
The Laplacian for domains in hyperbolic space 
and limit sets of Kleinian groups 

by 

and R. S. PHILLIPS( l )  

Stanford University 
Stanford, CA, U,S.A. 

P. SARNAK 

Courant Institute 
New York, NY, U.S.A. 

Stanford University 
Stanford, CA, U.S.A. 

1. Introduction and statement of results 

Let X n+a denote the real hyperbolic space of dimension n+ l .  We will make use of 

both the ball and upper half space models of X n+~. The ball model is 

Bn+t={xERn+I; Ix[<l} with the line element ds2=4dx2/(1-1xl2). The upper half 

space model is Hn+l=((x,y); xER n, y>0} with the line element ds2=(dx2+dy2)/y 2. 
When we write A, V or dV, we are referring to the Laplacian, gradient and volume 

element, all with respect to the hyperbolic metric. For example in the H n+~ coordi- 

nates 

dXdyyn+l _ 2( ~2 ~2 ~ 1)y _ ( n O  2 0 
dV= and - A - y  ~yE+~x~+. . .+~x2/  ay 

Let ff~ be an open connected subset of xn+l; we denote by W1(~) the space of 

functions 

wl(g2) = {fE L2(g2); VfE L2(g2)}. (1. I) 

The quadratic forms H and D on Wl(g2) are defined as 

H(f, g) faf~ dv, 
(1.2) 

ro- D(f, g) = (Vf, Vg) dV. 

(1) The work of the first author was supported in part by the National Science Foundation under Grant 
MCS-83-04317 and the second by NSF Grant MCS-82-01599. 
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The domain of the Neumann or free Laplacian A on fl is determined by the fact 

that it is the unique selfadjoint operator on L2(Q) whose quadratic form is D. If f2 has a 

'nice' boundary, then functions in the domain of the Neumann Laplacian have vanish- 

ing normal derivatives on the boundary. Moreover for a domain with a nice boundary a 

core domain for the Neumann Laplacian consists of smooth functions f with compact 

support in ~) which satisfy af/an=O on aft ,  a/an being the unit outer normal derivative. 

The spectrum for A on L2(t)) is denoted by o(Q). We are interested in the 

dependence of o(f2) on f~. It is clear from (1.2) that a(f2)c[0, oo). The bottom of the 

spectrum, denoted by 2o(Q), can be described variationally as follows: 

2o(ff2) = inf[D(u); u 6 Wl(fl), H(u) = 1]. (1.3) 

This formulation of 2o(Q) plays a central role in our study. A detailed discussion of 

forms, the domain of the Neumann Laplacian, etc., as needed in this paper, is given in 

Section 2. 

We are primarily intrested in domains f~ which are convex and bounded by 

geodesic hyperplanes. Most of the time we will be looking at such domains which have 

only a finite number of bounding sides, i.e. a convex polyhedron. Such domains are 

said to be geometrically finite. The hyperplanes are most easily described in the H "+1 

model. In this case they are either hemispheres of the form Ix-al2+yZ=r 2, y>0,  or 

vertical Euclidean hyperplanes. We denote by Fm the family of nonempty domains 

bounded by exactly m hyperplanes. Since we are basically interested only in the 

geometry of the domains, we do not distinguish between domains Q and ff~' if fl and Q' 

are related by some global isometry of X ~+1, that is by a transformation in 

G=O(n+l ,  l). This group is generated by inversions in the hyperplanes of X "+1. In 

working with domains in F,,, it must be kept in mind that quantities such as o(f~) and 

20(f~) are invariant under the action of G as it acts on Fm. 

The nature of the spectrum o(f2) for fl in Fm (any m<oo) is described in Theorems 

2.1 and 2.4, which are slight modifications of Theorem 4.4 in Lax-Phillips [12]. These 

may be summarized as 

THEOREM 1.1. / f f2  6Fro and vol(s then 

(i) o(Q) is discrete in [0, (n/2)2); 

(ii) o(~) is continuous in [(n/2) 2, oo). 

The condition that f~ have only a finite number of sides in (i) cannot in general be 

dropped. See, for example, the 'cylinder'  in H "+1 discussed in Proposition 3. I0 or the 



T H E  L A P L A C I A N  FOR DOMAINS IN H Y P E R B O L I C  SPACE 175 

thesis of C. Epstein [11], which treats the Laplacian for a class of finitely generated 

groups discovered by T. Jorgensen. Sullivan [21] raised the question of whether the 

converse to (i) was true; that is, if o(s is discrete and nonempty in [0, (n/2)2), then 

does ~ necessarily have a finite number of sides. In Section 6 we give examples of 

domains (corresponding to discrete groups) for which the canonical polyhedron has 

infinitely many sides and for which (i) still holds. In this case the group turns out not to 

be finitely generated. 

From the variational formulation of ~0(~) it is very easy to prove (Proposition 

2.12) that the discrete eigenvalues 2j(s of A vary monotonically with s However, 

contrary to what one might expect, we find that 2j(f~)~>2j<f2') when ~ 2 ' .  

We call a domain Q free if ,~0(ff~)=(n/2) 2. In terms of the form 

E = D-(n/2)2H, (I .4) 

defined on W1(s it is clear that f~ is free iff E~>0. It follows from Theorem 1.1 that 

s 6 F m is free iff O(Q) has no discrete spectrum--the name free corresponds to the fact 

that A is free of L 2 eigenfunctions. Free domains are the basic building blocks in this 

paper. The following result, proved in Section 3, plays a central role--it asserts that a 

domain is free if the number of its bounding sides is sufficiently small. 

THEOREM 3.7 (and Proposition 3.5). I f  s in X "+1 belongs to F,, with 

rn<.[(n+4)/2], then s is free, while if  m>[n+4)/2] then s need not be free. Here [c] 

denotes the greatest integer in c. 

There are other measures besides the number of sides which ensure that a domain 

is free. These show that no matter how large m, there are still many f2 in F m which are 

free. An example of such a measure is r(f2) in Theorem 5.6. 

When Q is free and hence E~>0, we introduce new forms K and G in wl(f~) (see 

also Lax-Phillips [12]) defined as follows: 

K(f, g) = fsf~ dV, (1.5) 

where S is any compact subset of f~, and 

G = E + K .  (1.6) 

We denote the completion of WI(ff2) with respect to the G form by H~. It is possible for 
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A ' = A - - ( n / 2 )  2 o n  H6 to have 0 in its discrete spectrum. The corresponding eigenfunc- 

tion o is called a null vector and satisfies the condition E(v)=0; however it cannot lie in 

w'(~) .  

Examples of free domains with null vectors are: 

(i) I f P  is a finite sided bounded Euclidean polyhedron in R" and ~ =  {(x, y); x EP}, 

then ~ is free and has a null vector v=y '~z. 

(ii) Let C1, Cz, C3 be three mutually tangent hemispheres, each in the exterior of 

the other two, and let Q be the domain in H 3 which is exterior to these hemispheres. 

Then ~ has a null vector (see Corollary 3.3). 

A free domain with a null vector is very close to having a n  L 2 eigenfunction. More 

precisely, i f ~  is such a domain and ~ '  is obtained from ~ by excising a small sphere at 

infinity, then (as proved in Theorem 2.10) Q' is no longer free and hence has an L z 

eigenfunction. 

In order to tie this study in with the Hausdorff dimension of limit sets of Kleinian 

groups, we need to recall some recent work of Sullivan. Let F be a discrete subgroup of 

G. It has a discontinuous action on X~+I; suppose that Q is the fundamental domain 

for this action. The Laplacian leaves invariant the space of F-automorphic functions, 

i.e. the space of functions on X "§ satisfyingf(Tw)=f(w) for all ~EF and wEX ~+1. It 

also defines a selfadjoint operator on the Hilbert space L2(xn+I/F). We denote by 

20(F)~<ft~(F)~<... the discrete spectrum (if it exists, otherwise we use the variational 

notation (1.3) for 2o(F)) of this operator. It is easily seen from the variational definition 

of 2j<g2) (which corresponds to free boundary conditions) that 

a,<r), (1.7) 

where here fl is a fundamental domain for r (see Proposition 5.1). 

If the domain f~ is such that the reflections in its bounding hyperplanes generate a 

discrete group F, then we call fl a reflection domain and F a reflection group. In this 

case f~ is a fundamental domain for F and ,2.j(~)=2j{I').  See Section 5 for a more 

detailed discussion of these points. If ~ is bounded by nonoverlapping hyperplanes, 

then the reflections form a discrete group, in this case we call f2 a Schottky domain. 

Next suppose that F is a discrete group acting on X "+~. The limit set A(F) is 

defined to be the set of limit points in B=O(X n+~) of any given orbit of F, i.e., of (yw: 

~E F}, w some fixed point in X ~+~, see for example Thurston [23]. Thus A(F) is a 

closed subset of B. Associated to F, we introduce two numbers: the exponent of 

convergence of the Poincar6 series, 6(F), and the Hausdorff dimensions of the limit set 

d(A). The first 6(F), is the exponent of convergence of the series 
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s exp ( - s (z ,  yw)) (1 o8) 
yEF 

where z, w are fixed points and (a, b) is the hyperbolic distance from a to b. The group 

F is said to be geometrically finite if F has a fundamental domain with a finite number of 

sides. 

The following theorem provides the connection between the quantities 20(F), d(F) 

and d(A). There are a number of authors involved in proving various aspects and 

special cases, see Elstrodt [9], Akaza [3], Patterson [15, 16] and Sullivan [21, 22]. 

Patterson obtained the result quite generally but with certain restrictions on d(F), while 

Sullivan in the papers quoted above has proved the result in general. We refer to the 

theorem as the Patterson-Sullivan theorem. 

THEOREM (Patterson-Sullivan). (i) I f  d(F)>~n/2 then )~o(F)=d(n-c$), 

(ii) / f  F is geometrically finite then d(F)=d(A). 

Returning to the concept of a null vector the following is proved in Section 5. 

THEOREM 5.7. / f  Q is a free Schottky domain without cusps, then Q has a null 

vector iff  d(F)=n/2 where F is the corresponding reflection group. 

The first part of Section 4 is devoted to the study of the continuity of the discrete 

spectrum under small perturbations of the domain. It is shown (Theorem 4.2) that in 

dimension n= I the discrete spectrum is upper semi-continuous under movements of 

the bounding sides. In Corollary 4.5 we show that the discrete spectrum is also 

continuous under what we call simple degenerations. Essentially, in such a degener- 

ation we allow sides to degenerate in clusters of no more than [(n+2)/2] sides. 

Examples are presented of noncontinuity when the degeneration is not simple. 

In Sections 5 and 6 we present applications of the theory developed in Sections 2, 3 

and 4. In Proposition 5.5 we show that the function max {d(F), n/2} is continuous under 

simple degenerations of reflection groups. It should be noted that d(F) itself is not 

continuous under these degenerations. 

We call a discrete group F a Schottky group if it has a fundamental domain which is 

a Schottky domain. The main result of Section 5 is the following: 

THEOREM 5.4. For n>~3 there is a number dn<n such that for any Schottky group 

F in I-1 ~+l 

~(r) ~< d~. (1.9) 
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In particular if F is also geometrically finite, then the Hausdorff dimension of A(F) 

satisfies d(A(F))<~d,,. Explicit expressions for dn are derived in Proposition 3.10 where 

the key lower bound for 2o(F), which corresponds to (1.9), is derived. The relation (1.9) 

answers a question raised by Beardon [5] and shows, when n~>3, that the Hausdorff 

dimension of the limit set of a group of motions of R n, generated by inversions in a 

finite number of disjoint spheres, cannot be made arbitrarily close to n. 

In dimension n=2 we do not know if 6(F) has an upper bound less than 2. At the 

other end of the range, we know by Theorem 3.7 that 6(F)~<l for a Schottky group 

whose domain has three or fewer sides. It is possible with four sides to make the 

dimension greater than one. This was first proved by Akaza [2], but it also follows 

easily from our results on null vectors and the excision property (see remark following 

Corollary 3.4). Beardon [5] has shown that there exist constants e(m)<2 such that for 

any Schottky group of inversions on at most m hemispheres, the Hausdorff dimension 

of the limit set is at most e(m). Unfortunately his e(m) approaches 2 as m becomes 

infinite. 

At the end of Section 6 we give some numerical calculations of the dimensions of 

the limit sets, for various Schottky groups. This is done for the groups generated by 

inversions in the circles of Figure 6.5. These results suggest that for a Schottky group 

of inversions on four hemispheres 6(F)~<1.31, and for five hemispheres it is <~1.40. The 

numerical results also suggest that for Schottky groups with fewer than 14 circles 

~(F)~<l.60. However, we can show rigorously that for certain examples, with a very 

large number of circles, one can make 6(F)~ > 1,75, see Sarnak [19]. Previously Akaza [4] 

has given examples where 6(F)>~1.5. Nevertheless it seems to us that 6(F) cannot be 

made arbitrarily close to 2 (when n=2). 

Also included in Section 6 are applications to the examples of Hecke groups. In I ' I  2 

consider the groups F~, generated by 

S:z---~ -1/z,  Ti,:z--~ z+/t, 

/~>2. We prove 

THEOREM 6.1. For l~>2 there is precisely one discrete eigenvalue 2o~) for Fu. As 

I ~ ranges from 2 to 0% 2oOZ) increases continuously and strictly monotonically from 0 to 

1/4. 

For more on the history of this problem especially in the language of Hausdorff 

dimension see our discussion in Section 6. 

We would like to thank S. Kerckhoff, H, Samelson and N. Sarnak for useful 
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discussions concerning various aspects of this paper. We would also like to thank the 

referee for his valuable comments. 

2. Quadratic forms 

We shall be mainly interested in the selfadjoint Laplacian A defined on L2(f~) with 

Neumann boundary condition. This means that the domain of this operator consists of 

the set of all functions u in WI(Q) with square integrable Au (defined in the weak sense) 

satisfying the condition 

H(Au, v) = D(u, v) (2.1) 

for all v in wl(f~). For smooth functions u, an integration by parts shows that condition 

(2.1) is equivalent to the vanishing of the normal derivative of u on 0Q. 

We denote by B the boundary of X ~+1. In the ball model B consists of the unit 

sphere while in the upper half space model B consists of the points {(x, y); y=0)  tJ o0. 

The following result is implied by Theorem 4.8 of [12]. 

THEOREM 2.1. / f  f] contains a neighborhood o f  a point in B, then [(n/2) 2, m) 

belongs to the continuous spectrum of  A and contains no discrete spectrum of  A. 

It is clear from (2.1) that the spectrum of A is contained in the half-line R+. The 

nature of the spectrum in the interval [0, (n/2) 2) is not well understood in general. 

However if f~ has the finite geometric property, then the spectrum is discrete in this 

interval. Our proof of this fact, sketched below, follows the argument used by Lax and 

Phillips (Section 3 of [12]) in their proof of this property for the Laplacian acting on 

automorphic functions. 

With this in mind we introduce the energy form: 

E(u) = D(u)-  (n/2)ZH(u), (2.2) 

defined, to begin with, on functions in WI(~) which vanish near B. As explained in the 

introduction, g2 is free if and only if E>~0. It is essential for our purposes to define E on 

a somewhat larger class of functions than wl(f2). If E were positive on WI(Q), we 

could obtain this extended class of functions by completion with respect to E. Unfortu- 

nately E can be indefinite on Wl(f2). To compensate for this we  construct an auxiliary 

form K of the kind: 

= ( k ( x )  lu(x)12dV, (2.3) K(u) 
3 
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with k(x)>-O and having the properties: 

(1) G = E + K  is locally positive definite; 

(2) K is compact with respect to G. 

