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Introduction 

Let  (Xo, 0) be the germ of  a complex analytic complete intersection with isolated 

singularity. A deformation of  (Xo, 0) is a flat holomorphic map germ 

(X, O) ~ (S, O) 

together with an isomorphism of  (Xo, 0) with the special fibre ( f - l (0 ) ,  0). The subgerm 

(D, 0)c(S ,  0) parametrizing the singular fibres of  f is called the discriminant o f f ;  it is an 

analytic subgerm of  (S, 0). 

As is well-known (Xo, 0) admits a semi-universal deformation f:  if Xo is given by 

equations then f may be writ ten down explicitly using the criterion of  Kas and 

Schlessinger [20]. Nevertheless,  even for quite simple Xo the explicit form o f f  offers 

little help towards understanding the geometry  of  the deformation. A natural question 
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to ask would concern the exact position of (X0, 0) in the hierarchy of singularities: 

given a particular (X0, 0), can the singularities of the fibres of f be listed in terms of the 

classification of singularities (supposed to be known so far as to include all types that 

might conceivably occur in a fibre o f f ) ?  This is the so-called adjacency problem. A 

refined question of the same type would consider not individual singular points but the 

constellations of singu~rities that occur in one and the same fibre o f f .  There is not 

likely to be any feasible general method to extract such information from the equations 

describing f. 

On the other hand it has turned out that the discriminant (D, 0) is a very fine 

invariant of the semi-universal deformation f,  and, afortiori, of the singularity (X0, 0) 

itself. Indeed it was shown in Wirthmialler [53] that (X0, 0) is essentially determined by 

the analytic isomorphism class of the germ (D, 0). This in particular allows to decide 

questions of adjacency once the geometry of (D, 0) is understood sufficiently well. The 

discriminant of a semi-universal deformation is an apparently simple object conceptual- 

ly--a reduced hypersurface in the smooth germ (S, 0), and there are a few general 

results on such discriminants, see Vohmann [50], Greuel and L6 [14] and Teissier [44]. 

In view of the discussion above though, it is not surprising that a satisfactory under- 

standing of the discriminant has been achieved only in special cases which, in fact, 

constitute the very beginning of the classification of complete intersections with 

isolated singularity. 

The best-known of these cases is that of simple hypersurface singularities, which 

were first considered and classified by Arnol'd [1]. From the point of view of deforma- 

tion theory the dimension of a hypersurface singularity may be arbitrarily increased by 

suspension, and all simple hypersurface singularities may be realized as surface singu- 

larities in three-space. They then turn out to coincide with the class of Kleinian 

singularities alias rational double points, see du Val [49] and Artin [3]. For these 

singularities Brieskorn achieved a good description of the discriminant, as follows 

(Brieskorn [6]). Let f: X----~S be a suitable global representative of the semiuniversal 

deformation. The fundamental group of the complement S \ D  acts as a monodromy 

group on the (second) Milnor homology H of Xo. The associated monodromy group is a 

finite subgroup of GL(H) and there corresponds a finite Galois cover 

( S \ D ) -  ~ S \ D  

that trivializes the monodromy action, p extends as a branched cover S--~~ S, and the 

extended cover turns out to be a well-known object in the theory of root systems. In 

fact, if R =  V is the abstract root system corresponding to the hypersurface singularity in 
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Arnol'd's classification then ~q may be identified with the complex vector space 

Vc=C| V in such a way that the monodromy group acts on Vc as the Weyl group W 

of R. Thus we have a diagram 

Vc -~ ~S 

1 1 ~ 
Vc/W - , S 

which identifies O with the quotient morphism of the natural W-action on Vo Under 

this identification the discriminant D c S  corresponds to the set of singular W-orbits, 

and this set is covered by the union of all reflection hyperplanes in Vo Thus at the cost 

of passing to a finite branched Galois cover the discriminant is expressed in terms of 

linear, in fact even combinatorial data. Likewise the configuration of singularities in a 

fibre Xe(r ) (r E S) is given by a conjugacy class of isotropy groups of W, and isotropy 

groups correspond to the various intersections of reflection hyperplanes in Vo Up to 

W-conjugacy these intersections are classified by the full subdiagrams of the Dynkin 

diagram, and one arrives at the popular diagram rule that governs the occurrence of 

singular points in the fibres off.  The unbranched cover ( S \ D )  - ~  S \ D  also is a useful 

tool in investigating the topology of the complement of the discriminant. The funda- 

mental group turns out to be an Artin groutr--see Brieskorn and Saito [8], and Deligne 

[9]. In the same paper Deligne has shown that the higher homotopy groups of S \ D  

vanish. 

Brieskorn's construction actually shows a deeper connection between simple 

singularities and simple Lie algebras; his proofs and results were greatly simplified and 

improved by Slodowy [42], [43]. For the more limited purpose discussed above--the 

description of D as the branch locus of a finite Galois cover--a different proof was 

given by Looijenga [26], [27]. In his proof the root system R c V  occurs naturally as the 

set of vanishing cycles in the second cohomology group of the Milnor fibre while the 

connection between Vc and S is  provided by a period mapping. 

Going up in the classification of hypersurface singularities--see the lists of Arnol'd 

[2]--we note that all but the simple ones have infinite monodromy groups, and 

straightforward extension of the result above would lead to Galois covers with branch- 

ing of infinite order. Nevertheless it was proposed by Looijenga to study the open part 

S f c S  that parametrizes fibres with only simple singularities, hence finite (local) mono- 

dromy groups. If the global geometry of Sf  could be understood in terms of a Galois 

cover ~f---~Sy with finite branching then it might be possible to recover S as a partial 
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compactification of Sf. Looijenga has successfully carded out this approach for all 

unimodular hypersurface singularities, certain (two-dimensional) cusp singularities, 

and triangle singularities which are not hypersurfaces or even complete intersections. 

For references see Looijenga [26], [29], [30], [31 ]. For simply-elliptic and cusp singular- 

ities the construction of the covering space ~ is expressed in terms of the generalized 

root system formed by the vanishing cycles of the singularity; the partial compactifica- 

tion associated with such a root system is described in Looijenga [28]. Again the 

isomorphism between the quotient ~/W and S is induced by some period mapping. 

Looijenga's results on simply-elliptic singularities were independently found by 

Pinkham [39], using a different method. Like Looijenga, he uses ubiquitous C*-actions 

to compactify the fibres of the deformations. But then he observes that the resulting 

families of compact surfaces (which are classically known as del Pezzo surfaces) can be 

studied by essentially classical methods of projective geometry. This method also 

applies to the simple hypersurface singularities of E type---see also Tyurina [46]--and is 

closely related to work of du Val [48]. Using an approach similar to Pinkham's Kn6rrer 

[22], [23] was able to describe the discriminant for complete intersections of two 

quadrics in arbitrary dimension. Apart from the odd-dimensional hypersurface singu- 

larities (which have the same deformation theory as their suspensions) Kn6rrer's 

description is the first to include complete intersections of odd dimension. For those 

singularities the Galois group W of ~g---~g/W, which should be a reflection group in 

some sense, is of a nature completely different from that of the monodromy group. In 

fact, as the intersection form on the Milnor fibre is skew-symmetric the monodromy 

group is generated by transvections rather than reflections. To remedy the situation 

Kn6rrer relates the semi-universal deformation of a (2n-  1)-dimensional intersection of 

two quadrics with a (non-vers-al) deformation of a singularity of dimension 2n and 

thereby reduces the problem to the even case. 

The present work is concerned with some of the space curve singularities which 

are complete intersections, and are simple in the sense of Arnol'd. Such singularities 

were classified by Giusti [12], [13]; his list contains one infinite series S~, (g=5, 6, 7 .... ), 

as well as ten "exceptional" types T7, T8, Tg, U7, Us, Ug, W8, 1419, Zg, Z10. Giusti's 

classification was extended by Wall [52] so as to include the unimodular cases. 

It was noted in Wirthmiiller [54] that the discriminants of certain fat (that is, non- 

reduced) points allow a description as above, with ~ a torus embedding which is most 

conveniently described in terms of a root system of A type. This result will serve as a 

model for the cases at hand. Formalizing the construction of ~, we shall consider 

extensions of the classical Dynkin diagrams by some extra combinatorial data. These 
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extended diagrams ~ and their associated torus embeddings ~(~) are the subject of the 

first three sections of this paper. The construction proper of ~(~) is explained in 

Section 1 while in the following section we study geometric properties of ~=  ~(~) and 

its natural stratification. We also show that the quotient of ~ by the Weyl group 

W= W(~) (as well as certain finite extensions Win, m= 1,2 .... ) is an affine space with 

distinguished C*-actions. In the third section we look at the discriminant (the set of 

singular W-orbits) Ac~g/W from a topological point of view: we give a natural presenta- 

tion of the fundamental group of the complement ( ~ / W ) \ A .  

The next two sections are devoted to Giusti's series S~, (~>5). The main result 

(4.2) states that the discriminant D~S is isomorphic to the branch locus of the Galois 

cover ~Le(~)---~((~)/W(~)2 where ~ is a particular diagram labelled Dk[*], k = g - I .  We 

use this same label for the singularity itself, rather than Giusti's notation S~,. The proof 

of Theorem 4.2 occupies Section 4. The main point is to recognize a sufficiently big part 

of the semi-universal deformation as a family of hyperelliptic curves; there is a natural 

common target line for the canonical mapping of each curve, and this provides an 

intrinsic parametrization of the family by the branch points of the canonical mapping. 

The description of the discriminant includes a relation between the isotropy groups of 

the W-action on ~ and the types of singular fibres of the deformation; this is discussed 

in Section 5. As a by-result of the description of D we can show that the complement of 

D is an Eilenberg-MacLane space, thereby generalizing a result of Kn6rrer [24]. Finally 

we present a natural basis of the Milnor homology which is weakly distinguished (in a 

weak sense), and compute the intersection form. 

The next three sections deal with the singularities T7, Ts, T9, which we re-label as 

E61%], E71%], and Es[-X-], respectively. For these we obtain results analogous to those 

on Dk[-x-], except that we do not know whether the higher homotopy groups of S \ D  

vanish. The main result, describing the discriminant D, is Theorem 6.2. Though its 

statement is in perfect analogy with Theorem 4.2 its proof is rather different and 

occupies Sections 6 and 7. We first show that the general fibre of the deformation can 

be interpreted as the ramification curve of a double covering projection, the covering 

surface being a del Pezzo surface. This allows us to pass to a projective family of del 

Pezzo surfaces; these surfaces carry a distinguished anti-canonical divisor at infinity. 

The resulting situation is close to that studied by Pinkham in the simply-elliptic and 

simple hypersurface cases, the main difference being the type of the anti-canonical 

curves, compare Pinkham [39] and Merindol [34]. We go on to define a characteristic 

mapping between a cover of an open part of S and an algebraic torus; this map induces 

a morphism from that open part of S to the quotient ~g/W. In Section 8 we extend the 
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latter morphism over all S. To this end we study certain degenerations of the del Pezzo 

surfaces in question. Only in the E6[-x-] case these are themselves del Pezzo surfaces 

(with an ordinary double point) while in the other two cases the special surface acquires 

a cyclic quotient singularity of multiplicity 4 or 5. The degeneration is not realized on 

the Artin component of this singularity, so that the latter cannot be resolved in the 

family. In order to extend the characteristic mapping to the special surfaces we look for 

configurations of exceptional curves on the regular part of these surfaces. We then use 

the fact that such curves are stable under deformations, and apply classical knowledge 

of exceptional curves on del Pezzo surfaces to identify the curves in question on the 

general surface of the family. This finally allows to extend the characteristic mapping 

and conclude the proof of Theorem 6.2. 

In Section 8 we discuss some consequences of the results on Ek[-x-]. In particular 

we explain in some detail the intermediate position of Ek[-x-] between the simple 

singularity Ek and the simply-elliptic/~k. 

The final section takes up the construction of torus embeddings from Section 1. 

We use a recent construction of Looijenga [33] to assign spaces ~and  gT/W to situations 

involving a generalized root system (with infinite Weyl group). These results are the 

basis for a description of the discriminant of the unimodular space curve singularities 

Pkt--see the list in Wall [52]. Details will appear in a subsequent paper. 

1. Diagrams and cones 

Let 9 be a finite graph. A subgraph 9 '  of 9 is called full if it contains all edges of 9 

with both end points in 9 ' .  We consider graphs 9 with the following additional 

structures. 

(1) A valuation which assigns to each vertex of 9 its colour, black or white. In 

particular, this singles out full subgraphs ~olack and 9whit  e. 

(2) A weight function on the set of edges of 9 ,  with positive integral values. 

(3) An orientation of each edge in 9black with weight greater than 1. 

Clearly, if 9 ' c 9  is a subgraph, structures of the same type are induced on 9 ' .  The 

structured graph 9 is conveniently represented visually by drawing the underlying 

graph, with vertices coloured according to (I), and each (oriented) edge of weight l 

drawn as an/-fold (directed) line: 

�9 respectively ~ (1 = 3). 
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Graphs with only black vertices include the classical Dynkin diagrams of reduced root 

systems as well as their completions (but A1), compare Bourbaki [4], Chapter VI, w 

no .  2. 

We call ~ a diagram if the following axioms hold. 

(D1) ~ot~ck is the Dynkin diagram of a reduced root system (which may be 

reducible). 

(D2) ~white is discrete. 

(D3) Each connected component of @ contains a white vertex. 

(1.1) Examples. Diagrams of particular interest to us include the following types. 

Ak[a] 

Ak[a- 1, a] 

a vertices 

H ......... -~- ..... H 
a vertices 

H . . . . .  ~ . . . . . .  H 

Dk[-)(-] H 

......... V 
D~[-x-]2 H 

......... V 
Ek[~-] . . . . . .  O 
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Every diagram ~ gives rise to the following construction. We let A and B denote the 

sets of black and white vertices, respectively, and write I~l for the total number of 

vertices in ~. We fix a real vector space V of dimension 191, with dual space 

V`'=Hom(V, R), and choose embeddings 

A c V ,  B c V ,  and A- . A " ,"- V v 

O~ ~.:~ O~ v 

with the following properties. 

(Bi) A O B c V  is a basis of V. 

(B2) The embeddings of A in V and V`" form a root basis with Dynkin diagram 

fi~black, see Looijenga [28]. 

(B3) (fl, a ` ' ) = -  l if a E A and fl E B span an edge of weight I in ~, and (fl, a v ) = 0  if 

a and fl are not connected by an edge. 

Explicitly, the meaning of provision (B2) is this: for each a EA we have (a, a"  ) =2; for 

distinct a, a '  EA we require (a, a ' " ) = - I  and (a' ,  a`" ) = - 1  if there is a directed edge 

of weight I from a to a'; ( a ' , a ` ' ) = - I  if a and a' span an edge of weight 1, and 

(a ' ,  a "  ) =0 else. 

We let A c V  be the lattice spanned by A UBcV ,  put Vc=C|  V, and let 8r= Vc/A 

be the corresponding algebraic torus. Each base root a E A defines a reflection 

wo: x x-(x, a`')a, 

and thereby a finite root system R c  V is generated, with Weyl group WcGL(V) .  Note 

that R is a classical root system in the vector space RR~V. The Weyl group serves to 

define a natural partial compactification ~ of 8r, as follows. Let K c  V be the convex 

cone spanned by the W-orbits of all fl E B. Then K is a convex polyhedral cone in the 

sense of Kempf et al. [21], Chapter I. Furthermore K is rational with respect to A and 

does not contain any line. We let ~ be the equivariant affine embedding of 8r corre- 

sponding to K; compare [loc. cit.]. Clearly W acts on 8--, and this action extends to one 

on ~ permuting the 8"-orbits. 

As a matter of fact all these objects are assigned to the diagram ~, for up to 

canonical isomorphism in an obvious sense they do not depend on the choices made. 

The dependence on ~ will be indicated by the notation A=A(~),  V= V(~) etc. when- 

ever this is necessary to avoid ambiguity. 

The closed facets  of K are, by definition, the sets of the form 

(xeI,:l (x,x") =o) 



TORUS EMBEDDINGS 167 

�9 
v 

9 - ~ '  

Figure 1.4 

where x" E V v is a linear form which is non-negative on K. The closed facets may be 

described as follows. 

A full subgraph of @ that itself is a diagram will be called a subdiagram of @. If 

~ ' c 9  is a subdiagram then the cone K(9 ' )  may be identified with a subset of K(9). 

THEOREM 1.2. (a) For each subdiagram ~' ~ 9  the cone K(9') is a [g[-dimensional 

closed facet of K(~). In particular, K(9)c V(~) has non-empty interior. 

(b) Assigning K(9') to @' induces a bijection between the set of subdiagrams of 9 

and the set of W(9)-orbits of closed facets in K(9). 

