should leave the first quadrant. But this does happen, as
Figure 24, which gives all the possibilities for y, should make clear.
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CHAPTER IV
Proof of the theorems

In this chapter we will pull together the results of Chapters II and III to prove the

main result.

§ 1. The local homeomorphism
Let g€@Q be a holomorphic quadratic form on X, and F the underlying measured

foliation.
ProrosiTION 4.1. The projection p: Q—® induces an open mapping Ez—© at g.

Proof. In this paragraph we will prove the result only if ¢ is not a square. The case
where ¢ is a square requires different techniques, and will be treated in § 5 with prelimi-
naries in § 2, 3, 4. We invite the reader to compare the present proof with that of Proposi-
tion 3.6.

Step 1. Suppose that g vanishes at z,, ..., z, to the orders &, ..., k,. Call E—>0 the
universal curve over Teichmiiller space, and consider the curve p*=—@. This curve is
smooth over @, so for each x, there is a neighborhood U, of ¢ in @, an open subset W, = X
with #,€W, and an embedding o« U,x W,;»p*E commuting with the projections to @
and which restricts to the inclusion W,= X on {g} x W,.

The curve p*E carries the tautological relative quadratic form (the one which restricts
to ¢ on the fibre above g), and using the embedding U, x W, p*E, above this yields a
family of quadratic forms on W, parametrized by U,. Choose a local coordinate z on W,
such that g=2"dz? in W,. Proposition 3.1 gives a map f;: U;—~P,, for some U; neighbor-
hood of ¢ in U, classifying the deformation of z*dz? given by the above family.

Set U=NU; and consider the map f: U~[], P,, whose ith entry is f; as a first step
in constructing Er we wish to consider f ([, E,). Since E, is not quite a submanifold
of P, if k is even this is not the right thing to do; call still f: U x R*~>][], P, x R* the map f
above extended by the identity on the second factor. Now since Ej is a submanifold of
P, xR, we consider V< U x R" defined by V =f-1([]; E).

Remark. Points of V correspond to quadratic forms ¢’ near ¢ whose critical graph is
connected “near the zeroes of ¢”’. The drawing in Figure 25 illustrates what such a ¢ and
g’ might look like.
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Fig. 25 Fig. 26

Lemma 4.2. (i) The set V is a O submanifold of U xR", and the projection p: U~®
snduces @ submersion V—0.

(ii) The vertical tangent space Ty, v the set of (¢, s)EQ®YX) x R™ such that ¢ e,
is holomorphic on X, s, arbitrary.

Proof. This is an application of the implicit function theorem. Recall from Chapter 3,
§ 4, the spaces Hy, L, P, (resp. P, xR if k even). Define E, <P, (vesp. P, xR) as h~1(0)
for an appropriate mapping h: P,—L; (resp. P, x R—L;). This is possible by Proposition
3.6, and dyh is the projection H, x L, ~L,.

Now V is defined in U x R™ ag (hof)~1(0). The lemma will be proved if we show that
dy(hof)| a®xx)xr» is surjective, and that its kernel is our candidate for the vertical tangent
space. By Proposition 3.1 d,f sends any ¢’ to its (k;—2)-jet at each «; and is the identity
on the second factor. The derivative of A further truncates ¢’ to its [£,/2]—1 jet at each x;,
and vanishes on the s,.

Let J,(x) be the space of k-jets at z of quadratic forms on X. Wesee that d (hof) | a®2x) . gn
is the map Q®%(X) x R*~+ ®J 9 -1(;) which vanishes on the second factor, and sends
¢ €Q®%(X) to its [k,/2] — 1-jets at the . This part fits into the exact sequence

HYX, Q%) > @Jpyr-1(2i) > HY(X, Q8 (2, [k,/2],))
coming from the exact sequence of sheaves
0> Q83 [k2]x,) > Q% > @ yyzy-1(x) > 0.

The above Hlisdual to HY(X, Ty (3 [k,/2]x,) by Serre duality. If the sheaf T'x (> [£,/2],)
has a non-zero section y it is easy to check g =cy—2=(c"/?)~1)?, and thus q is a square. This
proves Lemma 4.2

Remark. (a) The one-form y~! is the unique one such that y~(x)=1.

