Conformally natural extension of homeomorphisms of the circle

by

ADRIEN DOUADY

and CLIFFORD J. EARLE(1)

Cornell University

Ithaca, NY, U.S.A.

Faculté des Sciences de Paris-Sud Orsay, France

Let G be the group of all conformal automorphisms of $D = \{z \in \mathbb{C}; |z| < 1\}$, and G_+ the subgroup, of index two in G, of orientation preserving maps. The group G_+ consists of the transformations

1. Conformal naturality

$$z \mapsto \lambda \frac{z-a}{1-\bar{a}z}$$

with $|\lambda|=1$ and |a|<1. For each such a, the map

$$g_a: z \mapsto \frac{z-a}{1-\bar{a}z} \tag{1.1}$$

in G_+ takes a into 0 and 0 into -a.

The group G operates on D, on $S^1 = \partial D$, on the set $\mathcal{P}(S^1)$ of probability measures on S^1 , on the vector space $\mathcal{T}(D)$ of continuous vector fields on D, etc. Explicitly

$$g \cdot z = g(z) \quad \text{if } z \in D \cup S^1,$$

$$(g \cdot \mu)(A) = g_* \mu(A) = \mu(g^{-1}(A)) \quad \text{if } \mu \in \mathcal{P}(S^1) \text{ and } A \subset S^1 \text{ is a Borel set,}$$

$$(g \cdot v)(g(z)) = g_*(v)(g(z)) = v(z)g'(z) \quad \text{if } v \in \mathcal{T}(D), z \in D, \text{ and } g \in G_+,$$

$$(g \cdot v)(g(z)) = g_*(v)(g(z)) = \overline{v}(z)g'_{\overline{z}}(z) \quad \text{if } v \in \mathcal{T}(D), z \in D, \text{ and } g \in G \setminus G_+.$$

(We use the notations g'_z and g'_z for the complex derivatives of the function g(z), and we

⁽¹⁾ This research was partly supported by the National Science Foundation.

write g' instead of g'_z if g is holomorphic.) The group $G \times G$ operates on the space $\mathscr{C}(\bar{D})$ of continuous maps of \bar{D} into itself, or on $\mathscr{C}(S^1)$, by $(g, h) \cdot \varphi = g \circ \varphi \circ h^{-1}$.

If G operates on X and Y, a map $T: X \to Y$ is called G-equivariant, or *conformally* natural, if $T(g \cdot a) = g \cdot T(a)$ holds for $g \in G$ and $a \in X$. If $G \times G$ operates on X and Y, we say that $T: X \to Y$ is conformally natural if it is $G \times G$ -equivariant.

Example. There is a unique conformally natural map from D to $\mathcal{P}(S^1)$. It is the map $z \mapsto \eta_z$, where η_z is the harmonic measure of z:

$$\eta_{z}(A) = \frac{1}{2\pi} \int_{A} \frac{1 - |z|^{2}}{|z - \zeta|^{2}} |d\zeta|$$

if $A \subset S^1$ is a Borel set.

The purpose of this paper is to extend any homeomorphism φ of S^1 to a homeomorphism $\Phi = E(\varphi)$ of \overline{D} , in a conformally natural way. This extension will have the property that if φ admits a quasiconformal extension, then Φ is quasiconformal (but not with the best possible dilatation ratio). Moreover Φ depends continuously on φ . However the assignment $\varphi \mapsto \Phi$ is not compatible with composition: i.e., $E(\psi \circ \varphi) \neq$ $E(\psi) \circ E(\varphi)$ in general.

The idea is the following: given φ , to each $z \in D$ we assign the measure $\varphi_*(\eta_z)$ on S^1 . Then we define the conformal barycenter $w \in D$ of this measure and set $w = \Phi(z)$. Each of these steps is done in a conformally natural way. The last step is to show that Φ is a homeomorphism.

We develop the general properties of the extension operator $\varphi \mapsto \Phi$ in Sections 2, 3, and 4. After that we concentrate on the quasiconformal case. Our results in Sections 5 and 6 have applications to the theory of Teichmüller spaces, which we give in Section 7. In Sections 8 through 10 we compare the coefficient of quasiconformality K^* of Φ with

$$K(\varphi) = \inf \{K; \varphi \text{ has a } K \text{-quasiconformal extension to } D\}$$

Our results are rather precise when $K(\varphi)$ is close to one (see Corollary 2 to Proposition 5 in Section 9), but they leave something to be desired when $K(\varphi)$ is large.

In Section 11 we briefly discuss the higher dimensional case. Given a homeomorphism φ of S^{n-1} and a point x in B^n , we again define $\Phi(x)$ to be the conformal barycenter of the measure $\varphi_*(\eta_x)$. In general Φ is not a homeomorphism when $n \ge 3$, but Pekka Tukia has pointed out to us that Φ is a quasiconformal homeomorphism if φ is quasiconformal with sufficiently small dilatation. We prove that result in Section 11.

Finally, we want to thank Pekka Tukia for a number of helpful suggestions, especially for encouraging us to write Section 11 and to prove in Section 5 that if φ has a quasiconformal extension then in addition to being quasiconformal, Φ and Φ^{-1} are Lipschitz continuous with respect to the Poincaré metric.

2. The conformal barycenter

Our purpose in this section is to assign to every probability measure μ on S^1 , with no atoms, a point $B(\mu) \in D$ so that the map $\mu \mapsto B(\mu)$ is conformally natural and satisfies

$$B(\mu) = 0 \quad \text{if and only if} \quad \int_{S^1} \zeta d\mu(\zeta) = 0. \tag{2.1}$$

There is a unique conformally natural way to assign to each probability measure μ on S^1 a vector field ξ_{μ} on D such that

$$\xi_{\mu}(0) = \int_{S^1} \zeta d\mu(\zeta).$$
 (2.2)

Indeed, formula (2.2) is equivariant with respect to rotations and complex conjugation. For general w in D we must write

$$\xi_{\mu}(w) = \frac{1}{(g_{w})'(w)} \xi_{(g_{w})_{*}(\mu)}(0),$$

i.e.

$$\xi_{\mu}(w) = (1 - |w|^2) \int_{S^1} \left(\frac{\zeta - w}{1 - \bar{w}\zeta} \right) d\mu(\zeta),$$
(2.3)

and that will make the assignment $\mu \mapsto \xi_{\mu}$ conformally natural. (Here $g_w: D \to D$ is defined as in formula (1.1).) It is clear from (2.3) that the vector field ξ_{μ} is real-analytic.

PROPOSITION 1 and DEFINITION. Suppose μ has no atoms. Then ξ_{μ} has a unique zero in D. We call it the conformal barycenter $B(\mu)$ of μ .

Proof. We compute

$$\xi_{\mu}(w) = (1 - |w|^2) \int_{S^1} (\zeta - w) (1 + \bar{w}\zeta) d\mu(\zeta) + o(w)$$
$$= \xi_{\mu}(0) - w + \bar{w} \int_{S^1} \zeta^2 d\mu(\zeta) + o(w).$$

The Jacobian of ξ_{μ} at w=0 is therefore

$$J\xi_{\mu}(0) = |(\xi_{\mu})'_{\omega}(0)|^{2} - |(\xi_{\mu})'_{\omega}(0)|^{2}$$
$$= 1 - \int \int_{S^{1} \times S^{1}} \zeta^{2} \bar{z}^{2} d\mu(\zeta) \times d\mu(z)$$

so

$$J\xi_{\mu}(0) = \frac{1}{2} \iint_{S^1 \times S^1} |z^2 - \zeta^2|^2 d\mu(\zeta) \times d\mu(z) > 0.$$
 (2.4)

If $\xi_{\mu}(0)=0$, we conclude that w=0 is an isolated singular point of index one. The conformal naturality implies that every zero of the vector field ξ_{μ} in D is an isolated singular point of index one. To complete the proof it therefore suffices to show that for $r \in]-1,1[$ close to 1 the vector field ξ_{μ} has no zero on the circle

$$C_r = \{w; |w| = r\}$$

and points inward.

LEMMA 1. Re
$$\xi_{\mu}(0) > 0$$
 if $\mu([e^{-\pi i/4}, e^{+\pi i/4}]) \ge_{\frac{3}{2}}^{2}$.
Proof. Re $\xi_{\mu}(0) = \int_{S^{1}} \text{Re}(\zeta) d\mu(\zeta) \ge (-1) \cdot \frac{1}{3} + (\sqrt{2}/2) \cdot \frac{2}{3} > 0$. Q.E.D.

To complete the proof of Proposition 1, take $\alpha > 0$ such that $\mu(J) \leq \frac{1}{3}$ for any arc $J \subset S^1$ of length $\leq \alpha$, and take $r_0 < 1$ such that the arc J_α of length α centered at 1 is seen from r_0 with angle $3\pi/2$ in Poincaré geometry (i.e., $g_{r_0}(J_\alpha)$ has length $3\pi/2$). If $|w| = r \geq r_0$, let g be the conformal map in G^+ that takes w to 0 and -w/|w| to 1, and let $v = g_*(\mu)$. Then Re $\xi_{\nu}(0) > 0$ by Lemma 1, so $\xi_{\nu}(0)$ points into $g(C_r)$, and the conformal naturality implies that $\xi_{\mu}(w)$ points into C_r . Q.E.D.

Remarks. (1) It follows from the definition that $B(\mu)$ depends in a conformally natural way on μ and satisfies (2.1).

