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1. Introduction

Let G be a connected semisimple matrix group, and P< G a cuspidal parabolicTsub-
group. Fix a Langlands decomposition

P=MAN

of P, with N the unipotent radical and 4 a vector group. Let § be a discrete series re-

presentation of M, and » a (non-unitary) character of 4. We call the induced representation
AP, @v)=Ind (@r®1)

(normalized induction) a generalized principal series representation. When v is unitary,
these are the representations occurring in Harish-Chandra’s Plancherel formula for G; and
for general v they may be expected to play something of the same role in harmonic analysis
on ¢ as complex characters do in R*. Langlands has shown that any irreducible admissible
representation of G can be realized canonically as a subquotient of a generalized principal
series representation (Theorem 2.9 below). For these reasons and others (some of which
will be discussed below) one would like to understand the reducibility of these representa-

tions, and it is this question which motivates the results of this paper. We prove

THEOREM 1.1. (Theorems 6.15 and 6.19). Let #(P,3®v) be a generalized principal
series representation. Fix a compact Cartan subgroup T+ of M (which exists because M has a
discrete series). Let

h=tt+a,g

{1} Support by an AMS Research Fellowship.
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denote the complexified Lrve algebras of T+A and G, respectively. Let
AE(tH)*

denote the Harish-Chandra parameter of some constituent of the representation 8|y, (the iden-
tity component of M). Set

y={(4 »eY;

here we write v€a* for the differential of ». Let 0 be the automorphism of Yy which is 1 on t+
and —1 on q; then 0 preserves the root system A of b in g. Then 7(P, 6 ®v) is reducible only
of there 1s a root a €A such that

n=2a, y>/{o, > €L;
and either

(@) {a,y>>0, Ox,v> <0, and oz —0Oa, or
(b) o= —0a, and a parity condition (relating the parity of n and the action of d on the
disconnected part of M) is satisfied.

Suppose further that {B,y>=0 for any BEA. Then these conditions are also sufficient
for (P, d ®v) to be reducible.

The parity condition is stated precigely in Proposition 6.1.

The simplest kind of direct application of this theorem is the analysis of so-called
complementary series representations. Whenever » is a unitary character of 4, n(P, §®v)
is & unitary representation. But z(P, d ®v) can also be given a unitary structure for certain
other values of »; it is these representations which are called complementary series, and
they have been studied by many people. The following theorem is well known, and we
will not give a proof. It is included only to illustrate the applicability of Theorem 1.1 to

the study of unitary representations.

THEOREM 1.2. Suppose P=MAN is a parabolic subgroup of G, €M is a unitary
series representation, and dim A =1. Assume that there is an element x€G normalizing M
and A, fixing 6 (in its action on M) and acting by a—~a=2 on A. Fizx a non-trivial real-valued
character v€ A; and for tER, write tv for the character whose differential is t times that of v.
Let

to=sup {tER|n(P, 6 ¢,v) is irreducible for all t, with |t,| <t}.

Then whenever |t| <t,, every irreductble composition factor of 7(P, d @tv) is unitarizable.
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The point is that Theorem 1.1 gives a lower bound on ¢, when ¢ is a discrete series.
It is far from best possible, however, and the converse of Theorem 1.2 is not true; so this
result (and its various simple generalizations) are very far from the final word on com-
plementary series.

The techniques of this paper are actually directed at the more general problem of
determining all of the irreducible composition factors of generalized principal series re-
presentations, and their multiplicities. {We will call this the composition series problem.)
This is of interest for several reasons. First, it is equivalent to determining the distribution
characters of all irreducible representations of G, a problem which is entertaining in its
own right. Next, it would allow one to determine the reducibility of any representations
induced from parabolic subgroups of G (and not merely those induced from discrete series).
For technical reasons this general reducibility problem is not easy to approach directly;
but results about it give more complementary series representations, because of results
like Theorem 1.2. Unfortunately our results about the composition series problem are very
weak. The first, described in Section 3, relies on the theory of integral intertwining oper-
ators. Corollary 3.15 provides a partial reduction of the composition series problem to the
case when dim 4 =1; in particular, Theorem 1.1 is completely reduced to that case. Next,
we study the Lie algebra cohomology of generalized principal series representations. When
the parameter » is not too large, this leads to a reduction of the composition series problem
to a proper subgroup (Theorem 4.23).

Section 5 contains a series of technical results refining Zuckerman’s “periodicity”’
([21]). This leads easily to the “only if”’ part of Theorem 1.1. Section 6 is devoted to locating
certain specific composition factors in generalized prineipal series representations, and
thus to finding sufficient conditions for reducibility. All of the ideas described above appear
as reduction techniques. We begin with two-well-known types of reducibility—the Schmid
embeddings of discrete series into generalized principal series, and the embeddings of finite-
dimensional representations into principal series—and do everything possible to complicate
them. The main result is Theorem 6.9.

For the benefit of casual readers, here is a guide to understanding the theorems of
this paper. We regard a generalized principal series representation as parametrized (roughly)
by the Cartan subalgebra j and weight p defined in Theorem 1.1. This is made precise in
2.3-2.6. Accordingly, we write z(y) for such a representation. By a theorem of Langlands,
ni(y) has a canonical irreducible subquotient 7Z(y) (roughly), and in this way irreducible
representations are also parametrized by weights of Cartan subalgebras. This is made
precise in 2.8-2.9.

The main result of Section 3 is Theorem 3.14, which reduces the question of reducibility
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of n(y) to the case when dim 4 =1. The notation is explained between 3.2 and 3.4, and
between 3.12 and 3.13. For the reader already familiar with the factorization of inter-
twining operators, all of the results of Section 3 should be obvious consequences of Lemma
3.13.

The main result of Section 4 is Theorem 4.23, whose statement is self-contained. The
proof consists of a series of tricks, of which the only serious one is Proposition 4.21. A more
conceptual explanation of the results can be given in terms of recent unpublished work of
Zuckerman; but this does not simplify the proofs significantly.

Section 5 consists of technical results on tensor products of finite dimensional re-
presentations and irreducible admissible representations. The major new results are Theo-
rem 5.15 (for which notation is defined at 5.1) and Theorem 5.20 (notation after 5.5). We
also include a complete account of Schmid’s theory of coherent continuation (after 5.2-
after 5.5), and a formulation of the Hecht-Schmid character identities for disconnected
groups (Proposition 5.14; notation after 5.6, and 5.12-5.14). Proposition 5.22 (due to
Schmid) describes one kind of reducibility for generalized principal series.

Section 6 begins by constructing more reducibility (Theorem 6.9). This leads to the
precise forms of Theorem 1.1 (Theorems 6.15 and 6.19). Theorem 6.16 is a technical result
about tensor products with finite dimensional representations; it can be interpreted as a
calculation of the Borho-Jantzen-Duflo 7-invariant of a Harish-Chandra module, in terms
of the Langlands classification. Theorem 6.18 states that any irreducible has a unique
irreducible pre-image under Zuckerman'’s y-functor (Definition 5.1). In conjunction with
Corollary 5.12, this reduces the composition series problem to the case of regular infinite-
simal character.

Section 7 contains the proof of Theorem 6.9 for split groups of rank 2, which are not
particularly amenable to our reduction techniques.

The questions considered in this paper have been studied by so many people that it is
nearly impossible to assign credit accurately. We have indicated those results which we
know are not original, but even then it has not always been possible to give a reference.
Eearlier work may be found in [2], [7], [10], [11], and the references listed there.

2. Notation and the Langlands classification

It will be convenient for inductive purposes to have at our disposal a slightly more
general class of groups than that considered in the introduction. Let G be a Lie group,
with Lie algebra g, and identity component G; put g =(g,),. Notation such as H, H,, by,
and §) will be used analogously. Let G¢ be the connected adjoint group of g, let g5 =[go, 8ol,
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and let G§ be the connected subgroup of G with Lie algebra gi. (For the definitions and
results of the next few paragraphs, see [3].)

Definition 2.1. G is reductive if

(1) g, is reductive, and Ad (G) < G,
(2) G% has finite center,
(3) G, has finite index in G.

Henceforth, G will denote a reductive linear group with abelian Cartan subgroups. (One reason
for this last assumption will be indicated at the beginning of Section 4.)

Fix a Cartan involution @, of G,, with fixed point set a maximal compact subgroup
K, of G,. We can choose a compact subgroup K of G, meeting every component, so that
K nGy=K, and 6, extends to an involution § of &, with fixed point set K. Let , denote
the (—1) eigenspace of # on g, and P=exp (b); then G'=KP as analytic manifolds. Fix
on ¢, a G-invariant bilinear form ¢, >, positive definite on p, and negative definite on f,.
We will frequently complexify, dualize and restrict {, > without comment or change of

notation.

ProrositioN 2.2. Let D, S g be a 0-invariant reductive abelian subalgebra. Then the
centralizer G% of by in G is a closed linear reductive subgroup of G, with abelian Cartan sub-
groups. The subgroup K N G, the involution 6| gb, and the bilinear form < , >|ﬂf,’“ satisfy the
properties described in the preceding paragraph for the group G.

The straightforward verification of this result is left to the reader. All of the reductive
groups appearing in inductive arguments will be obtained in this way from a fixed reduc-
tive group @, and we will assume that they are endowed with Cartan involutions and so
forth in accordance with Proposition 2.2.

Let H be a f-invariant Cartan subgroup of G (i.e., the centralizer in G of a §-invariant
Cartan subalgebra). Then H =T+A4, a direct product; here T+=H N K is compact, and
A =exp (N 1) is a vector group. The set of roots of 1) in g is written A(g, lj). More gen-
erally, if 1 <) and V =g is hl-invariant, we write A(V, §!) (or simply A(V) if the choice
of §! is obvious from the context) for the set of roots of fj! in V with multiplicities. We
write o(V) =0(A(V)) =} J.eam @. The roots are imaginary on t§ and real on a5 we write
this as A(g, §) S i(tg)’ +ao. In general, a prime will denote a real dual space, and an asterisk
a complex dual. Any linear functional y € j* can be written as (Re y)+i(Im y), with Re y
and Im y in (f5)’ +ag; unless the contrary is explicitly stated, Re and Im will be used in

this way. Then ¢, ) is positive definite on real linear functionals (such as roots).



232 B. SPEH AND D. A. VOGAN, JR

An element y €§)* is called regular or nonsingular if {y, a)=0 whenever a€A(g, §).
To each nonsingular element we attach a positive root system A; (g, h)=A, as follows:
x €A, iff Re (y, o> >0, or Re {y, a>=0 and Im (yp, &> >0. Conversely, to each positive
root system A+ we associate a Weyl chamber Cp+=10* y€Cp+ iff A; =A+. The closure
Ca+ of Op+ 1s called a closed Weyl chamber; it is a fundamental domain for the action of
the complex Weyl group W(g/9) on §)*. An element of Cp+ is called dominant; an element
of O+ is called strictly dominant. The Weyl group of H in G, W(G/H), is defined as the
normalizer of H in G, divided by H; it is in a natural way a subgroup of W(g/}). If « €A(g, §),
we denote by s, € W(g/l) the reflection about «.

To any element y€fj* we can associate a parabolic subalgebra 621, with Levi de-

composition b=1+n, by the condition
Am) = {x€A(g, §)| Re a, y>>0 or Re{x,»>=0 and Im {a,y)> > 0}.

If yGi(tK Y, then b is @-invariant; if » €ayp, then b is the complexification of a real parabolic
subalgebra.

The set of infinitesimal equivalence classes of irreducible admissible representations
of @ is written G; equivalence of representations will always mean infinitesimal equivalence.
We consider Harish-Chandra modules (or compatible (U(g), K)-modules) as defined in [147;
essentially these are f-finite representations of the enveloping algebra of g. If X is such a
module, we denote by X, (the semisimplification of X) the completely reducible Harish-
Chandra module with the same composition series as X.

We turn now to the description of the standard representations of &, beginning with
the discrete series. (The following construction is due to Harish-Chandra [3], and detailed
proofs may be found there.) Choose a Cartan subgroup 7' of K; then G has a discrete
geries iff 7' is a Cartan subgroup of G, which we temporarily assume. Let Z be the center
of @; then T =ZT,.

Definition 2.3. A regular pseudocharacter (or simply regular character) A of T is a pair
(A, 1), with A€ T, and A€it, regular, such that

dA = A+0(A7 (g) —20(A3 (F)).

The set of regular pseudocharacters of T is written 7”. For definiteness, we may some-
times refer to a G-regular pseudocharacter. We will often write 4 to mean 7; thus if « €A(g, t),
(e, > means {«, 1. We make W(G/T) act on A€ T” by acting on A and 1 separately.

Fix A€T', and let mg,(A) =n(4) denote the discrete series representation of G, with
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Harish-Chandra parameter 1. Then (1) acts on Z N G, by the scalars A|zn ¢, Accordingly

we can define a representation 716,(1) ® A|; of ZGy; and we define
nG(}‘) = 7t(}') = IndgGo (nGo(z) ® A I Z)'

PrRoOPOSITION 2.4. Suppose G has a compact Cartan subgroup T. Then for each A€T",
ng(A) ts an irreducible square-integrable representation of G, and every such representation is
obtained in this way. Furthermore, n(d) ~m(A') iff A=c-A' for some c € W(G/T).

Now let H=T+A be an arbitrary 8-invariant Cartan subgroup of G. Let M4 =G4 =G%
be the Langlands decomposition of the centralizer of 4 in &; then M is a reductive linear

group with abelian Cartan subgroups, and 7'+ is a compact Cartan subgroup of M.

Definition 2.5. An M-regular pseudocharacter (or M-reqular character) y of H is a pair
(4, v), with A an M-regular pseudocharacter of 7+, and v€ 4.
The set of M-regular characters of H is written H’. We use the same letter for » and

its differential; thus we may sometimes write y = (4, ») €)*.

Definition 2.6. Let H=T+A4 be a §-invariant Cartan subgroup of , and let P=MAN
be any parabolic subgroup of G with MA =G4, If y€A’, the generalized principal series

representation with parameter (v, P) is
(P, y) = (P, y) = Ind3 (my(2) @ v ® 1).

Here 7,,(A) ®v®1 is the obvious representation of P=M AN, and induction means normal-
ized induction.

The distribution character of m(P,y) is written ®4(P,y) or simply ®O(y). For any
f-invariant Cartan subgroup H of G, one can find a finite set of parabolics associated to H
as in Definition 2.6; they differ only in the choice of N. Our notational neglect of P is
justified by

ProrosiTIOoN 2.7. With notation as above, if P'=M AN’ is another parabolic subgroup
associated to H, then O(P, y)=0(P’, y).

This standard result follows from the formulas for induced characters given in [16].
By a theorem of Harish-Chandra (cf. [5]) Proposition 2.7 has the following well-known

corollary.

CoRrROLLARY 2.8. With notation as above, (P, y) and si(P’, y) have the same irreducible

composition factors, occurring with the same multiplicities.
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So whenever a statement is independent of P, or if the choice of P is obvious, we
simply write 74(y) instead of ng(P, v).

We now wish to consider a canonical family {#'(y), ..., @'(y)} of irreducible subquo-
tients of n(P, ), the Langlands subguotients. It turns out that they are precisely the sub-
quotients which contain a lowest K-type of z(P, y) (Definition 4.1 below). This is proved
in Section 4 (Corollary 4.6). Langlands’ definition is more or less along the following lines:
The parameter »€ 4 is said to be positive (respectively strictly positive) with respect to P
if Re (», ) is not negative (respectively positive) for all x €A(a,, 11,). For any y€H’, we
can choose P so that » is positive with respect to P, and P, so that —u» is positive with

respect to P. In this situation there exists an intertwining operator
I(P,P,y): (P, y) > n(P, )

whose image is a direct sum of irreducible representations, namely, the Langlands sub-

quotients of 7(P, ). D. Mili¢ié observed that all irreducible subrepresentations of #(P, )
are actually Langlands quotients. We write ®(y) for the character of 7'(y).

THEOREM 2.9. (Langlands [13], Knapp-Stein [11].) Let G be a reductive linear group
with all Cartan subgroups abelian. Every m€G is infinitesimally equivalent to some 7'(y), for
an appropriate O-invariant Cartan subgroup H, y €H', and index i. Furthermore, #t'(y) = 7(y)
iff i=j. If B is another O-stable Cartan subgroup of G, and y'€B', then 7'(y) x7'(y’') only
if H conjugate to B by an element of G taking y to y'.

We conclude this section with some elementary but useful facts about the representa-
tions m(y). Let ) be any Cartan subalgebra of g, and let A+< A(g, §j) be some system of
positive roots; put o =p(A+). Associated to A+ there is an algebra isomorphism & from §(g),
the center of U(g), onto S( f))w‘ﬁ”’), the translated Weyl group invariants in the symmetric
algebra of f). Composing & with translation by p gives an isomorphism 8(g)-£-S()"®?,
which we call the Harish-Chandra map; it is independent of A+. In particular, the
characters of 3(g) are identified with W(g/h) orbits in {*; so if y € h*, we may speak of
“the infinitesimal character 9”’. (For all this see for example [8).) We say that a repre-
sentation 7 has infinitesimal character y if 8(g) acts in 7z by the character . Then 7(P, y)

has infinitesimal character y; and hence so do all its composition factors.

ProrosiTion 2.10. (Cf. [1], [19]). Suppose H, and H, are O-invariant Cartan sub-
groups of G, and

y1= (A, 1) EHY, o= (Ap, ») EHs.
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If 74y,) occurs as a composition factor in 7i(y,), then either m(y;) and 7(y,) have equivalent
composition series, or
s ) < gy A,
and
{Re v, Re v,> > (Re v, Re v,).

Proof. Since p; and y, define the same infinitesimal character, the two inequalities
are equivalent. The first is Lemma 8.8 of [19]; the second is a weak form of Theorem
VIIL.3.2 in the Erratum Appendix to Chapter VII of [1].

3. Intertwining operators

Recall the theory of integral intertwining operators as developed in [4], [15].
Let H be a Cartan subgroup, y =(4, ») €H’, P a parabolic associated to H.

THEOREM 3.1. (Knapp-Stein, [11]). Let P'=M AN’ be another parabolic associated to
H. Then there exists an operator I(P, P', y) intertwining s(P, y) and 7(P’, p).

Knapp and Stein use an embedding of the discrete series representations 7(4) in a
principal series representation to reduce the proof of Theorem 3.1 to the case of a minimal
parabolic. Since their intertwining operator depends on the choice of the embedding of
7(A) we will show instead that if y satisfies certain positivity conditions with respect to
P, P’ we can choose an intertwining operator independent of an embedding of z(4).

Let H(2) be the representation space of z(3) and H(A) the subspace of M N K-finite
vectors in H(A). Consider H(A) as the representation space for Z(A)@r®1, o(A(a, 1y)) as a
character of P, and

H(P,y) ={f€C=(G, H@A), {gp) =o(p™) () ®»® 1) (p~){(g) for pEP, { K-finite}

as the space of K-finite vectors of n(P,y). Here U(g) acts on H(P,y) by differentiation
from the left.

Let P’ be another parabolic associated to H. Then by [4], N'=(N N N’)U, where U
is a unipotent group. Define Iy(P, P', y) by

(Io(P, P ) ) (g) = f gwdu

for fEH(P, y) and g€G. As in [4] it follows that I(P, P’,y)f€H(P',y), and

Iy(P, P', y)a(P, p) = (P', ) Io(P, P', 9).

16 — 802905 Acta mathematica 145. Imprimé le 6 Février 1981
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TrEOREM 3.2. The integral defining I(P, P’,y) converges absolutely if y is strictly
negative with respect to all roots in A(ay, Uy).

We prove Theorem 3.2 by reducing it to the corresponding problem in the generalized
rank one case, which was solved by Langlands [13]. Obviously, we may assume that G is
connected and simple.

We call Z(a,, go) < A(ay, §o) @ Set of positive roots in A(ay, go) if:

(a) Z(ag, go) U —Z(ag, o) = Alag, 8o);
(b) Z(ag, go) N —Z(ag, §o) = F;
() if o, BEX(ay, go) and o +BEA(ay, o), then a+BEZ(ay, Go)-

LeMwmaA 3.3. There is @ one-to-one correspondence between the sets of positive roots and
parabolics associated to H.

Proof. Let P=MAN be a parabolic associated to H; then A(a,, 1,) is & set of positive
roots. Define for a € A(ay, go)

gla) ={X, X€g,, [H, X] =a(H)X for all HEqy}.
For a set of positive roots X, put

W)= @ g(«) and N(Z)=-exp n(Z).

x€X

The P(Z)=MAN(ZX) is a parabolic subgroup associated to H. Q.E.D.

Let X, Z’ be sets of positive roots. We call a sequence 2, ..., 2, of sets of positive
roots a chatn connecting ¥ and X’ if

(a) 2,=%,3%,=2%

(b) the span of £,\X,n X,,, is one-dimensional.

The integer n is the length of the chain.
LemMa 34. Let 3, 3 be sets of positive roots. There exists a chain connecting X and 3.

Proof. Choose an Iwasawa a(l), such that a,< a(l),. Then there are sets T and 3’ of
positive roots of A(a(I),, g,), Whose restrictions to a, are X and 2’ respectively.
Let w€W(g,, a(I),) be such that wE =3, Let w=w, ... w, be a reduced decomposi-
tion of w. Then
f]l, wlf‘.l, wzwlf]l, coy Wy_g v wlfll, wS =3

is a chain connecting S and 3.