Proof. This will be proved in Section 9 in a more general setting, see Theorem 9.5 

and the discussion following it. 

ff 9 '  is a subdiagram of 9 we define its complement 9 - ~ '  as follows. The sets of 

coloured vertices of 9 - 9 '  are 

A ( 9 - ~ ' )  = {aEA(@)\A(~')  I there is no vertex ~ of 9 '  such that a and y span an 

edge in 9}, 

B ( 9 - ~ ' )  = A(9 ) \ (A(9 ' )  U A ( 9 - 9 ' ) )  U B(9) \B(9 ' ) .  

Two vertices of 9 -  9 '  including a black one span an edge in 9 -  9 '  if they do so in 9.  

(1.3) Example. Let 9 be the diagram of type E6[-x-]. Then the complement of the 

encircled subdiagram 9 '  is as shown in Figure 1.4. 

It is clear from the definition that the actions of W(9') and W ( ~ - 9 ' )  on V(~) 

commute, so we have a canonical embedding 

W(~')x w ( 9 - 9 ' )  c w(9). 

PROPOSITION 1.5. The stabilizer of the closed facet K(9') is W ( 9 ' ) •  

Proof. See Proposition 9.12. 
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A vertex ), of @ is called extremal if the full subgraph of ~ obtained by deleting the 

open star of 7 is a subdiagram. To each extremal vertex 7 corresponds an extremalform 
V xy E V"(~) which takes value 1 on 7 and vanishes on all other vertices of 9. 

Applying Theorem 1.2 to the faces of K we obtain: 

COROLLARY 1.6. The union o f  the W-orbits o f  extremal forms is a basis o f  the dual 

cone K"={xVEVV[x"~O on K}. Q.E.D. 

(1.7) Examples (the encircled vertices are the extremal ones): 

Ak[a] 

Ak[a- 1, a] 

Dk[-x-] 

(1.8) Remark. In general, the W-transforms of extremal forms fail to generate the 

semi-group K" N A v. 

Let ~ be a diagram and ~ ' c  ~ a subdiagram. There is a canonical exact sequence 

o--, v(~')-~ v(~)-~ v(~-~ ' ) -~  o 

of W(~')x W(~-@')-modules. In the next section, the following proposition will serve 

to describe the local geometry of ~t~ 

PROPOSITION 1.9. The cone ~rK(~)cV(@-~') is spanned by the set 

W(@-~') .B(~-@').  

Proof. An obvious induction reduces this question to the case I~']=l. Then ~ '  

consists of a single white vertex fl', and we have 
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A' := A ( ~ - ~ ' ) =  (a EA(~) I (f l ' ,a  v ) =0} 

B' : = B ( ~ - ~ ' )  = {a EA(~)I (/3', a " )  <0} U B ( ~ ) \ { f l ' ) .  

We put W ' = W ( ~ - ~ ' ) ;  let us show that W'B'=zK(ff)). Clearly, we have 

B(~) \{ / f '}=: rK(~) .  If aEA(~) is such that (fl', a " ) < 0  then wa(fl ')=fl '-(/3 ', a v) a 

implies that 

- (fl', a )  :ra = z ( f l ' -  (fl', a"  ) a) = :~waQ3') E z(W(~)fl ') = :~K(~). 

Thus B ' c z K ( ~ ) ,  and the inclusion W'B'c:rK(~) follows as :~ is W'-equivariant. 

It remains to prove that ~(W(~).B(~)) is contained in the cone spanned by W'B'. 
Thus let fl E B(~) and 7 E W(~)fl. Choose an element w E W(~) of minimal length l(w) 
such that 7=wfl, see Bourbaki [4], Chapter IV, w l, no. 1 or Looijenga [28], (1.5). We 

prove that :W E Z+(W'B'), by induction on l(w). The case l(w)=O is trivial. If / (w)>0 we 

know from Looijenga [28], (1.11) that there is a base root aEA(~) with (7, aV) >0. 

Then l(wa w)=l(w)-l, and by the inductive hypothesis zwa(7) belongs to Z+(W'B'). 

Now a belongs to either A' orB ' .  In the former case we note waE W' while in the latter 

we write 7=waT+ (7, a")a .  In either case it follows that 7EZ+(W'B'),  and the proof 

is complete. Q.E.D. 

2. Geometry of the torus embedding 

Let ~ be a diagram. The variety ~(~) is stratified by orbits under the action of ~(~),  

and these orbits correspond bijectivity to the (closed) facets of K(~), see Kempf et al. 

[21], Chapter I. We wish to describe the geometry of ~f(~) along the orbits in terms of 

the subdiagrams of 9,  taking into account the action of the Weyl group W(~) on ~(~). 

More generally, let Q(~)=ZA(~) be the root lattice and consider the semi-direct 

product 

ff, m(~) = (_1 Q(~)+A(~))" W(~) 
m 

where m is any positive integer. This group acts naturally on V(@) and ~(~); dividing 

by the kernel of the latter action we obtain an action of the finite group 

_1 Q(~)+A(~) 

Wm(~ ) = m W(~) 
A{~) 

on ~ ) .  The Weyl group is recovered as the special case m= 1. 
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For each subdiagram ~ ' c ~  we let 3-~,c~(~) denote the ff(~)-orbit correspond- 

ing to the facet K ( ~ ' ) c K ( ~ ) .  The open star of 3-~, is the union of all 3-(~)-orbits that 

contain ff~, in its closure; we denote it by St 3~,. Recall from Kempf et al. [21], p. 15 

that there is a canonical ff(~)-equivariant retraction of ~tf(~) to the closure of 3-~,, with 

St 3"~, the inverse image of 8-~,. We let 

r: St ff~,--> ff~, 

be the restriction. From the complex analytic point of view, r is a locally trivial fibre 

bundle with typical fibre ~f(~'). Finally, we let Wm(~)~' be the stabilizer of 3-~,; this 

subgroup of W,,,(~) consists of all elements that send 3~, onto itself. The stabilizer is 

determined as follows. 

with 

PROPOSITION 2.1. lfCm(~)~' is the semi-direct product 

G~, = _I (Q(~) 13 A ( ~ - ~ ' ) ) .  W ( ~ - ~ ' )  = 1 (Q(~)/Q(~,)). w ( ~ - ~ ' ) .  
m m 

In particular lTVm(~)~, contains the direct product I~lm(~--~')Xl4lm(~') as a normal 

subgroup. 

Proof. By Proposition 1.5, the stabilizer of K(~') in W(@) is W ( ~ - ~ ' ) x W ( ~ ' ) .  

The proposition follows because I~'m(~)~, includes all translations. Q.E.D. 

The geometry of the ~r(~)-orbits is given by 

PROPOSITION 2.2. The canonical isomorphism 

= = 

extends to an isomorphism between the closure ~Y~, and ~ ( ~ - 9 ' ) .  

Proof. This follows at once from (1.9). Q.E.D. 

The proposed description of ~f(@) along 3-~, is achieved by the following theorem. 

THEOREM 2.3. (a) There exists a finite ~tale Galois cover e: ~-__>~r~, such that 

base change by e trivializes the retraction r. More precisely: there is a morphism ~ such 

that the diagram 
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~ x ~ ' )  ~' , St fie, 

~_ e ' f i e '  

(2.4) 

exhibits J'x~f(~) as a fibred product. 

(b) The action o f  Wm(~)e' lifts to # and J-x~f(~), making the diagram (2.4) 
equioariant. The lifted actions o f  l~'m(~)e, cover those o f  the Galois group. 

(c) The subgroup ff 'm(~-~')x 14"m(~')Cl~m(~)e' acts on ~x,~(~') like the direct 

product o f  a l~m(~-~')-action on ~r and the natural l~m(~')-action on ~ff@'). The 

induced effective action o f  l~'m(~)e'/(ff'm(~--~')Xl~'m(~')) on ~ / W m ( ~ - ~ ' ) X  

~f(~')/Wm(~') is free, so there is an Otale e that makes the diagram 

~-x ~ ' )  ~ , St ,~-~, 

[ e [ 
~'/Wm(~-~')X~ff(~t)/lTllm(~ ') ) St ~'~,/]/{lm(~)~, 

commutative. 

(d) ~r may be chosen a direct product o f  algebraic tori 

CQ(~- ~ ' ) /Q(~-  ~') x ~" 

such that the quotient morphism J---,j-/l~r factors like 

CQ(~- ~')/Q( ~ -  @') x if-' 

CQ(~_ ~,)/IQ(~_ I e' 1 ~,) w ( ~ - ~ , ) x  ~r, , ~r ~ ' )  

for some ~tale Galois cover e'. 

Proof. Let P: V(~)--,V(~) be the projector onto the fixed space of W(~'): 

e t =  wt/Iw( ')l, 
w 6 W(~') 

and put U=PV(~-~'). As the action of W(~') on V(~)/V(~') is trivial U is a W ( ~ - ~ ' ) -  

stable complement of  V(~') in V(~), and P induces an equivariaflt isomorphism 

P': V(~-@')--~U. (See Figure 2.5.) 



172 K. WIRTHMULLER 

+ + + + 

+ + V(~') 
4- + + + 

+ 4- + 
+ + + + 

+ + + 
+ 4- + + 

t I I 

+ + - 4 - 4 - 4 - /  

+ + + / + +  

4- . ; ~  + + 
g / 4- + - 

+ + + 

+ + + + + /  

§ + / + +  

I I I 
+ + + + 

+ + + 
+ + + + 

+ + 4- 
+ + + + 

+ § 
+ + + + 

Figure 2.5 

v(~-~ ' )  

P 

U 

Provisionally, we put 

~ =  CU/(A(~) fl U); 

this is an algebraic torus because U is rational with respect to A(~). As P induces the 

identity on V(~)/V(~') we have 

A(~) A U c P A ( ~ - ~ ' ) .  (2.6) 

Thus the inverse of P'  induces an 6tale covering morphism e: 3---->3-~, with Galois 

group PA(~-~ ' ) / (A(~) f l  U). Likewise, the square diagram (2.4) is induced from the 

diagram 

uxv(~') 

p r  

U 

(A(~) N U)xA(~ ' )  , A(~) 

A(~) n U , A(@-9 ' )  

p,-1 

, v ( ~ )  

projection 
along V(@') 

, V ( ~ - ~ ' )  

(2.7) 

of vector spaces and lattices. It now is straightforward to verify (a). 

We put on Ux V(~') the unique action of l~'m(~)~' that makes the isomorphism at 

the top of (2.7) equivariant. I~'~(~)~, then acts on the whole diagram (2.4), and (b) 

follows. 

ff ' , , ,(~-~')Xff'm(~') acts like a direct product as claimed, for Q ( ~ - ~ ' )  is con- 

tained in U. Furthermore all elements of l~m(~)~'/(l~"m(~--~')XWm(~')) are repre- 

sented by translations in ( l / m ) Z B ( ~ - ~ ' ) .  If any of these, say ~, has a fixed point on 
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J-/Wm(9-~') it must satisfy PyEA(~)NU,  hence P y E P A ( ~ - 9 ' )  by (2.6). As 

PIV(~-~') is injective this implies y E A ( ~ - ~ ' )  and it follows that 

7 = PY+0 ' -Py)  E (A(~) N U)xA(~ ' )  

acts trivially on ~ x  ~(~') .  This proves (c). 

Let A ' c A ( 9 ) N U  be the fixed lattice under the action of W ( 9 - ~ ' ) .  Then 

Q ( ~ - 9 ' ) + A '  is a sublattice of finite index in A(~)N U, and we may replace the former 

choice of ~-with its 6tale cover 

J-= C U/(Q(9- @') + A') = C Q( 9 -  ~')/Q( ~ -  ~') x CA'/A'. 

This substitution does not affect the already proven parts of the theorem. Part (d) now 

follows in view of the exact sequence 

1 Q(~_  ~,) + P A ( ~ -  ~')  

o--, Q(9-~')+A'  w ( ~ - 9 )  Wm(9-~) m ! a ( ~ - 9 ' ) + A '  

/7"/ 

Let rE J-~,c~(9) ,  and choose a t E  V(9)c representing it via 

v(~)c--, ~-(~)/~-(~') = e%. 

The set 

Q.E.D. 

Rr= {aER(9-~' ) l (  t, aV) E ~ Z} 

is a root system in V(@-9 ' )  and does not depend on the particular choice of t. Let 

W(ROcGL(V(9-9')) be its Weyl group. 

COROLLARY 2.8. In the automorphism group of ~#(~), the isotropy group Wm(~)r 

is conjugate to the group 

W(ROXWm(~') = Win(9). 

Proof. Using the notation of the previous proof we may choose t in C U. Note that 

(l/m) Q ( ~ - 9 ' )  W ( 9 - 9 ' )  acts on CU like an affine Weyl group. Therefore the isotropy 

group 
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is generated by reflections, see Bourbaki [4], Chapter IV, w 3, Proposition 1. Transla- 

tion by t identifies this isotropy group with W(RO. The diagrams from Theorem 2.3, 

parts (c) and (d), combine to yield 

CQ(~- ~')/Q( ~ -  ~') x ~ ' x  ~( ~') 

CQ(~_ ~,)/IQ(~_ ~, ) l W(~- ~') X ~'X ~ff(~t)/~tm(~' ) 

, St ff-~, 

t 
e" , St J'e,/Vilm(~)e, 

(2.9) 

with 6tale Galois covers ~ and e". From this diagram it is clear that the subgroup 

Wm(~ ) ~lm(~) ( 1  Q(~_~,)W(5~-@')) ,x  " ' c  

projects into Wm(~)r. In fact, its image is all Wm(~)r. For, any g E Wm(~)T lifts to an 

element ~E Wm(~)t, and as e" is 6tale ~ acts on CQ(~-~')/Q(~-~')xf f- ' •  like 

an element of ( l / m ) Q ( ~ - ~ ' ) W ( ~ - ~ ' ) x  ff'm(~'). AS t E U acts trivially on ff'm(~') we 

obtain 

t-lWm(~)rt = W(R~)x Wm(~' ) r- Wm(~ ) (2.10) 

and the proof is complete. Q.E.D. 

Among the objects associated with the diagram ~ and the integer m the one of 

principal interest in view of its bearing on deformation theory is the discriminant 

Am(~). This is, by definition, the reduced branch locus of the quotient morphism 

~o( ~)__.> ~( ~)/Wm( ~). 

Similarly, i f R c V  is a root system with Weyl group W(R) we use the symbol A(V, R) to 

denote the discriminant (that is, the reduced branch locus) of Vc-->Vc/W(R). 

In terms of local complex analytic geometry the substance of Theorem 2.3 reduces 

to the following. 

COROLLARY 2.1 1. The germ of  the pair (~a(~)/Wm(~), Am(~)) at r is equivalent to 

the cartesian product o f  the germ 

(v( ~- ~')c/W(R,), A(V( ~- ~'), RO) 
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at the origin with the germ 

( ~ff( ~')/Wm( ~') ,  Am( ~')  ) 

at the J-(@')-fixed point o f  ~C(~'). 

Proof. See (2.9). Q.E.D. 

W(RO that occur for some rE ff~, are exactly the (2.12) Remark. The groups 

linear parts of the isotropy groups of the affine Weyl groups Q ( ~ - ~ ' )  W ( ~ - ~ ' ) ,  acting 

on C Q ( ~ - ~ ' ) .  This is clear from the definition of R~. 

The global geometry of ~/Wm is determined by the invariant theory of Win, which 

is similar to the exponential invariant theory of root systems as described in Bourbaki 

[4], Chapter VI, w 3, and Looijenga [28], Section 4. Let us fix a diagram ~ as well as an 

integer m>0. If ~(~)  denotes the coordinate ring of ~ then  ~ / W  m is the spectrum of the 

subring ~(;~)w,, of invariant functions on if'. We also introduce the ~(~0Wm-module of 

anti-invariant functions, this is 

~(~) -wm = {rE ~(~Olwf = Z(w) f  for all w E Win} 

where X: Wm-'->{ +1 } is the character that coincides with the determinant on W and is 

trivial on translations. 

To describe the structure of ~(ff)+w,~ let A~=Hom (A, Z ) c V  v be the dual lattice; 

then 

~(~) = C[A v N K"] 

is the C-algebra of the semi-group A" n K". Likewise we have 

~(2~r fl K ~] with A : = H o m ( 1 Q + A , Z )  c W.  

ff we let e~ denote the character corresponding to p EA,~ each function 

fE  C[Am ~ N K v] can be written in a unique way as a finite sum 

We put" 

f =  ~ fpe p (fpEC). (2.13) 
pEAVflK v 

Supp(f )  = {p EA,~ N KV[fp:~0}. 

12-868286 Acta Mathematica 157. Imprirn~ le 12 novernbre 1986 
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The lattice A~ carries a natural partial order given by 

p <~p'r {(p'-p)/m is a sum of positive dual roots}. 

The maximal support Max Supp (f) is, by definition, the set of maximal elements in 

Supp (f). For f as in (2.13) we call 

In ( f )  = ~]  fp e 
p EMaxSupp(f) 

the initial form off .  
Let {a*la EA} U {fl*lflEB} be the basis of Am ~ that is dual to the basis 

{ l a l a E A }  U B c l  

and put 

aEA 

THEOREM 2.14. Let Sr E ~(  ~) wm (TEA UB) and J E ~( ~) -Win be functions with ini- 

tial forms In (St) = e 7., In (J) = e ~ Then the homomorphism 

C[X~]~A OB~ ~(~w. 

sending the indeterminate X r to S r is bijective. Multiplication by J restricts to a 

bijection 

~ (  ~o w m ~ ~t( ~ )  - w-.  