(2) The result still holds if μ has atoms provided none of them has weight $\ge \frac{1}{2}$. (If no atom has weight $\ge \frac{1}{2}$ the proof is unchanged; otherwise modify it slightly.)

(3) If $\varphi: S^1 \to S^1$ is a homeomorphism, then $B(\varphi_*(\eta_0))$ is the unique point $w \in D$ such that the homeomorphism $g_w \circ \varphi: S^1 \to S^1$ has mean value zero. Indeed, if $\mu = \varphi_*(\eta_0)$ and $w \in D$, then

$$(1-|w|^2)^{-1}\xi_{\mu}(w) = \frac{1}{2\pi} \int_{S^1} \frac{\varphi(\zeta) - w}{1 - \bar{w}\varphi(\zeta)} |d\zeta|$$

is the mean value of $g_w \circ \varphi$.

(4) There is a second proof of the uniqueness of $B(\mu)$. One can write

$$\xi_{\mu}(z) = \int_{S^1} \xi_{\zeta}(z) \, d\mu(\zeta)$$

where $\xi_{\zeta} = \xi_{\delta_{\zeta}}$ is the unit vector field pointing toward ζ . The field ξ_{ζ} is the gradient (in Poincaré geometry) of a function h_{ζ} whose level lines are the horocycles tangent to S^1 at ζ . (This function is defined up to a constant, and can be chosen so that $h_{\zeta}(0)=0$.) Thus ξ_{μ} is the gradient of

$$h_{\mu}: z \mapsto \int_{S^1} h_{\zeta}(z) \, d\mu(\zeta).$$

 $B(\mu)$ is a critical point of h_{μ} , and the uniqueness of $B(\mu)$ can be proved by showing that the restriction of $-h_{\mu}$ to Poincaré geodesics is strictly convex. We chose a proof that relies on formula (2.4) because this formula will be used in Sections 3 and 10. Thurston has remarked that the function $-h_{\mu}$ can be interpreted as the average distance to S^1 . In fact, if d(z, w) is the Poincaré distance from z to w in D, then

$$-h_{\zeta}(z) = -\frac{1}{2}\log\left(\frac{1-|z|^2}{|z-\zeta|^2}\right)$$
$$= \lim_{r \to 1^-} [d(z, r\zeta) - d(0, r)].$$

3. Extending homeomorphisms of S^1

Given a homeomorphism $\varphi: S^1 \to S^1$, we define an extension $E(\varphi) = \Phi: \overline{D} \to \overline{D}$ by putting $\Phi(z) = \varphi(z)$ if $z \in S^1$ and

$$\Phi(z) = B(\varphi_*(\eta_z)) \quad \text{if } z \in D.$$

Clearly $\varphi \mapsto \Phi$ is conformally natural, i.e.

.

$$E(g \circ \varphi \circ h) = g \circ E(\varphi) \circ h$$
 for all g and $h \in G$.

LEMMA 2. The map $\Phi = E(\varphi): \tilde{D} \rightarrow \tilde{D}$ is continuous at every point of S^1 .

Proof. For each arc $J \subset S^1$, let V(J) be the set of $z \in D$ such that J is seen from z with an angle $\ge \pi/2$ in Poincaré geometry. The boundary of V(J) is an arc Γ of the circle through the endpoints of J that makes an angle $\pi/4$ with S^1 . For $w \in \Gamma$ there is a map $g \in G$ such that g(w)=0, $g(J)=[e^{-\pi i/4}, e^{+\pi i/4}]$, and $g(V(J))=D \cap \{z; |z\sqrt{2}-1|\le 1\}$. It follows from Lemma 1 and conformal naturality that if $\mu(J)\ge_3^2$, the vector field ξ_{μ} points into V(J) on Γ , and therefore $B(\mu) \in V(J)$.

Let $U(J) = \{z \in D; \eta_z(J) \ge \frac{2}{3}\}$. Then $\Phi(U(J)) \subset V(\varphi(J))$. Now if $\zeta \in S^1$, when J ranges among neighborhoods of ζ in S^1 , $J \cup U(J)$ is a neighborhood of ζ in \overline{D} and the sets $\varphi(J) \cup (V(\varphi(J))$ span a fundamental system of neighborhoods of $\varphi(\zeta)$ in \overline{D} . Therefore Φ is continuous at ζ . Q.E.D.

THEOREM 1. The map $\Phi = E(\varphi): \overline{D} \rightarrow \overline{D}$ is a homeomorphism whose restriction to D is a real-analytic diffeomorphism.

Proof. By Lemma 2, it suffices to prove that Φ is real-analytic and that its Jacobian is nonzero at every $z \in D$. By the conformal naturality we may assume that z=0, $\Phi(0)=0$, and $\varphi: S^1 \rightarrow S^1$ has degree one.

By definition, if $z \in D$, $\Phi(z)$ is the unique $w \in D$ such that

$$F(z,w) = \frac{1}{2\pi} \int_{S^1} \left(\frac{\varphi(\zeta) - w}{1 - \bar{w}\varphi(\zeta)} \right) \frac{(1 - |z|^2)}{|z - \zeta|^2} |d\zeta| = 0.$$
(3.1)

The function F is real-analytic in $D \times D$, and its derivatives at (0,0) are

$$F'_{z}(0,0) = \frac{1}{2\pi} \int_{S^{1}} \bar{\xi}\varphi(\zeta) |d\zeta|, \quad F'_{z}(0,0) = \frac{1}{2\pi} \int_{S^{1}} \xi\varphi(\zeta) |d\zeta|,$$

$$F'_{w}(0,0) = -1, \quad F'_{\bar{w}}(0,0) = \frac{1}{2\pi} \int_{S^{2}} \varphi(\zeta)^{2} |d\zeta|.$$
(3.2)

Formula (2.4), with $\mu = \varphi_*(\eta_0)$, implies

$$|F'_{w}(0,0)|^{2} - |F'_{\bar{w}}(0,0)|^{2} = \frac{1}{2} \left(\frac{1}{2\pi}\right)^{2} \int \int_{S^{1} \times S^{1}} |\varphi(z)^{2} - \varphi(\zeta)^{2}|^{2} |dz| \times |d\zeta| > 0.$$
(3.3)

The Implicit function theorem therefore implies that $\Phi(z)$ is a real-analytic function of z near z=0. Moreover, implicit differentiation gives the formula

$$|\Phi'_{z}(0)|^{2} - |\Phi'_{z}(0)|^{2} = \frac{|F'_{z}(0,0)|^{2} - |F'_{z}(0,0)|^{2}}{|F'_{w}(0,0)|^{2} - |F'_{w}(0,0)|^{2}}$$

28

for the Jacobian of Φ at z=0. Since $F'_{z}(0,0)$ and $F'_{z}(0,0)$ are the coefficients c_{1} and c_{-1} in the Fourier expansion

$$\varphi(\zeta) = \sum_{n=-\infty}^{\infty} c_n \zeta^n, \qquad (3.4)$$

Theorem 1 follows from

LEMMA 3. If $\varphi: S^1 \rightarrow S^1$ is a homeomorphism of degree one with Fourier series (3.4), then $|c_1| > |c_{-1}|$.

Although this lemma is well known, we include a proof so that we can make some estimates later. We compute

$$|c_1|^2 - |c_{-1}|^2 = \left(\frac{1}{2\pi}\right)^2 \int \int_{S^1 \times S^1} \operatorname{Re}\left[\varphi(\zeta)\,\bar{\varphi}(z)\,(z\bar{\zeta} - \bar{z}\zeta)\right] |d\zeta| \times |dz|.$$

Put $z=e^{is}$, $\zeta=e^{it}$, and $\varphi(e^{iu})=e^{i\psi(u)}$. Here $\psi: \mathbf{R} \to \mathbf{R}$ is continuous and strictly increasing, and $\psi(u+2\pi)=\psi(u)+2\pi$. Now

$$\begin{aligned} |c_1|^2 - |c_{-1}|^2 &= 2\left(\frac{1}{2\pi}\right)^2 \int_{s=0}^{2\pi} \int_{t=0}^{2\pi} \sin(s-t) \sin(\psi(s) - \psi(t)) \, ds \, dt \\ &= 2\left(\frac{1}{2\pi}\right)^2 \int_{u=0}^{2\pi} \sin u \int_{t=0}^{2\pi} \sin(\psi(t+u) - \psi(t)) \, dt \, du \\ &= 2\left(\frac{1}{2\pi}\right)^2 \int_{u=0}^{\pi} \sin u \int_{t=0}^{2\pi} \left[\sin(\psi(t+u) - \psi(t)) + \sin(\psi(t+2\pi) - \psi(t+u+\pi))\right] \, dt \, du. \end{aligned}$$

Therefore

$$|c_1|^2 - |c_{-1}|^2 = \left(\frac{1}{2\pi}\right)^2 \int_{u=0}^{\pi} \sin u \int_{t=0}^{2\pi} H(t, u) \, dt \, du, \tag{3.5}$$

with

$$H(t, u) = \sin(\psi(t+u) - \psi(t)) + \sin(\psi(t+2\pi) - \psi(t+u+\pi)) + \sin(\psi(t+\pi+u) - \psi(t+\pi)) + \sin(\psi(t+\pi) - \psi(t+u)).$$
(3.6)

The integral (3.5) is positive because if α_1 , α_2 , α_3 , α_4 are positive numbers whose sum is 2π , then $\sum_{j=1}^4 \sin \alpha_j > 0$. The proof of Lemma 3 and Theorem 1 is complete.

