
On Waring's problem 

by 

CHRISTOPHER HOOLEY(m) 

University College, Cardiff, Great Britain 

Introduction 

Landau [13] and Linnik [15], respectively, have shewn that all large numbers can be 

expressed as the sum of eight and of seven non-negative cubes. It is therefore a notable 

anomaly that no asymptotic formulae have yet been validated for the number of ways 

in which integers can be thus represented, the best that has been currently achieved 

being a formula for nine cubes. A formula for eight cubes is indeed narrowly missed by 

the circle method but radically new ideas would seem to be needed in order to bridge 

the present margin of failure. 

As a contribution to the elimination of this and other lacunae in the theory of 

Waring's problem, we study in this memoir the effect of assuming the truth of the 

Riemann hypothesis for certain Hasse-Weil global L-functions defined over cubic 

three-folds. On this hypothesis, the precise form of which will be indicated in the text 

(Section 6, Chapter I), we shall indeed establish asymptotic formulae for seven and for 

eight cubes that are of a type previous theory would have led us to predict. But even 

the unconditional proof of these formulae would by no means exhaust this area of 

enquiry because it would still leave open the important question of the existence and 

number of  representations of large integers as the sum of four non-negative cubes. 

Davenport [2], in fact, shewed that almost all numbers were representable in this 

manner but failed to obtain the stronger conclusion that the corresponding asymptotic 

formula was almost always true. We therefore partially repair this omission by deriving 

this formula almost always on the basis of our hypothesis, incidentally obtaining an 

improved estimate for the exceptional set of numbers not expressible as a sum of four 

non-negative cubes. As specialists in the field will recognize, this problem is in depth 
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roughly equivalent to that of the asymptotic formula for eight cubes, which as a matter 

of fact could be inferred as soon as our almost all results were known (see comments in 

our memoir [9], 11.8). 

There are applications to mixed problems involving the expression of a large 

number as a sum of one square and a set of non-negative cubes. Here we obtain the 

asymptotic formula when five cubes are present, improving conditionally upon Wat- 

son's [22] existence theorem for representations of this type. Previously an asymptotic 

formula had only been known in this situation when six or more cubes were present 

(Sinnadurai [18]; for an alternative proof, vid. Hooley [9]). 

In much the same vein we establish an asymptotic formula for the number of ways 

of writing large numbers as the sum of six non-negative cubes and two biquadrates, 

even the existence theorem implied by this being a new conditional result. 

We also study the interesting question of how many integers less than a large 

number x are expressible as a sum of three non-negative cubes, obtaining the lower 

bound x '~9-~ that conditionally sharpens Davenport's bound x u~-' [3]. 

The heart of the memoir is concerned with the proof of the inequality 

= 6dO O(x ~+~) (1) R(x )  e 2~im3~ = 

O <  ~ I/3 

that is tantamount to 

E ~ ( m )  = O(x~+e), 
0<m<~.x 

where r3(m) is the number of representations of m as the sum of three non-negative 

cubes. This constitutes a considerable improvement on the previously best known 

upper bound 

Rfx) = 0( +3 

due to Hua(2) and does not fall all that short of the trivial bound R(x)>x that follows 
from H61der's inequality. Moreover, it is a conditional improvement in the direction of 

the inequality 

(2) Use Hua's inequalities with H61der's inequality. The bound may be improved to 

O(x~log~V3- U+~x) 

by using the author's results in [8], Chapter 4, Section 4. 
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R(X) = O(X l+e) (2) 

that has long been conjectured to hold and that is a serviceable substitute for Hardy and 

Littlewood's false conjecture K (vid. [6] and Mahler [16]). Very possibly R(x)~Ax as 

x---~oo but this is a matter to which we intend to return in a subsequent paper. 

To derive (1) we use a refinement of the circle method that is more ambitious than 

the one usually associated with Kloosterman's name. A Kloosterman refinement has 

now come to mean the employment of a technique in the circle method whereby we 

assess non-trivially the collective contribution of the remainder terms arising from all 

Farey arcs centred by rationals hlk with given denominator k. But it was suggested in 

our address at the I.C.M., Warsaw [10] that to make further significant advances in 

additive number theory it might be necessary to go beyond the Kloosterman refinement 

and to consider cancellations between contributions due to different values of k. Never 

made before, this advance is practicable in our present work because special features 

associated with the left side of (1) make its introduction more manageable than for most 

problems (vid. comments in Section 5, Chapter I). This technique, which for want of a 

better term we call a double Kloosterman refinement, is perhaps the most noteworthy 

aspect of the paper. Also worthy of mention is the sub-division of the arcs into the 

senior and junior categories, corresponding, respectively, to those to which the double 

and ordinary Kloosterman refinements are applicable. Furthermore, it should be 

remarked that in this instance our implementation of the double refinement leads to the 

introduction of certain geometrically natural multiplicative functions that can be inter- 

preted in terms of Hasse-Weil L-functions and that can be studied with some exactitude 

if the Riemann hypothesis be assumed. 

The deduction of  our main theorems from (1) is along fairly familiar lines. Indeed, 

our path does not altogether diverge from that first blazed by Hardy and Littlewood in 

P.N.VI [6], although more nicety in the reasoning is needed here because (1) is not as 

sharp as the hypothetical (2) that was the foundation of Hardy and Littlewood's 

researches. 

The removal of the dependence of our work on the Riemann hypothesis is an 

obvious desideratum. Some weakening of the hypothesis is certainly possible either by 

substituting some form of zero density requirement or by insisting merely that the zeros 

of the Hasse-Weil L-functions be to the left of some vertical line lying to the right of 

the critical line 0=2.  Yet is has not seemed worthwhile to explore such developments 

here because the principles'of the method would be obscured and because we cannot 

predict the precise form of the first serviceable alternative to the Riemann hypothesis 
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that might subsequently be established. Let  it therefore suffice us to mention that the 

asymptot ic  formulae for eight cubes and for seven cubes (i.e. the main terms given in 

Theorems 2 and 3, respectively) would remain valid if the Hasse-Weil L-functions had 

no zeros to the right of  t r=~(139-~/  1457 )+e and o=~2(277-X/7361 )+e. 

The author is indebted to Professor J. P. Serre for some very helpful remarks about 

the Hasse-Weil L-functions. 

Notation 

The meaning of  the notation being usually clear from the context in which it occurs, it is 

unnecessary  to define all the symbols used. 

The letters d, k, n, N, 2,/~ are usually positive integers; h, l, r are non-negative 

integers; rn is an integer that in certain clearly defined situations is restricted to be non- 

zero; p is a (positive) prime number. 

The letter x denotes a real variable that is to be regarded as tending to infinity; y, z 

are positive real numbers;  u, v are real numbers; t is real as is s save when s is the 

complex variable tl+it. 
Ordered sextuples are denoted by lower case letters in bold Roman font, the 

components being denoted by the corresponding lower case letters in italic font with 

subscript attached; thus a=(a l  . . . . .  a6). When al . . . . .  a6 are real we denote max lail by 

Ila]]; also the notation a < u  signifies that ai<u for 1~<i~<6, where a corresponding 

meaning is to be given to the other three possible symbols of inequality; ab is the scalar 

product  ~l<~i<~6aib i. 

Positive absolute constants are denoted by A, AI,A2, ...; e is an arbitrarily small 

positive number  that is not necessarily the same on all occasions; A(e) and A(r/) are 

positive numbers that depend at most on e and r/, respectively; according to the 

context ,  the constants implied by the O-notation are either absolute or depend at most 

on either e or r/. 

The highest common factor of  a, b is (a, b) but that of al . . . . .  a6 is h.c.f. (al . . . . .  a6); 

tr-a(n)=Xdtnd-a; d(n) is the number of  divisors of n; to(n) is the number of distinct 

prime factors of  n; rs(m) is the number of  representations of m as the sum of  s non- 

negative cubes. 

Chapter I. Estimation of the Integral R(x) 

1. The method initiated 

To describe the genesis of  our method we introduce the exponential sum 
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f(O)=f(O,y)= 2 e~'m3~ (3) 
O~m<~ y 

and the analogous sum 

F(O) = F(O, y) = 2 y(m/y) e 2nim3~ 

-y<~m<~y 

whose terms are affected by weights defined in terms of the function 

{ ;  -'/('-r~) (,t,< 1), 
7(0 = (Itl = 1). 

Then, since the coefficients in the exponential sum f3(0, y) are non-negative and do not 

exceed e 4 times the corresponding coefficients in F3(O, 2y), our objective of estimating 

R(x) = If(O, xlnl6dO 

can be reached by finding an upper bound for 

R*(x) = IF(O, xl/316 dO, 

between which and R(x) there is the relation 

R(x) <~ eaR*(8x). (4) 

Save in certain hypothetical circumstances that the author has yet to encounter in 

practice, the obliquity of the procedure does not adversely affect the quality of our 

results but leads to important simplifications in the analysis. Similarly, no penalty is 

incurred by using the inequality 

2 ~(m) = O{R*(8x)} (5) 

that is associated with (4) and that will be needed in the final section of Chapter II. 

To treat R*(x) we write X = x  u3 when convenient and use the Farey's series of 

order 

M = [ x  �89 

of fractions h/k, where 
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0 < 6 < ~  (6) 

and where O<.h<k and (h, k)= 1. Since by Dirichlet's theorem or by the theory of the 

Farey dissection the interval [ -1/M, 1 -  I/M] is covered by the arcs 

1 10-  
we deduce our second basic inequality 

~ hlk+l/Mk 

R*(x)<<. ~ ~, IF(O,X)16dO 
k<~M O<~h<k dh lk - I /Mk  

(h,k)=l 

(7) 

(h, k)= ! 

=k~<~ M [/i~kkG(q),k)dq), say, 

in virtue of  the non-negativity of the integrand. Here all arcs are to he regarded as 

major according to the usual understanding of the language of Hardy and Littlewood 

because at no point in this chapter do we use the technique of applying Weyl's 

inequality to exponential sums lifted from the integral. Nevertheless, not all arcs are 

treated in the same way and it is necessary for some purposes to divide them into the 

two classes of senior arcs and junior arcs. The precise nature of the sub-division and i t s  

sphere of  applicability being as yet unimportant, it is enough here to indicate that senior 

arcs correspond to the larger values of k for which a double Kloosterman refinement is 

appropriate while the junior arcs form the complementary set of arcs to which the usual 

Kloosterman refinement is applied. In some instances, moreover, it will prove conve- 

nient to widen the arcs slightly in order to take advantage of the non-negativity of 

integrands that are derived from G(~, k). 