Proof. The relevant part of the proof in Looijenga [28], (4.2) applies verba- 
tim. Q.E.D. 

(2.15) Remark. A possible choice for S t a n d  J is 

Sr = E ewe* (= I V~ �9 ewe* if 7 E B), 
w E W  

J = E (det w) e ~Q*. 
w E W  

COROLLARY 2.16. ~g/Wm is an affine I~l-space, and for each stratum ~-~, in ~, the 

closure ~'~, maps to an affine subspace. The inoariant polynomial j2 generates the 

ideal of  A m in ~(~)wm. 
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Proof. ~g/W m is the spectrum of ~(~e) Win, and the ideal of the subvariety in question 

is generated by those Sy=Ewew e~* with y a vertex of ~ ' .  This proves the first 

statement. Let W+~cWm be the kernel of the character Z, and let A ' c ~ / W  m be the 

discriminant of the branched double cover ~g/W+~g/Wm . We claim that A m and A' 

coincide. For let v E $-have a non-trivial isotropy group in W m. By Corollary 2.8, (Wm) ~ 

contains a reflection, so r maps to A'. If r E ~belongs to a if-orbit of codimension one 

we may assume rE ~-~,c~for  some subdiagram ~ ' c ~  consisting of a single white 

vertex. Then the same reasoning applies to show t h a t r  maps to A'. Thus A m and A' 

coincide in dimension I~1-1. As ~ and ~/W~ are normal varieties the theorem on 

purity of branch loci, Nagata [36], (41.1) makes sure that both A m and A' are hypersur- 

faces in ~g/W m, and the claim follows. This also proves the corollary as j2 clearly 

generates the ideal of A'. Q.E.D. 

Given a diagram ~ and a positive integer m there is a diagram ~,~ which differs 

from ~ only by the weights of the edges joining black to white vertices: in ~m these are 

m times those in ~. The notation Dk[-X-]2 in (I.1) is consistent with this definition. The 

following is easily seen: 

COROLLARY 2.17. The discriminants Am(~) and Al(~,,,) are canonically isomor- 

phic. Q.E.D. 

(2.18) Remark. Looijenga's proof of Theorem 2.14 consists in an algorithm that, in 

principle, allows to compute j2 as a polynomial in the Sy. 

Let C* denote the multiplicative group C \{0} .  As any diagram obeys axiom (D3) 

the fixed lattice A w intersects the interior of K non-trivially. Each element to E A w N K 

determines a C*-action on ~ which extends to a morphism Cx~--*~. As this action 

commutes with Wm a C*-action on ~g/W,,, is induced. 

PROPOSITION 2.19. The induced C*-action on ~/Wm is equivalent to the linear 

action with weights (to, 7*)(~EAUB). These weights are non-negatioe; they are all 

positive exactly when to lies in the interior o f  K. The discriminant Am is a quasi- 

homogeneous hypersurface with respect to these weights and its degree is 

2Ea~a (to, a*). 

Proof. We know that the forms 7" are non-negative on WB. Therefore, if to is in the 

interior of K the integers (to, 7*) are all positive. Conversely, if this is the case then in 
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particular (w, l" )>0 holds for each extremal form I v. As oJ is W-invariant this is still 

true if l" is in the W-orbit of an extremal form. Then, by Corollary 1.6, to is in the 

interior of K. 

The rest of the proposition follows at once from Theorem 2.14 when the special 

choice (2.15) for S r and J is used. Q.E.D. 

3. The fundamental group of the complement of the discriminant 

Let ~ be a diagram and fix an integer m>0. The purpose of this section is to describe a 

natural presentation of the fundamental group gtl((~/Wm)~Am). For the result see 

Theorem 3.10 below. A special case was already done in Wirthmiiller [54], Section 4 by 

the same method. 

In view of Corollary 2.17 it suffices to consider the case m= 1. We first study the 

action of W on :3r. By definition it is induced from an action of W=AW on the universal 

cover Vc. The group W as well as the affine Weyl group W':=QW act on Vc by affine 

transformations, and together with the group of translations ZB they fit into the exact 

sequence 

0--, W'--> if'---> ZB--> 0. (3.1) 

At this point it is convenient to introduce a bit of general notation. Let X be a 

topological space with a properly discontinuous group action (assumed to be implied by 

the context). For such X we let X ~eg denote the union of all regular orbits, that is, the 

open subset of points with trivial isotropy group. In this notation we may write 

( ~g/W) \ A = ~eg /W.  

The fundamental group of V~c~/W ' may be computed by the method of Brieskorn 

[7] and will turn out to be an Artin group, see Brieskorn and Saito [8]. Let fi~ be the set 

of vertices of the completed Dynkin diagram ~blaek; thus A \ A  is in one-to-one 

correspondence with the irreducible factors of the root system R. The embedding of A 

in V is extended naturally by assigning to each irreducible factor of R minus its greatest 

root. Similarly we have fi, c V  v , and this embedding defines the fundamental alcove 

C = {a v > 0 if a EA; a v > - 1 if a E A \ A }  c V. 

C is a fundamental domain for the action of W' on V ~eg, and W' is generated by the 

reflections in the walls of C, 

f x - ( x ,  a") a (aeA) 
W _ :  X ~--~ "~ 

[ x - ( l + ( x ,  aV))a (ae .4 \A ) ,  
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Figure 3.2 
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see Bourbaki [4], Chapter VI, w 2, no. 1. Let s EVc be the barycentre of the bounded 

set CnRQ.  The projections of s in V~g/W ' and V~cg/Wwill serve as base points for the 

fundamental groups. For each a E,4 we let L ~ (and L~)be the real (or complex) affine 

line through s and w~(s). The element 

eg i a~ 6 ~l(V~ /W ) 

is, by definition, represented by the path in L~ that follows the real segment joining s to 

wa(s) but avoids the point of intersection with the reflection hyperplane of wa on a 

small positively oriented semi-circle (see Figure 3.2). 

LEMMA 3.3. ,7~l(Vr~g/w ') is the Artin group with generators aa(a Eft,) and relations 

according to the completed Dynkin diagram ~black" 

Proof. This is the extension of the result of Brieskorn [7] to affine Weyl groups; the 

proof is virtually the same as Brieskorn's for finite reflection groups. Q.E.D. 

Next we study the covering projection 

 g/w = 

with Galois group ZB (as the latter still acts freely on Vc/W' the apparent ambiguity in 

the notation does not matter). For each fl E B let w~ be the unique element of W' that 
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Figure 3.4 

sends C to the alcove C-ft .  As ft. w# E 1~' leaves C invariant it induces a permutation on 

,d, which we denote a~-->fl(a). We split fl=fl' +fl" into fl' E RQ and a W-fixed part fl". (See 

Figure 3.4.) Then the segment connecting s to s+fl" projects to a loop in ~ceg/l~ ' and 

defines a homotopy class 

Clearly the h# (flEB) represent a basis for the Galois group ZB. The action of h# on 

:h(V~gIW ') is read off from Figure 3.5. The unlabelled path is the image of the path 

defining a a under the transformation fl.w~ E 1~'. As it is clearly homotopic to h~la#~a)h# 

we see that 

h~ia~a)h~ = a~ (3.6) 

holds in :rl(~g/Vr This describes the action of ZB on :rl(V~g/W ') completely, and we 

have shown: 

LEMMA 3.7. :rl(lf~g/l~ is the extension of  the Artin group :rn(lf~g/W') by the free 

abelian group ZB, acting via (3.6). Q.E.D. 

We finally determine :rl(~eg/W). Let ~"  be the union of f f  and the one-codimen- 
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0 ~  r 

�84 , 

wfl(~) C 

�9 w- S + f f '  

"xafl(a) I ~fl 
C 

Figure 3.5 

ca  

sional if-orbits in ~. As ~IW m is smooth the inclusion ~ " c ~ i n d u c e s  an isomorphism of 

fundamental groups zq(~"rww)--~rl(~eg/W). In order to obtain ~*g/Wfrom ~ " r w w  

one has to remove a finite number of closed connected complex hypersurfaces, one for 

each t5 E B. Therefore the canonical homomorphism 

(3.8) 

is surjective and the kernel is generated, as a normal subgroup, by loops of the 

following type. For each/SEB let f ~  be the corresponding if-orbit, and choose a 

disc in ~g"reg/W which meets the image of i a  N ~reg transversely in a single point. 

Then consider a loop that first connects the base point s to the boundary of the disc, 

then goes once around the boundary, and follows the initial part back to s. 

We make a particular choice as follows. Let L~c be the complex affine line through 

s and s+/5 (see Figure 3.9). The shaded region plus the point s+i~/5 project to a disc in 

~g"~r and the arrows indicate a path of the desired type. Using the decomposition 

/5=/5'+/5" we may deform this path into a product atjh~ 1 where h~is as above and a~is 

s-/5 
Figure 3.9 

s+ifl 
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represented as follows. Connect s linearly to s-fl '  but avoid the reflection hyperplanes 

on small positively oriented semi-circles in the complex line through s and s - f t .  
Finally, we sum up the results of this section. 

THEOREM 3.10. The fundamental group .7/~l(~reg/w) is the quotient of the Artin 
group 

(a~laEA) 

by the normal subgroup generated by the relations 

a~l aa~,oaa=aa (aEA, flEB) 

a#a#,=a#,a# (fl, fl' eB). 

The element a,E (a~laEA) may be determined as foUows, l f  wa~ W' is written as a 
word of minimal length in the generating reflections 

w~=w~'... 'w~, (al, ..., arEA) 

then 

a #  = a a l  � 9  �9 aal. 

Proof. All but the characterization of a# follows from the discussion preceding the 

theorem. In our geometric setting the canonical homomorphism from the Artin group 

(aalaEA) to its associated Coxeter group--see Brieskorn and Saito [8]--is just the 

homomorphism zq(V~cg/W')-,W' that describes the Galois cover V~g--,V~g/W'. Thus a 

representative path in Vr~ g, starting at s and ending at tE W's, is sent to the unique 

w E W' with t = ws. Now recall the definition of aa and consider the real segment joining 

s to s-fl'. Of course, this segment can meet each reflection hyperplane at most once, 

and after a C~-small deformation in V it will also meet only one at a time. 

Such a deformation determines a new path representing aa, and in view of the 

orientation convention a# is thereby expressed as a word in the aa(a EA). In W' this 

word projects to a representation of wa as a word in the wa. The length of this word is 

the number of reflection hyperplanes that separate s and s - i f ,  and therefore is minimal 

among all such representations of w#. On the other hand all words in the a~ with this 

minimality property represent the same element in the Artin group (a~laEA). This 

follows from Tits [45], Th6or~me 3 (alternatively, a geometric proof is that of Deligne 

[9], (1.12)). This completes the proof of the theorem. Q.E.D. 
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4. Dk[-x-]: The discriminant 

We fix an integer k~>4 and consider the affine algebraic space curve 

Xo = { X  2 = y2+zk-2, yZ = 0} C C 3. (4. l) 

Xo is always reducible; depending on the parity of k there are three or four components 

which are all defined over the reals. 

The singularity of type Dk[-X-] is the analytic equivalence class of the germ (X0, 0) 

at the origin. We let C* act linearly on C a with 

weight(x) = weight(y) = 2k-4 ,  weight(z) -- 4. 

The semi-universal deformation of (Xo, 0) has a global C*-equivariant representative 

x-~ s 

with affine spaces X and S. We let D c S  be the discriminant of :r. 

Recall the diagram Dk[-x-], 

H . . . . . . . .  

introduced in (1.1). 

THEOREM 4.2. There exists a C*-equivariant isomorphism 

r 

~E(Dk[-~ I)/W2(Dk[ ~r S 

which respects the discriminants, that is, O(A2(Dk[*]))=D. 

The proof of this result is the purpose of the present section while supplements and 

consequences of the theorem will be discussed in the next. 

Using the criterion of Kas and Schlessinger [20] a semi-universal deformation of 

(X0, 0) may be constructed explicitly. We let pk-2 be the affine (k-2)-space of  unitary 

polynomials of degree k - 2 ,  
k - 3  

p(Z) = zk-2 + ~ psZ s, 
j=o 



184 r.  WIRTHMULLER 

and put 

S = {(b, u, v,p)} = C a x P  k-2. 

We let X c S x C 3 = C ~  be the variety 

X={y2z -,2+2by+p(z)~;ux+u J 

then the projection X--~ S is a semi-universal deformation of (X 0, 0), the special fibre X 0 

sitting over (0 ,Z k-2) E C3xpk-2=S. This deformation carries a C*-action given by the 

following table of weights. 

x y z b u v pj 

2k-4  2 k - 4  4 2 k - 4  4 2k 4 ( k - j - 2 )  

Table 4.3 

The fibres of ~t may be compactified by embedding C 3 in a suitable weighted projective 

space ( 'espace projectif anisotrope' in Delorme [10]). For  any sequence (ao, a l  . . . . .  a,,) 

of positive integers, any n of  which are relatively prime, we let ~ , a~  ..... an be the 

projective n-space with weights (a0, a I . . . . .  an). I f  (x 0, x I . . . . .  x n) E C n§ is a non-zero 

vector [x0: xl: ...:xn] will denote the point of 1~%,~ ..... ~ represented by it. Any integer ! 

defines a sheaf ~ / )  on ~ , ~ ,  ..... ~;  its local sections are the homogeneous regular 

functions of  degree l (with respect to the weights). ~ / )  is a reflexive sheaf of  rank one; 

it is invertible exactly if a0, a 1 . . . . .  a n all divide l, see [loc. cit.], 1.5. 

Returning to the situation at hand, we define the integer m by 

k = 2 m + l  or k = 2 m + 2  

and embed C 3 in I~lmml, sending (x, y, z) to [1: x: y: z]. We let Y be the closure of  X in 

~mm~,s; thus ~r extends to a projective morphism Y--~S. The polynomial p has the 

homogenized form of degree 2m 

p(w, z)  = W2-p(Z/w), 

and Y is defined in P~lmml, s by the equations 
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x 2 = y 2 + 2 b w m y + p ( w ,  Z), (4.4) 

yz = UWX+VW m+l. 

Let Zc~mm~,S be the relative surface defined by the second equation (4.4), and let Z s, 

be its restriction over S ' = S \ { u = O } .  

PROPOSITION 4.5. There exists an S'-morphism L: Zs,--->Pls , which makes Z s, a 

smooth family o f  rational ruled surfaces with invariant m - 1 .  

Proof. The morphism L is defined by the formula 

L([w: x: y: z]) = [w: z] = [y: ux+vwm]. 

A straightforward computation proves that Zs, is smooth over S', and that the fibre of 

L over [~: ~/] E p1 is the smooth rational curve 

~riw = ~z , } 3 
Ltr := [r/y = ~(ux+vw )J = elmml,S'" (4.6) 

It remains to determine the invariant of the ruled surfaces Z~(s E S'). To this end we 

consider two particular sections of L, 

X0:[~:r/]~__> [~:-Vu ~m:o:r/] 

E~o: [~: r / ] ~  [0: r/: u~: 0]. 

Ambiguously, we use the same symbols Eo and E~ to denote the images of these 

sections in Zs,. Note that Eo and E oo do not intersect. 

The homogeneous forms w m and y are sections of the invertible sheaf ~m)  on 

I~lmm v On Z s, they cut out the divisors 

( w i n )  = E| 11, (4.7) 

respectively 

(Y) = Eo+Lto: 11. (4.8) 

Fix s E S'. Letting L denote the divisor class of the lines on the ruled surface Zs we 

compute intersection numbers in Zs: 

EZ+2m = (w") 2 = (w m) (y) = m+ 1, 
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Loo 

: 1: I:0] 

[ 0 ~  X~ 

k even 

Figure 4.10 

Loo 

[0: 1: +1:0] 

k odd 

hence E ~ = - ( m - 1 ) .  On a ruled surface the only section with negative self-intersection 

number is the section at infinity--see Hartshorne [17], Chapter V, Proposition 2.20. 

This completes the proof. Q.E.D. 

It will be convenient to use an affine coordinate on the base p1. When doing so we 

shall identify [1: r/] E P ~ with r/EC, and [0: 1] with infinity. 

We now turn to the fibres of the completed deformation Y ~  S. 

PROPOSITION 4.9. Y is a f ia t  curoe o f  arithmetic genus m over S. I ts  points  at 

infinity, that is, on ZN {w=0}=E~o UL| are as shown in Figure 4.10. 