Remarks. (1) The quantity $|c|^2 - |c_{-1}|^2$ is the Jacobian at z=0 of the harmonic function $u: D \rightarrow C$ with boundary values φ . It has been known for some time (see Choquet [7] and Kneser [12]) that a harmonic function $u: D \rightarrow C$ whose boundary values map S^1 homeomorphically onto a convex curve Γ is a diffeomorphism onto the interior of Γ .

(2) The extension operator $\varphi \mapsto E(\varphi) = \Phi$ is uniquely determined by the conformal naturality and the property that $\Phi(0)=0$ if φ has mean value zero. Indeed, if $w=B(\varphi_*(\eta_0))$, then $g_w \circ \varphi$ has mean value zero, so $0=E(g_w \circ \varphi)(0)=g_w(\Phi(0))$. Therefore $\Phi(0)=B(\varphi_*(\eta_0))$, and the formula $\Phi(z)=B(\varphi_*(\eta_z))$ follows by conformal naturality.

4. Dependence on φ

To study how $E(\varphi)$ depends on φ , it is convenient to think of the set $\mathcal{H}(S^1)$ of homeomorphisms $\varphi: S^1 \to S^1$ as a subset of the Banach space $\mathcal{H}(S^1, \mathbb{C})$ of complexvalued continuous functions on S^1 , with the sup norm. For each φ in $\mathcal{H}(S^1)$ the extension $\Phi = E(\varphi)$ belongs to the group $\text{Diff}(D) \cap \mathcal{H}(\bar{D})$ of C^{∞} diffeomorphisms of Dwith homeomorphic extensions to \bar{D} . We regard Diff(D) and $\mathcal{H}(\bar{D})$ as subsets of the vector spaces $C^{\infty}(D, \mathbb{C})$ and $\mathcal{H}(\bar{D}, \mathbb{C})$, each with its standard topology, and we give $\text{Diff}(D) \cap \mathcal{H}(\bar{D})$ the topology induced by the diagonal embedding in $\text{Diff}(D) \times \mathcal{H}(\bar{D})$. Both $\mathcal{H}(S^1)$ and $\text{Diff}(D) \cap \mathcal{H}(\bar{D})$ are topological groups.

PROPOSITION 2. The map $E: \mathcal{H}(S^1) \to \text{Diff}(D) \cap \mathcal{H}(\overline{D})$ is continuous.

In other words the map $h: (z, \varphi) \mapsto E(\varphi)(z)$ of $\tilde{D} \times \mathcal{H}(S^1)$ into \tilde{D} is continuous, and the partial derivatives of h (of all orders) with respect to z and \bar{z} are continuous maps of $D \times \mathcal{H}(S^1)$ into C. We shall prove that h is continuous at every point (z, φ) with $z \in S^1$, then that on $D \times \mathcal{H}(S^1)$ it is locally induced by an analytic map of an open set W of $C \times \mathscr{C}(S^1, \mathbb{C})$ into C.

Proof. (a) Continuity at points of $S^1 \times \mathscr{H}(S^1)$. Consider a homeomorphism $\varphi_0 \in \mathscr{H}(S^1)$ and a point $z_0 \in S^1$. Let us return to the proof of Lemma 2. Let V_1 be a neighborhood of $\varphi_0(z_0)$ in \overline{D} . One can find a neighborhood J_1 of $\varphi_0(z_0)$ in S^1 such that $\overline{V(J_1)} \subset V_1$, and then neighborhoods J_0 of z_0 in S^1 and W_0 of φ_0 in $\mathscr{C}(S^1, \mathbb{C})$ such that $\varphi(J_0) \subset J_1$ for each $\varphi \in W_0$. Then $\overline{U(J_0)}$ is a neighborhood of z_0 in \overline{D} , and $\Phi(\overline{U(J_0)}) \subset \overline{V(J_1)}$ for each $\varphi \in W_0$.

30

31

(b) Local analyticity in $D \times \mathcal{H}(S^1)$. Let Ω be the open set in $D \times \mathbb{C} \times \mathscr{C}(S^1, \mathbb{C})$ defined by

$$\Omega = \{(z, w, \varphi) \in D \times \mathbb{C} \times \mathscr{C}(S^1, \mathbb{C}); |w| \cdot ||\varphi|| < 1\},\$$

and let $F: \Omega \rightarrow C$ be the real-analytic function

$$F(z, w, \varphi) = \frac{1}{2\pi} \int_{S^1} \left(\frac{\varphi(\zeta) - w}{1 - \bar{w}\varphi(\zeta)} \right) \frac{1 - |z|^2}{|z - \zeta|^2} |d\zeta|.$$

Choose a homeomorphism $\varphi_0: S^1 \to S^1$ and a point $z_0 \in D$. Put $w_0 = E(\varphi_0)(z_0)$. Then $F(z_0, w_0, \varphi_0) = 0$. Moreover, $|F'_w|^2 - |F'_w|^2$ is positive at (z_0, w_0, φ_0) because it is a positive multiple of the Jacobian of the vector field ξ_μ at its unique zero w_0 ; here μ is the measure $\varphi_*(\eta_{z_0})$ on S^1 . The Implicit function theorem therefore implies that all zeros of F near (z_0, w_0, φ_0) are given by a real-analytic function $w = h(z, \varphi)$, defined in a neighborhood of (z_0, φ_0) in $D \times \mathscr{C}(S^1, \mathbb{C})$. In particular $E(\varphi)(z) = h(z, \varphi)$ if (z, φ) in $D \times \mathscr{C}(S^1)$ is close to (z_0, φ_0) .

COROLLARY. The functions $\varphi \mapsto E(\varphi)'_{\tau}(0)$ and $\varphi \mapsto E(\varphi)'_{\tau}(0)$ on $\mathcal{H}(S^1)$ are continuous.

5. Quasiconformal extensions

THEOREM 2. If the homeomorphism $\varphi: S^1 \rightarrow S^1$ admits a quasiconformal extension to \overline{D} , then $\Phi = E(\varphi)$ is quasiconformal. In fact both Φ and Φ^{-1} are Lipschitz continuous in the Poincaré metric on D.

Proof. Let $\mathscr{H}_+(S^1)$ be the set of $\varphi \in \mathscr{H}(S^1)$ that have degree one. For $\varphi \in \mathscr{H}_+(S^1)$ put $\Phi = E(\varphi)$ and define positive functions $\alpha(\varphi)$ and $\beta(\varphi)$ on D by

$$\alpha(\varphi)(z) = \frac{|\Phi'_{z}(z)| - |\Phi'_{z}(z)|}{1 - |\Phi(z)|^{2}} / \frac{1}{1 - |z|^{2}},$$

$$\beta(\varphi)(z) = \frac{|\Phi'_{z}(z)| + |\Phi'_{z}(z)|}{1 - |\Phi(z)|^{2}} / \frac{1}{1 - |z|^{2}}.$$

The Lipschitz continuity of Φ and Φ^{-1} in the Poincaré metric is equivalent to the existence of positive numbers *a* and *b* such that

$$a \leq \alpha(\varphi)(z) \leq \beta(\varphi)(z) \leq b$$
 for all $z \in D$. (5.1)

These inequalities in turn imply that Φ is quasiconformal with dilatation ratio $\leq b/a$. We must therefore prove that if φ admits a quasiconformal extension to \tilde{D} , then (5.1) holds for some positive numbers a and b.

Since G is a group of isometries in the Poincaré metric, the conformal naturality of the map $\varphi \rightarrow \Phi$ implies that

$$\alpha(g \circ \varphi \circ h) = \alpha(\varphi) \circ h$$
 and $\beta(g \circ \varphi \circ h) = \beta(\varphi) \circ h$

for all g and h in G_+ . Therefore it suffices to prove that

$$a(K) = \inf \left\{ \alpha(\varphi)(0); \varphi \in \mathcal{H}_K(S^1) \right\}$$

and

$$b(K) = \sup \left\{ \beta(\varphi)(0); \varphi \in \mathcal{H}_{K}(S^{1}) \right\}$$

are finite positive numbers if $\mathcal{H}_{K}(S^{1})$ is the set of $\varphi \in \mathcal{H}_{+}(S^{1})$ that admit a K-quasiconformal extension to \overline{D} and fix the points 1,*i*, and -1. That is easy. Theorem 1 implies that the functions $\varphi \mapsto \alpha(\varphi)(0)$ and $\varphi \mapsto \beta(\varphi)(0)$ are positive on $\mathcal{H}_{+}(S^{1})$. They are also continuous, by Proposition 2 and its corollary. Since the set $\mathcal{H}_{K}(S^{1}) \subset \mathcal{H}_{+}(S^{1})$ is compact (see § 5 of [13, Chapter II]), we must have 0 < a(K) and $b(K) < \infty$. Q.E.D.

Remarks. (1) The proof shows that for each $K \ge 1$ there is a number K^* such that Φ is K^* -quasiconformal if φ has a K-quasiconformal extension. We shall estimate K^* as a function of K in Sections 9 and 10.

(2) The proof used only the fact that the set of $\varphi \in \mathcal{H}_+(S^1)$ admitting a Kquasiconformal extension to \overline{D} is $G_+ \times G_+$ invariant and has compactness properties. The fact that invariance and compactness properties of this kind characterize the $\varphi \in \mathcal{H}_+(S^1)$ with quasiconformal extensions to \overline{D} was proved by Beurling and Ahlfors [6]. They also gave a simple geometric characterization of these φ and defined a quasiconformal extension operator $\varphi \mapsto \Phi$. Their extension operator is not conformally natural, but it can be taken to be $G_{\zeta} \times G_{\zeta}$ equivariant if G_{ζ} is the subgroup of G leaving a given point $\zeta \in S^1$ fixed.

