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One fundamental object of interest in Diophantine approximation is the quantity 

v(x) = inf {k E R[ Ix-p/q[ < k/q 2 for infinitely many integers p and q) 

which describe how well a real number x is approximated by rational numbers. A 

classical Theorem of A. Markoff states that there is a discrete set of values /~i 

decreasing to 31- so that if v(x)>] then v(x)=l~i for some i. The theorem also provides a 

good description of the values/ti and the numbers x with v(x)>] [14, 7]. 

Following the leads of H. Cohn and A. Schmidt we shall investigate geometric 

structures on hyperbolic Riemann surfaces for which Markoff-like theorems hold. The 

idea, which is similar to the approach taken by D. Sullivan in [21] is to look at the 

affinity of a geodesic for the noncompact end of a surface. More precisely, we consider 

the maximal depth a geodesic travels into a noncompact end. The spectrum of depths 

has the same structure as Markoff's spectrum with the correspondence given in terms 

of the geodesics length and topology. The upper discrete part of  the spectrum is 

occupied by the simple closed geodesics and the lower limit value of the discrete 

spectrum is occupied by the geodesics that are limits of simple closed ones. 

The reason for this interaction between the geometry and the number theory 

becomes apparent when we transfer our attention to a Fuchsian group representing the 

hyperbolic surface. For example, consider the classical Modular group M6bz. The 

orbit of infinity under the action of M6bz is exactly the set of rational numbers. It is 

also the set of limit points which are fixed by parabolic transformations in the group. 

Each parabolic fixed point corresponds, in a sense, to the noncompact end on the 

quotient surface. As we shall see, the degree to which a number x is approximated by a 

rational number is directly related to the depth a geodesic with the endpoint x travels 
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into the noncompact end when projected to the quotient surface. More generally one 

can look at the approximation of points in the limit set of a Kleinian group by the orbit 

of a given point. Beardon and Maskit showed in [2] that the geometry of a group is 

reflected in the approximation properties of points in its limit set. 

For a zonal Fuchsian group G and a real number x we define the quantity v~x) 
which describes how well the number x is approximated by the orbit of infinity. T h e  

geometric results described above can be interpreted to show that for each of the 

groups we study there is a corresponding Markoff theorem. In other words, there is a 

discrete set of values/~;(G) decreasing to a number A(G) so that if v~(x)>A(G) then 

v~(x)=/~i(G) for some i. This is very similar to Schmidts result in [18]. The numbers x 

with vG(x)>A(G) are geometrically characterized by the fact that they are precisely the 

endpoints of lifts of simple closed geodesics from the quotient Riemann surface. As a 

result we can express the value/~,(G)=v6(x) in terms of the length of the associated 

geodesic. Furthermore, an open leaf of a minimal compactly supported geodesic 

lamination lifts to a geodesic whose endpoints x and y satisfy vc(x)=v~(y)=A(G). 
This gives a new proof of Markoff's theorem as well as a geometric characteriza- 

tion of the Markoff quadratic irrationalities and a subcontinuum of the numbers x with 

The endpoints of a lift of a geodesic may be determined if one has a good 

�9 description of the geodesics journey around the quotient surface. Such a description is 

provided by the symbolic dynamics. For our purposes it is therefore desirable to know 

the symbolic dynamics of simple geodesics. This problem has been studied by Birman 

and Series in [3] where they present an algorithm for determining simplicity. We will 

give an explicit description of the symbolic dynamics for simple geodesics on a 

punctured torus [5]. Following the approach of Birman and Series we then compute the 

endpoints of lifts of simple geodesics. In the classical case this simplifies to give the 

continued fraction expansions for the Markoff quadratic irrationalities and the lamina- 

tion endpoints with v(x)=~. 

w 1. Definitions and statement of results 

The recommended reference for the hyperbolic geometry is Beardon's book [I]. We 

will be working with the upper half plane model H for hyperbolic space with the 

Poincar6 metric ds2=[dz[2/Im2z. The length of a curve y: [a, b]-->H is given by the 

integral 

f b i~,(t)[ dr. 
L(y) = Im y(t) 
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The orientation preserving isometries of  H are the real M6bius transformations M6bR 

which have the form z~-~(az+b)/(cz+d), a, b, c, dER and ad-bc--1. 

A hyperbolic geodesic is a half line or circle in H orthogonal to the real axis. The 

endpoints of a geodesic are its ends. The angle between two geodesics is measured by 

the  Euclidean angle between their tangent lines at the point of  intersection. Two 

geodesics which share a common endpoint  form an angle measuring ze ro .  

A horocycle in H at a point p is an open disc in H tangent to the real axis i fp  ER or 

a half plane ( I m z > t }  i fp=oo .  

Every  hyperbolic Riemann surface N can be represented as the quotient of  H by a 

Fuchsian group G. Since G is also a group of  isometries of  H, N inherits a hyperbolic 

metric by  way of the covering projection ~r: H - , N .  The length of  a curve y on N, which 

we denote L(y), is usually calculated by lifting it to a curve in H. 

A geodesic on N is the image of  a geodesic on H under the covering projection. Le t  

be a geodesic on H covering the geodesic 7 on N. 7 is a simple geodesic if g(~) N ~ = ~  

for all g E G which do not lie in the subgroup stab (~7) whose transformations stabilize ~7. 

7 is a closed geodesic if stab (~) is an infinite cyclic subgroup of G. If  stab (~7) contains 

only the identity then 7 is an open geodesic. We use the term end of a geodesic 7 to 

describe the asymptot ic  behavior of  y on N. More  precisely, an end of a geodesic ~/1 is 

asymptotic to a geodesic ~2 if they have lifts ~1 and ~72 which have a common endpoint.  

We will generally treat a curve on a surface as a point set, thereby minimizing the 

importance of  a particular parametrization.  The reader  may think of  a curve as having a 

simple (~1 parametrization.  When considering the homology or free homotopy  class of  

a closed curve we identify the two possible orientations, thus treating a homology or 

homotopy class and its inverse as one. This fits with our definition of  a geodesic as an 

unoriented object. 

Throughout  this paper  we will work exclusively with surfaces N which are of  finite 

topological type. This means that there exists a conformal imbedding of  N into a 

compact  surface No of  the same genus so that the complement  of N in No consists of 

finitely many connected components .  These  complementary components  correspond 

in a one-to-one fashion with the noncompact ends of  N. Two types of  ends may be 

distinguished: finite ends or punctures, which correspond to single point components  in 

No\N;  and infinite ends whose complementary  components  are not points. 

A surface of  genus 1 with one noncompact  end is called an h-torus. A surface of  

genus 0 with 4 noncompact  ends is called a 4x sphere. 

Corresponding to a noncompact  end on N is a unique nontrivial free homotopy  

class of  closed curves. A closed curve in this free homotopy  class can be contracted to 
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a point when we adjoin to N the component in N o \ N  associated to the given 

noncompact end. A nontrivial free homotopy class of closed curves contains a unique 

closed geodesic representative if it does not correspond to a puncture on N. The closed 

geodesic associated to an infinite noncompact end is simple. We call such a geodesic a 

boundary geodesic. 

A sequence of geodesics ~,,. on N converges to a geodesic y if there are lifts )7; of the 

)'i and )7 of ~ to H so that the endpoints of the geodesics )7,. converge to the endpoints of 

)7. In general a sequence of geodesics may have many limits. 

Let S(N), or just S when the meaning is clear, be the set of simple closed geodesics 

on N which are not boundary geodesics. ~r will denote the set of geodesics which are 

limits of geodesics in S. It is easily shown that S contains only simple geodesics [11, 

22]. 

w 1.1. Let G be a Fuchsian group normalized so that the stabilizer of infinity is 

generated by a transformation of the form z~-->z+t for some 0=l=t ER. Groups with this 

property are called zonal Fuchsian groups of width t. 

For x E R define 

vG(x) = inf{ kE R I Ix-gn(~)l < k/c2n 

for infinitely many = g. E G with c; 4~ c i for i ~ j  
c n d~ " 

The set of numbers for which there exist infinitely many group elements g,, with 

Ix-g,(~)l<k/c2~ for some real k are called points o f  approximation for the group G 

[1, 2]. Working with the values v~x)  we can delineate a finer structure within the 

points of approximation which is directly analogous in the cases we study, to the 

Lagrange spectrum of classical Diophantine approximation. Define the Lagrange spec- 

trum L(G) for the group G to be the set of values v~(x) for all real x. If G is the group 

M6bz then it is known [17] that L(G) is the classical Lagrange spectrum. 

THEOREM 1.1. Let G be a zonal Fuchsian group o f  width t representing an h-torus 

T with a finite noncompact end. Suppose x is not in the G-orbit o f  infinity. Then 

vc(x)>2/t i f  and only i f  x is the endpoint o f  a geodesic ti(x) which projects to a simple 

closed geodesic a(x) on T; the value v~(x)=(2/t)coth ~L(a(x)). Furthermore, i f  x is the 

endpoint o f  a geodesic ~t(x) which projects to a geodesic a(x)E S \ S  then v~(x)=2/t. 

If we let G be the subgroup F' of M/~bz with generators 
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then t=6 and Theorem 1 implies the classical Markoff theorem. We can also infer that 

the Markoff quadratic irrationalities (v(x)>! 3) are exactly the endpoints of lifts of simple 

closed geodesics from the quotient surface Tz=H/F'. Furthermore, a subcontinuum of 

the numbers x with r(x)=~ are exactly the endpoints of lifts of simple biinfinite 

geodesics on Tz which are limits of simple closed geodesics. 

Let H be a zonal Fuchsian group representing a 4x sphere M with all finite 

noncompact ends. It is known that there is a finite extension H* of H which is a 

Fuchsian group having signature (0; 2, 2, 2, o0) [1, 18]. Schmidt refers to these groups as 

extended Fricke groups. The parabolic transformations in H* are all contained in H. 

Therefore, if H has width t then so does H*. Shiengorn was first to observe the 

geometric connection between H and H* in the context of the Lagrange spectrum. 

THEOREM 1.2. Let H be a zonal Fuchsian group representing a 4x sphere M 

haoing all finite noncompact ends. Suppose x is not in the H* orbit o f  infinity. Then 

VH*(X)> I/t i f  and only i f  x is the endpoint o f  a geodesic d(x) which projects to a simple 

closed geodesic a(x) on M; the oalue VH.(X)=( I/t)coth 14L(a(x)). Furthermore, i f  x is the 

endpoint o f  a geodesic d(x) which projects to a geodesic a(x) E S \ S  then VH.(X)= 1/t. 

The case where H is the congruence subgroup F(3)cMbbz was studied by Lehner 

and Shiengorn [12]. Here also the Markoff quadratic irrationalities are exactly the 

endpoints of lifts of simple closed geodesics from the quotient surface Mz=H/F(3). 

The proofs of Theorems 1 and 2 occur in (w 5). 

w 1.2. The fundamental arguments for this paper are embodied in Theorem 1.3-1.6. 

In this geometric setting we are able to deal with surfaces that have infinite noncompact 

ends as well as punctures. Thus Theorems 1.3-1.6 are in a sense generalizations of 

Theorems 1.1 and 1.2, where instead of working with a covering group we go down to 

the surface itself. 

Given a geodesic a on a hyperbolic surface N with a boundary geodesic y we 

define D(a, y), or D(a) when y is the unique boundary geodesic, to be the infimum of 

the distance between points on y and points on a. In other words, D(a, ~,) is the distance 

between a and y. 

THEOREM 1.3. Let T be an h-torus with boundary geodesic 7. A geodesic a on T 



38 ANDREW HAAS 

lies on S if  and only i f  coth ~L(~)<~coshD(a). Equality hold only i f  a E S \ S .  For a E S 

cosh D(a) = coth �89 coth ~L(~). 

THEOREM 1.4. Let M be a 4x sphere with four boundary geodesics 7~, 72, ~3, ~4, 

all having equal length. Set D(a)=min {D(a, ~'i) I i= 1 .. . . .  4}. A geodesic a on M lies in 

i f  and only i f  coth �89 D(a). Equality occurs only when a E S \ S .  For a E S, 

L(yi) c o t h - ~  for i = 1 .. . . .  4. c o s h D ( a ,  ~i) = coth 2 

Let G be a Fuchsian group representing the surface N. There is a one-to-one 

correspondence between punctures on N and conjugacy classes of maximal parabolic 

subgroups of G. Let C be a conjugacy class of parabolics corresponding to the puncture 

p on N. There is a G invariant set of horocycles tangent to the boundary of H at fixed 

points of elements in C which projects to a punctured disc on N. This punctured disc is 

called a horocyclic neighborhood of the puncture p. 