We then complete Wl(fl) with respect to G, obtaining the space He. Functions in H6 

need not be  square integrable and the resulting augmented Laplacian (again with 

Neumann boundary conditions) 

A' = A - (n/2) 2 (2.4) 

can have null vectors in He. This is not ruled out by Theorem 2.1 since such null 

vectors do not belong to the domain of A as defined above. The null vectors of A' play 

a very useful role in our theory. 

We shall make use of the upper half space model H n+~ and treat only domains f~ 

which are bounded by a finite number of (geodesic) hyperplanes. We cover g2 with a 

finite number of open sets: Uo, U~ ... . .  Urn. These open sets are divided into four 

classes: (1) Uo which is bounded away from B and the sides of g); (2) Ufs which 

contain a single cusp of f~ but portions of no sides not bounding this cusp; (3) If one or 

more sides meet along a geodesic starting on B, then a Uj of this kind will contain a part 

of the one side or, if two or more meet, a part of the geodesic near B but no portions of 

sides which do not contain this geodesic; (4) Ufs which have compact closures in 

H ~+~ and which contain portions of sides. 

Let (gj) be a finite partition of unity subordinate to the U's. We may suppose that 

all of the q0fs are either identically zero or identically one near a cusp and near ~.  We 

now set 

y.+l  �9 (2.5) 

Clearly 

E=~Ej. (2.6) 
j=0 

Eo can be brought into a more convenient, but no longer invariant, form by an 

integration by parts. Since this device is used repeatedly throughout the paper, we shall 

refer to it as 

PROPOSITION 2.2. I f  af~ is parallel to the y-axis, then Q is free. More generally i f  

f~ is bounded above by ~1 ~'~ and below by ~2 ~'~, then 
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bl 2 rl f o " f  dxay+- lul2' " ( - - -  q~7 ax--~ Jm, Y" 2 Ja , yn 2 {~1 
(2.7) 

Proof. Note that 

U 2 f gYJar(fi -;i) dY= f 9[~+(n~21u!2~[_ y - k2/  y 
n arJ_ul2 ] dy. 
2 y" _1 

(2.8) 

An integration by parts gives 

y" JL" '  Y" "Y"+'] 
(2.8)' 

Combining (2.8) and (2.8)', and integrating with respect to x we get (2.7). If 0f~ is 

parallel to the y-axis, then the boundary integrals in (2.7) vanish. Setting q0-1, we get 

D(u)_fn[yla,/u\12 laxul 2q n 2 ~-~) + y----~T-_l Jdxdy+(2)2H(u)>-(-f ) H(u,, (2.9, 

so that f~ is free. 

We apply this proposition to Eo, as given in (2.5). Since u vanishes near B and 

since q~0 vanishes on the bounding sides of Q, the boundary integral disappears and we 

get 

u 2+ 1O, ul2] 
Eo(u)=fCPo[ylOr(-~-'~) 7 jdxdy -Ko(u , ,  (2.10, 

where 

K~ = 2 f y(ar tp~ lul2dE (2.10)' 

In order to treat the Efs  associated with cusps, we first map the cusp into oo so 

that its sides are parallel to the y-axis. We then proceed as above; in the transformed 

coordinates E/ looks exactly like the right side of (2.10) with q~o replaced by tpj. 

Similarly for Ei's of type (3) where the support of q0~ contains only portions of sides 

with a common geodesic, we map the geodesic into a vertical line. All of the sides in the 
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support of q0j become parallel to the y-axis and we can proceed as before. Finally for E 

of type (4) where the support of q0j is compact, we simply set 

n 2 f ~ojlulZdV. (2.11) 

It is clear from (2.10), (2.10)' and (2.11) that G is locally positive. We improve on 

this by replacing the integrands in (2.10)' by their absolute values and adjoining to K the 

integral of u over a compact subset of g2. We now define 

m 

j=0 

It is clear from this construction that convergence in the G norm implies convergence 

in W~or 

It can now be shown, exactly as in Section 3 of [12], that 

(1) The form K is compact with respect to G; 

(2) Any two partitions of unity of the above kind result in equivalent G forms over 

He; 

to 

(3) If to begin with E>~0 over wl(t2), then the above G form is equivalent over He  

G'(u) = E(u)+ fs lul2 dV, (2.13) 

where S is any compact subset of ff~ with a nonempty interior. 

Properties (2) and (3) are direct consequences of (1). 

The next result follows easily from the compactness of K (see Theorem 3.6 of 

[12]). 

LEMMA 2.3. I f  K is compact with respect to G, then there is a closed subspace o f  

H6 o f  finite codimension on which E is positive. 

THEOREM 2.4. I f  f] has the finite geometric property, then the Laplacian A has a 

discrete spectrum in the interval [0, (n/2) 2) which is nonempty i f  and only i f  E takes on 

negative values. 

Proof. The domain of A is contained in wl(f2) which, in turn, is contained in He. 

Hence for u in the domain of A we see by (2.1) and (2.2) that 

E(u) = D ( u ) -  (n/2)2H(u) = H( Au, u ) -  (n/2)2H(u). (2.14) 
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It follows that E(u)<0 on any eigenspace of A in the interval [0, (n /2)2) .  Further any 

subspace of infinite dimensions will have vectors in common with a closed subspace of 

finite codimension. Since by Lemma 2.3, E will be positive on such a subspace, we see 

that A can have only a finite dimensional (discrete) spectrum in [0, (n/2) 2) and this will 

be empty if E~>0. 

Conversely if A has no point spectrum, then according to the first part of this 

proof, the spectrum of A must lie in the interval [(n/2) 2, oo); that is H(Au, u)~(n/2)2H(u) 

for all u in the domain of A. Thus by (2.14), E(u)~O on the domain of A. Since the 

domain of A is dense in wl(fl) and wl(f2) is dense in H6, it follows that E~>0 on He. 

We prove by a similar argument 

COROLLARY 2.5. Suppose that ~ can be written as the union o f  two disjoint 

domains, ~ '  and f2", such that Q' is free and Q" has the finite geometric property. 

Then the Laplacian over Q has a discrete spectrum in the interval [0, (n/2)2). 

Proof. We denote the energy forms for f~' and f~" by E' and E", respectively. Then 

E = E' +E" 

and since by assumption E'>-O, it follows that 

E"(ult~.) <~ E(u). (2.15) 

Note also that the restriction of Wl(f~) to Q" is contained in WI(Q"). Thus if the 

eigenspace of A in the interval [0, (n/2) 2) were infinite dimensional, then by (2.15) E" 

would be strictly negative on the restriction of this subspace to ~"; i.e. E"(ulu,,)<O for 

all nonzero u in this subspace. It is easy to see from this that the restriction of this 

eigenspace to fl" is an infinite dimensional negative subspace. As in the proof  of the 

theorem, this is contrary to the assertion of Lemma 2.3. 

We are now in a position to study the null vectors of A'. 

LEMMA 2.6. Suppose E>~O on He. Then u is a null vector o f  A' i f  and only if  

E(u)=O. 

Proof. If E(u)=0 then since E~>0, we deduce from the Schwarz inequality that 

E(u, v)=0 for all v in He. In particular for v in Co(~)we see that 

E(u, v) = D(u, v)-(n/2)2H(u, v) = H(u, A'v). 

Consequenctly A'u=0 in the weak sense. Any v in W~(f2), vanishing near B, can be 

approximated with respect to the H form by Co(fl) functions. Hence we can write 



184 R. S. PHILLIPS  AND P. S A R N A K  

H(A'u, v) = 0 = E(u, v) 

and comparing the extreme members of this relation we see for such v that H(Au, v)= 

D(u, v). Since this is the weak form of the Neumann boundary condition, this proves 

that u is a null vector for A'. To establish the converse, we reverse the above steps, 

concluding from A'u=0 that E(u, v)=0 for all v vanishing near B. Since such functions 

are dense in He, this shows that E(u)--0. 

We show in Section 5 that null vectors of A' of the kind described in Lemma 2.6 

are quite common. The next result is well known, but we include a proof for the sake of 

completeness. 

LEMMA 2.7. I f  E>~O on HG and u is a null vector o f  A', then u>0 on if2. 

Proof. It is clear that ifE(u)=0 then the same is true of the absolute value of u; i.e. 

E(lu[)=0. According to Lemma 2.6, this implies A'lu]=0. But since A' is elliptic with 

real analytic coefficients, ]u] would have to be real analytic. This is impossible unless u 

were of one sign to begin with. Finally if u ever took on the value 0 in Q, then v= -u~<0 

would have a local maximum at this point while Av=-(n/2)2v>>-O. Thus the maximum 

principle applies, from which we deduce that v is identically zero, a contradiction. 

Definition 2.8. A free domain will be called strictly free if A' has no null vector. 

According to Lemma 2.6 when f~ is strictly free, then E(u)>0 for all nonzero u in 

HG. 

Definition 2.9. We shall say that a domain f2 has the excision property if 

20(f~')<2o(s for any subdomain Q' obtained from Q by removing a strictly free 

domain with the finite geometric property. 

THEOREM 2.10. Suppose that f2 is free, geometrically finite, and that A' has a null 

vector in H6. Then f~ has the excision property. 

Proof. We write f~=~ '  tJ f2", where fl" is the excised strictly free domain, and set 

E = E' +E", 

where E' and E" denote the E forms for f l '  and fl", respectively. According to Theorem 

2.4, 2o(f2')<(n/2) 2 if E' takes on negative values. Suppose that u is a null vector for A' 

in Ha(f~). We see by Lemma 2.7 that u does not vanish on ~". It is easy to see that the 

restriction of u to f2" belongs to Ha(f~"); in fact, in the construction of G we need only 

choose a partition of unity for Q which is compatible with the requirements for a 
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partition of unity for fg'. In this case if a sequence in W~(f~) approximates u in H6(~)), 

then its restriction to fg' will approximate the restriction of u to ~" in Hc(fg'). Since Q" 

is strictly free, we conclude that E"(u)>0. Consequently 

E'(u) = E(u)-E"(u)  = -E"(u)  < 0 

and it follows that 20(fF)<(n/2) 2. 

PROPOSITION 2.11. The hemispherical domain and the domain between two 

concentric hemispheres are both strictly free. 

Proof. (1) The hemispherical domain. Making use of Proposition 2.2, we can write 

E as 

+ jdxdy+ - [ U -dx, (2.16) 
Ja~ Y" 

and since E is obviously nonnegative, G can be of the form (2.13). Suppose that A' had 

a null vector u on ff~. Then E(u)=0 and hence all of the terms on the right in (2.16) 

vanish. The vanishing of the first term implies that u=cy "/2. However the surface 

integral in the second terra does not vanish for u of this form unless c=0. 

(2) The domain between two concentric hemispheres. It is convenient to use 

spherical coordinates (0, 0, q~), described in (3.2) with k=0. Using the analysis following 

(3.2) and setting a=n/2 and u=vsin'~20, we obtain from (3.7) the expression 

fo E(u) = D(u)-(n/2)2H(u) = [Io012 sin 2 0+sum of squares] dV+ Iol 2 sin 0 dV. 

Obviously E~>0. IfE(u)=0,  then, as before, u has to vanish and hence g2 is strictly free. 

Next we prove a simple monotonicity property for ;to with respect to domains. 

PROPOSITION 2.12. Suppose f~o and •1 are two domains with ~1C~2o and set 

f~2=g20\(21. / f  g22 is free, then 2j(Qo)~>Aj(g21)for all j. Furthermore if  g20 has the 

finite geometric property and g2 t is not free, then Ao(Qo)>),o(ff21). 

Proof. Let flj denote the union of the eigenvalues of A over both g21 and g22, that is 

of the 2j(g21) and the 2j(f22), ordered by magnitude. Since g20=ff210ff22, 

wl(~'~o)cWl(~~l)q-wl(~~2). I t  therefore follows from the minimax characterization of 

the discrete Neumann spectrum (see Courant-Hilbert [7]), p. 408, that 

~,j(Qo)/> flj. (2.17) 

13-858289 Acta Mathematica 155. Imprim~ le 20 Novembre t985 
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By assumption ~')2 is free so that ,~j(~2)>~(n/2) 2. We conclude from this and (2.17) that 

,~.,'(Qo) ~> ~,j(r 

for all of the eigenvalues in the interval [0, (n/2)2). Since this interval contains the entire 

discrete spectrum (by Theorem 2.1), the first part of the proposition is proved. 

To prove the second part, notice that if ~'~1 is not free, then 2o(Ql)<(n/2) 2. If 

2o(Q0)=(n/2) 2, the assertion is obvious; so we may as well assume that 2o(f10)<(n/2) 2. 

Now 

Ao(Qo) = inf[Do(r162 ~ fi W~(f~o)]. (2.18) 

Since flo is geometrically finite, we may choose q~ in (2.18) to be the square integrable 

eigenfunction of A corresponding to 20(flo), which exists by Theorem 2.4. In this case 

Ao(Qo)=Do(cp)/Ho(~). Clearly tp belongs to both Wl(fll) and Wl(f~2). Consequently 

aj = D j ( ~ )  = {Vq~12dV and bj = Hj(q~) = {q~12 dV, j = 1,2, 

are well defined. We have 

~ o ( ~  = - -  
a~ + a2 
bt+b2 

Since q0 is real analytic, it cannot vanish on any open set; in particular b2>0. Since ~"]2 
is free, aE/b2>~(n/2) 2, and hence 

(_~)2 a l+a  2 al+(rt/2)2b2 
>A0(g20)- bl+b--~2 >I bl+b 2 (2.19) 

Using the extreme members of this relation, we see that 

n 2 

Hence 

- - <  and a lb t+a~b2<a lb l+  bib 2. 
bl 

It follows that 

al+(n/2)2b2 a l > ;Lo( f~ o) >>- 
bl+b 2 b I" 
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By the analogue of (2.18) for f~  instead of g2o, we conclude that 20(f~o)>;~o(t20. This 

completes the proof of Proposition 2.12. 

A similar argument proves 

COROLLARY 2.13. A disjoint union o f  free domains is free. 

The above monotonicity argument shows that when we increase a domain by a free 

domain then the smallest eigenvalue for the new domain is greater than or equal to that 

of the original domain. Still another variant of this idea is contained in the following: 

PROPOSITION 2.14. I f  a domain g2 can be subdioided into disjoint parts g21, if22 . . . .  

such that 2o(fli)~>c for  all i, then ~,o(g2)>-c. 

Proof. For any u in WI(g2), we set 

a,= fo IVul2 dV and bi = fo lul2 dV. 
i i 

By hypothesis ai>~cbi so that 

~ai  
D(u) _ >I c. 

H(u) ~ bi 

Since 2o(f~)=infD(u)/H(u), taken over all u in wl(~')), the assertion of the proposition 

follows. 

3. Lower bounds for 20(~) 

In this section we find lower bounds for the smallest eigenvalue of A for a variety of 

domains. In particular we characterize large classes of free domains, some of which 

have the excision property described in Definition 2.9. 

Again we work with the upper half-space model H n+l and with domains f~ having 

the finite geometric property. The boundary of Q is made up of a finite number of 

geodesic hyperplanes; these are either hemispheres with their centers in B or hyper- 

planes parallel to the y-axis. 