6. Dependence on μ

The most important invariant of a quasiconformal map $f: D \to D$ is its complex dilatation

 $\mu(f) = f'_{z}/f'_{z}.$

In this section we study how $\mu(\Phi)$ depends on φ if $\Phi = E(\varphi)$ is quasiconformal. We need some notations.

Let *M* be the open unit ball in the Banach space $L^{\infty}(D, \mathbb{C})$. For each $\mu \in M$ there is a unique quasiconformal map f^{μ} of \overline{D} onto itself that fixes the points 1,*i*, and -1 and satisfies the Beltrami equation

$$f'_z = \mu f'_z$$

in D. Let φ^{μ} be the restriction of f^{μ} to S^1 . By Theorem 2, $E(\varphi^{\mu}): \overline{D} \to \overline{D}$ is quasiconformal, so its complex dilatation belongs to M. That determines a map

$$\sigma: \mu \mapsto E(\varphi^{\mu})'_{z} / E(\varphi^{\mu})'_{z}$$
(6.1)

from M to M. Since $E(\varphi^{\mu})$ fixes the points 1, i, and -1, (6.1) implies

$$E(\varphi^{\mu}) = f^{\sigma(\mu)} \quad \text{for all } \mu \in M.$$
(6.2)

PROPOSITION 3. The map $\sigma: M \rightarrow M$ defined by (6.1) is continuous. In fact, if 0 < k < 1, then σ is uniformly continuous on the set

$$M_k = \{\mu \in M; \|\mu\| \leq k\}.$$

Proof. Fix $k \in [0,1[$. First we shall prove that the function $\mu \mapsto \sigma(\mu)(0)$ is uniformly continuous on M_k . If not, there are sequences (μ_n) and (ν_n) in M_k and a number $\varepsilon > 0$ such that $||\mu_n - \nu_n|| \to 0$ but

$$|\sigma(\mu_n)(0) - \sigma(\nu_n)(0)| > \varepsilon \quad \text{for all } n.$$
(6.3)

By passing to a subsequence we may assume that f^{μ_n} converges uniformly in \overline{D} to some f^{μ} . Since $||\mu_n - \nu_n|| \rightarrow 0$, f^{ν_n} also converges to f^{μ} uniformly in \overline{D} . But then the corollary to Proposition 2 implies that $\sigma(\mu_n)(0)$ and $\sigma(\nu_n)(0)$ converge to the same limit $\sigma(\mu)(0)$. That contradicts (6.3), so $\mu \mapsto \sigma(\mu)(0)$ is uniformly continuous in M_k .

We will use conformal naturality to finish the proof. First we identify M with the set of bounded measurable conformal structures on D by associating the function $\mu \in M$ with the conformal class of the metric

$$ds = |dz + \mu(z) d\bar{z}|. \tag{6.4}$$

We denote by D_{μ} the disk D with the conformal structure determined by (6.4). Thus, $f^{\mu}: D_{\mu} \rightarrow D_0$ is a conformal map.

³⁻⁸⁶⁸²⁸⁵ Acta Mathematica 157. Imprimé le 15 octobre 1986

The group G acts on M so that $\nu = g_*(\mu)$ if and only if the map $g: D_{\mu} \to D_{\nu}$ is conformal. Explicitly,

$$v = g_*(\mu) \quad \text{if and only if} \quad \mu = (v \circ g) \,\bar{g}'/g' \text{ for } g \in G_+,$$

$$v = g_*(\mu) \quad \text{if and only if} \quad \bar{\mu} = (v \circ g) \,\overline{g'_{\bar{\ell}}}/g'_{\bar{\ell}} \text{ for } g \in G \setminus G_+.$$
(6.5)

LEMMA 4. $v = g_*(\mu)$ if and only if $f^v \circ g \circ (f^{\mu})^{-1} \in G$.

Proof. By definition, $\nu = g_*(\mu)$ if and only if $g: D_\mu \to D_\nu$ is conformal. Since $f^\nu: D_\nu \to D_0$ and $f^\mu: D_\mu \to D_0$ are conformal, $\nu = g_*(\mu)$ if and only if

$$f^{\nu} \circ g \circ (f^{\mu})^{-1} : D_0 \rightarrow D_0$$

is conformal.

COROLLARY. The map $\sigma: M \rightarrow M$ is conformally natural.

Proof. If $g \in G$ and $\nu = g_*(\mu)$, then Lemma 4 gives

 $f^{\nu} \circ g = h \circ f^{\mu}$

for some $h \in G$. Therefore $\varphi^{\nu} \circ g = h \circ \varphi^{\mu}$ on S^1 , so

$$E(\varphi^{\nu}) \circ g = h \circ E(\varphi^{\mu})$$

in \tilde{D} . By (6.2), $f^{\sigma(\nu)} \circ g = h \circ f^{\sigma(\mu)}$, so Lemma 4 implies $\sigma(\nu) = g_*(\sigma(\mu))$. Q.E.D.

End of proof of Proposition 3. We have already proved that given $k \in [0,1[$ and $\varepsilon > 0$ there is $\delta > 0$ such that

$$|\sigma(\mu)(0) - \sigma(\nu)(0)| < \varepsilon$$

if $||\mu-\nu|| < \delta$ and $\mu, \nu \in M_k$. If $g \in G$, then (6.5) implies $||g_*(\mu)|| = ||\mu||$ and $||g_*(\mu)-g_*(\nu)|| = ||\mu-\nu||$, so (6.5) and the corollary to Lemma 4 give

$$|\sigma(\mu)(g^{-1}(0)) - \sigma(\nu)(g^{-1}(0))| = |\sigma(g_*(\mu))(0) - \sigma(g_*(\nu))(0)| < \varepsilon$$

if $\|\mu - \nu\| < \delta$ and $\mu, \nu \in M_k$. But $g^{-1}(0)$ is any point of D. Q.E.D.

Remark. We shall prove in Section 8 that $\sigma: M \rightarrow M$ is a real-analytic map.

Q.E.D.

7. Teichmüller spaces

If Γ is a Fuchsian group (discrete subgroup of G), we define

$$M(\Gamma) = \{ \mu \in M; \gamma_*(\mu) = \mu \text{ for all } \gamma \in \Gamma \}.$$
(7.1)

35

Equivalently, by Lemma 4,

$$M(\Gamma) = \{ \mu \in M; f^{\mu} \circ \gamma \circ (f^{\mu})^{-1} \in G \text{ for all } \gamma \in \Gamma \}.$$
(7.2)

The Teichmüller space $T(\Gamma)$ is defined by

$$T(\Gamma) = \{ \varphi \in \mathcal{H}(S^1); \varphi = \varphi^{\mu} \text{ for some } \mu \in M(\Gamma) \}.$$

We denote by 1 the trivial subgroup of G, so that M(1)=M and T(1) is the set of $\varphi \in \mathcal{H}(S^1)$ that fix the points 1,*i*, and -1 and admit a quasiconformal extension to \overline{D} .

The conformal naturality of the assignment $\varphi \mapsto E(\varphi)$ leads to a simple proof of the following theorem of Tukia.

PROPOSITION 4 (Tukia [16]). For any Fuchsian group Γ ,

$$T(\Gamma) = \{ \varphi \in T(1); \varphi \circ \gamma \circ \varphi^{-1} \in G \text{ for all } \gamma \in \Gamma \}.$$

Proof. Put $S = \{\varphi \in T(1); \varphi \circ \gamma \circ \varphi^{-1} \in G \text{ for all } \gamma \in \Gamma\}$. Then $\varphi^{\mu} \in S$ for all $\mu \in M(\Gamma)$, by (7.2), so $T(\Gamma) \subset S$. Conversely, if $\varphi \in S$, then by conformal naturality

$$E(\varphi) \circ \gamma \circ E(\varphi)^{-1} \in G$$
 for all $\gamma \in \Gamma$.

Moreover, by Theorem 2, $E(\varphi)$ is quasiconformal and $E(\varphi)=f^{\mu}$, where $\mu \in M$ is given by

$$\mu = E(\varphi)'_{z}/E(\varphi)'_{z}.$$

Since $f^{\mu} \circ \gamma \circ (f^{\mu})^{-1} \in G$ for all $\gamma \in \Gamma$, $\mu \in M(\Gamma)$ and $\varphi^{\mu} = \varphi \in T(\Gamma)$. Q.E.D.

The space $M(\Gamma)$ inherits a topology from $L^{\infty}(D, \mathbb{C})$, and $T(\Gamma)$ is given the quotient topology induced by the map $\pi: M(\Gamma) \to T(\Gamma)$ defined by $\pi(\mu) = q^{\mu}$. It is clear from (6.5) and (7.1) that $M(\Gamma)$ is a convex, hence contractible, subset of $L^{\infty}(D, \mathbb{C})$. Our next goal is to prove that $T(\Gamma)$ is also contractible. That will be an easy consequence of

LEMMA 5. If Γ is a Fuchsian group and $\sigma: M \rightarrow M$ is defined by (6.1), then

(a) σ maps $M(\Gamma)$ into itself,

(b) there is a continuous map $s: T(\Gamma) \rightarrow M(\Gamma)$ such that $s \circ \pi = \sigma: M(\Gamma) \rightarrow M(\Gamma)$,

(c) $\pi \circ \sigma = \pi: M(\Gamma) \rightarrow M(\Gamma)$.