This completes the foundation of the method, the next stage being the investigation 

of  F(h/k +q~, X). 

2. Formula for F(h/k+ tD 
We have 

F(h+q)) = ~ e 2xihl31k ~ Y(m/X)e 2~Im3~, 
O<~l<k -X<~m<~X 

m-~l, rood k 

(8) 
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where throughout for brevity we omit X in the notation for F(h/k+q~, X). Here, by the 

Poisson summation formula, the inner sum is 

rn ~ ~ (X-I)/k X e{(l+rk)lX} e 2#/(/+rk)3~= e{(l+wk)/X} e2ni{~(l+wk)3+mW}dw 
(-X-l)/k<.r~(X-l)/k =-~ d(-X-l)/k 

1 e-2nimll k = --~ ~'(t[X) e2#i(cPt3+mak)dt, 
m =-oo X 

since all derivatives of ~(t/X) e z~i*r~ exist for Itl<<.X and vanish at t= +X. Next, in order to 

express the effect of substituting this in (8), we introduce the important exponential 

s u m  

and its integral analogue 

S(a, b;k)=  X e2ai(al3-bl)/k (9) 
O<<.l<k 

J(u, v ; X) = ~( t/X) e2~i(ut' +~176 dt, 
x 

where for brevity we write 

S(a,k)=S(a,O;k) and J(u;X)=J(u,O;X). 

Accordingly 

(10) 

h 1 F(--~ +qg) = --~ S(h, k ) J(q~; x)+ l ~,oS(h, m ; k) J(cP , m/k; X) 

(II) 
= Fl(h, k; qg)+F*l(h, k; q~), say. 

The sum F~(h, k; q~) revealed by the above transformation gives rise to the main 

difficulties in the problem, its investigation and application being initiated in the next 

section by a study of the integral J(u, v;X). 

3. The integral J(u, v; X) 

The methods of partial integration (sometimes disguised in the form of Bonnet's mean- 

value theorem) and of stationary phase are used to obtain estimates for J(u, v;X) that 

suffice for our design but that are not always necessarily best possible. The results are 

embodied in a series of lemmata, the first of which is 
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LEMMA I. l f  lv/ui~6X 2 then 

J(u, v; X) = O(X e -A~ 

for some sufficiently small positive constant Ao. 

It suffices to consider the special integral J(u, v)=J(u, v; 1) and then to assume that 

Ivl>Al, since J(u, v;X)=XJ(uX 3, vX; 1) and since the estimate for J(u, v) supplied by 

the lemma is trivial for Ivl<<-Ai. In these circumstances, as the derivative qJ(t)=3ut2+v 
of ut3+vt does not vanish for Itl<~l while all derivatives of ~(t) are zero at t - -+ l ,  

integration by parts gives 

J(u, v) - 1 f Gr(t) e 2ni(ut3 +or) dt, (1 2) 
(2~i)' J_ 

where Gr(O is defined iteratively by 

Go(t) = ~(0, 

Next, setting 

d ( G~(t)~ 
Gr+ I (t) = ---~ \ - - -~-] .  

r(t) lPr(t) 
Gr(t) = qJZr(t) (1 - t2) 2r 

for Itl<l, we verify that ~r(t) is a polynomial that satisfies the relations 

lPo(t) = 1, 

u = {2tqg(t)+(2r+ 1) q~'(t) (1-t2)2-4rtqg(t) (1-t2)} ~r(t)-q~(t) (1 -t2) 2 ~'(t). 

(13) 

Clearly the degree of ~ r + l ( t )  does not exceed that of ~pr(t) by more than 5 so that ~/,~(t) 

has degree at most 5r. Hence the numerically greatest coefficient of ~Pr+l(t) does not 

exceed Az(r+ 1) Ivl times that of  ~l'r(t), the inference being that 

I 0r(t)l ~ (r+ 1) r! (.431o1) r ~ r! (A4IvIY 

for It[<l. 
Substituting (13) and the inequality I~0(t)l~>�89 in (12) when r~>l, we obtain 

r!Ars fol y(t)d____L _r!Ars fl| e-SsZr-31Zds 
IJ(u,v)l< (l_tZ)Z, 2lvl r (s_l)l/z 
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A6r!Ar5 
< - -  r ( 2 r - � 89  

Iv( 

r!(2r)!a~7 {Asr'~ 3~ 
< < . ~ . . .  , Iol r 

\ l o l " /  

from which the lemma follows on choosing r=[]v]lt3/A8 e] and AI=(2As e) 3. 

LEMMA 2. l f  lvl<lul 1/~, then 

but, if  Ivl~luy3>0, then 

Thus 

J(u, v ; x )  = O(lul-l/3),  

J(u, o ; S )  = O(luol-  ~/4) 

wheneoer u, 04=0. 

J(u, v ; x )  = O(luvl -'/4) 
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for O<~a<fl by using 

~0 X J(u, v;X) = 2 y(t/X)cos2~t(ut3+vt) dt, 

we first estimate the associated integral 

J(u, v; a, fl) = 2 cos 2~(ut 3 + vt) dt 

J(u, v; ct', fl') = O(fl '-a') (14) 

in combination with the inequality 

J(u, v; a ' , f l ' )= O( max 13ut2+o1-1) (15) \a'<~t<~fl' 
that is valid for a'~>0 if 3utZ+v do not vanish in [a', fl']. The proof of the latter involves 

the treatment of  several cases which are fully exemplified by considering the situation 

The final conclusion is all that is needed but, as we shall see, is most naturally 

derived by considering the two earlier cases separately. 

It being sufficient to assume that u is positive when estimating 
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where v is negative and ct '>(-v/3u) 1/2. Here, as 3ut2+v is positive and increasing, 

Bonnet's form of the second mean-value theorem shews there is a number ~ strictly 

between a '  and fl' such that 

J(u, v;a ' , f l ' )  = I f~ '  1 d sin 2:t(ut3 + vt) dt 
:t Ja' 3ut2+v dt 

_ 1 d o ( .  1 
7t(3UCt'2+V) , - ~  sin2:t(ut3+vt)dt= \ 3ua,2+o j 

as required. 

Take first the easier case where v is non-negative. Then, if v>~u~/3>O, estimate (14) 

gives J(u, o;ct, f l)=O(o-I)=O{(uo)-l/4}. On the other hand, if v<u I/3, then there are 

the three possibilities a<fl<.u-~/3, u-~/3<a<fl, and a<~u-~/3<fl that are treated by 

using, respectively, estimate (14) only, estimate (15) only, and estimates (14) and (15) 

for the integrals obtained by splitting the range of integration at u-1/3; in each instance 

the estimate J(u, v; a, fl)=O(u -1/3) is obtained. 

In the case where v is negative, write T=t-(lol/3u) 1/2 so that 

3ut2+v = 2(3u]v]) 1/2 T+3uT 2. (16) 

First, suppose that Iv]>>-u~/3>O and extract from [a, fl] any part of the interval 

0 < (Ivl/3u)l~-�89 <. t <~ (Ivl/3u)l~+�89 -1/4 

that lies within it. The contribution of this to J(u, v; a, fl) being at most O{(ulvl) -~/4} by 

(14), any complementary set remaining consists of one or two intervals that give rise to 

an effect O{(ulol) -l/4} by (15) and (16). Secondly, if Ivl<u ~/3, the part of [a, fl] lying in 

O<~t<~u-l/3 contributes O(u -1/3) by (14), while there is a like contribution from any 

remaining part by (15). Thus the previous estimates for J(u, v; a, fl) still obtain when v is 
negative. 

Finally, the bounds obtained for J(u, o; a, fl) are applicable to J(u, v;X) because 

J(u, v;X) = ~,(0) J(u, v;0, 0 

for some ~ between 0 and X. 

Lastly, there is 

L E M M A  3. Let  

F I( u, o ; X) = t),( t/X) e2~i~ut3 +~ dt. 
x 
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Then 

I(U, v'~X) = O(,r~UU1-1/4) 

for  u, 0:60. 

Since the bounds obtained for J(u, v; a, fl) obviously apply equally well to 

f' 
I(u, v; a, fl) = 2i sin 2~(ut3+ vt) dt, 

J ~  

the lemma follows on observing that 

I(u, v;X)= 2i ty(t/X)sin2~(ut3+vt)dt 

= 2iX y(t/X) sin 2~(ut3 + vt) dt 

for suitable numbers ~1, ~2 such that 0<~l<~2<X. 
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4. Second transformation of R*(x) 

We return to F~(h, k; ~) and use Lemma 1 to continue our transformation of R*(x). 

As a prelude, we introduce the numbers 

Y2 = Yj(x)= 2-2M 

for I<~j<.M~, where 

(17) 

MI = [logM/log 2]+ 1 (18) 

and where therefore Y~, is the greatest number of form (17) that is less than 1. Next, 

if k<~M, choose Y=Y(x,k)  to be that ~ satisfying ~<k~<2~ �9 and then define 

W= W(x, k, ~) by 

W = max (x2rl ol log4x, YX -1 log4x). (19) 

Furthermore, note that W is independent of h and that 

W ~< x. (20) 
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Expressing F~{(h, k; cp) in (11) as 

1 E S(h,m;k)J(~,m/k;X)+-~ E S(h,m;k)J(cp, m/k;X) 
k O<]m[<<_w Iml>W (21) 

= F2(h,k;cp)+F3(h,k;cp), say, 

where in some circumstances the first sum may be empty, we have 

G(~'k)-'~O(, O~h<k~ [Fl(h' k; ~)[6~- O<~h<kE ]F2(h' k; r O<~h<kE ]F3(h'k;q))]6) 
\(h, k)= ! (h, ,)=1 (h, k)=l (22) 

= O{Gl(c p, k)+G2(t p, k)+G3(t p, k)}, say, 

by (7). Hence 

C F 2  , 
[ tl/Mk ) 

+ol21 \k<~M J- llMk 
=O{Rr(x)}+O{R'~(x)}+O{R~(x) }, say. 