Proof. The stated behaviour at infinity follows at once from the equations (4.4). In 

particular Y-~ S is smooth at infinity, so it is flat everywhere. It follows that the 

arithmetic genus of the fibre Ys does not depend on the choice of s E S: Hartshorne [17], 

Chapter III, Corollary 9.10. We choose s E S' and apply the adjunction formula in Z s 

(p the arithmetic genus, ~ the canonical divisor class): 

2p(Y~)-2 = deg ~(Y) 

= (~(Z~)+(L))" (L)  

= (-2(E |  1) L+2(wm)) �9 2(w m) 

-- 2m-2 ,  

using (4.7). Q.E.D. 
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Note the intersection number 

L.(Y~) = 2 i n Z s ( s E S ' ) .  

L 1 For general s E S' the curve Y~ together with the projection Y,---> P, is hyperelliptic (in 

order to include the case m= 1 we use the term 'hyperelliptic curve' as a synonym for 
L 1 'branched double cover of pl,). The S'-morphism Ys' ~ Ps' fails to define a family of 

hyperelliptic curves because it is not finite: for special values of s the curve Ys may 

contain one or both of the lines L+_,cZ~. Nevertheless it is possible to relate Ys' to a 

true family of hyperelliptic curves by a suitable modification of the relative surface Zs,. 

We construct Z from Zs, by blowing up the S'-valued points [0: +I:  1: 0] E Eoo, and 

let 17, go, E~o, /~  denote the strict transforms of Ys', Eo, E o o, L~, respectively. The 

natural map I7"---> Ys' is an isomorphism because Y is smooth along the centres of the 

blowing-ups. s and s  are smooth S'-families of exceptional curves of the first kind 

on Z. By Castelnuovo's criterion they can be blown down to S'-valued points. Let 

Z ~  S' be the resulting surface over S', and let 17, E0,and Z| the images of I 7, S 0, and 

~| in Z. It is clear by construction that/~ induces an S'-morphism L: Z--->P~,. The 

situation is summarized in the diagram of S'-morphisms: 

Zs, = Ys ,~ ~- 17 , f"  c 2 (4.11) 

[, gives Z the structure of a smooth family of ruled surfaces over S',  all with invariant 

m+ 1, for each individual surface Zs (s E S') is obtained from Zs by two elementary 

transforms with centres on the section at infinity--Nagata [35], Section 2, (3). 

Note that the restriction 17"-~ L P~, is a finite morphism of degree 2 and therefore 

defines a flat family of hyperelliptic curves over S'. This fact will now be used to 

trivialize the family Z-~  S'. We first set up models for Z and 17. 

A standard model for the ruled surface Fro+ 1 (with invariant m+ 1) is obtained from 

the weighted projective plane P~, 1, m+l by blowing up the singular point at [0: 0: 1]. The 

structure of a ruled surface is given by the projection 
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I: Fm+I---> P 1, 

induced from ~ ,  1,m+l 3 [~: ~/: ~] "-'> [~: ~/] E pl. The exceptional divisor of the resolution is 

the section at infinity e~CFm+ 1. 

With S' =Spec ~ we haveP~,=Proj ~[-~, H]. As the branch locus of s I:'-->P~, is a 

hypersurface in P~, its ideal is generated by a homogeneous polynomial 

g(E,H) E ~[E, HI of degree 2m+2. To make g unique we require that the inhomogen- 

eous polynomial g(H): =g(1, H) be unitary. For all s E S'  the point oo E p1 is either no 

branch point (k=2m+2) or a simple branch point (k=2m+ 1) of s I?s--> P~, see Figure 

4.10. Therefore the degree of g(H) is exactly k. Our model for I7" is the relative 

hyperelliptic curve 

GcFm+l ,s ,  

with equation ~2=g(~,  r]). 

THEOREM 4.12. There exist exactly two Pls,-isomorphisms 

- tp 
Z--> Fro+l, s, 

with q0(5~o)=o~o and qg(I?)=G. 

Proof. We first show that there are exactly two P~,-isomorphisms I7"--% G. Such a ~p 

is the same as a P~,-map between the branched covers I?--->S' x P~ and G--->S'x P~ which 

is a mere homeomorphism (with respect to the classical topology). For I7" is a hypersur- 

face in the smooth variety Z, and is regular in codimension one, hence is normal. 

Likewise G is normal, and in view of Riemann's extension theorem every P],-homeo- 

morphism ~p is biholomorphic. In fact, ~p is even algebraic as its graph is an irreducible 

component of the algebraic variety I?Xs,• by Grothendieck et al. [15], Expos6 XII, 

Proposition 2.4. 

To solve the topological problem we look at the restriction of the branched double 

cover I?--->S'xP l over S'x{o~}. There, Proposition 4.9 either trivializes the cover (k 

even) or provides a common coordinate on the tangent spaces to I7" (k odd). As the 

degree of g is exactly k the equation ~2=g(~, tl) does the same for the restricted cover 

Gs,• It follows that the two covers are isomorphic over some neigh- 

borhood of S 'x{~} ,  and there are just two isomorphisms. As I 7" and G have by 

definition identical branching everywhere on S' xP 1 these isomorphisms extend global- 
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. . . .  foT ~ ( 

Figure 4.13 
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ly. This completes the first part of the proof; we must still see that each P~,-isomor- 

phism I7"--~ ~ G has a unique extension Z---~ Fro+l, s, with fo(E~)=a~. 

and Fro+ ~ s' are smooth families of rational curves over P~, with a distinguished y S ~ 
section at infinity. It follows that both are locally trivial plbundles over P~,, compare 

Hartshorne [17], Chapter V, Proposition 2.2. The extension problem is local over P~,; 

over suitable open sets TcP~, it reads 

~0r 
ITr ' Gr 

N N 

U U 

{~}, {~}~. 

Note that neither I7 nor G meets the section at infinity (see Figure 4.13). I? T is a relative 

divisor in P~ of degree 2 while the morphism ~PT defines a section in //~ r, 01(1)). 

Solutions for correspond to extensions of this section to H~ ~1)). But for each t E T 

the restriction homomorphism H~ (7(1))--->H~ ~(1))is bijective, and as the higher 

cohomology vanishes the theorem on cohomology and base change implies that 

H~ r, ~(1))---~H~ ~1)) is also bijective. Thus there are unique local extensions fo r, 

which yield the global'extension fo by patching. Q.E.D. 

The polynomial g E ~[H] can be computed explicitly. By (4.4) and (4.6) the points 

of intersection of Ys' with the line Ln are the solutions of 
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x 2 = y2+2bwmy+p(w ,  Z), 

rlW = Z, 

~lY = UX + VWm" 

This system reduces to a single quadratic equation 

(u2-tl2) y2 + 2(bu2 + r]v) wmy+(p(r]) U2--V 2) W 2m = 0 

in [w: y] E Pllm. Its discriminant is 

(bu 2 + ~,] V) 2_ (U 2_ ?]2) (p (~]) U 2_ V2), 

k-I 

and dividing by the leading coefficient we obtain g0l)=~Ik+X gjrl 1 with: 
j=0 

gk-l =Pk-3 

gk-2 = Pk-4-- U2 

gk-3 = Pk-5--U2pk -3 

g2 = po-u2p2  

gl = 2 b v - u 2 p l  

go = u2b2 + v2-  U2po 

Table 4.14 

PROPOSITION 4.15. The morph i sm Ys' ~ Pls' ex tends  to y L__> pls, and  G extends  to a 

hyperelliptic curve Gs~Fm+l,s  l-~ PI s. The compos i t ion  

Ys' = ~'--> ~ ~--% G (4.16) 

extends to a p l - m o r p h i s m  ~o: Y-->G s. 

Proof.  The first statement is clear from the definition (4.6), the second from Table 

4.14. The morphism ~p exists because Y is normal and G s is finite over P~. Q.E.D. 

By Proposition 4.9 the original family of curves Y--~ S is equipped with distin- 

guished sections at infinity. Those on L| have already served to construct the mor- 
phism Y~-, G s and loose their special significance when mapped to G s. On the other 

hand, ~p sends the sections [0- 1: +_1: 0] E Yn X| to sections a+_ of Gs-~  S which put an 

extra structure on this family. 
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In affine coordinates (~=1 o n  Fro+l) we have o+_=(+u, ~+_) with 

~=g(+u)=(ub+v) 2, by Table 4.14. To pin down the signs of r we test a particular 

value of s E S: put b=u=0,  v= 1, and p(Z)=Z k-2. Then g(H)=/-/~+ 1, both Ys and Gs are 

regular, and ~p maps Y, isomorphically to G,. In particular r247 and ~_ are distinct at s, 

hence either ~+_=ub+v or ~+_=-(ub+v) holds throughout. These cases correspond to 

the two choices of r allowed by Theorem 4.12, and we fix q0 so that 

~+_ = ub+v. (4.17) 

Recall that P~ is the space of unitary complex polynomials of degree k, and put 

T =  {(u, g, ~+, ~_) ~ c x e k x c 2 1 r  2 = g(_+u)}. 

The family Gs together with its sections a_+ is completely described by the morphism 

~: S---> T 

s~(u, gs,~+,~_). 

is not finite but it restricts to an isomorphism between large open subsets of S and T. 

We put 

s" = S \ ( u  = v = 0 }  

T" = T \ ( u  = O, r = ~_}. 

PROPOSITION 4 .18 .  ~ r e s t r i c t s  t o  a n  isomorphism 

~": S"--+ T". 

It sends the discriminant D N S" to the hypersurface 

A := {(u, g, r ~_) E T"lg has a multiple root}. 

Proof. Table 4.14 and (4.17) show that:~" has an inverse. For any sES' the curve 

IT's is, by construction, singular exactly if Ys is singular. As I~s is isomorphic to the 

hyperelliptic curve Gs it follows that g maps DNS' t o  A \ { u = 0 } .  This proves 

~(DNS'9=A, for both DNS"cS" and ACT" are hypersuffaces and neither contains 

{u=0}. Q.E.D. 

Let T'=T\{u=O}. We shall identify T' with the quotient 3-(Dk[~])/W2(Dk[~]), as 

follows. Let R c R  k be the standard model of the root system of type Dk, see Bourbaki 

13-868286 Acta Mathematica 157. Imprim~ le 12 novembre 1986 
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[4], Planche IV. The base roots are 

a I = ( 1 , - 1 , 0  . . . . .  0) 

a2=  (0, 1, - 1 , 0  . . . . .  0) 

ak_ 1 = (0 . . . . .  0, 1, -- 1) 

a k = (0 . . . . .  0, 1, 1), 

and each root a is identified with its dual a "  via the standard Euclidean metric on R k. 

We put V=R•  and embed R* as (0}• then the white vertex of the diagram 

D,[-x-] may be realized as 

I 
/~ =-~-(1, - 1  . . . . .  - 1 ) E  V. 

The root lattice is 

k 

Q = {t = (to; t I . . . . .  t k) E ZxZklto = O, ~ tj = 0(2)}. 
j = l  

Recall that J =  (C x Ck)/A with 

k 

A =  Q+Zfl = {tE l zxzklkto+ x t j=  0(2)}. 
2 j = l  

An element of the Weyl group W acts on t by permuting the last k components and 

changing the signs of an even number of them. 

Let  q: C*-*C send rE  C* to �89 -2) E C; this is a fourfold Galois cover and its 

Galois group F is generated by the involutions 

~: Z't---+ r -1. (4.19) 

The branch locus of q is {+ 1}cC. 

We set up the following diagram of branched Galois covers, of which q is an 

ingredient. The unlabelled arrow C XCk--*ff indicates the quotient by A while 

T ' ~ C *  x P  ~ projects (u, g, ~+, ~_) E C* x P k x C  2 to (u, g). The covering projection ql 

consists, essentially, of k copies of q followed by the quotient map of the symmetric 

group Sym (k), acting on 



TORUS EMBEDDINGS 

C X C k 

exp 

193 

q3 C* 

T' 

~ " ~  C* x 

x (C*)* 

ql 

ek 

C k by coordinate permutations, ql sends (Zo; 1:1 ..... rk) E C* x (C*) k to 

(ro2; y =I~1 (H-r~ q(rj)) ) E C*xP*. (4 .20)  

To factorize ql through T' we define q2 by 

k 
r = +(to/iX/-2)k I-I (rj~-~ I).  

)= I  
(4.21) 

The Galois group of ql is the direct product of the group {+ 1} (acting on to) with the 
wreath product 

(F x F) ~ Sym (k), 

acting on (rl ..... rk) via (4.19). The subgroup corresponding to T' is the kernel of the 
homomorphism 

{+ 1} x(FxF) ? Sym (k)--~ F 

(E; ~/1' 61 . . . . .  ~/k~ 6k; Or) 1---r /~k ~/j, 
\ j = l  j = t  / 

It follows that the composition q2oexp factors through ~r as indicated. Furthermore 

the Galois group of q3 is just the group W2 defined in Section 2, so that q3 identifies T' 
with the quotient g-~W2. 

As before, let ~g" denote the torus embedding of ~r that corresponds to the set of 
rays 
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{n+. (wD)lw e w} 

inV. 

PROPOSITION 4.22. q3 extends to a morphism q'~: ~"---> T". 

Proof. As q3 is W-invariant it suffices to extend it over the 3--orbit 3-/~ correspond- 

ing to the ray R+fl. For each j (l~<j~<k) the characters r0ry and ro/rj extend over 3"~, 

hence so do the functions defined by (4.20) and (4.21), with values in C x P  k and C z, 

respectively. Likewise it is clear from the latter formula that ~+ and ~_ take distinct 

values everywhere on 3t~. Thus q3 extends as a morphism into T". Q.E.D. 

We are now in a position to prove Theorem 4.2. We shall make use of the following 

simple fact. 

L~M~A 4.23. Let V be a complex vector space on which C* acts linearly with 

positive weights. I f  ~p: V--->V is a C*-equivariant dominant morphism then �9 is an 

isomorphism (of  algebraic varieties). 

Proof. The Jacobian determinant of �9 has zero weight and does not vanish 

identically, hence is a non-zero constant. In particular �9 has a local analytic inverse at 

the origin. As the latter is in the boundary of each C*-orbit this local inverse is given by 

polynomials and extends globally. Q.E.D. 

Proof o f  Theorem 4.2. The composition (~'9-1 o ~ induces a morphism 

r ~"/W2---, S" 

which, by Proposition 4.18, restricts to an isomorphism el,': 3-1Wz--->S'. As ~ is normal 

tb" extends to 

O: ~/W2-* S. 

We put on ~ the C*-action corresponding to the vector 

w = ( 2 ; 0  .. . . .  0) EA wn K. 

According to Proposition 2.19 the weights of the induced action on ~/W2 are the 

numbers (o~, y*) where y* runs through the basis dual to (a I . . . . .  ak, fl). As 4xw is the 

sum offl  and the fundamental weight o~ k these numbers are conveniently read off from 

Table IV in Bourbaki [4]; the result coincides with Table 4.3. Checking through the 
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definitions in Table 4.14, (4.17), (4.20), and (4.2 I) the morphism @ is readily seen to be 

equivariant. Therefore Lemma 4.23 applies, and @ is an isomorphism. 

Finally, @ respects the discriminants by Proposition 4.18. Q.E.D. 

5. Dk[-)(-]: Applications 

We draw some consequences from the results of the previous section. First of all we 

relate the singularities in the fibres of X--~ S to the isotropy groups of the WE-action on 

~. Let ~:  ~g/WE--,S be an isomorphism as in Theorem 4.2. 

THEOREM 5.1. Let r E ~  and put s=@(rmodWE)ES. Assume that xl . . . . .  XrEXs 

are the singular points o f  the fibre over s. Then each (complex analytic) singularity 

(Xs, x e) is either a plane curve singularity o f  type Al-i  or Dt with l<.k, or a singularity 

of  type Dl[-x-] with l<-k. In the first case let M e be the Weyl group corresponding to 

(Xs, xe), and put Me= WE(DI[-x-]) in the second. Then the isotropy group o f  WE at r E 

is isomorphic to the direct product 

Mlx . . . xMr .  

Proof. In view of Theorem 1.2 we may assume that r belongs to the if-orbit 

J ~ , c  ~ some subdiagram 9 '  of Dk[-x-]. Let 9"=Dk[-x-]-9 '  be the complement. By 

Corollary 2.11 the germ of the pair (~/WE, AE) at the image of r is analytically 

equivalent to a direct product. Its first factor is 

(V(9")c/W(Rr), A(V(9"), R0) 

for some root system R~ contained in R. Each irreducible factor of A(V(9"),RO is 

known to be the discriminant of a versal deformation of a simple plane curve singular- 

ity, and W(R~) splits accordingly into direct factors which are the Weyl groups of these 

singularities--see Brieskorn [6], Slodowy [42], and Looijenga [27]. 