Given a geodesic a on N we let A(a, p) denote the area of the largest horocyclic 

neighborhood o f p  on N which is disjoint from the geodesic a. 

THEOREM 1.5. Let T be an h-torus with a finite noncompact end. A geodesic a on 

T lies in S if  and only i f  4~<A(a). Equality occurs only when a E S \ S .  

For a E S A(a) =4 coth �89 

THEOREM 1.6. Let M be a 4x sphere with only finite noncompact ends Pl, P2, P3, 

P4. Set A(a)=min{A(a,  pi)li=l .. . . .  4}. A geodesic a on M lies in S if and only i f  

2~<A(a). Equality occurs only when c t E S \ S .  For a E S  A(a, Pi)=2coth~L(a) for 

i=I  .....  4. 

The proofs of Theorems 1.3-1.6 all follow the same general outline. To begin one 

proves the identity for simple closed geodesics (w 2). This is done by dissecting the 

surface along an appropriately chosen set of curves. The dissection results in a plane 

hyperbolic polygon which is then analysed using plane hyperbolic geometry. This is 

extended to all of ~r by taking limits (w 4.1). 

Geodesics which are not simple, and hence not in ~r are shown to contain arcs 

which bound either a geodesic monogon or bigon about a noncompact end. Again, after 

dissecting the surface along these curves we use plane hyperbolic geometry to show 

that the existence of such a configuration forces the geodesic to make sufficiently deep 

incursions into a noncompact end. (w 3.1). 
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Fig. 1.1 (a) 
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Fig. 1.1 (b) 

It then remains to consider the simple geodesics which do not belong to S. In (w 4) 

we determine exactly which geodesics fall into this category. It is then easy to get a 

rough estimate of the depth of their incursions into a noncompact end. 

The different pieces of  the argument will be tied together in w 4.1. 

w 1.3. Let  G be a Fuchsian group representing an h-toms T. There is a fundamental 

domain F for G with four disjoint geodesics along its boundary,  as illustrated in Figures 

1.1 (a) and (b). If  T has a finite noncompact  end then F is an ideal quadrilateral in H. 

Transformations A and B pair opposite sides of F and generate G. Let  

5e= {a, a -1, b, b - l}  be the set of  sides of F where A(a)=a -1 and B(b)=b -1. 

A function o: Z- - -~  is freely reduced if o(n) is different from o(n+ 1) -'l and 

o(n-1)  -1 for all n E Z. Define an equivalence relation on the set of  functions o: Z-->Ae 

where o is equivalent to o' if either o(n)=cr'(n+k) or o(n)=o'(-n+k) for all nEZ and 
some k E Z. 

A geodesic V on T which does not terminate at the noncompact end determines a ' 

unique equivalence class of  freely reduced functions o: Z--->Ae (w 6). We call this equiv- 

alence class the symbolic dynamics of ~, and denote it by Dyn (~,). This approach is 

essentially the same as the one in [3] where V is represented by a biinfinite word in the 

symbols of b ~ It is shown there that each equivalence class of freely reduced functions 
determines a geodesic ), on T. 

Let  t7: Z--->~ebe freely reduced. The restriction of o to the interval [j, k] determines 

a maximal block if o(n)=s forj<~n<.k and o( j -  1), o(k+ 1)*s. There is a natural ordering 

of  the maximal blocks in tr. We may then write o in condensed form as a function 

Y.:Z--->W, where W={am, b ' l m E Z } .  ~(n) is defined to be s m where o=s on the nth 
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maximal block determined by  the interval [j, k] with m = k - j +  1. We will generally use 

condensed functions Z to represent  symbolic dynamics.  

For  xEl~ and c E R  define the function q(x, c): Z--->Z by 

q(x, c) (n)=I(n+ 1) x +c ] - Inx  +c] 

where [ ] denotes the greatest integer function. 

When xEl~ and c~=mx+k for any m, kEZ,  let X(x, c): Z--->W be defined by 

~a sgnr n = 2m, m E Z 
Z ( x , c ) ( n ) =  ~bsgn(x)q(x,c)(m), n = 2 m + l ,  m E Z  

= ~b s~x), n = 2m, m E Z  

[aS~(x)q,/x,-r n = 2m+ 1, m f~ Z 

= { ~  w h e n x = o o  

when x = O. 

when 1 ~ Ix] < Qo 

when 0 < ]xl < 1 

When x is irrational and c = m x + k  for m, k ~ Z  

fY.(x, c) (n), n �9 1 
Z~(x, c) (n) = t b  sg"(x)(txl-l), n = - 1 

| 

[. a sgn(x)([l/x]-l), n = - 1 0 ~ x < l  

and 

fY(x,  c) (n), n �9 1 
Z2(x, c)(n)  = ~ b  sg~r162 n = - 1  1 ~<x< oo 

[.a suatx)~tvxl-I), n = - I  0 ~ < x < l  

A geodesic lamination on a hyperbolic surface N is a closed set of  disjoint simple 

geodesics on N. We denote by (gs set of  all laminations on N and by cg5r the subset  

of  compactly supported laminations. A lamination is minimal if it contains no proper  

sublaminations. 

THEOREM 1.7. Let  ~ be a simple geodesic in S(T)  which belongs to some minimal 

geodesic lamination on T. Then Dyn (~) is represented by one o f  the funct ions Z(x, c), 

El(x, c) or Z2(x, c) f o r  some (x, c) ER 2. 

It will become clear in w 6 that the seemingly restrictive hypothesis  of  Theorem 1.7 

actually allows for a description of  the symbolic dynamics of  all simple geodesics on T. 

Let  ~=[ao, al . . . .  ] be the number  with continued fraction expansion 
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1 
a~ 1 

a l + - -  
a 2 + . . .  

Using Dickenson notation in [7] we may write the continued fraction expansion of a 

number ~ in the form (nl)ml (n2)m2 (n3)m3 .... where each (Hi)m, denotes a repeating block 

of mi consecutive occurances of  the integer ni in the continued fraction expansion of ~. 

THEOREM 1.8. ~ is the endpoint o f  a lift o f  a simple geodesic on Tz which does not 

terminate at the puncture i f  and only /f  .~=[b0, bl . . . . .  bk, a,,  a,+ l . . . .  ] or 

Jan, an+l . . . .  ] where [ao, al ,  a2 . . . .  ] is one o f  the following: 

(1) l~, 
(2) 12q(o)_ 12212q(1)_222... 2212q(n)_222... where q(n)=q(x, c)(n) with l~<x< oo and 

c ~ m x + k  for  any m, k E Z .  

COROLLARY (Markof0. v(~)>] / f  and only i f  ~=[bo, b I . . . . .  b2, an, a,+ ! . . . .  ] or 

[a n, an+ 1 . . . .  ] where [a 0, a ! . . . .  ] is either 1| o r  IEq(0)_ i 2 2 12q(1)_2... 2 2 12q(n)_ 2 2 2 ... with 

q(n)=q(x, c) (n) fo r  some x E Q, l~<x<oo, and c irrational. 

w 2. Simple closed geodesics 

In this section we will derive the formulas for D(a) and A(a)  when a is a simple closed 

geodesic. There are somewhat different derivations of these formulas due to J. P. 

Matelski. The following two theorems from plane hyperbolic geometry play a crucial 

role. Their proofs may be found in [1]. 

THEOREM 2.1. Refer  to the hyperbolic hexagon illustrated in Figure 2.1 where 

side lengths are labeled. 

cosh bt sinh a2 sinh a3 = cosh a 1 "~ cosh a2 cosh a3. 

THEOREM 2.2. Refer  to Figure 2.2. 

cosh a cosh c+cos  T = sinh a cosh b sinh c. 

When dealing with hyperbolic polygons we adopt the convention that a side that 

has its length labeled by a Roman lower case letter will lie on a geodesic labeled by the 

corresponding Greek letter. Also, the side of  a polygon determined by a geodesic a will 

be denoted by s(a). 
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bl 

Fig. 2.1 Fig. 2.2 

LEMMA 2.1. Let 0 be the hyperbolic octagon illustrated in Figure 2.3 (a). Suppose 

that the side lengths and angles o f  0 satisfy dl=d2, a=cl+c2, bl=b2, and 

:V 1-1r = 1)2 q-~/1 ~-,717. Then 

e 
cosh d I = coth-~ coth 7 L 

Also, the minimal length arc joining a and e has length dl. 

Proof. There is a unique orientation preserving isometry h which fixes the geodesic 

a, has translation length a, and takes s(fll) to s(fl2). Since ~2 and vl are complementary 

angles h also maps Yl onto Y2. 

We need to see that the three geodesics 71,72, and a never intersect one another 

either in H or on its boundary. Suppose 71 n a=~=~. Then since h fixes a and maps 71 to 

Y2, y2Na4=~. The three geodesics al,fll and Yl then bound a triangle in which two 

interior angles are complementary to fll and/~2; consequently,/~t+/tE>er. By similar 

reasoning Vl+V2>~r. This implies that vlWve+/.q+#2>2~ contrary to the hypothesis. 

It then follows easily that )'1 N 72=~. 

We are now able to define the common perpendicular fl~' of )/1 and a, and the 

common perpendicular fl~ of 72 and a. By replacing the side defining geodesics fll and 

f12 of 0 by the geodesics fl~' and fl~ we get a right octagon 0* (see Figure 2.3 (b)). 

Since the common perpendicular of two geodesics is unique h(flT)=fl~ and bT=b~. 

It also follows that the translation length of h is equal to a*, and thus a=a*. 

Since their endpoints agree on 72 the segments S(y2)O h(s(yl)) and s(y~)U h(s(yT)) 

are identical; which shows that c1+c2=c~+c~. 
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L e t  to be the common perpendicular of a and e. Because 0 is a fight polygon to 

joins the sides s(a) and s(e), and divides 0 into right hexagons H1 and H2. Three side 

lengths determine a right hexagon. Observing the order of correspondence between the 

sides of equal length L(to), d2, b$ and L(to), dl, bT we see that HI is congruent to HE by 

the reflection in to. It follows that cT=c~=a/2, and to bisects both s(a) and s(e). 

Applying Theorem 2.1 to Hi results in the identity 

. e slnhcl = cosh-~-+cosh-~-coshc~. coshdl smh-~- " * a e 

Substituting a/2 for cT and then solving for cosh dl gives 

( 2 )  -2-a -4-e cosh d I = c o t h 2  c o s h 2  +c~ = coth coth 

as claimed. 

To complete the argument we note that H1 is invariant under reflection in the 

common perpendicular of e and fiT. Q.E.D. 

THEOREM 2.3. Let T be an h-torus with boundary geodesic F. For aES(T), 

cosh O(a) = coth �89 coth ~L(a). 

Proof. Choose a minimal length geodesic arc ~ joining a to F. 6 meets both a and 

at fight angles. Pick a point p on a and a closed noncontractible curve c beginning and 

ending at p which meets a only at p and is disjoint from t~ and F. Let fl be the closed 

geodesic segment in the homotopy class of the curve c with the same fixed endpoint p. 

fl is a closed curve on T although it will not in general be a closed geodesic according to 

our definition (see Figure 2.4). Nonetheless fl has the important property of being 
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.~ y 

t2 

l 
Fig. 2.4 

disjoint from both ~ and 6 and meeting a in a single point. This is due to the fact that if 

for example fl intersected 6 it would be in two points and together they would bound a 

simply connected region on T. This sort of intersection (non-geometric) cannot occur 

between geodesics. 

The region on T bounded by the geodesics a, V, fl and 6 is an octagon which we 

may realize, by lifting, as an octagon 0 in hyperbolic space. 0 is easily seen to satisfy 

the hypothesis of Lemma 2.1; hence, 

coshL(6) = c o t h - ~ c o t h  L~) .  

As L(6)=D(a) the theorem is proven. Q.E.D. 

It is interesting to observe at this point that there is another geodesic arc 6' on T 

which realizes the minimal distance D(a) between a and y. This follows from Lemma 

2.1 by letting 6' be the projection to T of the common perpendicular joining the lifts of a 

and ~, bounding 0. It is also clear that 6 and 6' approach a from opposite sides. 