REDUCIBILITY OF GENERALIZED PRINCIPAL SERIES REPRESENTATIONS 237

Consider the restriction of this chain to a,. This is a sequence of sets of positive roots.
Two subsequent sets are either equal or have exactly one root o« in common with the
property cagA(q,, go) for 0 <c<1. We can therefore select a subsequence with the required
properties. Q.E.D.

Define the distance between X and X', dist (X, ), to be the minimum of the length

of chains connecting X and X’.

Lemma 3.5. Let Z, X' be sets of positive roots. Then

nZ, 2= @ g

e NX’

and
uZ, = @® g

13>}
z¢ZNE’

are subalgebras, and n(Z')=n(Z, Z)You(Z, X').

Proof. The last assertion follows immediately from the definitions. Since[g («), g(8)] <
g(oc+pB) it suffices to show that if «, FEX N2, then a+-F€ZX N X’. This follows immediately
from the definitions. Since {o, x €X', a ¢ Z N 2} ={o, €X' N — X} the second claim follows
as well. Q.E.D.

LeEMMA 3.6. Let 2, ', X" be sets of positive roots such that dist (X, ") =dist (£, X') +
dist (X', X"). Then the mapping

vy UR,Z)yxUZZ)~>U(Z, 2",
(g, Ug) > u;uy

8 an tsomorphism of analytic varieties.

Proof. Note first that dist (=, i’) = |§]’\(i n Z:I’)I for any two sets i,i’ of positive
roots. Choose a chain as in Lemma 3.4. By construction this chain has length |)§’\(Z~I nx) |
On the other hand, dist (£, ') > |(f]\(i n i)| by the definition of a chain,

Observe next that u(Z, Z")y=u(Z, Z'),@u(X’, "),. By the previous remark it suf-
fices to show that if x€Z N —2Z7, then x€X N —2' or €X' N —X". Let now ¢ €X N —X".
If x€X N —X’, then we are done. Assume now a¢X N —X'; then €X' and hence x€X N —
2'N¥'<cZ’N ~-X". We proceed now by induction on dist (Z,X’). Assume first
dist (2, 2) =1. But then [u(Z, X'),, W(Z', Z")g]< u(X’, X"),. Since U(Z, ") is simply con-
nected, we can apply [20, Lemma 1.1.41].
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_ Assume now that the lemma is proved for all 3. with dist %, ) <dist (Z, Z'). Choose
a 3 such that dist (I, £’) = dist (Z, ) +dist (i‘., %) and dist (£, ') =1. Then the com-
mutative diagram

UE, Z) x UE, T) x U, 5) —— UE, =) x UE, )

U(S, 2)x U(E, £7) U, %)
completes the proof. Q.E.D.

THEOREM 3.7. Let P=P(X), P'=P(X’'), and P"=P(X") be such that dist (T, X') =
dist (Z, ") +dist (27, X). Then

I(P, P, y) = I(P", P, y) Io(P, P", p).

Proof.
@2, Ppn@= [ fignan
UE. 59
[ tewedu
uE T J UEEN
= (IO(P”s P” )’) IO(P3 P”’ V)f) {g)x
where 4, €U(Z, "), u, € U(Z", ). QED.

This theorem was proved by Knapp-Stein as well.
Now let %, ..., Z, be a chain joining £ and X’ with r =dist (Z, ). Then

IO(P’ P” V)f(g) = (Io(Pr(Zr—1)7 Pla 7) IO(P, P(zz)’ )’)f)(g)

Thus to prove convergence of the integral it is enough to consider the case P=P(X) and
P(X’) with dist (3, £')=1.

LemMMA 3.8. Let P =P(Z), P'=P(Y’), and P(Z, X") = M(Z, Z)A(Z, ') N(Z, ') be the
smallest parabolic containing P and P'. Put Py=M(Z,2')N P, Pyu=MZ,ZYNP'. Then
I(P, P',y) H(P,v) is equal to the set of K-finite vectors in Ind§s, 5 [1o(Pa, Pa,y) H(Py, y)1® 1.

Proof. We identify f€H(P,y),y=(4,v) with a K-finite Ind;*= L 7(1) @»®1-valued
function f on G by the formula

Hgp) = (f9)) (p), 9€G,pEPZ, X').
Then f(e) € Ind;® 7)) ®@v®1.
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Define I(P, P’, y) by the formula
(P, P, p) fg)l(p) = I(P, P’, »)(gD).
Since Iy(P, P’,y) formally intertwines =(P, y) and 7(F’, y), so does e, p, ). Now

(P, P, y) @) (p) =P, p) (g~ [I(P, P, p)f(e)](p)
=P, y)(g-1) Io(P, P, y) f(p)

=P, ) (g™ f g, [0 2

=a(P, y)(g™") f f(manu) du

[26219 ¥

=a(P,y) (g™ . fmawu nu) du

=a(P,y)g™") f f(maw) du,

[2{0209 2]

where m€M (X, X'), a€A(X, T), n€EN(Z, T').

But f considered as a function of ma is in Ind¥>*’7(1) ®», and

f flmau) du = 1y(Py, Py, y) f(ma).
Uz.zn

Hence
(P, P',y)[1(e)€ Io(Py, Py, y) H(Py, 7)®@ 1,
and thus
I(P, P, y)f€Ind§s. 5y Io(Ps Pos, ) H(Py, v) ® 1. Q.E.D.

COROLLARY 3.9. Iy(P, P', y) is injective iff Io(Py, Py, ) is injective.
If P=P(X), P'=P(X’) and dist (£, £') =1, then P, and P, have parabolic rank one.

Hence if Py =Py (Z,) for a set of positive roots X, in A(a, N ni(Z, E')g, m(T, T),), then
Py=Py(—Zy).

TueoreM 3.10. (Langlands [13]). Let P=P(X), P'=P(—3X)}, and suppose vy is strictly
positive with respect to Z. Then I(P, P', y) converges absolutely.

Since in the setting of Lemma 3.8, (P, P’, ) converges if and only if Io(Py, Py, )
converges, we see that if P~P(X), P’=P(X), dist |2, '| =1, then I (P, P, ) converges
absolutely if y is strictly positive with respect to all roots in X'\ (Z’ N X). Using the pro-
duct formula for Iy(P, P’, y), Theorem 3.2 follows immediately.
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TueorEM 3.11. (Langlands [13)]). Let P=P(Z), P’ =P(—X), and suppose y =(A, ») is

strictly positive with respect to P. Then
Im I(P, P, y)
¢s srreducible.

Thus by Theorem 3.11, if y is strictly positive, then (P, ) is reducible iff I(P, P’, y)
has a nontrivial kernel. If P” =P is a parabolic subgroup associated to H, then by Proposition
2.7 n(P”, y) is reducible iff 7 (P, y) is reducible. Hence to give reducibility criteria for general-
ized principal series representations s(P”, y), with  nonsingular with respect to A(a,, g,),
is equivalent to finding necessary and sufficient conditions for the injectivity of I(P, P’, y).

Now let X, ..., =, be a chain connecting ¥ and —X. Then by Theorem 3.7

IP, P, y) = I(P(Z, 4, P(£), y) ... I(P(Z), P(Zy),y).

Hence I{P, P, y) has a nontrivial kernel iff one of the factors does.
If o, €L, and o, ¢ X, put Gloy) =M(X;, X, ,4) A2, Z;,,). By Lemma 3.8 we have thus

proved

TaEOREM 3.12. Under the assumptions above, (P, y) is reducible iff one of the oper-
ators I(P(Z,) N ((e,), P(Z,,;) N Q,), y) has a nontrivial kernel, or equivalently, iff one of
the representations (P(Z,) N G(a,), y) is reducible.

Since G(«;) is again a reductive linear group with abelian Cartan subgroups, we have
thus reduced the reducibility problem for such parameters to the corresponding problem
in the generalized rank one case.

Now consider the general case, so that v may be singular with respect to A(ay, g,)-
Choose a parabolic P=M AN so that P is positive with respect to y = (4, »). Define a para-
bolic subgroup P’ =M'A’N’ containing P by

= N ker(x)<a

o € Ao, o)
Re<a,»)=0

Alag, 116) = {x EA(0y, go)|Re (&, ¥> >0}
Then 7, (PN M’, (4, v)) is unitarily induced, and so is a direct sum of irreducible tempered
representations 7, ..., 7,. Writing
vo=2|an M =Vanm
we get by step-by-step induction
(P, y) =Ind§ mp (PN M, (4, %)) ® 7, ® L.

(P, y)= @ Ind§ 7, ®@v,®1.
t=1
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Notice that P’ is strictly positive for »,.

Choose a chain X3, ..., 7 connecting

Alag, 1y N '), —Alay, 1, N m'),
and set
T=20U A, ) (1<i<t).

Next, choose a chain 2, ..., 2, connecting ¥, and —A(qay, 1y). For 1<i<n—1,let &, be a
root in ¥; not in X, ;. If 1<<¢<¢-1, then

Re (v, x,>=0;
so by induction by stages,
(P(Z), ¥), e(P(Z144), ¥)

are induced from unitarily equivalent tempered representations; so we can choose an

isomorphism (¢, y) between them. If t<{<n-—1, then

Re (v, a;> >0,

so the integral intertwining operator

I(/’:s ?) == I(P(Zl)y P(EHJ.), y)
is convergent. Set

By Theorem 3.7, I(P,y) is (up to equivalences) exactly the integral used by Langlands
in {13] to define the Langlands quotients of 7z(P, y). This proves

LemMA 3.13. Let ,(y) denote the Langlands quotient of Indg. (m,®v,®1). Then

r
I, ) H(P,y)= @ &(y),
a direct sum of r irreducible representations.
So one of the representations Ind§. 71, ® v, ®1 is reducible if and only if I(P, ) has a non-
trivial kernel; or, equivalently, if one of its factors does. This proves
THEOREM 3.14. Let y=(2, v)EH; let P=P(Z) be a parabolic associated to H, positive
with respect to y, and Iy, ..., X, be a chain connecting X and — 3. Then n(P, y) is reducible iff:

(a) ome of the operators I(P(X,), P(Z,,,),y) kas a nonirivial kernel and (x,, v) >0, or
(b) the tempered representation 7y (PN M'), (2, v,)) i reducible.
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Again we reduced the problem to a problem for nonsingular a parameter in the gen-
eralized rank one case and reducibility of unitarily induced tempered representations; and
this latter problem is completely solved (cf. Theorem 4.5).

We call the operator I(P,y) the long intertwining operator for .

CoROLLARY 3.15. Let 7t be a composition factor of n(P, y). Then 7 is either a composi-
tion factor of the kernel of a factor of the long intertwining operator, or it contains a lowest

K-type.

Proof. This follows immediately from the product formula of the long intertwining
operator, and Lemma 3.13. Q.E.D.

But by Lemma 3.8 the kernel of a factor is the representation induced from the kernel
of the corresponding operator in the generalized rank one case. Hence, if in the generalized
rank one case the kernel of the operator is again a generalized principal series representa-
tion or if we can find ! generalized principal series representations such that each composi-
tion factor of the kernel is a composition factor of at least one of the I generalized principal
series representations and vice versa, we can apply Corollary 3.15 again to compute the

composition series of the kernel of the corresponding factor.

Example 3.16. Let G be a complex connected group. In this case there is only one
conjugacy class of Cartan subgroups and thus the minimal parabolic is the only cuspidal
parabolic. By Corollary 3.15 the computations of composition series for generalized prin-
cipal series representations (up to multiplicities) are reduced to calculating the composition
series for the kernels of the factors of the long intertwining operator. Using Lemma 3.8
and the fact that for SL(2, C) the kernel of the corresponding intertwining operator is
again a generalized principal series representation, we deduce that the kernel of each factor
is either zero or a generalized principal series representation. Hence applying the above
considerations again we can compute the composition series of the kernel of each factor of
the long intertwining operator and thus compute the composition series of the generalized
principal series representation we started with (up to multiplicities). This gives a partial

answer to the composition series problem for complex groups.

4. Reducibility on the bottom layer of K-types

We are going to need the results of [19], including its unpublished second part. Un-
fortunately those results were proved only for connected groups. The extension to the

present hypotheses on (f poses various minor technical problems. Almost all of these involve



REDUCIBILITY OF GENERALIZED PRINCIPAL SERIES REPRESENTATIONS 243

questions of definitions. Since it is not practical to reproduce [19] here, we will give only a
careful account of the definitions and main theorems, reformulated to allow for the dis-
connectedness of (. The theorems are certainly non-trivial; but following the arguments
of [19] using the definitions here ¢s trivial, and can safely be left to the skeptical reader.
The main result is Theorem 4.5 below.

Choose a Cartan subgroup 7' of K, and a system A+(f, t) of positive roots; put 2p, =
Seea @ a. Since W(G/T)=W(K/T) may be larger than W(f/t), the closed Weyl chamber
C s+ < t* need not be a fundamental domain for the action of W(K/T) on t*; so we choose
such a fundamental domain C, < €+, arbitrarily. With this choice, every representation
w€K has a unique extremal weight €C;. Define ||u|| =<+ 20, ji+20.); this is easily

seen to be independent of all choices.

Definition 4.1. The Harish-Chandra module X is said to have u as a lowest K-type
if u occurs in X |, and ||u|| is minimal with respect to this property.

We want to describe the set of irreducible Harish-Chandra modules with lowest K-
type u. Just as in the connected case, we begin with a special situation; details may be
found in Section 6 of [19].

¢/ is said to be quasisplit if it has a parabolic subgroup P=MAN which is a Borel
subgroup; this is equivalent to having M compact and abelian. We assume for the next
few paragraphs that ¢ is quasisplit and fix such a Borel subgroup. Then M 4 is a maximally
split Cartan subgroup of ¢. It should be pointed out that M is actually a subgroup of K,
namely, the centralizer of 4 in K. To each root « € A(n, a), we associate a connected semi-
simple subgroup G*< G: P N G* is a Borel subgroup of G, nN g2 is the sum of the ra root
spaces of a in n for >0, and a N g~ is the one-dimensional subspace of a dual to « under
{,». Up to isomorphism, there are only three possibilities for gj: 8((2, R), 3u(2, 1), and
3l(2,C). Put f==g=n{. If g§~3l(2, R), f§ has a natural element Z* (defined up to sign)

which corresponds to
01
2, R).
(_ 1 O) €3[(2, R)

Set o, =exp (3nZ,), m, =02 Then g, is defined only up to inverse; but m2 =1, so m, is well
defined. Furthermore, ¢, normalizes MA; and G,€ W(G/MA) is the reflection about «.
Just as in the connected case, a representation 6 € M is called fine if its restriction to the
identity component of M N G} is trivial. A representation u€R is called fine if whenever
a5 L 8l(2, R), u|w is trivial; and whenever g5=3[(2, R), u(Z,) has only the eigenvalues 0
and +i. If 6€ M is fine, we let A(8)< K denote the set of fine K-types whose restriction
to M contains §. Let M’ be the normalizer of 4 in K, so that W=M'{M =W(G/MA).
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If 6€M is fine, we let Wy W be the stabilizer of 6 with respect to the natural action of
W on M. The set of good roots of a in g with respect to & is defined to be

Ay = {x€A(g, a)| g5 = 8l(2, R), or g5=3[(2, R) and d(m,) =1}.

Then A, is a root system just as in the connected case; and we define W(A;)=W3. Just
as in the connected case, one shows that WJ< Wy, in fact as a normal subgroup. Let
8=0|mnc, Then obviously W3=WY; and it is not hard to see that W;< W3. Set Ry =
Ws/W3. It was shown in [19], Section 9, that if G is connected, then R, is a product of
copies of Z/2Z. By the preceding remarks, ;< R~; so R, is a product of copies of Z/2Z
in general. In particular, B, is a group. It is possible, just as in the connected case, to
define a natural action of R; on A(d); this is rather complicated, and we will not repeat
the definition here (cf. [19], Section 9). This action turns out to be simply transitive, so

that in particular A4 () is nonempty. If v € A, put
Rs(v) = {GER;|cEW, and o-vEWS-v}.

Put y=(5,»)EM x A. Then y can obviously be identified with an M-regular pseudo-
character of M A, so we get a principal series representation n(P,y). The set of lowest
K-types of n(P,y) is A(d)—this is a trivial consequence of the corresponding result for
connected groups ([19], Section 6). By an extension of the methods of [19], one can show
that if u€A(d), then § occurs only once in u|,. Hence u occurs exactly once in n(P, y) | &>
0 there is a unique subquotient 7#(y, u) of #(P, ¥) containing the K-type . These results

and several others are summarized in

THEOREM 4.2. Let G be a quasisplit reductive linear growp with all Cartan subgroups
abelian, and let P=MAN be a Borel subgroup of G Suppose € M is fine. If u€ A(9), then
| u 18 the direct sum of the M-types in the W orbit of & in M, each occurring with multiplicity
one. The group Ry acts simply transitively on A(S) in a natural way. Let y=(9, v) EMx 4.
If w € A(8), then u' occurs in 7y, u) iff p' is in the orbit of u wnder the action of By(v), the
annihilator of By(v) in R,

This can be proved by the methods of [19], where it is proved for connected reductive
groups. Although the argument is not entirely trivial, we will not digress to give it here.
It is worth remarking that the result can fail even for linear groups if the Cartan subgroup
MA is nonabelian; the simplest example has G,=SL (2, R) x SL (2, R), and |G/G,| =4.
This gives an example of a tempered principal series representation of a reductive group,
whose irreducible constituents have multiplicity two. The assumption that all Cartan

subgroups are abelian is the simplest way to avoid such problems.
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We return now to the general problem of determining all representations with lowest
K-type u€R; recall the extremal weight /i€ity. Let 1=1(z)€ify be the parameter asso-
ciated to @ by Proposition 4.1 of [19]. (If At is a §-invariant positive root system for the
fundamental Cartan t+p*in g such that p+2p, is dominant, then 7 is close to i +2¢.—
o(A+). For details see [19].) Let b={+n be the parabolic subalgebra of g defined by 4;
then | is quasisplit, and @ —2p(n N p) is the highest weight of a fine L, N K-type. Via {, >,
we identify 1 with an element 7 €1; let L be the centralizer in G of #;. Then the Lie algebra
of L is in fact [, and L normalizes n. Suppose X is a Harish-Chandra module for G. If
u€R, let X* denote the extremal weight vectors of the u-primary subspace of X. Analogous
notation is used for L. We know from [19] that H'(n, X) is a Harish-Chandra module for
Ly But LN K acts on Hy, X) in a natural way, so H'(n, X) becomes a Harish-Chandra
module for L. Let yu; denote the representation of LN K generated by the @ weight space
in w; then y; is irreducible. Recall that B =dim (n N p); define

p—20(n N p) = p @ [AF(n N p)J*.
Just as in Section 3 of [19], one obtains a natural map
ab: Hmnt, X)*2 @ AFmn p)*—> HE(m, X)» 20n»

which can be used to compute the action of U{g)** on H(n N {, X)** whenever 4 is a lowest
K-type of X.

Now L is quasisplit; let H =T" A4 be a maximally split Cartan subalgebra. Furthermore,
pr—20(m N p)is a fine L N K-type; so we can choose a fine T+-type A, =4, (4 —2p(n N 1)) € T+
such that u; —-20(n N p)€EA(4;).

LeEMMa 4.3. With notation as above, suppose that u, —20(n N p)€A(A,). Then there is a
unique K-type u', containing some extremal weight ', such that u; 18 the representation of
LN K generated by the ji, weight space in u. Furthermore, A(u') is conjugate to A(u) wnder
W(G|T).

The easy proof (using Proposition 7.15 of [19]) is left to the reader.
Let P=MAN be a cuspidal parabolic subgroup of G associated to H. The pair

A=Ag(p) = (AL ®AFmN »), E(M)Iﬁ)

is an M-regular character of T+ (cf. [19], Section 7). Suppose »€ 4; put y=(4, v), and
define R;.=R,QL, R;('V) =R,1L(v).
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LeEMMA 4.4. (cf. [19], Proposition 7.9). The set of lowest K-types of m(P,y), which we
write A(A), is precisely the set described by Lemma 4.3. These K-types occur with multiplicity

one in (P, y).

For u€A(A), we can now define 7y(y, u)=7(y, u) to be the unique irreducible sub-
quotient of m(P,y) containing the K-type u. Since we have set up a natural bijection
A(A) = A(A;), R, acts simply transitively on A(4).

TueEoREM 4.5. (cf. [19], Theorem 10.1). Let G be a reductive linear group with all
Cartan subgroups abelian. Then the sets A(A) partition K; and AQR)=A(X') iff T+ is con-
jugate to (T+) by an element of G taking A to A'. If u€A(A), then the set of irreducible repre-
sentations of G with u as alowest K-type is {f((A, v), u)}. The set of lowest K-types of 7((4, v), )
18 Rz(v)-,ug A(A). The LN K-type, u,—20(n N p), occurs exactly once in H¥n, f((4, v), u));
this is accounted for by the occurrence of 7 ((Ay), v), (ur—20(mMN ) as a composition factor
in the cohomology.

If v is unitary, then every component of z((A, v)) contains a lowest K-type.

CorOLLARY 4.6. (cf. [19], Corollary 10.15). The set of Langlands subguotients of (y)
is {Aly, p)| w € AQA)}, which has order | Ry(v)|; this is one unless v annihilates some real root.