The first term R~(x) is akin to familiar expressions that occur in the customary 

theory. An upper bound being all that is required, we take the inequality 

J(q~;x)=o(l~01 -'/3) from Lemma 2 and find that 

Therefore, by (23), (22), and (11), 

R~(x)<. ~ -~ ~ IS(h,k)[ 6 {J(q0;x)lrdq~ 
k<~M O<~h<k 

(h,k)=l (24) 

I E I S(h' k)[6~ = O(x~u)' say, 

K 

=o x ~  ~0.<.<,k-<M ! 
(h,k)=l / 

in which ~M is a partial sum of the singular series originating in the indeterminate 

equation x] + ~  +x]-x]-x~-x36=O. Since unfortunately there is no accessible reference 

to this particular series, we let q(k) be the multiplicative function defined by 
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f A9P a/2, 
q(pa) __ [A9 p2~ 

and avail ourselves of the estimate 

61 

IS(h, k)l ~ q(k) (26) 

that holds for (h, k)=l  in view of well known bounds ([14], [20], [21]) for S(h,p a) and 

the quasi-multiplicativity of S(h, k). In consequence 

[ Aio\ 
~M<~ k~ME q6(k)k 5 ~< I~p ~1 +-~--) = A,i (27) 

and we conclude from (24) that 

R~(x) = O(x). (28) 

The third term R~(x) can be even more summarily dismissed with the aid of the 

simple 

LEMMA 4. For any positive numbers, ~, B, we have 

E e A12(Br)I/3 < (1 +AI3 B -I) e -~AI2tBOla, 
r>$ 

where A13=AI3(A12). 

The result is obtained from the inequalities 

~'~ -A12(Br) 1/3 J ~-A12 (Bt)l/3 ~1. ~_~ e ~ .  e-Al2(B~)lt3dt - e Mt 

r>~ J~ 

-AI2(B~)I/3.3f(B~ 48 ---- e "r'~ s2 e-a'2S ds < e-a'2(BO'/3-l" e2A~2-------- ~ e-Ol2S d$ 
01/3 0~/3 

< (1 +96 e-2Al 3 B -I) e -~t~2(B01:3 

Since (19) implies that [m/kl>6X2lcp[ for Iml>W, Lemma 1 may be used to estimate 
the integral J(cp, m/k;X)  appearing in the formula (21) for F3(h, k; q~), where it is to be 

assumed that k<_M. This gives 

J(~, m/k; X) = O(X e-A~ 

whence 

if a =  1 or 2, 
(25) 

f f a > 2 ,  
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e Ao,.Xkl13) 
Iml>6kX -t Iog4x 

= O((X+k) e -A'41~ = O ( I )  

because of Lemma 4 and the inequality IS(h, m;k)l<~k. Hence G3(cp, k)=O(k) by (22), 

and the required estimate 

follows from (23). 

The easier constituents of (23) having been estimated by (28) and (29), we first 

conclude that 

R*(x) = O(R~fx) } +O(x) 

and then await the treatment of R~(x) in the following sections. 

(30) 

5. Transformation of G2(q~, k) and the properties of Q(m; k) 

In anticipation of the transformation of G2(~0, k) we recall the previously introduced 

notation for ordered sets and augment it by insisting that m have non-zero integral 

components mi. Consequently, since we do not distinguish notationally between inte- 

gers and the members of a finite field to which they correspond, the notation for this 

and certain other ordered sets has a natural alternative meaning that will be adopted 

when we work in Fp. 

With these conventions understood, we set 

H(cp, m/k;X) = H J(q~' milk;X) (31) 
I <~i<~6 

and 

Q(m;k)= Z I-I S(h, mi;k), 
O<~h<k 1~<i~<6 
(h, k)= 1 

(32) 

whereupon the formula for G2(q~,  k) implicit in (21) and (22) may be expressed in the 

form 
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1-1 J(rP, mtk;X) [-'[ S(h. mi;k) 
O~h<k O<lmll . . . . .  Irn6l<~W 1~<i~<6 1<~i~<6 
(h, k)= l 

=1 Z H(cp, m/k;X)Q(m;k) 
k 6 ilmH~<w 

(33) 

since J(q~, mi/k;X) and S(h, mi, k ) are real. 

The nature of our investigation endows the sums Q(m; k) with some important 

properties that have not been previously identified in treatments of Waring's problem, 

the underlying causes being the homogeneity of the problem and the equality in length 

of  the arcs corresponding to a given denominator. These and the other required 

properties of Q(m; k) are evolved in a series of lemmata that entail the appearance of 

the linear form nut, the cubic form 

g ( x )  = 

and the discriminant 

/ 3/2_ I_ 3 /2+  -t- 3/2x A(m) 3 ( m l  - - m  2 . . . . .  m 6 ) ,  / /  (34) 

the vanishing of which expresses a necessary and sufficient condition that the array 

( ag/axJ~=(3x] I ( j = l  . . . . .  6) 
mj / \ mj / 

have rank not exceeding 1 for some non-zero solution of g(x)=mx=O; the factor 3 in 

(34) does not occur naturally in the process of elimination but has been included in 

order that a subsequent interpretation, modulo 3, should be valid. In particular, 

Lemmata 6 and 7 will involve the congruence g(x)-O, modk, and the simultaneous 

congruences g(x)-O, mod k, and mx--O, mod k, the numbers of whose incongruent 

solutions are denoted, respectively, by v(k) and v(m; k). Since all we currently need to 

know about A(m) is that it is not identically zero, we can postpone its further study and 

can enunciate at once 

LEMMA 5. For any given m, the sum Q(m; k) is a (properly) multiplicative function 
o f  k, viz., if k=k'k" where (k', k")=l, then Q(m;k)=Q(m;k')Q(m;k'~. 

Let us expand the product in (32) by means of (9) to obtain 
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Q(m;k)= E E e~i{hg(')-n~}/k' (35) 
O<~h<k O~<l<k 
(h, k)= l 

denoting by h', 1' and h", r' the variables of summation in the corresponding formulae 

for Q(m;k') and Q(m;k"), respectively. Next, if/~', /?' be defined, modulis k", k', 

respectively, by/~ 'k '~l ,  modE' and/? 'k"=l,  modk' ,  then all variables of summation in 

(35) are obtained once and once only through the formulae 

Hence 

and then 

h - Id'l~'ah ' +k'l~'3h ", mod k'l(', ! - k'l '+k'l", mod k'k". 

hg(l)-ml -- k"h'g(l')+k'h"g(l")-k"nd'-k'ml", mod k'ld, 

{hg(l)-ml}/k ---- {h'g(l ' )-ml '  }/k'+ {h"g(l")-ml"}/k", mod 1, 

from which the lemma flows. 

It being therefore enough to restrict attention to the case where k=p ~ with a>0,  

we prepare for the next two lemmata by the transformation 

But, 
modp a-~, and 0~<l'<p a- l ,  we have 

Q(m;pa)= Z ( Z  e2zd{hg(l)-ml}/f- E e2m'{Ph'g(I)-ml}/Pa)) 

O<~l<p a \O<~h<p a O<~h' <p a-1 

= p a E e2:timllpa--P a- I E e2nimllP " 
g(I)~O, rood pa g(I)-=O, mod pa- ! 

O~<l<p a O~<l<p a 

=paQl(m;pa)-p~-IQ2(m;pa), say, 

since in the sum defining Q2(m;p a) we may write l= l '+rp  a-i  where g(l')-O, 

Q2(m;pa)= E e2~iral'/f E e~imr/P' 
g(l')------O, mod pa - ! O~<r<p 

O~<l,<p a-I  

in which the inner sum is zero unless m - 0 ,  modp. Hence certainly 

Q(m;p a) = p'~Ql(m;p a) 

when A(m)~0, modp. 

(36) 
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At this point the treatments for the two cases a =  1 and a >  1 diverge. Suppose first 

that a = l .  Then, g(x) being homogeneous, the substitution l--hi', modp, transforms 

Ql(m;p) into Ql(hm;p) if p ~h. Hence 

1 ( X  Qt(hm;p)-Ql (O;p)) al(m;P)  = ~ \0-<h<p / 

p-- 1 g(i)_=0,mod p O<~h<p 
\ 0~<l<p 

t P X 1-v(p) 
g(I)------ml~.O, modp 

O~<l<p 

1 - (pv(m;p)-v(p)), 
p - I  

which together with (36) yields 

LEMMA 6. I f  A(m)*0, modp,  then 

Q(m; p) = p - ~  (pv(m; p ) -  v(p)). 

When a > l  we first determine the effect on Ql(m;p a) of those ! in the summation 

that are divisible by p, replacing ! by pl' so that(1) pg(l')-=0, modp a-2, and 

0~<l'<p a- t .  Then since these conditions amount to l '=l"+rp ~-2 where pg(l")-0, 

modp a-2, 0~<l"<p a-2, and 0~<r<p, we infer that this part of the sum is 

X eXnimr'/P~-I X 
pg(l")------O, mod pa -2 O~<r<p 

O<~l"<p a-2 

e 2~irar/p = 0 

when m~0,  modp and hence when A(m)~0, modp. 

The remaining part Q~(m;p") of Ql(m;p a) is unchanged if m be replaced by hm 

and if h~0,  modp.  Therefore, in emulation of the argument used to derive (36), we 

deduce that 

(~) The conditions are framed in this way in order to take care of the case a=2. 