(b) Although it is of course necessary that the zeroes of ¢ be of even order for ¢ to be a
square, it is not sufficient. The Strebel form in Figure 26 is a counter-example. Indeed the
foliation is not orientable around the loop y.
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Step 2. Recall that there is a local system over U with fibre H,(X,), and it can of
course be restricted to V. Define a map

g: V—>Hom (H,(X,); R)

by the formula ¢’+>(y+—>Im §, w,). This map is well defined although y, as a cohomology
class on the Riemann surface above ¢’, is only defined up to elements of the vanishing
homology. This is true because in V the integrals of w, over such vanishing classes are real.

Moreover g is of class C1, for this is precisely the effect of adding the coordinates s,.
LeMMA 4.3, Let W=g"Yg(q)); then W< U N Ef.

Proof. Given any y€S8 and any ¢'€U, denote by %€ H,(X,, f‘) the lift defined in
Chapter 2, §4. Then the transverse length F(y) is given by } Im §; w. Clearly the values
of such integrals are constant in W.

Now clearly Proposition 4.1 follows from the following lemma.
LEmMA 4.4. The map p: W—0 is a local homeomorphism at q.

Proof. First observe that under the map ¢'+>g’/w, the space of ¢' whose images are
holomorphic on X, is identified with H°(X,, Q)~, there is therefore a canonical isomorphism
of the vertical tangent space to V with R* x HYX, Q)~. Consider the diagram

0——R*—— Ty, H(X, Q) ————0
dqg 14
0—— R*—— Hom (H,(X,)", R)—— Hom (H,(X,)~, B) ——0

where the top line comes from the argument above and the bottom one from the homology
exact sequence of the pair (X, X,) as in IIL, § 3, (iii).

Exactly as in Proposition 3.6 the diagram commutes and the maps at the right and
left are isomorphisms, so d,g is an isomorphism. Q.E.D.

§ 2. The tangent space to Q

The proof given in the last section fails if ¢ is a square as the map HYX, Q%2)—> @ Py, 2;-1
is not onto. In fact we need to investigate the classifying map f: U— @P,, more closely.
In order to do this we need to identify the tangent space to @ in terms analogous to the
Kodaira-Spencer identification HYX, Ty)=T,0,, (Tx is the sheaf of germs of holo-
morphic vector fields on X).

There are several ways of obtaining this isomorphism; one in terms of the Dolbeault
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resolution was found by Earle and Eells and is deseribed in [6]. The one in terms of Cech
cohomology will be more convenient for our purposes; it is less well adapted to actually
constructing the various spaces, but as we already know that Q exists, this will not matter.

The idea is to differentiate the change of coordinates with respect to the parameters.
Let I1: E,,—0,, be the universal curve over Teichmiiller space and 6 €®,, correspond to
the Riemann surface X (in this discussion the Teichmiiller marking is irrelevant). Since
IT is a submersion, every point # € X has a neighborhood U in X such that there is an open
neighborhood 8 of § in ©,, and an isomorphism «: U x §—E,, onto an open subset which
commutes with the projections on ®,,. Such a pair (U, a} is called a relative coordinate
chart.

Pick relative coordinate charts (U,, «,) such that the U, form a cover of X. Then for
any V,, relatively compact in U,N U,=U,, the map «,,(s) = a; (s)ox,(s): Vy,—~U,; can be
defined for s sufficiently near 6. These a,,(s) are called relative change of coordinate maps.

Since o;(0) is the identity, the derivative of a,; with respect to s at s=§ is a vector
field on V,, and since V,, was arbitrary in U, we actually get a vector field y,; on U,,.
These define a map 7y @, —~CH(U, T).

One must check that the image falls in the cocycles and that it does not depend on the
relative coordinate charts chosen. The first point is settled by differentiating the relation
oy00,=oty. For the second suppose (U}, «;) is another relative atlas (with the same sets
U)), and denote with a prime everything coming from the new atlas. Then if 8,(s) = o (s)o
®;(s) (defined on any relatively compact subset V,< U,), the derivative at 6 of the rela-
tion B;'(s)oa,(s)ofi(8) =ay(s) gives yy—yy=x:i—2s ie. the cocycles y and y’ are co-
homologous. The general case is deduced from this one by refining the covering.