Our next goal is to describe a family of representations which will be used to con-
struct reducibility of generalized principal series. It has been known to several people
{notably Schmid) for some time that the character identity of Proposition 5.14 describes
the reducibility of certain generalized principal series representations, and that this re-
ducibility is “analogous” to that of principal series representations for SL (2, R). The re-
sults below explain and generalize this analogy. To simplify the exposition, we assume
for the remainder of this section that G is connected. Generalizations of the results to
disconnected groups are needed in Section 6; the reader can easily supply the additional
details. Accordingly we make notational simplifications as in [19]; for example, representa-
tions of K are now identified with their highest weights.

Let b=[4+n be a O-invariant parabolic subalgebra of g, compatible with our fixed
choice of A+(f). Let L be the normalizer of b in G; the Lie algebra of L is ;. Let ¥V be a
Harish-Chandra module for L. We want to construct a representation of G which is “holo-
morphically induced” from V, in analogy with the Borel-Weil theorem for compact groups.
Formally there is an obvious way to do this, using the cohomology groups of a certain
sheaf defined by V on the complex manifold G/L. Unfortunately, this approach presents
formidable analytic problems: The sheaf in question is not coherent unless V is finite-

dimensional. So we use some infinitesimal properties which this holomorphically induced
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object ought to have as its definition. Fix an L N K-type u —2p(n N p) occurring in V, and
assume that y is dominant for A+(f). (Such u need not exist, of course.) Recall that V*-2®0 ¥
is the space of extremal weight vectors in the L N K-primary subspace of V corresponding
to the L N K-type u—20(n N p). Then V#~2M"P g g finite-dimensional module for U([)* " .
Recall from [19], (3.2), the map &: U(g)¥—~U([)*"¥. Via &, we can consider V*~%2M"NP g5 5
module for U(g)¥. Since it is finite-dimensional, it has a finite composition series; write
W* for the direct sum of the composition factors. By a theorem of Harish-Chandra, the
action of U(g)* on a single K-type of an irreducible Harish-Chandra module determines
the module completely. Therefore, there is at most one completely reducible Harish-
Chandra module X =X (b, V, u)=X(b, V, u) with the following properties:

(a) Every irreducible constituent of X contains the K-type u.
(b) X* is isomorphic to the U(g)¥ module W, defined above.

Since not every module for U(g)¥ can occur as Y, for a Harish-Chandra module Y, the
existence of X(b, V, u) is not obviouus. We want to prove this existence, and derive some
simple properties of X(b, ¥, u). For this purpose it clearly suffices to consider irreducible
V, as we do from now on. We begin with a holomorphic “induction by stages” result.

LemMaA 4.7. Suppose b'2b; say b’ =1'4+-n', with '21, n'cn. Then

Xo(b', X (601, V, i —20(w N p)), ) = X(6, V, p);

1.e., if the left side exists, then so does the right, and they are equal.

Proof. Write &: U(g)¥—U(')}' " ¥ & U "> U(1)*" ¥ for the maps of [19], (3.2).

Then &=£po&’, as follows trivially from the definition. The assertion of the lemma is now

a formal consequence of the definition of X(b, V, ). Q.E.D.
LEmMmA 4.8. Let Y be a Harish-Chandra module for G such that V is a composition
factor of HR(n, Y) (with R =dim (1 N })). Suppose that V¥~2"0P ligs in the image of
al: Hm N, Y)Y @ [A¥n N p)* > H¥(n, Y)F-2@nd,
Then X(b, V,u)= Y,

Proof. By Theorem 3.5 of [19], the pullback of V#~%""P to a U(g)¥ module via & is a
subquotient of Y*. The conclusion is immediate. Q.E.D.

LeEmMA 4.9. Suppose b° is the O-invariant parabolic subalgebra associated to u®, with
u®—20(n N p)EA(A%). Define A&=Ag(u®) using A2, as in the first part of this section. Then

X(B°, #(A2s, »), 6 —20(n° N p)), u0) = 7((A¢, »), 4).
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Proof. This is simply an assertion about the action of U(g)¥ on 7((4%, v), u®)*’. It
follows from Theorem 4.5 and Lemma 4.8. Q.E.D.

Suppose X is a Harish-Chandra module containing the K-type u. Recall from [19],
Definition 3.13, that u is said to be strongly n-minimal in X if whenever F is an irreducible
representation of K such that (H'(nN¥, F)@[A”(nn p)]*)* 2P0, then either (J, J') =
(0, R), or F does not occur in X. By [19], Theorem 3.14,

7'65: X*® [A”(n n P)]* N HR(II, X)M—ZQ:n ny

is bijective if y is strongly n-minimal in X. Because of Lemma 4.8, therefore, we are very
interested in this condition. One can sometimes reformulate the condition much more

simply.

LeMMA 4.10. There is a constant N = N(G) with the following properties: Let b=1+n<g
be a O-invariant parabolic subalgebra compatible with A+(¥), and suppose u€R satisfies
{u, &y >N for every root o of t in u.

(a) If X is a Harish-Chandra module not containing the K-type of highest weight

14 —(ﬁl +... +ﬂ[)

for any non-empty subset {B,, ..., f;} of the roots of t in 1N p, then p is strongly n-minimal in X,
(b) Let b=T+@<] be the G-invariant parabolic associated to u—2p(nNyp). Then b=
[+ (@ +n) =1+TCb is the O-snvariant parabolic in g associated to p.

Proof. Let F be a K-type of highest weight y and suppose
(HJ(n nt{, Fl® [AJ'(n n p)]*)u—za(nnp) +0,

with (J, J')3=(0, B). Let =R —J’ (with R=dim nnyp). By the computation at the be-
ginning of Section 5 of [19], there is an element ¢ € W(K/T) such that

o(y+0c) =p—PBy ... ~fitec
with the B, distinct roots of t in n N p. Furthermore ¢ satisfies the following condition: let
A = {a €A+, t)| ot ¢ A (L, 1)}

Then A; consists of exactly J roots of { in n N ¥, and the length of o is J. We claim that
the hypothesis on u forces J =0. So suppose « €A, . Then

<0(, 0'(? +Qc)> = <a—laa Y +Qc> <0
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since y +g, is dominant, and o'« ¢ A* (%, t). On the other hand
<d, 0(7 +Qc)> = <a7 lu’+90_ﬂl e _ﬂl> > -N_<“’ Z ﬂi>

If N is large enough, this is positive, a contradiction. So A, is empty, J =0, and ¢ has
length 0. So ¢ =1. Since (J, J')==(0, R), J'&R; so I==0. The equation for y reduces to

y=#— it +B)-

So if X satisfies the hypothesis (a), ¢ does not occur in X, and g is strongly n-minimal.
For (b), we have to recall how the parabolic is associated to a K-type ([19], Proposi-
tion 4.1). Notice first that
20(n) =2¢(n N p)+20(nNt)

is the weight of the one-dimensional representation A®*%(n) of . So b is also the parabolic

associated to
(v —20(nNp))+2(n) =u+2o(nnf).

Now b is defined as follows. We choose a positive root system A+(l, t) for t in [, so that
[#+20(mNH1+20(AHINE, 1)) = u+20,

is dominant for A+(l, t). Next choose {f,, ¢;} as in Proposition 4.1 of [19]; this means in

particular that

M) =p+20.—(A+1)) +3 3 e,
is dominant for A+(l), and that
A(D, 1) = {x€A(, t)]<a, A(T)> = 0}.

Now we consider the parabolic defined by u. We must begin by choosing a positive
root system A*(g, t) so that u + 2, is dominant. By the hypotheses on u,

A¥(g, 1) = A, 1) U A¥(L, 1)
has this property. Next we must look at
Ag) =p+2¢.—¢ = p+20.—(A*(1)) —o(A(n, 1))

Since (A(n, t)) is orthogonal to all the roots of t in I, and A(g) has a large inner product
with the roots of t in n, the set {f,, c,} satisfies the hypotheses of Proposition 4.1 of [19]

for u. Thus ; )
Mg) =p+20,—0+1 3 eiffy = Al) —o(A(n, 1))
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defines the parabolic b associated to u. So

={oc€A t)| <o, Alg >>O}
(n, 1) U {x €A, t)] <, Ag)> >0}
mt)U{aEAItH<a,MU>>O}
Am, t)u A(f), 1).

Here the second equality follows from the hypotheses on u, and the third from the fact
that o(A(n, 1)) is orthogonal to the roots of [. This proves (b). Q.E.D.

Because of the condition in Lemma 4.10 (a), the following technical result is useful.

LEMMA 4.11. In the situation of Lemma 4.7, every K-type ut occurring in m(4°, ») is of
the form p®+Q, with Q a sum of roots in °.

This is established in the proof of Lemma 8.8 of [19].

Definition 4.12. The K-type u of the Harish-Chandra module X is said to lie on the
b-bottom layer if every K-type occurring in X is of the form u+@, with @ a sum of roots
in b. The K-types of X of the form u+@,, with ¢, a sum of roots in [, constitute the b-
bottom layer of K-types.

ProrosiTioN 4.13. With notation as above, X(b, V, u) exists; and u lies on the b-
bottom layer of K-types of X.

This requires a lemma, which is borrowed from the proof of Lemma 7.3 of [19], and

inspired by results of Jantzen and Zuckerman.

LEMMA 4.14. Suppose b=1+n is a B-invariant parabolic compatible with A+(f), and
UER. Suppose that u is on the b-bottom layer of K-types of a Harish-Chandra module X,
and that (with N as in Lemma 4.10)

{p, > >N
for all «€A(n). Let v be a positive integral multiple of 20(n); then we can regard C_, as a
one-dimensional representation of | (namely a tensor product of copies of (A*n)*, with ¢ =dim n).

Suppose finally that u —vy is dominant for A*+(F). Then there is a Harish-Chandra module ¥
(depending on X, u, and y) such that

(a) Every K-type of Y is of the form

-y +@,
with Q a sum of roots of t in b.



REDUCIBILITY OF GENERALIZED PRINCIPAL SERIES REPRESENTATIONS 251

(b) If u' —y is a K-type such that u—p' is a sum of roots of { in [, then the multiplicity
of W' —y in Y is the multiplicity of u’ in X.
(c) The natural map (defined before Lemma 4.3)

b7 Homnf, Y7 @ [(AF(n N p)]* > HR(n, Yy-r-2eman
is injective, and its image is isomorphic to

HR(TI, X)/l—2e(l1 np ® C__.'y
as a module for U(I)*" ¥,

(d) If 6 is another K-type of X satisfying the hypotheses of the lemma, then the Harish-
Chandra module Z associated to X, §, and vy is isomorphic to Y.

We refer to the process of going from X to Y as “shifting”.

Proof. Since y is integral and dominant for any positive root system A+ containing
A(n), there is an irreducible finite dimensional representation F_, of lowest weight —y.
We define

Y=X®F_,

then (d) is obvious. Let ¢ be a K-type of Y. Then there is a_K-type ¢, of X and a weight
@, of tin F_, such that

@ =@ +@;.

Since g lies on the b-bottom layer of X, and —y is the lowest weight of F_,, we can find
sums of roots of { in b, @, and @,, such that

P1=p+0

@y = —y+Qe.
Setting ¢ =@, +@,, this gives

p=p-y+Q

proving (a).
For (b), let 7 be a copy of the representation of K of highest weight u’ —y. We
want to compute
dim Hom, (B¥~?, Y).
Now

Homg (E*7, Y) = Hom, (E* 7, X® F_,) =~ Homy (E*7® F*,, X).
The representation contragredient to F_, is the one F” of highest weight y; so we want
Hom, (E*~*® F?, X).

17 — 802905 Acta mathematica 145. Imprimé le 6 Février 1981



252 B. SPEH AND D. A. VOGAN, JR

Now one knows that B~ ?® F¥ contains the K-type E* of highest weight u’ (the “Cartan
product” of E*~” and E”) exactly once, and that every other constituent is of the form
E* 7% with §==y a weight of { in F”. Such a § is of the form

d=y—-e—@Q,

with ¢ a weight of t in 1t and @ a sum of roots in b. So these other constituents are

—-@Q
E#-eS

which cannot oceur in X since y' is on the b-bottom layer. So the multiplicity we want is

dim Hom, (E*, X),
which proves (b).
To prove (c), write
F',=u-F_,;
then
F_,|Fl,=C.,

as an [-module. To study Y, we use the long exact sequences in cohomology attached to
the short exact sequence
0> XF ,~X®F_,»X®C_,->0
of g modules. Write
A = A¥unp)s

then we have a commutative diagram with exact rows

p

-—>H“(n, X@F,l y)u» y '.’Q(nnv)____,HR(n, Y)" ¥ 20‘nnp)___,HR(n’X)u r2gnnp\,®c. JR——
b a1
0— B'mNnt, X@FL ) 7@ A— Hunt, YY'~? ® A—— [H@nt, XY @ A]®C_,——> ...

Now (c) says that ™7 is injective, and § is an isomorphism of the image of ={~" onto

that of A @ 1. We will show that

Hmnt, X)) =0,
and

7y is bijective. *
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Assume this for a moment. The first assertion shows that « is injective; by (b), the domain

and range have the same dimension, so « is bijective. Thus (zf® 1)oa is also bijective. But
(Fo®1)ox = fo(ns™"),

80 the assertions of (c) are immediate.
To prove the first claim of (*), choose a filtration of F, as a g N f module, so that
the successive subquotients are one-dimensional. Using the spectral sequence of the filtra-

tion, we are reduced to showing that
Homny, X)»v2=0

whenever § is a weight of F*,. Such a weight is of the form —y +¢+Q, with e€A(n) and

@ a sum of roots in b; so we must show that
Honng Xy 9=0.

This follows from the fact that u is on the b-bottom layer of X.

Finally, we must show that ={ is bijective. As was remarked before Lemma 4.10, it is
enough to show that u is strongly n-minimal in X. This follows from the hypotheses and
Lemma 4.10. Q.E.D.

COROLLARY 4.15. In the setting of Lemma 4.14, suppose V is a Harish-Chandra
module for |; set V=V ®C_,. Suppose that

X =X, 7, u).
Then X(b, V, u—7) exists, and is contained in Y.
Proof. This follows from Lemmas 4.8 and 4.14 (c). Q.E.D.

This corollary allows us to reduce some problems about X(b, V, u) to the case when u

is very nonsingular (in the sense of Lemma 4.10) by “shifting”.

Proof of Proposition 4.13. Choose N as in Lemma 4.10. Let u® —2¢(n N p) be a lowest
LN K-type of V, and b9 [0+ the associated parabolic. Then
B=0P+m+n)=P+n°cbcyg

is a f-invariant parabolic, compatible with A+(¥).
Assume first that (u, o) >N and {u,, &> >N for all «€A(n). Then u° is dominant for
A+(f), and b° is the associated 0-invariant parabolic by Lemma 4.10 {b). Let H =T+4 < L?
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be a maximally split Cartan subgroup; say u®—2o(n®n p)€A(A%). Construct A7 =
A(u®—20(n N p)) and 2¢=A%=2g(u0) using A% as before. By Theorem 4.5, V =7,((A, »),
#°—2p(n N p)) for some v€A. Define

X =7((A%, v), u0).

Then X is our candidate for X(b, V, u). Since b= §°, Lemma 4.11 implies that x and u°
lie in the b-bottom layer of K-types of X. In particular, if {8,}SAnnyp),u—3 8, and
u®—> B do not occur in X. By Lemma 4.10 (a), 4 and u® are strongly t-minimal in X.
In particular, u® —2¢(1t N p) occurs exactly once in H%(n1, X). Let V, denote the correspond-
ing irreducible composition factor. We claim that ¥ =7V,. By Lemma 4.8 X =X(b, V,, u%).
By Theorem 4.5 there is some v, € 4 such that Vy=7,((A2, »,), u®—20(m N p)); then by
Lemma 4.9, V,=X(0° s((A%s, 1), u®—20(n N p)), u®—20(n N p)). By Lemma 4.7, this
implies that X =X(0°, 7ro((Afs, 71), #® —20(n° N p)), x). By Lemma 4.8 again, this is
(4%, v,), u?). Now we can use the uniqueness statement in Theorem 2.9 to deduce that ¥
is conjugate to »; under the stabilizer of 2 in W(G/H). It follows easily that V=V,.

We have now established that ¥V occurs in H%(n, X). But we also know that z§ is
bijective. By Lemma 4.8, it follows that X(9, V, u)< X,; since X is irreducible, in fact,
X =X(b, V, u). That y is on the b-bottom layer of X follows from Lemma 4.11.

We now drop the hypotheses (u, a)>N and (u° o) >N for a€A(n). Let y be a
multiple of 2p(n) so large that (y +u, &> >N and {(y +u «) >N for all x€A(n). Set V =
¥ ®¢C,. By the first part of the proof,

X=XV, uty)

exists, and u +y lies on the b-bottom layer of X. By Corollary 4.15, X(b, V, u) exists, and
is contained in the semisimplification of the module ¥ associated to X and y. By Lemma
4.14 (a), u lies on the b-bottom layer of Y, and so also on the b-bottom layer of X(b, V, u).

ProrosiTion 4.16. In the setting of Proposition 4.13, suppose u! lies on the b-bottom
layer of X(8, V, w). Then the multiplicity of u* in X(b, V, u) is less than or equal to the mul-
tiplicity of u* —2p(n N p) in V. Equality holds if {p*, &> >N and {u, ) >N for every a € A(n)).

Proof. We first establish the inequality. This is clearly consistent with Lemma 4.14 and
Corollary 4.15, so we may assume that (with u° defined as in the proof of Proposition 4.13)
{ut, 0y >N, {u, oy>N, and {0, a>>N for all «€A(n). Then yt is strongly n-minimal in
X(b, ¥V, u); so HR(n, X) has a unique irreducible subquotient V! containing the L N K-type
ut—2o(nnp); and X(b, V, u)=X(b, V3, u?). Let u*—~2p(n N p) be a lowest K-type of V1.
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By a further shift we may assume that (u?, o) >N for all «€A(n). By the proof of Proposi-
tion 4.13, X(b, V1, u') =X (b, V, u?), and X (b, ¥V, u)=X(b, V, u°); furthermore, u? and u°
are lowest K-types of the corresponding modules. Since X(b, V, u)=X(b, V1, ut), it fol-
lows that p? is a lowest K-type of X(b, V, u®). Using Theorem 4.5, it is easy to deduce
that V =V2. This completes the proof of the inequality.

For the last statement, notice that we can still define V! as before. Since u does occur
in X(b, V, u), the proposition implies that u —20(1 N p) occurs in V1, Since HR(n, X)*~2"n ¥
pulls back to an irreducible module for U(g)%, it is irreducible for U([)*"*. It follows that
V = V1, proving the desired equality. Q.E.D.

For completeness we state now a result which will be proved in Section 5. Notation

is as above.

THEOREM 4.17. Let b=g be a O-invariant parabolic subalgebra, V =#((A2, v), u®—
2p(n N D)) an irreducible Harish-Chandra module, and p—20(n N p) an L N K-type of V, such
that p is dominant for A+(Y). Suppose further that if v=(2% v), then Re <y, a>>0 or
Re (y, 0> =0 and Im (y, o> >0 for every root a of §) in n. Then X(b, V, u) is irreducible;
and a K-type u' on the b-bottom layer occurs exactly as often as u* —20(n N p) occurs in V.

It seems likely that the hypotheses on y are completely unnecessary; at least they
are far too strong.
To see how these modules fit into the generalized principal series, we need to compute

the action of U(g)¥ on the bottom layer of such representations. We begin with

Lemua 4.18. Let p! be a K-type on the b-bottom layer of X(b, V, u). Then X(b, V, u)
and X(b, V, ut) have a composition factor in common; more precisely, X(b, V, u)* is a com-
position factor of the pull-back of V*'~%2"0% 1o [(g)¥.

Proof. This is consistent with shifting, so we may assume that (u, x)>N and
{ut, oy > N for all « € A(n). In that case we have seen that X(b, V, u)=X(b, V, u!). Q.E.D.

Fix now a K-type u®, with 5% =[°+n® the associated parabolic; say u®€4(4°). A para-
bolic 520 is called permissible for the prineipal series n(A°, »). Define A3 and A% as usual.
Suppose u occurs on the b-bottom layer of X; we want to compute the action of U(g)*

on 7(A°, »)*.

Prorosition 4.19. The U(g)* module 7g(A°, v)* has the same composition series as
the pullback of 7, (A3, vy*~2M0P) yig £,
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Proof. Tt suffices to establish this for an algebraically dense set of »€ 4. So we consider
only unitary v which are annihilated by no real root. In this case 7(A%, ») and 7,(A}, ¥) are

irreducible by Theorem 4.5, and so
(A0, v) = X(b, (AL, »), w0,

as we saw in the proof of Proposition 4.13. Lemma 4.18 now implies that #(A°, »)* is a
composition factor of the pullback of 7(A2, v)* 2" P via £ But a straightforward (and
tedious) computation using Frobenius reciprocity and the Blattner multiplicity formula

shows that these two spaces have the same dimension. Q.E.D.

(The last multiplicity computation can be avoided using the proof of Theorem 4.17;

the argument is left to the reader.)

COROLLARY 4.20. In the setting of Proposition 4.19, suppose that m(A3, v) has com-
position factors V, ...V, (listed with multiplicity), and that V, (1 <i<r,r<s) contains an
LN K-type p,—20(mNY) such that p, ts dominant for A+(Y). Then n(A°, v) has (perhaps
amony others) the composition factors X(b, Vy, u;) ... X(b, V,, u,) {occurring with at least the
multiplicities listed).