Let P be a polygon with a vertex v along the boundary of H. We will be considering 

the region of P lying inside a horocycle tangent to the boundary of H at the vertex o. If s 

is a side of P define Av(s) to be the area of the largest horocyclic neighborhood of o in P 

disjoint from s. 
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Fig. 2.5(a) 

u 

Fig. 2.5 (b) 

LEMMA 2.2. Let P be the septagon illustrated in Figure 2.5 (a) with the vertex o on 

the real axis. Suppose that ci+c2=a, bz=b2, /~l+/t2=vl+v2=rt and A(s(yl))= 

A(s(y2)). Then 
a 

A(s(3/O) = A(s(~, :)) = 4 coth-~- --- A(s(a)). 

Proof. There is no loss of generality in supposing that the geodesic to eminating 

from o and perpendicular to a bisects s(a). This can be achieved by varying the polygon 

with a parabolic isometry of H which fixes o. Using the methods of Lemma 2.1 we may 

further suppose that ~I----/.t2----Vl=V2----~/2. Then since reflection in to maps 6~ to 62, 

S(bl) to s(b2), and leaves s(a) invariant it follows that c1=c2. 
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We construct open polygons P(t) depending on a real parameter t so that 

bi(t)=bi+ 1/t (see Figure 2.5 (b)). To do this first fix the geodesics ill, f12 and a. Let 7,(t) 
be the geodesic orthogonal to fli with b,(t)=bi+l/t. Then define 6,(t) to be a geodesic 

orthogonal to 7i(t)so that ci(t)=ci. 61(t) and 62(t) are clearly disjoint. Adjoining the 

common perpendicular eft) of 61(t) and 62(0 to P(t) gives a fight octagon O(t). Since P(t) 
and hence Off) are invariant under reflection in to, d~(t)=dz(t) and O(t) satisfies the 

hypothesis of Lemma 2.1. 

It follows that 

cosh dl(t) = coth a coth e(t) 
2 4 

and the distance from s(e(t)) to a is dl(t). 
From the definitions it is seen that O(t) converges uniformly to P on compact sets. 

The neighborhoods N(t) of the geodesic s(e) in 0(t) of width dl(t) converges to the 

horocyclic neighborhood of v in P with the desired area A(s(70). This shows that 

A(s(a)) =A(s(70). 
The area A(N(t)) converges to A(s(71)), which leaves us the task of computing 

limt__,=A(N(t)). 

a(N(t)) = e(t) sinh dl(t) 

= e(t) (cosh z dl(t)-  I) l/: 

=e(t )coth2[coth2Z-~-- tanh2211/2  

Since lim,_,= e(t)=0, taking limits gives A(s(yO)=limt_,= A(N(t))=4 coth a/2. Q.E.D. 

THEOREM 2.4. Let T be an h-torus with a finite noncompact end. For a E S(T), 
a(a)=4 coth ~L(a). 

Proof. Choose a simple geodesic ray 6 which meets a at one end in a fight angle 

and heads out towards the puncture in the other direction. As in the proof of Theorem 

2.3 let fl be a geodesic arc beginning and ending at a point p on a, meeting a only at p, 

and disjoint from 6 (see Figure 2.6). 

The geodesics a, fl, and 6 bound a simply connected region on T which lifts to a 

hyperbolic 7-gon P in H with one vertex v on the boundary. 

A horocyclic neighborhood on T disjoint from a projects to a horocyclic neighbor- 

hood of v in P. Applying Lemma 2.2 gives the desired result. Q.E.D. 
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a 

Fig. 2.6 Fig. 2.7 

Again we may observe from the lemma that the boundary of the horocyclic 

neighborhood of area 4 coth�89 touches a exactly twice from opposite sides. 

THEOREM 2.5. Let M be a 4x sphere with four equal length boundary geodesics 

9'1, 9'2, 9'3, 9'4. The distance from a E S(M) to a boundary geodesic 9'i is 

L(a) d(a, y i )  = c o t h - - ~  coth 
4 Z 

Proof. Since a is a closed curve on the planar surface M a must be a dividing 

curve, a is not a boundary geodesic so both complementary components are two holed 

discs D1 and D2. 

Suppose that 9'1 and 9'2 lie on D1. Let 61 be the minimal length perpendicular 

joining a to 9'1. Let 62 be a geodesic arc in the complement of 65 orthogonal to both 9'1 

and Yz (see Figure 2.7). 

The region of D~ in the complement of 61 and 6z is simply connected and lifts to a 

right hexagon H in H. H is easily seen to satisfy the hypothesis of Lemma 2.1 and the 

theorem follows. 

LEMMA 2.3. Let P be the pentagon illustrated in Figure 2.8 (a) with three vertices 

Vl, v2, and v3 on the real axis. Suppose that P is mapped onto itself by reflection in the 
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geodesic to eminating from 13 2 perpendicular to ~. Then the largest horoball neighbor- 

hood o f  v2 in P not meeting y has area Ao2(Y)=2 coth~c. 

Proof. Consider right octagons O(t) as illustrated in Figure 2.8(b). They are 

constructed by replacing the geodesics ai with geodesics a,(t) lying on circles of smaller 

radius so that the adjoined perpendicular segments satisfy dl(t)+d2(t)=e(t)=l/t. We 

further stipulate that this be done so that O(t) is preserved by reflection in w. 

It follows from the final statement of Lemma 2.1 that b,(t)=to(t). As in Lemma 2.2 

the neighborhood N(t) of s(e(t)) in O(t) of width al(t) converges to the desired cusp 

neighborhood of v. As this convergence is uniform on compact sets we see that A(N(t)) 

converges to Av(y). 
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A(N(t)) = e(t) sinh bl(t) 

= e(t) (cosh 2 bl(t)- 1) 1/2 

=e( t ) (co th  2 e(t)2 c ~  '/2" 

Hence limt_.= A(N(t))=2 coth ~c as required. Q.E.D. 

THEOREM 2.6. Let  M be a 4x sphere with all puncture type boundary component s. 
For a E S(M), 

A(a) = 2 coth ~ = Ao,(a) 

for all punctures 0i on M. 

Proof. The geodesic a divides M into twice punctured discs D1 and Dz. Let Q1 and 

02 denote the punctures o n  D 1 .  We learn in complex analysis that D1 c a n  be mapped 

conformally into the unit disc A in C so that QI and 02 both lie on the real axis with 

pl=-Q2. The reflection z~-,s leaves the image of D1 in A invariant. Hence there is an 

orientation reversing isometry of D! onto itself which fixes three geodesics: 61 joining 

01 to a, 62 joining 01 and 02, and 6 3 joining 02 to a (see Figure 2.9). 

The complement of 61 and 62 on D1 is simply connected and lifts to a hyperbolic 

pentagon P with three vertices along the boundary. 63 lifts to a geodesic c~3 in P joining 

a to the ideal vertex corresponding to the puncture 02. The orientation reversing 

4-868282 Acta  Mathernatica 156. Imprim6 le 10 mars 1986 
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isometry of D1 is covered by the reflection in 53. It follows that reflection in 53 leave 

invariant the pentagon P. 

The hypotheses of Lemma 2.3 are satisfied and the theorem follows. Since the 

result only depends on L(a) we see that A(a)=Ae,(a) for each i= 1,2, 3,4. Q.E.D. 

w 3. Self intersecting geodesics 

Let P be a region on the hyperbolic surface N lying in the complement of some number 

of geodesic arcs and geodesic rays. If P contains a noncompact end of N and has 

infinite cyclic fundamental group then P is a geodesic polygon bounding a noncompact 

end of N. A vertex of P is a point on the boundary of P at which two of the geodesic 

arcs bounding P intersect. An ideal vertex of P corresponds to two rays on the 

boundary of P with asymptotic ends. 

A geodesic ~ on N is said to bound a monogon on N if the complement of some 

piece of y is a geodesic polygon with one vertex or ideal vertex bounding a noncompact 

end of N. ~, is said to bound a bigon on N if there exists a geodesic polygon P with 

either two vertices or one vertex and one ideal vertex bounding a noncompact end on a 

hyperbolic surface R and an isometric immersion of P into N mapping the boundary of 

P into y. In all cases under consideration the polygon P will lie on a covering of the 

surface N and the immersion will be induced by the covering projection. The determi- 

nation of this covering is made explicit in the arguments and at a later stage it will 

justify our treating the bigon as an embedded geodesic polygon. 

Let f = C \ Z [ f l ,  the plane with integer lattice points deleted. The group F contain- 

ing transformations of the form z~z+m+in for m, n E Z, acts discontinuously on T. The 

quotient T/l" is an h-torus To. A straight line l(r) in f with slope r E 0 = Q U {  oo} is 

invariant under transformations z~z+m+in with n/m=r. All other transformations in F 

map l(r) disjointly, l(r) therefore projects to a simple closed curve on To which is freely 

homotopic to a simple closed geodesic A(r). Moreover, A(r) depends only on the value r 

(see w 6 or [9]). 

Consider the collection ~h(~v) of horizontal (vertical) lines in C which pass 

through points in Z[i]. The reflection in a line I in either Leh or Lev is an anticonformal 

homeomorphism of f and consequently a hyperbolic isometry. Since the arcs of ! that 

lie in f are fixed pointwise by the reflection they are geodesics in the hyperbolic metric 

on T. By the same reasoning horizontal lines with half integer imaginary part and 

vertical lines with half integer real part are geodesics in T. 

The collection of lines ~f#=-~h 0 .~  divides C up into squares with vertices in Z[zl. 



DIOPHANTINE APPROXIMATION ON HYPERBOLIC RIEMANN SURFACES 51 

Given a geodesic 37 in/~ which does not terminate at a puncture point (in Z[/]) and points 

p and q on 37 there is a clearly defined sequence of squares in T describing the path from 

p to q. This gives a loose characterization of the symbolic dynamics of the arc 37(p, q). 

We shall delve more deeply into this matter in w 6. 

Let O(r, s) be another arc of a geodesic O in i" with endpoints r and s. Suppose that 

the path 37(p, q) traverses exactly the same sequence of n squares in T as the path O(r, s). 

An equivalent formulation of Lemma 1.1 in [4] is 

LEMMA 3.1. There exist constants k, c, and a so that a subarc of  (r(r, s) of  

hyperbolic length kn is contained within a tubular neighborhood of  37(p, q) of  width 
C e -an .  

PROPOSITION 3.1. Let y be a closed self intersecting geodesic on an h-torus T. 

Then y must bound a monogon or a bigon on T. 

Proof. There is a homeomorphism g: T-,To mapping the given h-torus onto To. 

Clearly, y bounds a bigon or a monogon on T if and only if the geodesic on To freely 

homotopic to g(y) also bounds a bigon or a monogon. It is therefore no loss of 

generality to restrict our attention to the particular h-torus To. 

We assume 7 on To does not bound a monogon and show that y must then bound a 

bigon. It will suffice to demonstrate the existence of two lifts of y to/~ which together 

bound a bigon on T. 

First consider the case where 3' lifts to a geodesic 37 in /~ which is not a closed 

geodesic. Then there is a nontrivial maximal cyclic subgroup FocF generated by 

z~z+mo+ino for some integers mo and no which stabilizes every lift of 3' to ]'. 

It follows from [8] that there is a homeomorphism f :  To---~To taking the geodesic 

2(no/mo) onto a closed curve which is freely homotopic to ,~(0). The geodesic on To in 

the free homotopy class of the closed curve f(y) will bound a bigon exactly when 3' 

does. Hence, there is no loss of generality if we suppose that no=0. 

Let a be a geodesic on To which does not terminate at the puncture, and which is 

disjoint from the projection of the lines in ~h to To. Lift a to a geodesic a in T lying in 

the region f2 between the lines lo={Imz=0} and l l={Imz=l} .  Since a realizes only 

geometric intersections with the geodesic arcs of ~ in T, a may only cross an arc in ~ 

once. It follows then that t~ cannot make a "u-turn" in fl,  and consequently it must 

cross each arc of =f#o in f2 exactly once. Thus the sequence of squares traversed by any 

subarc of a agrees with the sequence traversed by a corresponding subarc of the 

geodesic ll/2={Imz=�89 By Lemma 3.1 it must be that ti=ll/2 and thus a=;t(0). 
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Since 3' is distinct from 2(0) it has a lift 37 which intersects lo. Both lo and 37 remain 

invariant under z~z+mo so lo and 37 must actually intersect in infinitely many points. 