The second factor in the decomposition of (~/WE, AE), is the germ of 

(~(9')/W2(9'), A2(9 ' ) )  at its 8(9')-fixed point. Of course  A2(9 ' )  is the discriminant of 

the semi-universal deformation of the singularity Dl[-x-] if 9 '  is of this type. The only 

other subdiagrams 9 '  of Dk[-)6] with non-trivial group W2(9') are isomorphic to 

al  (][2 al 
. . . . . .  -41 ( 0 < l < k ) .  
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We claim that then A2(~' ) is the discriminant of the plane curve singularity of type 

Dt+l (as usual, for small values of l we interpret DE as A I + A 1 ,  and D3 as A3). To 

prove the claim we realize ~ '  in Rt+l; we put 

O~1= ( - - I ,  1,0 . . . . .  0) 

a2~ (0, -1 ,  1,0 . . . . .  O) 

a I =(0 . . . . .  -1 ,  1) 

fl --(1,0 . . . . .  O) 

and let ay be the dual of aj with respect to the standard Euclidean metric. The 

exponential map 

Cl+ l ._> (C*)Z+ 1 

z - 2 ~ i t  0 --2ztitl ) 
(t o . . . . .  t t) ~-> [e . . . . .  e 

induces an isomorphism ~La(~')=C t+l, and this isomorphism takes the action of W2(@') 

on &o(~,) to the standard representation of the Weyl group of Dl+l, compare Bourbaki 

[4], Planche IV. This proves the claim. 

In view of Corollary 2.8 we have shown that the decomposition of A 2 into 

irreducible analytic components at r(mod WE) corresponds to a decomposition of (WE), 

into direct factors. Furthermore, we have identified each component of A 2 as the 

discriminant of a versal deformation of one of the singularities listed in the theorem. In 

fact, this singularity is realized in the fibre Xs, for by Wirthmiiller [53] an isolated 

complete intersection singularity is determined, up to analytic equivalence, by the 

discriminant of a versal deformation. This completes the proof. Q.E.D. 

(5.2) R e m a r k .  The statement of the theorem becomes false when ~(Dk[~-]) and 

WE(Dk[-x-]) are replaced by ~(Ok[-X-]2 ) and W(Dk[-x-]2). 

The discriminant D of the semiuniversal deformation X - ~ S  has a natural decompo- 

sition into strata: each is characterized by the constellation of singularities in the fibres 

over it. In connection with Corollary 2.8 the theorem enables one to list all constella- 

tions that occur. Likewise some more precise information on the geometry of the strata 

may be obtained. 

(5.3) Example .  Let S ( D k ) c D  be the stratum which corresponds to one Dk-singular- 

ity in the fibre. As this must be one-dimensional it is the union of finitely many C*- 
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orbits, and a fibre over S(Dk) cannot contain any other singularity. The inverse image 

of S(Dk) in ~ consists of the WE-fixed point set in 3 and of the 3-orbits corresponding 

to the subdiagram of Dk[-x-], 

and, if k--4, also 

H ......... ! 

Each of these subdiagrams contributes one C*-orbit in S(D k) while the orbits covered 

by ff w2 correspond bijectively to the connected components of the abelian group 

P/(�89 Q+ A) where 

P= {xE Vl(x, a " )  EZ for all roots a} 

is the group of weights. Thus the total number of C*-orbits in S(Dk) is 6 (k--4), 5 if k>4 

is even, and 3 if k is odd. 

For the curve singularities of type Dk[%] we have a complete description of the 

homotopy type of S \ D ,  the complement of the discriminant. As the fundamental 

group was already determined in Section 3 this goal is achieved by the following 

theorem which includes the corresponding result of Kn6rrer [24] for k=4. 

THEOREM 5.4. ytn(S~D)=O/fn>l. 

Proof. The discriminant contains {u=v=O}cS. Therefore, in the notation of 

Proposition 4.18, the complement S \ D = S " \ D  is isomorphic to T " \ A .  We put 

g = {(r/+, r/_, g, ~+, ~_) E C2xpkxc2I~2+_ = g(r/+), (r/+, LS+)=l=(r/_, ~_)} 

and observe the isomorphism 

C • T" 

(,1, u, g, ~+, ~_), 

, K  

, (rl+u, rl-U, g(H-rl), ~+, ~-) 
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which sends C x A onto 

Ar :  = {g has a multiple root} c K. 

The cartesian projections induce C ~ fibrations 

K \  Atc 

{(r/, g, ~)ECxP/'xC[r = g(r/), g has only simple roots} 

{gEPklg has only simple roots} 

with smooth affine curves as fibres. The assertion now follows from the exact homo- 

topy sequences of these fibrations. Q.E.D. 

Recall from Theorem 3.10 that we have a natural presentation of z q ( S \ D ,  s) with 

generators a~, indexed by the vertices of the affine Dynkin diagram L3k, and relations 

which include the Artin relations with respect to this diagram. By its special nature 

each generator as determines an unoriented vanishing cycle _+v~ in the Milnor homo- 

logy H: =Hl(Xs, Z). The action of a~ on H is governed by the Picard-Lefschetz formula 

a~(x )=x- (x , v~)  va (5.5) 

where ( , ) is the intersection form on Xs, see Looijenga [32], (7.4). 

A basis of H consisting of vanishing cycles is called weakly distinguished if the 

corresponding transformations (5.5) generate the monodromy group (this definition is 

slightly weaker than the one usually used in this context). 

THEOREM 5.6. The v~form a weakly distinguished basis o f  H, and their intersec- 

tion diagram is l)k (as this is a tree the intersection numbers need be specified up to 
sign only). 

Proof. It is known that the set of all vanishing cycles in H generates H, and is an 

orbit under the action of the monodromy, see Looijenga [32], (7.5), (7.8). Therefore the 

v~ generate H. As k+ l  is the Milnor number they form a basis which is weakly 

distinguished by definition. The intersection numbers follow from the Artin relations: if 

a and a' are orthogonal base roots then aa and a~, commute, in particular we have 

aa, aa(v~) = a~ a~,(v~) 

oo-<oo, = oo,>2)vo-<o , vo,, 
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hence (va, va,)=0. Similarly, if a and a '  span an edge in/)k the relation a~ a~, aa(v~) 

=aa, a~a~,(v~) implies (v~ ,va , )E{-1 ,0 ,1} .  If this intersection number were zero 

then the actions of a~ and aa, on H would commute and, in view of the Artin relation, 

would coincide. But then the orbit of a vanishing cycle could not have generated H. We 

conclude that (v~, v,~,)=+l, and the theorem is proved. Q.E.D. 

The triple (H, ( , )  {vanishing cycles}) is a skew-symmetric vanishing lattice in the 

sense of Janssen [18]. Most of this structure is preserved upon passing to coefficients in 

the field F2. Vanishing lattices over F2 are classified in [loc. cit.], and the case at hand 

is easily identified by the dimensions of H and the kernel of the intersection form, and 

the number of vanishing cycles in H/2H. The latter is just the number of different roots 

mod 2H in the affine root system/)1,, which is 2k(k-1). Therefore the vanishing lattice 

is of type A~ 3, F2) if k is even, and of type AeV(k - 1,2, F2) if k is odd. 

In a recent paper, Janssen [19], it is shown how the classification over F2 lifts to a 

complete classification of integral (skew-symmetric) vanishing lattices. The lattices in 

question are easily seen to be 

A~ ; 3; 0) (k = 4) 

A~ ... . .  1;3;~ ( k > 4  even) 

AeV(1 ..... 1; 2) (k odd). 

6. Ek[-x-] (k=6, 7, 8): The diseriminant 

In the hierarchy of simple singularities the series Dk[-x-] (k~>4) is followed by ten 

exceptional ones, including those with defining ideal 

(x2_y3_z k-3, yz) 

(k--6, 7, 8). The main result of this and the following section is the analogue of Theorem 

4.2 for these singularities. 

The curve Xo= {x2=y3+zk-3, yz=O} c C  3 admits a C*-action with weights 

k x y z 

6 3 2 2 

7 12 8 6 

8 15 l0 6 

(6.1) 
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As in the previous chapter we let 

X---> S 

denote a C*-equivariant semi-universal deformation of (X0, O) with discriminant D~S.  

The diagram Ek[-x-], 

. . . . . .  - 0  

and define X~C~ by 

= ux+v J" 

The projection X--~S is a C*-equivariant deformation of (X 0, 0) with respect to the 

weights (6.1). Note that the curve X lies on the relative surface 

Y := {2xyz -ux2 -2vx  = up(y)+uq(z)} c C 3. 

Over the hyperplane {u=O}cS this surface decomposes into two components but the 

substitution x~->ux gives a new surface 

Z' := {2xyz-u2x2-2vx = pO')+q(z)} ~- C~ (6.3) 

has been introduced in (1.1). 

THEOREM 6.2. There exists a C*-equivariant isomorphism 

~f(Ek[ * ])/W2(Ek[ * ])--~ S 

which respects the discriminants. 

For the proof we use the explicit form of the semi-universal deformation provided 

by the criterion of Kas and Schlessinger [20]. Let pi denote the affine space of unitary 

polynomials of degree 1, and let/~0~P t contain those with vanishing constant term. We 

put 

S = {(u, v,p,  q)} = C2XPao• = C  k+] 
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which will turn out to be less degenerate over {u=0}. In order to compactify Z' we 

embed C 3 in ~o~  with weights 

k 

6 I 

7 2 

8 3 

3 

sending (x, y, z) to [1: x: y: z]. (Note that these weights differ from those of (6.1).) We let 

Z be the closure of Z' in ~ l , S .  As in each case the weights divide a+f l+  1 the sheaf 

~(a+fl+ 1) on P~o~l is invertible, and the hypersurface Z is the Cartier divisor defined by 

the section 

f(w, x, y, z) := p(w; y)+q(w, z)+u2u.p-a+lx2 + 2vufl+lx-2xyz, (6.4) 

with p(w,y)=wa+#+lp(y/w) and q(w,z)=wa+~+lq(z/w). Therefore Z is a flat family 

of surfaces over S. It comes naturally equipped with the effective Weil divisor at 

infinity Z| In l~o~l,s this is the Cartier divisor with equation 

2xyz = y3 +Z 3 (k = 6), 

2xyz = U2X2+Z4 (k=7) ,  

2xyz = u2.v2+y 3 (k=8) .  

In particular Zoo is also flat over S. 

(6.5) 

Our interest in the surface Z is caused by the fact that at least the restriction 

Xs ,~S ' :=S\{u=O} may be recovered from it in a natural way, as follows. First note 

that the surface Zs, is smooth along Z=,s,. If k=6 then Zs, contains the S'-point 

[0: 1: 0: 0] and we let Z denote the blow-up of Zs, along this point. We put Z=Zs, else. 

Then the linear projection from [0: 1: 0: 0] in ~o~1 restricts to an S'-morphism 

c: 2 - - ,  {x = 0} = 

PROPOSITION 6.6. C is a double cover, ramified along an S'-curve X' and, ilk=8, 

also at an isolated point [0: 1:-u2/3: 0]. I f  d denotes the scaling automorphism 

P~lo~ 1 ,S ' '' '~ e~o.31,s, 

[w: x: y: z] ~ [w: ux: y: z] 

then X' is just the closure of d(Xs,) in P~l~l,s'. 
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Proof. In affine coordinates (w= 1) we have 

f =  p(y) + q(z) + u2x 2 + 2(v-yz) x 

which shows that c is a double cover. Its ramification points are the common zeros o f f  

and 

a f  = 2(u2x+ v-yz) = 2(u(ux) + v-yz);  
ax 

these functions generate the same ideal as aflax and 

f - x  a f  = p(y)+q(z)_(ux)2 
ax 

A trivial verification at infinity completes the proof. Q.E.D. 

COROLLARY 6.7. Let s E S'. Then X~ is singular at a E C 3 exactly if  Z~ is singular at 

d(a). In this case the singularity (Z~, d(a)) is isomorphic to the suspension o f  the (plane) 

curve singularity (Xs, a). In particular all singularities o f  Z~ are isolated, and D n S' is 

the discriminant o f  Zs,--~S'. Q.E.D. 

PROPOSITION 6.8. The restriction Zs, -% S'is a flat family of(possibly singular) del 

Pezzo surfaces o f  degree 9 -k ,  and Zoo, s' is an anti-canonical divisor relative S'. 

Proof. Let s E S'. Then Z~ does not meet the singular points of p13~, and the 

sheaf 0(1) restricts to an invertible sheaf on Z~. This sheaf is ample; indeed, on the 

regular part of P3~1, the sheaf 0(fl)=0(lY ~ is very ample. Using the fact that the 

singularities of Z~ are isolated it is easily seen that 0(1) admits a smooth divisor on Zs. 

The main result of Pinkham [39] (see Merindol [34], Th6or~me 6.1 for a more detailed 

account) then implies that Z~ is a del Pezzo surface of degree 9-k ,  and that 0(1) is the 

anti-canonical sheaf. It was noted earlier that Z and Z= are flat over S, and the 

proposition follows. Q.E.D. 

Flat families of del Pezzo surfaces are well-understood. In the sequel we apply the 

results of Pinkham [39], [40], Merindol [34], Looijenga [26], [27] and others to the 

situation at hand. 

For each s E S ' \ D  the surface Zs may be obtained from the projective plane by 

blowing up k points in general position. Therefore the canonical homomorphism 

Pic(Zs)--*H2(Zs, Z) is bijective. We fix a point s o E S ' \ D .  The fundamental group 

~rl(S'\D, so) acts as a monodromy group on H : =  H2(Zso, Z)=Pic(Z~o). This action 



TORUS EMBEDDINGS 203 

defines an 6tale Galois cover 

( S ' \ D ) -  o_~ S ' \ D  

such that the monodromy is trivial on the induced family Q'*Z--->(S'\D)-. It is well- 

known that Q' then extends as a branched analytic cover 

$'&s' 

and that the induced family of del Pezzo surfaces Q*Z admits a simultaneous resolution 
o , 

2 , ~ 0  Z: 

2 o , o*Z 'Zs.  

S' , S '  

The smooth family 2,--->~r is obtained from a suitable bundle of projective planes by 

blowing up k sections consecutively, see Merindol [34] for details. 

The S'-divisor Zoo. s' on Zs, is a family of rational curves with a node at the point 

[I:O:O]EP 2 if k=6, 

[O:l :O]E~n if k=7, 

[0: O: 1] E P~321 if k=8. 

We parametrize the regular part of Z~, s' by the S'-morphism 

Cs,* _.>~ Z~o s, c P2al31 

2---> [�89 u2~,2] (k=6), 

2--> [23,�89 (k=7), 

[uSZu'Z�89 (k=8). 

(6.9) 

The inverse ofes extends to a unique homomorphism 

~ :  Pic (Zoo, s)---> C*; 

it sends the divisor E~=ld {es(;[j)} to H]=IAjEC*. As Zs, is smooth along Zoo, s' the 

pull-back Q*Z~ lifts isomorphically to a relative anti-canonical divisor Z| on Z. Thus 
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for each r E S' we have a homomorphism 

cpr: Pic (Z| r)---~ C* 

which is, essentially, cpor ~. 

We use this homomorphism to set up a characteristic mapping 

S' ~ Hom (H, C*) 

for the family Z--->S'. Fix ro E O-X(So). Given rE S', each homology class h E H corre- 

sponds to a divisor class A~(h) EPic (Z~) via H---Hz(Z~0, Z)-H2(Zr, Z)=Pic (Zr), and we 

define 

~p(r) (h) = 9~(A~174 ~) E C*. (6.10) 

For the following it will be convenient to have an explicit basis of H at our disposal. 

Following Demazure [I1], II.2 we choose a birational morphism Zso---~P2 which 

contracts k disjoint exceptional curves El,,0 .. . . .  Ek, so. We let hj (1 ~<j~< k) be minus 

the homology class of Ej, So, and denote the class of the total transform of a line in p2 

by ho. Then (ho, hi , . . . ,  hk) is a basis for H. The canonical class is 

k 

~ =  = 3 h 0 - E  h j 
j=l  

and the intersection form is determined by the self-intersection numbers 

hZ=l ,  h } = - I  ( j>0 ) .  

Likewise, for any rE S' we may consider (ho .. . . .  hk) a basis of Hz(Zr, Z) via the 

canonical isomorphism H=Hz(Z~o, Z)-----H2(Zr, Z). 

LEMMA 6.11. The characteristic mapping ~O is analytic. 

Proof. Let r E S'. Over some neighbourhood U of r the element h0 E H is represent- 

ed by a divisor L c Z u  which is smooth over U and avoids the singular point of Z| v. 

Similarly, h~ .. . . .  hi are represented by the exceptional divisors E~ ... . .  Ek in Z which 

are fiat over S'. From this the assertion follows easily. Q.E.D. 

Because H is a free abelian group the exponential sequence 

0---~ Z--* C ~L~ C*--~ 1 (exp (t) := e 2re't) 
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ej 

I 

Figure 6.12 

induces an exact sequence 

0---~ Hom (H, Z) ~ Horn (H, C)--o Hom (H, C*) ~ I. 

We let A c H o m  (H, Z) be the sublattice 

A =  {t E Hom(H,Z)l(~,  t) E6Z} 

and put 3=Hom(H,  C)/A. As the canonical class ~ is indivisible in H the algebraic 

torus ~- is a sixfold cyclic cover of Hom (H, C)/Hom (H, Z)=Hom (H, C*). 

PROPOSITION 6.13. The characteristic map ~p lifts to an analytic map ~Pl: S'---~ ~r. 