Two intersecting subspaces in R" will be called orthogonal if any two vectors, one 

taken from each subspace, which are orthogonal to the intersection are also orthogonal 
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to each other. We call the  translate of a k-dimensional subspace a k-flat. A k-flat 

intersects a sphere orthogonally if and only if it contains the center of the sphere. 

Definition 3.1. A set of spheres and hyperplanes in R" is said to be k-coplanar if 

there is a k-flat which intersects all of them orthogonally, or if the set can be brought 

into such a configuration by an inversion in R". We shall also say that a set of geodesic 

hyperplanes in//~+~ are k-coplanar if their intersection with B is a k-coplanar set of 

spheres and hyperplanes in B. 

Suppose now that fl is the fundamental domain of a discrete subgroup F of 

isometrics generated by the set of reflections about the sides of Q and suppose further 

that these sides are k-coplanar. Since the action of a reflection leaves invariant any line 

containing the center of the reflection, each of these reflections leaves invariant any 

(k+ 1)-dimensional fiat intersecting B in the k-fiat orthogonal to the sides. It follows that 

the limit set A of F is contained in the k-flat and hence that the Hausdorff dimension d 

of A is ~<k. According to the theorem of Patterson and Sullivan, mentioned in the 

introduction, 

20(Q) = 20(r) = 6(n-6)  I> k(n-k), (3.1) 

provided that 6~n/2. 

We now show that the relation (3.1) holds for any domain bounded by a k-coplanar 

set of hyperplanes. As a by-product we are able to give an explicit construction for a 

class of domains for which A' has a null vector; according to Theorem 2.10 these 

domains have the excision property. Another consequence of this result is that all 

domains bounded by [(n+4)/2] or fewer sides are necessarily free; here [c] denotes the 

greatest integer in c. 

THEOREM 3.2. I f  ff~ is bounded by a k-coplanar set o f  hyperplanes, then 

2o(ff~) I> k(n-k). (3.1)' 

However ~ is free i f  k= [n/2]. 

Proof. We may suppose that the k-flat orthogonal to the sides of ff~ is spanned by 

the first k coordinate axes. In this case the sides of f~ are either of the form 

k 
~aix i=b,  
i=1 
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or hemispheres with centers in the k-fiat. In either case these hyperplane sides possess 

cylindrical symmetry about the k-flat; and the domain Q can be obtained by rotating a 

(k+ 1)-dimensional cross-section A about this fiat. This suggests that we replace the 

remaining coordinates by spherical coordinates: 

Y = 0 s in  0 ,  

x .  = 0  cos 0 sin ~/91, 

x._~ = 0 cos 0 cos tp~ sin ~02, (3.2) 

~ 

Xk+ l = O COS 0COS q91... COS f P n - k - l  "~ 

the range of  0 is [0,Jr/2] if n - k > l  and [0,z0 if n - k = l .  The parameters for A are 

Xl . . . . .  Xk and 0; the parameters for the rotation of A are 0 and the q0's. The estimate 

(3.1)' is obtained from an integration by parts with respect to the 0 variable. We set 

x '=(x l  . . . . .  Xk). 

We note that the non-Euclidean volume element in terms of the coordinates (3.2) is 

given by 

d V  = cos "-k-I 0. cos "-k-2 q01 ... cos q0._k_ 1 

the H and D forms become 

n(u) = f lut  dV, 

dx '  do  dcp l . . . dcP ,_k_ l dO 

0 k+~ sin n+! 0 

D(u)= f [[uol 2 sin 2 0+ sums of  squares of  other derivatives] d r .  

The essential 0 integrations in H and D are 

H ~  f u 2 cosn-k-1  0 
I I sin,+!0 dO 

f cos,-k-i  0 dO. 
D -  lu~ sin "-! 0 

(3.3) 

(3.4) 

(3.5) 

Setting 

u = v sin a 0, (3.6) 
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these become 

H ~  f 2 c o s n - k - I  0 - -~ 

V sinn+l_2aoaU 
(3.5)' 

D -  2cos 0 2 2cos 0 2 COSn-k0 dO. 
[vo[ sinn_l_2a0 + a  Iol sinn+l_2aO+aOolVl sinn_2~ 0 

We need only consider  a dense set of  u 's;  so we may assume that u vanishes near  0 =0  

(and for n-k=  1 also near  0=:r).  Integrating the last term in the integrand for D by 

parts, we get 

D ~  iv012 cos ~-*-10 § 2 a(n-a) +a(n-k) dO. (3.7) 
sin . -  1-2~ 0 sin~+ !-2~ 0 sin ~- l-z~ O/ 

Setting a=k, D becomes  

D = [Iv012 sin 2+2k 0 + s u m  of  squares of  derivatives ] dV+k(n-k) H 

>- k(n-k) H, (3,8) 

from which (3.1)' follows. In particular for  n even and k=n/2, ,~o(f~)~>(n/2): and f2 is 

free. For  n odd and k=(n-  1)/2 we obtain a slightly bet ter  estimate f rom (3.7) by setting 

a=n/2, namely 

D=f[lVol2sin"+20+sumofsquares]dV+(n/2)2H+n/4flvl2sinn+2OdV 

>. (n/2)ZH, (3.8)' 

f rom which it follows that f2 is free when k=(n-1)/2. 

COROLLARY 3.3. I f  the (k+ 1)-dimensional cross sectional area of A is finite, then 

u = sin k 0 (3.9) 

is the eigenfunction of  A corresponding to 2o(f2)=k(n-k) when k>n/2, and the null 
vector for A ' when k=n/2 and n is even. 

Proof. For  u defined as in (3.9), the function v, defined in (3.6) with a=k, is a 

constant.  It follows from (3.8) that 

D(u) = k(n-  k) H(u); 



THE LAPLACIAN FOR DOMAINS IN HYPERBOLIC SPACE 191 

and, if H(u) is finite, that u minimizes the ratio D/H. For k>n/2, it is easy to see from 

(3.5)' that u belongs to W~(f2); so it follows that in this case u is the eigenfunction for A 

corresponding to 2o(Q)=k(n-k) .  

When n is even and k=n/2, u is no longer in WI(Q); in fact both H(u) and D(u) are 

infinite. However Theorem 3.2 does show that E~>0. According to Lemma 2.6, in order 

to show that u is a null vector of  A',  it suffices to prove that u belongs to He  and that 

E(u)=0. To this end we construct a sequence (uj) of smooth functions, vanishing near 

B, such that 

(1) uj---,u in the G-norm, 

(2) E(ufl--~O. 

Choose X in C~ so that 

and set 

10 for s > - I  
Z(s) = for s < - 2  

forn 2 

(lo 0  
for n = 2. 

---j--j x 7 / 

The desired approximating sequence is 

uj = ~pj<0) sin n/20. 

Clearly this sequence belongs to He  and if it converges in He  then it must converge 

to u. Since E~>0 we can choose G as in (2.13). In this case G(uj-ul)=E(UTUl)<~ 

2[E(ui)+E(ut)] f o r j  and l sufficiently large. From (3.8) we see that 

E(uj) = ~1 f la0 V)jl 2 COS(n-2)/2 0 sin 0 dO 

_<cfsinO (1) - - g - d O < -  O , 

since the range of  integration is only over the interval (exp (-2j) ,  exp (- j)) .  This implies 

(1) and (2) above. 

If  we now apply the excision Theorem 2.10, we get 

COROLLARY 3.4. For n even, suppose that the boundary hyperplanes o f  f2 are 

n/2-coplanar and that the (n/2+ 1)-dimensional cross-sectional area o f  A is finite. Then 
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no subdomain ~ '  o f  D, which is obtained by removing an arbitrarily small hemisphere 

at infinity, is free, 

For example suppose n--2 and that f~ lies between two parallel vertical planes and 

exterior to a hemisphere tangent to both of these planes. In the notation of Theorem 

3.2, A can be described as - l < x ~ < l  and Q > ~ .  In this case the bounding 

hyperplanes of fl are clearly 1-coplanar and the area of the cross section A is finite. It 

follows from Corollaries 3.3 and 3.4 that A' has a null vector and that fl has the 

excision property. This result was first proved by Akaza [2] by estimating the Haus- 

dorff measure of the limit set of the associated Schottky group. 

More generally we have 

PROPOSITION 3.5. There exist domains with [(n+6)/2] sides which are not free. 

Proof. We begin by constructing a domain satisfying the conditions of Corollary 

3.3 with k=[(n+l)/2]. Let S denote a (k+l)-sided simplex in the unit ball of R g. 

Denoting the coordinates of R k by x'=(Xl . . . . .  xk), the desired Q can be described in 

terms of x' and the coordinates (3.2) as 

x' in S and [x'12+02>2. (3.10) 

Obviously ~ has (k+2) sides. The cross section A is characterized for any fixed 0 and 

tp's by (3.10). It is clear from (3.3) and (3.10) that the area of A is finite. 

When n is odd, it follows from Corollary 3.3 that u, defined as in (3.9), is the 

eigenfunction of A corresponding to the eigenvalue 

n+ l  / n+ l~  hE-1 

: 4 

Since A0(~)<(n/2) 2, Q is not free. When n is even, k=n/2 and it follows from Corollary 

3.3 that u, defined in (3.9), is a null vector for A' in Q and hence by Corollary 3.4 that 

has the excision property. If  we excise any small hemisphere with center in B we obtain 

a subdomain with (n+6)/2 sides which is no longer free. 

We show below that any domain with [(n+4)/2] or fewer sides is free. For this 

purpose we need a characterization of k-coplanar collections of spheres. 

THEOREM 3.6. For k+2 spheres in R TM, only the following (not mutually 

exclusive) configurations occur: 

(1) The spheres are k-coplanar, 
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(2) The spheres have exactly one point in common, 

(3) The interiors o f  the spheres have a nonempty intersection. 

So as not to interrupt the flow of ideas we apply this result to prove 

THEOREM 3.7. I f  Q is a domain in I ~  +1 with at most [(n+4)/2] sides, then f2 is 

free. 

Proof. We may suppose that the geodesic hyperplanes do not contain oo. In this 

case ~ consists of the common part of the exteriors of at most [(n+4)/2] hemispheres, 

whose intersections with B are S "- l  spheres. If  these spheres are [n/2]-coplanar, then 

the result follows from Theorem 3.2. This is trivially the case if there are less than 

[(n+4)/2] spheres. If they are not [n/2]-coplanar then, according to Theorem 3.6, they 

either meet in a single point or their interiors have a nonempty common part. 

If the spheres meet in a single point, we map this point, by an inversion, into oo; 

the sides of [2 are transformed into hyperplanes parallel to the y-axis. To show that the 

transformed s is free, we proceed as before with an integration by parts; this time we 

use Proposition 2.2 with tp=l. The resulting expression is 

>I (n/2)2H(u). 

lu[Z dV 

(3.11) 

If the interiors of the S"-I  spheres in B have a common point, we map this point 

into oo by an inversion. In this case fl goes into the common part of the interiors of 

[(n+4)/2] hemispheres in/-/~+J. Note that if (x,y) belongs to the interior of a hemi- 

sphere, then so does (x, fly) for all fl in the interval [0, 1]. Consequently the transformed 

f2 also has this property. We now perform the same integration by parts as in (3.11); 

this time the boundary term in (2.7) does not vanish. The result is 

7 J  ~ 
>1 (n/2 )2 H(u); (3.11)' 

and again f~ is free. 

Proof  o f  Theorem 3.6. In the case k= 1, the theorem deals with three circles in R E. 

If two of these circles have no common point, then they can be mapped by an inversion 

into two concentric circles. It is now clear that the centers of all three of the trans- 
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formed circles lie on a line and hence that they are 1-coplanar. Next suppose that two 

of the circles are tangent to each other. Mapping the point of tangency into o0 (again by 

inversion), the two tangent circles become parallel lines. If the third circle is trans- 

formed into a line, then all three meet at oo and only there; this is case (2). If not, the 

perpendicular to the parallel lines through the center of the third transformed circle 

establishes the 1-coplanarity of the three circles. 

Finally if two of the circles intersect in two distinct points, we map one of these 

points into oo. The two intersecting circles become two intersecting lines, which meet at 

the point Q. Suppose that the third circle transforms into a line. If this line contains Q, 

then any circle with center at Q intersects the three lines orthogonally and the set is 1- 

coplanar. If this line does not contain Q, then the three lines meet only at ~ and the 

configuration is of type (2). Otherwise the third circle transforms into a circle which 

either (i) goes through Q, (ii) contains Q in its interior, or (iii) has Q in its exterior. It is 

clear that (i) corresponds to case (2) and (ii) to case (3). If (iii) occurs, we construct a 

fourth circle C centered at Q which intersects the transformed third circle orthogonally. 

Since C obviously meets the intersecting lines orthogonally, this establishes the 1- 

coplanarity of the given three circles. 

We now proceed by induction. Suppose that the result is true for (k+ I) spheres in 

R k. Then given (k+2) spheres, Sf, k Rk+l .... Sk+ 2, in we begin by considering the first 

(k+ 1) of them. Their centers span a k-fiat F. We set 

Ski-' = S~ N F. 

If the Ski -1, i~<k+l, are (k-1)-coplanar ifl F, then the Ski, i~<k+l, will also be (k-1)- 

coplanar in Rk+l; this follows from the fact that an inversion about a point in F leaves 

F invariant. Hence we may suppose that the S~, i<~k+ 1, intersect a (k -  1)-flat orthogo- 

nally, ff  we now take the flat spanned by this (k-1)-flat and the center of S~+ z, we 

obtain a k-flat which intersects all (k+2) spheres orthogonally; i.e. the original set of 

spheres is k-coplanar. 

Suppose next that the S~ -~, i<~k+ 1, are not (k-1)-coplanar. Then by the induction 

hypothesis either (2) or (3) holds, ff  (2), then the Ski -~, i<~k+ 1, have exactly one point, 

say Q, in common. Since the centers of these spheres lie in a k-flat F, the S~, i<~k+ 1, 

will also have only the point Q in common. If S~+z also contains Q, then we are again in 

case (2) for the entire set of spheres. Otherwise we argue as follows: Take for F the k- 

dimensional subspace (xk+l=0) of R T M .  Mapping Q into ~ by an inversion, the S~, 
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i~<k+l, are transformed into planes Pi, i~<k+l, parallel to the Xk+l-axis. Let Sk+ 2 

denote the transformed Skk+2 and denote its center by (c~ . . . . .  ck+ 0. Then the hyperplane 

Xk+l=Ck+l intersects all of the P ,  i<~k+l, as well as Sk+ 2 orthogonally and it follows 

that the Ski, i<~k+2, are k-coplanar. 

Finally suppose that condition (3) holds for S~ -~, i<.k+ 1, but that (1) and (2) do not 

hold. Then their interiors have a nonempty intersection. The same holds true for the 

interiors of the Ski, i<~k+l. In fact even more is true; we show below that the S~, 

i<.k+ 1, intersect in some S t of dimension l~>0. Now if S~+ 2 meets S t in a single point 

then we are in case (2). If it meets S t at two points, then the line segment joining these 

two points is interior to all (k+2) spheres so we are in case (3). 

If S~+ 2 does not meet S t, we proceed as follows: Map one point of S l into oo by an 

inversion and let Q denote the transform of another point of S t. The Ski, i<.k+ I, map 
k into hyperplanes Pi, i<~k+ 1, which intersect at Q and Sk+ z maps into a sphere Sk+ 2 

which does not contain Q. Since one of the sectors eminating from Q is common to the 

interiors of the Pi's, if Sk+2 contains Q in its interior we see that the interiors of all of 

the original (k+2) spheres have a nonempty intersection; so we are in case (3). If Q is 

exterior to Sk+2, then join Q to the center of Sk+2 by a line L. It is easy to see that all 

points on L exterior to Sk+2 are centers for k-spheres intersecting Sk+2 orthogonally. 