Nevertheless, there are only finitely many intersections occuring between 3' and the 

projection of  lo on To. 37 divides/~ into two unbounded regions, one above and the other 

below 37. Let  u+iv be a lattice point which does not lie in the unbounded region below 

37, and further suppose that its imaginary part is minimal among all such points. A 

minimum must exist since 3' is compact  on To. Set h(z)=z-iv. Then there is an a rca  of  

lo containing the integer u whose  endpoints are also the endpoints of a simple arc c of  

the geodesic h(37)=371. Together a and c bound a region below lo which is disjoint from 

Z[O (see Figure 3.1). 

Let  a~ be an arc of  lo that satisfies the following: 

(1) There is a lift 371 of  3' containing an arccl  lying below lo and meeting al at its 

endpoints. 

(2) a~ contains at least one lattice point. 

(3) The region bounded by al and c~ does not contain any lattice points. 

(4) al contains a minimal number  of  lattice points among all arcs satisfying the 

first three properties.  

Similarly we may choose an arc a2 and a geodesic 372 containing an arc c2 so that 

properties (1)--(4) hold with the modifications that the region bounded by a2 and c2 lie 

above 1o. 

Let  n~ be the largest integer on al and let n2 be the smallest integer on a2. Set 

r(z)=z+n2-nl. The arc a=a2  N r ( a0  contains exactly the integer n2. We will show that 

372 and r(371) together bound a bigon containing the lattice point n2. 

We first suppose that one of  the endpoints of  c2 on lo lies between the two 

endpoints of  r (c0  and that one of  the endpoints of  r(Cl) lies between the endpoints of  

c2. This is the situation illustrated in Figure 3.2 (a). Let  us follow 372 beyond c2 into the 

region below lo bounded by r (c0.  The important thing to notice is that 372 must  exit 
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from this region by crossing r(ct) at a point Pl. If 372 were rather to cross r(a0 first then 

the subarc of r(a0 lying between this crossing and the right endpoint of a2 would 

satisfy the first three defining properties of at, but this arc then contains fewer lattice 

points than al which contradicts the definition. For the same reason the extension of 

r(70 beyond r(c0 into the region bounded by a2 and c2 must exit by crossing c2 at a 

point P2. The segments of 372 and r(37t) joining Pl to P2 form a bigon containing exactly 

the point n2. 

Without loss of generality the remaining possibility is that both endpoints of c2 lie 

between the endpoints of r(c0 (Figure 3.2 (b)). Following 372 beyond c2 from both sides 

we see, as above, that #2 must exit from the region bounded by r(al) and r(c0 by 

crossing r(Cl). The bigon is evident. 

The remaining case, where 37 is a closed geodesic, is now elementary. We may 

suppose 37 meets 10 and as above, find arcs of i0 satisfying properties (1)-(4). The 

argument then proceeds without any alterations. Q.E.D. 

By definition a geodesic y spirals around a closed geodesic if one of the endpoints 

of a lift 37 of 3' is a fixed point of a hyperbolic transformation in the covering group. The 

fixed axis of that hyperbolic projects to the closed geodesic that 3' spirals around. 

THEOREM 3.1. Le t  7 be a compactly supported sel f  intersecting geodesic or 

geodesic ray on an h-torus, and suppose that 3, does not spiral around the boundary 

geodesic i f  one exists. Then either 7 bounds a monogon,  y bounds a bigon, or there is a 

simple closed geodesic a which along with 3' bounds a bigon. 
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Proof. The case where y is a closed geodesic has already been treated in Proposi- 

tion 3.1. It will suffice to argue the case where y is a geodesic ray. Again we suppose 

that y does not bound a monogon and show that one of  the two other conclusions of the 

theorem holds. 

As in the proof of  Proposition 3.1 we work on the h-torus To. This is justified by 

the observation that we can always find a collection of  geodesics on /~  that plays the 

same role with respect to )7 as L~h. The intersection properties are crucial to the 

argument whereas the linearity is a pleasant simplification. 

The idea of  the argument is to study a lift ~ of  the geodesic y to ~f. As in the 

previous argument we see that ~7 contains a piece that looks like a bump around some 

lattice points. The argument consists mainly of a case by case analysis of what goes on 

nearby the bump. The same reasoning that gave the bigon in Proposition 3.1 will be at 

work here. 

It should be observed that the hypotheses of Theorem 3.1 and our normalization to 

To preclude the possibility that a lift ~ will either terminate at a lattice point or spiral 

into a closed curve that bounds a disc about a single lattice point. 

Choose a lift ~ of  y to T. Since y is not simple there is some g E F for which ~ and 

g(~7) intersect transversely in a point p ' .  In other words there are points p and p '  on ~7 

with g(p)=p'. We may normalize the covering so that g(z)=z-m for some nonnegative 

integer m. 

Let  a be the linear horizontal segment joining p to p '  and lying in the closure of  the 

region Q between the horizontal lines lk and /k+l. ~7 must meet one of  the lines lk or 

lk+~ in two or more points. The alternatives are that ~ meets neither lk nor lk+~, 
meets only one of lk or lk+l exactly once, or ~7 contains a single arc joining lk to /k+l. 

In all three instances it is clear that the part of  ~7 in f~ is mapped disjointly from itself by 

every element of  the group F. 

Thus we may choose a lift ~ of ~, which meets lo at least twice. Furthermore,  this 

may be done as in the proof of  Proposition 3.1 so that there is an arc Co of ~7 (the bump) 

and an interval ao=[x,y] on l0 bounding a region either above or below l0 which is 

disjoint from Z[i] (see Figure 3.1). Evidently, for the intersection of Co with ao to be 

geometric ao must contain a lattice point. 

The complement of  the arc Co in ~7 consists of a finite arc ~o and an infinite ray ~1. 

The following construction will be used to produce a simple closed geodesic that 

bounds a bigon with ~7. 

Suppose no and nl are lattice points on the lines lj. and lk respectively with j*k. 
There exist points Po lying between no-1 and no on /j. and Pl lying between nl and 
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n~+ 1 on lk so that the line I containing Po and p~ has rational slope and is disjoint from 

Z[0. ! projects to a simple closed noncontractible curve 2 on To. Thus, there is a simple 

closed geodesic ).* freely homotopic to 2. Lift the free homotopy between ;t and 2* to/~ 

to produce a geodesic l* freely homotopic to I on i" and covering 2" on To. In general 

we let l*(no, nl) denote a geodesic constructed in this way. 

Six main cases are to be considered. 

Case 1. lo is the only line in ~k that 37 intersects. Let h(z)=z+ 1. the geodesic 37 and 

its translate h(37) will always together bound a bigon about one of the lattice points. To 

see this we consider two subcases. 

First suppose that 37 contains a subarc consisting of three consecutive bumps. 

Without loss of generality the situation reduces to one of those illustrated in Figures 

3.3 (a) and (b) where we have labeled the center bump Co and assume that the infinite 

ray 371 in the complement of Co on 37 intersects Co in the endpoint y. Let n be the 

smallest integer that is larger than y. The existence of a bigon about n bounded by 37 and 

h(37) follows as in the proof of Proposition 3. I. The analysis given there shows that the 

proper intersections must occur. 

Now we suppose that 37 does not contain three consecutive bumps. Thus the end of 

37 must be asymptotic to one of the geodesics {Im z=�89 or {Im z = -~}. We suppose it is 

the latter. 37 must then contain a bump Co above lo directly preceding an infinite ray 

371 c37 which is asymptotic to {Im z = -~} and meets lo only at its endpoint y. Let n again 

be the smallest integer larger than y. Then 37 and h(37) must together bound a bigon about 

n with one ideal vertex. This follows easily if one keeps in mind that for some 

g(z )=z -m,  37 n g(37)*f13 (see Figures 3.3 (c) and (d)). 
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For  the remainder of the argument we suppose that ~ meets l0 and another line l_,  

for some nonnegative integer n. 

C a s e  2. ~ contains two or more bumps lying on different lines. We suppose that 

one of  the bumps Co lies above lo and is joined to a second bump Cl lying below l_,  by 

an arc d which meets each line l-k, with O<-k<~n, in exactly one point. Cl bounds an arc 

a~ on l_,, with endpoints x' and y'  where R e x ' < R e y ' .  We will assume that d meets al 

at the point x' ,  and that the infinite ray in the complement of Cl on ~ meets a~ at y '  (see 

Figure 3.4 (a)). This precisely describes the configuration in case 2 up to reflections in 

horizontal or vertical lines and translations. 

Co 

�9 �9 �9 

1 
- s �9 t _ n +  1 

" x ' ~ ' , . . . ~  l*(no, nO 
Cl 

Fig. 3.4 (a) 
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Let  w be the point at which d intersects l-n+1. Let  no be the lattice point on 

/-n+l which has maximal real part among all lattice points n with R e n < R e w .  Let  nl 

be the lattice point on al with smallest real part. A geodesic l*(no, nl) then bounds a 

bigon about n~ along with 37. The intersection of l* with d is clear. To see the second 

intersection of  l* with one of  c~ or the infinite ray meeting cl at y '  one follows the 

analysis of  Proposition 3.1. 

The resolutions of  the following two cases are so similar to the previous case that 

we will restrict ourself to providing illustrations which clearly indicate the appropriate- 

ly normalized configurations and the location of points no and nt so that l*(no, nl) 

bounds a bigon with ~. 

Case 3. There are exactly two bumps in 37 both of which lie on lo and bound disjoint 

intervals (see Figure 3.4 (b)). 

Case 4. There is exactly one bump Co in 37 so that the arc ao sharing its endpoints 

contains two or more lattice points (see Figure 3.4 (c)). 

Case 5.37 contains only a single bump Co above to. Suppose that the infinite ray 371 

in the complement of  Co in 37 meets Co in the endpoint y. Then the finite arc 370 meets Co 

at the endpoint x. First suppose that 37o meets l-1 in a point z. Let  no be the lattice 

point on 1-1 with maximal real part among all lattice points n on l-1 with R e n < R e z .  
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Let nl be the smallest integer larger than x. Then a geodesic/*(no, nl) bounds a bigon 

about nl along with 77. 

Finally we suppose that except for its endpoint x, 77o lies entirely inbetween lo and 

1_1. Since we have already considered cases 1, 3 and 4 we may suppose that 77j meets 

1-1 in a single point w and ao contains a single lattice point no. Let  nl be the lattice 

point on l-1 with minimal real part among all lattice points n on l-1 with Re n > R e  w. 

In this case it is not immediately clear that l*(no, nO will meet the arc~7oUco to 

produce a bigon. We need to make use of  the fact that there is a transformation g E F 

with 77 N g(77):~. Under  the circumstances this implies that there are points p ' E  770 U Co 

and p E 771 0 co with g(p)=p'. Moreover, p:~p' for otherwise 77 will bound a monogon 

about no. Without  loss of  generality we suppose that p E 771 and p '  E 77o. If  l* were to 

miss 770 U Co and thus avoid bounding a bigon, this would force there to be nongeometric 

intersections between l* and g(771 U Co) (see Figure 3.4 (d)), which cannot occur. 

Case 6. There are exactly two concentric bumps in 77 both of  which lie on 10. This 

configuration cannot occur. To see this observe that, as in the last part of case 5, the 

intersection produced by g(z)=z-m would occur between the arcs 77oU Co and 7710 C 0. 

Such an intersection is necessarily nongeometric (see Figure 3.4 (e)). Q.E.D. 
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In the case of closed geodesics the following theorem was originally asserted by 

Beardon, Lehner, and Sheingorn. 

THEOREM 3.2. Let ~ be a self intersecting compactly supported geodesic on a 4x 

sphere M, and suppose that ~, does not spiral around a boundary geodesic. Then 

bounds a monogon on M. 

Proof. Let 

which we view as a subgroup of M6ba. The quotient l-lgI'(3) is a 4x sphere Mz. As in 

the proof of Theorem 3.1 it will suffice to prove the theorem on Mz. 

Let F' be the subgroup of M0bR with generators 

I),(I 
The quotient H/F' is an h-toms Tz. It is easy to show that all parabolic M/Sbius 

transformations in F' are contained in F(3). Both groups are finite index normal 

subgroups of SL(2, Z). 

We shall make use of an observation made by C. Series [20] that elementary 

geometric arguments may be employed to show that a geodesic in H projects to a 

simple closed geodesic on Mz if and only if it projects to a simple closed geodesic on 

Tz. Sheingorn also has a proof of this fact which unfortunately depends upon the 

conclusion of the theorem we are proving. It follows immediately from this observation 

that a geodesic in H projects to a geodesic in S(Mz) if and only if it projects to a 

geodesic in $(Tz). 