5-868285 Acta Mathematica 157. Imprim~ le 15 octobre 1986 
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~o(p ~) 

1 

~o~o ~) 

�9 ~ a ( ~ e2nihml/pa E e2nihml/pa_t) } 
.l~,O~,)m~odp<pO 0<.h<f 0-<h<f-' 

- -  {pavi(m;pa)-pa-lv2(m;pa)} , 

(37) 

and 

g(l)---- O, modp~; ml---- O, modpa; ! *  O, modp,  (38)~ 

g(i)--O, modp~; m i - O ,  modp~-~; ! ~ 0 ,  modp.  (39) 

We proceed by comparing vl(m;p ~) and v2(m;p a) with vl(m;pa-I).  Since every 

solution I of either (38)~ or (39) is a solution of (38)a- !, we may suppose in either case 

l = l ' + r p  a- l ,  where 1' satisfies (38)a_,, O~<l'<p ~-l,  and where O~<r<p. In the second 

instance, we obtain the condition 

3 ~ l~2ri =- -g(l')/p a-I, modp,  
1 <~i<~6 

which, having p5 incongruent solutions r for each apposite l' when p~=3, certainly 

shews that 

v2(m; pa) = pSv2(m; pa- 1) (40) 

if A(m)~0, modp.  In the first instance, we obtain the simultaneous linear congruences 

3 ~  ,2 _ I i ri~--g(l')/p a-I, modp,  ~ mir i -  -ml'/p a-I, modp,  
1 <~i~6 1<~i~6 

in which the left-hand sides are linearly independent, modp,  when A(m)~0, modp,  

g(l ' )-0,  modp,  and l '~0,  modp.  Thus, if A(m)~0, modp,  then 

V l(Ill, pa)=p4v2(m ' pa- 1) 

and therefore Q[(m;p~)=0 by (40) and (37). In summation, this and (36) then give 

LEMMA 7. / f  A(m)~0, modp  and a > l ,  then 

Q(m,p~) = 0. 

where vl(m;p a) and v2(m;p a) are, respectively, the number of incongruent solutions, 

m o d p  ~, of the simultaneous conditions 
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When plA(m) the above procedures partially break down and we make do in this 

situation with a universal bound we derive from a refinement of the Hua-Weil inequal- 

ity ([12], [20]) 

S(h, a;p a) = O{pa~(a,p~)} (p lh). (41) 

In obtaining this improvement, we already assume for brevity the truth of (41) and the 

other Hua inequality ([11], [20]) 

S(h, a; p~) = O(p 2~ (p I h), (42) 

even though a direct verification would in principle result in an intrinsically more 

straightforward proof. 

Let(E) Falla. Then our first aim being to shew that 

S(h, a;p a) = O{pa/2(a, pa) 1/4} (p ~h), (43) 

we pass over the obvious case fl=0 already covered by (41) and then ignore until later 

the atypical case p = 3. 

First suppose that fl= 1. Then, by the usual estimate for the cubic Gaussian sum, 

S(h, a;p) = S(h,p) = O(pl/2), 

which is a stronger form of (43) for a = l .  But, if a > l ,  then 

S(h, a;p'~)= Z Z e2~ithtr+rp~176176 
O<~l'<pa-I O<~r<p 

= Z eE:ti(hl'3+al')/PaZ e6~ihl'Er/P' 

O<~l,<pa - l O<~r<p 

where the inner sum is zero unless pll'. Hence 

S(h, a;p ~) = p Z eE:ti(hpr'3+ap-ll")/Pa-2, (44) 

0~</',<p a-2 

and we deduce that 

but that 

S(h, a;p  2) = O(p) 

(2) The case fl= oo is covered by the treatment. 
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S(h'a;Pa)=P E e2'a(hpr'+aP-'r)/f-2 E eZ~iap-lr/p=O 
0~<ff<pa-3 Os~r<p 

for a>2;  both these estimates are improved forms of (43). 

Proceeding to the case fl~>2, we observe that the last equation still holds and then 

gives 

S(h, a; pa) = p2S(h, ap-2; pa-3) (45) 

whenever a>3.  Next suppose that fl<~a so that the previous condition holds. Then, 

setting flt=[�89 and noting that ap-2[�89 modp 2, we deduce that 

S(h, a; p~) = p2[~/~]S(h, ap-2[�89 p~- 3[�89 = O(p2[�89 �89189 

= O(p �89 (46) 

= O(p�89 p~)l) 

in view of our results for fl=0 and 1. On the other hand, if fl>-~a, then (42) implies that 

S ( h, a ; p a) = O(p z3a) = O(p �89 ~a) = O(p�89 ( a, p a)l), 

which with (46) completes the proof of (43) if p~:3. 

When p=3 the above procedure requires some modifications, which we do not 

have time to describe in full. First, since p is now bounded, the case fl= 1 is also 

covered by (41) and the highest common factor can be omitted from the estimate. 

Secondly, we can still shew that (45) is true provided that fl~>2 and a>3,  although it 

now stems directly from the transformation l=l'+rp a-2, where 0~</'<p a-2 and 

0~<r<p 2. The remainder of the proof of (43) being the same as before, we obtain the 

following lemma on referring to (32) and Lemma 5. (3) 

LEMMA 8. We have 

The earlier remarks about the case fl= 1 enable one to frame a useful alternative 

version of this result, which we enunciate in 

(3) Or, alternatively, by using the pseudo-multiplicativity of the sum S(h, a; k). 
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LEMMA 9. Let ~(1) be the multiplieative function of l that is defined by cb(p)= 1 and 
by a3(pa)=p a/4 if a>l. Then 

Q(m;k)=O(A~k)k4 H c~ / 

The position has been prepared for the entrance of algebraic geometry, by means 

of which the study of Q(m; k) will be resumed in the next section. 

6. Applications to Q(m; k) of local and global L-functions 

When considered geometrically the numbers v(p) and v(m;p) can be interpreted in 

terms of certain cones in affine spaces. But, to apply the theory of local L-functions to 

their study when A(m)4:0, it is desirable to work with the corresponding underlying 

projective varieties OF and OF(m) over the field Q that are given, respectively, by g(--')=0 

and by the simultaneous equations g(=-)=mE=O, where ,E=(-21 ..... E 6) denotes the 

coordinates of a point in five-dimensional projective space over Q. If p ~A(m) and 

therefore p:63, the interpretation of these equations as congruences, modp, or as 

equations in the field Fp leads to the parallel reduced non-singular varieties ~ and 

oF(m;p) that are defined over F v. The former variety is a hypersurface, while the latter 

is an embedding in five-space of a hypersurface lying in a four-space. Next, let 0(p ~) 

and Q(m;p r) be the number of points on ~(p) and oF(re;p) having coordinates in Fv,. 

Then v(p)=(p-1)0(p)+l  and r(m;p)=(p-1)o(m;p)+l with the consequence that 

Q(m;p)=p{pQ(m;p)-Q(p)+l} by Lemma 6. Therefore, since 

Q(m; p) = p(pE(m; p)-E(p))  (47) 

if E(pr)=o(p")-(pSr-1)/(pr-1) and E(m,pr)=Q(m;pr)-(p4r-1)/(pr-1), we are led to 

consider the L-functions 

exp (48) 

that are the quotients of the zeta functions of five-space or four-space and those of OF(P) 

or oF(m;p), respectively. Taking the latter function first, we know that Bombieri and 

Swinnerton-Dyer [1] anticipated Deligne's more general work [4] by shewing that 
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where 

L(m;p;  T) = l--[ (l-2j, p T) -l, (49) 
l~<j~<lO 

~. p3/2 I J, p l =  �9 (50) 

Hence, if we equate the coefficients of T in the identical expressions in (48) and (49), we 
obtain 

while the estimate 

e ( m ; p )  = - %,p = Ofp3'2),  
l~j~<lO 

(51) 

E(p) = O(p 2) (52) 

follows similarly from Deligne's theory or, indeed, more elementarily from the theory 

of cyclotomy. Thus Q(m;p)=O(p 7/2) by (47), (51), and (52), and we infer from Lem- 
mata 6 and 7 that 

Q(m; k) = O(A~6 k) k 7/2) (53) 

when (k, A(m))= 1. 

Taken with Lemma 8, this estimate is the basis for the Kloosterman refinement 

used on the junior arcs. For the senior arcs, however, the previous analysis in this 

section must  be developed further in order that a double Kloosterman refinement can 
be brought into play. 

To extend the study of Q(m; k) let 

Q3(m; k) = ~ Q(m; k) (54) 

and let Lp(m; s) denote the value of L(m;p;  T) obtained from the specialization T=p -s 
in (49). Then, for a>2  and p l A(m), we have 

and 

pS pS l-~/'~<10 , \ p  - / 

Lp(m; s) pS l<~<10 \ P / 
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by (54), (47), (51), (49), and (52), whence 

14 Q3(m;P) ' ( p ~ - I ) -  1 { (p--~-I) } 
p-S = Lp(m;s) t-0 Lp(m;s) 1+0 

71 

(55) 

since {Lp(m;s)[<~(1-2-1/2) -1~ Also, by (50) and then by Lemmata 6 and 7, the 
function 

Q3(m; k) 
qJ(m; s) = ~.~ 

k=l kS 
(k, A(m))= t 

is regular and equals the Euler product 

1-I (1§ Q3(m;P) 
Pl A(m) ~ "/ 

if a>  I. Hence, bringing in the Hasse-Weil L-function 

L*(m;s) = L*(~(m);s) = 1~ Lp(m;s) 
plA(m) 

which is also regular for a>~, we deduce from (55) that 

qJ(m; s) = O(m; s) 
L*(m; s) '  

where 

(56) 

(57) 

T*(m;y) = E Q3(m; k) k3/2 (58) 
k<~y 

(k, A(m))= I 

is related to the properties of the Hasse-Weil L-functions defined over ~F(m). 

The Hasse-Weil L-functions are generalizations of the Riemann zeta function and 
our further progress is partially contingent on our assuming the truth of the widely held 
belief--first expressed by Hasse---that their main properties are very similar to those of 

coefficient sums of the form 

p{a (m) (  \ P  - / )  

is regular and bounded for a~>o0>2. Thus when A(m)=4=0 the problem of estimating 
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the latter function.  The propert ies  involved fall into two categories of  unequal profundi- 

ty.  On the one hand, there are the analytic continuation and the functional equation, 

which have been shewn to hold for L-functions over several types of  varieties but not 

ye t  unfor tunate ly  for those over ~r(m). On the other,  there is the generalized Riemann 

hypothes is  but  there  are as yet  no instances in which this has been proved. 

With the intention of  expressing some of our  conjectures in the form given by 

Serre  [17], we take for  each p dividing A(m) a certain factor  

Lp(m;s)= H (1--2J.p p-s)-I 
1<~<10 

that is defined by Serre in such a way that(4) 12/,p[=0, p, or p3/2. These determine a 

modified Hasse-Weil  L-function.  

L(m; s) = H Lp(m; s) = H Lp(m; s) .L*(m; s) = A(m; s) L*(m; s), 
p plA(m) 

whose  conduc to r  B(m) is given by 

say, (59) 

B(m) = H pap 
plA(m) 

where  0~<ap~<200 and where  therefore  

B(m) ~< IA(m)l 2~176 = o(llmllA"). 