Proof. A glance at the definition of e verifies the relation 

(U oQ) 6 = (--  1) k-I e/(r) ( -~)  (6.14) 

for each r fi S'. If if' denotes the universal cover of ~r then v/may be lifted to an analytic 
map 

~: ~' ---~ n o m  (H, C), 

and there exists a logarithm log(uoQ): ~---~C. If f, f' E~' represent the same point in S' 

then in view of (6.14) we have 

V)(rO (-~)-y3(f ' )  ( -~)  = 6 log (u o O) (rO- 6 log (u o 0) (r') E 6Z. 

Therefore ~b drops to a well-defined map ~Pl: S'--~ff. Q.E.D. 
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Following Pinkham [39] and Merindol [34] we describe the action of the monodromy on 

H. Of course the canonical class u is invariant, as is the intersection form. The 

orthogonal complement of  u in H is the lattice Q generated by the set 

R = {h E H[(~, h) = 0, h 2 = -2} .  

Minus the intersection form restricts to a Euclidean inner product on the vector space 

RQ= {h E RH[(x, h) =0}, and with respect to this structure R is a root system of  type Ek. 

The group : r l ( S ' \ D ,  So) acts on H by transformations of  the Weyl group W of that root 

system. 

As the intersection form is unimodular on H we may use it to identify H and 

Hom(H,Z) .  Thus we consider R as a subset of Hom(H,Z) ;  with respect to the 

standard basis (h0 . . . . .  hk) a root basis of R is given by the components 

a~ = ( 0 ; - 1 ,  1,0 . . . . . . . . .  0) 

a2 = (0;0, - 1 ,  1,0,0 . . . . .  0) 

ak- i  = (0;0 . . . . . . . . .  0, - 1 ,  1) 

Ctk= (1; I, l ,  1,0 . . . . .  0) 

We define fl E Hom (H, Z) by its components 

fl = (2; 0 . . . . .  0). 

Then (a~ . . . . .  ak, fl) is a basis of  the lattice A, and this basis together with the duals of 

al  . . . . .  ak constitute a realization of  the diagram Ek[-x-]2: 

. . . . . .  - 0  

It is clear from the very definitions of  the characteristic mappings ~p and 7~i that 

q'l: S' ~ i f  induces an analytic morphism 

S ' -~ ff/ W. 

The main step in the proof of  Theorem 6.2 is the extension of  1]) 2 o v e r  the general point 
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of the hyperplane {u=O}=S. To this end we shall study the fibres of the family Z-~ S 

over such points in the next section. 

Here we note for later use: 

PROPOSITION 6.15. ~P2 is C*-equivariant with respect to the action on S' deter- 

mined by the weights (6.1), and that on 

f f / W  = f f (Ek[  % ])/W2(Ek[ % ]) 

considered in Proposition 2.19. 

Proof. The weights (6.1) define a C*-action on the family Z-?-> S with weights 

k 

6 

7 

8 

w x y z 

0 2 2 2 

0 10 8 6 

0 14 10 6 

1 

2 

1. 

For/ t  E C* close to 1 and r E S' the point/~-r E S' is well-defined, and the definition of 

the parametrization e: C~,--->Z| shows that 

~p(/z. r) (h) = /c .  deg <.~h) l 2,.,). ~p(r) (h) =/~-c" <"' h) '~(r )  (h) 

holds for all h EH, with c=2 (k=6) or c=6 (k~=6). On the other hand, the C*-action on 

ff/W is induced by the W-fixed vector w E Horn (H,C) as defined in Proposition 2.19. 

This vector is just -cu ,  and the assertion follows. Q.E.D. 

7. Extension of the characteristic mapping 

Let s E {u=0} c S. We study the surface Y:=Zs and its distinguished (Weil) divisor 

W:=Z| s={w=0}cZ~. The latter is given in P~a~l={w=0}cP~aal by the equation 

2xyz=ya+z3 (k=6), 

2xyz = z 4 (k=7), 

2xyz = y3 (k= 8). 

We have a nodal cubic if k=6, while for k=~6 the divisor W decomposes: 

W= (2xy = z 3} U {z=0} (k=7) 

W= {2xz = y2} U {y=0} (k=8). 

14-868286 Acta Mathematica 157. Imprim6 le 12 novembre 1986 
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In either case W is reduced, and the components 

Wo = {Zry = z3}, = {z = o},  

respectively 

W' = {2xz = y2), W" = (y = 0}, 

are easily seen to be smooth rational curves. We let n E W denote the point [1: 0: 0]. 

PROPOSITION 7.1. I f  sE {u=0}cS is chosen such that v~=O then Y has a quotient 

singularity at n, o f  the following type. 

k resolution graph 

6 - 2  

7 - 4  

- 2  - 5  
H 

type--see Brieskorn [5] 

C2, 1 =Al  

C4, 1 

C9, 2 

Table 7.2 

Proof. This follows by analyzing the affine equation for Y, 

2 y z -  2vut a+ l =p(w, y)+ q(w, z). (7.3) 

Q.E.D 

(7.4) Remarks. If v is the only non-zero component of s E S then Y is smooth off the 

singularity n. Hence the same holds for generic sE{u=O}cS ,  and in the sequel we 

assume that s is so chosen. Variation of the coordinate u: (S, s)---~C defines a one- 

parameter deformation of the quotient singularity (Y, n). For k4:6 this deformation is 

easily seen to be one of the to*-constant deformations considered by Wahl [51]---com- 

pare his Theorem (2.7), with (n, q)= (2, 1) if k=7, and (n, q)= (3, 1) if k=8. These 

deformations are not on the Artin component of the singularity, so we do not have 

simultaneous resolution at our disposal. 

Let I?--~ Y be the minimal resolution of the singular point n E Y, and let E c  I 7 be the 

(reduced) exceptional fibre. In case k=8 the latter consists of two curves E2 and E5 

with self-intersection E~ = - l .  We let #r I 7 denote the strict inverse image of W c  Y; 

similarly, l~j, if", and if'". 
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I0o I01 

E - 4  E5 

-1 0 

- 2  -1  

E2 W" 

(k=6) (k=7) (k=8) 
Diagram7.6 

-1  

- 5  

PROPOSITION 7.5. I7" is a rational surface, and E+ 1~ is an anticanonical divisor. Its 

geometry is shown in Diagram 7.6 which includes the self-intersection numbers. 

Proof. These data may be worked out by explicitly resolving the singularity at n. 

We omit the details. Q.E.D. 

COROLLARY 7.7. The rank of Pic (I:') is 2k-5. 

Proof. This follows from the relation 

rk Pic (I7") -- 10 - ~ 2  

for a rational surface. Q.E.D. 

In order to be able to extend the characteristic mapping we shall make sure that the 

surface Y \ { n }  = ~ ' \ E  contains sufficiently many exceptional curves (of the first kind, 

that is, embedded copies of P~ with self-intersection -1).  As a preliminary we prove 

the following statement. 

PROPOSITION 7.8. Let F be a smooth rational surface with rk Pic (F) = 9. Let E c F  

be a smooth rational curve with E2=-4 ,  and assume that the anti-canonical sheaf is 

ample on F \ E .  Suppose further that E is part o f  an anti-canonical cycle E+D of  the 

.form 

D l 
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or 
Do D~ 

E ~ . g  

-1 0 

Then there exist seven disjoint exceptional curves C~ ..... C7 on F that do not meet E. 
In the second case each Cj can be chosen so as to intersect E+D in a single point of 

01. 

Proof. Besides E there cannot  be any other  irreducible curve C on F with C2< 1, 

for the adjunction formula for C reads 

2p (C) -2  = C. (C+n)  = C2-C �9 (-x), 

and the last term is positive because - n  is ample on F \ E .  Likewise, if C is any 

effective divisor on F with E r C and C 2 - - -  1 then C is an exceptional curve. For,  by 

the adjunction formula p(C)=0,  and if C were reducible then one of  its components  

would have self-intersection smaller than - 1 ,  which we have just  seen to be impossi- 

ble. 

Let  o: F-->F be a birational morphism to a minimal model F. By the classification 

of  rational surfaces we may assume F=p2 ,  i r  or that F is a ruled surface Fn 

(n>l ) .  Thus a is a composit ion of  eight or seven o-processes,  respectively. In fact we 

need not consider the c a s e  ]~----p1XI~I, as P~XP ~ with one point blown up maps 

birationally to p2. Thus either F =p 2  (case a), or F = F n  (case [~). We further distinguish 

two cases according to whether  o contracts  E (case 1) or not (case 2). Le t  us discuss 

these in turn. 

Case Oft). F is obtained from p2 by blowing up five points and three directions 

through one of  them, say P. The configuration of  non-trivial fibres of  o is that shown by 

the solid lines: 

-1 -1 -1 

E -4  

- - 1  - 1 -  
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The broken lines indicate the strict transforms of the three lines of distinguished 

direction through P. We thus see seven disjoint exceptional curves not meeting E, as 

claimed. 

Case (I 6) cannot occur because when E is contracted all curves o f F  will have self- 

intersection at least - I .  

We turn to case (2) and its subcases. Here all non-trivial fibres of a are irreducible. 

D1 may be one of them while any other must meet the anti-canonical divisor E+D 

transversely in a single point. In particular, any non-trivial fibre of a that meets E does 

so transversely in one point. It follows that/~: =o(E) is a smooth rational curve. 

Case (2ct)./~cP 2 is either a line or an irreducible conic. Thus o represents F as a 

projective plane with eight points blown up, as indicated: 

respectively 

1 / / 

In either case there is an obvious choice of the seven exceptional curves including the 

strict transforms of the broken lines. 

Case (26)./~,'- F,, must be the unique curve of negative self-intersection, that is, 

the section at infinity of class (1,0)E Pic (Fn). Thus F is obtained from Fn by blowing 

up seven points, necessarily on different fibres of the ruling morphism Fn--~P 1. Of 

these exactly 4 - n  are on /~. Performing elementary transforms--see Nagata [35], 
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Section 2, (3)---we obtain a birational morphism F---~ F4 with the seven non-trivial fibres 

disjoint from E. 

Note that this last situation is achieved in any case, simply by contracting the 

seven exceptional curves Ci . . . . .  C7. Thus we have 

F-~  F4 

with/~=o(E) the section at infinity. Let Dj=o(Dj), /)=o(D). Then E+D is an anti- 

canonical divisor on F4, hence of type (2, 6) EPic (F4). In case D=Do+D1 the decom- 

position/)o+/)l must be of type 

(0, 1)+(1,5) 

or vice versa. In view of the self-intersection numbers, either all curves C1 . . . . .  C7 meet 

O 1 (which is what we want), or one, say C7, meets Dr, and the other six meet Do. In 

this latter case we put Pj=o(Cj), and consider the linear system of curves of type (1,4) 

through all but one of the points P1, ...,P6; say P1. By the Riemann-Roch formula this 

system is non-empty. Let C' l be a member, considered as a curve on F. If E were a 

component of C'~ then C~ would have to decompose into E plus four fibres which is 

impossible. We further have p(C'l)=0 and C'12=-1. If C' 1 were reducible it would 

contain some component of self-intersection smaller than - 1 which is likewise impossi- 

ble. It follows that C' l is an exceptional curve (in particular, the only curve in the linear 

system). Similarly we find curves C~ . . . . .  C~. Together with C7 they form a set of seven 

curves which satisfy the last clause of the proposition. Q.E.D. 

Returning to the situation that was the starting-point of this section we are now able to 

prove that the surface Y contains certain configurations of exceptional curves. 

THEOREM 7.9. I f  k=6 then in Y \  {n} there exist exceptional curves C O. (l <.i<j<~6) 

with 

Cu. Ctm = { |O if { i,j} fl { l, m } = 

I f  k=7 then Y \  {n} contains seven disjoint exceptional curves Cl . . . . .  C7. For 

each j the point of  intersection of  Cj with W lies in Wt \ Wo. 
I f  k=8 then there are seven disjoint exceptional curves C1 . . . . .  C7 c Y \ { n } .  For 

each pair (j, l) with l~<j<l~<7 there exist exceptional curves Cjl and Cjtin Y \ { n }  with 

, {1 i f { i , j } f l { l ,m}=(~  
Co.. Clm = C~" Clm = 0 else, 
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01 i f i E { j , l )  
Ci'Cfl  = Ci" Cjl = else, 

Co.C~m=2-c if{i,j) N {l, m) contains c elements. 

The curves Ci and Cjt intersect W in a poin to f  W " \  W' each, while Cjl N W is a point of  

W ' \  W". 

Proof. For k=6 the surface Y is a del Pezzo surface with an ordinary double point 

at n. Its minimal resolution I7" may be identified with a projective plane on which six 

points P1 . . . . .  P6 of an irreducible conic have been blown up: Demazure [ll], V, 

Proposition 1. The exceptional fibre of the resolution is the strict transform of this 

conic. We let C 0 be the strict transform of the line through Pi and Pj. Clearly the C o are 

contained in 17 \E  = Y \ { n ) ,  and their incidence relations are as required. 

The case k=7 is an immediate consequence of Proposition 7.8, applied to F =  I 7, 

Dj=~/Vj. 

Thus assume k--8. Using the notation of Proposition 7.5 we let F be the surface 

obtained from 17 by contracting if" and E2. To this F Proposition 7.8 applies, with D 

the image of I~'". Therefore F is isomorphic to F4 with points P~ ... . .  P7 blown up, all in 

different fibres of the ruling morphism and none on the section at infinity/~5. The image 

of W" is a curve if'" of type (1, 6) while W' and E2 map to one point P of ff'"N/~5 and 

the infinitesimally near point Q determined by the tangent of I7r at P. We let Cic 

17\E= Y \ { n }  be the fibre over Pi. To construct Cjl we consider the linear system of 

curves on F4 that have type (1,4) and pass through all Pi with i~ {j, l). The Riemann- 

Roch formula shows that the corresponding complete system on 17 is non-empty. Let 

C/l c 17 be a member, with image (~ in F4. The curve Cjl cannot contain Es, for that 

would force (~ to split into/~5 plus four lines, which cannot pass through all the base 

points. It follows that C is an irreducible curve of type (1,4); hence Cjl is irreducible and 

meets neither E 5 nor E 2. By the adjunction formula p (C)=0 ,  and as CJ= - 1 we have an 

exceptional curve. 

Similarly, Cjt c 17\E may be obtained from the unique curve in the linear system 

of type (1,5) with assigned base points P, Q, and Pi (i E { 1,.i., 7} \ { j ,  l}). 

One easily verifies the incidence relations stated in the theorem. Q.E.D. 

Our next aim is to identify configurations as described above on smooth del Pezzo 

surfaces. 
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PROPOSITION 7.10. Let F be a smooth deI Pezzo surface of  degree 9 -k ,  and 

suppose on F a configuration o f  exceptional curves is given, o f  the lcind described in 

Theorem 7.9. Then there exist a birational morphism F-L> p2, and points P1 ... . .  Pk E p2 

such that the following holds: 

(1) a - l (P0  . . . . .  Cr-l(Pk) are the non-trivial fibres o f  a. 

(2) I f  k=6 then a sends Ciy to the line through Pi and Pj. I f  k=7 then Cj=a-l(Pj) 

for i= I, . . . ,  7. For k=8, a(Ci) is the line through Pi and P8 (i= 1 .. . . .  7). The remaining 

part o f  the configuration may be mapped in two ways. Either o(Cfl) is the line joining Pj 

and PI, for each pair (j, l), and o(C~l ) is the quartic through PI ..... P8 with double 

points at Pj, Pt, and Is ,  or vice versa. 

Proof. The case k=7 is trivial, for contracting C~,..,, C7 must yield a projective 

plane. Thus let k~7. Recall that the Weyl group W= W(Ek) acts naturally on Pic (F), 

thereby permuting the k-tuples of disjoint exceptional curves. A (k-  1)-tuple of disjoint 

exceptional curves in F is either maximal or part of a k-tuple of such curves; according- 

ly there are two orbits under W--see Demazure [11], II, Proposition 4. Thus there 

exists a birational morphism a: F----> p2 such that either 

cr(Ci6)=Pi (k=6; i=1 . . . . .  5), o(Ci)=Pi (k=8; i=1 .. . . .  7) 

(the non-maximal case), or a(Ci6), respectively o(Ci), is the line joining Pi to Pk 

(i= 1 .. . . .  k -  1). We claim that the first case is impossible. To prove this we note that for 

k=6 the exceptional curve C~2 meets exactly three among the curves Ci6 (i= 1 .. . . .  5). 

Likewise, for k=8, both C12 and C'12 meet exactly five of the Ci (i= 1 . . . . .  7). Inspection 

of Demazure [11], II, Table 3 shows that this could not happen in the non-maximal 

case. 

Thus o(Ci6), respectively o(Ci), is the line through Pi and P,  (i=I . . . . .  k - I ) .  

Comparing the known incidences on F to the table [loc. cit.] it is readily verified that a 

maps the remaining exceptional curves as stated. Q.E.D. 