If y is a self intersecting geodesic on Mz or Tz, we may classify the type of 

intersection as follows: Let p be a point at which ~ intersects itself. There is a lift # ofp  

to H, and lifts ~1 and ~2 of ~, to H meeting at #. Let R be the set of elements in the 

covering group mapping ~l to ~2. We call p a parabolic intersection if R contains a 

parabolic M6bius transformation, otherwise p is a hyperbolic intersection. It is well 

known that an intersection p is parabolic if and only if it is the vertex of a geodesic arc 

in y bounding a monogon. 

First suppose that y is a closed self intersecting geodesic on Mz. Choose a 

geodesic ~1 covering ~ in H. Since y is not simple ~ projects to a closed geodesic ~,' on 

Tz which cannot be simple. By Proposition 3.1 ~' bounds either a monogon or a bigon 

on Tz. 
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If  Y' bounds a monogon then it contains a parabolic self intersection and there must 

be a parabolic transformation g E F '  with g ( # 0 N # l ~ .  It follows that Y contains a 

parabolic intersection, and hence bounds a monogon on Mz. 

We now consider the case where ~,' bounds a bigon. The parabolic subgroup of  F' 

stabilizing infinitely, Stab (oo), is generated by h(z)=z+6. Consider the region W in H 

consisting of all z in It  with -3~<Re z~<3. W is a fundamental domain for the action of  

Stab (oo) on H. 

Lift the bigon in V' to H in such a way that it separates infinity from the real axis in 

W. This will result in three lifts #a, #b, #c of  7' tO H as illustrated in Figure 3.5. The 

transformation h(z) maps #a to #c. 

An easy calculation reveals that one of the geodesics, say #a, lies on a circle of 

diameter greater than three. 

The stabilizer of  infinity in F(3) is generated by the transformation a(z)=z+ 3. Then 

a(#a)N#a4=~, and so ~Ta will project to a geodesic ya on Mz with a parabolic self 

intersection, in other words, Va bounds a monogon on Mz. 

Since F(3) is normal in SL(2, Z) each g E SL(2, Z) induces an isometric self map of 

Mz. Let  g be the element of F'  mapping #a to ~71. Such a transformation exists since 

both #,~ and ~71 cover Y'. Then g induces an isometry of Mz which maps Va to y. Thus 

we see that V bounds a monogon. 

Suppose now that Y is an open geodesic on Mz with self intersections. As above 

lift y to a geodesic #1 in H, and project #1 down to a geodesic V' on Tz. If 7' has self 
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intersections then by Theorem 3.1 it must either bound a monogon, bound a bigon, or 

bound a bigon with the assistance of a simple closed geodesic a. The first two cases 

have already been dealt with. In the third case we can find three lifts of a and ),' in H 

bounding a neighborhood of infinity in W. 

By Theorem 2.4 the largest horocycle {Imz>c} in W disjoint from a lift of a has 

area larger than four. It follows that any lift of a must lie on a circle of diameter less 

than three. One of the lifts )7' of ~,' bounding the neighborhood of infinity in W must 

therefore lie on a circle of diameter greater than three. Then either ~()7')n)7'=~ or 

~-!()7,) t ) ) 7 ' ~ .  The earlier arguments now apply to give the monogon. 

It is possible that the geodesic ~' on Tz is simple. If this is the case then, since ~, 

does not belong to S(Mz), ~' does not belong to S(Tz). From Proposition 4.3 of the 

next section we may deduce that if y' is simple then it either bounds an ideal monogon 

on Tz or it bounds a bigon along with a simple closed geodesic a. 

The later possibility has already been considered so we will suppose ~,' bounds an 

ideal monogon on Tz. Then ~,' lifts to a geodesic )7' in H which shares an endpoint with 

its translate h()7'). It follows that )7' lies on a circle of radius three, and hence that 

)7' 0 ~()7'):~ ~.  Again, earlier arguments demonstrate the existence of a monogon. Q.E.D. 

w 3.1. We are now prepared to argue the assertions of Theorems 1-4 concerned 

with self intersecting geodesics. These comprise the vast majority of all geodesics on a 

surface and in particular of those not in the set S. After having arrived at the topological 

characterization of Theorems 3.1 and 3.2 the following proposition will be sufficient to 

complete this part of the argument. 

PROPOSITION 3.2. Let  N be one o f  the surfaces T or M in Theorems 1.3 to 1.6. Let  

a be a geodesic on the surface N.  Define A(a)  with respect to a puncture p on N and 

D(a) with respect to an infinite noncompact  end e with its associated boundary 

geodesic y. 

(1) I f  a bounds a m o n o g o n  about p then A(a)~<2 with equality occurring when a 

bounds only ideal monogons  about  p. 

(2) I f  a bounds no monogon about  p but does bound a bigon about  p, either alone 

or along with a simple closed geodesic, then 2<~A(a)<4. 

(3) I f  a bounds a monogon about e then coshD(a)<~coth�89 with equality 

occurring when a bounds only ideal monogons about e. 

(4) I f  a bounds no monogon about  e but does bound a bigon about e, either alone 

or along with a simple closed geodesic, then 
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. ,  L(y) y 
~< cosh D(a) < coth L(4) corn T 

It is worth noting that we are not aware of any examples to show equality can 

occur in statements (2) and (4) of the proposition. Nevertheless, it is clear from t h e  

proof that this would necessarily be a limiting case; that is, the distance from a to y 

could not be realized by a geodesic arc. 

Proof. Let G be a Fuchsian group representing the surface N. By conjugating in 

M6bl~ we may normalize G so that the stabilizer of infinity in G is generated by the 

element g(z)=z+ 1. We may further suppose that g is a primitive parabolic representing 

the puncture p. 

(1) If a bounds a monogon about p then there is a lift d~ of a which intersects its 

translate d2=g(d0 either in H or at an endpoint. Denote the endpoints of d~ by ~1 and 

~2 with ~1<~2. Then we have ~1<~1+ 1~<~2. It follows that dl lies on a circle of radius 

r~>~. Therefore, the lift of the horocycle about p of area A(a) must cover a neighbor- 

hood of infinity above height �89 A fundamental domain for the horocycle above Im z=�89 

is F =  {z[0~<Re z~ 1, Im z~>�89 Thus 

a(a)<-ffFdxdy y2 = 2. 

(2) To get the lower bound at 2 we notice that if A(a)<2 then there is a lift d of a 

which enters the horocyclic neighborhood of infinity above the line Imz=�89 This 

geodesic d lies on a circle of radius greater than �89 Consequently, g (d )Nd=~ or 

equivalently, a bounds a monogon about the puncture p. 

If a bounds a bigon on N about p then there are lifts d~, d2, and d3 of a with 

g(al)=t~3, t~llqa2:~=~, and tZ2nt~3=l=~. When there is an ideal vertex one of the 

intersections will occur at an endpoint. It follows, as above, that either (Z1 or r lies on 

a circle with radius larger than ~, and hence A(a)<4. 

Now suppose that a bounds a bigon along with a simple closed geodesic ft. There is 

no loss of generality in assuming that N is an h-torus T. Then there are lifts dl and d2 of 

a with g(dl)=d2,  and a lift fl o f f l  with flndl:4=~ and flnd24=~. Again, if there is an 

ideal vertex then one of the intersections will occur at an endpoint. We may conclude, 

as before, that either dl or/J lies on a circle of radius greater than 1. By Theorem 2.4 

A(fl)>4 showing that dl must have the larger radius. We conclude that A(a)<4. 
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(3) Let a '  be a segment of a bounding a monogon about e. Choose a minimal 

length geodesic arc6 joining a '  to the boundary geodesic y. Since 6 is locally length 

minimizing among all arcs joining y and ct it is a common perpendicular. 

On N the arcs ct', 6, and 7 bound a simply connected region which lifts to a 

geodesic pentagon P in H (see Figure 3.6), From Theorem 2.1 we arrive at the identity 

cosh 2 L(6)+cos ~p = sinh2L(6) coshL0,). 

Substituting for cos 9 gives 

sinh 2 L(6) cosh L(y) <~ cosh 2 L(6)+ 1 

(cosh 2 L(6)- 1) cosh L(~,) ~< cosh 2 L(6)+ 1 

~< F cosh L(y)+ 1 ] 1/2 
coshL(6) [ ~ j  

o r  

cosh L(6) <~ coth 
L(y) 

2 

Since D(a)<L(6) this shows that 

cosh D(a) ~ coth L(7'). 
2 

It is clear that equality results only when D(a)=L(6) and tp=0. This is the case where 

every monogon bounded by a containing p is an ideal monogon. 

(4) We will argue the case where a bounds a bigon about e along with a simple 

closed geodesic ft. The case where a bounds alone follows easily. 

Choose a minimal length geodesic arc 6 joining 3' to the boundary of the bigon. As 

in (3) 6 is a common perpendicular. The argument will demonstrate that 
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coshL(6)<Coth~L(y). By Theorem 2.3 coshD(fl)>coth~L(y) so it will follow that 6 

joins y to a. With this justification in mind there will be no loss of generality if we 

assume that 6 joins y to a. The bigon along with y and 6 bounds a simple connected 

region on N which lifts to a hexagon H in H (see Figure 3.7 (a)). 

Let o9 be the perpendicular bisector of the side s(y). Reflection in ~o leaves s(y) 

invariant, exchanges the side s(60 with s(62), and exchanges the geodesic a~ with a2. 

Let fl* be the geodesic perpendicular to ~o, and lying on the same side of y in H as the 

hexagon at a distance L(6)=di, i= 1,2 from y. As 6 is choosen to realize the minimal 

distance from y to the boundary of the bigon it must be that either fl*=fl or else the 

point at which fl* meets ~o lies in the interior of H. In either case fl must meet one of the 

sides s(aO or s(a2). Since reflection in ~o fixes fl* and maps a 1 to 122, ~* must meet both 

a~ and a2. 

Define a new hexagon H* by substituting fl* for fl (see Figure 3.7 (b)). Then oJ 

divides H* into congruent pentagons. Applying Theorem 2.2 to one of these pentagons 

gives 
2 , L(y) cosh 2L(6)+cos q0 = sinh L(6) cosn ~ . 

Since we allow at most one ideal vertex q0>0. Manipulating as in (3) leads to the strict 

inequality 

coshL(6) < coth L(y). 
4 

As D(a)<L(6), coshD(a)<coth �88 
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We need to show that if coshD(a)<coth�89 then a bounds a monogon. Choose 

geodesics )7 and t~ in H, covering y and a respectively, so that the common perpendicu- 

lar 6 joining )7 to ti satisfies L ( f ) < c o t h  �89 Let  g be a generator of the subgroup of the 

deck transformations that stabilizes )7. I f  a does not bound a monogon on N then ti and 

g(ti) are disjoint. Le t  fl be the common perpendicular joining a and g(a). 

The geodesics )7, t~, g(c~), 6, g(~) and fl bound a right hexagon H. Let  to be the 

common perpendicular joining )7 to ft. H is invariant under reflection in to. Hence,  to 

divides H into two equivalent pentagons. 

Applying Theorem 2.2 to one of the pentagons gives 

cosh ~ cosh L(a) �9 L L(y) sinh L(a) cosh L(6) = s l n n  T 

Then 

coth L(~) = tanh L(a) cosh L(6) < cosh L(6) < coth L(~) 
2 2 

We conclude that a n g(a)4:@ producing a monogon on N. Q.E.D. 

w Simple geodesics 

The analysis of  simple geodesics presented here is based on Thurston's  work with 

geodesic laminations. Although a majority of the results are implicit in [22] if they are 

not explicitely stated there we will give proofs or else outline a proof when the train 

track theory is involved. Alternate approaches may be found in [13]. 

We refer to a geodesic belonging to a lamination as a leaf of the lamination. A leaf 

?' of  a geodesic lamination ~ on a surface N is called proper if there is an arc on N 

which intersects ~ transversely in a single point on ),. We will call a geodesic 3' proper if 

y is a proper leaf of the lamination which is the closure of V on N. 

A sequence of  geodesic laminations ~ / o n  N converges to ~ i f  given any leafy  in 

there is a sequence of  leaves ~/i E ~/converging to V. 

PROPOSITION 4.1, [22]. (1) Laminations with finitely many leaves are dense in 

(2) A lamination contains only finitely many proper leaves and the remaining 

leaves are partitioned into finitely many minimal sublaminations. 

(3) In a finite leaved lamination an end o f  a noncompact leaf either spirals around 

a closed geodesic or tends to a noncompact end o f  N. 