Then,  setting 

~(m; s) = (2zt) -5' rS(s) B~/2(m) L(m; s) 

for  0 >  I in the first place,  we state 

(60) 

(61) 

HYPOTHESIS HW./f A(m)~:0, then 

(i) ~(m; s) is a meromorphic function of finite order(5) that is regular everywhere 
save possibly for poles at s=~ and �89 

(4) 1 and plrZ are not listed as possible values for 2j, p because Bombieri and Swinnerton-Dyer shew 
that any non-singular cubic three-fold is related to a curve. But, according to Serre's conjectures, they would 
have to be included if a general three-fold were involved. 

(5) In the sense usually adopted in the general theory of integral functions, i.e. there is some number 
c(m) Such that e-I~f~(m; z)--~0 as Izl--,o0. As we shall see, suppositions (i) and (ii) imply that L(m; s) is of finite 
order in the normal language of the theory of Dirichlet's series. 
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(ii) ~(m; s) satisfies a functional equation 

~(m; s) = w(m) ~(m; 4-s),  

where w(m)= + 1; 

(iii) ~(m;s)+0 ifo:4=2 (Riemann hypothesis). 

It is almost inconceivable that ~(m;s) have a pole at s=~ and hence at s=]  but it 

seems an unwarranted indulgence to debar this possibility in circumstances that do not 

require us to do so. Note, also, that any such pole cannot have multiplicity greater than 

10 in view of the first of the (unconditional) inequalities 

IL(m; s)l <. ~Ip (1-- pol~_3/2 )-1= ~l~ 3/2), (62) 

Ilog L(m; s) I <~ 10 2 1 p,~ ap~W_3/2 ) = 10log ~(o-3/2), (63) 

which are valid for a>~. Nevertheless, having made these remarks, we shall illustrate 

the way our conclusions are drawn from Hypothesis HW by mainly referring to the 

case where ~(m;s) is entire, since the procedure can easily accommodate the extra 

complication caused by a pole of absolutely bounded multiplicity. 

When L(m;s) has no poles the arguments are similar to some that have been 

previously applied to the Riemann zeta function and the Dirichlet's L-functions (vid. 

Titchmarsh [19], Chapter XIV). It therefore being unnecessary to supply full details, 

we first express the functional equation as 

L(m; s) = w(m) (2:t)l~ l"-5(s) F5(4-s) L(m; 4 - s )  

and deduce from (62) that 

and 

L(m; 3+it) = O(1) (64) 

L(m;l+it) = O{B(m)(Itl+2)~~ (65) 

since Ir(3-it)/r(1 +it)l=l(1 +it) (2+it)l=o{(Itl+2)2}. Secondly, applying the Phragm6n- 

Lindel6f principle by dividing L(m;s) by a function of the form B(m)sl~ ~c~ 
where 0<y<~r/6, we infer from (64), (65), supposition (i), and (61) that 

L(m;s)=O{B(m)(ltl+2) l~ for l~<cr~<3 and hence for o~>1. Therefore, since logL(m;s) 

is regular for o>2 and ~logL(m;s)<Aislog(llmll(Itl+2)), we can use (63) and the 
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Borel-Carath60dory theorem with circles with centre 3+ito and radii 1-�89 and 1-~/to 

obtain 

IlogZ(m; s)l ~< 4A~8,7 -~ log {llmll (Itol+2)} +41,1-' Ilog ~(3/2)1 (rl < 1) 

within and on the  smaller circle, whence in particular 

Ilog Z(m; s)l ~< AI9 r]- 1 log {)lmll (Itl+2)} (66) 

for 2+r/~<tr~<3 and thus for o~2+r]. 

To refine this initial bound let r /and ao=Oo(r]) be, respectively, any small positive 

constant and a sufficiently large constant, supposing then that 2+r/-.<cr-.<~+�89 Apply 

Hadamard's  three circles theorem to the function logL(m;s), using centre fro+it and 

radii rl-----Oo--~--�89 r2=Oo--O, and ra=Oo--2--�89 ]. Then, if 

A = log (r2/rO/log (r3/rl), 

we have 

[logL(m; s) I ~< (A2o r/- l log {llmll (Itl + 2)})a (A ~(r/)Y -~ 

by (63) and by (66) for ordinates differing from the given value of t by less than Cro. But 

- 14 and - - =  1+ 
r l  _ 5 _  1 o o 2 2r] r I a o-~-�89 

so that 

A ~< (2+2r])(~+�89 ~< l-r/2 

so long as Oo be sufficiently large in terms of r/. All this gives 

1 / Z ( m ;  s )  = O{llmll~(Itl+2) '} 

for 2+r/~<a~<~+�89 hence for a~2+r] by (63). 

If L(m; s) have poles of multiplicity l at s=~ and ~, then direct the Phragm6n- 

Lindel6f principle to the entire function Z(m;s)=(s-�89 s) and deduce that 

L(m;s)=O{B(m)(lt[+2) 1~ for Itl>a2(r/) and Z(m;s)=O{B(m)} for Itl<3A2(r/), where 

A2(r])>oo. For It[~2A2(r/), the previous method is still efficacious and yields the same 

bound for I/L(m;s) as before. In like manner, a parallel treatment of Z(m;s) for 

Itl<2A2(r/) produces the inequality 1/Z(m;s)=O{llmll'} and hence once again the 

previous bound for L(m; s). 
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This bound is the foundation of our key 

LEMMA 10. Let T*(m;y) be defined as in equation (58). Then, on Hypothesis HW, 
we have 

T*(m; y) = O(llmll~y�89 
It suffices to consider the case where y-�89 is a positive integer. Then, as 

" 

2~i _+ s T u I 

when the ambiguous signs are the same, we have 

1 f2+ir O(m;s+�89 ~.o(y__ ~ 
T*(m;y)= ~ d2-iT L(m;s+~) s k=l 

\ (k, A(m))= 1 

1 2+it O(m;s+�89 ySds ~0 
2~i J2-iT L(m; s+~) s -T 

IQ3(m;k 712 k)[ ) 

by (56), (57), (59), (53), and (54). Now change the contour of integration so that it 

consists of the other three sides of the rectangle with vertices 2-iT, �89 �89 
2+iT, choosing T=y 3. The lemma is then deduced from Cauchy's theorem, the above 
estimate for 1/L(m; s), and the bound 

that holds for o~>�89 

7. Decomposition of R~(x) 

We are now equipped to follow up the analysis of Section 4 and the first part of Section 

5 provided that we recall the definition of the numbers Yj introduced in (17). By the 

positivity of G2(q0, k) and by (23), we have 

(1/MYj 
R~'(x)= E Z Gz(q~'k)dq~= Z P(Y)' say, 

I<~j<~M t l~<k~<2Yj d-I/MY~ I<~j<~M~ 

where (33) shews that 
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y<k<~2 Y k 7/2 

Y<k~2Y k7/2 

y2 Y<k~2Y k4 

fl/Ur X H(cp, m/k;X)Q(m;k).dcp 
l / n r  Ilmll~<W 

f_ l /MV X H(cp, m/k;X)Q(m;k).dcp 
1~MY [[mll~<W 

A(m)*0 

ffMr ~, IH(~o, m/k;X)l IQ(m;k)l'dcp 
l/MY IImll<~W 

A(m)=0 

= PI(Y)+P2(Y), say, 

(67) 

the subscriptj  being implicit in the notation. Next let c~l be a positive absolute constant 

less than ~2 that is to be chosen later and let ME be that value o f j  for which 

1-6 1-6 
X3 1 < yj ~< 2x 3 1 

Then 

R'~(x)<~ X P,(Y)+ X IPI(~J )+ ~a P2(Yj) 
I <~j<~M 2 M2<J<~M t 1 <~j~M 1 (68) 

=R~(x)+R~(x)+R~(x), say, 

in which the three sums are estimated separately by different methods in the forthcom- 

ing sections. 

8. The  senior  arc~ c~timation of RYl(x) 
The estimation of R~(x) takes place on the senior arcs and will entail the assumption of 

Hypothesis HW at a point to be duly indicated. Rearranging the orders of summation 

and integration in the formula for PI(Y) given by (67), we get 

P'(Y)=-~2/2 (l/Mr X X H(cp, m/k;X)Q(m;k) k7/2 dcp 
�9 I - i / M Y  IImlI~<W Y<k<~2Y 

A(m)*0 

- -  I ~ I / M Y  

i~/2 ~ U(9, m, Y)'d9 (69) 
d - l / M r  Ilmll~<W 

A(m)*0 
1 ~UMY 

-- y5/2 ~ Y) dq~, say, 
d - l/MY 
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and then need a bound for U(qg, m, Y) for 

Y > x ~-~. 

77 

(70) 

then 

J' (u, v ; X) = -~o J(u, v; X), 

J' ( cp, m/y ; X) = 2atiI( qL m/y ; X) = O(Xam) 

either trivially or on account of Lemmata 2 and 3. Consequently, by this, (31), and (73), 

we also have 

a_L _Z 
8y H(q0, m/y;X)= y2 X mJJ'(q~'mj/y;X)l-IJ(q~'m/y;X) 

l~<j~<6 i#j (74) 

- - o  ) 
\ r 2 , 6am, " 

It will also be helpful to have the simple 

. LEMMA 11. Let k* denote, generally, a positive integer (possibly 1) all o f  whose 

prime factors divide a given non-zero integer A. Then, i f  IAl<~z A~, we have 

(73) J(cp, m/y;X) = O(am), 

where am=am(q9 , Y, X) .  Now, if 

To meet this requirement we set 

T(m;y) = X Q(m;k) (71) 
k<~y k 7/2 

in analogy with (58) and then use the formula 

U(q), m, Y) = H(rp, mly;JO dT(m;y). (72) 

But before proceeding further we need a notational convention in order to express 

as simply as possible the effect of the integrals J(u, v; X) on our work. For each relevant 

set of m, Y, 9 we shall estimate J(rp, rely;X) in the range Y ~ y ~ 2 Y  either trivially or by 

Lemma 2 according to a well defined procedure and shall see that we can denote the 

effect of so doing by writing 
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1 = O(zg. 
kt<~z 

The left side of the proposed inequality does not exceed 

<_z.Fl(l_ l '.z.ii(,_5) 'ii  
kt<~z pe<2 

<~A(e) z~d(A) = O(zg, 
as stated. 