All of this gives a map Ty0,—HY(X, Ty). It is not quite obvious that it is either
injective or surjective, and both must be proved either from a construction of Teich-
miiller space or from functorial properties of the deformation functor. We will not do this
here, but refer to [6] or [11] for detailed proofs.

The analogous description of the tangent space to @ is slightly more difficult. We
could describe a Riemann surface near a given one using the same charts, and slightly
deformed change of coordinate maps, but we cannot describe an arbitrary Riemann surface
with a quadratic differential near a given one by gluing together coordinate patches of the
original Riemann surface by perturbed coordinate transformations which preserve the
original quadrﬁtic form. The difficulty is that we do not get enough points of @ this way,
because the multiplicities of the zeroes of the original quadratic differential will be preserved
by this operation, and we will not have allowed the deformations which break up a multiple

zero into several less degenerate ones.
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Thus to describe deformations of a Riemann surface with a quadratic differential we
need to do the following operation: cover the original surface with coordinate patches,
and vary both the quadratic differential in each patch, and the change of coordinate
maps, subject to the obvious compatibility condition that the deformed change of co-
ordinate maps send the deformed quadratic forms into each other.

The appropriate language for deseribing this construction is hypercohomology. The
reader can find excellent treatments of the subject in [2] and [8]. We shall only develop
what is strictly necessary for our purposes.

Let X be a Riemann surface (as always, compact of genus g >2) and ¢, a quadratic
form on X.

Consider the complex of sheaves L':

Lr e g

0 Ty

where L, is the Lie derivative. The first hypercohomology group of this complex is our
candidate for 7',,Q.

In order to construct a map 7,Q—>HY(L'), consider the family p*E—Q; the fibre over
(X, q) is the Riemann surface X, and carries the quadratic form ¢. Repeat the construction
of the previous paragraph: above a small neighborhood 8§ of ¢, in  pick relative coordinate

charts (e;, U,) and consider the pairs
oyy(8) = aj (s)oxri(s), @(8) = ai(8)*q.
These satisfy the relations
ap(8)ooy(s) = ayls) and oyy(s)*@,(s) =@y(s).
If we let y,,=dqg, &5, P =dqy,, the derivatives of the relations above give
Xutxm=2%u ond L, go=y,—y,

Of course, all the computations above should be understood restricted to the appropriate

domains.
Thus we have an element (y, ¢) ECYU, Tx)®CYU, Q®2)=C*(L’), and the above rela-

tions say exactly that the image is a cocycle.

ProrosiTION 4.5. The induced map T ,Q—~HY(L') does not depend on the relative atlas

(o, Uy), and is an isomorphism.
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Proof. The first part is straightforward: pick another atlas {(«;, U} and denote with a
prime everything coming from the new atlas. Define maps B,(s)=a; '(s)oa;(s), then we
have the relations

B l(s)oay(s)oBy(s) = ay(s) and By(s)*@is) =gi(s).

Differentiating these relations with respect to s and setting y;=d, f;, we get y,— =
27—~ and L, gy +vy,~=y,. This is just what is needed to claim that (y,y) and (y', y') are
cobordant.

The second part comes from the exact sequence of complexes

0 0
|

0 00— Q%2 0
|

0 Ty Qg* 0
|

0 T 0 0
|
0 0

This leads to the long exact sequence
HY(X, Tx) > HYX, Q%) ~ HY(L') > H(X, Tx)~ H'(X, QF®).

The two end terms are zero. It is clear from the construction that the map H(X, Q§%)~
HYL') is induced by the inclusion of the fibre HYX, Q¢%) (), and similarly that the map
HYL)—~HYX, Ty) commutes with the derivative T @~ T®,, of the natural projection.
Since Ty 0, =HY(X, Ty), the result is proved. Q.E.D.