5-868282 Acta Mathematica 156. Imprim6 le 10 mars 1986 
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PROPOSITION 4.2. Le t  a be a geodesic on a hyperbolic surface N belonging to a 

minimal lamination .5~ in ~-~-o. Then there is a sequence o f  simple closed geodesics ai 

converging to a. 

Outline of Proof. The lamination ~ supports a transverse measure. Every meas- 

ured lamination is a limit of measured laminations containing only finitely many leaves. 

These finite leaved laminations ~ / a r e  constructed in terms of a train track approxima- 

tion to ~.  If Sf is supported on a compact subset of N then so is a train track 

approximation. Consequently, all leaves in the laminations ~; have compact support. A 

compactly supported finite leaved lamination must contain closed leaves. Some se- 

quence of closed leaves ai, with ai E ~5~,., will converge to a leaf fl of ~.  Since every leaf 

of a minimal lamination is dense in the lamination the ai must also converge to a. 

Q.E.D. 

PROPOSITION 4.3. Le t  a be a proper compactly supported simple geodesic on an 

h-torus T. Suppose that a is not a boundary geodesic and that it does not spiral around 

a boundary geodesic. Then a satisfies one o f  the following: 

(1) a bounds an ideal monogon.  

(2) a bounds a bigon together with a simple closed geodesic. 

(3) a lies in S. 

Proof. The closure of a on T is a lamination ~.  First we suppose that ~ does not 

contain a closed leaf. Let ~'* be a minimal sublamination of ~.  Clearly, a does not 

belong to ~*. We will show that the complement of ~'* on T is an ideal bigon (two ideal 

vertices), a must lie in this bigon and its ends tend towards ideal vertices. The ends 

cannot tend towards distinct vertices since then a would be one of the geodesics 

bounding the bigon. It follows that both ends of a tend towards the same ideal vertex. 

Then a must loop around the noncompact end producing a monogon. 

We need to see why the complement of ~* is an ideal bigon. Certainly there is no 

simple closed non-boundary geodesic on T \ ~ ' .  For if there were one then by cutting 

along it we could infer that ~'* is supported on a three holed sphere. Since the only 

simple geodesics on a three holed sphere are proper geodesics this is impossible. 

It follows that the complement of ~* is planar, and moreover topologically 

equivalent to a punctured disc. One of the boundary components of T \ &  e* is formed 

by geodesics in &'?*. In other words, T \ Z ~  is an ideal polygon containing the noncom- 

pact end. 

For each ideal vertex v of this polygon we define a geodesic Yv on T \oL  e* with one 
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end going to that vertex and the other end heading out to the noncompact end of T. If T 

has a boundary geodesic we may stipulate that ~v is orthogonal to the boundary 

geodesic. 

On a puncture h-torus T the complement of all the ~v in T \ . S  r is a collection of 

ideal triangles; one for each side of the polygon. An ideal triangle has area at. Since T 

has area 2at the polygon must be two sided. 

If T has a boundary geodesic ), then each of the bounded regions on T\LJf* in the 

complement ~, and the ~'o is a quadrilateral of area at. Since the bounded region on T in 

the complement of y has area 2at we conclude again that the polygon is two sided. Thus 

we have shown that if ~ does not contain a closed geodesic then T \ ~ *  is an ideal 

bigon. 

Next suppose that the closure of a on T is a lamination containing a closed leaf ft. 

Again, since the complement of fl on T is topologically a three holed sphere, fl must be 

the unique minimal sublamination in ~?. 

It is assumed that fl has compact support on T, and that a does not spiral around 

the boundary geodesic, if one exists. By Proposition 4.1 both ends of a must spiral 

around fl~ Cut T open along the geodesic ft. The resulting surface T* is topologically a 

three holed sphere; two of these holes have geodesic boundary fll and flz correspond- 

ing to the cut along fl, and the third is a noncompact end. 

The geodesic a lies on T*. Each end of a must spiral around one of the geodesic 

boundaries fll or f12. There are three cases to consider: 

Case 1. Both ends of a spiral around the same geodesic which without loss of 

generality we suppose to be ill. Since T* is a planar surface there are two regions R1 

and R E in the complement of a on T* (see Figure 4.1 (a)). If the region RE, which has fiE 

along its boundary, contains the noncompact end then RI is simply connected. A 
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simple geodesic cannot bound a simply connected region so the noncompact end must 

be in R1. Therefore Rz is a monogon. 

Case 2. The two ends of a spiral around different bounding geodesics on T* and 

both ultimately travel in a clockwise direction (with respect to an embedding of T* in 

C) (see Figure 4.1 (b)). There is a simple closed geodesic 6 on Twhich on T* becomes a 

geodesic arc joining fll to f12 as illustrated. The region on T* in the complement of the 

geodesics a and 6 which contains the noncompact end is a bigon. 

Case 3. The two ends of a spiral around different bounding geodesics on T*; one 

end spiraling clockwise and the other counterclockwise (see Figure 4.1 (c)). 

Let 6 be as in case 2. The closed curves fl and 6 may be treated as generators for 

~rl(T) where we select their intersection as the base point. Taking products in ~rl(T) 

define ck to be the closed curve ilk& Let ~'k be the unique closed geodesic in the free 

homotopy class of Ck. The )'k are all simple and converge to a. Hence, in this case 

aES.  

The convergence can be demonstrated by considering the symbolic dynamics of 

these geodesics. A fundamental domain may be chosen so that Dyn (a) has a repre- 

sentative of the form 

o(n) = otherwise' 

and Dyn (YD has a representative of the form 

{b n=m(k+l) forsomemEZ 
~ = otherwise 
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For any integer N>0,  k>-N, and Inl<N o(n)=crk(n). If we interpret the symbolic 

dynamics in the context of Lemma 3.1 the convergence follows. Q.E.D. 

PROPOSITION 4.4. Let a be a proper compactly supported simple geodesic on a 4x 

sphere M. Suppose that a is not a boundary geodesic and that it does not spiral around 

a boundary geodesic. Then a lies in S. 

Proof. As in Proposition 4.3 the closure of a on M is a geodesic lamination 

containing a minimal sublamination .L~. First suppose that Ao, is a closed geodesic 7. 

The complement of 7 consists of surfaces D~ and D2; each topologically a three holed 

sphere, a must lie on one of these surfaces; suppose it is D~. 7 is the only simple closed 

geodesic on D~ which is not a boundary geodesic on M. Consequently, by Proposition 

4.1, both ends of a must spiral around 7. As in case 1 in the proof of Proposition 4.3 a 

bounds a monogon on M. It is then an easy exercise to show that there is a sequence of 

simple closed curves on M converging to a. 

Now consider the case where ~ does not contain a closed leaf. There must be at 

least two components in the complement of A~* on M, for otherwise &'?* would lie in a 

simply connected subsurface. If there are exatly two complementary components then 

~* lies in an annular subsurface of M, which cannot happen. If there are three 

complementary components then Ao, lies in a three holed sphere on M, which is also 

impossible. We conclude that there are four components in M\.5~*. Since each must 

contain a noncompact end of M they are all monogons. It is clearly impossible for the 

geodesic a to lie in any of these monogons. Therefore a belongs to ~r Q.E.D. 

w 4.1. It is now possible to tie all of the loose ends together and complete the proof 

of Theorems 1.3 to 1.6. 

Let N be one of the surfaces T or M appearing in the hypotheses of Theorems 1.3 

to 1.6. We define a subsurface N* of N in the four cases: 

(1.3) N* is the set of points p on N whose distance d(p, 7) from the boundary 

geodesic 7 satisfies cosh d(p, 7)<coth ~L(7). 

(1.4) Let N* be the set of points p on N whose distance d(p, 7,) from the boundary 

geodesics 7i satisfies cosh d(p, 7i)<coth ~L(7). Set N*-,.,i=l- ll4 N*. 

(1.5) N* is the open horocyclic neighborhood of the puncture having area 4. 

(1.6) N* is the union of the four open horocyclic neighborhoods of the punctures 

each having area 2. 

Let N* denote the closure of N* in N. The proof will be complete if we show the 
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following: A geodesic a belongs to S(N) if and only if a does not intersect N*. If  a 

belongs to S \ S  then it intersects every open neighborhood of  N-~. 

We will begin by considering geodesics a which do not lie in S. In the case where a 

self intersects we may apply Proposit ion 3.2 along with the topological characterization 

given in Theorems 3.1 and 3.2 to conclude that a intersects N*. If  a does not self 

intersect then it must be simple. F rom Proposit ion 4.3 and 4.4 we infer that N = T  and a 

must either bound a monogon on N or bound a bigon on N along with a simple closed 

geodesic. Proposit ion 3.2 again allows us to conclude that a intersects N*. 

Le t  us now suppose that a belongs to S. The results of  (w 2) provide exact  values 

for D(a) and A(a) when a is a simple closed geodesic. It follows that a E S is disjoint 

from N*, and moreover ,  disjoint from N-~. 

By definition, for  a E S \ S  there exists a sequence of  simple closed geodesics ai 

converging to a. Since each one of  the geodesics ai is disjoint from N -~, a must lie 

outside of  N*. For  any value k E R it is easy to show that there can only be a finite 

number of  closed geodesics on N with length less than k. Consequently,  the sequence 

of  lengths L(ai) must diverge to infinity. It follows, by computing limi_~=D(ai) or 

lim~_,~oA(a;), that we can choose points p; on a~ so that the distance from p~ to N* 

goes to zero. Some subsequence of  the p; converge to a point p on the boundary of  N-~. 

p must lie on a simple geodesic fl which is a limit of  the geodesics ai. 

If  a is a proper  geodesic then the ai may be chosen so that the a; will only 

converge to a and the closed geodesic that a spirals around. Since the geodesic that a 

spirals around must be disjont f rom N-~ we get a=fl. 

The final case to consider  is when a is not a proper  geodesic. Then a and fl are 

both leaves of  a lamination ~ in ~s162 which does not contain a closed leaf. 

Le t  A ~ be a minimal sublamination o f ~ .  We can infer from Proposit ion 4.3 and 4.4 

and their proofs that ~--~/~*. Each leaf of  ~ is dense in the entire lamination. This 

means that we can find a sequence of  points q~ on a approaching p on ft. We conclude 

that a intersects every open neighborhood of  N-~. Q.E.D.  

w 5. Diophantine approximation 

LEMMA 5.1. Let N be a hyperbolic surface with only finite noncompact ends. Let ~ be 

a geodesic ray in H with endpoint p. Suppose ~ covers a simple geodesic ray 7 on N. 

Then either p is the fixed point o f  a parabolic transformation in the covering group G or 

p is the endpoint o f  a lift o f  some geodesic in S. 
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Proof. Assume that p is not the fixed point of  a parabolic transformation in G, and 

that 17 does not lie on a geodesic t~ which projects to a geodesic a E S. 

We will begin by showing that the closure of  7 on N, ~, contains a geodesic 

lamination ~.  Consider  the collection of  all G-translates of  17 that cross a finite sided 

fundamental domain F. Since ~ does not terminate at a parabolic fixed point, infinitely 

many of  these must  cross a compact  subset of  F. It follows that there is a geodesic d 

crossing F so that the arc c~ N F is a limit of  translate o f  ~7 in F. In other  words, there are 

transformations gi E G so that g,{~) N F converges to d N F. 

By [15] there is a subsequence g* and points x, y E 1~ so that g~z) converges to x 

for all z 6 C \ { y } .  Le t  p '  be the endpoint  at the compact  end of  ~ in H. Then 

limi_,oog~(p')=x. Since g*(~) all meet  a compact  subset of  F, limi_~=g*(p)=w4:x, 

i.e., w=y. The points x and w must be the endpoints of  c~. 

We have shown that if a piece of  a geodesic a on N lies in the closure of y then all 

of  a does. Since the ray y was assumed not to lie on a geodesic in ~r 7 - 7  is a geodesic 

lamination ~ containing a minimal sublamination ~%e*. 

Suppose Le* is a simple closed geodesic a.  Let  ci be a lift of  ct with endpoints x and 

w. Without loss of  generality there is a sequence of  transformations giE G with 

limi__,=g,{p)=w and limi__,oogifp')=x. Let  A be a hyperbolic transformation in G 

which fixes the geodesic ti and has x as an attractive fixed point. It follows easily that if 

p~:w then for all but  a finite number  of  the gi we get g,{17)n~:l:~. Hence,  ~ must share 

an endpoint  with d. 