In treating T(m;y) we suppose that m and y satisfy the conditions implicit in (69) 
and (72) so that Hmll=O(y/22) by (20) and (70). Furthermore, for a given m subject to this 
proviso, let k~ denote, generally, a positive integer relatively prime to A(m) and k2 a 
positive integer whose prime factors all divide A(m). Then, now assuming Hypothesis 
HW and appealing to (71), (58), and Lemmata 5 and 10, we have 

Q(m; k I) Q(m; k 2) Q(m; k 2) Q3(m; k 1) 
T(m;y)= E = E "  ~2" E b712 I,.712 

k I k2~Y n'l '~2 k2<~y k l<~ylk2 

=O(Y�89163 'Q(m;k2)l'~k~ ! 
\ / '  

whence 

T(m;y)=O(y 1--I6~(mj)E1)=O y �89 

by Lemmata 9 and 11. Therefore, since 

f7 U(rp, m, Y) = ~r[H(rp, rely;X) T(m;y)]- OH(q), rely;X) T(m;y) dy 
Oy 

by (72) and since we may assume that Ilmll~<w, we infer that 

fT ) 4+E . �89 
V(cp, m, Y) = 0 Y [ I  amj6(mj) +0 I-I amjW(mJ) y dy 

\ 1 <~j<~6 / 1 <~j<~6 

= O{(Yx2+~+X~!!~ II) H~.~ amjW(mJ)} 
l~<j~6 

= o~XY~W [I  am, ~(m,)) \ yt;Z ~<.6 / 

(75) 

with the aid of (73) and (74) and then (19). 
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Next, inserting (75) into the formula for ad/(q0, Y) implied by (69), we obtain the 

relation 

~(cp, Y)= \ ~ Z am Cb(m) = O(XY-I+~W~6(q~' Y))' say, (76) 
0<lml~<W 

whose consequences will be examined by means of 

LEMMA 12. If b=0 or ~, then 

Z c~(m) _ O(zl_b) 
m b O<m<~z 

for Z>0. 

For each m let m I =l-lpllm p and m=m I m E so that d(m)=m~/4. Then, because any number 

of the form m2 can be represented (not necessarily uniquely) as 22/z 3, we get 

Z tb(m)<~ Z ~1/21~3/4= Z ~'1/2~U3/4 Z 1 
o<,n<~z tX2u3<~z ~z/~3<< z t<~z/~z~ ~ 

~z Z 1 ~,F, ~ N ~  9/~ - O(z ) ,  

and then deduce the result for the other exponent by partial summation. 

Since Lemma 2 permits us to define a,,, in (73) by 

X, if I~01 ~< 1/X 3, (77) 
am= gl/41~l_l/41ml_~/4 ' ifl~01> z/x 3, 

we deduce from (76) and Lemma 12 that 

tP(cP' Y)= O( x Z w(m)l = O(XW) 
\ O<m<~W / 

for ]9]~<I/X 3 but that 

i/ y TM tD(m) ) = o( Yl/4w3/4 ~ 
q/(cp, Y)= 0~-~ o<~<~ w m,/4 ~ ] 

for 191>I/X 3, in which the appropriate values of W are, respectively, 

YX-llog4x and X2y[qgliog4x (78) 



80 CHRISTOPHER HOOLEY 

by (19). Hence 

if ]~pl~<l/X 3, while 

W(tp, Y) = O(Y log 4 x) (79) 

qffqo, Y) = O(X 3/2 I~q~[ v2 log 3 x) (80) 

if [q0l>l/X 3. 
We bring the estimation over the senior arcs to a close by analyzing separately the 

two cases 

(a) X3M-~<~ Y<<-M, 
(b) ~-~1< y<X3M-l, (81) 

neither of  which is nugatory because of (6). Taking case (a) in which 19I<~I/MY<<-I/X 3, 
we have 

~ Y)= o( r ~§ 

by (76), (78), and (79), whence (69) yields 

(82) 
/ r,,M~ \ (:+~) 

e,(r) = o{~ r'+~j0 a,p) = o --M-- 

in this instance. In case (b) the above estimate for a9(9, Y) still obtains when ]g[~<l/X 3 

but most otherwise be supplanted by the estimate 

o2/(r Y)= O(Xny~2 +~]qol 4) 

that is supplied by (76), (78), and (80); here, therefore, we get(6) 

(fol/X3"~l/ ['I/MY, 
p l ( D = O  y4+, dg)+O[Xny4+,Jux, cp4dqg) 

(83) (-,.) 
=0 - ~  +0 ~ \ MSY l 

since Y<X3M -1. Finally, (68), (81), (82), and (83) produce the estimate 

/ vl2+E \ R~(x) = O(M2+*)+O[ ,,x .| = O(XI+2t)+e)+O(x76-55+t}I+E) 
\ M 5x}-61 / 

by means of  a simple summation over j. 

(84) 

(6) If Y<Xlog-4x in 0a), then there are values of 9 for which W<I and for which therefore the sums 
@(9, I0 and ~(9, Y) are empty. But replacing our estimates in these instances by zero would not confer any 
benefit and would only complicate the argument. 
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9. The junior arc~ estimation of R~(x) 
T h e  estimation of R~(x) is effected on the junior arcs and does not involve the 

supposition of any unproved hypothesis. Equation (69) being still applicable, we want a 

bound for U(q0, m, Y) when Y<~x ~-~' and derive it from the inequality 

IU(~,m,g)l <<- ~ IH(~'m/k;X)}lQ(m;k)l--O( l--[ ~ IQ(m;k)l~ (85) k7,  __amj__  7,2 / 
Y<k<~2Y \ I<~<6 k<~2Y 

that flows from (31) and (73). Here, by Lemma 5, (53), and Lernma 9 and then by (20) 

and the implied condition A(m)*0,  we have 

~ IQ(m;k)l= ( ) k7/2 0 Y~ H &(mj) 2 k~ '2 
k ~ 2  Y I~<j~<6 k I k2<~2 Y 

1~<6 k2 <~2Y kt <~2YIk 2 

( +  l / =0 Y Hw(mj) 2-~f f  
l~<j~<6 k2<~2 Y t~ 2 / 

=O{Y'+" <~j<~6~(mJ)p[~a~m)(1-p~)-' } 

(86) 

in the notation used  to estimate T(m;y) in the previous section. Therefore, as the 
counterpart of (76), we obtain 

~ Y) = O(x e YI-I/6(~, Y)) 

from (69), (85), and (86). 

In the current situation W<I if [~pl~<l/X 3 so that (80) may be used whenever 

qJ(tp, Y) is not an empty sum. Hence ~(q~, Y)=o(xg+~yTIq~[ 3) and thus (69) implies that 

P1(Y) O (  Xg+~Yg/2 Jofl/MYq~3dq~) O(Xg~_~y1/2). 

Consequently,  summing over j ,  we conclude from (68) that 

R~(x) = 0(x~-4~-9'+'). (87) 

6-868285 A c t a  M a t h e m a t i c a  157, Imprim~ [r 15 oetobre 1986 
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10. Estimation of R~,(x) 

No form of Kloosterman refinement appears in the treatment of Rg(x) because the 

estimation of Q(m;k) now stems from Lemma 8 alone; in particular, therefore, the 

distinction between junior arcs and senior arcs becomes irrelevant. 

The particular reordering of integration and summations used in the metamorpho- 

sis of PI(Y) being inappropriate for P2(Y), we deduce from (67) that 

2 fl/Mr ~ 1 ~ [H(q~,m/k;X)llQ(m;k)l'dqJ 
P2(Y)= -~ J-I/Mr r<k~2r k4 IIm[l~W 

A(m)=O 

f l/Mr 2 

j_l/MY -~ 
V(~, k, Y). dq~ (88) 

r<k<~2 r 
-- f I/MY 

~C(q~, Y) dq~, say, 
-- J- I/MY 

in which 

1/4 ~ = O(x~Vl(cp, k, Y)), say, (89) 
\ 

V(cp, k , Y ) = O  x ~ Z H (k, mj) amj 
llmll~W l~j~6 r 

\ A(m)ffi0 

by Lemma 8 and (73). Further progress is then dependent on our eliciting the nature of 

the integral solutions of the equation 

A(m) = 0 .  (90) 

To attend to this question, let aj=mf for l~<j~<6 and then express each aj uniquely 

as bj c] where bj is square-free and cj>O, remembering that all the mj are non-zero. 

Then (34) implies that any solution of (90) corresponds to a solution of 

c ! V ~ i  +...  +c6~/~6 = 0 (91) 

for some choice of the ambiguous signs. Next, if for any such solution we denote the 

distinct values of bl . . . . .  b6 by d~ .. . . .  dr, we deduce a relation of the type 

e i V~I+. . .  + elV~l = O, 

where ei . . . . .  et are integers. Hence, since it is well known (and easily proved) that 

. . . . .  ~ are linearly independent over the rationals even when one of them is 1, 

we see that el=...=el=O and that therefore (90) holds because of trivial cancellation 
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be tween  the coefficients cj in (91). The circumstances in which this can potentially 

happen are exhausted  by  the four (not necessarily mutually exclusive) typical cases 

(i) bl=...=b6=b, say; 

(ii) ml=m2, ba=...=b6; 
(iii) bl=b2=b3, b4=bs=b6; 
(iv) ml=m2,  m3=m4, ms=m6. 

In case (i), for each j, m~--bc2---bcEcj 2, where c = h . c . f  (Cl . . . . .  c6) and l=h .c . f .  

(cl . . . . .  ch). Therefore,  being equal to (h.c.f. ml . . . . .  m6)} 3, bc 2 is a perfect cube ;t 3 and 

thus cj is a perfect  cube mj 3, whence m=~.(m~E,...,m~2). In like manner 

(m3 . . . . .  m6)---~.(m~ 2 . . . . .  m~ 2) in case (ii). Yet  case (iii) can be rejected because  the 

similar implication (mt . . . . .  m3)=~.(m~ 2 . . . . .  m~ 2) leads to the impossible Fermat  equa- 

tion ml'3-mm2'3-~-m3'3-a-,, when the need for cancellation is also taken into account.  