Proof. (a) Let $\mu \in M(\Gamma)$. Then $\varphi^{\mu} \in T(\Gamma)$ and, as we saw in the proof of Proposition 4,

$$E(\varphi^{\mu}) \circ \gamma \circ E(\varphi^{\mu})^{-1} \in G \quad \text{for all } \gamma \in \Gamma.$$

By (6.2), $E(\varphi^{\mu}) = f^{\sigma(\mu)}$, so $\sigma(\mu) \in M(\Gamma)$.

(b) By definition, if $\pi(\mu) = \pi(\nu)$, then $\varphi^{\mu} = \varphi^{\nu}$, so $E(\varphi^{\mu}) = E(\varphi^{\nu})$ and $\sigma(\mu) = \sigma(\nu)$. Hence there is a well defined map s: $T(\Gamma) \rightarrow M(\Gamma)$ such that $s \circ \pi = \sigma$ on $M(\Gamma)$. The map s is continuous because σ is, by Proposition 3.

(c) Since $E(\varphi^{\mu})=f^{\sigma(\mu)}$, $\varphi^{\sigma(\mu)}$ is the restriction of $E(\varphi^{\mu})$ to S^1 . Therefore $\varphi^{\sigma(\mu)}=\varphi^{\mu}$ and $\pi(\sigma(\mu))=\pi(\mu)$. Q.E.D.

THEOREM 3. The Teichmüller space $T(\Gamma)$ of any Fuchsian group Γ is contractible.

Proof. By Lemma 5, $\pi \circ s \circ \pi = \pi \circ \sigma = \pi$, so $\pi \circ s : T(\Gamma) \to T(\Gamma)$ is the identity map. Since $M(\Gamma)$ is contractible, so is $T(\Gamma)$. An explicit contraction is the map $(\varphi, t) \to \pi((1-t) s(\varphi))$ from $T(\Gamma) \times [0,1]$ to $T(\Gamma)$. Q.E.D.

Remarks. (1) For more information about Teichmüller spaces see Bers [5] and the literature quoted there.

(2) It is classical that $T(\Gamma)$ is contractible when $T(\Gamma)$ is finite dimensional (i.e. $\Gamma \setminus D$ has finite Poincaré area). The contractibility for all Γ was conjectured by Bers [3, Lecture 1], who introduced the infinite dimensional Teichmüller spaces. Bers' conjecture was proved for $\Gamma=1$ in [11] and announced for finitely generated subgroups of G_+ in [9]. Tukia [15] proved that $T(\Gamma)$ is contractible for many infinitely generated groups Γ , and indeed is homeomorphic to a Banach space in many cases. He also informed the second author in 1983 that the methods of [16] can be extended to prove that all $T(\Gamma)$ are contractible.

(3) If $\Gamma \subset G_+$, Proposition 4 has an equivalent formulation. By results of Bers [4], there is a homeomorphism θ from T(1) onto an open subset Δ of the Banach space B of holomorphic functions f on $\mathbb{C} \setminus \overline{D}$ with norm

$$||f|| = \sup \{f(z)|(1-|z|^2)^2; |z| > 1\} < \infty.$$

 G_+ acts on B so that $g \cdot f = h$ if and only if $f = (h \circ g)(g')^2$. Bers proves that θ maps $T(\Gamma)$ homeomorphically into

$$B(\Gamma) = \{ f \in B; \gamma \cdot f = f \text{ for all } \gamma \in \Gamma \},\$$

so $\theta(T(\Gamma)) \subset B(\Gamma) \cap \Delta$. If

$$S = \{ \varphi \in T(1); \varphi \circ \gamma \circ \varphi^{-1} \in G \text{ for all } \gamma \in \Gamma \},\$$

then the Lemma in [8] says that $\theta(S)=B(\Gamma)\cap \Delta$, so Proposition 4 is equivalent to the statement

$$\theta(T(\Gamma)) = B(\Gamma) \cap \Delta.$$

For further comments on Proposition 4 see Section two of Tukia [16].

8. Analytic dependence on μ

In this section we shall prove that $\sigma: M \rightarrow M$ is a real-analytic map. First we need to strengthen the corollary to Proposition 2.

LEMMA 6. For each $\varphi_0 \in \mathscr{H}_+(S')$ there is a holomorphic function $f: V \rightarrow \mathbb{C}$, defined in an open neighborhood V of φ_0 in $\mathscr{C}(S^1, \mathbb{C})$, such that

$$|f(\varphi)| < 1 \quad for \ all \ \varphi \in V, \tag{8.1}$$

$$f(\varphi) = E(\varphi)'_{\xi}(0)/E(\varphi)'_{\xi}(0) \quad \text{for all } \varphi \in V \cap \mathcal{H}_{+}(S^{1}).$$
(8.2)

Proof. The proof of Proposition 2 shows that for each $\varphi_0 \in \mathcal{H}_+(S^1)$ there is a realanalytic function $h(z, \varphi)$, defined for (z, φ) near $(0, \varphi_0)$ in $\mathbb{C} \times \mathscr{C}(S^1, \mathbb{C})$, such that $E(\varphi)(z) = h(z, \varphi)$ if $\varphi \in \mathcal{H}_+(S^1)$ and (z, φ) is in the domain of h. The complex derivatives $h'_{z}(0, \varphi)$ and $h'_{z}(0, \varphi)$ are real-analytic functions of φ , and

$$|h'_{z}(0,\varphi_{0})| < |h'_{z}(0,\varphi_{0})|,$$

so $f(\varphi) = h'_{z}(0, \varphi) / h'_{z}(0, \varphi)$ is real-analytic and satisfies (8.1) and (8.2) in some open neighborhood V of φ_{0} .

Now the map $H: \mathscr{C}(S^1, \mathbb{C}) \to \mathscr{C}(S^1, \mathbb{C})$ defined by

 $H(\psi)(\zeta) = \zeta \exp(i\psi(\zeta))$ for all $\zeta \in S^1$ and $\psi \in \mathscr{C}(S^1, \mathbb{C})$

is holomorphic. Choose $\psi_0 \in \mathscr{C}(S^1, \mathbb{C})$ so that $H(\psi_0) = \varphi_0$. By the Inverse function theorem, H maps some open neighborhood W of ψ_0 biholomorphically onto an open neighborhood H(W) of φ_0 in $\mathscr{C}(S^1, \mathbb{C})$; we may assume $H(W) \subset V$. Since the function

 $f \circ H$ is real-analytic in W, there is a holomorphic function F, defined in an open neighborhood $W' \subset W$ of ψ_0 , such that $|F(\psi)| < 1$ for all $\psi \in W'$ and $F = f \circ H$ in $W \cap \mathscr{C}(S^1, \mathbb{R})$. The function $F \circ H^{-1}$ is holomorphic in H(W') and equals f on $H(W') \cap \mathscr{H}_+(S^1)$. Q.E.D.

THEOREM 4. The map $\sigma: M \rightarrow M$ defined by (6.1) is real-analytic.

Proof. Let $M(\mathbb{C})$ be the open unit ball in $L^{\infty}(\mathbb{C}, \mathbb{C})$, and define a conjugate linear involution $\mu \mapsto \mu^*$ of $L^{\infty}(\mathbb{C}, \mathbb{C})$ onto itself by

$$\mu^*(z) = \bar{\mu}(1/\bar{z}) (z/\bar{z})^2 \quad \text{for all } z \in \mathbb{C}.$$

Let $M^* = \{\mu \in M(\mathbb{C}); \mu = \mu^*\}$. The map that sends μ to its restriction to D is a realanalytic equivalence of M^* with M, and we shall identify M with M^* for the remainder of this section.

The projection operator $P\mu = (\mu + \mu^*)/2$ has norm one, and so does *I-P*; note that $P(M(\mathbb{C})) = M^*$.

For each $\mu \in M(\mathbb{C})$ there is a unique quasiconformal map f^{μ} of the extended complex plane onto itself that fixes the points 1,*i*, and -1 and satisfies the Beltrami equation

$$f'_{\tau} = \mu f'_{\tau}$$

in C. Let φ^{μ} be the restriction of f^{μ} to S^1 . For $\mu \in M^*$, $f^{\mu}(D) = D$, so the new definitions of f^{μ} and φ^{μ} agree with the old ones.

Now the results of Ahlfors and Bers [2] show that if 0 < k' < 1 there is r' > 0 such that

$$|\varphi^{\mu}(\zeta)| < 2$$
 if $\zeta \in S^1$, $||\mu|| < k'$ and $||\mu - P\mu|| < r'$.

Further, the map $\mu \mapsto \varphi^{\mu}$ from

$$V(k', r') = \{\mu \in M(\mathbb{C}); \|\mu\| < k' \text{ and } \|\mu - P\mu\| < r'\}$$

to $\mathscr{C}(S^1, \mathbb{C})$ is holomorphic (and bounded). Since the set V(k', r') is convex, it follows that $\mu \mapsto \varphi^{\mu}$ is Lipschitz continuous on V(k, r) if 0 < k < k' and 0 < r < r'. We conclude that given any $k \in [0, 1]$ and $\delta > 0$, there is r > 0 such that

$$\|\varphi^{\mu}-\varphi^{\nu}\| < \delta \quad \text{if } \mu \text{ and } \nu \in V(k,r) \text{ and } \|\mu-\nu\| < r.$$
(8.3)

Now fix $k \in [0,1[$ and put $M_k^* = \{\mu \in M^*; ||\mu|| < k\}$. The set

$$A_k = \{ \varphi \in \mathcal{H}_+(S^1); \varphi = \varphi^{\mu} \text{ for some } \mu \in M_k^* \}$$

has compact closure in $\mathscr{C}(S^1, \mathbb{C})$. Therefore, by Lemma 6, there is $\delta > 0$ such that for every $\varphi_0 \in A_k$ there is a holomorphic function $f: B(\varphi_0, \delta) \to \mathbb{C}$ that satisfies (8.1) and (8.2) with $V=B(\varphi_0, \delta)$. Given that $\delta > 0$, choose r > 0 so that (8.3) holds.