Remark. It is clear that a similar description is possible for the tangent space to any
universal space of compact manifolds with tensors. In general, the long exact sequence
above does not have vanishing end-terms; in the general case the map Ho(X, T'y) ~H%X, Q%?)
expresses the fact that the universal space is not the total space of the vector bundle but its
quotient by Aut (X). The map HYX, Tx)—>H(X, Q%?) measures the obstruction to ex-
tending a tensor when the underlying manifold is deformed.

There is a spectral sequence which relates hypercohomology groups of a complex of
sheaves and the cohomology groups of the associated cohomology sheaves.
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The kernel A,, of L,gy: Tx—>Q%” is called the sheaf of locally constant vector fields.
This terminology is justified by observing that if g,=dz? in the local coordinate z and if
% =x(2)d/dz then L, q,=2y'(2)d2? so y is in the kernel if and only if y(2) is constant. It is
easy to check that there are no non-vanishing loeally constant vector fields on a con-
nected open set in which ¢, has a zero.

The cokernel of L,g,: Tx—>Q%" is a skyscraper sheaf supported by the multiple zeroes
of ¢,; this is the content of Proposition 3.1. In fact the proposition tells us that the stalk
of the cokernel at a point x where g, has a zero of order % is the quotient P,(x) of the germs
of quadratic forms at x by those that vanish at least to the order Z—1.

To be more precise consider the map f: U— ®P,, classifying the deformations of the

zeroes of g,.
ProrosiTION 4.6. The map HY(L )P, (x) induced by the sheaf map Q—~Py(z) is
the derivative of f at q,.

Proof. This is just a restatement of Proposition 3.1.
If g, has zeroes zy, ..., 2, of order k,, ..., k,, we wish to see how H(L’) is made up of
HYX, A,,) and of the Py (x,).

ProrosiTION 4.7. (a) If q4 8 not a square, the inclusion Ay — Ty and the projection

Q$2 Py (x,) induce an exact sequence

0> HYX, Ag) > HY(L') > ® Py (x)) >0
1
(b) If gy =¢? is the square of a one-form, the maps above induce an exact sequence

0> HYX,Ap,)~HYL)> @ P (x)>C—>0
1

Remark. Part (b) is what is needed in the main theorem.

Proof. There is a spectral sequence [8] with Ef 9=HY(X, h%L')) which converges to
H?"9(L’). In our case, the E, term looks like

q
@ Pk‘(xf) O 0 0
H
dy
HY(X, Ag,) HYX, Aq) HYX, Aq,) 0
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If ¢, is not a square, A, is not orientable, so H%(X, A,)=0 and the terms along the anti-
diagonal p+g¢=1 are the graded group for the appropriate filtration of HY(L'), giving the
exact sequence and proving (a).

If g, is a square, H3(X, A,) = C, so the derivative is onto a hyperplane. We compute
the image of f by Cauchy’s Theorem.

Consider the map «;: W—C defined in a neighborhood of 2%dz? in Py, by ¢ §,, ¢*/2,
where y, is a circle of large radius and the branch of the square root along y which passes
through z#*¢dz is chosen continuously in W; this is possible because %k, is even.

Suppose g=¢? the map f;: U—~P,, depends on the choice of a local coordinate near z,
for which g=z"dz?; pick one such that also ¢ =z#dz (half of the possible local coordinates
will work, for the other half ¢ = —z#idz).

LeMMA 48. The map f: U~[] Py, is a submersion onto the submanifold of [T Py, de-
fined by the equation > o,(g;) =0.

Proof. Pick small discs D, around the z,, with boundary circles y;. If U is a sufficiently
small neighborhood of ¢, then every ¢’ €U has a square root in X — UD, and we can pick
the one which can be continued from ¢. By Cauchy’s theorem > {,, V? =0 which translates
to > a,(q;) =0 when looked at from the inside rather than the outside of the discs. By
Proposition 4.7 (b), f must be a submersion onto this submanifold.

We see that we must understand the set Z<]] E, defined by > a,(g,)=0.

§ 3. Perverse manifolds

The space Z defined in the previous paragraph turns out to be a most peculiar object:
a differentiable manifold which is not of class C1. Such manifolds are badly behaved: the
implicit theorem cannot be applied to them. In fact, it is not quite clear what the right
definition is, since the equivalence of the definitions of C* manifolds by parametrizations

and by equations uses the implicit function theorem.