In particular the k-sphere with center at Q will intersect Sk+2 and all of the hyper- 

planes Pi, i<_k+l, orthogonally; so in this case the original set of spheres are k- 

coplanar. This completes the proof of Theorem 3.6 modulo the following lemma. 

LEMMA 3.8. Suppose the spheres Ski, i~<k+l, in R k+l which are neither (k-1)- 

coplanar nor have exactly one point in common, have interiors which have a nonempty 

intersection; then they have an S t, l~O, in common. 

Proof. The assertion is obvious for k= 1 where two such intersecting circles have 

an S o intersection. Suppose it is also true for k -  1. Let F denote the k-flat containing 

the centers of all of the S k spheres. Then the interiors (relative to F) of the lower 

dimensional spheres 

Ski-l=SkinF , i<~k 

also have a nonempty intersection. If they were (k-2)-coplanar, then, as we have seen 

above, the entire set of k+ l  spheres would have been (k-1)-coplanar. A similar 

conclusion can be reached if the S k-l, i~k ,  have exactly one point, say Q, in common. 
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Since Q will also be the unique point that the S~, i<~k, have in common, it follows by 

assumption that Q does not lie in S~_11. Let Fo denote the (k-1)-flat containing the 

centers for the Ski -1, i<~k. We may set F = R  k and Fo=(Xk=O). Mapping Q into oo, the 

S~ -l, i<~k, go into hyperplanes parallel to the Xk-axis and S~_[ goes into another sphere 

with center, say at (c I . . . . .  Ck). The hyperplane xk=c k is a (k-1)-flat orthogonal to all of 

the S~ -l, i<~k+ 1. But this again means that the Ski, i<~k+ 1, are ( k -  1)-coplanar, contrary 

to the hypothesis. 

Thus the induction hypothesis applies to the set S~ -~, i<~k. They therefore have an 

S l, l~>0, in common. The Ski, i<~k, will intersect in an S t+~ such that SI=s l§ NF. 

Suppose now that k Sk+ j links two distinct points of S l. Then S~+~ and S I+~ will intersect 

and, since only spheres are involved, they will intersect in some S i, j~>0, as asserted in 

the lemma. 

On the other hand if S~+l does not link any two points S t, then either it contains 

only one point of S t or it is disjoint from S t . Since the centers of all of the given spheres 
k sl+l. k sl+l lie in F, the same is true of  Sk+ ~ and The hypothesis rules out Sk+ ~ and 

meeting at a single point. There remains to consider only the case where S~+ 1 is 

disjoint from S l+i. This situation is analogous to one treated at the end of the proof of 

Theorem 3.6 and we may again conclude that the k+ l  spheres are (k-1)-coplanar, 

which is ruled out by the hypothesis of the lemma. This completes the proof of Lemma 

3.8. 

According to Theorem 3.7, any domain ~ bounded by [(n+4)/2] or fewer sides is 

free. We show in Section 5 that regardless of the number of sides, ~ will be free if its 

sides are 'sufficiently well separated'. 

Next we establish lower bounds for 20(f~) for Schottky domains, that is for 

domains bounded by nonintersecting hyperplanes. Our approach is quite straightfor- 

ward. We subdivide fl into disjoint parts f~0, t~l, ~22 .. . . .  for which the 20(f~i) have a 

common lower bound c>0. We then apply Proposition 2.14 to obtain the inequality 

20(f~)~>c. As one might expect with such a crude method, the results are reasonably 

sharp only for rather special configurations. 

Let  P1, P2 ....  denote the geodesic hyperplanes bounding the Schottky domain g2 

and set Si=PinB. W e  may as well suppose that none of the Pi's contains o0, in which 

case the Si are all ( n -  1)-spheres. We enclose the Si's in disjoint polyhedra or, in some 

cases Si itself, denoting these n-dimensional regions by T~, T2 . . . . .  For i>0 we set 

f2i = the region above Ti common to f~. (3.12) 
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The so defined Q/'s are disjoint. Finally we set 

Q0 = Q \  IJ Qi. (3.13) 
i>0 

The boundary of Q0 is parallel to the y-axis. It therefore follows by Proposition 2.2 

that Qo is free. As for the other Qi, it is obvious that if we choose each of the T; equal 

to Si, then the Q; will be disjoint. Hence if we can find a common lower bound greater 

than zero for the 2o(Q;) when the Ti are spheres, then this will give us a lower bound for 

20(g2). Our next result makes use of such a bound when n~>3. Since the map 

(x, y)---~(2x, 2y) is an isometry, it follows that ;to(Q;) is independent of the radius of S;; 

so we can, without loss of  generality, take the radius to be 1. 

THEOREM 3.9. For each n>~3 there is a d,>O such that for any Schottky domain Q 

in H "+l, lo(Q)1>d,. 

Remarks. For  n=  1, that is for hyperbolic two space, there exist Schottky domains 

of finite area. An example is a triangle with zero angles at each vertex; this is a 

fundamental domain for a Hecke group (see Section 6). For  such a domain ;to(Q)=0. 

For  n=2,  that is H 3, we have not been able to determine whether or not an 

absolute positive lower bound exists. We will discuss this question again, from a 

different point of  view, in Section 6 where ;to(Q) is numerically computed for a number 

of domains. 

It follows from the above discussion t h a t  Theorem 3.9 is an immediate conse- 

quence of 

PROPOSITION 3.10. Let Q be the cylindrical domain in H "+1 lying above the unit 

sphere S; that is 

Q = {(x, y); Ixl < 1, IxlZ+yZ> 1}. 

Then for n>-3, 2o(Q)~d,, where 

dn=(n-2)Z[3c.{l+ct((6+n~)C.+nl~22c2.)}]-! ,  

n 3v/ nZ-4(n-2)2/3c. 
c.=(4/3)" and a = ~ -  

2 2 

(3.14) 

For n=2, 2o(Q)=0. 
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Proof. It will be convenient to use cylindrical coordinates in Hn+l: (O, O, y) where 

0>0,  y>0 and 0 parametrizes S. In this case 

ds 2-do2+O2dOz+dy2 and V'-g - - 0 " - 1  y2 yn+l (3.15) 

the quadratic forms H and D become 

H(u)=fa,ul2~dodOdy (3.16) 

and 

fo( O(u) = 1%12+ luol2 +lu~l 2 do dO dy. (3.17) 

We note for n >  1 that 

f0 i f V G ~  0n-1 v o l  (~"~) = O) n yn+l  dy do 

('On f0 ! 0 n-1 
= n (1--O2)  nrz d o  = oo; 

here to,, denotes the Euclidean area of S "-~. Consequently the constant function is not 

in L 2. Now for n=2, a simple calculation shows that u~=y ~ lies in W~(f~) for all e>O 
and that 

D(u~) = e2H(u~). 

Hence in this case ;Lo(~)=0. If 0 were an eigenvalue of A with eigenfunction ~, then 

D(cp)=O implies that q~=constant. Since an eigenfunction is by definition square integra- 

ble, this is impossible. Thus when n=2, 0 lies in the continuous spectrum of A over ~ ;  

this is in contrast with the geometrically finite case where 0 cannot be in the continuous 
spectrum. 

Next we show that for n~>3, 2o(~) can be effectively bounded from below. We 

begin by subdividing s into two parts: 

s ~/ 1-4((9-1) 2 } 
2 2 ' 

f12 = f a N f l r  
(3.18) 
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yd 

L2 L1 . . .  

4/5)( ~ (1,1/2)! 
I 

0 

Fig. 3.1 

~'~1 is obtained by revolving in 0 the relevant portion C1 of the disk of radius 1/2 

centered at (l, 1/2) shown in Figure 3.1. We denote by LI the bounding arc of C1 
extending from (3/5, 4/5) to (1, 1). Next we prove an essential estimate for functions 

defined on C1. 

and 

where  

LEMMA 3.11. For  u in Wl(C1) 

Hi(u)  <~ e ,  Di (u)  (3.19)' 

fL lU[ 2- -~  ~ (n--2) e,, D[(u), 

n;(u)= lul dealt, 
1 

fc n-I D~(u) = (lupl2+lu,lZ) ey-~_~ dody 
1 

and 

(3.20)' 

(3.21)' 

1 4 n 
e , -  (n_2)2 3,_1. (3.22)' 

Proof .  We may assume that u vanishes near the cusp at (1,0). We make a (2- 
dimensional) conformal change of variable: 

z = p+iy---~ ~ = ~+irl = - I / ( z -  1); 

mapping Ct onto the truncated strip: 

V= {(~, r/); 0 < ~ <  1/2, r /> 1}. 
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The inverse map is given by 

e _  
72+r162 

~2+/]2  ' Y = ~2+~]2" 

Since the transformation is conformal, it is easy to see that Hi and Di become 

and 

,,,(u,: f u,~(~'+~' :t ~-.~~ 

D'l'(u) = fv(lu~12 +luo]2) ( rl2-F ~2-~ ) n-l d~ dr I. 

Fixing ~, an integration by parts gives 

f~uu,lrln_2drl=_lu(~)l 2_ (n~2)fl| 

Applying the Schwarz inequality to the left member gives 

fl ~ ill ~ ~ ~,,~ 
1"(1)1~+2 n-22 lu12'/"-3d'/--< lu.12q "-I d,7 J, lul2,1"-3d.lJ , 

from which it follows that 

~,u,~ ~o(~t~f~,u~ ,~ 
Now for (~, r/) in V i 

r]~< 4 ~2..~_~2 ~ and ~>~2. 
3 q 

Combining this with (3.26), we get 

f ~ , u , ~ ( ~ + ~ o t ~ , ~ o r  ~ ~ ~ r  ~ .2 L lul2~"-3drl~.-~-2J Jl lu"12""-'d" 

( 4 ~"-' f| ]2(rl2+e2-~"-'dq. 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

2 2 2 by (u~+u~) and integrating the resulting expression with respect to Finally replacing u~ 

~, we obtain 
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3 
H'~(u) <~ e.D'~(u), % - (n_2)ic . .  (3.19)" 

Starting with (3.25), an analogous string of inequalities yields 

f0 1/2 ]u(~, 1)12d~ <~ (n-2)  e,D'((u). (3.20)" 

Since d~/rl=do/y (here do2=dQ2+dy 2) the inequalities (3.19)" and (3.20)" transform 

back into (3.19)' and (3.20)", respectively. This concludes the proof of Lemma 3.11. 

We now integrate (3.19)' and (3.20)' with respect to 0 and obtain for v in Wl(fll) 

Ju I Y 

<<.e~ fQ (]vo]2+~lVol2+lUylZ) O@_~ dodOdy (3.19, 
1 y n  _ 

=-- e,,Dl(V ). 

Since Q/y~<l on L1, we also get 

f~ 0n-I , Ivl 2 Y" dodO <- (n-2)  e.Dl(v), (3.20) 

where 01 denotes the surface generated by LI. 

Next we derive an inequality for the analogous forms H2 and D2 defined o n  ~~2. 

Again we start with an integration by parts: 

~" U fy2o-n,, 2dy= f ( ll2 +(2 2 U2 12 (U2)y~ 

/~2 

= f dY-a  
Y yeo 

here a denotes the surface generated by rotating the arcs L1 and L2 depicted in Figure 
3.1. Multiplying through by Qn-l, rearranging terms and integrating with respect to Q 

and 0, we get 

f~  2 ^n-I D2(u)~> (1%1 +lurl2) ey-~_~ dQdOdy 
2 

14-858289 Acta Mathematica 155. Imprim~5 le 20 Novembre 1985 



202 

It follows that 

where 

We now choose a so that 

that is we take 

Then 

R. S. PHILLIPS  AND P. S A R N A K  

1 1 2  
U 2 lU01 n - 1  ' :Io[ +T]~ 

+(na'a2)~ [u[2~dodOdy-afalu[2LnldpdO. 
J ~ 2  

(na- a 2) Hz(u) ~< D2(u) + al(u), 

f0 n--I l(u)= lul2P~--dodO. (3.27) 

na-a 2= 1/en, (3.28) 

n V'nZ-4/en n 
�9 (3.28)' a = 2 2 3c n 

D2(u ) ~> 1 H2(u )_  a/(u). (3.29) 
e n 

Our aim is to find a lower bound for ;to(~). To this end we pick an e>2o(t)). Then 

for some q~ in wl(f~), normalized so that H(q~)= 1, we will have D(~)<e.  For  such a qg, 

e > Dl(qT)+D2(q~ ) I> 1 (H~(cp)+H2(q~))_al(cp) = 1 -aI(q~). 
e n e,~ (3.30) 

To complete the proof  we need to estimate l(q0) from above by D(q0). We already have 

in (3.20) a suitable bound for the surface integral over 01. We now use this inequality to 

obtain a bound for the analogous surface integral over 02 obtained by rotating L2. 

We begin by parameterizing L~ by Q: 

1 § X/ 1 - 4 ( 0 - 1 )  2 
LI:Y= 2 2 (3.31) 
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To each point (O2, Y2) of L2 we correspond the point on L1 with the same y-coordinate. 

Then Y2 is given by (3.31) and 

02=[ �89 ~/ I-4(Q-1)2 ] '/2 2 " (3.31)' 

A tedious but straightforward calculation shows that 

1 <. doE ~ 2 for 3/5 <~ 0 <~ 1. (3.32) 
Idol 

Next we integrate duma over broken-line paths, F(0), with vertices: (QE, Y), 

(02,49/3), (Q,4O/3), (0,Y); here y and 02 are given by (3.31) and (3.31)', respectively. 
The Euclidean length ofF(0) is less than or equal to 2 for e in [3/5, 1]. As a result of this 

integration we have 

U(02, Y) = u(o, Y)-- ( ~ do, 
Jr(o) ao 

where 

(e) do Jr ~02 

Squaring and applying the Schwarz inequality to the line integral, we get 

fr du2 lu(ovYU)12<"2[u(o'Y)12+4 do do. (3.33) (o) 
It is easy to see that eJy<-.4~/3rl on F(e). Hence multiplying through by (eJy) "-1 

in (3.33) and integrating with respect to e2 yields 

f 21u(o2,y)12( )n ldo2<.2(4)n-lfLlu(O,y)l,( f ' do2 
de ep 

+4 (4)'" f fa (lu012+ tu,I ~) \y](~ ~-' max \[de(ldozl' 1)do dy, 

where A is the region in the (e,y)-plane below F(1) and above L1 and L2. Finally, 

making use of (3.32) and integrating with respect to 0 gives for (P(e, 0, y) 

~i Iqp[2(Q)n-ldodO <~3(4)n fal Iqgl2(-Q)n-ldodO+6(3)nh(~)" 
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Since y>4/5 on L, we get, on combining this with (3.20): 

l (3.34) 
~ ( 1 + 3 c , ) 5 ~ 3  c, Dl(rp)+6c, D(rp ) 

Inserting this into (3.30) and making use of (3.27), we find that 

where c,  and a are defined by (3.14). This is the desired lower bound for io(ff~). 

Further insight into Schottky domains in H "§ can be obtained by considering the 

Hecke domain 

Qo = {(x,y); lxil < 1 for i<.n and Ix12+y2 > 1}. (3.35) 

This is the fundamental domain of the group generated by the translations: xi---~xi+2, 

i<~n, and the inversion through the unit sphere centered at the origin. 