This result gives a great deal of information about reducibility on the b-bottom layer
of K-types. We conclude with a sufficient condition for this to be all the reducibility.
Let b be a permissible parabolic for the representation n(A%, v), and §)=1i*+a the Cartan
subalgebra associated to the representation. We may assume that if t—=({*)* Nt, then a
is spanned by p* and a-, with a~ obtained from t- by successive Cayley transforms through
imaginary roots orthogonal to A°. This gives an isomorphism from §°=t+yp* to §j. (For
more details see [19].) In this way we identify (4, v) with a weight (4, #) of §°. The par-
ameter (4, v) is called positive for b if Re {a, (1, »)> =0 for all x€A(n, §). In this case b is
called a positive permissible parabolic. Since (a, > >0 for «€A(n), the condition means

that Re v is not too large.

ProrosiTION 4.21. I} b is a positive permissible parabolic for m(A, v), then every com-

position factor of m(A, v) contains a K-type in the b-bottom layer.

Proof. Choose y€i(tt)" so that <y, a>>0 if a€A(n), and {y, a)=0 if a€A({). Let
Vica(4, ») be a composition factor with lowest K-type ul. We want to show that (y, u*> =
{y, uy. Following [19], Proposition 4.1, we can write A =A(u})=ul+20,—0 + > ¢,f;; here
o =p(A+), with A+ a f-invariant positive root system such that u+2¢, is dominant, and

the B, are orthogonal imaginary roots spanning a subspace (t)~ of t. Then (t')+=((t})")*
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is the compact part of the Cartan subalgebra associated to !, and V'=n(A!, #!) for some
»!. As in the preceding paragraph we may identify +»! with a weight #1 of (t!)~+p’. We
are free to modify 7' by reflections about any of the 8,, so we may assume that Re {y, 71 >0.
We know that ul =y +@, with @ a sum of roots in b. As in the proof of Lemma 8.8 of [19],
one sees that Al=2 +Q +@,, with @, a sum of positive (nonintegral) multiples of roots in b.
So

Re Cy, (1, 7)) > (y, 11 = Cy, A; (4.22)

equality holds only if @ involves only roots in [, which is what we wish to prove.

On the other hand, (4, #) and (A}, #1) must define the same infinitesimal character,
so they differ by some g€ W(g, §)°). Choose a positive system A+(g, H?)2A(n, §° so that
Re <a, (A, 7)) = 0 for all x€A+; this is possible by the positivity of b. Then ¢+ (4, #) = (4, #) —

Deeat ma,, with Re n,>0. Hence

Re <% (117 ’71)> =Re (7/, O'(A" 17)>
=Re <7: (l’ ’7)> —Z Re ’IL,<}/, “i> < <Vr }”>

So equality must hold in (4.22). Q.E.D.

For the convenience of the reader, we summarize the definitions of this section and
Theorem 4.17, Proposition 5.18, Corollary 4.20, and Proposition 4.21 in one theorem;
although the first two results will not be proved until the next section, we will not use
this theorem until after they are proved. We will formulate this for disconnected groups,

leaving to the reader the necessary extensions of the intermediate results.

THEOREM 4.23. Suppose H = T+A4 is a 0-stable Cartan subgroup of G, andy = (A, v)€H’.
Let b=1+n be a O-invariant parabolic subalgebra of g such that Y <\, and let L be the normal-
tzer of b in Q. Assume that

(a) y is nonsingular, i.e.
o, > %0
whenever a €A(g, §)
{b) b is a positive permissible parabolic for y, i.e.

Re (e, y>2 0
for all x€A(n, h).
Then the composition series of my(y) can be computed in terms of the subgroup L of G.
More precisely, define
v =, "’)GHQ.
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by -
Ap=(AR[ARm N p)I*, A—o(n)),

and list the composition factors of my(y;) as Vi ... Vi (with multiplicity); say

Vizayh), yL€HYL, yi= (L)
Define
yi =% v) €@
by _
M =(AL®ARnNY), AL +o(n)).

Then the composition factors of rg(y) (with multiplicity) are {Fs(y*)}.

5. Coherent continuation of characters

We begin by recalling the basic facts of character theory for G (cf. [5]). Let = be an
admissible representation of G on a Hilbert space, with a finite composition series, such
that 7| is unitary. If f€CX(G), we define n(f) = [ f(g)7(g)dg. Then n(f) is an operator of
trace class, and fr—>tr z(f) defines a distribution on @. This distribution is called the char-
acter of 7, and is written ®O(n). O(x) depends only on the infinitesimal equivalence class
of z; so if X is the Harish-Chandra module of K-finite vectors for n, we may define ®(X) =
®(x). Every irreducible Harish-Chandra module can be realized in this way ([14]) and
therefore has a well-defined character. In the above situation, suppose X has the irreduc-
ible composition factors X, ..., X, (listed with multiplicity). Then O(X)=3] 1 ®(X,). We
take this as the definition of ®(X) whenever X has a finite composition series. If X, ..., X,
are inequivalent irreducible Harish-Chandra modules, then ®(X,), ..., O(X,) are linearly
independent.

By a virtual representation we will mean a formal finite combination of irreducible
representations with integer coefficients. By the preceding remarks, such an object can be
assigned a distribution character, which vanishes only if the virtual representation does.
By a character we will always mean the character of a virtual representation.

Let X be a Harish-Chandra module, and §: 3(g)—€ an infinitesimal character. Define
Py(X)={x€X|Vz€3(g)In>0 such that (z—d(z))" -z =0}.

Then Py(X) is a submodule of X, and every composition factor of Ps(X) has infinitesimal

character §. Furthermore,
X = dz P 5(X ).

The sum is direct; if X has finite composition series, it is finite, Clearly, P; gives rise to a

unique homomorphism P, from the group of characters to itself, satisfying Ps(@(X))=
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©(P5(X)). Suppose next that F is a finite-dimensional representation of ¢. Then X® F
is a Harish-Chandra module; it has finite composition series if X does. In that case
O(X® F)=0(X) O(F); it is enough to verify this when X is irreducible, in which case it
follows easily from the definitions. (Notice that ®(F') is a smooth function on G, so that
O(X)- O(F) is well defined.) It follows that multiplication by @(F) defines a homomorphism
from the group of characters to itself.

Formally, we need no more results from character theory. However, the consistency
and completeness of the definitiohs to be made below rely heavily on a deep theorem of
Harish-Chandra: that every character is integration against a function in L},.(G).

We fix for the remainder of this section a maximally split §-invariant Cartan sub-
algebra HO=(T+)°A4° of @, and a positive root system A< A(g, [°) compatible with an
Iwasawa decomposition of G. Every irreducible finite-dimensional representation F of G
has a unique highest weight u € H°, which occurs with multiplicity one and characterizes
F; we write ¥ = F(u). (We will also write F(—u) for the dual of #(u), which has lowest
weight —u.) Every dominant weight of F is also the highest weight of some finite-dimen-
sional irreducible representation. The set of weights of F is written A(F)< H°. Suppose
PEA(F); say Ov€F, h-v=pu(h)v for hEH®. If H is another Cartan subgroup of ¢, and
y€Y* is nonsingular, we can consider u as a character of H in the following way. Let Ge
be the simply connected cover of G¢. Then the complexified differential of F exponentiates
to a representation of G¢ on F. Choose c€G(¢ so that ¢-§0 =1, and ¢-Aj. = A, . Then ¢1-v
is a weight vector for H; we call the corresponding weight u, or us s It is independent
of cand F.

We summarize now the main results of Zuckerman on coherent continuation.

Definition 5.1. Suppose u € H° is a dominant weight of a finite-dimensional representa-
tion, and A€ (§%)* is dominant. If X is a Harish-Chandra module, put

FheuX =Pas [ PAX) ® F(u))
i X = Py(Paou(X) ® F(—p)).

Analogous definitions are made for characters. Finally, we define 4(4) to be the category
of Harish-Chandra modules with infinitesimal character A. Recall that a module all of

whose composition factors are isomorphic is called primary.

THEOREM 5.2, (Zuckerman [21]). w}** maps primary modules to primary modules.
If A and 2+u have the same stabilizer in W(g/h), then @i+ restricts to an isomorphism of
AR) with A+ p), with natural inverse w}i+*.
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Our goal is to reformulate this theorem in character-theorctic terms, and then to
consider natural generalizations of it. Suppose then that y €(}°)* is dominant and non-
singular, and that the character ® has infinitesimal character y. Let u€H° be a weight
of a finite-dimensional representation. We want to define a new character S, ®, which
is to have infinitesimal character y +pu. (The following construction is due to Hecht and
Schmid [6], and Zuckerman [21], among others; but apparently no complete account of it
has been published.) We begin by defining S,-©® simply as a function on G’. Now O is
invariant under conjugation, and we want S,-® to be also; so it suffices to define S,-Q
on each connected component of H N G’, with H an arbitrary Cartan subgroup of G. Fix
such a component H;. Then &|g; can be written uniquely as a sum of terms of the form
a-exp (A(log hhy))/A(h); here A is a “Weyl denominator”, A€ lj* is a weight defining the
infinitesimal character of @, and one must choose &, and the definition of log appropriately.
(For all this see [21].) We define S,*® to be a similar sum, but with the above term multi-
plied by the weight u; €H.

Lrmma 5.3. If F ¢s a finite-dimensional representation of G, then

O-BF)= > 8,-0

peEAF)

{(an identity of functions on Q).

Proof. If y € h* is nonsingular, then obviously

OF) (k)= 2 py(h)

BEA(F)

for all A€ H. The result follows immediately from the definitions. Q.E.D.

Lemma 5.4. In the setting of Lemma 5.3, suppose 8 €(§°)*, and that © has infinitesimal
character y° € ()°)*. Then
Py®-OF)= 2 8,:0.
HEAR)
utyte W@h".6
Proof. This follows from the earlier remarks on the form of a character with a given
infinitesimal character. Q.E.D.

LeMMA 5.5. Suppose © has a nonsingular infinitesimal character represented by the
dominant weight 19 € (§°)*, and that u€HO is a dominant weight of a finite-dimensional re-

presentation. Then
8, O =g, . (0).
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If also y° —u is dominant, then
S_u+ O =1yl .(O).

In particular, S, ® and S_,+©® are characters in this case.

Proof. Consider the first statement; it asserts that
8y 0 =Py, u(O- O(F(p))).

By Lemma 5.4, the right side is just
Z S/; " @.

. BEAD
#tye Wg/hoy (uty®)

Suppose ZEA(F), w€ W(g/°), and fi+9°=w1-(u+°). We want to show that ji=u. We
have g —w- fi =wy®—9°. Since w-GEA(F), p —w- i is a sum of positive roots. On the other
hand, we can write wy®—9°=> n,a,, with «; €A+, and Re n,;<0. This is possible only if
p=wpi and 9% =wy?. Since y° is nonsingular, it follows that w=1. This proves the first

statement. The second is similar. QE.D.
ProrositioN 5.5. 8,°© is a character.

Proof. The proof of Lemma 5.2 of [6] carries over without change to the present
situation. Q.E.D.

Passage from © to 8,0 is called coherent continuation. For general considerations,
the following notation will be useful. Suppose @ has infinitesimal character represented
by a nonsingular dominant weight y € (§°)*. Then we write ® =0(y), and S,-O =0O(y +u).
Lemma 5.3, for example, can be written as

Oy -OF)= 2 Oy+u).

HeAF)

Other notation for more specific representations will be modelled on this.

Suppose for a moment that &(y) is irreducible, and that y +u is dominant and non-
singular. It follows from Zuckerman'’s theorem that ©(y +pu) is also irreducible. (For we
choose » dominant so that » —u is also dominant. Then ®(y +») is irreducible by one ap-
plication of Theorem 5.2, and so O((y +v) — (v —u)) =O(y +u) is irreducible by a second
application. Such arguments are henceforth left to the reader.) If 9 +u is dominant but
possibly singular, then O(y +u) is at least primary. We will first prove that in this last
situation ®(y +u) is in fact irreducible or zero. This result will then be used to get informa-

tion about ®(y + ) when y +u is not even dominant.
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We need to understand coherent continuation of generalized principal series repre-
sentations. We begin with the discrete series; so suppose for a moment that G has a com-

pact Cartan subgroup 7'. Fix a positive root system ¥'< A(g, t).

Definition 5.6. A ¥-pseudocharacter (or W-character) of T is a pair (A, 1), with A€T,
L€it;, and dA =1 +o(¥) —20(F N A(Y)).

The set of W-pseudocharacters of T is written T'y. If u is a weight of a finite-dimen-
sional representation, we write A + uy = (A ® iy, A +uy). Notice that if 1 is strictly dominant
with respect to ¥, then A is a regular pseudocharacter of 7'. To each A€ Ty we associate a
character ®(¥, 1) as follows: O(¥, 1) as defined by Hecht and Schmid [6] is a character
of G,. Extend this to ZG, so that 0(gz)=0(g) A(z), and then to G by making it zero off
ZG,. Clearly O(¥, A) has infinitesimal character A; and if 1 is strictly dominant for ¥, then
O, 1) =0(x(2)).

LEMMA 5.7. Suppose A€ T, with ¥ =Ay . Then
8, O((h) = O(F, A+ ).

Proof. For connected G this is the definition of @Y, A+ u) ([6], p. 133). The extension
to the present case is trivial. Q.E.D.

Now let H=T+A be an arbitrary 0-invariant Cartan subgroup of G, P=MAN an
associated parabolic subgroup, and ¥ a system of positive roots for t+ in 1. We define
the set Hy of W-pseudocharacters of H in the obvious way. If z€§* is regular, y € Hy,
and p is a weight of a finite-dimensional representation, we define  +pu, in analogy with

the case when H is compact. Set
OW,y)=Ind§ ¥, ) ®@r®1.

(The representation induced by a formal difference is the formal difference of the induced
representations, so this makes sense. As the notation indicates, (¥, y) is independent
of P, cf. Proposition 2.7.) If 1 is strictly dominant for ¥, then @(¥', y) = O(n(y)).

LeMMA 5.8. Suppose 7y, ts a representation of M A with finite composition series; put
ng=Ind$ 7y, ®1. If F is a finite-dimensional representation of G, choose a family 0=
F,c F,c...c F,=F of P-invariant subspaces of F, such that N acts trivially in V;=F,[F,_,.
Then ng® F has a fomily 0=Hyc H,c...<H, =, F of G-invariant subspaces, such that

H,/H, ; =Indg [(m,® V) ®1].
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Proof. For formal reasons, 7o® F =~ Ind§ [(7y,®1)® pF| p]. The result now follows
from the exactness of Ind. Q.E.D.

Possibly replacing H by a conjugate, we may assume that 4°2> 4; then H'c M 4.

CoROLLARY 5.9. In the setting of Theorem 5.2 and Lemma 5.8, suppose my, has in-

finitesimal character +u. Then so does g, and

A+ u

Yi+t¥(me) = Ind§ ('/’:11+”7ZMA)-

Proof. That 7, has infinitesimal character A+ u is obvious. In Lemma 5.8, take F =
F(—u); we may as well choose the V, to be irreducible. An argument like that given for
Lemma 5.5 shows that Ind$ [(7,,,® V,)®1] has a composition factor of infinitesimal char-
acter A only if V, contains the —u. In that case V,=F,,(—pu), since —py is extremal in F.
Furthermore, only Pi(r, ® Fya( —p)) contributes to Pi(me® F(—p)). This shows that
Ind§ (wﬁ“‘nm) is a subquotient of 7;® F(—pu), containing all the composition factors of

infinitesimal character 4. The corollary is immediate. Q.E.D.
The preceding result is hinted at in the closing remarks of [21].

CoROLLARY 5.10. In the setting of Lemma 5.8, 7, ® F has the same composition series as
Indg [(pa ® FIMA) ®1].

CoRoLLARY 5.11. Suppose A€()0)* is G-regular. If @, is a character for MA with

infinitesimal character A, and u is a weight of a finite-dimensional representation of G, then
Sy [Indf (O®1)] = IndE [(S,- O)@1].
COROLLARY 5.12. Suppose y € H', with ¥ = A3 (m). Then

S, Oy)) = OF, y +41,).

These are obvious.

The Langlands classification theorem provides a natural basis for the space of char-
acters with a fixed nonsingular infinitesimal character y, namely, the characters of gen-
eralized principal series representations. We want to express the various @('¥, y) in terms
of this basis. Evidently it suffices to do this in case H =T is compact. For this purpose
we use the character identities of Hecht and Schmid [17]. Their extension to the present
situation is straightforward, but requires a brief discussion. The first identity says that if

o €Y is a simple compact root, then Q(Y, 1) +0(s, V', 1) =0; this is a trivial consequence
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of the result for connected groups. The second begins with a noncompact simple root
BEW, and involves a Cartan subgroup HA = T6A#. Here aj is a one-dimensional subalgebra
of pg contained in the sum of the § and —f root spaces, and 4 is the orthogonal comple-
ment of § in t. Let PP=MPAPN* be an associated parabolic subgroup. The roots of 7'
in M” are identified with the roots of t in g orthogonal to f; so W' N (#)* =¥* is a positive
system. Put Hi=(TANT)- A%, TE=TPnT. If A=(A, ), we define A5€(T)gs as A~
(A[28, Z|18); that dA | =7+0(¥8)—20(F# N A(mn¥)) follows from (7.21) of [16]. Finally,
we define v’ € 4% so that if § is the unique real root of § in g, then (»%, B> =(4, B>. Set
M{=TiM§.

LEMMA 5.13. With notation as above,
O(F, 4)+ O(ss ¥, 1) =IndS; 5 OF%, M) @ @ 1.
1

Proof. This is in essence the Hecht-Schmid identity ([16], Theorem 9.4), combined
with the definitions of the @(¥', 1) for disconnected groups. The definition given in [16]
for the inducing distribution @(¥%, 4%) is formulated in a slightly different way, but it is
easy to check that the two definitions agree. Q.E.D.

Put ME=Z(MP)-Mi=> M4, Then M5/M%{~ TP TE This group is nontrivial exactly
when the reflection s € W(g/t) about the root 8 lies in W(G/T). In that case it has order 2;
so 2§ has exactly two extensions A% and A% to T%; these are the constituents of Ind;f; .
Set y# = (A%, 1), It T§=T®, set A8 =15, 9% = (4%, +F). l

ProrosiTioN 5.14. Suppose T< @G is a compact Cartan subgroup, V< A(q, t) is a
positive root system, A€ Ty, and BEY is a noncompact simple root. If s3¢ W(G/T),

O, ) +0O(s, W, 1) = O(F?, 7).
If ss€ W(G[T),
@(‘Fy ]h) +®(8’3‘F, },) = @(\Fﬁ’ y&) +®(\Fﬂ, 7?«)

This is an immediate consequence of Lemma 5.13. It should be emphasized that the
result is only a reformulation of the Hecht-Schmid character identity. Most of the tech-
nicalities involved have appeared already in [12], formula (7b). It is an easy exercise to
gee that these identities allow us to write any O(¥, 1) as an integral combination of char-
acters of generalized principal series, at least if A is nonsingular. In particular, the various
8,.- O(n(y)) are computable.

For future reference we record the condition for a character O(¥, y) to occur on the

right side of one of the identities of Proposition 5.14. Suppose v is a ¥-pseudocharacter of
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H=T+4, with dim 4 =1. Then there must be a real root B of §j in g. By a Cayley trans-
form, B gives rise to the compact Cartan subgroup 7' of G. Choose a positive root system
W, for t in g, such that if § is the Cayley transform of ﬂ, then £ is a simple positive root,
and (identifying t#={g>* with t*)¥'; N t#="¥"; this is certainly possible. Let 1€t* be the
Cayley transform of y. Fix a map ¢z SL (2, R)—>G, a three-dimensional subgroup through
the real root /§; we may assume that gg(*z—1) =0(ps(x)).

Then

-1 0

is independent of the choice of g, and mj=1. Suppose there is a ¥,-pseudocharacter
A=(A, 2) of T so that @(¥, y) occurs on the right in the corresponding character identity.
Then

y(mg) = A(mg) = (—1)7,

where n=2{8, A+o(¥;)—20(F, NA()>/<p, > is an integer. Write ngz=2(B, o(¥,)—
20(W, NA()>/(B, 8>, and e5=(—1)"8. Since (B, l>=<5, p>, the condition can now be

written as

y(mg) = &g* ( _1)2<v.ﬁ>/’<ﬂ.ﬂ>_ *

We leave to the reader the verification that &4 is independent of the choice of ¥, and that
the condition (*) is in fact sufficient for the existence of a character identity,

One might expect that the characters OV, 1) with 4 dominant (but possibly singular)
have special properties. This is the case—they are called limits of discrete series, and are
tempered and irreducible (or zero). (See [6], Lemma 3.1, [21], Theorem 5.7, and [19],
Lemma 7.3.) The corresponding representations are written n(Y, ). More generally,
OV, y) is called a limit of generalized principal series if y = (4, v) and A is dominant for ¥,
and we define n(P, ¥, y) = Ind§ n(¥', ) @@ 1. Most of the theory of generalized principal
series holds for thesc representations as well, since Langlands discusses induction from any
tempered representation in [13). If y is unitary (and 4 is dominant for ¥') then #n(P, ¥, y)
is tempered; it is not necessarily irreducible, but every tempered irreducible representation

arises in this way (cf. {12]).

THEOREM 5.15. Suppose § €(§°)* is dominant and nonsingular, u€H® is a dominant
weight of a finite-dimensional representation, and $ -u is dominant. Suppose 7€G has in-

finitesimal character 7. Then zp;zﬂ(n) is irreducible or zero.
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Proof. Zuckerman’s Theorem 5.2 asserts that q)g‘”(n) is primary, By Theorem 2.9,
there is a f-invariant Cartan subgroup H =7"*4 of G, and a regular character y —(4, ») €L’
such that 7 27(y). Choose P =M AN so that » is negative with respect to P. Then there is
an exact sequence

0~ {y) > (P, y) > Q0.