Definition. A subset X of R" is a differentiable manifold of dimension d if for every
2€X there is a neighborhood U of « in R", an open subset ¥V of R? and an injective map
o: V—+R", a(v) ==, « has an injective derivative at v, and (V)N U=X N U. The tangent
space at z is the image of d,a. A function on X is differentiable if it is the restriction to
X of a differentiable function on a neighborhood of X.

The manifold is called perverse if « is not of class C.

3
Example. Consider in R® the set defined by the equation z=e =+ Vay. The
following drawing represents this surface; notice that arbitrarily near 0 there are points
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Fig. 27

with vertical tangent space. Of course (z, y) parametrizes the surface, and z is a differenti-
able (but not C') function of (z, y) at 0 so we do have a perverse manifold. No oblique
linear projection onto the x —y plane is injective near 0, even though such a projection is
the identity on the tangent space at 0, so the inverse function theorem is false for this
perverse manifold.

Even for perverse manifolds, there is a weak sort of implicit function theorem.

Lrmma 4.9. Let X be a differentiable manifold and x€ X, and f: X—+R™ a differentiable

map whose derivative at x is surjective. Then [ is open at x.

Proof. Using a local parameter we can suppose that f is a map defined on an open sub-
set V<R? with surjective derivative at 0. Pick a subspace E<R® on which d,f is an iso-

morphism. It is enough to prove f| v,z is open at 0. Now by the definition of the derivative
Hx) = 1(0) + do f(z) + &()

and for 4 sufficiently small, ||e(z)|| <||dof(2)]| if ||| <4.
Therefore restricted to the sphere S;., of radius 6’ <4, the map z— f(x) — f(0) is homo-
topic to the map x—>d,f, as maps S N E—~R™— {0}. But this last map is of degree +1.
Now it is a standard result in algebraic topology that if f: B*—~R"™, f(0)=0, is a con-
tinuous map such that f| sph: S;’"1—>R"‘—{O} is of degree ==0 for every sphere about the
origin, then the image of B} is a neighborhood of 0 for every ball B}. See also [4, p. 269].

§ 4. The space Z

ProPOSITION 4.10. The set Z<[] P, x R" is a perverse submanifold at zdz2 i =1, ..., n
and the tangent space at that point is the hyperplane defined in [ H x, by the equation 3 (k,+2)=0.
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Proof. As in Lemma 3.9 we let k(g,) be the imaginary part of the middle coefficient of
¢,- The high coefficients on Ekn are ay_g, ..., Gy, We will solve for s, on Z as a function of
the other variables. By Lemma 3.10 on the complement of the square locus of £, , 0s,/0h <0
near z»dz2. Also the line (@;_, ..., @y,) constant in &, intersects the square locus in at
most one point since the high coefficients of any polynomial determine the polynomial if
it is a square.

Now for q,={(z""+a,_ 42 2+ ... +a,)de?, by Lemma 3.9, «,(q,)=7h+7i Reay,_;+
higher order terms in the high coefficients. Therefore a, is differentiable and da,,/0k = 7. Then

s, ©Oh 0Os,

on each line except possibly at a square and «, is a strictly decreasing function of s,,.

To make use of this information we make use of the fact that for t€ER, p,(z) =(*+
itz 1)dz2€ E,. By the change of variables {=1/z and a Taylor series expansion of the
square root near £ =0, we find s=(1/(k+2))¢ log (8} +O(t) and a(p,)=x|t|.

From the continuity of «, and the monotonicity on each line we conclude there is a
neighborhood U x V of (0, 0)€ER x R¥*-1 such that for a=o; + ... +a, ;€U and (a,_,, ...,
ay) €V there is a unique s, and g,€ E,, with local parameters (@_s, ..., @y $,) such that
%y(gn) = — .

It remains to compute the derivatives of s, with respect to the high coefficients of
[1i1 E;, and sy, ..., s,_;. 1f @, is & high coefficient of [ 17" E, then for p=(2* +1ta,2!)dz?,
a(p) =O(#?). The line (*» + it2%24*-1) in E, gives &, = —nt? and s, =o(t? log (#*)). Thus s,,/0a,=
s2(0)=0.