It is easily verified for the prism domain 

Qoo = {(x,y); Ix;l< 1 for i<~n}, (3.36) 

that Qoo is free (by Proposition 2.2) and that u=y n/2 is a null vector for A' on floo. 

Hence by Theorem 2.10, we have 2o(flo)<(n/2) 2 and, by Theorem 2.4, 2o(~2o) is an 

eigenvalue for A. On the other hand since vol(~2o) =oo, we infer that lo(t2o)>0. In 

Section 6 we present numerical evidence indicating that 2o(Qo) is close to 0.66 when 

n=2. 

Now for any Schottky domain f~ for which the hemispherical sides can be enclosed 

in disjoint prisms isometric to ~2oo, it follows by Proposition 2.14 that 

~(t2) ~> 2o(f~o). (3.37) 

In particular this will be true of domains bounded by an infinite r-lattice of hemispheres 

of radius 1/2, centered at the points 
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{(nl . . . . .  nr, 0 . . . . .  0); niE Z}, 

and by the hyperplanes xi= + 1/2, r<i<.n. We call such a domain an r-lattice Schottky 

domain. 

THEOREM 3.12. f ig2'  is an r-lattice Schottky domain then 

~o(g2') = ~o(g2o). (3.38) 

Proof. We note that the domain g2o is invariant under the reflections xi--~-xi, i<~n. 

Any eigenfunction of A over f~o goes into another eigenfunction under such a reflec- 

tion. If we start with the base eigenfunction q0 and sum over all of these reflections we 

obtain a nonzero eigenfunction with the corresponding symmetries. Since there is only 

one base eigenfunction, it must have had these symmetries to begin with. We normalize 

~p so that H(q~)= 1 and then continue ~p periodically over the r-lattice. 

We obtain in this way a smooth function ~p, defined over g2', which satisfies the 

equation 

A~ = ~o(g2o) ~P. 

To make it square integrable we multiply it by a smear function XR in C~176 

{~ for Ix, ~<R, 
ZR(x) = for Ix[ > R + 1. 

The function 

~pR(w) = xR(x) W(w) 

satisfies the relations 

where c(r)=ogJr and 

H(~R) = c(r) Rr +el(R), 

D(~pR) = c(r) Ao(g2o) Rr + e2(R), 
(3.39) 

le,(R)l<.const.R r-1 for i =  1,2. 

Since 2o(Q')<~D(~R)/HOPR), it follows that 2o(fl')~<2o(g2o) and this together with (3.37) 

proves the assertion of the proposition. 

We apply Proposition 3.12 to obtain another proof of a result due to Beardon 

(Theorem 9 of [5]). 
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T y 
~ R n 

Cl C2 Cm 

Fig.  3.2 

COROLLARY 3.13. There are nonfree Schottky domains with a finite number o f  

sides in a hyperbolic space o f  any dimension. 

Proof. Suppose that instead of the r-lattice Schottky domain considered above, we 

had a domain fg' defined by the finite subset of these hemispherical sides contained in 

the support ofxR. Then the relations (3.37) and (3.39) continue to hold. It follows that 

20(f20 can be made arbitrarily close to ~.o(ff2o) by enlarging the sublattice of sides. 

Remark. A similar analysis applies if we replace fl0o in (3.36) by any other domain 

whose cross-section is a fundamental domain for some crystallographic subgroup 

acting on R". For a hexagonal lattice with deleted inscribed hemispheres, we found 

numerically that 20=0.510_+0.002. 

It is also possible to obtain a lower bound for ).0(f~) for all Schottky domains 

whose bounding hyperplanes are uniformly separated. To make this more precise we 

define for each point p in B n ~ a quantity r(p) which depends on the shape of f~ 

viewed from p. We use the upper half space model to define r(p). Mapping p into oo by 

a non-Euclidean motion, the domain f2 and the faces Pj. go into f~' and Pj, respectively. 

Let Sj denote the intersection of Pj with R n. Thus the Pj are (n-1)-spheres whose 

(Euclidean) radii we call rj (see Figure 3.2). 

Let dj. be the Euclidean distance in R" from the center cj of Sj to the nearest sphere 

S'k, k4=j. Although rj and dj depend on the choice of the mapping taking p into oo, the 

ratio rj/dj does not; i.e. rfldj is invariant under motions of H "+l which fix oo. Since the 

spheres Sj are external to each other, it follows that rj/dj < . 1. We define r(p) to be 

Finally we set 

r(p) = max [(rfldj), j = 1 . . . . .  m]. (3.40) 

r ( ~ ) =  inf r(g). (3.41) 
pE~NB 

The quantity r(Q) measures the minimal separation of the bounding hyperplanes of 
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Q. In general r(f~)~<l; if the number of  sides is finite then z(Q)= 1 if and only if f~ has a 

cusp. 

THEOREM 3.4. For all Schottky domains Q c H  "+1 with r(~2)<c<l ,  there exists a 

constant e , > 0  such that 

;t0(~) I> e,.  (3.42) 

Proof. If  r (Q)<c,  then Q can be mapped into Q' with faces Pj such that for 

Sj=PjnR" with center at cj, radius rj and minimal distance dj from cj to S'k, k~=j, we 

have 

rj/dj < c (3.43) 

for all j .  In this case 

Set 

dist (cj, Ck)>~ 1 [(r~+dk)+(rk +d~) ] 
rj+rk ( 1 )  

> 2 1+ . 

(3.44) 

Then the spheres S)' with centers at cj and radii r)' do not intersect. Hence if we use the 

same approach as in the previous two theorems, we see that it is enough to prove 

PROPOSITION 3.14. Denote by ~ and t) the domains 

if21 = {(x,y); Ixl< 1} 

Q = {(x, y) 6 if21; IxlZ+y 2 > a 2} 
(3.45) 

where a < l .  Then there exists an e , > 0  such that 

20(Q) t> e,. 

Proof. Since neither f ~  nor f l  have the finite geometric property we cannot use 

the argument in Theorem 3.12 directly. However we can construct a polyhedron T in 

R" containing <lxl<a> in its interior and which is contained in the interior of <lxl< 1 }. 

Setting 
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~0o = the region above T 

~0 = {(x, y) 6 ~00; [xI2+Y 2 > a2} �9 

These domains have properties similar to their counterparts in the proof of Theorem 

3.12 and it follows as before that there is an e ,>0 such that ~,o(~"]o)~e n. Since the sides 

of f l \ Q o o  are parallel to the y-axis, Proposition 2.2 shows that f2\ t )oo is free. Since 

f~=(f2\~oo) 0 t)o, it follows from Proposition 2.12 that 

~o(Q) I>)~o(Qo) I> e,, 

as desired. 

4. Continuity 

In this section we study the dependence of the spectrum of A on the domain ft. 

Throughout we assume that fl is geometrically finite. We shall use the following 

concept: 

Definition 4.1. Let f2cR m be a domain. We say that the two Riemannian metrics g 

and g on f2 are K-quasi-isometric if for each x 6 fl and ~ 6 Tx(~) we have 

K-l  gx(~, ~) <- gx(~, ~) <- Kgx(~, ~) (4.1) 

(uniformly in x and O. 

It follows from this definition that if 7(t), a<.t<.b is a curve in Q, then 

g-v2l~(y) <~ !~(7) <- Kl/2l~(F) 

where 1(7) is the length of 7. Thus locally the distance functions dg(x, y) and d~(x, y) 

satisfy 

K-l/2 dg(x, y) <~ d~(x, y) <- Kl/2 dg(x, y). (4.2) 

For the cases which are of interest to us (f2, g) and (Q, ~) are of constant negative 

curvature and also f2 is convex with respect to each of the metrics, so that (4.2) actually 

holds for all x, y 6 f2. 

Conversely if (4.2) holds it clearly implies the truth of (4.1). 

Suppose now that (f~,g) and ( f l ' ,g ' )  are as above and that tp: t2--->f2' is a diffeo- 

morphism of Q on f~'. Let ~ be the metric on fl obtained by pulling back the metric g' 
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to ~2. We call q~ a K-quasi-isometry if (g, Q) and (~, Q) are K-quasi-isometric. In view of 

(4.1), q0 is a K-quasi-isometry iff 

K-l/2 d(x, y) <. d' ( cpx, cpy) <. Kl/2 d(x, y). (4.3) 

It is important in this definition that only the ratio d'/d need be bounded, rather 

than the difference, since our main interest is in noncompact regions. A scalar quantity, 

depending on the metric will be calledf(K)-quasi-invariant if it changes by a factor of at 

most f(K) under a K-quasi-isometry. Thus the relation (4.2) says that distances are 

K~/2-quasi-invariant. We now show that the volume, the H form, D form and the 

Neumann spectrum are all f(K)-quasi-invariant for suitable f. 

Notice however that the "geometry"  may change drastically under a K-quasi- 

isometry--for example the curvature is certainly not an f(K)-quasi-invariant for any f.  

Let g=detg~a, ~=det~aa. 

Using (4. I) and the fact that if A>~B>O, where A, B are real symmetric matrices, 

implies detA~>detB we find that 

~r-~'K-m/2 ~ V ~ -  ~ K"a2 X/-~ - 

pointwise in ~2. 

Hence 

(4.4) 

g -m/2 Vol~ (A) ~< Vol~ (A) ~< K "a2 Vol~ (A). (4.5) 

for any A c Q .  Thus volumes are Km/2-quasi-invariant. 
It follows from (4.4) that L2(~2, g)=L2(Q, g) if g and g are K-quasi-isometric, and 

that 

where as usual 

K-m/2He(u) <~ H#(u) <~ Km/2He(U) (4.6) 

n~(u) = ~o u2 V-~ dx 

is the H form. 

Concerning the D forms we proceed as follows: For positive definite symmetric 

matrices we have 

A>~B iff B - l ~ A  "!. 
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Thus (4.1) is the same as 

K - l g ~ a  ~ <- ~a~a ~ <~ K g ~ a  ~a" 

for u E C|163 with ua=au/ax a 

and hence 

De(u) = fn g~ u# V"g'dx 

(4.7) 

K-"a2-1De(u) <~ D~(u) <<- Km/2+lDe(u). (4.8) 

It follows that the spaces Wle(~) and W~(s are the same. 

If we now form the quotient D/H and use the variational definition of 3.o we learn 

immediately that 

K -m-  1/~0(s , g) ~ 20(s , g) ~ K m+ 1~0(s , g ) .  (4.9) 

To obtain information about the higher eigenvalues we simply use minimax (see 

Courant-Hilbert, p. 407, [7]), from which bounds (4.9) with 20(fl,g) replaced by 

2j(s g) are deduced. Notice that 

Aj(s163 as K--> 1. 

With these notions we turn to the proof of the continuity of the Neumann 

spectrum. We begin with dimension two where we prove a general theorem. For higher 

dimensions the various 'incidence' patterns become very complicated and we will only 

discuss the ones which are needed elsewhere in the paper. 

In dimension two, s is a convex polygon bounded by geodesics: gl . . . . .  gm. We 

assume that none of these geodesics is redundant; that is gj N ~ is a nontrivial (i.e. not 

just a point) subarc of gj. With this assumption a small enough movement of the sides 

will deform s into s which is still bounded by m geodesics, none of which is 

redundant. 

THEOREM 4.2. Suppose ~'-->s in H z. I f  no cusp is broken in going from s to s 
then 

lim 2j(s =2j(s 

Ira cusp is broken then 1im2o(s I f  in addition in the last case we have s ~s 

and s163 is free then Ao(s 
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, I i ~  : I 
X' X 

Fig. 4.1 

X'  x 

Fig. 4.2 

Proof. The general motion of a geodesic is to move its endpoints. This can be 

achieved by moving one end point at a time. Thus in the upper half plane model the 

most general motion we need consider is moving a vertical geodesic to one side. There 

are a number of configurations which may arise depending on how l', the geodesic to be 

moved, meets the other sides. We distinguish between the cases. One is when the end 

point of I on R, call it x, is not a 'cusp' of f2, i.e. it is not the case that x is the end point 

of one of the g/s.  In this case the motion l'--~l, f2'--~f~ can be realized by a K-quasi- 

isometry where K---~I as x'--~x (see Figure 4.1). By the discussion at the beginning of 

this section this would prove continuity for such variations. 

The second case, when x is a cusp, does not correspond to a quasi-isometry. For 

example, in the domain pictured in Figure 4.2, f~ and f~' cannot be K-quasi-isometric 

for any K, since ~2' has infinite area while f~ does not. For the second case (i.e. of 

breaking a cusp) a special argument for the continuity will be given, 

We begin by proving in the first case that the two domains are related by a K-quasi- 

isometry. The following (Figure 4.3) depicts the various incidences possible for l with 

the other sides of f2. The number of relevant sides of course remains fixed. 

In order to map f2 to f2,, we leave the part of f~ to the right of the dotted lines 

fixed. To the left, points are moved smoothly (and with small derivative, if x' is close to 

x) along the curves shown, so that l--~l'. 

For example in the case (b) this may be done explicitly as follows (we have set the 

dotted line in this case to be the axis ~=0) 

(y, 0- - ,  ty, f(~)) 

where f i s  a C ~ smoothing of the piecewise linear function 
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X' X 

(a) 

X ~ X 

(c) 
Fig.  4.3 

X'X 0 

(b) 

f~ 

X p X 

(d) 

~ i f~>0 

X ~ ~ - - ~  if~<0. 
x 

In the other  cases one may write down explicit expressions for these vector  fields 

which near a given geodesic follow curves concentr ic  to the geodesic and are otherwise 

convex combinations (with variable weights) of  such fields. 

Notice  that in all cases we have made the vector  field horizontal  for  y small 

enough. As a consequence  it is clear that the mapping of  f ~ f l '  so constructed distorts 

distances boundedly.  The mapping is therefore  a K-quasi-isometry and it is also evident 

that K-->I as x'-->x. 

We turn to the case of  a cusp. Typically the relation of  l to the other  geodesics is 

one of  those shown in Figure 4.4. When ;~o(f~) = 1/4 the upper  semi-continuity is trivially 

valid. Hence  we may suppose that Ao(f2)< 1/4 and that there is a square integrable base 

eigenfunction Uo on Q. I f  Q=f~ '  as in Figure 4.4 (c) and (d), we use uo directly to prove 

upper semi-continuity. In this case it is clear that 

Hfj,(Uo)----~ HQ(uo) and Dn,(Uo)--> Dn(uo). 

Consequently 

Dt~,(Uo) Dn(u~ = lira 
2o(ff2 ) = Ht~(Uo ) Ht~,(Uo) ' 
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X' X X' X 

(a) (b) 

Q 

X X' 

(c) 
Fig. 4.4 

( 
X X' 

(d) 

and since by (1.3) 

we conclude that 

Ao(Q') ~< DQ,(Uo)/Hn,(Uo). 

m 

lim 20(fZ') ~< 20(f~). 

When f~ '~f2 and Uo is no longer defined on all of  f~', we extend Uo to f2' and argue 

as above. To do so we first smear out Uo near  y . 0 ,  and by renormalizing we get a 

function w with w = 0  for y<y~, (x, y) s f~, with a .  w = 0  on 8f~ and such that 

Y =Ye 
y=O 

r i l l  . . . . . .  

X'X 

Fig. 4.4 (b) 
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HQ(w)= 1, Dt~(w)<to(~)+e. 