By construction, for each $\mu_0 \in M_k^*$ there is a holomorphic function $F(\mu) = f(\varphi^{\mu})$, defined in the convex open set $V(k, r) \cap B(\mu_0, r)$, such that

$$|F(\mu)| < 1 \tag{8.4}$$

and

$$F(\mu) = \sigma(\mu)(0) \quad \text{if } \mu \in M^*. \tag{8.5}$$

These open sets cover V(k, r), so analytic continuation produces a holomorphic function $F: V(k, r) \rightarrow \mathbb{C}$ that satisfies (8.4) and (8.5).

Again we will use conformal naturality to complete the proof. Formula (6.5) defines an action of G on $L^{\infty}(\mathbb{C}, \mathbb{C})$, and the map P from $L^{\infty}(\mathbb{C}, \mathbb{C})$ to itself is conformally natural. Therefore the set V(k, r) is G-invariant, and we can define a map H from V(k, r) to the Banach space $B(D, \mathbb{C})$ of bounded complex valued functions on D by putting

$$H(\mu)(w) = F((g_w)_*(\mu))$$
 for all $\mu \in V(k, r)$ and $w \in D$.

(Here g_w is defined as in formula (1.1).) Since $(g_w)_*$ and F are holomorphic, the function $\mu \mapsto H(\mu)(w)$ is holomorphic for each $w \in D$. Since $|H(\mu)(w)| < 1$ for all $w \in D$ and $\mu \in V(k, r)$, H is holomorphic (see for instance Lemma 3.4 in [10]). Finally, (8.5) and the conformal naturality of the map σ imply that $H(\mu)(w) = \sigma(\mu)(w)$ for all $\mu \in M_k^*$ and $w \in D$. Therefore σ is real-analytic in M_k^* . Q.E.D.

9. The derivative of $\sigma(\mu)$ at $\mu=0$

PROPOSITION 5. The derivative of $\sigma: M \to M$ at $\mu = 0$ is the linear map $\sigma'(0): L^{\infty}(D, \mathbb{C}) \to L^{\infty}(D, \mathbb{C})$ given by

$$\sigma'(0) v(z) = \frac{3}{\pi} \int \int_D \frac{v(w) (1-|z|^2)^2}{(1-\bar{z}w)^4} \, du \, dv \quad \text{for all } z \in D \text{ and } v \in L^{\infty}(D, \mathbb{C}).$$
(9.1)

Proof. Fix any $v \in L^{\infty}(D, \mathbb{C})$. For $t \in \mathbb{R}$ sufficiently close to zero, Theorem 4 implies that

$$\sigma(t\nu) = t\sigma'(0)\,\nu + o(t).$$

By the results of Ahlfors-Bers [2],

$$\varphi^{t\nu}(\zeta) = \zeta + t\dot{\varphi}(\zeta) + o(t)$$
 uniformly for $\zeta \in S^1$

and

$$\Phi^{t\nu}(z) = f^{o(t\nu)}(z) = z + t\dot{f}(z) + o(t) \quad \text{for all } z \in D.$$

Further, $\dot{f}'_{\bar{z}} = \sigma'(0) \nu$.

Now, for $z \in D$, the definition of $\Phi(z)$ gives

$$\begin{split} 0 &= \frac{1}{2\pi} \int_{S^1} \frac{\varphi''(\zeta) - \Phi''(z)}{1 - \bar{\Phi}''(z) \varphi''(\zeta)} \frac{(1 - |z|^2)}{|z - \zeta|^2} |d\zeta| \\ &= \frac{1}{2\pi} \int_{S^1} \left[\frac{\zeta - z}{1 - \bar{z}\zeta} + t \left\{ \frac{\dot{\varphi}(\zeta) - \dot{f}(z)}{1 - \bar{z}\zeta} + \frac{(\zeta - z) \left(\zeta \bar{f}(z) + \bar{z} \dot{\varphi}(\zeta)\right)}{(1 - \bar{z}\zeta)^2} \right\} \right] \frac{(1 - |z|^2)}{|z - \zeta|^2} |d\zeta| + o(t). \end{split}$$

Therefore

$$0 = \frac{1}{2\pi} \int_{S^1} \left[\frac{\dot{\varphi}(\zeta)}{1 - \bar{z}\zeta} + \frac{\bar{z}(\zeta - z)\,\dot{\varphi}(\zeta)}{(1 - \bar{z}\zeta)^2} - \frac{\dot{f}(z)}{1 - \bar{z}\zeta} + \frac{\zeta(\zeta - z)\,\overline{f}(z)}{(1 - \bar{z}\zeta)^2} \right] \frac{(1 - |z|^2)}{|z - \zeta|^2} |d\zeta|,$$

$$\dot{f}(z) = \frac{1}{2\pi} \int_{S^1} \dot{\varphi}(\zeta) \left(\frac{1 - \bar{z}z}{1 - \bar{z}\zeta} \right)^2 \frac{(1 - |z|^2)}{|z - \zeta|^2} |d\zeta|$$

$$= \frac{1}{2\pi i} \int_{S^1} \dot{\varphi}(\zeta) \left(\frac{1 - \bar{z}z}{1 - \bar{z}\zeta} \right)^3 \frac{d\zeta}{\zeta - z},$$

and

$$\sigma'(0) v(z) = \dot{f}'_{\dot{z}}(z) = \frac{3}{2\pi i} \int_{S^1} \dot{\varphi}(\zeta) \frac{(1-|z|^2)^2}{(1-\dot{z}\zeta)^4} d\zeta.$$
(9.2)

Now the Ahlfors-Bers theory gives

$$\dot{\varphi}(\zeta) = -\frac{1}{\pi} \int \int_D \frac{\nu(w) \, du \, dv}{w - \zeta} + h(\zeta)$$

where h is continuous in \overline{D} and holomorphic in D. Since

$$\frac{3}{2\pi i}\int_{S^1}h(\zeta)\frac{(1-|z|^2)^2}{(1-\bar{z}\zeta)^4}d\zeta=0\quad\text{for all }z\in D,$$

by Cauchy's theorem, (9.2) gives

$$\sigma'(0) v(z) = \frac{3}{2\pi i} \int_{S^1} \left(\frac{1}{\pi} \int \int_D \frac{v(w)}{\zeta - w} \, du \, dv \right) \frac{(1 - |z|^2)^2}{(1 - \bar{z}\zeta)^4} \, d\zeta.$$

An application of Fubini's theorem and Cauchy's formula gives (9.1). Q.E.D.

COROLLARY 1. $\|\sigma'(0)\nu\| \leq 3\|\nu\|$ for all $\nu \in L^{\infty}(D, \mathbb{C})$.

Proof. For all $z \in D$,

$$|\sigma'(0)\nu(z)| \leq \frac{3||\nu||}{\pi} \int \int_{D} \frac{(1-|z|^2)^2}{|1-\bar{z}w|^4} du dv = 3||\nu||. \qquad Q.E.D.$$

COROLLARY 2. For $\varphi \in \mathcal{H}^+(S^1)$, put

$$K(\varphi) = \inf \{K; \varphi \text{ has a } K \text{-quasiconformal extension to } \tilde{D} \}$$
(9.3)

and let $K^*(\varphi)$ be the coefficient of quasiconformality of $\Phi = E(\varphi)$. Given any $\varepsilon > 0$ there is $\delta > 0$ such that for all $\varphi \in \mathcal{H}_+(S^1)$

$$K^*(\varphi) \leq K(\varphi)^{3+\varepsilon}$$
 if $K(\varphi) \leq 1+\delta$.

Proof. We may assume that $K(\varphi) < \infty$ and, by conformal naturality, that φ fixes 1, *i* and -1. Then there is $\mu \in M$ such that $\varphi = \varphi^{\mu}$ and

$$K(\varphi) = \frac{1 + ||\mu||}{1 - ||\mu||}.$$

In addition, since $\Phi = f^{\sigma(\mu)}$,

$$K^*(\varphi) = \frac{1 + \|\sigma(\mu)\|}{1 - \|\sigma(\mu)\|}.$$

By Corollary 1, if c > 3, then $||\sigma(\mu)|| \le c ||\mu||$ and

$$K^*(\varphi) \leq \frac{1+c\|\mu\|}{1-c\|\mu\|}$$

if μ is close to zero. Furthermore, if $3 < c < 3 + \varepsilon$, then

$$\frac{1\!+\!ct}{1\!-\!ct}\!<\!\left(\frac{1\!+\!t}{1\!-\!t}\right)^{3+\varepsilon}$$

for small positive numbers t.

Remark. If $v(z) \equiv 1$, then $\sigma'(0) v(z) = 3(1-|z|^2)^2$. Therefore the operator $\sigma'(0)$ has norm three, and the exponent $3+\varepsilon$ in Corollary 2 cannot be replaced by any number less than three.

Q.E.D.