The case where a, is a high coefficient of B, is somewhat different. Since there is no
variation in [P By, a=04+ ... +a,_1 =0, and «, =0(#?). The compensating coefficient &

is then also O(12). But now the Taylor series for

Vain+ ta,2! + hay, 1 2P
near z = oo gives s, =0(h log | h|) =0(t? log | ¢|?) and again &s,/0a,=0.
Finally the expansion s = (1/(k +2))tlog |t| + O(¢) and (t) =7 |#] for p(z) = (¢* + itz¥*-1) dz?
shows that 8s,/2s, = (k,+2)/(k,+2). The tangent space to Z is the image of the derivative,
the hyperplane [ [i-; (k;+2)s;=0.

§ 5. The map Er— Op is open

In this paragraph we pull together the results of the previous three paragraphs to
prove that the map Er~®, is open near a square.
Recall from § 1 the space V<= U x R".
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ProrosiTioN 4.11. (i) If g, is a square, V is at g, a perverse submanifold of U x R*

and the derivative of the projection p: U@, is surjective on the tangent space to V.

(ii) The vertical tangent space Ty, qo ©5 the set of (¢’ 8y, ..., $x) EHYX, Q&%) x R" such
that ¢'w,, is holomorphic on X, and St (k,+2)s;=0.

Proof. By Lemma 4.8 the map f: U x R"~>]] P,, x R" is a submersion onto the hyper-
plane > «,(g)=0 whose tangent space at z“dz?, i =1, ..., » is the hyperplane Y ay, _,=0.
It is easy to see that the inverse image of a perverse manifold by a submersion is again a
perverse manifold so V =f-1(Z) is a perverse submanifold of U xR" at (gy, 0) and T, oV
is the inverse image of T,Z under d,of By Lemma 4.2 the truncation map sends
HO(X, Q%?) onto a hyperplane in ®Jy,_,(x;) and that hyperplane must be >7; ay,_, =0.
Therefore T, 0, V must map surjectively onto the tangent space to ©,,. Part (ii) follows
immediately.

We again define a map g: V—>Hom (H,(X)™, R) by ¢'~>(y, Im f,wg) and let W=
g729(q,)- Then W =U N E as before. Now g is merely differential at (g,, 0).

Lemma 4.12. The map p: W0 is open at (g,, 0).

Proof. We observe as in Lemma 4.4 that there is a canonical isomorphism of the vertical
tangent space to ¥ with the hyperplane >7.; (k,+2)s,=0 in R x H(X,, Q)~. Consider

the diagram

0 —— R — Typa H(X, , Q)————0

e R
R —A——> R*—— Hom (H,(X,,)”, R) — Hom (H,(X,)", R) ——0

Here the left hand vertical map is the inclusion map onto the hyperplane. The bottom
sequence is the transpose of the homology exact sequence of (X, X,) as in III, § 3
(ii) and A is the diagonal map. The diagram commutes as in Proposition 3.6 and since the
hyperplane >7.; (k,+2)8,=0 is complementary to the diagonal, d(,.o, ¢ is an isomorphism.

Now the map V22, 0,, x Hom (H,(X,)"; R) has surjective derivative so by Lemma
4.9 it is open at (gy, 0). Therefore p restricted to W is open.

§ 6. Strebel’s uniqueness theorem

We present here a proof that if F is a measured foliation on X with compact leaves,
there is a unique holomorphic quadratic form on X inducing F. Strebel’s theorem gives
uniqueness, up to a real multiple, of a form with given moduli. Both results follow from

18 ~ 782905 Acta mathematica 142. Imprimé le 11 Mai 1979
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Lemma 4.12. In § 7, we will combine the first result with a density argument to prove
uniqueness in the general case.

Let ¢ be a holomorphic quadratic form on X which is Strebel, and € a cylinder for ¢
with height % and circumference ¢. Let ¢ an abstract straight cylinder of height A’ and
circumference ¢’. Let f: ("~ X be an injective holomorphic map.