We extend w to Q' to begin with by setting w equal to zero for y<y~ and by making 

w even about the line l (recall that a ,  w=0 on l). If x' is close enough to x this will 

define w on f~' except possibly in case (b) near the vertex v and in F (see Figure 

4.4 (b)). However since the normal derivative of w is zero along g as well, we may 

extend w by reflection to what is labeled RQ. If necessary we repeat this last reflection 

a finite number of times (depending on the angle between g and l) until the reflection of 

the so augmented domain about I contains f~'. In this way we obtain wE W'(Q') and it 

follows that if x' is close enough to x, then Dta,/n(w) and HQ,/u(w) are arbitrarily 

small. Hence for such x' 

Dn,(w)/Hw(w) < 20(ff~)+2e 

and so 20(Q')<).o(f~)+2e, as needed. 

ff  moreover Q ' \ f ~  is free as in cases (a) and (b), then 2o(f~')~>A0(f~) by Proposi- 

tion 2.2 and this combined with the upper semi-continuity proves the claimed continu- 

ity. This completes the proof of Theorem 4.2. 

In higher dimensions n~>2, the configuration of the bounding sides of a domain f~ 

can become exceedingly complicated and proving the analogue of Theorem 4.2 be- 

comes rather involved. Since we will not need such a general result for our later 

applications we do not consider this question. It turns out when we do need a local 

continuity result for n~>2, the situation will be simple enough that the methods used in 

the proof of Theorem 4.2 can easily be adapted. 

For applications we will also need to know that the discrete spectrum is continuous 

under more drastic deformations associated with certain types of degenerations. As we 

will see, continuity fails under other kinds of degeneration. 

Definition 4.3. We say that a sequence of domains [2 k degenerates to f2 and write 
d e g -  

(1) ~ k c ~  and ~ \ ~ k  is free for all k, 

(2) ~k-+~ in the sense that every point of Q is eventually in the Qk's, 

(3) there is a fixed ~ which is geometrically finite, whose bounding hyperplanes 

contain those of ~ ,  and such that ~ c ~ k ,  while ~ k \ ~  is free for every k. 

_ deg 
T H E O R E M  4 . 4 .  I f  the ~k'  s are geometrically finite and ~k-o  ~ then 

2o(~k)--~2o(Q). 
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Proof. First f~DQk and f~\f~k is free so by Proposition 2.12. 

It therefore suffices to prove that 

lim A0(fl k) I> 2o(fl). 
k--~ oo 
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lim20(~k)=A<A0(Q)~<(-~-) 2. (4,10) 
k---~oo 

To each such Ao(f~k) there is a base L 2 eigenfunction, tpk, which may be normal- 

ized so that 

Hu~(q~k) = 1 and l~Dk=,~,O(~"~k)~k in ilk" (4.11) 

We extend q~k to be defined on Q by setting it to be zero in f2 \ f lk .  Thus defined, 

tpk is a sequence in L2(~) with Hu(qgk)=l. It therefore has a weakly convergent 

subsequence, again denoted by ~k, with a weak limit tp. It is clear that q~ satisfies 

Atp = Aq~ 

in the weak sense on Q. On the other hand the restriction of the tpk to ~ are bounded in 

W1(~) and so also have a weakly convergent subsequence, again denoted by q~k, in 

W~(~) which converges to the restriction of q~ to ~ .  Thus for any smooth function ~ on 

~,  vanishing near those hyperplanes of ~) not bounding Q we have 

lim Da(~v k, ~) = Do(q0, W) 

since D c ~ k c Q  we also have 

Dfl(~k, ~)  = Duk(q~ k, ~) = 20(Qk) Huk(q~k, ~) 

= 2o(Qk) H,(q~k, ~). 

Passing to the limit gives 

Da(q~, V2) = AHa(q~, V2). 

Suppose this were not the case, then we could find a subsequence, call it again ilk, 

such that 
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This proves that q0 satisfies the Neumann boundary conditions on 0t2. 

Being a weak solution of Aq0=Aq0, q0 is also a classical solution. Since q0 is square 

integrable, if ~0m0 it would follow that A is in the spectrum of A over t2. However this 

would contradict (4.10). Thus Theorem 4.4 will be proven if we can show that tp~0. 

We can write g2k as the disjoint union 

where Vk is free. Therefore 

However 

~k=~uVk 

Dvk(q~k) >~ ( 2  ) 2Hvk(CPk). 

Da(~k)+ Dvk (qgk) 
~,O(~k) ----- Df~k(~k ) = HCt(~k)+ Hvk(~k ) 

where Al<(n/2) 2. By (4.12) and (4.13) 

(4.12) 

A I (4.13) 

Df~(qgk)+ ( 2 ) 2Hvk(~k) <~ Al[H~(cPk)+ Hvk (~)] 

o r  

al Ho( k'+ (a 2)  Vk( k' 
Keeping in mind that Hf~(qgk)+Hvk(qgk)= 1, we learn from the last inequality that 

D~(~k ) <~ A l Hf~(qgk) ( 4 . 1 4  i) 

Ha(q0~)~ ( n ) 2  >0 .  (4.14ii) 

Now ~ is geometrically finite so by Theorem 2.4 we can find Uo, Ui .. . . .  ur, 
2o<21<~22 ... ~<;tr<(n/2) 2 spanning the discrete spectrum of ~ (i.e. the spectrum in 

[0, (n/2)2)). We may normalize so that Ha(uj)= 1, j =  1,2 .. . . .  r. Using these fixed func- 

tions we may expand the restriction of q0k to t) as 

Cpk = ao(k) uo+ al(k) Ul "1-... + ar(k) Ur+ gk (4.15) 

where gk&span {Uo, U l  . . . . .  Ur}, 
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It follows from the calculus of variations approach to the eigenvalue problem that 

Df~(uj, gk) = ,~jHo(uj, gk) = 0. (4.15)' 

In terms of this expansion 

Da(tpk ) = a2(k) 20((2)+... +a~(k) ;tr((2)+Du(g k) (4.16) 

and 

In view of (4.15)' 

Hca(~k) = a2(k)+... +a2,(k)+ Ha(gk). (4.17) 

Df~(gk) >~ (-~) 2Hf~(gk). (4.18) 

Using (4.16) and (4.18) in (4.14 i) we see that 

a 2 ( k )  tPk) 

and combining this with (4.17), we get 

a0~ ~0~+. . .  +a~ ~ +  (~)~ ~,,o~)-~o0 ~ +... +a~)J ~ A1 "o~,~ 

Consequently, by (4.14ii), we have 

2 . n 2 _ 

flnV_A ~2 
n 2 ~ ,  2 ,/ 1] 

It follows from the last inequality that for some subsequence of the k's and some j,  

the a~{k) are bounded away from zero. Hence 

aq~ujdV * O 

and tp cannot vanish identically. This completes the proof of Theorem 4.4. 

To show how Theorem 4.4 may be used we consider the case of Schottky domains. 

, 15-858289 Acta  Mathematica 155. Imprim6 le 20 Novembre 1985 
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X2 

S , o ' "  . . . .  . . , , ~  

s :" s 'r"- 's;" : k . . ) o  ! 
3 k : 

Fig. 4.5 

XI 

These are easily described in the H n+l model by giving the set of disjoint bounding 

hyperplanes P1,P2 . . . . .  Pro, or even more simply the n - 1  spheres in R n denoted by 

S1, $2 .. . . .  Sin, which are the intersections of P1,P2 . . . . .  Pm with R n. The spheres Sj 

may be described by (Pi, rj) where P1 E R ~ is the center of Sj and rj>0 its radius. We 

now describe what we mean by a simple degeneration of domains Qk to Q, written as 
simp Qk~ ~. 

Throughout the degeneration Qk should have a fixed number of sides (though Q 

need not have the same number). Suppose flk is described by (Pk(1),rk(1)), 

(Pk(2), rk(2)) . . . . .  (Pk(m), rk(m)). The first, say, I spheres, Sl,  $2 . . . . .  St are fixed and do 

not degenerate, while Sl+l . . . . .  Sm degenerate, i.e. rk(J)--,O for j = l +  1 . . . . .  m. We say 

the degeneration is simple if the Sl+~ . . . . .  Sm degenerate in clumps of at most 

[(n+2)/2], (Recall that n+ 1 is the dimension of the underlying space.) More precisely, 

for k large enough we can find fixed disjoint spheres ~{l, ~{2 .. . . .  St such that each of the 

spheres Sl+l(k) . . . . .  Sin(k) lies inside one of $1 .. . . .  ~{t and no ~{j contains more than 

[(n+2)/2] of the $1, $2 . . . . .  S~. 
simp 

In this case we say flk---~ fl where fl is the Schottky domain given by 

S1, $2 . . . . .  St. Notice that as far as hyperbolic geometry goes there is no strong sense in 

which flk and fl can be thought of as close. 

Examples.  (a) In every dimension degenerating one side is always simple. 

(b) In I-I 3, consider ~k as pictured in Figure 4.5 with fixed $1, $2 and $3, and 

2 0 I o, r t 
simp 

Here (n+2)/2=2, and Q is given by S 1, $2, S 3. In this case ~ ,  -+ t2, since clearly $4 and 

$5 may be "capped off" by the dotted circle S shown. 
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simp 
COROLLARY 4.5. For Schottky domains, i f  ~ k ~ ~ ,  then 20(Qk) ---*20(fl). 

_ d e g ~  
Proof. We need only show that ~ k ~  ~a and apply Theorem 4.4. Indeed for large k 

it follows from the definition of simple degeneration that there exist disjoint spheres 

S~, ~r .. . . .  St containing all of the degenerating spheres St+l,..., Sm. Let ~ denote the 

domain with bounding spheres 

$1, Sz .. . . .  St, S,,  Sz .. . . .  ~r 

We now check that the conditions in Definition 4.4 with this ~ are met. First 

f l \ f2k ,  inasmuch as being the disjoint union of domains, each bounded by one 

hyperplane, is free. Clearly the second condition, f~k---~fl, is satisfied. The sides of 

contain S~, $2 ... . .  St which are the sides of f~. Also f ~ k \ ~  is a disjoint union of 

domains bounded by Sr and at most [(n+2)/2] other sides, hence by Theorem 3.7 each 
deg 

of these is free, from which it follows that f~k \O  is free. These remarks show Qk---~ f2. 

We end the discussion of continuity by remarking that the clumping condition in 

the definition of a simple degeneration cannot be dropped. For example consider the 

domains f~k in H 2 described in Figure 4.6. 

Suppose that P~, P2 are fixed while P3, P4, P5 are degenerated by scaling z--~2z, 

2--*0. Since z--~2z is a hyperbolic isometry, if we ignore P1,P2, it is clear that 

Ao(exterior (P3, P4, Ps)) is constant, say equal to 2o. Since the exterior (P3,P4) has a 

null vector, it follows by the excision property (Theorem 2.10) that ;to<l/4. It follows 

by monotonicity that 2o(flk)~<2o. On the other hand f~k---~f~ where f2, defined by P1 

and P2, is free. Therefore 2o(~)= 1/4. So lim;to(f2D<20(f~). 

5. Applications to Kleinian groups 

We will now apply the theory developed in Sections 2-4 to problems concerning the 

size of the limit set of a Kleinian group, and related problems. The Patterson-Sullivan 

theorem described in the introduction is central in this respect. Let F be a discrete 
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subgroup of G*, the full group of isometries of X n+l. We denote by ,~,0(r)<,~l(r)~<... 

the discrete eigenvalues of A on the Hilbert space of F automorphic functions. It is 

understood that these ;t/'s correspond to the discrete eigenvalues below the continuous 

spectrum, while if 2j(F) does not exist then it is taken to be (n/2) 2, that is the bottom of 

the continuous spectrum. We first relate the Neumann spectrum which was the subject 

matter of Sections 2-4 to the Aj(F)'s. 

PROPOSITION 5.1. I f  f~ is a fundamental domain for F then 

x,(u) z,(r). (5. 

Proof. This follows immediately from the minimax characterization of the eigen- 

values [Courant-Hilbert [7], p. 407] and the fact that 2j(fl) corresponds to free bound- 

ary conditions (i.e. no boundary conditions) while for the 2~(F) we have a more 

restricted class of admissible functions, namely those with periodic boundary condi- 

tions. 

Thus the general analysis of Sections 2-4 will provide us with lower bounds for any 

X"+I/F eigenvalue problem. There are a number of interesting cases where one has 

equality in (5.1). For example let f ~ c H  "+1 be a convex domain bounded by hyper- 

planes Pj. Let Rj be the reflection in Pj. If RI,RE .... generate a discrete subgroup in 

G*, we call f~ a reflection domain and the corresponding F a reflection group. It is clear 

that for a reflection group F with domain f~, 2j(F)=2j(Q) since the eigenfunctions being 

F automorphic satisfy Neumann boundary conditions, and conversely an eigenfunction 

which has normal derivative zero on a hyperplane is invariant by reflection in that 

hyperplane, For reference we state this as: 

PROPOSITION 5.2. I f  ~ is a reflection domain with reflection group F then 

= ;tj(r). 

It follows from Propositions 5.1 and 5.2 and the Patterson-Sullivan theorem that: 

PROPOSITION 5.3. I f F  is a reflection group with fundamental domain Q, then for 

any F* with the same fundamental  domain ~ we have 

1,(r) 
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c~ c; 

l 

Q 

c? 

0 

Fig. 5.1 

~ +  

c: c: 

and in particular if 6(F)>_-n/2 then 

6(I3 I> 6(1"*). 

Here 6(F) is the exponent of convergence of the Poincar6 series as introduced in 

Section 1. A further application of part (ii) of the Patterson-Sullivan theorem then says 

that for geometrically finite groups, of all groups whose fundamental domain is equal to 

that of a reflection group (whose limit set has dimension >-n/2), the reflection group has 

maximal Hausdorff dimension for its limit set. 

Notice that a Schottky domain, is a reflection domain. In many cases one has 

equality in (5.1) even for discrete groups F which are orientation preserving. For 

example consider the case of a symmetric Schottky group. Its fundamental domain, 

shown in Figure 5.1 is obtained by removing 2n semicircles (noncrossing) from H E. 

They are situated so as to be symmetric about the y axis I. The Schottky group F, in 

question, may be constructed by the use of the hyperbolic transformations T2=RoR j 
where R i is the reflection in C + and R0 in l. T 2 has isometric circle C2 + while Tf  1 has 

Cf as its isometric circle. The free group generated by T1 ..... Tn is the Schottky 

group, and it has g2 as a fundamental domain. 

The spectral problem for L2(H2/1 ') splits into Dirichlet and Neumann problems for 

fl+. The reflection Ro about l stabilizes F, i.e., RoF=FR0. Thus we may decompose 

L2(H2/F) into even and odd functions, and these spaces are invariant by A. An odd 

function satisfiesf(z)=f(T2z ) for z E (77 and alsof(z)=-f(T2z) for such z s incef i s  odd. 

One sees from this that the odd functions are zero on the boundary a(g)+). Thus the 

odd spectrum corresponds to the Dirichlet spectrum for f~+. In a similar way one sees 

that the even functions correspond to the Neumann spectrum on ~+. This explains 

what we mean by the L2(H2/F) problem splitting into Dirichlet and Neumann problems 

for ~+. 

The usual integration by parts, say with respect to y alone first, as in (2.7) with 
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Fig. 5.2 

tp-1, shows that any domain with Dirichlet boundary conditions can have n o  L 2 

eigenfunctions in [0, 1/4) (we are in dimension two here). It follows that the Dirichlet 

problem contributes no discrete spectrum to the L2(HE/F) problem and therefore 

~l(r) = ~,( ,+) (5.2) 

for a symmetric Schottky domain. 