Summing up, we have 

Vt(qo, k, Y)~< VE(tp, k, Y)+ V3(cp, k, Y)+ V4(q~, k, Y), (92) 

where V2(tp, k, Y), V3(tp, k, Y), and V4(qo, k, Y) are the (not necessarily mutually exclu 

sive) contributions to V~(qo, k, I1) due, respectively, to the cases that are typified by (i), 

(ii), and (iv). These  sums are all very similar in character and share the feature of  being 

est imated with the assistance of  the following well known lemma. 

LEMMA 13. For a given positive integer d, we have 

(d,/)~/2 = O ( z l - b a - ~ ( d ) )  
O<l<~z 1 ~ 

if b=O or 1/2. 

The ambience  of  the calculations being still described by (89), we first suppose that 

am=X and see that (92) gives 

V2(cp, k, Y)= O(  X6 ~ H (k, lmj2) '/4) 
O</m~ 2 ..... lm'62~W 1 ~/'~6 ( )6} 

= 0 X 6 ~ 13~ ~ (k, m) '/2 (93) 
l l~W O<m~(W/O I~ 
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by Lemma 13. But, ff am=Yl/4lcpl-l/4lml-1/4 , then 

V2(c/),k, Y)= O( y3/2,cp,-3/2 x H (k'lmj 2)1/4) 
O</mi2 ..... im,62<~W 1~<j<~6 (lmj2) TM 

= O l  Y3/2[q~[-3/2 X ( X (k'm)l/2~6"[ 
~. I~W\o<m,(WII) ,i2 -Wl "~ ) J  

0 x'Y 3/2 _j-3:2 W3/2 x" I = ( [WI Z~, / '~-] = O(xey3:2W3/2[g[-3/2). 
\ I~W / 

(94) 

Secondly, 

v4(q),Lr)=o( x6 ~, I-[ (L mf/2 ) 
O<mt,m3,ms<~W j=l,3,5 

= O (k, m) I/2 = O(X6+tW 3) 
k \O<m<~W 

(95) 

when am=X, whereas 

V4(c/)' k' Y) m O (  y3/2'~'-3/2 X H (k' mj)l/2 1/2 
O<ml,rt~,m3<~W j=l,2, 3 mj 

=O(y3/2lcpl-3te(o<m~<~w (k, m)'/2 ~3~ / J  = o(x~:,~w~,21q, l-~,2 ) 

(96) 

when am= Yl/4m-l/4[~l-l/4. 
The method for V3(q~, k, Y) is an amalgam of those used for the previous sums. If 

am=X, then 

V3(cp'k' Y)= O (  X6 X H (k'lmj2)l/4 X (k, ml )1/2) 
~,~ O<lm~ 2 ..... lm'62<~W 3~<j~<6 ml~W 

,,m:) 
L l<~W \O<m~(W/O~r2 

~ l  = =o(x~+Ew3 u ~ 

similar reasoning shewing that 

v~(q,, k, r) = O(x~ Y3~w3%pl-3:2) 
for am= gl/4m-l/4lqgV 1/4. 

(97) 

(98) 
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Equations (93)-(98) with (92) and (88) shew that g~(qo, Y) is 

O(x~yt/2w3/21q~l-3/2) according as I~ol~<l/S3 or I~ol>l/X 3, whence 

by (19). Consequently 

and we end up with the bound 

~qo, r) = o ( x 3 + ' r  2) 

I x3+~y\ P2(Y)=O~T ), 
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O(X6+~Y-IW 3) or 

after using (68). 

R~(x) = O(x ~+~) (99) 

11. The theorem on R(x) 

Our theorem on R(x) is now available. By (68), (84), (87), and (99), 

R~(x) = O(x~ + 2~+9 + O(x~- 56+~' +~) + O(x ~-4~-�89 +~) 

through which by choosing 6=~ ,  61= ~ we get 

R~(x) = O(x~+~). (100) 

Then, from (30) and then (4), we conclude that 

R(x) = O(x ~ +~). 

We thus have 

THEOREM 1. Let  f(O, y) be the cubic exponential sum defined by (3) and let 

R(X) = If(O, xl/3)16 dO. 

Then, as x--,oo, 

R(x) = O(x ~+~) 

i f  Hypothesis HW be true for  the Hasse-Weil L-functions defined over the varieties 
~r(m). 
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Chapter II. Applications of Theorem 1 

1. Introduction and notation 

Theorem 1 is applied to Waring's problem through familiar procedures that do not in 

themselves involve the assumption of the Hypothesis HW. Our account can therefore 

be relatively brief even though we must enter into some details not fully covered by the 

existing literature. The remainder terms in the asymptotic formulae we derive are 

usually the best that can be achieved by a fairly careful use of such reasoning but there 

are some instances where improvements can be effected through more intensive 

methods. 

Until the penultimate section we shall be wholly preoccupied with problems 

appertaining to the number of representations of a large number N as a sum of powers. 

We therefore first let 
fj(O)= E e~imJ~ 

O<~m<~Ntq 
and write 

g(O)=f2(o), f(o)=A(o), h(0)=A(0) (101) 

so that f(O)=f(O, N 1/3) according to (3). Then, by analogy with (10), we write 

f Nlq 
Jj(u) = e2~iUd dt, Sj(a, k)= E e2~iatJ/k' 

dO O<~l<k 

suppressing without ambiguity the subscript when j=3 but noting that J(u) is not the 
exact counterpart of  J(u;X). 

For each problem we shall employ a Farey dissection of appropriate order 

M=M(N)--different from that used in Chapter I - - to  divide the unit interval of integra- 

tion into arcs O=h/k+cp, where, for each pair h, k satisfying O<<.h<k, (h, k)= 1, k<.M, we 

have the inequalities 

--a'h,k <~<~ah, k (102)  

and 1/2kM<ah, k, a'h, k< 1/kM (see [7]). The customary sub-division of the arcs is then 

brought about by introducing a number MI=MI(N) and by defining the major and 

minor arcs to be those arising from values of k satisfying k<~M~ and k>Mm, respective- 

ly;(1) as usual, the aggregates of major and minor arcs are denoted by ~ and m. 

(~) Provided that Mt~<t2Mwe can extend the major arcs at the expense of the minor arcs by taking 

ah.k=a'h,k=l/Mk for k<~M~. This permits a more accurate treatment of terms such as E4 in the following 
equation (104), although in the present context the effect of such improvements is usually vitiated by the 
influence of the other terms under consideration. 
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To treat the minor arcs we shall require Weyl's inequality ([14], [20], [21]), as 

expressed by 

LEMMA 14. I f  [cpl<~l/k 2, then 

f j ( h + q o )  = O{Nl/J+~(N-l/J+k-t+kN-l)2~-J}. 

But for some of the minor arcs we do better to exploit the following lemma, which 

is primarily needed for the analysis of the major arcs. 

LEMMA 15. We have 

=-ffSj(h,k)Jj(q~)+O(k )+O{k a (Nip) }, 

where the f inal  remainder term can be dropped when Irpl<.l/2jkN l-1/j. 

There are various approaches to this result that involve either the Euler-Maclaurin 

sum formula, or the Poisson summation formula, or a hybrid of these two formulae. In 

all cases the Hua-Weil estimate for Sj(h, k) is needed ([12], [20]), while an analogue of 

Lemma 2 is relevant to the situation where tp is unrestricted. A proof for the restricted 

case is given by Vaughan [20] but an alternative proof can be derived by developing the 

way Davenport handled a Lemma in [2]. The formula for the unrestricted case is 

quoted by Vaughan on p. 54 of [20] but can be proved by analyzingf(h/k+qg) in much 

the same way as F(h/k+qJ) was examined in our Section 2, Chapter I. 

2. The asymptotic formulae for seven cubes and eight cubes 

As usual, we have 

:0' iv: f: 7 2~lNO 7 2a'iNO 7 2mNO r7(N) = f (0) e-  " dO = (0) e-  " dO+ (0) e-  " dO 

(103) 
= E z + E  2, say, 

where in this instance it is appropriate to take M=[6N2/3]+ l and M ~ = N  ~/3 in order to 

define ~02 and m. 

On a major arc centred by h/k 
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by Lemma 15, whence 

Therefore 

1 

k<~M 1 O<~h<k 
(h, k)= 1 

+o ~ E 
i O. <~h<k 

(h,k)=l 

f~JT(~o) ST(h, k) e-~N~k e -2"aN~ de 

f, ) IS(h, k)l 7 12Mk IJ(9)17 dq~ 

1+ e +oM1, Z 1 Z 
O<~h<k 
(h, k)= i 

=E3+O(E4)+O(Es)+O(E6), say. 

(104) 

The remainder terms are easily assessed by (26), (25), 
J(~o)---O(l~ol-1/3). In fact 

E4= O(M*3E\ k<~M, qT(k) )k,4/3 = 0 (M4/3 Ek<~Mt a~(3k)l/ 

=O(M~3MI+O=O(N ~+') 

and the bound 

(105) 

by a crude argument that satisfies our present need. Also, repeating the reasoning used 
for (24) and (26), we have 

Since obviously 

we obtain 

from (104), (105), and (106). 

E 5 = O(M~i+~N)= O(N~+~). (106) 

e6 = O(M-'M~+3 = O(S&b, 

E 1 = E 3 + O(N n9 +~) 

Altogether, therefore, bearing in mind that 

E q7(k) ( kr = O(MI )' -o  z a : ~  -;+~ 
k>M1 -'~ ~ k>Ml 
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we conclude from Fourier's integral theorem that 

E~ = ~ F6(4) ~ (N) N r + O(N u9 + ~), (107) 

where ~(N)  is the singular series. 

On the other hand, 

IEzI~< b--d If(0)l If(O)16dO 
0Era 

so that Lemma 14 and Theorem 1 yield 

e2  = § = § (108) 

if Hypothesis HW be assumed. 

Equations (103), (107), and (108) now give 

THEOREM 2. Let  r7(N) be the number o f  representations o f  N as the sam o f  seven 

non-negative cubes. Then, i f  Hypothesis HW be true, we have 

~+t rT(N ) = ]I"6(~) ~(N)/~-}-O(/~/~6 ), 

where ~ ( N )  is the singular series. 

The formula is a genuine asymptotic relation because it is known that ~(N)>A25. 