Set X1=y)g_ﬂ(7't(y)), X, =1pf7_H(Q). Suppose A defines the positive root system ¥'<= A(t+, m).
Put p1=(41, 91) =y —pu,. Then A! is dominant for V. By Corollary 5.9 and Lemma 5.7,

YL (P, y) =P, ¥, ),
so we have an exact sequence

0—->X,»>m(P,V, 1)~ X, 0.

We know that X, is primary; we want to show that it is irreducible. Define Pl =M AN
so that

A, a) = {x€A(g, a)|Re (3, ) <0 or Re (3, ap=0 and «€A(n, a)}.

Now myu(¥, A1) is tempered and irreducible, so by a theorem of Harish-Chandra we
can find a f-invariant Cartan subgroup H? of M and a unitary pseudocharacter y?€ (H2)’
such that 7, (¥, A1) is a constituent of 7y,(y?). Put H®=H24, and let 13€ (/%) be defined
using 9% and ! in the obvious way. Choose a parabolic subgroup P*< P! associated to H3.
Then clearly 7(P!, ¥, »!) is a direct summand of (P2, y3). Furthermore, »® is negative
with respect to P®. By Theorem 2.9, the irreducible subrepresentations of 7(P3, y°) are
inequivalent and occur exactly once in the composition series, so the same statement holds
for m(PY, ¥, y1). In particular, a primary subrepresentation of 7(P*, V', y!) is irreducible or
zero. To complete the proof, we need only show that a(P', ¥, 1) 2 (P, ¥, ). Using 9%

y-u’

it is enough to show that n(P?, y) > (P, y).

LEMMA 5.16. Suppose H=T+A is a 0-invariant Cartan subgroup of G, with dim A =1.
Suppose y €A’ is nonsingular, and that A; (g, ) is O-invariant. Then ni(y) is irreducible.

Assuming this lemma for a moment, we show that m(P?,y)=a(P,y). Recall from

Section 3 the intertwining operator
I(PL, P): (PL, y) > 7P, p).

We want to show that I(P!, P) is an isomorphism. Using Theorem 3.7 to factor I{P, P),
we may assume that dim 4 =1, and that P=06P"; in this situation we want to show that
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(P, y) is irreducible. If y is unitary, this follows from Theorem 2.9, so we may assume
Re »==0. Suppose « €A(n?, a). Since P=0P, « ¢ A1, a), so Re (1, ) <0, and Re <y, > >0.
We claim that A; (g, §) is O-invariant; for let (5, x) €A (g, §)). (Here SE€(tH)*, x€a*.) Of
course 6(f, o) =(8, —«), s0 we may assume a=0. Suppose (8, —«)}¢A;. Then clearly
Re (&, v> >0, so a EA(nt}, a), and (—8, ) €A;. Since ! is dominant for A,

2 Re <0(, 1)1> =Re <(/3’ o), (}”17 ’l/l)> +Re <( _:37 Ot), (Al’ 1"1)> =0,
a contradiction. Q.E.D.

Proof of Lemma 5.16. By Corollary 4.6, we may assume that ¢ s connected. Since
A; is fixed by 6, so is o(A;); so o(A; ) €t+. By an application of Theorem 5.2, it suffices to
prove the lemma with y replaced by p +2p(A;). In this case it is easy to check that if
a€AJ, then {«, 2> >0. Thus the f-invariant parabolic subalgebra b associated to A is just
the Borel subalgebra corresponding to A, . Hence the b-bottom layer of K-types of m(y)
consists of the lowest K-type alone. By Proposition 4.21 z(y) is irreducible. Q.E.D.

As a corollary of the proof, we have

CoroLLARY 5.17. If y€H’ is nonsingular, u is ¢ weight of a finite-dimensional re-
presentation, and y —u, 13 dominant for A;, then S_,(A(Y, y)) is a Langlands subgquotient of
al¥,y —u,). In particular, if y —pu,, is strictly dominant,

S_u(#@(y)) =7y —py).
We will see much later (Theorem 6.18) that if S_.(Z(Y, y))+0, then n(¥, y —u,) hasa

unique Langlands subquotient.

We can now prove Theorem 4.17. With notation as in its statement, choose a large
multiple ' of 2p(n), so that u+9! and p'+y! both satisfy the strong nonsingularity
condition of Proposition 4.16. As in Lemma 4.14, we can regard 4* and —»* as the weights
of one dimensional representations C,: and C_,: of L; set ¥ =V ®@C,.. If we also write y!
for the restriction of 4! to the Cartan subgroup H of L to which V is attached in the Lang-

lands classification, then
V = 7,((A%, ) +9* u® +y' —20(n N p)).
By the proof of Proposition 4.15,
X(6, V, p+yt) =d6ly +9% p0+9Y).

Let F denote the finite dimensional irreducible representation of G of lowest weight —y1.
The representation Y attached to X(b, 7, u+y') by Lemma 4.14 is
Y=X(0,V,u+y)®F

18 ~ 802905 Acta mathematica 145. Imprimé le 6 Février 1981
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by definition; and X(b, ¥V, u)= Y, by Corollary 4.15. Set Yy=P,(Y) (the submodule of

infinitesimal character y); then

Yo ="¥5"(X(b, V, ut+yY)
= WO G aly +pL g 1)
= Fgly, 1)

by Corollary 5.17. On the other hand, Lemma 4.14 calculates the action of U(g)¥, and
hence, of 3(g), on the K-primary subspaces Y(u) and Y(u!). This calculation shows that

Yo2Y(u), Y= Y(u');
so the multiplicity of y and u! in Y is the same as in Y. In particular
Ty, )= Yo 2 X(b, V, u);

since the first of these is irreducible, equality holds. Lemma 4.14 (b) and Proposition 4.16
complete the proof. Q.E.D.

ProrosiTioN 5.18. Suppose G is connected. Let b=1-+n be a 0-invariant parabolic
subalgebra of G. Let H be a O-invariant Cartan subgroup of G contained in L, and y,€H’ a
regular pseudocharacter with respect to L. Suppose that v, is nonsingular for | and that for all
x€A(n, ), Re (o, 1> >0 or Re (o, > =0 and Im {a, y,>>0. Associate to y,=(A,,v) a
regular pseudocharacter y; = (Ag, v) of H with respect to G as in Section 4 (proof of Proposition
4.13). Then whenever u is a K-type such that u—2p(n N p) occurs in 7;(y,), we have

X(0, Ayr)s p) = Aelye)-
Proof. This follows from the preceding proof, together with Corollary 5.17. Q.E.D.

Like the results of Section 4, Proposition 5.18 generalizes readily to disconnected G.
To study the problem of coherent continuation across walls, we will make heavy use
of Theorem 5.15. This means that we want to be able to stop on a wall, which in turn
requires that we have lots of weights of finite-dimensional representation available. So we

need

Lemma 5.19. Let G be a linear reductive group with abelian Cartan subgroups. Then
there is a linear reductive group G, with abelian Cartan subgroups, and a surjective map G—~G
with finite kernel, with the following property: Whenever A€Y* is an integral weight of a
Cartan subalgebra of g, there is a character A of the corresponding Cartan subgroup H of G,
occurring in a finite-dimensional representation of G, such that dA —A annihilates every root

of §ing.
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Proof. Let H=T+A be a maximally split Cartan subgroup of ; recall that Z is the
center of G. Put R, = {t€ T+|2€Z}. It is easy to show that G=R,(ZG,). Set R} =R, N ZG,;
then R,/R{ is a product of s copies of Z/2Z. Choose elements g, ..., g, € R, of finite order
so that the g, generate R,/RS. Let R be the group generated by the g,, and R°=RNZG,.
Then R is finite and abelian, and acts by automorphisms on g,. Choose a linear covering
G, of G, such that the automorphisms of R lift to G,, and such that integral weights lift

to characters as described in the theorem. Let
G=RxG,xZ,

a semidirect product with Z central and G, normal. This group clearly satisfies the condi-

tions of the lemma. Q.E.D.

TureorEM 5.20. Let O(y) be an irreducible character, with y strictly dominant, and let o
be a simple positive root. Suppose r is a positive integer such that (y —ra) lies in the same

Weyl chamber as s,-y.

(a) If 2{e, y>[{a, oy is not an integer, then O(y —ra) is an irreducible character.
(b) If 2{ec, yo[{ax, &) =m is an integer, then either Gy —no) = —O(y), or Oy —na) is

the character of a representation.

Proof. Consider first (a). Choose a dominant weight of a finite-dimensional representa-
tion so large that y —ra 4 is strictly dominant. Then ©&(y —ra-+u) is an irreducible char-
acter by Theorem 5.2. Put @, =P, ,(O(y —re+pu)® F(—pu)), which is the character of a
representation. We claim O =0®(y —ra). By Lemma 54, it suffices to show that if
BEAF(—u)), weW(g/h°), and p—ra+u+i=wly-—ra), then w=1 and j=yu. Write
fi=—pu+@Q, with @ a sum of positive roots. We can write w(y --ro) = —ro —Q, + sa. Here

= 2 ma,

a4GA+
g b

where Re n; >0, and Re s 20. Thus
y—roa+@Q =y —ro—Q+se.

Such an equation can hold only if @ =s«, and @, =0. In particular, s is an integer. 1t follows
easily that w=s, or 1 and that s =2{a, y —re)>/(e, &) or 0 accordingly. Since 2{a, y)> /<&, &>
is not an integer, the first case is impossible. So Q(y —ra) is the character of a representa-
tion. It follows immediately from the definitions that §_,(®(y —re)) = ©(y). In particular,
O(y —ra)=0. Suppose it is not irreducible; say Oy —ra) =0,(y —ra) -+ Oy —ra), with 9,
and O, characters of representations. By the preceding results, @(y) =0,(y) +0,(y) (here
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O,y)=8_,,0,y—ra)) and O,y) is a nonzero character of a representation. This con-
tradicts the irreducibility of ®(y) and proves a).

For (b), after passing to a covering group of @ in accordance with Lemma 5.19, we
choose a weight u of a finite-dimensional representation such that y —ne+y is dominant,
and 2{u, «p/{a, &) =n. Suppose O(p) is the character of n(y). We can choose a dominant
weight v of a finite-dimensional representation, so that ¥ —p +no is dominant. By Theorem
5.2, it clearly suffices to establish the analogue of b) withy + v replacing y. Set m(y —nor +u) =
Yy haiu(m(y +9)). By Theorem 5.15, (y —no 4 u) is irreducible or zero. Define

y—-na+ i

7Ty = L mly —moc+ ).
Bay 2{a, y +v>[{a, ay =m. Arguing as for (a), one sees that
O(7o) = O(y +2) + Oy +» —ma).

If 7(y —na+p) =0, then O(y +9)+O(y +v —ma) =0, and we are done. Otherwise we have

Y+

Hom (n(y +v), 7o) = Hom ((y +v), @70 @b lna rn 76ly +9))
= Hom (45 uen 76(y +9), Y} Tnatu 71y +))
= Hom (r(y —no+p), n(y —no+u)) = C

since y is left adjoint to @ ([21], Lemma 4.1). So n(y +7) is a composition factor of 7y; so
Oy +v —moa) = O(my) — Oy +v) is the character of a representation. Q.E.D.

Definition 5.21. In the setting of 5.20 (b), O(y) is called a-singular or a-nonsingular
according as Oy —na)= —6(y) or not.

By the proof of Theorem 5.20, ®(y) is a-singular iff its coherent continuation to the «
wall of the Weyl chamber is zero. Suppose ©(y) is a-nonsingular, and suppose y +u lies
on the o wall. Clearly 8,-O(y —na)=0(y —no+s, u) =O(y +py), which is irreducible. But
S, takes each irreducible constituent of @(y —nx) to an irreducible character or zero; so

we can write

r

Oy —na) = Oy(y — na) + zzl Oy(y — na);
here ®, is an irreducible character, ©, is «-singular for ¢>1, and S, - Oy —na) =8, -O(y)
whenever y +u lies on the o wall. Corollary 6.17 says that ®(y —ne) =0(y), a fact which
has many consequences in representation theory. Even Theorem 5.19 can be useful; how-

ever, we conclude this section with a simple application of it.
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ProrosITION 5.22. (Schmid). In the setting of Proposition 5.14, suppose A€T" is
dominant for ¥'. Then m(l) is a composition factor of both n(y.) and 7(y2) (if s5€ W(Q/T))
or of n(y#) (if s5¢ W(G/T)).

Proof. Since G is linear, 2{A, B>/{B, B>=n is an integer. Define ss4i=A-—nf. For de-
finiteness we assume sz ¢ W(G/T); the other case follows by a fairly easy argument. By
Proposition 5.14,

O(yf)—O(4) =O(sp Y, 4)
= S_ng[O(35'Y, 552)]
= S-w[@(Sﬁﬂ.)].

By 5.20(b), the only irreducible character which can occur on the right with negative
multiplicity is ®(szA). Since G(s34)==0(4), O(4) occurs with non-negative multiplicity in
B(pf)—O(A); so O(A) occurs with positive multiplicity in @(y#). Q.E.D.

Schmid actually computed the composition series of s(y#). His results follow from
Theorem 4.23, applied to the parabolic b defined by 14 =1|+#. That theorem reduces us to
the case g,=3[(2, R), where the composition series of principal series are well known
([20], 457-458). The conclusion is that if s;¢ W(G/T'), (y#) has exactly three composition
factors, namely 7(y#),n(A), and m(spd). If s3€ W(G/T), then n(yf) has two composition
factors, namely ﬁ(yﬁ) and 7(4). These facts will be used in Section 7.

6. Conditions for reducibility

ProrosiTion 6.1. Let & be a reductive linear group with abelian Cartan subgroups,
and let H=T+A4 be a 0-invariant Cartan subgroup. Fiz y=(2, v)€H' such that the corre-
sponding weight y €§)* is nonsingular; write A+ =A;. Then the generalized principal series

representation s(y) is reducible only if

(a) there is a complex root « €A, such that 2o, >[{a, &) is an integer, and Ba ¢ A, ; or
(b) there is a real root €A, with the following property. Let @,: SL(Z, R)—~G be the
three-dimensional subgroup corresponding to o, with ¢, chosen so that

z 0
€H.
% (0 x—l) H

RS I
ma—%( 0 _I)ET.

Then 2{a, y)[{a, o) 18 an integer, even or odd according as A(m,) s €, or —¢,. (Recall that e,
was defined after the proof of Proposition 5.14.)

Set
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Proof. This result is consistent with the reduction technique of Theorem 3.14, so we
may assume that dim 4 =1. We proceed by induction on the number of complex roots
BEA,; with 68¢A; . Suppose first that there are no such roots. Then if S€A; and g is not
real, 6B€A, . If there are no real roots, zz(y) is irreducible by Lemma 5.16. So suppose
that there is a real root «. If « is not simple, we write o =&, +&,, with ¢,€A; . Then —a=
Bo=0¢, +6e, €A, a contradiction; so « is simple. Let b=1{+n be the corresponding para-
bolic (i.e., Ly=H,y @,(SL(2, R)). Clearly b is f-invariant. Possibly shifting by 2¢(n) in ac-
cordance with Theorem 5.2, we see that b is the parabolic defined by 4. Suppose 7(y) is
reducible. By Proposition 4.19, every constituent of m(y) contains a K-type on the b-
bottom layer. By Theorem 4.15 and the other results of Section 4, we deduce that the
principal series representation 7r.(y;) is reducible. But the semisimple part of |; is 3[(2, R);
s0 it follows from known results about SL(2, R) that condition 6.1 (b) holds. (Notice that
this argument also establishes the converse of Proposition 6.1 in this case.)

Now suppose that Proposition 6.1 has been established whenever there are n—1 com-
plex roots BEA with 68¢A;, and that there are n such roots in A, with n>0. It follows
that there is a simple root a €A, with B¢ A, . If « is real, suppose B€A, is complex and
68¢A, . Clearly 08 =s,p; since « is simple, 08 €A, , a contradiction. So « is a complex root.
Suppose z(y) is reducible. If 2{a, p>/{a, ) is an integer, there is nothing to prove; so
suppose it is not. Possibly shifting y by 2¢(A;’) in accordance with Theorem 5.2, we may
assume that 2 Re (&, p>/{a, 2> = 1. In this case we can find an integer >0 such that
y —ra is dominant and nonsingular for s,(A;). By Corollary 5.12 and Theorem 5.20, the
generalized principal series representation n{y —ra) is reducible. Clearly the set of complex
roots BEA; ,, such that 08¢AJ_,, consists of the corresponding set for AJ, with « re-
moved; so it has order n--1. By induction, 6.1 (a) or 6.1 (b) holds with y —r« replacing y.
Tt follows easily that 6.1 (a) or 6.1 (b) holds for y. Q.E.D.

Our goal is to establish the sufficiency of the reducibility criterion of Proposition 6.1.

We begin with a simple but very useful computation, and continue with a series of tech-

nical lemmas.

LeMMmA 6.2. Let § =t +a be O-invariant Cartan subalgebra of §. Suppose y =(A, v) Eh*,
and a€A(g, §). Put n=2{o, y)[{et, @), Yo =y — & =8, = Ay, ¥s). Then

By Aoy — Ay A =0y +857, —0a).

The proof is left to the reader.
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COROLLARY 6.3. In the setting of Lemma 6.2, suppose o is complex and positive simple
for A;, and that n is an integer. Then (A, A.> —<{A, Xy is positive iff —Ox€A,.

Proof. Since —fa==+o, —fax€A; iff ~6a€As+“y. Q.E.D.

LEMMA 64. Let H=T+A be a §-invariant Cartan subgroup of G, V' a system of positive
roots for t+ in m, and y=(A, v) €A’ with A dominant for V. Suppose y is nonsingular, and
that « €Y is a compact simple root which is also simple for A, . Suppose 7, is an irreducible

constituent of n(y), with character ©,. If 2{a, y>/{a, &> =n, then
S_0(0y) = —0,.

Proof. Write &(y)=0;+...+0,, a sum of irreducible characters. By Corollary 5.12,
S_rOP) =0T, y —na) =O(WF, (A —na, »)) =0(s, ¥, (1, %)) = — O, (4, »)) = —O(p). Here
we have used the fact that discrete series characters depend only on the W(G/7') orbit of
the parameter, and the first Hecht-Schmid character identity. Define the rank of a char-
acter to be the sum of the multiplicities of its irreducible constituents; we write rk (@) for
therank of ©. Thenrk (O(y)) =, and rk (S_..(®(y))) = —r. By Theorem 5.20,1k (S_,,(0,)) =
—1; equality holds iff §_,,(0,)= —0,. So we must have S_,,(Q,)= — 0, for all .. Q.E.D.

We will write @(y) for the character of #(y).

LEMMA 6.5. Let H=T+A be a G-invariant Cartan subgroup of G, and y=(A, v)EH’.
Suppose y is nonsingular, and that « €A} is a complex simple root such that 2{a, y>[{x, &> =n
and Ox€A;. Put y,=y -na. Then S_, (@) --0O(y,) + Oy, with O the character of a re-

presentation.

Proof. For a fixed infinitesimal character, we proceed by downward induction on |2].
Write O(p) =-O(y) + O, +... +©,, with O, an irreducible character, and O(y,) =0(y,)+ ©’,
with @ the character of a representation. By Corollary 5.12, S_,(O(y)) =0(y —na); so

8 (@) = 0(r) + 0= 3 8_1u(0)). (6.6)

1.1
By Theorem 5.20, it is enough to show that @(ya) cannot be a constituent of any 8 ,(0,).
Suppose then that ©(y,) is a constituent of S_,,(0,), say; put ©,=0(y,), with y,€Hj,
and «, €A, the simple root corresponding to «. If &, is imaginary and compact, Lemma
6.4 implies that S_,.(0);)== —©,, a contradiction. Suppose «, is imaginary and noncom-
pact; for definiteness, say s,, € W(M,/Ty) (the other case being easier). Construct (y{'),
as in Proposition 5.14, and let ¥ be the positive root system in M, determined by 4,. Then

S—na(G)(‘}’l)) = G(IF’ (yl)ax)
= O((»1)4+) + O((¥1)-) — By
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by Proposition 5.14 and Corollary 5.12. So if O(y,) =0O(y,) + 0",

81O (1)) = O((YF)4) + O(1)_) —O(py) —S-1a(®”).