Lrmma 4.13. (Strebel [15, 18]). If the equators of {(C') are homotopic to those of C, then

Equality is realized only if f is an inclusion of a subcylinder of C.

Proof. The proof is an application of the length area method. By a change of scale on
¢’ we can suppose ¢=c¢'. For any y equator of C’, the length of f(y} is >¢, since c is the
length of the geodesic in its homotopy class. Picking coordinates z € B/cZ, y€[0, 2"} on (',

o &% )
fy 7 (6w®ax
Introducing a factor of 1 in the integrand, we get from the Schwarz inequality

cJ; q(%@?—i)

Since f is holomorphie, |q(of/éx ® of/ox)| = |q(df/éx ® 8f/oy)| by Cauchy-Riemann. There-

fore, ,
L(CI)IQI=L}‘IQI=]: (fo q(g—icaa—f)

%.
This proves the first part of the lemma. In case equality is realized, there must be

this can be written
12

dx>c.

dz> ¢t

da:) dy>ch'.

equal signs throughout the proof, and in particular f(y) must be a geodesic, so f must send
equators to equators, and since f is holomorphic it must be an isometric inclusion. Q.E.D.

For a cylinder with circumference ¢ and height % define the modulus M to be A/c.
The following uniqueness theorem is an easy consequence of Lemma 4.13.

ProPoSITION 4.14, Let q be a holomorphic form on X with underlying foliation F
with closed leaves and q another holomorphic quadratic form with underlying foliation F'.
(a) If the tmages of F and F' in RS coincide, then ¢=q'.
(b) (Strebel). If F' also has closed leaves with cylinders homotopic to the cylinders of F
and if M, and N, are the moduli of q and ¢’ then max N JM,>1, max M ((N,>1,
equality holding in either case if and only if ¢’ =rq for r€R.
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Proof. For the proof of (a) we recall from Lemma 2.9 that F’ also has closed leaves,
and that if O, ..., 0, are the cylinders for F, with heights %, and circumferences ¢;, then
the cylinders for F’ can be indexed O4, ..., Oy so that equators of C, are homotopic to
equators of C]. Moreover the height of C) is hj; call ¢, the circumference of Cj.

Applying Lemma 4.13 to the inclusion f;: C;—X and the cylinder C,, we get

and summing over § this gives
hj C?

h,c,> Z )
2 ke p
Similarly, applying Lemma 4.13 to the inclusion f,: 0;-X and C; and summing, we
get

Set u;=h,c, and v,=h,c;; by adding the inequalities above we get

2 2
Z(u,+v,)>2(:—:+91).

But for any positive reals « and », we have u+v <u?/v+4-v*/u with equality only if u=wv,
since u2fv +v¥fu—u—v=(1ju+1/v)(u—v)%

Therefore u,=v, and ¢,=¢; for all j. Moreover applying the second part of Lemma
4.13, we see that C;=Cj and thus ¢=¢'. Q.E.D.

Part (b) is easier and follows from the inequalities 3 k,c,>> (h/c})/c; and > k) ¢; >

2 (hyei®)ey.

§ 7. The uniqueness theorem

In order to apply Strebel’s uniqueness theorem in the more general situation, we
need a density statement analogous to that in [5]. If ¢ is a quadratic form on X, we denote
% Hy(Z) —R the canonical element yi>Im [, w, This also gives 3. Hy(X,, [')"~R.
Furthermore there is a canonical map H,(X,) —~H,(X,, f‘q)‘ given by erasing any seg-
ment joining even zerces (cf. III § 3 (ii)).

LEmma 4.15. Let g be a holomorphic quadratic form on X. For any sequence y, of ele-
ments of Hom (Hl(Xq, f,)‘; R) converging to y,, there is a sequence q,€ HY(X, Q®?), for i
large, converging to q, such that the diagram
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Hl()?m I;q)_x

Hy(X,)" R

Xo
Hy(Xq)”

commutes where the map Hy(X,)™—~H(X,)™ is induced by a map X~ X, collapsing the

vanishing homology.