Similarly, we can prove 

THEOREM 3. On Hypothesis HW, we have 

FB(4/3) ~r N~+OeN~+~ 
rs(N) = F(8/3) . . . . . . .  

where ~ ( N )  is the singular series. 

3. The asymptotic  formula for a square and five cubes 

The analysis becomes harder than in the last section because there is now a narrower 

margin between success and failure and because the presence of both g(O) and f(O) in 

the integrand creates technical complications. For example, it is desirable to introduce 

the notation 

Ty(q0 = min(N 10", I(pl-~/J), T(q~) = Ts(~v) (109) 
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whose use would have previously seemed superfluous. Moreover, to determine the 

major and minor arcs we shall have to select 6 carefully in 

so that 

M = N  ~ and MI=NI-a=NM -l (110) 

�89 (111) 

With this implicit choice of  ~ and m we then use the representation 

v(N)=fo'g(O)fs(o)e-2~ilV~176176 
(112) 

= E 7 + E s ,  say,  

where v(N) is the number of ways of expressing N as the sum of a square and five non- 

negative cubes. 

On a major arc containing h/k, we have 

g(O)=g +rp =-~S2(h,k)J2(q))+O(k ), 

= ~ S(h, k) J(q~) + O(~+~M -~) 

by Lemma 15 and then by (102), (110), and (111). In the former relation, using (109) and 

the estimate for the Gauss sum, we have S2(h, k)=O(k v2) and J2(cp)=O{T2(q~)} so that 

(102) and (110) imply that g(O)=O{k-V2T2(q~)} on ~ .  Furthermore, by the latter 

relation and (26), 

( fs(O) = ---~ S5(h, k)JS(qg)+O MV2k4 

whence 
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Therefore, since it may be verified from (25) that the second remainder term above can 

absorb the first, we conclude that 

E -~ E $2 (h'k)SS(h,k)e-2€ J2(q~)JS(cP )e-2"aNCdq~ 
k<~M! O<~h<k - ~  

(h, k)= 1 

(.~< qS'k) ) ('+~lf2k~<~ q4(k)k7/2 + O  T2(tp) TS(qo) dqo +O 
\ k ~ M  l /2Mk ~ m 

+0 T2(c p) dq~ 
k~M 1 JO 

= E9+O(EIo)+O(EIO+O(Eu), say. 

~ fo| T2(cP) Ta(qg) dq)) 
(113) 

and 

We easily dispose of the remainder terms in (113) by means of (25), obtaining 

E,o = O(M~+~k~<~ l) = O(M~6+~M,)= O(Nt+~M'/6), 

N ~+" q4 (k )~=Ot~mU( l+ . .S~+__ .~ l l =O(~m l  ' E I I = O - - M - ~ I k ? I 2 / k ~  ~ A26 A26 N3 
LM v \ p p / j  \Jr1 / 

~=  

1,4+, '~ i~+'M \ /~+q 
0 l E,,: ). 

Therefore, since the error involved in converting the series in E9 into an infinite series 

is 

we deduce that 

O(N~+rM~ -u6) = O(NI+rMU6), 

E7 _ F5(1/3) r(1/2) ~(N) N7/6+O(N~+eM-4) 
F(13/6) 

(114) 

after taking detailed account of  (111). 

On the minor arcs, 

g( O) = O(~+~M-~"~)+O(MI+3 = O(M~§ 
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by Lemma 14 or Lemma 1. Hence, using Theorem I and the well known estimate 

fo l lf(O)[ dO<" X ~ (m)=O(N]+*)' 
m<~2N 

we have 

= O(Ml /2p~  +*) 
(115) 

on Hypothesis HW. 

If M be chosen so that the O-terms in (114) and (115) contain functions of a 

common order, then 6=301/513 in conformity with (111). We therefore obtain 

THEOREM 4. Let v(N) be the number of  ways o f  representing N as the sum of  a 

square and five non-negative cubes. Then, if  Hypothesis HW be true, we have 

v(N) = F5(4/3) F(3/2) ~(N) N~+O(Nt~ 
F(13/6) 

where ~(N)  is the singular series. 

Again we have a genuine asymptotic relation because it is easily shewn by 

standard methods that ~(N)>A27. 

4. The asymptotic formula for six cubes and two biquadrates 

Neither the asymptotic formula nor its derivation is as interesting for six cubes and two 

biquadrates as it was in the previous situations. We are therefore satisfied to state that 

we choose M=[8N3/4]+ 1, MI=N TM and then easily treat the major arcs by directing 

Lemma 15 to f(0) and h(O). But then the relevant integral over the minor arcs is 

{ f0 } O ~ If4(0)l 2 If(O)16dO -- O(N ~+~+*)-- O(N ~+*) 
0Em 

by Theorem 1 and Lemma 14. We can thus infer 

THEOREM 5. Let v*(N) be the number o f  ways o f  representing N as the sum of  six 

non-negative cubes and two biquadrates. Then, on Hypothesis HW, 

v*(N) = 1"6(4/3) F2(5/4) ~(N) N2+O(N ~ ), 
F(5/2) 
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where ~(N) is the singular series. All sufficiently large numbers are expressible in the 
proposed form. 

In contrast with its predecessors, this theorem furnishes us with a hitherto un- 

known result--albeit conditional---concerning the existence of representations of all 

large numbers in a specified way. 

5. The asymptotic formula for r4(n) for almost all numbers n 

Let N be a large number (it is in fact immaterial that it be an integer) and then use the 

representation 

foo' fo fo r4(n ) = f 4 ( 0 )  e-2:an~ = f 4 ( 0 )  e-2:anadO-F f 4 ( 0  ) e-2nin~ 

(116) 
= r~(n, N)+r'~(n, N), say, 

for all positive integers n not exceeding N, where f(O) is still f(O, N 1/3) and where N 

alone determines the major and minor arcs by means of 

M=[6N2/3+l] ,  M I = N  ~, I . ~ ; t< !  g-~v ~. (117) 

The first constituent r~(n, N) in (116) is administered in the usual way, although 

more delicacy than before is needed in treating the singular series 
ao 

~(n) = E f~(k, n) 
k = l  

whose terms spring from the sums S(h, k) in the routine manner. Since 

f ( h + q 0 )  = k  S(h,k)J(q~)+O(k �89247 

on the major arcs as before, we have 

f f ( h  +q0)=~S' (h ,k)J4(q~)+O(~q3(k)T3(q~))  

by (25) and (117), the latent parameter in J(q0) and T(qg) being still N v3. Therefore 

1 

k<~M I O<~h<k - 

(h, k)= ! 
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+0( E q4(k) fl | T4(cp)dqJ)+O( N~ E q3~k2) 
\ k<<-M t k3 12Mk \ k<~M 1 

= Et3+O(E14)+O(E15), say. 

fO llMk "~ T3(q~) dq~ ) (118) 

Here, by (25), 

and 

= 0  MI/3MII/3 l-l- = O ( / ~ P  M]l ) 

(119) 

(120) 

We calculate the effect of truncating the series in El3 at k=Mt by means of the 

inequalities 

f O(p-3/2), i fp  ~6n and a = 1, 

fl(pa, n )=  J0,  ifp(6n and a >  1, 
[ O(p-3aq4(pa)), if p { 6n, 

the first two of which are due to Hardy and Littlewood ([5] and [6]). As all these give 

E Ja(k'n)l<~M-(X3+eEla(k,n)]k~-~<~M-(]+rI-[(l+ I-[ 1+ 
k>M 1 k=l pI6n \ P / pl6n 

= O(MI]+~) ,  

we infer that 
1 I --l+e 

El3 = F3(4/3) ~(n) n3+O(n3Ml 3 ) 

from Fourier's integral theorem and the inequality n<.N. Together with (118), (119), 

and (120), this then yields 

r'4(n, N) = F3(4/3) ~(n) n]+O(M~+~) (121) 

in virtue of (117). 
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Turning to the other expression r"(n, N) defined in (116), we have 

E ItJ~ (n' N)l 2 <~ f If(O)l ado 
n<~N Jm 

by Bessel 's inequality, whence 

l,';(n, aOi I:(O)i I:(o)I~ '' ' M,') 
n ~ N  

by Theorem 1, Lemmata 14 and 15, and (117). Hence, if/a=/xN be the number of 

integers n not exceeding N for which ~(n, N)>MI/3M1:3, then 

l 1 ~ + l + e  -2  
~,~M3M~I = O(N19 3 MI 3) 

so  that  

2~+l+e _4 
/x = O(N 19 9 M13). 

Thus certainly/z=o(N) whenever we choose MI to be N ~ with exponent a exceeding 

47/228. Taken with (116) and (121), this fact means that 

1 199+e 
r4(n) = F>(4/3) ~(n)  n3+O(N ~ ) 

for all integers n not exceeding N save possibly for o(N) exceptions. Since we may 

obviously replace N by n in the remainder term without jeopardising the conclusion, we 

obtain 

THEOREM 6. Let  r4(n) be the number o f  representations o f  n as the sum o f  four  
non-negative cubes. Then, on Hypothesis HW, 

1 199+e 
r4(n) -- F3(4/3) ~(n) n3+O(n ~ ) 

for  almost all integers n. 

Somewhat similarly, by choosing M 1 = N  ~-~ and using Lemma 14, we arrive at the 

parallel 

THEOREM 7. On Hypothesis HW, we hove 

r4(n) ~ F3(4/3) ~(n)nU3 

as n--->~ through some sequence o f  integers that up to any limit N omits at most 
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O(N ~+E) 

values. Thus all positive integers not exceeding N are sums of  four non-negative cubes 

save possibly for 

exceptional values. 

Each result contained in these theorems represents a conditional improvement in 

some direction of Davenport's work on four cubes [2]. 

6. The integers that are sums of  three non-negative cubes 

If ~(x) denote the number of positive integers not exceeding x that are equal to a sum of 

three non-negative cubes, then the Cauchy-Schwarz inequality implies that 

r3(n) <~ O(x) ~(n), 

in which 

Hence, since 

Z r3(n) ~ F3(4/3) x. 
n<~.x 

d(n) = O(x ~+~) 
n<~.x 

by(z) (5), (30), and (100), we deduce the final 

THEOREM 8. On Hypothesis HW, we have 

q(x) > x '~-~ 

for  X>xo(e). 

(2) Or, equivalently, by Theorem 1 and the analogue of (5) with R(x) replacing R*(Sx). 
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