Since O(y,) occurs on the left with positive multiplicity, Theorem 5.20 implies that either
@_(ya) occurs in G((yf).), or @(ya) occurs in @' B(y,)< O((ys):) by Proposition 5.22.
By Proposition 2.10, <Af*, AP> <<{4,, 4,>. But Af* is just the projection of 1; orthogonal

to oy; so
2

A, A8 =g, A — '7}4‘ {ay, o)

2
= <ﬂ.1, 2’1> - % <“7 OC>.
Combining this with Lemma 6.2, we get
<}‘a: lac> - <}'i“: i“> = <lau }'a> - <l: j’> + <A> 2’> - <j'1’ }'1> + <Z'li z’l) - <lm’ z’1“>

2
R L N (W NER

We now shift y by a dominant weight of a finite-dimensional representation in accordance
with Theorem 5.2, so that after shifting, {y, «) is still small, but Re {y, ¢) is large for
every other simple root &. Since fx must involve such other roots, the first term
ndy +8,y, —0a) above becomes large and negative, while the second remains small, and
the third is always negative by Proposition 2.10. So we get {(4,,1,> <{A{, A{*>, a con-
tradiction. So «, is not imaginary, and therefore S_,(®(y,)) = O(y, —nay), a generalized
principal series character. An argument similar to several already given shows that @(ya)
is a constituent of either ©(y,) or O(y; —nay). Since [A,| <|A| < |4,], the first is impossible.
If 6o, is negative, then [(4;),| > |4,|, and we would still have a contradiction. So f«, is
positive—in particular «, is complex—and @(ya) occurs in ®((y,),). By inductive hypo-
thesis, S_,(0O(y,)) =@((y1)a,) + 0", with ®” the character of a representation. Consider the
occurrence of O((y;)w) in (6.6). We have [1|>|4,] = |(A)ul, 50 O((11)a)£0(). By
Theorem 5.20, @((yl)a,) occurs with nonnegative multiplicity on the right side of (6.6).
So either ©,=0((y,).) for some i, or &((y,).) is a constituent of &', or OW,) = O((y1)n)-
Since |A] > |Az]| = |(A1)a |, Proposition 2.10 implies that the first two are impossible; so
©(¥4) =O((y1)w)- From the uniqueness statement in Theorem 2.9, one deduces easily that
¥ =1, a contradiction. Q.E.D.

LEMMA 6.7. Let H=T+A be a O-invariant Cartan subgroup of G, with dim 4=1.
Suppose y€H’ is real and nonsingular, and BEA; is a complex simple root such that
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28, y>[{B, B> ts not an integer. If r is a positive integer such that y —rf is nonsingular and
dominant for sg(A;), then S_.5(0(y)) =0y —7B).

Proof. After shifting by a weight of a finite-dimensional representation, we may
agsume that r and 2{8, ¥>/{y, y> are small, but that (y, ) is large for any other simple root
e£€A; . Since the expression of +88 as a sum of simple roots must involve such other simple
roots, [<y,08>| is large; so |<y,B—08>| =|<v,8—08)| is large. Let P=MAN be the
parabolic defined by —v. Choose a small weight  of a finite-dimensional representation,

such that y —7f is dominant. Set
451 =Py-—rﬂ(ﬁ(7 +:u) ® F( _M+Tﬂ));

then, as we saw in the proof of Theorem 5.20, @(m;) =8_,5(0(y)). Now 7y -+ u) is a sub-
representation of 7(P, y +u); so 7, is a subrepresentation of P, _,s(7(P, y +u)® F(—u +rp)).
Using Lemma 5.8, one sees that this last representation is just m(P,y—rf). Since
[<v, B—0B>| is large and r is small, P is the parabolic defined by —v+r8. It follows that
7y =P, y —rf). Q.E.D.

LEMMA 6.8. In the setting of Lemma 6.5, suppose dim A4 =1.
(a) If O(y) is a constituent of O(y,), then S_(O(y)) =0(y) +O(y,) + Oy, with O, the

character of a representation.
(b) If B(y) is not a constituent of B(y,), then S_.(O(y,))=0O(y)+0,, with Oy the
character of a representation (so ©(y,) is not a-singular).

Proof. We begin by shifting ¥ as in Lemma, 6.7, so that (p, a)> is small, but (y, ¢> is
large for a+£€A, ; then let P be the parabolic defined by —». Possibly passing to a cover
of &, we choose a weight u of a finite-dimensional representation, such that 2{u, o> /{e, &> =
n, and (u, £) =-0 for e==a, & a simple root of A;. Put y, =9 —u; then v,, v, and » are all
negative for P. By Lemma 6.5, 7(y) is not a-singular; so by Corollary 5.17, 4J,(7(y)) =7(y,).
By Corollary 5.9, y? ((P, ¥)) =y2,(7(P, y4)) =7t(P, y,). A short computation with Lemma
5. 8 shows that there is an exact sequence

0> 7(P,y) =gy (P, yo)) = (P, p,) 0.

By the remarks following Definition 5.21, S_M(@(y)) has a unique constituent ®, such
that S_,(0,) =O(y,). Let 7, be an irreducible representation such that 3,70, =7(y,o). Then
Homy (7, ¢(7u(P, yo)) =Homyg (y},7;, 7(P, yo)) by [21], Lemma 4.1. But ¢, 7, =7(y,); so

the right side has dimension one. It follows from the exact sequence above that z, is a
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subrepresentation of n(P,y) or of n(P,y,). Since v and », are negative with respect to
P, 7y >a(y) or fly,). Finally, y,¢7"(0(y,)) =20(y,) by (21], Lemma 3.1; so ¢i(O(y,)) =
O(y) +8_,.(B(y)) has exactly two constituents @, and ©, such that S_,(@,)=6(y,). Con-
sider now 6.8 (b). By the exact sequence above, @(y) occurs only once in @J*(7Z(P, y,)); so
Oy,) must satisfy S_.(0(y,))=0(y,)=*0. In particular, ©(y,) is a-nonsingular; so by
Lemma 6.5, S ,(0())=0(y,)+0,, with ©, a-singular. Applying S _,, to both sides, we
obtain 6.8 (b). For 6.8 (a), suppose S_,(®(y,)) is nonzero. By Corollary 5.17, it must be
O(yy); s0 S_H(G(ya)):S_,l(@(ya))+S,#((T)(y))+S_,,(®1) would contain @(yo) twice. But
S_u(0(y,)) =O(y,), a contradiction. So the only character ® satisfying S_.(Q)=0(y,) is
O(y). So B(y) must occur in S _,,(O(y)). Q.E.D.

THEOREM 6.9. Let G be a reductive linear group with abelian Cartan subgroups, and
let H=T+A be a §-invariant Cartan subgroup. Fix y (A, v)€H' such that the corresponding
weight v € h* is a nonsingular; write A+ =A, . Suppose there is a complex simple root o€ A+

with the following properties:

(@) 2o, y>[lat, o> =n a positive integer,
(b) B¢ A+,

Then 7i(y —net) s o composition factor of z(y).

Proof. Write yp, --y —no. We proceed by induction: We may assume that the result
has been established for all groups of lower dimension than (. By step-by-step induction,
we may assume dim 4 ==1. Using a covering group argument like that given for Lemma
5.19 to write (/ as a direct product, one sees that we may assume ¢/ is simple. Define r(y) -
|{x€A+|a is complex, and fx¢A, }|. We may assume the result is known for representa-
tions 7g(y’) with r(y") <r(y). By induction, the result also holds for generalized principal
series attached to Cartan subgroups H' of G with dim A'>1. Write a=(a*, =) in ac-
cordance with [)--t+-+a. Then Go={a*, —o~). Since A€i(tg)’, {a*, 4> is real; it follows
that » is real, and that in fact (v, a=>>0. In particular, v is real.

The strategy of the proof is now simple. We will give three more reduction techniques
(Lemmas 6.10, 6.11, and 6.12). An examination of cases will determine when all of these
techniques fail—certain cases involving rank one groups, and the split real forms of rank
two. The rank one cases are dealt with as they arise, using essentially only the existence

of the trivial representation. The split real forms of rank two are discussed in Section 7.

LeMMA 6.10. Suppose there is a proper O-invariant parabolic b =[+n<gq, with (2,
such that A(n)y= A+. Then Theorem 6.9 holds.
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Proof. If «€A(n), then also fx € A(1t); but this contradicts 6 ¢ A+. So a€A(]). Since 1t
is f-invariant, 2p(n)€t*; by Theorem 5.2, we can replace A by A+ 2g(n) without changing
anything, so we may assume that the parabolic 1°=1°+1° defined by A is contained in b.
Let L be the normalizer of b in G; the Lie algebra of L is [,. Then 4, can be defined as in
Section 4, and y,=(4;, ). Since dim L<dim &, the inductive hypothesis implies that
Ay —ne)S7L(y.). The generalizations of Lemma 4.18 and Proposition 5.18 to discon-
nected G' now imply Theorem 6.9. Q.E.D.

LeEMMA 6.11. Suppose there is a complex simple root f== —0u orthogonal to «, with
0B ¢ A+. Then Theorem 6.9 holds.

Proof. If 2{y, B>/{B, B> is not an integer, this follows easily from Lemma 6.7 and
Theorem 5.20; details are left to the reader. So suppose 2{y, >/{f, 8> =m, a positive
integer. Define yz=y—mf, vy, =y —mf—na. Furthermore, r(yg)=r(y,)=r(y)—1; so
Theorem 6.1 holds for n(ys) and n(y,); i.e., y,s) is a composition factor of 7(y;) and
7(y,). By Lemma 6.8, S_.5(0(ysp)) = O(vy) + O(yes) + 0y, with @, the character of a re-
presentation. Write

O(ys) = Oyp) + O(yep) + O, + ...+ O,.
Then

r

S 1w @) = O() = (O.) + Oug) + Op) — 2 8-m(©).
By Lemma 6.5, the left side is the character of a representation; so the f-singular character
©(y,) must oceur with nonnegative multiplicity. By Theorem 5.20, this is possible only if
@(Va) occurs in ©O(y), or if @,=0(y,) for some i. In the second case, Ofyp) =@('ya) + 0,
with @ the character of a representation. Applying §..,, to both sides, we get O(y,5) =
Oy) +0" +8_,4(0"), with ©” the character of a representation. By Lemma 6.2, |1,4| >
|As] > |A|; so by Proposition 2.10, O(y) does not occur in @(y,s). By Theorem 5.20, we
deduce that O(y) occurs in ©’< @(yg), which is impossible since |45] > |4|. This contradic-
tion proves that O(y,)< O(y). Q.E.D.

The last reduction technique is by far the most subtle. Through it, the structure of
the discrete series enters. It is quite complicated in its most general form; to convey the
idea we give here only a simplified version, which suffices to prove Theorem 6.9 for the

classical groups. Generalizations are discussed as they are needed below.

LEMMA 6.12. Suppose there is a simple imaginary noncompact root fE€A;, such that a+
s not a multiple of B. Then Theorem 6.9 holds.
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Proof. We begin with a simple observation, which will also be the basis of generaliza-
tions of the lemma. Suppose @, is a character of a representation, ®(y,) occurs in @,, and
@(y) does not occur in S_,,(®,). Then Theorem 6.9 holds. For suppose not; write ®,=
O(y,) + -1 0, as a sum of irreducible characters. By Lemma 6.5, S_,,(0,) =0(y) + 0’ +
D118 4(0,), with © the character of a representation. By Lemma 6.8 (b), O(y) is a-
nonsingular. (It should be pointed out that the roles of y and y, are reversed here with
respect to the notation of Lemmas 6.5 and 6.8.) Theorem 5.20 and the remarks after it
now imply that @(y) has nonnegative multiplicity in each S_,  (®,). Hence @(y) oceurs in
8_,.(0,), a contradiction. So our goal is simply to construct ®,; this will be the character
O(y#) defined below.

We use obvious notation based on that introduced before Lemma 5.13. Thus Hf =
(T+)8A# will be the Cartan subgroup obtained from H by a Cayley transform through §.
Fix a character y# €(H5) as described there— there are two choices 7/, simply take one
of them. By Proposition 5.22, 7(y) is a subquotient of z(y#). Similarly, we can define 3%
from y,, and obtain 7(y,) as a subquotient of 7(3%). Write & for the root of §# in g corre-
sponding to e €A(g, ) under the Cayley transform. We may choose 4§ =y# —nea. We claim

that & is a complex root; since ot is not a multiple of §, this is clear. Furthermore, 6& =

85 (Boc) —85(0cx) is & negative root, since faz== — B is negative, and § is simple. Since dim 44=2,
Theorem 6.9 is available by inductive hypothesis; we deduce that 7(y2) occurs in 7(3?).
We claim that 7(y) does not occur in 7(p8). To see this, we may assume that (y, > and
{y, B> are small, but that {y, &) is large for every other simple root ¢. Since a* = §(« 4-0ot) &=
¢f, it is easy to see that —0Ox must involve simple roots other than « and §; so {y, —0x)
is large. By Lemma 6.2, (4,, 1,> — <4, A is large. On the other hand, (A, 4,> — <45, 5> =
(s BB, By =y —nat, B2<B, B> 15 small (since n—2(a, y>f<ot, ad); so (A, AL
{4, A >0. By Proposition 2.10, 7i(y) does not occur in m(y5).

Now 8_,,(0(%))==0O(»8)); so to complete the argument sketched at the beginning of
the proof, we need only show that 7(y,) occurs in 7(yf). Let 0==X €(a®)* be orthogonal
to &. Theorem 6.9 implies that 7(y2+cX) occurs in n(y# +cX) for all sufficiently small
c€C (i.e., whenever p#+cX is strictly dominant for A;g). Let p, be a lowest K-type of
71(y,), and let m be the multiplicity of u, in 7(y2). Possibly after an appropriate shift of y,
we claim that u, has multiplicity m in 7(y% -+ cX) for an algebraically dense set of c. Assume
this result for a moment. Then the U(g)** module a(ys+cX)*= is a subquotient of
n(y?f +cX)*« for an algebraically dense set of ¢c. By a simple analytic continuation argu-
ment, every composition factor of s(y2)"«—in particular n(y,)*«—is a composition factor
of 7(y?)*«. Thus 7(y,) oceurs in z(3?).

It remains to establish the multiplicity assertion. We consider those (small) ¢ with
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the property that if 2 +¢X is integral with respect to £ €A(g, §%), then &~ is proportional
to &~. This is clearly an algebraically dense set. For such ¢, the only factor of the long
intertwining operator for (5 +cX) which can fail to be an isomorphism is the one corre-
sponding to the restricted root &—. The corresponding parabolic subgroup has Levi factor
M*4* = G* g2 is spanned by X, and

A(g>, h#) = {&| &~ is proportional to &~}.

List the composition factors of mg«(y5 +cX) as Fg(yt +cX), Aga(P; +cX), ..., Aga(P, +cX).
(Since A* is central in G*, y, may be chosen to be independent of ¢.) By Corollary 3.15,
every composition factor of mg(y5 +cx) other than the Langlands subquotient occurs in
some 7,(Y, +cX). All of this data transforms coherently after shifting in accordance with
Theorem 5.2. To prove the multiplicity assertion, it is therefore enough to show that,
after shifting y appropriately, the K-type u, does not occur in sg(y, +cX) for any . Be-
cause of Lemma 8.8 of [19], it suffices to prove that |4,| < [j.i[ for all ¢ (and appropriately
shifted y). Suppose this is not the case, i.e. that for all shifted y there exists an ¢ with
[Aa] =24 o

Define P,(y5) =<4, 4,> — (2, 15>; this can be regarded as a homogeneous quadratic
polynomial on (§%)* by coherent continuation. Since 7, and 4 define the same infinite-
simal character for the group G*, P(3%) is a function of the various (&, ¥5>, with & a root
of §# in . Denote by B the projection of (§)* on the span of A(§*, §); then P,(%) =
Pi(Byf(). Now consider the set C(c,, ¢,) of 95+ Hys, With g a dominant weight of a finite-
dimensional representation, and {y +pu,, &> =¢,, <;/ +thys B> =Co. I (")EE€C ¢y, ¢y), it is easy
to compute that A, AL> —C((A)E, (A')B> =f(cy, ca). If <[, > <AL, A, it follows that
0<P((y")8) <f(cy, cy). Define a semilattice in a Euclidean space to be the intersection of a
cone with non-empty interior and a lattice. Let T' be the real subspace (i.e., the real span
of the roots) in B(}§#)*, and

T; = {x€T|<&, x> =0}.

Because x €T and 8¢ 7, it is easy to see that the projection B(c,, ¢;) of C(¢y, ¢,) on T is
translate of a semilattice in T';. Our hypothesis says that for each £ € B{c,, ¢,) there is an ¢
such that P,(x) <f(cy, ¢,). An elementary argument (which is left to the reader) now implies
that for some 7, P,(x) =c({&, x)>)%.

Suppose 7 is associated to the Cartan subalgebra j; of g. Choose an automorphism ¢
of §,, inner for (@,)c, such that ¢ maps T, to §? and ¥, to y2. Let 6’ be the involution of he
induced by 6|5, and o. Then
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o<, yir = Py(y) = Ay, A — <8, 2>
=3P +07, 7, +09> — 1A +0v5, vE+0yE>
=3Py, 09 ‘%Q’g’ 67£>
= 3[E, 0'vE> —¥E, By

Now we make use of a simple geometric result. (We would like to thank Jorge Vargas

for a helpful discussion.)

LemwmaA 6.13. Let V be a finite-dimensional real vector space with positive definite inner

product { , >. Suppose 0 and 0’ are self-adjoint involutive automorphisms of V, and that
<(0 _0’)’03 7)> = C<a, /0>2

for some 0= €V and some constant c. Then 0 and 6’ commute; and either =60', and ¢ =0,

orBa=ta, and 0' =s,0. (Here s, is the reflection about «.)

Proof. Recall that V is the orthogonal direct sum of the +1 and —1 eigenspaces of
either § or 6'. By polarization,

{0 ~8")v, wd = cla, v>{at, w.

1f ¢ =0, obviously 6=:0" and we are done. So suppose ¢==0. It follows that § —0’ annihilates

a. i v€ V8 and w€ VY, then <Ov, wd> =<6'v, w> = v, w); so for such v and w,
0 =cla, v) {a, w).

It follows that either V°c«*, or V¥ «*; assume the first. The —1 eigenspace of 0 is
(V)*, so Ba= —a. In particular o* is 6-invariant. Since 0 -0’ annihilates o, 8], =0"| 1.

In particular «* is 0 invariant, so §’a == + «. Since ¢==0, we sec that 0’ =a. Q.E.D.
P

Applying this lemma to the present situation, we deduce that 0& =- £+ &, contradicting
the fact that & is complex. Q.E.D.

We now begin a case-by-case analysis, determining when these reduction techniques
fail and analyzing the remaining cases. Recall that g, is assumed to be simple, that P =
MAN is cuspidal, and that dim 4 =1. If ¢ =Z(,, we may also agssume that ¢ is connected.
Suppose that {¢,} are the simple roots of A;, and that 0= n,&,€a. Then the parabolic

subalgebra corresponding to the simple roots {¢,|n;=0} is f-invariant. By Lemma 6.10,
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we may therefore assume that n,==0 for all <. If @ is complex, these conditions force & =
SL (2, €) (or its adjoint group—we will often be somewhat vague about such distinctions).
In this case Theorem 6.9 is well known. Alternatively, the argument given below for
G =Spin (2n +1, 1) applies to SL (2, C) = Spin (3, 1). So we may assume g is simple. Suppose
first that rk G=rk K, or equivalently, that there is a real root §. Then the expression of §
in terms of simple roots must involve all of them. If ¢ is simple, then e <0 iff <, 6> >0.

If g is of type A4, list the simple roots as ¢, ..., &,, with &, adjacent to ¢,,;. The only
root involving all the simple roots, and hence the only possibility for §, is &, + ... +¢,. The
only complex simple roots are & and &,; f¢; and 0, are both negative, and & L&, if n >3.
So Lemma 6.11 applies if n>3. If n=1, g,=3l(2, R), and there are no complex roots. If
n=2, necessarily g, 38u(2, 1). Theorem 6.9 is known in this case (cf. [17), but for com-
pleteness we sketch a proof. One can argue as for SO (2r, 1) below; but for variety we give
another argument, which also applies whenever the SO(2n, 1) argument is used. Since @
is linear, A is the restriction to t+ of some integral weight = of §); so y —x=cd=c(e, +&,).
But y —z is integral with respect to either & or &;, so we deduce that c€Z. Hence y is
integral. After a shift we may assume y=p. Since A} is clearly invariant under —0, we
must have p€qa* i.e., 1=0. Now ¢ has no outer automorphisms which are inner for G;
so G=Z@,, and thus G==(, under our current assumptions. So M = M,, and my(4) is the
trivial representation. In particular zz(y) contains the trivial K-type. Now the generalized
principal series representations with infinitesimal character p are n(y), n(y.,), 7(y.,), and
three discrete series. Of these, only 7(y) contains the trivial K-type. Since the trivial
representation of G has infinitesimal character g, this forces @(y) to be the trivial repre-
sentation. Let u be the lowest K-type of z(y,). By computation, u has an M-invariant
subspace, and hence, occurs in 7(y); but of course it cannot occur in Z(y). A computation
shows that u does not occur in z(y;) for f==a, or in the discrete series representations
with infinitesimal character p. Thercfore n(y) must contain 7(y,) as a subquotient.