A. DOUADY AND C. J. EARLE

10. Estimating $K^*(\varphi)$

We shall give an explicit upper bound for the coefficient of quasiconformality $K^*(\varphi)$ of $\Phi = E(\varphi)$ if φ admits a K-quasiconformal extension to \overline{D} . The estimates here provide a second proof of Theorem 2.

PROPOSITION 6. Suppose $\varphi \in H_+(S^1)$ admits a K-quasiconformal extension to \overline{D} . If $\Phi = E(\varphi)$ fixes $0 \in D$, then for all ζ_1 and $\zeta_2 \in S^1$

$$a(K)^{-1} \left(\frac{|\xi_1 - \xi_2|}{16}\right)^K \le |\varphi(\xi_1) - \varphi(\xi_2)| \le 16 \ a(K) |\xi_1 - \xi_2|^{1/K}$$
(10.1)

where

$$a(K) = 4(1+\sqrt{2})(16/\sqrt{3})^{K}.$$
(10.2)

Proof. Let $\psi: D \to D$ be a K-quasiconformal extension of φ , let $w = \psi(0)$, and put $\psi = g_w \circ \psi$. Then $\psi(0) = 0$, so the boundary values $\tilde{\varphi} = g_w \circ \varphi$ of ψ satisfy the Hölder inequalities

$$\left(\frac{|\zeta_1 - \zeta_2|}{16}\right)^K \le |\tilde{\varphi}(\zeta_1) - \tilde{\varphi}(\zeta_2)| \le 16 |\zeta_1 - \zeta_2|^{1/K} \text{ for all } \zeta_1 \text{ and } \zeta_2 \in S^1$$
(10.3)

(see [13, p. 66]). In addition $E(\tilde{\varphi})(0) = g_w(0) = -w$. We shall estimate |w|.

If $J = [\alpha, \beta] \subset S^1$ is any arc with $|\alpha - \beta| \leq c = (\sqrt{3}/16)^K$, then (10.3) implies that $\tilde{\varphi}_*(\eta_0)(J) \leq 1/3$. Choose $r \in]0,1[$ so that the arc $J_1 = [\bar{\alpha}_1, \alpha_1]$ with $|\alpha_1 - \bar{\alpha}_1| = c$ is seen from r with an angle $3\pi/2$ in Poincaré geometry. As in the proof of Proposition 1, Lemma 1 and conformal naturality imply that $\xi_{\bar{\varphi}_*(\eta_0)}$ points inward on C_r . Thus $|w| = |E(\bar{\varphi})(0)| < r$, and

$$\left(\frac{1-r}{1+r}\right)|\zeta_1 - \zeta_2| \le |g_{-w}(\zeta_1) - g_{-w}(\zeta_2)| \le \left(\frac{1+r}{1-r}\right)|\zeta_1 - \zeta_2| \tag{10.4}$$

for all ζ_1 and $\zeta_2 \in S^1$. Since $\varphi = g_{-w} \circ \tilde{\varphi}$, (10.3) and (10.4) imply (10.1) with a(K) = (1+r)/(1-r).

It remains to show that (1+r)/(1-r) is bounded by the right hand side of (10.2). Put $\alpha_1 = e^{it}$, where $0 < t < \pi/2$ and $|\alpha_1 - \bar{\alpha}_1| = 2 \sin t = c$. The defining property of $r \in [0,1[$ is that $g_r(\alpha_1) = e^{3\pi i/4}$. That implies

$$r = \frac{2 + \sqrt{2} (\cos t - \sin t)}{2 \cos t + \sqrt{2}} = \frac{c + (4 - c^2)^{1/2}}{2 + c \sqrt{2}},$$

so

$$\frac{1+r}{1-r} = \frac{(1+\sqrt{2})(2+(4-c^2)^{1/2})}{c} < \frac{4(1+\sqrt{2})}{c}.$$
 Q.E.D.

PROPOSITION 7. There are positive numbers $A < 4 \times 10^8$ and B < 35 such that

$$K^*(\varphi) \leq A \exp(BK(\varphi)) \quad \text{for all } \varphi \in \mathcal{H}_+(S^1). \tag{10.5}$$

Here $K^*(\varphi)$ is the coefficient of quasiconformality of $\Phi = E(\varphi)$, and $K(\varphi)$ is defined by (9.3).

Proof. Assume that $K = K(\varphi) < \infty$, and put $\Phi = E(\varphi)$. Suppose that $\Phi(0) = 0$, so that φ satisfies the Hölder inequalities (10.1). Implicit differentiation yields the formula

$$1 - \frac{|\Phi'_{z}(0)|^{2}}{|\Phi'_{z}(0)|^{2}} = \frac{(|F'_{z}(0,0)|^{2} - |F'_{z}(0,0)|^{2})(|F'_{w}(0,0)|^{2} - |F'_{w}(0,0)|^{2})}{|F'_{w}(0,0)F'_{z}(0,0) - F'_{w}(0,0)F'_{z}(0,0)|^{2}}.$$
 (10.6)

Here F(z, w) and its derivatives at (0,0) are given by (3.1) and (3.2). We must estimate the right side of (10.6).

The inequality

$$|F'_{\bar{w}}(0,0) \ \overline{F'_{\bar{z}}(0,0)} - \overline{F'_{w}(0,0)} \ F'_{z}(0,0)|^2 \le 4$$

is immediate from (3.2). Moreover, (3.5) implies that

$$|F'_{z}(0,0)|^{2} - |F'_{z}(0,0)|^{2} \ge \left(\frac{1}{2\pi}\right)^{2} \int_{t=0}^{2\pi} \int_{u=\pi/3}^{2\pi/3} H(t,u) \sin u \, du dt \ge \frac{\varepsilon}{2\pi}$$

if $H(t, u) \ge \varepsilon$ in $[0, 2\pi] \times [\pi/3, 2\pi/3]$. According to (3.6), H(t, u) is the sum of four terms

$$\sin\left(\psi(t')-\psi(t'')\right),$$

and each increment $(t'-t') \in [\pi/3, 2\pi/3]$ if $u \in [\pi/3, 2\pi/3]$. Therefore

$$|e^{it'}-e^{it''}|\geq 1,$$

and (10.1) gives

$$|e^{i\psi(t')} - e^{i\psi(t')}| = |\varphi(e^{it'}) - \varphi(e^{it'})|$$

$$\ge (16^{K}a(K))^{-1} = \delta(K) > 0.$$

Hence $\psi(t') - \psi(t') \ge \delta(K)$, and H(t, u) is bounded below on $[0, 2\pi] \times [\pi/3, 2\pi/3]$ by

$$\varepsilon(K) = \min \left\{ \sum_{j=1}^{4} \sin \alpha_j; \sum_{j=1}^{4} \alpha_j = 2\pi \text{ and } \alpha_j \ge \delta(K) \text{ if } 1 \le j \le 4 \right\}$$
$$= 3 \sin \delta(K) - \sin 3\delta(K) \ge 3.99\delta(K)^3.$$

Therefore $|F'_{z}(0,0)|^{2} - |F'_{z}(0,0)|^{2} > 3.99\delta(K)^{3}/2\pi$.

Next, (3.3) gives

$$|F'_{w}(0,0)|^{2}-|F'_{\bar{w}}(0,0)|^{2}=\frac{1}{2\pi}\int_{S^{1}}\lambda(z)\,|dz|,$$

with

$$\lambda(z) = \frac{1}{4\pi} \int_{S^1} |\varphi(\zeta)^2 - \varphi(z)^2|^2 |d\zeta|.$$

Given $z \in S^1$, find z' so that $\varphi(z') = -\varphi(z)$. Then

$$|\varphi(\zeta)^2 - \varphi(z)^2| = |(\varphi(\zeta) - \varphi(z))(\varphi(\zeta) - \varphi(z'))|.$$

The inequality (10.1) and Hölder's inequality imply that

$$\begin{aligned} 4\pi\lambda(z) &\geq \delta(K)^4 \int_{S^1} |(\zeta - z) (\zeta - z')|^{2K} |d\zeta| \\ &\geq \delta(K)^4 (2\pi)^{1-K} \bigg(\int_{S^1} |(\zeta - z) (\zeta - z')|^2 |d\zeta| \bigg)^K \\ &\geq \delta(K)^4 2^{K+1} \pi, \end{aligned}$$

where $\delta(K) = (16^K a(K))^{-1}$ as before. Therefore

$$|F'_w(0,0)|^2 - |F'_{\bar{w}}(0,0)|^2 > 2^{K-1}\delta(K)^4$$

and (10.6) gives the inequality

$$1 - \frac{|\Phi'_{z}(z)|^{2}}{|\Phi'_{z}(z)|^{2}} > 3.99 \times 2^{K} \delta(K)^{7} / 16\pi, \qquad (10.7)$$

first when $z=\Phi(z)=0$, then in general, by conformal naturality. If $k^*=\sup \{|\Phi'_z(z)/\Phi'_z(z)|; z \in D\}$ (<1), then

$$K^*(\varphi) = \frac{1+k^*}{1-k^*} < \frac{4}{1-(k^*)^2}.$$

Therefore (10.7) and the definition of $\delta(K)$ imply that

$$K^*(\varphi) < 64\pi \times 2^{27K} a(K)^7/3.99,$$

with a(K) given by (10.2).