THEOREM 7.11. The characteristic mapping ~02: S'--~ ~'/W extends as an analytic 

morphism 
~3 

S --~ ~/ W. 

Proof. S is smooth and ~g/W is affine, it therefore suffices to show that for general 

s E {u=0}cS there exists a neighbourhood U of s in S such that ~P2 is bounded on 

S'nU.  
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Thus let s E {u=0} ~ S be generic in the sense of  (7.4). Still using the notation 

introduced at the beginning of  the section we consider an exceptional curve C~ on the 

surface Y \  { n } = Z ~ \  {n}. The family Z2-~ S is smooth near C~ and by Kodaira [25], 

Theorem 1, it follows that C~---~{s} extends to a smooth family of  exceptional curves 

over some neighbourhood U of s in S, 

Cs ~ C c Z v  

\ \A 
s E U .  

We choose U small enough so that it serves for all curves Cs c Y of  the configuration 

described in Theorem 7.9. Shrinking U further,  we may achieve that U does not meet  

the discriminant D e S ,  and intersects S' in a connected set. Passing to the Galois cover 

S' ~ we fix a connected component  V of  Q-I(S'  O U). 

Pick some r E V. Thus (Q*Z)r~-Ze(~) is a smooth del Pezzo surface, and Proposit ion 

7.10 provides a birational morphism (p*Z)r---~P 2, which singles out a basis 

(ho, hi . . . . .  hk) of  

H = H2((Q*Z)r, Z) = Pic ((o*Z)~), 

as discussed in Section 6. By parallel t ransport  we now have a distinguished basis of  

Pic((o*Z)r), for each rE V. 

Each exceptional curve Ct (t E U) intersects Zoo, t in a single point which we simply 

denote by C N Zo~ t. By definition of  the characteristic map we have 

(c3 = n z .  c* 

for each r E V. We wish to study the behaviour of  ~0(r)(C) as r varies in V. Le t  us 

discuss the three cases k=6,  7, and 8 in turn. 

k=6: If  r varies such that o(r) converges to s then CnZ~,e(r ) converges to a 

smooth point of  W=Zo~ s. In view of  the definition of  e, see (6.9), this means that 

~p(r) (C)/u 2 has a limit in C*. This holds for  C=Cjt (l~<j<l~<6), and by Theorem 7.9 the 

class of  C/t is 

Cjt = ho+hj+ht. 

Re-writing this via (6.14) we obtain that 
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( (Yg(r) (ho+hj+hl))a/~(r) ( -x)  = ~(r) 3hj+3h t -  h i 
i=1 

converges in C*. 

The subspace of Q |  spanned by the classes 

6 

3hj+3ht- ~ h i (1 <<-j<l<~6) 
i=l  

is just the kernel of the linear form 

As, by (6.14), 

fl = (2; 0, ..., 0) E Hom (H, Z). 

~0(r) (-u)--* 0 

it follows that there is a neighbourhood U' of s in U such that for each h E Q |  with 

{h, fl)~>0 the function r~O(r)(h) is bounded on VnO-I(u') .  Those h which are also 

integral on the lattice A c H o m ( H , Z )  are, by definition, those characters of 

8-=Hom(H,C)/A which extend to a complex-valued function on ~. Therefore the 

characteristic mapping 

~'-~ ere 

is bounded on V n 0-I(U'). Dividing by the action of the monodromy, we conclude that 

i ~2 ,~','-tt=1 S ~ z l l w c  ~glW 

is bounded on S 'n  U', and therefore extends over U'. This completes the proof for 

k=6. 

The case k=7 is even simpler. We put C=Ci (i=1, ...,7). Then as Q(r)~s(rEV) the 

point C n Z| e(r) converges to a regular point of W1 c Z| s, see Theorem 7.9. Then 

~(r) ( C) = ~(r) (-hi) 

converges in C* and we conclude as above. 

k=8: This is slightly more involved. We first observe that for a smooth family of 

exceptional curves C over U we have 
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C~ n WE W' r (C)/u 4 converges in C* 

C~ n WE W' r ~p(r) (C)/u 1~ converges in C* 

217 

(o(r)--> s). 

Again this follows from the formula (6.9) defining the parametrization e. Putting C=Cj 
(1~<j~<7) we obtain that 

~(r)(-12ho+3hj+3hs-5f~=hi) 

t 1" " converges in C*. On the other hand for C=Ctm and C=Ctm app lcaUon of Proposition 

7.10 only gives the ambiguous result that either 

Op(r ) ( ho + hl + hm) ) 3 /(~O(r) (_~) )5 

and 

o r  

and 

~(r) \4ho+ht+hm+hs+iE=l h i / /  lp(r) (_u))2, 

(~0(r) ((ho+hl+hm))3/(~(r) ( -x) )  2 

~(r) \4ho+ht+hm+h8+i~l hi// ~(r) (_~r 

converge in C* as Q(r)---~s. But the first case may be ruled out: The classes 

8 

-12ho+3hi+3hs-5 E hi (1 ~j~<7), 
i= i  

8 

3(h~ +5x = - 12ho+3ht+3hm-5 E hi 
i = l  

and 

3 4ho+ht+hm+hs+ h i +2x=6ho+3ht+3hm+3h s- h i 
k i = l  i = l  

(l~<l<m~<7) generate the vector space Q| and if ~(r) were to have a limit (in C*) on 

all then in particular on m but this is absurd by (6.14). This leaves only the second 
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possibility. Here the classes 
8 

3(ho+hl+hm)+ 2~r = -3ho+ 3ht+ 3hm-2 E h i 
i=l 

( 3 4ho+ht+hm+h8+ h i +5u=-3ho+3ht+3hm+3h8-2 hi 
\ i=1 i=1 

(l~<l<m~7) span the kernel of the form 

fll : = (8; 3 .. . . .  3,0) E Horn (H, Z). 

As (ill, - u ) = 3  is positive the proof will be complete if we can show that some positive 

multiple of ill is in the W-orbit of ft. To this end note that ( i l l , - u ) = 3 =  (~f l , -u) ,  and 

that the orthogonal projections of fl~ and �89 to Q are 

and 

fl'l = - ( 1 ; 0  . . . . .  0 , 3 )  

f l '=  - (8 ;3  .. . . .  3). 

. . . .  ' ' �89189 We have ( f l l , f l l ) - -8- ( f l  ,fl ), and neither is a root. The result now is a 

consequence of the following lemma. Q.E.D. 

LEMMA 7.12. Let Q be the root lattice o f  a root system o f  type E8, equipped with 

the invariant quadratic form q that takes value 2 on each root. Then the Weyl group 

acts transitively on 

{x E Q lq(x) = 8 but ~x is not a root}. 

Proof. Using coordinates as above, q is minus the intersection form, and fl' 

belongs to the set in question. The isotropy group of fl' (which must be a reflection 

group) is the symmetric group Sym(8) generated by al . . . . .  4 7 .  Thus Wfl' has 

I Wl/ISym (8)1 = 2 2. 3 2. 4 2. 5 .6  = 240.72 

elements. Adding the 240 double roots we obtain 240.73 vectors x with q(x) = 8. By the 

theory of modular forms (see Gunning [16], w 12) there are no others. Q.E.D. 

The proof of Theorem 6.2 is now quickly completed. By Proposition 6.15 the map 

~p3:S--*~g/W is C*-equivariant; in particular it is an algebraic morphism. By Lemma 

4.23 it is an isomorphism, and we put 
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= v2~l: ~g/W---> S. 

Let rE S' be such that s=o(r) ED. Then the curve Xs is singular, hence so is (~*Z)r=Z~. 

By Demazure [11], V, Proposition 1 there exists a root h E H which is represented by an 

effective divisor on the resolution Zr (which is contracted in Zs). Therefore ~p(r) (h) = I; 

hence (h, ~pl(r))EZ. This implies 

"ff/2(S) E A = A(Ek[~]2). 

As both D c S  and A c ~ / W  are irreducible hypersurfaces it follows that ~p3(D)=A, that 

is, ~(A)=D. Q.E.D. 

8. Ek[-x-]: Supplements 

Theorem 6.2 has consequences for the deformations of the singularity Ek[-x-] similar to 

the Dk[-x-]-case. Still using the notation of the previous section, we have the following 

analogue of Theorem 5.1. 

THEOREM 8.1. Let r E ~  and put s = ~ ( r  mod W2)ES. Assume that xl . . . . .  XrEXs 

are the singular points of  the fibre of  the deformation X--~-> S over s. Then the plane 

curve singularities among the (Xs, x e) are of  type At-l ,  Dr-t, or Et, with l<.k. There is 

at most one more singularity, and this has type Dt-l[*] or El[%](l~k). The isotropy 

group of  W2 at r E Y~ is isomorphic to the direct product M1 x. . .  • where the factors 

are defined as in Theorem 5. I. 

Proof. See Theorem 5.1. Q.E.D 

The deformation theory of the singularity Ek[*] puts it in an intermediate position 

between the simple hypersurface singularity Ek and the simply-elliptic singularity/~k. 

Each of the corresponding semi-universal deformations can be described by a family of 

del Pezzo surfaces of degree 9 - k  with a distinguished anticanonical divisor. The latter 

has arithmetic genus one and is a rational curve with a cusp (Ek, see Tyurina [46], or 

Pinkham [40], 5); or a rational curve with a node, allowed to decompose (Ek[-x-]); or an 

elliptic curve whose j-invariant is allowed to vary (/~k, see Looijenga [26], Pinkham 

[39], Merindol [34]). Accordingly a description of the discriminant is obtained via an 

action of the Weyl group W(Ek) on a vector space, an algebraic torus, or a family of 

abelian varieties. 

These distinctions also imply different adjacency relations. As is well-known the 
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singularity Ek deforms into configurations of simple singularities that correspond to 

root systems contained in the system Ek as rationally closed subsets; these are 

classified by the full subgraphs of the Dynkin diagram Ek. 

In the other two cases adjacencies correspond to closed and symmetric subsets of 

the root system Ek, but not all of those need occur (du Val [48], Merindol [34], Urabe 

[47]). Let us illustrate this point by one example. 

(8.2) Example. The maximal number of ordinary double points that can occur in a 

fibre of the semi-universal deformation is 4 for E7, 5 for E7[-x-], and 6 for/~7. 

Proof. This is clear for E7 while the case of/~7 is treated in detail in the references 

just quoted. Turning to E7[-x-] we first look at points in ~rc~. 

Let R be the root system of type E7. Following Urabe [47] the closed symmetric 

subsets of type 5A1, 6A1, and 7A1 form one W-orbit each. The corresponding manipu- 

lations of the Dynkin diagram are: 

-- t~ 51 52 53 54 55 56 

" - i 57 J~7 

- i - i - i+o6 

3At+D4 

�9 �9 �9 �9 7Al 

Table 8.3 
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By (2.12), in order to realize the configuration 7A1, we must try and find t ERR with the 

property that the roots in the last diagram together with their negatives are just  those 

roots of R with integral values on t. Let  d ER denote the greatest root; it then suffices 

to consider t in the closed fundamental alcove 

(a~  I>0 ( j = l  . . . . .  7), d v ~< 1). 

Using standard coordinates as in the previous section the conditions on t=(t0; t~ . . . . .  t7) 

include 

( t ,  ct~) = tE- t3  = 0 

( t ,  a2  ) = t 4 -  t5 = 0 

( t ,  a~ ~ = t 6 -  t7 = 0 

( t, a~ ) = t o - h - t E - t 3  = 0 

( t, (zv ) = 2 t o - t E - . . . - t 7  = 1 

( t, ~t ~) = t o - t l - t 6 - t 7 C  {0, l} 

(t, a~)  = t l - t 2 E  (0, 1) 

(t, ct~) = ta- t4E (0, 1) 

(t, a~)  = ts - t6E (0, 1) 

(*) 

Thus t must have the form 

with 

t = (to; tl, t2 , /2 ,  t4, t4,/6, t6) 

to = tl + 2t2 

2to = 2(t2+ t4+ t6)+ 1 

to-- t l - - 2 t6E  {0, 1} 

tl > t2>t4>t6. 

(*) 

These conditions are incompatible; therefore not even the type 6A~ can be realized. On 

the other hand, if we are looking for 5A 1 the conditions marked (*) may be dropped, 

and we have a three-parameter family of solutions 
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t = (t2+t4+t6+~; -t2+t4+t6 +1, t 2 , t 2, t 4, t4, t 6, t 6) 

with t2>t4>t6, t4+t6>2t2 +1. Therefore 5A~ does occur as a configuration of singular 

points. 

It is readily verified that 6AI is neither realized on any lower dimensional if-orbit 

in ~f. This completes the proof. We remark, though, that 5AI also occurs on the two- 

codimensional O--orbits as is seen from the diagram 

derived from E7[-~]. 

Quite a different, if less systematic argument can be given in terms of the geometry 

of del Pezzo surfaces Of degree 2. Any such surface is a double cover of the projective 

plane, branched along a quartic curve--see Demazure [11] V, 4. The singularities of the 

surface and the branch curve correspond as in Corollary 6.7. Thus the semi-universal 

deformations of E7, E7[-x-], and/~7 may also be described by families of plane quartics 

with a distinguished section "at infinity". For E7, the latter consists of a simple point 

plus a triple point. Likewise, by (6.5) we have two simple plus one double point for 

E7[-x-] while the/~7-case is characterized by four simple points at infinity. 

By elementary geometry of the plane no quartic curve can have seven ordinary 

double points while one with six double points is a complete quadrilateral. This clearly 

checks with the numbers given in (8.2). 

Recall from Theorem 3.10 that we have a natural presentation of the fundamental 

group :r l (S\D,  s), with a geometrically distinguished generator aa for each vertex a of 

the affine Dynkin diagram /~k- The following is proved in complete analogy with 

Theorem 5.6. 

THEOREM 8.4. The generators aa determine a weakly distinguished basis o f  

vanishing cycles in the Milnor homology of  the curve Ek[*], with intersection diagram 

/~k- Q.E.D. 

Again the corresponding vanishing lattice over the field F2 is determined by the 

relevant dimensions and the number of mod 2 vanishing cycles. These numbers are 72, 

126, and 240 (k=6, 7, 8) and in the classification of integral vanishing lattices by Janssen 
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[19] we arrive at the types O~(1, 1, 1; 1), O#(1, 1, 1;2; ~), and O~(1, 1, 1, 1; 1), respec- 

tively. 

The group arl(S\D, s) also acts, though in a different way, as a monodromy group 

on the Milnor homology of the family of affine surfaces 

p 7f 
Zs \  n --* S \  D 

where Z' = Z \ Z ~ ,  see (6.3). This action may be identified as follows. Note that in fact 

s E S ' \ D ,  and look at the exact homology sequence (with integral coefficients) of the 
pair (Z~, Z~): 

H3(Z,)---) H3(Zs, Z;) o , H2(Z;)--, H2(Zs)--) H2(Z,,Z;) 

fl 
H3(T, OT) eic (Zs) H2(T, aT) 

(8.5) 

T is a compact "tubular" neighbourhood of the singular curve Zoo,s in Zs, that is, a 

compact four-manifold with boundary in Zs of which Zoos is a deformation retract. A 

simple way to construct such retractions is shown in Pickl [37], II, w 4. 

By Lefschetz duality we have 

H3(T, OT) = HI(T) = HI(Zoo,s) 
H2(T, aT) = H2(T) = H2(Z~ s). 

Z| is obtained from the 2-sphere by identifying two points p and q. Poincar6 duality 

in the sphere yields (with zr~g,=C * the regular locus of Z~,s): 

H'(Z| = H'(S 2, {p, q}) --- H,(S 2 \ {p, q}) = H1(Zr~g,,) 

and H2(Z| Thus the sequence (8.5) reads 

0---) HI (Zr~,g~) --. H2(Z~) ---) Pic (Z~) ---) Ho(Zr~g~) 

Z Z k+l  Z 

(8.6) 

where all homomorphisms have a simple geometric meaning: the retraction 

r: T--> Z~,s 

may be chosen so as to restrict to a disk bundle projection over Z~g s, and the first non- 

15-868286 Acta Mathematica 157. Imprim~ le 12 novembre 1986 
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RQ 

Figure 8.7 

trivial arrow of the sequence sends a cycle to its inverse image in aT. The next arrow is 

induced by the inclusion, and the last assigns to each class its intersection number with 

the anticanonical curve Z~,~. 

For  each of the generators a ~ n ~ ( S \ D ,  s) (a=a~ .. . . .  ak,--t~) let us construct a 

vanishing cycle o a in Z'. Recall the definition of aa (see Figure 8.7). The base point s is 

the barycentre of C N RQ, the intersection of  the fundamental alcove with the hyper- 

plane spanned by the roots. The defining representative a~: [0, 1]---~ L~ is the path 

which follows the real segment from s to wa(s), avoiding the fixed hyperplane of wa on 

a small positively oriented semi-circle in L~. 

We identify S with ~g/W via the isomorphism ~3=q~ - 1 constructed in the previous 

section. Note that the function u restricts to a non-zero constant on RQ; therefore the 

curve Z| does not vary with t E L~ and we may put W: =Z~, t. 