Next suppose ¢ is of type B, (n>2). List the simple roots as ¢, ..., £, with ¢; adjacent
to €,,4, and &, short. Then =g, ... 4+¢,, or d=&; +... + &, +2¢+...4+2¢,, with 234 'n,
Consider first the second possibility (so that é is long). The complex simple roots &, with
Oe, <0 are ¢ and ¢, (if 1>2) or ¢,. If {>2, ¢, L &;; 80 by Lemma 6.11 we may assume ¢ =2,
In that case d is dominant, so every root f € A+(t+, m) which is simple for m is also simple
for g. Now the real root of the rank one form 30(2#n, 1) of g is short; so m is noncompact.
Hence we can find a simple noncompact imaginary root f. Now 2at =g, +0c, =&, + 53¢,
involves all the simple roots except perhaps &,. So if n>2, a+ cannot be proportional to §.
By Lemma 6.12, we may assume n=2. By the classification of real forms, g, 80(3, 2),

which is split. This case is treated in Section 7. We are left with the case 6 =¢, +... +¢,,
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which is dominant. By the argument just given, either n=2 and g,~80(3, 2), or g, =
30(2n, 1). The first case is treated in Section 7. The second is known (cf. [1]), but again
we sketch a proof for completeness. The only simple root & with §x <0 is &;. The real dual
of §) may be identified with R"; if {e,} is the standard basis of R", then we can arrange

&,=e,—e; 1 (t<n), &, =e,. Then § =e;. Write
7 = ('V, }'23 eves ln)'

Now y is integral with respect to the imaginary compact roots &,, ..., &,; and by hypothesis
y is integral with respect to g,. So y is integral, and after a shift we may assume that
y=p=(n—%mn-%,..,3). Since M NG, is connected, it is easy to deduce that 7(y) is a
one-dimensional representation. By Lemma 6.8, Theorem 6.9 amounts to showing that
7i(y) is a-singular. But the coherent continuation of a finite-dimensional representation to a
wall is a finite-dimensional representation with singular infinitesimal character, and there-
fore it vanishes. So 7(y) is a-singular.

Suppose next that g is of type D, (r=>4), with simple roots g, ..., &,, with ¢,_; adjacent
to ¢, for 1 <n, and ¢, adjacent to g, ,. Then necessarily §=¢, +... +-&,_; +2¢+... +2¢,_o +
£,_1+&, (2<i<n-—1). The complex simple roots ¢, with 6¢, <0 are ¢, and ¢, (if 2 <i<n—2),
or &, &,, and ¢,_, (if i=n—1), or &, (if =2). In the first two cases these sets are mutually
orthogonal; so by Lemma 6.11 we may assume i =2. Then ¢ is dominant. Arguing as for
type B,, we deduce that G must have real rank one. But then by the classification of rank
one real forms, g, 3p(2n — 1, 1), contradicting rk G =rk K.

Next take g of type C,, n>3, with simple roots &, ..., £,, ¢, adjacent to ¢,,,, and &,
long. The possibilities for  are 6 =2¢,+2¢,+... +2¢,_; +¢&,, or =6, +... +&, 4+ 2, +... +
2e,_, +&,, with 2<(4<n. Consider the first possibility. In this case § is dominant; as usual
we may assume by Lemma 6.12 that g, has real rank 1. But the real root of the rank one
form of ¢ is short, and & is long, a contradiction. In the second possibility, the complex
roots g, with fg, <0 are ¢, and ¢, (if 1 >2) or g, (if 7 =2). In the first case g; L &;; so by Lemma
6.11 we may assume § =¢, +2¢, +... +2¢,_, +&,. Then 8 is dominant; so as before Lemma
6.12 allows us to assume g, 3p(n—1, 1). This real form has no outer automorphisms in
G¢, so G=ZG,, and we may assume @ is connected. The simple roots ¢, and ¢, through ¢,
are imaginary, so y is integral on those roots. Also y is integral on &, by hypothesis, so after
a shift we may assume y —g. Just as in the case of type B,, it follows that 7(y) is one-
dimensional, and hence a-singular.

Before considering the exceptional groups, we dispose of the possibility that there is
no real root. In this case H is a fundamental Cartan subalgebra of g, so that we must have

rk g =rk k + 1. There are very few such algebras: By the classification of real forms (cf. [20])
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they are 3I(3, R), 31(4, R) = 30(3, 3), 3u*(4) > 80(5, 1), and 30(p, ¢q), with p and ¢ odd.
SL (3, R) is dealt with in Section 7. Consider then 3o(p, ¢); say p +¢ =2n. We may identify
h with R*, and the simple roots with ¢;,=¢;—e,,; (1 <n) and ¢, =e,_, +e,. The involution 0
is just reflection about some e,. Writing e, in terms of the simple roots (recall that it must
involve all of them), we see that ¢=1; so &, through ¢, are imaginary, and we must have
o =¢;. As usual it follows that y is integral. If M is noncompact, then some ¢, (¢ >2) is non-
compact, and we can apply Lemma 6.12. So we may assume M is compact, i.e., g,=
30(2n —1, 1). This real form has no outer automorphisms in G¢, so we may assume G =G,.
After a shift, we have y —=p. The argument now proceeds exactly as for SO(2n, 1).

Finally, we turn to the exceptional groups. The split form of G, (which is the only
noncompact, noncomplex form) is treated in Section 7. Recall that there is a real root 4,
which involves all the simple roots in its expression. For each type of root system, one
begins by listing the roots involving all simple roots. Given an explicit realization of the
root system, this is not difficult. One simply computes the fundamental weights corre-
sponding to the two or three “extremal’” simple roots. The roots 4 under consideration are
those having a positive inner product with these fundamental weights. (Even for Eg there
are only 44 such roots.) It is then a simple matter to determine which simple roots «
satisfy 0 <0; they are the simple roots having positive inner product with 8. If there are
two such roots orthogonal to each other, Lemma 6.11 applies. (It is an amusing exercise
to verify that for g not of type A4,, two simple roots having positive inner product with a
root involving all simple roots are necessarily orthogonal. We will not need this, however.)
This much of the computation will be left to the reader. For each root system, we will
simply present a list of the remaining possibilities for 6. Next we list the simple roots of t+
in nt; the roots of m are just those orthogonal to §, so this is a straightforward computa-
tion. If m is compact, then G has real rank one; so g is of type F;, and 6 is short. This
case will be treated last. Otherwise, there is a noncompact root 8, simple for A+(t+, m).
If B is actually simple in A}, we apply Lemma 6.12. Otherwise we can write =2 n;¢,,
with ¢, €A} simple; say, n,40. Now {8, 8> =0; but if (¢, §> =0 for all 7, then § is not simple
in A(t*, m). So (g, 8> >0 for some :. It follows from a remark made above that ¢, =«; or
one can simply observe that in each case computed below, § involves «. If § involves only
one other simple root, the proof of Lemma 6.12 goes through with almost no change.
(Notice that if at is proportional to 8, then f must involve all the simple roots except
perhaps « by the argument given for type B,. This never happens, as follows from the
computations below; we make no further mention of the point.) So serious problems arise
only when f§ involves at least three simple roots; this will happen only for types E, and

E,. The main conclusion of our case-by-case computations is
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Observation 6.14. Suppose 8 involves n>3 simple roots &, ..., &,. Then n=3 or 4, and
the ¢, span a root system of type 4,. We may assume 2{g,,6>/{&y, &> = —2{&,,0)({&,, &,> =1,
that & =a, and that ¢, is adjacent to ¢,,,. In this case ¢, ... £,_, are orthogonal to ¢ and
to B=¢,+...+&,. Belore verifying this observation, we show how to extend Lemma 6.12
to cover this case. Just as in that situation, we can use § to construct a Cartan subgroup
H?, and representations 7(y#) and 7(y5). The simplicity of 8 first entered in the verification
that 7#(y) does not occur in 7z(y%). To see this, we now shift y so that (y, &,> is small for
t=1, ..., n, but {(y, &> is large for every other simple root e. Since Qo =ss(at) =x —79, —Oax
must involve all the simple roots except perhaps a. Since g has rank 7 or 8, and n <4, it
follows that —0u« involves some simple root ¢4 {e,}. So ( —0a, p) is large. The argument
now proceeds as in Lemma 6.12. The next use of the simplicity of § was to verify the
following fact, with notation as in Lemma 6.12: For some strictly dominant shifted y,
|42] <]4] for all i. Suppose not. We consider the set

Cle; .. 6py) of V'g“f‘/“yg,

with x4 a dominant weight of a finite-dimensional representation, and {y +pu,, &> =c, for
i=1,..,n—1. Now (A 48> (A, A,> depends only on (B, y,> ={s,8,y>. Since s,f=
& +...+¢&,_; by Observation 6.14, (12, 28> —<4,, A,> =f(c; ... ¢,_;). Just as in Lemma 6.12
it follows that 0 <P((y")2)<f(c; ... €,_y) Whenever (y"}2€C(c, ... ¢,_;). We want to describe
the projection of C(c, ... ¢,_,) on T. Recall that the roots of §)# in §* are {£|&|as =ca|as}.
This set is just

{él<é’ 5> =¢{&, 5>’ <é’ ﬂ> =c¢{&, B>}

Since &, through &, , are orthogonal to  and f, they lie in A(%, §#), and are in fact imagi-
nary roots. Furthermore, &=&, obviously lies in A(§*, §8). Put To={x€T|<¢,, ) =0,
i=1,..,n—1}. Then B(c, ...c,_,) is a translate of a semilattice in T,. An elementary
argument like that omitted in Lemma 6.12 now shows that for some ¢, P,(x) is a function
only of the various <, 2> for j=1,..,n—1. On the other hand, this polynomial was
rewritten as 1[(z, 6'z)> — <z, 6z>]. Let W denote the span of ¢, through ¢, ;. Exactly as in
the proof of Lemma 6.13, we deduce that 6’ —0 annihilates W+*. Since 6’ —0 is self-adjoint,
6'—6 preserves W, For 2<i<n-—1,0s=¢; so we can write 6'c;=c, ¢, +3750 cye,. We
claim ¢,; =0 for all . Suppose not. Then

1 1
’ _ "e ’ . .
Oey=—(0)Ve,— 3 cybg)=—|5 > cyCuE| EW.
Ci1 2gign-1 Ca 2gign-1
1gkgn-1
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Therefore, 6, =8a also lies in W; but we have seen already that 0x cannot be expressed
in terms of the ¢,. So ¢;; =0. Let W, denote the span of &, ..., &,_;; then we have shown
that 0 and 0’ preserve W,. Since 0 is the identity on W,, 0 and ¢’ commute on W,. Let §”
denote the involution of ¥ which is +1 on W, and §’ on Wi. Then

P”(CL’) = %[<x, 6”x> "‘<$, 0.’17>]

is a function of (g, z>; or if we choose 03=6,€ Wi N W, and let &y, vy 8,1 be a basis of W,
we can write

P'(x)= > L eyldy, x> (0, 2.

1<t ign~-

Just as in the proof of Lemma 6.13, we consider

P'(z, y) = $[<z, 0"y) — (=, Oy)]
22 <0y, > 0y, Y.

If yeW,, 0"y =0y =y, so P"(z, y)=0. It follows immediately that ¢,;=0 unless (7, §) = (1, 1),
Le., that
P"(x) = ¢),{6y, %)%,

If ¢,;#0, Lemma 6.13 implies that 66, = +;, so that W =span {4,} is in fact f-invariant.
Again this contradicts O ¢ W; so we conclude that P"(x)=0, and hence that 8 =6". So
6=0" on Wi, Let ny, denote projection on W,. Since § is the identity on W,, we have

P(z) = 3Kz, 0'z) —<z, 6]

= 3wz, Oy 2) —{w 2z, AW ) ].

But this is obviously nonpositive for all =, contradicting P(p8)>0. So the desired shift
of y exists, completing the extension of Lemma 6.12.

We now verify Observation 6.14. Suppose first that g is of type K. We can identify
the real dual of §) with RS, which is given the standard basis ey, ..., e5. The roots are + e, + e,
{t=£7), and }(Le, £ ...+ ), with an even number of plus signs. As a system of simple
roots, we can take &= —}2 €, &y=€;+ ey, Eg=E5— €y, £5=E€;— €, £5=€4— €5, £g =E3—€,,
g;=e,—¢eg, and gg=e;—eg. Then ¢, is adjacent to &,_, for i<7, and & is adjacent to &;.
In accordance with earlier remarks, we now list the possible 4 to which Lemma 6.11 does
not apply, together with the simple roots of nt. Verification of Observation 6.14 is left to the
reader; in all cases it is obvious by inspection. (This choice of simple roots makes the funda-

mental weights for ¢; and &, quite simple, so the computation of possible 6 is not difficult.)

19 — 802905 Acta mathematica 145. Imprimé le 6 Février 1981
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0 Simple Roots of m.
(L5544 44 -9 €2, €y, &4, &5, Egs €7, E1 18 +E3 T &
(454444 -49) &2, £, & Eg; E1 €y T EpF g, E3 85
(-4 4443 -3 -3 -0 &y, &3, €5, &g, €7, Eg, Ea+E3+ 84
(-4444 -4 -4 -4 D €15 £, €3, &y, Eg> €7, E3 T84T 85T &
—e +ey €15 €, €3, &4, &5, Eg; £
—e, +eg &1, &g, €3, &4, &5, Eg, Eg T &7
—e +e, &1, €3, €3, £4, €75 &, &5 1 54
—e, e &15 Ep, €3, &g &15 Eg, E4 T &5
—e;+eg 1, €3, €, &g, €75 Eg, E3 T84
—e;+eg &1, &3, €4, Eg, Egs Eq, Eg T E3 1 5.

The root systems of type E, and Eg are entirely similar and less complicated; verification
of 6.14 in these cases is left to the reader.

We are left with the possibility that g is of type F,. In this case the real dual of §)
may be identified with R4, with roots te, e, *e;, and 3(F e, £... +-¢,). As simple roots
we may take &, =4e, —Le, —}e, —dey, 6, =¢,, £3=€3—¢,, and &, =e,—e;. Then ¢, is adjacent
to &;;,. The possible § to which Lemma 6.11 does not apply, together with the simple

roots of m, are

0 Simple Roots of m
443 -3 &1y €4, 265+ €3
IR &3, €4, €11 €y
(1,0,0,0) £, 35 &4
(1,0,1,0) &y, €y €3+ &,
(1,0,0, 1) €1, €4, Eo+ &g
(1,1, 0, 0) £, €, E3.

By the remarks already made, a slight modification of Lemma 6.12 always applies when
m is noncompact. So we may assume 1 is compact, and therefore that g, is the rank one
form of F,, with ;= 30(9). Since f, has no outer automorphisms, neither does gy; so we
may assume G is connected. The real root of ) is known to be short, so we are in one of
the first three cases listed above. Furthermore, M is connected, and hence 7'+ is also; so
we may identify pseudocharacters with their differentials. Since 7 is integral with respect
to the imaginary roots and the complex root «, it is easy to check that in each of the three
cases y must be integral. (We note that « is either g, ,, or &, respectively, according to

which case is under consideration.) After a shift, we may assume p ==p; one calculates
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easily that o=(11/2, 5/2, 3/2, 1/2). By Lemma 6.8, what must be shown is that 7(y) is
a-singular in each case. We write 37, »'I, and y™ to distinguish the cases. It is easy to see
that &(y™) is one-dimensional, so as usual Z(y™) is ¢,-singular. Now y5' =s,,(»™). If we
change our identification of §* with R® so that s, (™) is dominant, § becomes s,,(1, 0, 0, 0) =
(3, %, 3, 1). Therefore, yI is conjugate under G to ™, ie., #(p™) occurs in 7(y™). Now in

case II, ax=¢,. But &, is a compact imaginary root for ™

, 80 by Lemma 6.4, every con-
stituent of z(y™)—in particular 7(y™)—is &,-singular. Similarly, y;, is conjugate to %, so
7(y") occurs in z(y™) and is therefore e;-singular.

Except for the split groups of real rank two (to be treated in Section 7), this com-

pletes the proof of Theorem 6.9. Q.E.D.

THEOREM 6.15. Let G be a reductive linear group with abelian Cartan subgroups, and
let H="T+A be a O-invariant Cartan subgroup. Fiz y = (A, v)€H’ such that the corresponding
weight y €§* is nonsingular; write A=A . Then nly) is reducible if and only if there is a
root a €Ay such that Qo ¢ A, with 2{e, yy[{at, ) =n€ZL, and either

(a) o is complex; or

(b) a is real, and (with notation as in Proposition 6.1)
(— 1) = sa'l(ma)-

Proof. By Proposition 6.1, the condition is necessary for reducibility. So suppose that
it holds. The condition is consistent with the reduction technique given by Theorem 3.14,
so we may assume dim 4 =1. Just as for Theorem 6.1, we proceed by induction on the num-
ber r(y} of complex roots €A, with 08¢ A, . If r(y) =0, then we saw in the first part of the
proof of Theorem 6.1 that 7(y) is reducible. (In this case its composition factors are 7(y) and
the discrete series described by Proposition 5.22. This result, which follows from our argu-
ment, is due to Schmid.) So suppose 7(y) =n>0, and the result is known when r(y) <n —1.
Clearly, there must be a simple root o with fec¢ A, . If o is real, then A} — {«} is f-invariant,
contradicting r{y)>0. So « is complex. If 2{a, y>/{x, &> =n€Z, then n(y) is reducible by
Theorem 6.9. Otherwise, after shifting y, we can choose a positive integer 7 so that y —ra
is strictly dominant for s,(A;). Then r(y —ra)=n—1. By Theorem 5.20, n(y) and n(y —ra)
have the same number of composition factors. But any root €A} satisfying the condition
of the theorem does so for y —ra as well; so (y —ra) is reducible by induction. So z(y) is
reducible. Q.E.D.

It is clear from this argument that a more complete understanding of composition
series is virtually equivalent to a more complete understanding of coherent continuation

across walls. Therefore, we summarize our results on that subject.
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THEOREM 6.16. Let n(y) be a generalized principal series representation of G, with y € §*
nonsingular. Suppose o €A} is simple, with 2{a, y>[{e, ) =n€L.

(@) If o is real and y(m,)=—(—1)" ¢, (with notation as in Proposition 6.1), then
S_na(@()) =O(y) + 0.

(b) If « is real and y(m,)=(—1)"-&,, then O(y) is o-singular.

(¢) If o is complex and O €Ay, then S_,,(O(y)) =0(y) +O(y,) + O,

(d) If « is complex and Oa ¢ A}, then ©, is a-singular.

(e) If o is compact imaginary, then O(y) is a-singular.

() If « is noncompact imaginary, and s, € W(M|T+), then (with notation as in Propoéi-

tion 5.14)
S_na(OF)) = B) +B(%) +B(y) + Oy

(g) If o is noncompact imaginary, and s, & W(M|T+), then (with notation as in Proposi-

tion 5.14)
8_(O) = O(») + O(y=) + .

In each case, O, denotes the character of some representation (possibly zero).

Proof. Assertions (¢), (d), and (e) have already been proved (cf. Lemmas 6.4, 6.8
and Theorem 6.9). (It should be pointed out that (c) and (d) are essentially equivalent by
Lemma 6.8.) Consider (g). Put y, =y —na. By Propositions 5.14 and 5.22,

S—nac(@('}))) = 9(7’“) - 9(%),

and the right side is a character of a representation, containing O(y) and —@(y“). Write
O(y2) —Olys) =O(y) + O(y*) +0’, and Op)=0(1)+0,+... +0,; here O, is an irreducible

character, and ®' is a character of a representation. Then
81(O1) = Oy) + O(ys) + 0= Z 8

We claim first that ©(y«) appears with positive multiplicity. Suppose not; then ®(y«) must
occur in some S_,,(0,) with positive multiplicity. Say @,=0(y’); let &’ €A;. correspond
to «. Arguing as in the proof of Lemma 6.5, we see that a' is complex, 0o’ is positive, and
O(y=) occurs in O(y,). By Proposition 2.10, |4;.| <]|4*|. On the other hand, &(y.;) occurs in
8_na(©(y") by Lemma 6.5. Since |4;.| <|A*| <|4], O(y,)=0, for any j, and O(y,) does not
oceur in ®’. Theorem 5.20 now implies that ©(y,) has multiplicity < —1in S_M(@( )), which
contradicts Theorem 5.20. This shows that ®(y~) does in fact occur in S_,,(®(y)); and (g)
can be deduced just as Lemma 6.8 (a) is deduced from Lemma 6.5, Assertion (f) is proved
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in precisely the same way. In case (b}, an easy argument shows that y is of the form ()%
for some 7 as in cases (f) or (g). By the remarks after Theorem 5.20, S_,,(©()) has only
one g-nonsingular constituent, which is of course ®(y); so @(()7)'1)=@(y) is a-singular.
This proves (b).

For (a), we claim that S_,,(0(y))=0(y), i.e., that y —na is conjugate to y under
W(G/H). Let @,: SL(2, R)—>@ be the three-dimensional subgroup through the real root «.

Define
01
0.=¢.| 1 o)

Then ¢, normalizes H, and &,=s,€ W(G/H). We want to show that s,y =y —ne. This is
obvious on the Lie algebra level; the only problem is the value of ¥ on other connected

components of H. Now

Vlzzsaylz"‘”?’_nalz,

80 we need to consider only H/ZH,. Each component of this factor group has a repre-

sentative m € T+< K, with m?=1. For such m, we must show that
Y(gama, ) = y(m)- alm)™. *

Let X,€q, be a root vector for «; then o,=exp (¢X,+dX_,). Since m2=1, a(m)= £1.
If a(m)=1, then Ad (m)-X,=X,, so m and ¢, commute, and both sides of (*) are equal
to y(m). If a(m)=—1,Ad (m)-X,=—X,, so m~re,m=c; . It follows that o,mo;' =
moy*=mm,, so the left side of (*) is py(m)y(m,). So we must show that y(m,) =(—-1)"; by
hypothesis this amounts to ¢, = —1. Recall the definition of g, after Proposition 5.14; if
He is the Cartan subgroup obtained from H by a Cayley transform through a, and G4" =
M=A=, we choose a certain positive root system ¥, for (t+)* in m<*; and set

g = 2{&, o(*F1) —20(¥y N A(m= N 1))>/<at, o),

£,={—1)". Now clearly the element m defined above normalizes H%; and % = s; € W(G/H*).
Now & is a noncompact simple root in ¥',. Any element of W(GQ/H*) preserves A(me N ¥);
80 sz preserves A(m* N f) N ;. Thus <&, 20, N A(m= N §))> = 0; 50 n, =2¢&, o(¥1)> /<&, &) =
1, and &, = —1. This proves that S_,,(O(y)) =0(y). To prove (a), we now apply the usual
argument; we need only show that if @(y’)=+=0(y) occurs in O(7), then S_,,(O(y")) does not
contain ®(y). Let o €A;. correspond to . Using arguments which have been given several
times, one sees that this can only happen if «’ is imaginary and noncompact. in this case
we would have to have O(y) occurring in ©((y")%); and, investigating the occurrence of
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O((y")2) in 8_,.(O(y)), we would find that ®((y')%) occurs in @(y). By Proposition 2.10,
this forces y =(y')%; but by the construction of (y’)%, this contradicts y(m,) = —(—1)",.
Q.E.D.