Proof. This is an immediate consequence of the fact that the map ¥V n HY(X, Q®2)—~
Hom (H,(X,)”; R) which is the restriction of g (cf. IV, § 1) is open. But this follows from
the implicit function theorem and Lemma 4.4 if ¢ is not a square, and from Lemma 4.12

if ¢ is a square.

ProrosiTION 4.16. If ¢ and ¢’ are holomorphic quadratic forms on X with underlying
measured foliations F and F’, and if F and F’ have the same vmage in RS, then q=¢'.

Proof. By Corollary 2.9 there is a canonical isomorphism H,(X,, fq)“ =H (X, fq.)‘.
Pick sequences y, and y; in Hom (H(X @ f‘q)‘ ; R) and Hom (H,(X o l:‘,,,)‘ ; R) converging
to x, and y, resp., commuting with the isomorphism above and formed entirely of homo-
morphisms of rank one. Then by Proposition 2 of [5] the sequences ¢, and ¢; determined
by Lemma 4.15 are entirely formed of quadratic forms whose horizontal foliations have
closed leaves. Moreover the images of ¢; and g; in RS coincide by Corollary 2.9. Therefore

¢;=¢: by Proposition 4.14 and g=¢'. Q.E.D.

§ 8. Proof of the Theorems

In this paragraph we pull our results together.

Proof of the Main Theorem. By Lemmas 4.4 and 4.11 the map E,—®,, is open. More-
over, if ¢, ¢’ € E; lie on the same Riemann surface, by Proposition 4.16 they must be equal.
Therefore the map is one-to-one, open, and therefore a homeomorphism onto its image.
However E is proper over ®, by Lemma 2.15 so the image must be closed.

Proof of Theorem 2. It is not hard to construct a measured foliation F with closed
leaves homotopic to the curves C and with the given heights. This can be done by a down-
ward induction on the number of curves starting with n=3g—3. In that case the comple-
ment of the curves is union of spheres with three holes. The critical graph is drawn according
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Vs

Fig. 28

to Figure 28. Once a measured foliation with k eylinders has been constructued, collapsing
an appropriate cylinder gives a measured foliation with £ —~1 cylinders.

Now the main theorem shows that E, maps homeomorphically to ®,,. Then E. maps
bijectively onto ®,, x R and it is clear that it is continuous in both directions.

Proof of Theorem 3. The uniqueness is of course Proposition 4.14. For the existence we
proceed by induction on the number of cylinders p. The case p=1 is true by Theorem 2.
Assume the theorem true for k—1 cylinders. Let Y% be the open first quadrant in R, Y*
its closure minus the origin. Each vector b = (hy, ..., k) in Y§ determines a unique quadratic
form g with height vector A and cylinders homotopic to the curves y,. Let (I, ..., ;) be the
corresponding circumference vector and consider the map

L ’ﬂc)
(hl"-':hk) (ll’ sety lk .

The length of a geodesic in a fixed homotopy class is continuous on H%(X, Q%?) so the
map extends to Y*. We restrict the extension to the intersection of ¥* with the sphere
§%~1 and follow with the map to §*~! which is a retraction along lines. By Proposition
4.14 (b) the composition is injective. The restriction to (Y*— Y§) N 81 is a homeomorphism
onto itself by the induction hypothesis as we are reduced to considering k—1 cylinders.
But YN S*!is a disc and (¥Y*— Y§) N S*! is the boundary. An injective mapping of a
disc which is a homeomorphism on the boundary is also a homeomorphism. The theorem
follows.
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Proof of Theorem 4. By Proposition 4.16, for each Riemann surface X, H%X, Q®2) — {0}
maps injectively into RS, The main theorem associates equivalence classes of measured
foliations with H°(X, Q&2). Therefore the map of measured foliations to R® is an injec-
tion and the image is homeomorphic to R*~®—{0}.

We also obtain the following purely topological result, originally due to Thurston.

ProrosiTioN 4.17. Equivalent measured foliations are strongly equivalent.

Proof. We actually showed (in Prop. 4.1 and Lemma 4.12) that the map p: Bz~ 0,
is open under the hypothesis of strong equivalence; the injectivity of p (Prop. 4.16) was
shown for (weak) equivalence. The result follows immediately.
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