Now we consider the remaining case where ~ contains no closed leaves. The 

connected components  in N'x,,~e* are finite in number;  each is a subsurface N~ of  N 

with finitely many leaves of  ~ along its boundary.  The finiteness follows from an area 

argument similar to the one in the proof  of  Proposit ion 4.3 [22]. I, must lie on one of  the 

surfaces Ni. We will suppose that I, lies on N1. 

Corresponding to each boundary  component  of  N1 there is a simple closed curve cj 

which bounds a topological annulus along with the given boundary component  (see 

Figure 5.1). The complement  of  all of  the curves c 2 on N1 consists of  some number  of  

noncompact  topological annuli and a single subsurface N~' bounded only by the curves 

c i. Since it is assumed that 7 does not head out to a puncture  on N, 7 N ~ must lie in a 

compact  subsurface of  N--~. 7 does not limit at any point on ~ ;  therefore only a finite 

length segment of  1, lies in N~'. It follows that all but  a finite length segment of  I, lies in 

one of  the annuli M, and that the end of  7 must be asymptotic  to a geodesic a in ~ *  

along the boundary of  ~r Hence ,  there is a lift ci of  a with one endpoint  at p. Q.E.D.  
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A geodesic ray 9/is said to be essentially simple if 9/contains a simple ray. Lemma 

5.1 implies that a geodesic ray 9/is essentially simple only if there is a simple geodesic 

on N which shares an end with 9/. We do not need to stipulate that this simple geodesic 

lies in S since the lemma also shows that an endpoint of a lift of any simple geodesic is 

either an endpoint of a lift of a simple geodesic in S or a parabolic fixed point. Every 

parabolic fixed point is certainly an endpoint of a lift of many simple geodesics. 

It is necessary before proceeding with the proof of Theorems 1.1 and 1.2, to 

observe that Theorem 3.2 can be interpreted as a statement about self intersecting 

geodesic rays on a 4x sphere. 

THEOREM 5.1. Let 9/be a self  intersecting geodesic ray on a 4x sphere M which 

does not spiral around a boundary geodesic. Then either 9/bounds a monogon on M or 

9/is asymptotic to the end o f  a geodesic in S(M). 

Proof. As in the proof of Theorem 3.2 it will suffice to work with the surface Mz. 

Also, refer back for the notation. We need only consider the case where 9/is not a 

closed geodesic. 

If the geodesic ray 9/' on Tz corresponding to 9/has self intersections then the 

argument proceeds exactly as before using Theorem 3.1. If 9/' does not have self 

intersections then as a consequence of Lemma 5.1 the endpoints of any lift of 9/' to H is 

the endpoint of a geodesic in S(Tz). It follows that the endpoint of any lift of 9/to H is 

similarly the endpoint of a geodesic in S(Mz). The result follows. Q.E.D. 

w The Proof  o f  Theorems I.I and 1.2. For x E R  let /'(x) be the vertical ray 

f(x)={zlRez=x, 0~<Imz~<l} in H. Denote by l(x) the geodesic ray on N that is covered 

by/-(x). 
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Let N be one of the surfaces M or T appearing in the statements of Theorems 1.1 

and 1.2. We define N~ as the union of open horocycles of area k on N. Let Hor(k) be 

the full preimage of N~ in H. Hor(k) is the orbit of the horocycle Uk={zlImz>t/k) 
under the action of the appropriate group: G or H*. 

If 

g= (a bd) with c4=O 

then g(Uk) is a horocycle of radius k/(2tc 2) which is tangent to the real axis at the point 

g(oo)=a/c. It follows that f(x)f)g(Uk)~(~ if and only if Ix-g(oo)[<k/(2tc2). 
Let A take the value 2 or 4 respectively depending on whether N is M or T. Let 

A(a) be defined for a simple closed geodesic a as in the conclusion of Theorems 1.5 and 

1.6. 

In this setting Theorems 1.1 and 1.2 have the following formulation: x is the 

endpoint of a lift t~(x) of a simple closed geodesic a(x) on N if and only if for some K>A 
f(x) intersects only finitely many of the horocycles in Hor (k) for k<~K. Let x be the 

endpoint of a lift of a simple closed geodesic a(x) on N; then f(x) intersects infinitely 

many horocycles in Hor (k) only if k~A(a). Let x be the endpoint of a lift of a simple 

geodesic in S \ S ;  then l(x) intersects infinitely many horocycles in Hot (k) if and only if 

k>.A. 
We will prove the theorems in the above form. First consider a point x which is not 

the endpoint of a lift of a simple geodesic on N. By Lemma 5.1 the ray l(x) on N is not 

essentially simple. Define subrays fn(x)={z[Re=x, O<.Imz<~l/n} of f(x) and their 

projections In(x) on N. Each ray l~(x) self intersects and satisfies the hypotheses of 

Theorem 3.1 or 5.1. Applying Proposition 3.2 as in w we conclude that each ray 

l~(x) meets N*. 

Since x cannot be in the orbit of infinity, f(x) will intersect a horocycle in Hot (k) 

for any k>0 on only a finite length arc. It follows that f(x) must intersect infinitely many 

of the horocycles in Hot(A). 

Now suppose that x is the endpoint of a geodesic t~(x) which projects to a simple 

closed geodesic a(x) on N. If k<A(a(x)) then by Theorems 1.5 and 1.6 there is a tubular 

neighborhood about the geodesic a(x) on N which is disjoint from N~. Lift this 

neighborhood to a tubular neighborhood about the geodesic ti(x) in H. Since f(x) is 

asymptotic to t~(x) all but a finite length segment of [(x) lies inside this neighborhood. 

From the discreteness of the group we can infer that there are only finitely many 

horocycles in Hot  (k) which meet f(x) and have radii larger than a given value. Thus, f(x) 
can intersect only finitely many horocycles in Hor (k). 



7 4  ANDREW HAAS 

On the other hand, if k>A then by Theorems 1.5 and 1.6 there is a point p on a(x) 
in the interior of NL Since l(x) spirals around a(x) there is a sequence of points Pn on 

l(x) converging to p. We may suppose that each point p,, lies inside NL 

Lift the Pn to points /~n on f(x). The /~,, are all contained in Hor(k) and 

lim~__,o~ Im/~=0.  Hence f(x) meets infinitely many horocycles in Hor(k). 

After the proof of Theorem 1.2 we observed that N~(a) is tangent to A(a) at two 

points from opposite sides of a. It is then clear from the above that f(x) meets infinitely 

many horocycles in Hor (A(a(x)). 
We may conclude that f(x) intersects infinitely many horocycles in Hor (k) only 

when k>~A(a(x)). 
The last case to consider is when x is the endpoint of a geodesic a(x) which 

projects to an open simple geodesic on N. x is not in the orbit of infinity, so by Lemma 

5.1 we may suppose that a(x) is a leaf of a minimal geodesic lamination ~.  Then 

a(x) E S \ S  and Theorems 1.5 and 1.6 imply that the largest horocycle on N disjoint 

from a(x) is N*. The result then follows using the same arguments given above when 

a(x) E S. Q.E.D. 

w Symbolic dynamics 

Let G be a Fuchsian group representing an h-torus T. The fundamental domain F and 

the set b ~ of sides of F are defined as in w 1.3. Let 2 be a geodesic that crosses F and 

does not terminate at a parabolic fixed point of G or at a point which does not lie in the 

limit set of G on 1~. Choose a point p at which x meets a side of F. 

We will define a function o: Z--,6e that describes the sequence of G-translates of F 

encountered along ~,. The G-translates of F cover 3. and their sides divide 2 into 

geodesic segments which we shall call F-segments. Endpoints of the F-segments on 2 

are naturally in one-to-one correspondence with Z. The base point p is identified with 

0. 2 is divided into two geodesic rays 2 + and 2- eminating from p. An endpoint is 

associated with the integer n if there are Inl F-segments lying between it and p; n is 

positive if the endpoint lies on 2 + and negative otherwise. 

Let/In denote the F-segment bounded by the nth and the (n+ 1)st endpoints. There 

is a unique g E G which maps 2,, into F. Define o(n) to be the side of F to which the nth 

endpoint is mapped by g. 

Given a geodesic 3' on T which does not terminate at a noncompact end it is easily 

seen that all lifts of 3' meeting F determine equivalent functions (w 1.3) o independently 

of the choice of a base point or of an orientation. We call this equivalence class the 

symbolic dynamics of ~,, and denote it Dyn (3'). 
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It is known [19] that a geodesic is uniquely determined by its symbolic dynamics. 

Also, if T has an infinite noncompact end then a function o: Z---~re represents the 

symbolic dynamics of a geodesic on T if and only if o is freely reduced. 

The sides of the fundamental domain F, project to a pair of disjoint simple 

geodesics on T. Let ct and fl respectively denote the projections of the two sides a and b 

of F. Observe that the ends of a and fl are asymptotic to the noncompact end of T. 

On the surface To = 2r/F (see w 3) let ao and fl0 respectively denote the projections 

of the geodesics in ~o and ~h. By standard results from differential topology there 

exists a diffeomorphism f." To--*T with f (ao)=a and f(fl0)=fl. Composing the covering 

map ~r0: ]'-~ T0 withfgives  a covering zr:/~--,T. The lines in ~o cover a and the lines in 

~h cover ft. We may lift the metric on T to 2r so that ~r becomes a local isometry. 

It is preferable to define the symbolic dynamics of a geodesic in terms of a lift to T. 

Let )7 be a geodesic on T which does not terminate at a lattice point. Choose a base 

point p at which )7 intersects one of the lines in ~ , .  Also, choose an orientation for )7. 

As in the original definition of symbolic dynamics there is a natural correspondence 

between the point at which )7 intersects lines in ~ n  and the integers, p is identified with 

0 and the numbers increase in the direction of the orientation of #. Define a function 

o: Z-*~.  o(n) takes the value a e when the nth intersection along # i s with a vertical line 

lo, and e = + l  or -1  depending on whether the orientation vector on )7 at the intersec- 

tion is directed into the half plane to the right side or to the left side of lo. o(n) takes the 

value b e when the nth intersection along )7 is with a horizontal line lh, and e= + 1 or - 1 

depending on whether the orientation of )7 is directed into the half plane above or be- 

low I h. 

The function o: Z-- .~  resulting from the above carries the same information as the 

function defined in H by a lift ~ of ~7 with the choosen base point/5 covering p. The only 

difference possible is that the values a, a -1  (b ,  b - i )  may be interchanged. This can be 

remedied by composing the covering map with an appropriate automorphism of the 

surface T. Thus we may suppose that the equivalence class of functions defined as 

above in terms of a lift of ), to T is exactly Dyn 0'). 

w 6.1. Let f(x, c) with (x, c) E R 2 be a line in/~ with slope x passing through the point 

ic. The vertical line passing through c is written/'(oo, c). 

The above definitions may be applied to define a function o: Z--.,Se describing the 

sequence of intersections f(x, c) realizes with the lines in .~,.  Different choices of base 

point or orientation lead to equivalent functions. Also, the F-translates of f(x, c) define 

equivalent functions. 
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Let  l(x, c) denote  the projection of  [(x, c) to T. The equivalence class of  functions 

o: Z - - - ~  determined by lifts of  l(x, c) to 7 ~ is the symbolic dynamics of  the curve l(x, c); 

written Dyn(l(x, c)). Fo r  example,  the curves l(oo,c) and l(O,c) have representat ive 

functions oo~(n)=b, oo(n)=a for  all n E Z. 

Since an oriented line I will cross all lines in -~o or ~h from the same direction we 

see that a symbol in ,9~ and its inverse cannot  both appear  in the range of  a representa- 

tive o for Dyn(l ) .  It follows that a representat ive o for Dyn( i )  will always be a freely 

reduced function. 

LEMMA 6.1. Dyn(l(x, c)) is represented in condensed form by the function Z(x, c). 

Proof. We may suppose that x~:0, o0. The translation invariance further allows us 

to assume that 0 < c <  1. 

Consider the finite group of  orthogonal transformations generated by q01(z)=~ and 

92(z)=e'a/2z. These  transformations leave invariant the grid L~# and induce automor- 

phisms q0~' and q0$ of  the set 5 ~ given by: 

tp~'(a) = a, q0~'(a -1) = a -1, tpT(b) = b -1, q0•(b -1) = b; 

tp$(a) = b, tp$(a -1) = b - l ,  tp$(b) = a - l ,  q0$(b -1) = a. 

If  o is a function representing Dyn (l(x, c)) then the functions 9~' o o and tp~ o o repre- 

sent Dyn (9l(l(x, c))) and Dyn  (q~2(l(x, c))) respectively. Since the translates of  f(x, c) for  

l~<x<o0 are all o f  the [(x, c) with x4=0, oo it is no loss of  generality if we restrict our  

attention to the case where 1 ~<x< oo. 