It is also easy to construct examples for which say 2o(~)~2o(r). For example 

consider Figure 5.2. Let r be the group generated by the hyperbolic transformations 

taking gl---~R1 and g2---~2. F has fundamental domain f2. By Theorem 5.6 (to be 

proved later in this section) we can ensure f~ is free if the separation between 

gl, ~1, g2, R2 is big enough, this clearly can be done. Since 2o(F)~>20(O) we see that 

2o(1") = 1/4. However we could just as well choose the fundamental domain for F to be 

f~' as pictured in Figure 5.3. Since a single cusp domain in H 2 has a null vector and 

hence the excision property, Theorem 2.10 shows that 20(fl')<1/4. Thus f2' is a 

fundamental domain for F but 2o(F):#Ao(f2'). 

By a Schottky group we mean a discrete group which has a fundamental domain 

which is a Schottky domain. The main Theorem 3.9 when translated via the Patterson- 

Sullivan theorem, together with Proposition 5.1 leads to the following fundamental 

result. 

THEOREM 5.4. For n>~3 there is cn<n such that any Schottky group F acting on 

H "+1 satisfies 
6(r) ~< Cn. 

Fig. 5.3 
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Furthermore i f  F is geometrically finite then the Hausdor f f  dimension d(Ar) (see 

the introduction) also satisfies 

d(Ar) ~< c,.  

The following table, computed  from (3.14), gives values for c,. 

Table 5.1 

n d n c n 

3 0.0263 2.9912 
4 0.0412 3.9897 
5 0.0446 4.9911 
6 0.0416 5.9930 
7 0.0357 6.9949 
8 0.0288 7.9964 

Proof. We may assume 6(F)>~n/2 for  otherwise the claim is obvious.  Once 

6(F)>~n/2 we may apply Patterson-Sullivan to conclude that 6(n-6)=2o(F).  However 

20(F)~>20(~) by  Proposit ion 5.1 where f2 is a fundamental  domain for F which is 

Schottky.  Applying Theorem 3.9 we have 20(F)~>),o(f])~>d, which translates to the 

upper  bound on 6(F). In the case F is geometrically finite, part (ii) of  the Patterson- 

Sullivan theorem yields d(Ar)=6(F) .  

Remark.  Given a finite set of  spheres in R k which are mutually exter ior  to one 

another,  let F be the group generated by inversions in these spheres. Le t  Ar  be its 

singular set (i.e. its limit set) in R k. F is naturally a discrete group of  isometries of  

H k+l and is a Schot tky group. Theorem 5.4 then shows that when k>~3, d(Ar) is 

uniformly bounded away from k. This is a partial answer to a question raised by 

Beardon [5] as to whether  the Hausdorf f  dimension of  a singular set of  an inversion 

group of  R k can be made arbitrarily close to k. The case k=2 remains unsolved. Also 

see Akaza [4] where  this problem is raised. For  the case k--2 see the numerical 

computations at the end of  Sect ion 6. 

Another  application via the Patterson-Sullivan theorem can be based on Corollary 

4.5. It leads to 

simp 
PROPOSITION 5 . 5 . / f r  k ~ F is a simple degeneration o f  refiection groups then as 

k---> ~ 
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where 

fV g = max {f, g}. 

Notice that we cannot drop the V in the above, since 6 itself need not be 

continuous under a simple degeneration. An example of this is the case of the Hecke 

groups F~, (see Section 6) where we have d(Fu)> 1/2 for all finite p, but d(F| 

We now turn to applications in the other direction, that is we use the 6(F), 20 

connection to study further the notion of free domains and null vectors. The following 

two theorems are concerned only with Schottky domains and their reflection groups. 

The technique used to estimate 6 in Theorem 5.6 is due to Beardon [6]. 

THEOREM 5.6. Let ~ be a Schottky domain in H n+l with m sides and denote by 

r(fl) the separation measure defined in (3.14). I f  

-log0:(f~)) > log m, (5.3) 
n 

then fi is free. 

Proof. Since f~ is a fundamental domain for the reflection group described above, a 

F-invariant smooth function has to satisfy Neumann boundary conditions on a~ .  

Consequently 2o(F)=2o(Q) and we need only show that 2o(F)=(n/2) 2 (see (1.7) in the 

introduction for the definition of 2o(F)). Now the number 20(F) is related to the 

exponent of convergence 6 of the series 

E exp (-s(Tz,  z)); (5.4) 
yEF 

here (Tz, z) denotes the hyperbolic distance from yz to z. In fact 

[ 6 ( n - 6 )  if 6>n/2 ,  
2~ = [(n/2) 2 if 6 <<. n/2. 

Proofs of this relation appear in [12] and [20]. To establish the theorem it therefore 

suffices to show that the hypotheses imply 

E exp ~ - n ( Y  z,z)~ < ~176 
y~r \ 2 ] 

By assumption r(f2)<m-1/"; as a consequence for some p in B n g~ 

r(p) < m -1/". (5.5) 
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Mapping p into oo, Q goes into the domain Q' pictured in Figure 3.2. We now analyze 

the action of the group F on any point z in Q'. A word of length k in F is of the form: 

~,=Rj Rj,_ ...Rj2Rj,, Rj~(R1 ..... Rm). (5.6) 

We also require that this word is of genuine length k, i.e. that there are no repetitions of 

the kind RtRt in the word. As k ranges over the integers, these words yield all the 

elements of F. 

For such a word we now estimate y(~z). Notice that the action of each Rj in the 

word is to take a point from the exterior of Pj to its interior. Not only that, but also the 

point in question must have come from the interior of some point P'k, k+j, except in the 

case of the initial Rj. The action z"=Rjz ', z=(x, y), is illustrated in Figure 5.4. Let ]z'[ 

denote the Euclidean distance in R "+1 from z' to the center cj of/'~. It follows from the 

definition of dj and rj that 

[Z'l >~ dj and y" = ~,~ y'. 

Consequently 

y,, < / rj |2y, < [r(p)]Zy '. 

\ 4 /  

Thus for a word of length k such as ? in (5.6) we have 

Y(TZo) <~ [~(P)]Eky0; 

and hence 

E Y(~Zo)S <~ YSo E mk[r(P)]2ks" 
yEr  k=0 

For s=n/2 this series converges if m[r(p)]n<l, that is if (5.3) holds. 

It is easy to see that 

(5.7) 

(~Zo, Zo) I> log (Yo/Y(~Zo)). 
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Fig. 5.5 

It follows that exp(-sO,zo, zo))<~.[y(yzo)/yo] �9 and hence by (5.7) that the series (5.4) 

converges for s=n/2. This completes the proof of Theorem 5.6. 

The other application is concerned with null vectors. If g2 is free then clearly 6(F) 

can be anything from 0 to n/2 inclusive, while 2o(f~)---(n/2) 2. For the extreme case, 

6=n/2, where f2 is barely free, we now show that though there is no L 2 spectrum, there 

is a null vector. It follows that null vectors, as introduced in Section 2 occur in 

abundance. 

THEOREM 5.7. Let ~ be a free Schottky domain without cusps, then f~ has a null 

vector i f f  6(F) =n/2. 

Remarks. O) The proof of  Theorem 5.7 may easily be adapted to show that if F is a 

"convex co-compact" group, with 6(F)=n/2 then X"+I/F has a null vector. (For the 

definition of a convex co-compact group of isometries in X "§ ~ and related material see 

Sullivan [20].) 

(ii) The assumption that g2 has no cusps, possibly could be dropped. 

Proof  o f  Theorem 5.7. First we prove that if f2 has a null vector then 6(F)=n/2. 

Since f2 is free it follows by the Patterson-Sullivan result that 6(F)~<n/2. We show that 

6(F)<n/2 leads to a contradiction. If f2 is a Schottky domain without cusps, then it 

looks like one of the domains in Figure 5.5. 

Now consider deforming f2 a little to f2', by increasing the radius of one of  the 

bounding hyperplanes. Since the region f 2 \ ~ '  is bounded by concentric hemispheres, 

it follows by Proposition 2.11 that it is strictly free. Therefore by Theorem 2.10, [2' is 

not free, and this is so no matter how small the perturbation f)--*~'. If F' is the 

reflection group generated by [2', then 6(F')>n/2 by the Patterson-Sullivan result. 

However we claim that 6(F) is continuous under the deformation in question, and 

hence for F' (or f2') sufficiently close to F, t~(F')<n/2 which is a contradiction. To see 
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that 6(F) is continuous under such a deformation we first observe that the deformation 

is quasiconformal, i.e. there exists a map q0:X~+l---~X ~+1 which is quasiconformal 

and tpF~-l=F '. One can show this by arguments similar to the ones we used above to 

show that f2 and if2' are K-quasi-isometric. Furthermore as F'---~F the K in the quasi 

conformal mapping can be chosen to tend to 1. Now since q0 conjugates F to F', the 

extension of q0 to the boundary (see Ahlfors [1]) will take Ar to Ar,, where Ar, At, are 

the limit sets of F and F' respectively. The K-quasiconformal map q~ on the boundary 

will satisfy a H61der estimate (see Ahlfors [1]), and it follows that the Hausdorff 

dimension of Ar, and Ar will be close if K is near one. In view of the Patterson- 

Sullivan theorem 6(F')---}6(F). This completes the proof one way. For a similar discus- 

sion see Patterson [9]. 

To prove the converse we need to make use of the Patterson measure and 

associated eigenfunction (Sullivan [20]). The measure/~ is positive and finite and is 

supported on the limit set Ar. For wEB n+l, flEB, we let (w, fl) be the signed 

distance from 0 to the horosphere through w tangent at ft. 

The relevance of/~ to us, is that the function 

d A  

satisfies 

(i) Aq~---(n/2)Eq) 

(ii) rp(~,w)=q)(w), V7 E r. 

All this follows from 6(F)=n/2, for proofs see (Sullivan [20]). 

This positive F invariant eigenfunction is clearly a natural candidate for a null 

vector. Indeed all we need to show is that it is in the G-norm completion of functions in 

wl(f2). To see that this is the case we need some elementary estimates for the function 

V2(w, fl)=exP(�89 fl)). Let r=(0, w) denote the hyperbolic distance from 0 to w. 

LEMMA 5.8. (i) IV2(W, fl)l<<exp {--�89 and 

(ii) [V~0(w, fl)[<<exp {-�89 

if the angle between ~w and 0"~ is bounded from below (i.e. the implied constants in (i) 
and (ii) depend only on the lower bound for this angle). 

Proof. It is more convenient to work in the upper half space model H n+l. On 

mapping fl into ~ ,  the condition that the angle be bounded away from zero goes into the 
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A 

A 

A 

Fig. 5.6 

condition that w=(x, y) have Ix[ bounded. We assume that 0 mapped into j=(O, 1). In 
this case (w, oo) =logy.  

~(w, 00) = yn/2 

[V~Pl = ( 2 )  y~2" (5.8) 

On the other hand 

cosh (j, w) = coshr  = 1-~ X2+(Y-- 1)2 
2y 

and hence as y---~O with Ix[ bounded we have 

r 

Y ~< cosh r 

The estimates (i) and (ii) follow immediately from this and (5.8). 
Since fl (pictured in Figure 5.6) is geometrically finite, Schottky with no cusps, it 

is clear that the limit set A is a bounded distance (in the spherical metric on S") from 

aft  n S". From this observation, Lemma 5.8, and the representation 

it follows that for w=(r, O) 

{n} Iqol << exp --~- r 

IV~o' << exp { - 2 r  } 
(5.9) 
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if 0 is any direction in a small enough neighborhood, N1, of those directions from 0 

which see the boundary of X n+l along geodesics in f2. 

Let Rk be a sequence of reals with Rk--- ,~ with k. Let Xk, defined on [0, ~), be 

smooth and satisfy 

' l  for r<<.R k 

zk(r) = [ e-ar eaRk for r > Rk + l 

for some a>O. Also Zk can b e  chosen so that 

Xk(r) -~ b e  for r>~R k. 

Define q)k(W)=Zk(rw)q)(W) on f~. In view of the estimates (5.9) we have 

Io I 0kl 2 dV < <  e -2at e-nr e,r dr dO < ~ . 
JOE N 1 

Similarly, 

Qlvcpkl2 d V  < oo 

so that r lies in Wl(f]). We calculate 

E(q~k) -- D(~k)- H(qgk). 

We can write E as 

+ f, ntw, r>S,} z / n x~ 2 JV~kJ d V - ~ T  ) ~f~n(w,r>Rk} I~klzdV 

= I - I I + I I I - I V  

Recal!in~ that 0,,~0=0 along the sides of fl ,  we integrate I by parts to get 

I = f o  ( ' q c p . n ) c p d S + ~  (Atp) tp dV 
(fln {to, r<~Rk} ) J ~ D {w, r<<.Rk} 

V +  T niw, r<~k } 
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where 

It follows that 

t "  

V = | acp cp dS. 
Jo n{,=Rk ) ar 

E(q~k) = V + I I I - I V .  

However each of these last terms is bounded independent of k. In applying Lemma 

5.8 we get 

V << ( (e-�89 = O(1) 
.Is n 

and 

<< fs, fR | e-2~+2~ke-nr e'~drdO 
k 

<< e2~ -2~k = O(1); 

and similarly for III. 

Now from (2.13) and Remark 3, since E~>0 the G form can be chosen as 

G=E+K where K(u)= fsU2dV. 

S c ~  any compact subset. Since eventually ~k=~ on such an S, it 

g(~k)=O(1). 

We have therefore shown that 

(5.10) 

follows that 

G(q3k) <~ C for  some C. 

It follows that some subsequence q~kj has a weak limit in l-lc, call it h. Since the G form 

majorizes the L 2 norm over any compact subset S 1 of f~, the q0k~ will also converge 

weakly to h in L2(S~). However, q0k=q0 in S for k sufficiently large and it follows from 

this that h=q0 locally and hence globally. 

Finally for j sufficiently large and any smooth ~p vanishing near B, integration by 

parts yields 
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= fs~CPkjdV. 

Taking the limit as j---~ ~ ,  we get 

dV. 
.Is 

From (5.10) we see that E(~, q0)=0 and since such V are dense in H6, we conclude that 

E(qg)=0. It now follows by Lemma 2.6 that q0 is indeed a null vector of A'. This 

completes the proof of Theorem 5.7. 

6. Applications to particular examples and numerical calculations 

In this section we apply our theory to examples of various kinds. We also study 

carefully the case of Hecke groups and give some numerical computations (done by 

machine) of the Hausdorff dimension of the limit sets of many Schottky groups. We 

begin this section with an example of a group F which is geometrically nonfinite, but 

which nevertheless has a discrete spectrum in the interval [0,(n/2)2). Moreover 

20(1")<(n/2) 2 and the corresponding base eigenfunction is square integrable on the 

fundamental domain. This answers a question raised by Sullivan [21]. However it 

should be noted that the F in our example is not finitely generated. 

Our example is a Schottky group whose fundamental domain f~ in H 3 is exterior to 

a set of hemispheres S~, $2 .... whose intersection with B--R 2 are the circles C1, C2 .... 

shown in Figure 6.1. The circles C1, C2 and C3 are mutually tangent, while C4, C5 .... 

march out to infinity in such a way that the dotted vertical straight lines Lj separate 

them as shown. A typical subdomain in H 3, say like f14, which is bounded by the 

hyperplanes corresponding to L4, L5 and C4, is free. This follows from Theorem 3.7. 