CoRrROLLARY 6.17. Let ® be an irreducible character with nonsingular infinitesimal
character y. Let « €A, and suppose 2{a, y>[{x, &) =n€ZL. Then either

(a‘) S——na(G)) = _®7 or
(b) S_,.(0)=0+6,, with O, the character of a representation.

With this corollary, it is a simple matter to discuss singular infinitesimal characters.
Thus let (Y, v,) be a representation in the limits of the generalized principal series. Choose
a positive root system A+ for ) in g so that y, is dominant and ¥'< A+, and a dominant
weight u of a finite-dimensional representation. Suppose y,+u =y is strictly dominant;
this can always be arranged by proper choice of u. Then by Corollary 5.12, ¢}, (=(¥, ¥)) =
(¥, o). By Theorem 5.15, the functor ¢, maps irreducible representations to irreducible
representations or zero. Once we know how to compute ¢}, information about the com-
position series of #('V, y) immediately provides information about the composition series

of 7i(‘¥, y,). The computation of y}, is given by

THEOREM 6.18. With notation as above, every irreducible representation with infinite-
simal character vy has a unique trreducible preimage under v3,. v (@AY, y)) =0 iff there is a
simple root « €A, such that (e, yo> =0 and either

(a) o ts compact imaginary,
(b) o is complex and B g Ay, or

(c) o is real and (with notation as in Proposition 6.1)

A(my) = g — )= ime,
If 9 (Y, y) 0, then it is the unique Langlands subquotient of ('Y, o).

Proof. Suppose v satisfies (a), (b), or (¢) with respect to some root a. Choose y, so that
y ~», and y, —y, are dominant weights of finite-dimensjonal representations, and y, is
singular with respect to only «. By Theorem 6.16, 37 (Z(¥, ¥)) =0. Hence 9} (Z(Y, »)) =
Yl (Y, y)) =0. (The composition law for Zuckerman’s y-functor is an easy exercise.)

Conversely, suppose no such root « exists. Set Ag={a€A|[{a, yo> =0}, Ag =A,N A+,
Wo=W(A)<= W(g/h). For u a weight of a finite-dimensional representation, define
Oy +p) =8.(O@Y, ). If w€ W, y —wy is a sum of roots, which is a weight of some ten-
sor product of copies of the adjoint representation; accordingly we can write ®(wy) for
By + (wy —y)). We claim that for every w€W,, O(wy)=0(y)+8,, and every irreducible



REDUCIBILITY OF GENERALIZED PRINCIPAL SERIES REPRESENTATIONS 291

constituent ©}, of O, is a-singular for some simple root «€Ag. This is clear when w=1.
Suppose then that it is true for some w, and that « €Ay is simple with 2, ¥>/{«, &) =n.
It is clear from the definitions that S_,.(®(wy)) = ®(ws,y); so by Corollary 6.17,

G(wsay) = @(7) + S—na(gw) + ®07

with @ «-singular. So ©,, =0,+8_,,(0,). If O’ is a constituent of @y, then O is a-
singular. If @’ is a constituent of S_,,(0,), then by Corollary 6.17 again, either ®’ is a
constituent of ®,, or ®' is x-singular. Since the simple reflections generate Wy, this proves
the claim. Using Lemma 5.4, one finds that

P @L0w)= 2 Owy)

we Wo

by what we have just proved, this is | Wy| - ©(y) + 0,, with ©y a combination of characters
of representations which are singular with respect to some simple root «€Ag. Theorem
6.16 implies that ©O(y) is not a constituent of ©y, so @' (},(0(y)))=+0, and in particular
¥2,(©(y))=0. This proves the vanishing criterion for 47 (7Z('¥', )). For the unique preimage
statement, Zuckerman has shown that every irreducible preimage of y7,(Z(¥, )) under
), is a constituent of ¢} (y?,(A(Y, »))) ([21], Theorem 1.3). But by our computation of the
character of this last representation, the only constituent satisfying v (7)==0 is Z(Y, y)
itself.

Finally, we must show that if y} (Z(Y, ))+0, then it is the unique Langlands sub-
quotient of n('¥,y,). By Corollary 5.17, it is a Langlands subquotient. By the proof of
Theorem 5.15, we can choose a parabolic P=M AN associated to H=T+4 in such a way
that the Langlands subquotients of #(P, ¥, y) and n(P, ¥, y,) are precisely the irreducible
subrepresentations. Let g, be such a subrepresentation of #(P, ¥, y,), and choose an ir-

reducible representation g so that y,(0) =g, Then by Lemma 4.1 of [21],

€ = Homy (gg, (P, ¥, ) = Homyg (y(0), ¥%(n(P, ¥, )
= Home (?’5"'#5»(9), n(P’ IF’ 7))

Since 7(P, ¥, y) has #(Y, y) as its unique subrepresentation, Z(Y’, ) is a constituent of
gyl,(0); and of course ¢} (Z(Y, )40 by assumption. Applying the theory just developed
to p instead of (Y, y), we deduce that o =7(¥, ), and hence that g, =¢7,(Z(Y', 9)). Hence
(P, ¥, ) has a unique Langlands subquotient. Q.E.D.

Thus, as promised, the computation of composition series is completely reduced to
the case of nonsingular infinitesimal character. Our reducibility criterion does not extend
so easily: A reducible representation frequently becomes irreducible after continuation to a
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wall. Nevertheless, an irreducible representation remains irreducible; so we have the fol-

lowing necessary condition for reducibility.

THEOREM 6.19. Let G be a reductive linear group with abelian Cartan subgroups, and
le¢ H=T+A be a B-stable Cartan subgroup. Fix a positive root system V"< A(m, t+) (with
MA the centralizer of A in G) and @ dominant ¥-pseudocharacter y =(A, v) € Hy. Then the

limit of generalized principal series 7('V, y) is reducible only if

(a) there is a complex integral root a such that {a, y) is positive and {Ou, y> i8 negative;
or
(b) there is a real integral root oo such that if n=2<a, y>[{at, &), then in the notation of

Proposition 6.1,
(=1)" = g A(my,).

(Here n=0 s allowed.)

(The conditions given are not sufficient for reducibility in general.)

Proof. Define a positive root system A+ for fj in g as follows. First, set

Ay = {a€A(g, §) [, ) = O, y> =0}.

Choose a positive system Ay containing AyN'Y, so that if x€Aq and Ox¢Ag, then « is
real; this is possible. Define A+ to consist of those roots « of ) in g such that either

(a) Re {a,y>>0; or

(b) Re {a, y>=0, and Im <{«, y>>0; or

(e) <o, > =0, but O« satisfies (a) or (b); or
(d) «€AS.

Then A+t2V¥.
Now let u be a regular dominant weight of a finite dimensional representation of G,

and set pl=y+u, . €R’. By Corollary 5.12,
(¥, ) =¥ (@)

Suppose now that n(¥’, y) is reducible. By Theorem 5.15, 7z()1) is as well; so there is a root
o €A} satisfying the conditions in Theorem 6.15. By the choice of u, Aji2 At; so a €A™,
Since ¢ and 9! differ by & weight of a finite dimensional representation, « is integral for y;
and if it satisfies Theorem 6.15 (b) for 42, then it satisfies Theorem 6.19 (b) for . So suppose
o satisfies Theorem 6.15 (a) for y*; thus « is complex, and

YL a> >0, L, 0 <0.
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In particular, €A+ and B¢ A+. So « satisfies one of (a)—(d) above. We want to show that
{ys oy >0,<y, 0y <O0.

Suppose (d) holds. Then, in particular, « and O« are orthogonal to p, so they both lie in
A,. By definition of A+,
x€AF, B¢ A .

But by the choice of Ag, this forces « to be real, a contradiction. So suppose (c) holds.
Then by definition of A+, 6« is positive; a contradiction. Since {a, ¥'> is real, {a, p) is
also; so (b) is impossible. So « must satisfy (a), proving that {y, «>>0. Exactly the same
argument shows that {y, fa)> <0. Q.E.D.

The proof of Theorem 6.15 provides some explicitly computable composition factors
of (). Theorem 6.18 shows how to translate this to singular infinitesimal characters; so
we could formulate a (rather complicated) sufficient condition for reducibility in the
singular case. This condition is unfortunately not necessary, as can be seen in the group
Sp(3, 1); so it does not seem worthwhile to state it carefully.

The following conjectures are true in groups of real rank one, Sp(3, R}, SL{4, R), and
the complex groups of rank less than or equal to three.

Conjecture 6.20. If y€H’, and H = T+A with dim 4 =1, then the irreducible composi-

tion factors of z(y) oceur with multiplicity one.

Conjecture 6.21. Let ® be an irreducible character with nonsingular infinitesimal char-
acter y €h*, and suppose «€A; is simple. If 2{a, y>/{a, &) =n€Z, then the irreducible
constituents of S_,,(®) occur with multiplicity one.

The second conjecture is closely connected with applications of coherent continuation
to computing extensions of Harish-Chandra modules, a problem which we hope to pursue
in a later paper.

We believe that the techniques described in this paper are sufficient to construct an
algorithm for computing composition series. The idea (which is illustrated in the proof of
Theorem 6.9) is this: Using Theorem 2.9, one lists all the generalized principal series with a
fixed infinitesimal character (which we may as well assume to be nonsingular). Then one
writes down a list of composition factors for each generalized principal series, with the
multiplicities as unknowns. Proposition 2.10 says immediately that many of these are zero,
and our various reduction techniques show how to compute some of these unknowns (in

terms of composition series for smaller groups), or at least show that some must be positive,
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or equal to others, and so forth. Given these multiplicities (as unknowns), one can express
the characters of the Langlands quotients in terms of the characters of generalized principal
series and the unknown multiplicities, Thus whenever @ is an irreducible character, we
get a formula for the various S_, (®) as a combination of irreducible characters, with
coefficients involving the original unknown multiplicities. Corollary 6.17 now gives a new
family of conditions on the multiplicities, since it says that some constituents of S_,,(®)
occur with nonnegative multiplicities. Roughly speaking, this should provide enough con-
ditions to solve for all the unknown multiplicities. Actually, one has to do a little more
thinking than this, mainly by using the ideas of Section 3 more carefully; but these ideas

have been extremely effective in examples which have not previously been treated.

7. The split groups of rank two

In this section ¢ denotes a connected linear split simple Lie group of rank two.

Let Hy=M A be a maximally split Cartan subgroup, P,=MAN a parabolic associated
to Hy, o, and «, the simple roots of A(a,, 1,), H,=T,4, (¢=1, 2) Cartan subgroups so that
(a)o=ker «;, and P,=M 4,N, a parabolic associated to H, containing P,. Choose a set
A, of positive roots in fj} compatible with the choice of P,. Then 4 =H?, the Cayley
transform of H, for a simple imaginary root 8.

For each «; we can choose an injection ¢;: 8l(2, R)—>g,, so that

1 0
P4 (O _ 1) an
o - X)=0p,(X), Xe€sl(2,R),
01
(pf O 0
lies in the o, root space of q, in g,. Write

01
Z,=<p,(_l O)Ef

m,, =m;=exp (n-Z,)

and

Then m{=1 and M is generated by m, and m, If H,=T,A4, is connected, then
| W(M,/T,)] =2; otherwise H, has 2 connected components, |W(M,/T)|=1, and H,;=
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T, x R+ x {my, 1} (j==1). Consider g(11y), o(A;) as pseudocharacters of Hy and H, respectively,
extended to be trivial on the Z, factors given above.

If H, is connected the representation m(o(A,)) is independent of the choice of A,.
Otherwise write A}, A} for the two choices of A, and m(o(A})) and 7(p(A?)) for the corre-
sponding non-equivalent representations.

By induction by stages and Proposition 5.22 n(P,, o(A,)) is a subrepresentation of
7(Py, o(n,)) if H, is connected; and otherwise m(P,, o(A})) ®7(P,, o(Af)) is a subrepresenta-
tion of m(p(ny)). Define 8,€qy so that (J,, &> =4,. Passing to a suitable covering group

we may assume that J, is the highest weight of a finite dimensional representation of G.

LeEvMA 7.1. Let ;v be an irreducible representation of G, and © its character. Assume
there exists a parabolic P, associated to a connected Cartan subgroup H,, and that 7t is a com-
position factor of m(p(ny))/7(P;, 0(A,)); or there exists a parabolic P, associated to a discon-
nected Cartan subgroup H,, and that m is a composition factor of m(o(ny))/m(P,, o(A}))®
(P, o(A})). Then S_s,0 =0.

Proof. Assume for definiteness that H, is connected and i=1; put ¥'=A, N A(my).
Then
8.0 (0(0(A) = S_[IndS, Ou, (¥, o(¥)) @ (0] ) 1]
= Ind§, (8-5,0m(¥, o(¥)) ® (8] ,,) ®1
=Indf, Ou(¥, 0)® (3], ) ®1.

If we recall that s5, € W(M,/T,), and apply formula (7b) of [12], we see that @, (¥, 0)
is the character of a principal series representation of M,. Hence S_s (0(g(A,))) is the
character of a principal series representation of G. Since S_5,(0(g(n,))) is the character
of a principal series representation containing S_, (®(o(A,))), it follows that S_s (@ (e(n,))) —
®(e(A,)) =0. By Theorem 5.15 (compare the proof of Lemma 6.4) each irreducible con-
stituent of O(p(ny)) —O(e(4,)) is o, -singular. Q.E.D.

LeMMma 7.2. 7(Py, o(A))) satisfies the assumptions of Lemma 7.1 with respect to P,, j=1.

Proof. For definiteness assume again H, and H, connected, and ?=1. We must show
that (P, o(4A,)) is not a constituent of n(P,, o(A,)). Write

9(A1) = (A, )
Q(Az) = (A, v3)
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If Ay, A < {4y, Ay, then Proposition 2.10 implies the lemma. Otherwise we may shift the
parameter ¢ to p, with {y, o> small and <y, ay) large. If we use primes to denote the

parameters of the shifted representations, then we will have

ISR G AR oY DTy
<Ay, 11>—<a1, “1>< (ot % (A, Ag).

Now Proposition 2.10 applied to the shifted representations gives the desired result. Q.E.D.

LEMMA 7.3. Let H=TA be a 0-invariant Cartan with dim a,=1, y€H’, a, o, the simple
roots of A; . Assume that «, is simple imaginary and 2{ay, y>[{ay, 0tz =n is @ positive integer.
If H is connected, fi(y) is ay-singular. If H is not connected, at least one representation attached

to a pseudocharacter y, with p, =9 €Y* is oy-singular.

Proof. After a shift we can assume that 7 =p(A,). If H is connected, Lemmas 7.2 and
7.1 imply Lemma 7.3. If H is not connected, there is a pseudocharacter y, trivial on the
Z, factor, with $; =0(A,). In this case Lemmas 7.2 and 7.1 imply Lemma 7.3 for the cor-

responding representation. Q.E.D.

Now we begin a case by case analysis to prove Theorem 6.9. With notation as there,
we need to show that 7Z(y —na) is a constituent of z(y), or that 7(y) is e-singular (by Lemma
6.8). If G=SL (3, R), the fundamental Cartan subgroup H =74 is connected. If y€H’
satisfies the conditions of Theorem 6.9, then A has a simple imaginary root and hence
Lemma 7.3 implies Theorem 6.9.

If G=8p(2, R) we write «y, a, for the long simple root and the short simple root
respectively, and H,, H, for the corresponding (-invariant Cartan subgroups. H, is dis-
connected, H, connected. Let y € H; satisfy the conditions of Theorem 6.9. Then A; has
an imaginary simple root, and hence Lemma 7.3 implies Theorem 6.9. Let y € Hy. Then
A; has a simple imaginary root. After a shift we may assume that the weight of y is o(A;).
If y is trivial on the Z, factor Theorem 6.9 follows from Lemma 7.2.

Now assume ¥ is non-trivial on m,,. By Proposition 5.22 and induction by stages we
can assume 7z(y) is a subrepresentation of m(g(ny)(+, —)). Here o(ny}(+, —) is a pseudo-
character of the split Cartan with weight o(11,) and

o(tg) (4, —)(me,) =1
(o) (+, —)(my,) = —1

By Proposition 5.22 and induction by stages, one computes easily that Z(y —a,) is also a

composition factor of m(o(t) (+, —))-
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Assume now that 7(y —a,) is not a composition factor of z(y). Then by Lemma 6.8,
S_5,0(y) =8_5,0(y — ay) =0, and thus the composition factor S_s, ©(y —a,) has multiplicity
two in S_s,O(o(1ty) (+, —))=0(3). But y —J, is singular with respect to the imaginary root
oy, 80 7(y —0,;) has the same restriction to K as a constituent of some tempered principal
geries representation. In particular the lowest K-type of 7i(y —d,) is fine, and hence has
multiplicity one in the representation 7(d). Thus 77(y —8,) has at most multiplicity one in
71(8), and hence S_5,0(y) =0.

Now assume G is of type G,. We write o, o, for the long simple root and for the short
simple root respectively. The corresponding f-invariant Cartan subgroups are denoted by
H,, H,. Both Cartan subgroups are connected.

If y €A satisfies the conditions of Theorem 6.9, then either y is integral with respect
to all roots, or y €H; and y is integral only with respect to the short roots.

Assume first y is integral with respect to all roots. If there is a simple imaginary root
in A;, Lemma 7.3 implies Theorem 6.9. For the remaining cases we only sketch a proof.
Most of the details are left to the reader. After a shift we may assume that n(y) has in-
finitesimal character p(11,). The Weyl groups for each Cartan have order 4, and the complex
Weyl group has order 12. Thus there are 3 generalized principal series representations with
infinitesimal character g(n,) associated to each Cartan. Write a, b, ¢ for those generalized
principal series representations associated to H,, ordered according to decreasing length of
the a parameter. Write d, e, f, for those generalized principal series representations as-
sociated to H,, also ordered according to decreasing lengths of the a parameter. Write
capital letters for the corresponding Langlands subquotients. Write G, H, I for the dis-
crete series representations with infinitesimal character g; there is a short simple compact
root in the root system associated to &, a long simple compact root for I, and no simple
compact root for H.

By Proposition 5.22 and the remark after its proof,

f=F+H+G
c=C+H+1.

It follows by Proposition 5.14 that S_, H =H + F, etc. (All formulas here should be under-
stood as character identities; the representations in question do not decompose as direct
sums.)

The positive root systems associated to ¢ and f contains no simple roots satisfying
the conditions of Theorem 6.9. So the only remaining cases are b and e; since these are

completely similar, we consider only b. In the set of positive roots associated to b the long
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simple root e, is complex, and f«, is negative. It is easy to compute that S_,,b=c; so we

must show that b contains € as a composition factor. Suppose not. By Lemma 6.8,
S —ouC =B + @0
S_,B=0+0,,

with @, and ©; the characters of a;-singular representations. We claim that ®,=0; the
following proof was originally found by G. Zuckerman. (Compare the proof of Lemma
6.8.) Let 6, be the fundamental weight with 2{a,, ;>/<et;, ;> =3d;;. Recalling the proof of
Theorem 5.20, we must show that
P8 ¥5-0(0) = B C.
Write X for the left-hand-side. The argument of Theorem 5.20 produces maps
BalC-X, X->BaC.

If K is the kernel of the second map, then (since B and C have multiplicity one in X)
X>K®BaC. If K0, we have Hom (K, X)==0. A formal argument like that given for
Theorem 5.20 implies that p?_; X contains at least three copies of y¢_s, B=y2 5 C. But
Zuckerman has shown ([21], Lemma 3.1) that O (y3_s X)=20(yé_s C). This contradiction
proves that K =0. In particular S_,,C=B.

By the remarks above, c=C+ H + I; and

8., ,H=F+H
S_,I=-1

Therefore -

b=8_,¢c=B+F+H-1,
which is impossible since b is a representation. This contradiction proves that b must in
fact contain C as a composition factor.

Now assume that y € H3. and v is integral only with respect to the short roots. Let 8,
and f§, be the simple roots of the subsystem of short roots. After a shift we may assume
that 2¢8,,v>/{B:, B:> =1. There are three inequivalent generalized principal series repre-
sentations 7(y;), #(y,), and 7(ys), y,H 2, with infinitesimal character y; we assume they are
ordered by decreasing length of the q parameter. Only the positive system defined by y,
contains a root satisfying the hypotheses of Theorem 6.9; it is 8,, and

8_p,7(ys) = 7(ys)-
So we must show (by Lemma 6.8) that 7(y,) is §,-singular. This is established exactly as
in the case of SL (3, R), by showing that 7i(y,) occurs in the representation induced from a
certain finite dimensional representation. Details are left to the reader. This completes

the proof of Theorem 6.9.
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