Orient f(x, c) in the direction of  increasing real part  and choose c as a base point. A 

value m E Z for which o(m)=a corresponds to an intersection of  f(x, c) with a vertical 

line lo(n) at the point n+i(nx+c) for  some n E Z. Observe that between the intersections 

n+i(nx+c) and n+  I +i((n+ 1)x+c)  of/'(x, c) with lo(n) and lo(n+ 1) the imaginary part  of  

[(x, c) changes by an increment  of  x~> 1. Consequently,  between any two intersections 

of/'(x, c) with lines in ~o there must be an intersection with a line in ~h- In other  words,  

if o(m)=a then o(m+ 1)=b. 
We may therefore write 

a n = 2m 
Z ( n ) =  bu(m ) n 2 m + l  

f o r  some function u: Z -+Z  +. The function u(m) counts the number  of  intersections 

/(x, c) realizes with lines in L~h between the intersections with lo(m) and lo(m+ 1). This 
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is equal to the number of integers between mx+c and (m+l)x+c,  which is precisely 

q(x, c) (m). Q.E.D. 

w 6.2. Proof o f  Theorem 1.7. We have shown that symbolic dynamics Dyn (l(x, c)) 
for lines in f" are represented by freely reduced functions o: Z--.~e. By [19] there is a 

geodesic, which we denote by 2(x, c), having the same symbolic dynamics as l(x, c). We 

will show that the lines l(x, c) in fact describe the symbolic dynamics of all simple 

geodesics in ~r which belong to some minimal lamination. 

As Birman and Series observe in [3] there must be lifts/'(x, c) and ,f(x, c) of l(x, c) 
and 2(x, c) to H which have the same endpoints. From this we may infer that l(x, c) and 

2(x, c) are freely homotopic curves on T. 

First let us suppose that x E 0 .  We may write x as p/q where p, q E Z have no 

common divisors. [(x, c) lies entirely in T if and only if c4=mx+k for m, kEZ.  The 

subgroup Stab(/'(x, c)) of F leaving [(x, c) invariant is generated by a translation 

z~z+q+ip.  Since all translations in F\Stab(/ ' (x,  c)) map [(x,c) disjointly away from 

itself l(x, c) is a simple closed curve on T. Hence, 2(x, c) is a simple closed geodesic. 

For different numbers c and c' the lines/'(x, c) and/'(x, c') are both stabilized by the 

same subgroup of F. It follows that ;t(x, c) and 2(x, c') are homologous curves on T. 

From Nielsen's paper [16] it can be deduced that there is a unique simple closed 

geodesic in each non-trivial primitive homology class on T. Therefore 2(x, c)=,~(x, c'). 

We may drop the reference to c and write g(x) when x E Q. 

It is clear that for x, x' E Q, 2(x) =2(x') if and only if x=x'. Thus Q parameterizes a 

class of simple closed geodesics on T. It turns out that every simple closed geodesic 

E S(T) is of the form ;t(x) for some x E I~. To see this lift ;t to a geodesic ~ on T. Since 2 

is nontrivial in homology Stab(g) is generated by a transformation of the form 

z~z+q+ip  for some p, q E Z. Therefore 2 is homologous to 2(p/q) and applying Nielsen 

we get 2=2(p/q). Then S={2~(x) IxEQ) and it follows that Dyn(2) is of the form Y~(x, c) 

for some x E (~ and for any choice of an irrational number c. 

Now we consider what happens when x is irrational. The minimal compactly 

supported laminations which do not contain closed leaves are shown to be parameter- 

ized as above, by the irrational numbers. The leaves of a lamination &fix) and their 

symbolic dynamics may be described precisely by the lines l(x, c). 
For x irrational Stab (/'(x, c)) is trivial. Thus l(x, c) is a simple open curve on T. 

Since Dyn (l(x, c)) is distinct from Dyn (2(p/q)) for any p/q E 0 ,  2(x, c) must be a simple 

open geodesic on T. The line l(x, c) can be mapped to a line l(x, c') by an element of 1" if 

and only if c' = c + k x + m  for some integers k and m. Moreover, these are also necessary 
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and sufficient conditions for having Dyn(l(x, c))=Dyn(l(x, c')). Consequently, there 

exists a continuum of disjoint simple geodesics 2(x, c) for a fixed irrational number x. 

It is well known that when x is irrational the F-translates of/'(x, c) intersect the 

imaginary axis in a dense set of points. It follows that for any number c' we can find a 

sequence of F-translates of [(x, c) converging to/'(x, c'). Applying Lemma 3.1 we, may 

conclude that 2(x, c) converges to 2(x, c'). Therefore the geodesics 2(x, c) are all leaves 

of a minimal lamination A~ 

We must look more closely at what happens if we choose c '=0.  The line/-(x, 0) 

does not lie entirely in 2r since it passes through the origin. Nonetheless we can find a 

sequence of F-translates of/'(x, c) for any c E R converging to/'(x, 0). When c*kx+m for 

k, m E Z, this sequence corresponds in T to a sequence of translates of the geodesic 

~((x, c). While the translates of [(x, c) will come ever closer to the origin the translates of 

;L(x, c), although following the same path through the grid ~# ,  must always lie outside a 

fixed Euclidian neighborhood of the origin. This is a consequence of Theorem 1.5. Thus 

the actual geodesic which these translates converge to must detour about the origin. 

The limit geodesic depends on whether the translates of J((x, c) approach from above or 

below. We denote the two limit geodesics on T by ).~(x, 0) and ).2(x, 0). Their symbolic 

dynamics are derived from X(x, 0) by detouring /'(x, 0) about the origin. They are 

respectively Xl(x, 0) and Y.2(x, 0). 
One may argue more rigorously by considering the convergence of the functions 

On determined by the lines l(x, c,,) where c,,~kx+m for k, m E Z and lim,,~=c,=0. 

The two functions yl(x, 0) and Z2(x, 0) then arise as limits depending on whether cn>0 

o r  Cn<O. 
The proof will be complete if we show that every minimal lamination in ~ o  is ).(x) 

or .~P(x) for some x E l~. 
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Let ~ be a minimal lamination in c~.~o. Choose a sequence of simple closed 

geodesics, which we can write as 2(xi) with xi E Q, converging to ~.  Let xi also denote a 

convergent subsequence. If limi__,~oxi=x is an irrational number then choose lines 

[(xi, ci) with c; irrational so that limi__,= ci=c is not of the form kx+m for k, mEZ.  It 

follows that the lifts fffxi, ci) realizing the same paths through the grid L#,~ as the lines 

[(xi, ci) will converge to a geodesic ~(x, c). Thus the 2(xi) converge to 5fix). 

If x is rational then choose irrational numbers c; so that lim;_,oo ci=c is irrational. 

As above the geodesics 2(xi) must converge to 2(x). Q.E.D. 

w 6.3. Proof of Theorem 1.8. The transformations 

A=(11 ~) and B=(21 11) 

pair opposite sides of the fundamental domain Fz for the group F' (see Figure 6.1). 

Consider the transformation Mk in F' defined by the product - k M k-  II,=0 ( Bq~x' r 

where 1 ~<x<oo and c+mx+i, m, l E Z. M~, maps Fz so that it intersects the Fz-segment 

~s, with j=k+l+Ek=oq(X, c)(n), along a geodesic ~ covering the geodesic 2(x, e). As k 

goes to infinity the Euclidian diameter of Mk(Fz) must approach zero. It follows, as in 

[3], that ~(x, c)=limk~| Mk(1) is one of the endpoints of the geodesic [. 

It is well known that the continued fraction expansion of a number 

~=[ao, al, a2 .... ] can be expressed in terms of the transformations 

10 0 .=(10 I)an  
where 

lim (Ra~ La2"-'R a2") (1) = ~ [I0]. 
n----~ oo 

This is very convenient since we can write A and B as A=LR and B=RL. Substituting 

R and L into the product Mk gives 

k 
Mk = l-I  ( Bq(x" c)(n)A) 

n = 0  

k 

= 1-'I (( RL)q(x' c)(")(LR)) 
n m 0  

=(RL)q(~ (RL2R) 

where we have written q(x, c) (n)=q(n). 
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Since ~(X,C)=limk__,~Mk(1) the above gives an explicit determination of the 

continued fraction expansion for ~(x, c). Using Dickensons notation [7] as in w 1, it has 

the form 

12q(0)-i 22 12q(1)-2 22..- 22 12q(n)-2 22... 

When c=0 this approach will produce an endpoint ~2(x, 0) of a lift of the geodesic 

,~2(x, 0) to H. In a similar fashion one shows that a lift of the geodesic ;tl(X, 0) has an 

endpoint ~l(x, 0) of the form 

when 2<x<oo and 

12q(0)-3 22 12q(1)-2 22-.- 22 12q(n)-2 22--. 

1 2 12q(i)_ 2 22 12q(2)_ 2 22... 22 12q(n)_ 2 22... 

when l<x<2.  

For x-- oo it is possible to lift 2(x) to the fixed axis of B where one of the endpoints 

~(oo) has the continued fraction expansion [1, 1, 1 .... ]. 

We need to show that every endpoint ~ of a lift of a simple geodesic in S to H has 

the form [bo, bl . . . . .  bk, a,,,a,,+l . . . .  ] or [an, an+l .... ] where [ao, al,a2 .... ] is one of 

the numbers ~(x, c), ~l(x, c), or ~2(x, c) determined above with l<~x<~oo. This will follow 

from elementary continued fraction theory if we show that every such ~ is of the form 

g(r]) where 

g s  a bd) la, b,c,ds ad-bc=+l } 

and r/is one of ~(x, c), ~l(.r;c), or ~2(x, c) with l<~x~<oo. 

Let Tz=C\{m+nei"/3[m,ns and let Fz be the group of translations of the 

form Z~-.->z+m+ne in/3, m,  n E Z .  F z acts discontinuously on Tz and the quotient is 

conformally equivalent to the surface Tz. 

The parallelogram P with vertices 0, 1, e i~/3, l + e  iz~/3 is a fundamental domain for 

the action of Fz on Tz. We may define the symbolic dynamics of a geodesic 2 with 

respect to the cover Tz as we did with/~. Here we look at the sequence of crossings a 

lift ,( realizes with translates of sides of P. The result will again describe the symbolic 

dynamics of 2. We can also use the lines/-(y, c) in/~z, as before. 

is mapped to 2rz by the linear transformation 

(10 1/2 
V ~ ' / 2 / '  
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where we treat both as subspaces of R 2. Thus the lines f(x, c) on T with l~<x~<oo 

correspond on Tz to lines/'(y, c) with X/-3-<- y<- X/ 3-/3. 

An endpoint of  a lift of a geodesic 2 is associated with an asymptotic end of 2. The 

endpoints we have computed above correspond to ends of  simple geodesics 2(x) with 

l~<x~<o0. Since a lift ~(x) of 2(x) to H shares its endpoints with a lift f(x, c) of  some line 

/-(x, c) we may restrict our attention to lines. Furthermore,  we may work with half lines 

or rays since these determine exactly one endpoint. The endpoints ~(x, c), ~l(x, c), and 

~2(x, c) correspond exactly to the ends of rays f(x, c) which are the half lines on the 

lines/'(x, c) with positive real part, l~<x~<~ and 0 < c < l .  When translated to Tz these 

are the rays f(y, c) with X/T/2<.y<~X/-~ and with base point c lying on the arc joining 0 
to e i~ t /3  . 

Let  M6b~ be the group generated by M6b z and the transformation z~-~-L When 

we look at the action of  M6b~ on R it is clear that the maps not in M6bz have the form 

x~-~(ax+b)/(cx+d) where a, b, c, dE Z, a d - b c = - 1 .  Hence M6b~ restricted to R is the 

group E. 

M6b~ projects to a group F~ of transformations acting on 2P z which is generated 

by the (2, 3, 6) triangle group [15] and a reflection in the line through the origin with 

slope X/-3-/3. It is clear that every ray ~y, c) in Tz is F[-equivalent to one of the rays 

f(y', c) with V'-3-/3~<y'~<V~ whose ends correspond to one of  the points ~(x, c), 

~l(x, c), or ~2(x, c) with l~<x~<~. It follows that the endpoint ~ of a lift of  ~(y, c) to H is 

M6b[-equivalent to one of these points. Q.E.D. 
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