By Corollary 2.13 the region to the right of L 4 is free since it is the union of free 

regions. It follows that f2 is the union of a region which has the finite geometric 

property and a free region. Thus by Corollary 2.5 the Laplacian on f~ has a discrete 
spectrum in [0, (n/2)2). 

In the region exterior to S~, $2, $3 the augmented Laplacian A' has a null vector; 

in fact this region is isometric to the domain discussed just before Proposition 3.5. It 

therefore follows by the excision property (remove $4 and use Theorem 2.10) and 
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monotonicity (remove the rest of the Sj's and use Proposition 2.12) that if2 is not free, 

i.e. that 3.0(fl)<(n/2) 2. Since the spectrum of the Laplacian is discrete below (n/2) 2, the 

bottom of the spectrum has an L 2 eigenfunction. 

Now if F is generated by the reflections in the sides of 2 ,  then, as we have 

previously noted, the L2(H3/F) spectral problem and the Neumann spectral problem 

coincide. Hence the group F corresponding to the domain in the above example has the 

asserted properties. If we want an example consisting only of orientation preserving 

isometries, we simply taRe the index two subgroup Fe of F of words of even length. 

Our next example is a discrete Schottky group F for which the topological and 

radial limit sets have different Hausdorff dimension (see Sullivan [20] for the definition 

of the radial limit set). Examples of this phenomenon are known, see Patterson [16], 

however Theorem 5.4 allows for particularly simple constructions. Let $1, $2 .... be a 

sequence of spheres in R 3, which are mutually external to each other and for which 

m being Lebesgue measure. Such a sequence of spheres obviously exists. Let F be the 

group generated by reflections in these spheres. It is easy to show that the topological 

limit set of F is all of R 3. On the other hand, from Table 5.1 6(F)~2.992. However it is 

known (see Sullivan [20] Theorem 24 or [241) that if Araa is the radial limit set then 

d(Ar, a)~<d(F). Hence 

d(Araa) ~< 2.992 < 3 = d(Atop),  (6.1) 

which proves our assertion. Notice that F is not geometrically finite; it cannot be if this 

phenomenon is to occur, since by Beardon, Maskit [24], Araa and AtO p differ by only a 

countable set in the geometrically finite case. 
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A rather simple yet interesting family of groups are the so called Hecke groups. In 

dimension n= l  these groups are parametrized by a real number p, where F~, is 

generated by 

T~: z---~ z+# 

S: z ~ - 1/z. 

We assume that p~2 ,  these being the only cases of interest in this paper. A 

fundamental domain F~, for F~, is depicted in Figure 6.2. 

It is clear that these Hecke groups are examples of symmetric Schottky groups 

which we discussed after Proposition 5.3. Therefore the discrete spectrum for LZ(H/F~,) 

is the same as that of F~ with Neumann boundary conditions. Our theory is therefore 

applicable. 

THEOREM 6.1. For p>2  the Hecke groups Fa have precisely one discrete eigen- 

value 2o(g). As /t ranges from 2 to oo, 2o(g) increases continuously and strictly 

monotonically from 0 to 1/4. 

Remark.  The part of the theorem concerning the variation of 2o~) from 0 to 1/4 

when translated to 6(F~,) was proved by Beardon [6] by direct combinatorial methods. 

The monotonicity of 6 was first proved by Elstrodt and independently by Patterson [9]. 

Our proof is quite different since it relies on the various continuity theorems that were 

proved in Section 4. Our proof of the uniqueness of 3.o~) is based on the method used 

in Sarnak [18], but in view of our theory of free domains is even simpler. 

Proof  o f  Theorem 6.1. We have pointed out that the discrete spectrum for 

L2(H2/FF,) corresponds to the Neumann problem for F + . The continuity of the discrete 

spectrum for 2~</~<oo, follows from Theorem 4.2. Now F2 has finite volume so 

20(2)=0. That 2o(g) strictly increases with/~ follows from the monotonicity (Proposi- 

16-858289 Acta Mathematica 155. Imprim6 le 20 Novembre 1985 
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(a) (b) 

(c) 

Fig. 6.3 

(d) 

tion 2.12) since F~\F~2 is free for ~Ul)~/s 2. Also the continuity under a degeneration of  a 

side (Corollary 4.6) shows that 2o~)---~2o(OO) as ~---~. Since F~ + is free, being bounded 

by only two sides in H 2, it follows that 2o(U)---~1/4 as ~t---~oo. We have therefore proven 

all but the fact that there are no other eigenvalues besides Ao(/~). By Theorem 2.1, 

[1/4, oo) has no L 2 eigenvalues i f / ,>2,  thus to prove the rest of Theorem 6.1, it suffices 

to show that ~.1~)>~1/4. 

Suppose 21~)<1/4, then by Lemma 2.3, there is an eigenfunction ul of A in 

WI(F~). Also u I is orthogonal to u0, Uo being the base eigenfunction corresponding to 

2o. As in Lemma 2.7 we know that u0>0 on F~-. It follows that u~ takes on both 

positive and negative values. Let N~ be its nodal set i.e. {zEF~-; Ul(Z)=0 }, which is 

nonempty and which separates the set where Ul>0 from where u~<0. As such we can 

clearly find a component y of N1 which looks like one of the arcs pictured in Figure 6.3. 

For each situation of the nodal curve let fl be the domain indicated. Clearly u~ is 

the base eigenfunction in f~ with Dirichlet boundary conditions on y and hence 

2t(F)=2o(f2). Since u l=0 on y, we may clearly, by Dirichlet monotonicity, claim that 

20(f2)1>2o(f2') where for each of (a), (b), (c), and (d), f2' is pictured in Figure 6.4. By 
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theorem 3.7 each fl '  above is free. Thus ~o(~') and hence 20(~) is >11/4. This 

completes the proof of Theorem 6.1. 

The proof just given of 21~)>~1/4 holds just as well for 0</~<2; the c a s e / t = l  

corresponds to the modular group, for which 21~ > 1/4 is a well known result. 

In the case of 3 dimensions, i.e. n=2, we may consider analogues of the Hecke 

groups, viz. FF, generated by 

[~ ~ ] ,  [~ ~ ]  and [ ~ - ~ ]  in SL2(C). 

It is easy to see that the base eigenfunction Uo corresponding to the lowest 

eigenvalue 2o~) satisfies Neumann boundary conditions. In fact, denote the group 

generated by reflections through the surfaces x~ =/~/2, XE=fl/2, Xl =--/2/2, X2 = --/~/2 and 

the hemisphere of radius 1 about (0, 0, 0) by F/~. Then averaging Uo over F*/FF, will give 

the base eigenfunction for F~,. (Since Uo>0 there can be no cancellations in the 

averaging.) 

It follows as in the proof of Theorem 4.2 that 2o~) is continuous over the range 

2~<g<~. Since the prism {[xnl~</z/2, IXz[<<.td2} has a null vector, Theorem 2.10 shows 
that 2o~)< 1 in this range. Proposition 2.12 asserts that 2o(~) is strictly increasing in/t.  

Finally we can use Theorem 4.4 to prove that 2o~)--~1 as/~-~oo. To do so we set 

~)= Q~o for a fixed/~o. 
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As we saw in Section 3 when discussing 2-lattice Schottky domains, the value of 

20(2) is of special interest. We shall see shortly that a good approximation to this is 

0.66. 

In fact we present finally some data obtained with the help of a computer, on 6(F) 

for Schottky domains in H 3. A domain f~, bounded by disjoint hemispheres P1, P2 . . . . .  

is a fundamental domain for the group F of inversions through the hemispheres 

P1,P2 . . . . .  The Pi's are in turn determined by their intersections with B; that is the 

Ci=P~nB. We shall compute 6(1") from the asymptotic distribution of orbital points. 

According to a result of Lax and Phillips [12], if 6(F)>l,  then 

N(w, s) ~ c(w) exp (6(r) s) (6.2) 

as s becomes infinite, where 

N(w, s) = #[~,; y E F, (~,w, w) ~< s]. (6.3) 

It is clear that 

A(s)=log[N(w, s)]-log[N(w, s - l ) ]  (6.4) 

approximates 6(F) for large s. As we shall see, this is even a good approximation for 

rather small s. 

We have determined N(j, s), j=(0,  0, 1), for various Schottky domains character- 

ized by different sets of circles chosen from the following: 

xl x2 Radius 
C1 -0.577350 1.000000 1.000000 
(72 -0.577350 -1.000000 1.000000 
(73 1.154701 0.000000 1.000000 
(74 0.000000 0.0000~ '2.154701 
(75 0.000000 0.000000 0.154701 
(76 -1.672028 0.000000 0.482673 
(77 -1.073180 0.000000 0.116175 
Ca -0.217482 0.000000 0.062782 
(79 0.836014 1.448018 0.482673 
Clo 0.836014 -1.448018 0.482673 
Cll 0.108741 0.188345 0.062782 
C12 0.108741 -0.188345 0.062782 
C13 0.536590 0.929401 0.116175 
C14 0.536590 -0.929401 0.116175 

These circles are pictured in Figure 6.5. Certain combinations are equivalent with 

respect to isometries. Along with a list of circles used to determine f~ we shall also 
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c4 

Fig. 6.5 

picture a canonical form of the domain obtained by an inversion with respect to the 
point (-0.577350,0). 

•1: CI, C2, C3 

s N(s, J) log [N(s, dl] A(s) 
5 123 4.8122 One circle I I 
6 309 5.7333 0.921 
7 831 6.7226 0.989 
8 2 187 7.6903 0.968 
9 6 033 8.7050 1.015 

10 16 557 9.7146 1.009 
11 44 997 10.7144 0.999 
12 121 995 11.7117 0.997 

f22: Cl, C2, C3, C5 

s N(s, J') log IN(s, J)] A(s) 

5 151 5.0173 Two circles 
6 529 6.2710 1.254 
7 1 915 7.5575 1.287 
8 6 832 8.8294 1.272 
9 25 375 10.1415 1.312 

10 94 135 11.4525 1.311 
11 347 380 12.7582 1.306 
12 1 278 563 14.0613 1.303 



238 R. S. PHILLIPS AND P. SARNAK 

fa3: G, C2, C3, G 
s N(s, j)  log IN(s, j)] A(s) 

5 322 5.7746 Two circles 
6 1 228 7.1131 1.339 
7 4 708 8.4570 1.344 
8 17 242 9.7551 1.298 
9 63 796 11.0635 1.308 

10 235 366 12.3689 1.305 
11 868 942 13.6750 1.306 
12 3 210 846 14.9821 1.307 

fa4: C. C2, C3, G, C6 
s N(s , j )  log[N(s,j)] A(s) 

5 346 5.8464 Three circles 
6 1 416 7.2556 1.409 
7 5 781 8.6623 1.407 
8 23 109 10.0480 1.386 
9 94 051 11.4516 1.404 

10 381 266 12.8513 1.400 
11 1 553 242 14.2559 1.405 
12 6 330 035 15.6608 1.405 

~5: c,, c2, c3, c5, c6 
s N(S,J) log[N(s,J)] A(s) 

5 151 5.0173 Three circles 
6 538 6.2879 1.271 
7 2 013 7.6074 1.320 
8 7 730 8.9529 1.346 
9 30 973 10.3409 1.388 

10 124 701 11.7337 1.393 
11 504 242 13.1308 1.397 
12 2 041 506 14.5292 1.398 

P 
fa6:c,,c2,c3,c4,c5,c6 

s N(s, J) log [N(s, j)] A(s) 

5 374 5.9243 Four  circles [ r 
6 1 668 7.4194 1.495 
7 7 186 8.8799 1.461 
8 30 518 10.3261 1.446 
9 131 287 11.7851 1.459 

10 561 181 13.2378 1.453 
11 2 410 514 14.6954 1.458 
12 10 334 641 16.1510 1.456 
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~'~7: Cl, C2, C3, C4, C5, C6, C7 

s N(s, J) log [N(s, d)] A(s) 

5 374 5.9243 Five circles 
6 1 673 7.4224 1.498 
7 7 255 8.8894 1.467 
8 31 214 10.3486 1.459 
9 136 428 11.8236 1.475 

10 594 316 13.2952 1.472 
11 2 606 290 14.7734 1.478 

~'~8" C1, C2, C3, C4, C5, C6, C8 

s N(s,j) log[N(s,j)] -A(s) 
5 374 5.9243 Five circles I~1 
6 1 677 7.4248 1.501 
7 7 284 8.8934 1.469 
8 31 498 10.3577 1.464 
9 138 120 11.8359 1.478 

10 602 900 13.3095 1.474 
11 2 651 303 14.7906 1.481 

s 
5 
6 
7 
8 
9 

10 
11 

~"~9" C1, C2, C3, C4, C5, C6, C7, C8 

N(s, j) log IN(s, J)] A(s) 
374 5.9243 Six circles 

1 682 7.4277 1.503 
7 353 8.9029 1.475 

32 194 10.3795 1.477 
143 261 11.8724 1.493 
636 035 13.3630 1.491 

2 847 301 14.8619 1.499 

~"~I0" CI, C2, C3, C4, C5, C6, C8, C9, Clo, CII, C12 

s N(s, j) log [N(s, j)] 
5 422 6.0450 
6 2 071 7.6358 
7 9 626 9.1722 
8 45 350 10.7221 
9 215 720 12.2817 

10 1 014 946 13.8304 
I1 4 817 451 15.3878 

a(s) 
Six large-four small 
1.591 
1.536 
1.550 
1.560 
1.549 
1.557 

H I  
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~"~11: CI, C2, C3, C4, C5, C6, C7, C8, C9, Clo, CII, CI2, C13, C14 

s N(s, j) log [N(s, j)] A(s) 
5 422 6.0450 Six large-four small 
6 2 086 7.6430 1.598 
7 9 833 9.1935 1.551 
8 47 438 10.7672 1.574 
9 231 143 12.3508 1.584 

10 1 114 627 13.9240 1.573 
11 5 414 493 15.5046 1.581 

f--'~t 

>-~ 

A few remarks are in order.  As we have already noted in Section 3 (just before 

Proposit ion 3.5), A' has a null vector  over f~ .  It therefore  follows from Theorem 4.7 

that 6(f21)= 1. Thus A(10) and A ( l l )  are correct  to within 0.003 while A(9) is correct  to 

within 0.01. Since f2 ! has the excision proper ty  by Theorem 2.10, the domains ~'~2 and 

f23 are no longer free and 6(F)> 1 for these domains. Since they have only four sides, 

they provide examples for  Proposit ion 3.5; these are essentially the same examples as 

those constructed by  Akaza [2]. The limit set for  the common canonical form ~')2 and 

Q3 is the Appolonian grid, pictured on page 187 of  Mandelbrot ' s  book on Fractals [13]. 

The Hausdorf f  dimension of  this grid can be shown to be the same as the Appolonian 

packing constant  (Sullivan, private communication).  For  the definition of  this constant  

D and the estimate 1.3002<D<1.3145 see D. W. Boyd [8]. Using a computer  to 

calculate D, Z. A. Melzak [14] arrived at the value 1.30695. In our  computat ions A(9), 

A(10), A( l l )  and A(12) are in agreement  with this number  to within 0.005. 

The domains f2j, j =  1,2 . . . . .  9, are partial linear lattices. We have also computed  6 

for the full linear lattice f2. According to Theorem 3.12 6(f2)=6(f~o) for  the domain f~o 

described in (3.35). We found that 6(f2o)=1.585+0.004, which corresponds to 

2o=0.658_+0.002. 
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