Remark. For purposes of comparison, we note that if $h: \mathbb{R} \to \mathbb{R}$ has a K-quasiconformal extension to C. then it has a Beurling-Ahlfors extension $w: \mathbb{C} \to \mathbb{C}$ with coefficient of quasiconformality

$$K(w) < \frac{1}{8} e^{\pi K}.$$
 (10.8)

Indeed the assumption on h implies that h satisfies a "q-condition" with

$$\varrho(h) < \frac{1}{16} e^{\pi K}.$$

(For a proof see p. 65 of [1].) This in turn implies that h has a Beurling-Ahlfors extension w satisfying (10.8), by results of M. Lehtinen (see [14]).

11. The higher dimensional case

Let $\varphi: S^{n-1} \to S^{n-1}$ be a homeomorphism, $n \ge 3$. The methods of Sections 2 and 3 generalize to extend φ to a continuous map $\Phi: \overline{B}^n \to \overline{B}^n$. First we must define the conformal barycenter of a probability measure μ on S^{n-1} with no atoms. As in Section 2, Remark 4, let

$$h_{\mu}(x) = \frac{1}{2} \int_{S^{n-1}} \log \frac{1-|x|^2}{|x-u|^2} d\mu(u), \quad x \in B^n,$$

and let ξ_{μ} be the gradient of h_{μ} in Poincaré (hyperbolic) geometry. The proofs of Proposition 1 and Lemma 1 generalize to show that ξ_{μ} has a unique zero in B^n . By definition, that zero is the conformal barycenter $B(\mu)$ of μ . The map $\mu \mapsto B(\mu)$ is conformally natural (with respect to the group G of all Möbius transformations that map \overline{B}^n onto itself).

For x in B^n , the (hyperbolic) harmonic measure η_x on S^{n-1} is defined using the hyperbolic Poisson kernel:

$$\eta_x(E) = \frac{1}{\omega_{n-1}} \int_{S^{n-1}} \left(\frac{1-|x|^2}{|x-u|^2} \right)^{n-1} d\omega(u).$$

45

Q.E.D.

A. DOUADY AND C. J. EARLE

Here $d\omega(u)$ is the (n-1)-dimensional Hausdorff measure on S^{n-1} , and ω_{n-1} is the total measure of S^{n-1} . Now, as in Section 3, we extend the homeomorphism $\varphi: S^{n-1} \to S^{n-1}$ to \bar{B}^n by putting $\Phi(x) = B(\varphi_*(\eta_x))$ if $x \in B^n$. The proof of Lemma 2 generalizes to show that $\Phi: \bar{B}^n \to \bar{B}^n$ is continuous. The map $\varphi \mapsto \Phi$ is conformally natural.

The proof of Proposition 2 in Section 4 also generalizes, but the statement must be modified because in general Φ is not a homeomorphism. The general statement is

PROPOSITION 2'. The assignment $\varphi \mapsto \Phi$ defines a continuous map of $\mathcal{H}(S^{n-1})$ into $\mathscr{C}^{\infty}(B^n, \mathbb{R}^n) \cap \mathscr{C}(\overline{B}^n, \mathbb{R}^n)$.

Here $\mathscr{H}(S^{n-1})$ and $\mathscr{C}(\bar{B}^n, \mathbb{R}^n)$ have the compact-open topology, $\mathscr{C}^{\infty}(B^n, \mathbb{R}^n)$ has the \mathscr{C}^{∞} topology, and $\mathscr{C}^{\infty}(B^n, \mathbb{R}^n) \cap \mathscr{C}(\bar{B}^n, \mathbb{R}^n)$ has the topology induced by the diagonal embedding in $\mathscr{C}^{\infty}(B^n, \mathbb{R}^n) \times \mathscr{C}(\bar{B}^n, \mathbb{R}^n)$.

Given these preliminaries we can prove the following theorem about quasiconformal extensions, which was pointed out to us by Pekka Tukia.

THEOREM 5 (Tukia). Given any M>1 there is a number K>1, depending only on M and n, such that if $\varphi: S^{n-1} \rightarrow S^{n-1}$ is K-quasiconformal, then $\Phi: \overline{B}^n \rightarrow \overline{B}^n$ is a quasiconformal homeomorphism and

$$M^{-1}d(x, y) \le d(\Phi(x), \Phi(y)) \le Md(x, y) \quad \text{for all } x, y \in B^n.$$
(11.1)

Here d is the Poincaré distance in B^n .

Proof. We imitate the proof of Theorem 2. Given $\varphi \in \mathcal{H}(S^{n-1})$ and $x \in B^n$, put

$$\begin{aligned} \alpha(\varphi)(x) &= \inf\left\{\frac{(1-||x||^2)||\Phi'(x)u||}{1-||\Phi(x)||^2}; \ u \in S^{n-1}\right\},\\ \beta(\varphi)(x) &= \sup\left\{\frac{(1-||x||^2)||\Phi'(x)u||}{1-||\Phi(x)||^2}; \ u \in S^{n-1}\right\}. \end{aligned}$$

LEMMA 7. Given any M>1 there is K>1, depending only on M and n, such that if $\varphi: S^{n-1} \rightarrow S^{n-1}$ is K-quasiconformal, then

$$M^{-1} \leq \alpha(\varphi)(x) \leq \beta(\varphi)(x) \leq M \quad \text{for all } x \in B^n.$$
(11.2)

Proof. Since G is the group of isometries of B^n in the Poincaré metric, the conformal naturality of the map $\varphi \mapsto \Phi$ implies that

$$\alpha(g \circ \varphi \circ h) = \alpha(\varphi) \circ h$$
 and $\beta(g \circ \varphi \circ h) = \beta(\varphi) \circ h$

for all g and h in G. Therefore it suffices to prove the existence of K>1 such that

$$M^{-1} \leq \alpha(\varphi)(0) \leq \beta(\varphi)(0) \leq M$$

if $\varphi: S^{n-1} \to S^{n-1}$ is K-quasiconformal and fixes the points $e_1, -e_1$, and e_n . The proof is by contradiction. If no such K exists, a compactness argument produces a sequence (φ_k) of quasiconformal maps and an element $g \in G$ such that $\varphi_k \to g$ in $\mathcal{H}(S^{n-1})$ and, for each k, either $\alpha(\varphi_k)(0) < M^{-1}$ or $\beta(\varphi_k)(0) > M$. Now Proposition 2' implies that the functions $\varphi \mapsto \alpha(\varphi)(0)$ and $\varphi \mapsto \beta(\varphi)(0)$ are continuous on $\mathcal{H}(S^{n-1})$. Since $\alpha(g)(0) = \beta(g)(0) = 1$ we have reached the required contradiction. Q.E.D.

End of proof of Theorem 5. If M>1, let K>1 be given by Lemma 7. If $\varphi: S^{n-1} \rightarrow S^{n-1}$ is K-quasiconformal, the left hand inequality in (11.2) implies that the Jacobian of Φ is never zero, so $\Phi: B^n \rightarrow B^n$ is a local homeomorphism. This in turn implies that $\Phi: \overline{B}^n \rightarrow \overline{B}^n$ is a homeomorphism, and (11.2) then implies both that Φ is quasiconformal and that inequality (11.1) holds. Q.E.D.

References

- [1] AHLFORS, L. V., Lectures on quasiconformal mappings. Van Nostrand-Reinhold, Princeton, 1966.
- [2] AHLFORS, L. V. & BERS, L., Riemann's mapping theorem for variable metrics. Ann. of Math., 72 (1960), 385-404.
- [3] BERS, L., On moduli of Riemann surfaces. Lecture notes, E.T.H., Zürich, 1964.
- [4] Automorphic forms and general Teichmüller spaces, in Proceedings of the Conference on Complex Analysis (Minneapolis 1964), pp. 109–113. Springer, Berlin, 1965.
- [5] Finite dimensional Teichmüller spaces and generalizations. Bull. Amer. Math. Soc., 5 (1981), 131–172.
- [6] BEURLING, A. & AHLFORS, L. V., The boundary correspondence under quasiconformal mappings. Acta Math., 96 (1956), 125-142.
- [7] CHOQUET, G., Sur un type de transformation analytique généralisant la réprésentation conforme et définie au moyen de fonctions harmoniques. Bull. Sci. Math. (2), 69 (1945), 156-165.
- [8] EARLE, C. J., The Teichmüller space of an arbitrary Fuchsian group. Bull. Amer. Math. Soc., 70 (1964), 699-701.
- [9] The contractability of certain Teichmüller spaces. Bull. Amer. Math. Soc., 73 (1967), 434-437.
- [10] On quasiconformal extensions of the Beurling-Ahlfors type, in Contributions to Analysis, pp. 99-105. Academic Press, New York, 1974.
- [11] EARLE, C. J. & EELLS, J., On the differential geometry of Teichmüller spaces. J. Analyse Math., 19 (1967), 35-52.
- [12] KNESER, H., Lösung der Aufgabe 41. Jahresber. Deutsch. Math.-Verein., 35 (1926), 123–124.
- [13] LEHTO, O. & VIRTANEN, K. I., Quasiconformal mappings in the plane. Springer, Berlin and New York, 1973.

A. DOUADY AND C. J. EARLE

- [14] LEHTINEN, M., Remarks on the maximal dilatation of the Beurling-Ahlfors extension. Ann. Acad. Sci. Fenn. Ser. A I Math., 9 (1984), 133-139.
- [15] TUKIA, P., On infinite dimensional Teichmüller spaces. Ann. Acad. Sci. Fenn Ser. A I Math., 3 (1977), 343-372.
- [16] Quasiconformal extension of quasisymmetric mappings compatible with a Möbius group. Acta Math., 154 (1985), 153–193.

Received January 7, 1985 Received in revised form December 27, 1985