The dual root a "  may be conceived of as an element of 

H = H2(Z~) = Pic (Z~). 

By Demazure [11] II, 2, the root a "  E H  is the difference of a pair of exceptional 

curves. We pick one such pair, say a"=es-f~.  As rE[0,  1] and hence a~(r)~S vary 

these curves vary in smooth families e and f ;  we have ewo~s)=f~ and vice versa. The 

point of intersection e N W thus forms a smooth path 

aa: [0, 1 ] ~  W "eg, 

joining es n W to f~ N W. This path lifts to a path a~ in the universal cover 

C ~ C/Z= W eg. 

By definition of the characteristic mapping ~p--see (6.10)---this path is linear, and the 

difference a~(0)-a~(l)  is just (s, a "  ). In particular aa is actually an embedding. 
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/ T W ~  ~ 

Figure 8.8 

Let v~cZ" be the sphere 

( e s \ l " )  U (r-'(aat0, 1]) n aT) U ( f s \  T) 

as shown in the (real) Figure 8.8. 

We give va the orientation which restricts to the natural orientation of es\T.  

THEOREM 8.9. (1) Va is a vanishing cycle with respect to the path that linearly 
joins s to �89 

(2) (vat ..... vak, v_a) represents a basis of the homology group Hz(Z~). 

(3) This basis is a root basis of affine type F,k (with respect to the intersection form 
on Hz(Z'~)), and ~rl(S\D, s) acts as the affine Weyl group. 

Proof. All this is clear by construction but the claim that the v~ (a=a l  .....  ak, - d )  

generate HE(Z]). They clearly generate the kernel of 

Pie (Zs) --~ H0(Zr~,g~), 

and in view of the exact sequence (8.6) it suffices to exhibit a generator of the cyclic 

group H~(W) as a linear combination of the v~. To this end let 

k 

a=~%aj 
j=l 

be the representation of the greatest root in the finite root system Ek, with basis 

al ..... ak. Then the linear combination 
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k 

o_ +E cj% e He(Z:) 
j=l 

maps to zero in H2(Zs), and, therefore, is represented by a sum of arcs in W ~eg. Lifting 

these to the universal cover C---~ C / Z = W  ~eg we obtain segments of total length 

k 

-(s, av>+  cj(s, a;> =- l .  
j=l 

Q.E.D. 

Recall that the family of projective surfaces Z--~ S is given by the equation 

0 =f(w,  x, y, z) = p(w, y)+q(w, z)+u2wa-a+lx2+2vu/Z+lx-2xyz, 

compare (6.4). It is clearly induced from the family  

XX--> T= {(p, q, t, v)} - C k*l 

given by 

0 = g(w, x, y, z) = p(w, y)+q(w, z)+tufl-a+lx2+2vura+lx-2xyz, 

via the substitution t=u 2. For k=6 this latter family carries the fixed divisor 

W= {2xyz = ya+z3} 

at infinity. The fibre of X over the point (Y3, Z 3, 0, 0) E T is the cone over W, and the 

whole family is naturally interpreted as the semi-universal projective deformation of 

that cone with fixed divisor W, compare Pinkham [38] Chapter I. The singularities of 

the fibres o fx  are either rational double points or isolated line singularities in the sense 

of Siersma [41]. Our description of S as a quotient ~g(E6[*])/W(E6[*]) also provides a 

description of the locus of singular fibres of X. In fact the method of Section 6 still 

applies if k*6, and serves to prove the following result which will only be stated. 

Let W be a rational curve with node, and let Xo be the projective cone over W with 

respect to a degree 9 - k  line bundle Le--that is, 

X0=Pro  j ~H~ ~J)[w], weight (w) = 1. 
j=0 

Let XX--> T be the semi-universal projective deformation of Xo with fixed divisor 

W={w=0}, and let D o T  be the locus of singular fibres. 
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THEOREM 8.10. There is a C*-equivariant &omorph&m 

T--, w( k) 

which takes D to the discriminant of  the quotient map 

 /�89 W. 

Here the extended Dynkin diagram #.k is read as a diagram in the sense of  Chapter I, 

with the added root the unique white vertex. 

Note that D is reducible as all fibres of X over {t=O} are singular at infinity. 

9. Mixed root  bases  

In this section we generalize the notion of diagram from Section 1; we will allow a 

generalized root system in the sense of Looijenga [28] to play the role of the classical 

root System associated with the Dynkin diagram ~o~ackC~. Using a recent construc- 

tion of Looijenga [33] we shall see that in this situation there still is a naturally defined 

quotient ~g/W. Rather than an affine space, ~/W will be a Stein manifold, equipped with 

a stratification that may be described combinatorially in terms of the root data. 

We also include proofs of Theorem 1.2 and Proposition 1.5. 

Let V be a real vector space of finite dimension. We study triples (A, 6, B) where A 

and B are disjoint subsets of V, and 

6:A=A`" c V  v . 

a . . - ~  Ol v 

is an embedding of A in the dual space V v . This data is subject to the following axioms. 

(R1) A LIB is a basis of V. 

(R2) The pair (A, 6) is a (generalized) root basis, see Looijenga [28]. 

(R3) (fl, aV)~<0 for all a E a ,  flEB. 

Thus (a, a " )  =2 for a EA, while (7, a~ ) is a non-positive integer for all a EA, 

3' E A U B, a4:~,. In case this number vanishes for some 7 E A then so does (a, 7")- 

The matrix 

is called the Cartan matrix of (A, 6,B). The corresponding DynMn diagram 

~=  ~(A, 6, B) is, by definition, the Dynkin diagram of the root basis (A, 6), extended by 
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one white vertex for each flEB; this vertex and a vertex aEA span an edge in ~ if 

-(fl ,  a v }> 0, this number being the weight of the edge. Recall that two distinct black 

vertices a and a '  span an edge of weight (a, a'V} �9 {a', a"} unless this is zero. 

Thus if the root basis (A, 6) is known to satisfy 

(a ,a 'V)>~-I  or ( a ' , a V } > ~ - l ,  foralla, a 'EA, (9.1) 

then the Cartan matrix of (A, 6, B) may be recovered from the Dynkin diagram. In 

particular the construction described in Section 1 assigns to a diagram ~ the (essential- 

ly unique) triple (A, 6, B) that has ~ as its Dynkin diagram, and satisfies (9.1), 

In analogy with Section 1 we define: (A, 6, B) is a mixed root basis if: 

(R4) Each connected component of the Dynkin diagram ~(A, 6, B) contains a white 

vertex. 

If (A, 6,B) is a mixed root basis we let Q = Z A c V  be the root lattice, and put 

A=Q+ZB as usual. The Weyl group WcGL(V) generated by (A, 6) may now be 

infinite, and K, the convex cone spanned by the set WBc-V, need not be closed in V. 

The fundamental chamber 

C = {xE V[ (x, a ~ } > 0  for all aEA} 

defines the Tits cone I=WCcV,  see Looijenga [28], (I.1). We have B e - C ,  therefore 

K c - I ,  as well as 

WBcB+Z+A 
([loc. cit.], (I.11)). 

LEMMA 9.2. K has non-empty interior, so dimK=dim V. 

Proof. By induction on the cardinality [A[. For A = ~  the set B spans V, and the 

assertion is trivial. If A~=~ then each black vertex a in ~ may be joined to the 

subdiagram ~whitr by a path in 9. We let d(a, ~white) be the distance between a and 

~white, that is, the number of edges needed to set up such a path. Choose a 6A so that 

d(a, ~white) is maximal, and let A ' = A \ { a } .  Then the triple (A', 6 [A',B) is a mixed 

root basis in the hyperplane V 'c  V which is spanned by A' U B. By induction hypothesis 

the corresponding cone K ' =  K(A,, 6IA,, B) has non-empty interior in V'. As the dual 

root a v does not vanish identically on V' it cannot vanish identically on K'. Thus 

waK' is not contained in V', and the assertion follows. Q.E.D. 

As the notion of root basis is self-dual we also have the dual Tits cone IV c V v. 

Our aim is to describe the dual of K, the cone 
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K`" = {x v E V" Ix" I> 0 on K} c V v, 

which is closed by definition. We first prove: 

PROPOSITION 9.3. KV ~I ". 

Proof. Assume there exists an x" E K v \ I " .  We let F~R be the additive subgroup 

generated by the finite set {(a, x" )  ]a EA}. Inductively, we construct a sequence of 

linear forms x/ (j=0, 1 .... ) with the following properties. 

(i) x~ E Wx`" n(xV +FA v) 

(ii) x~.+l-x ~. =yja~ for some %EA, and some yjEr ,  y j>0.  

We may start with x~=x`'. If x~ has been defined then (i) implies that 

x~ ~ I v . In particular xj v ~ ~v, and we find an aj E a with (%, x~ ) <0. We put 

x,, ,%(V) < xj 

Then  7j=--(O~j,X;) is positive and in F, for by (i) we have 

yj= -(%,xf) - -(%,x ~) modF. 

This completes the induction. 

As K has non-empty interior by Lemma 9.2, and is a W-invariant subset of - I  it 

meets the chamber - C .  Thus we may pick some xEKn(-C) .  By (ii) the values (x ,x / )  

tend to - ~  as j -+  ~. In view of (i) this contradicts the assumption x v E K v. Q .E .D .  

Let X c A  UB be any subset. We shall have to distinguish various types of such, 

recognizable by the corresponding full subgraphs ~x of the Dynkin diagram 

X is a mixed subset of A UB if each connected component of ~x contains a white 

vertex. In this case (XnA, O l(SnA), x n n )  is a mixed root basis in the vector space 

RX. 

X is a special subset of A LJ B if it is contained in A, and is special in the sense of 

Looijenga [28], that is, if each connected component of ~x generates an infinite Weyl 

group. 

The subset X c A  U B is admissible if each connected component of ~x corresponds 

to a subset of X which is either mixed or special. 
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Clearly, each subset X c A  UB contains greatest mixed, special, and admissible 

subsets; we denote these X ' ,  X s, and X a respectively. 

For X c A  U B we put 

X* = {aEA I (7, a " )  =0  for all 7EX}. 

Let us study the decomposition of the dual cone K" into facets, defined as follows: 

x", y" E K" belong to the same facet if and only if/~fl {x" = 0} =/~N {y" = 0}. 

LEMMA 9.4. Let ~ c K  v be.a facet. Then r} is open in its supporting vector space 

Re}. 

Proof. Let x" E �9 and let V ' c  V be the subspace spanned by the set / ( f l  {x" =0}. 

We choose a Euclidean norm on the quotient V/V'; this norm lifts to V as a semi-norm o 

that vanishes exactly on V'. As x" is zero on V' it takes a positive minimum c on the 

set/~N {o= 1}. I f y "  ~ R �9 is sufficiently close to the origin then l Y" I < c on/('N {tr= 1}. 

It follows that 

and 

xV+y ~ = 0  on V', 

x " + y "  > 0  on K \ V ' .  

Therefore xV+yV E qb, and the lemma follows. Q.E.D. 

Lemma 9.2 implies that {0} is a facet of K".  For any subset X ~ A  U B we have a 

unique facet ~(X) which contains the linear form x" with 

=0 ify x 

(7,x v) = 1 i fTE(AUB)NX.  

Thus {O}=~(A UB). 

We classify the facets of K v as follows. 

THEOREM 9.5. There is a bijection X~-*~(X), between the set o f  admissible 

subsets of  A U B, and the set o f  W-orbits o f  facets o f  K v. 

As a first step we prove: 

LEMMA 9.6. Let x ~ EK ~. Then the orbit Wx ~ meets ~(X) for some subset 

X ~ A  U B. 
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Proof. By Proposition 9.3 we may assume that x." belongs to the closed dual 

fundamental chamber d'", so (a, xV)>~O for all aEA. As xVEK ~ we also have 

(fl, x") >-0 for all flEB. We put 

X= {yEAUB] (y,x v) =0} 

and let y" be the linear form that defines ~(X); ( y , y " ) = 0  if 7EX and ( 7 , y " ) = l  if 

7 E (A 0 B ) \ X .  A s / (  is contained in R+. (A O B) it follows that 

/ ~ N ( x V = O ) = I  2 cr'TE/~'lcr =0  i f (7 ' xV)>O}  =/~N(yv=o}"  
LyEAUB 

Thus x v E ~(X). Q.E.D. 

PROPOSITION 9.7. ~(X) = c~(Xa) for any subset X c A  UB. 

Proof. The root basis (Y: = X ~ X  a, 81 Y) generates a finite Weyl group WrcGL(V). 
Let or: V---~ RY be the projection along the Wr-fixed space 

vW'={xEVl (x ,  aV)=O for all a 6  Y}. 

Composing z~ with a Wr-invariant Euclidean norm on R Y we obtain a semi-norm 

a: V--> R which is Wfinvariant and vanishes exactly on V wr. 

Let fl 6 B, and consider any y in the W-orbit of fl, 

Y =f l+2Yaa.  
ct~A 

We put c:=maXaeA\xa(a ) and claim that 

o(y) <~ o(fl)+ c- 2 Ya- (9.8) 
a~4 \ X  

To prove this we choose an element w E W of minimal length l(w), such that wfl=y. If 

l(w) is zero then y=fl and (9.8) holds trivially. If l(w) is positive we argue by induction: 

for some a0 ~A we have (y, a~' )>0,and the inductive hypothesis applies to 

y' =Wao(y)=y-(y,a~) a o. 

Writing y'=Ea~aY'a we thus have 



232 K. WIRTHMULLER 

Ya= y" i f a * a  0 

y%= y'% +(y,a~). 

We now distinguish three cases: 

(i) If  a 0 EX a then (a  0, a v ) =0 for all a E Y, hence a o E V wY, and a(y)=a(y') ;  this im- 

plies (9.8). 

(ii) If ao E Y then o(y)=o(y')  because a is Wr-invariant, and the assertion follows 

again. 

(iii) If  ao E A \ X  then 

o(y) <~ o(y')+ (y, a~ ) O(ao) 

<~o(fl)+c" E Y',~+(Y'ao)O(ao) 
a E A \ X  

\ a ~ . A \ X  

<~o(,fl)+c" E Ya" 
a E A \ X  

This establishes the estimate (9.8). As to the proof of the proposition, let xEK 
converge to gE/~, with g=~,rexs We must show that g r = 0  for yE Y. Now x may 

be written 

x =  E 2 / y  ~) 
jEJ 

with yO~ E Wflj (/3/E B), and 2j t>0. Thus 

= ~jYa a ,  
jEJ jEJ 

aEA 

and the assumption of convergence implies 

while 

jEJ 

jEJ 

for each fl E B \ X ,  

for each a E A \ X .  
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Note that f l E B n X  implies (/3, a v ) = 0  for each a E Y ,  so f lEV  W~ and cr(fl)=0. The 

estimate (9.8) therefore implies 

o(x) <. 
jey 

"~'j Ya " 

jEJ jEJ 
~jEB\X a E A \ X  

Taking limits we conclude t~($)=0 and ~ E vWrn R X = R X  a. 

Let X c A  be special. Recall that a positive X-root is an element 

~ x,~aE-C 
aEX 

Q.E.D. 

with (strictly) positive integral coefficients. The existence of positive X-roots character- 

izes the special subsets X of A, see Looijenga [28] (1.18). 

LEMMA 9.9. Let x v E d~(X). Then I~ fl {x" =0} contains the positive XS-roots. 

Proof. As K c - I  has non-empty interior we find a point y E ( - / ~ ) N C .  Let x be a 

positive XS-root. By (2.4) of  [loc. cit.] the convex hull of  the orbit Wy intersects C in 

the set (y -R+ A)N C. The latter set contains y - t x  for all t>0, hence so does - K .  Thus 

K contains x - t - l y  for all t>0, and taking the limit as t---~o0 we obtain xE/~. Clearly 

<x, x v > =0 and the lemma follows. Q.E.D. 

(9. I0) Example. Consider the mixed root basis given by 

A = { a , , a 2 }  , B={f l} ,  

= = - 2 ,  

<Z, > -- - 1 ,  = o .  

Its Dynkin diagram is: 

The root basis A is of affine type ([loc. cit.] Section 5), and the positive A-roots are the 

multiples of a~+a2. The roots are ma~+na2, m, n EZ,  I ra-n  I= 1 while the orbit of fl 

consists of all points f l+xlal+x2a2 with xt ,x2EZ+ and (xl-x2)Z=xl. Thus K is as 
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Figure 9.11 

shown in Figure 9.11. The Tits cone I is the union of the open lower half space bounded 

by RA, and the line R(a~ +a2). Note that in accordance with the lemma, the closure of 

K contains the ray spanned by the positive A-root al+a2. 

PgOPOSITION 9.12. Let X and Y be admissible subsets o f  A UB. I f  q~(X) and ~(Y)  

are in one W-orbit then X=Y.  The stabilizer o f  dp(X) is the direct product 

Wxux.= Wxx Wx .. 

Proof. Let x v E ~(X) be the defining form; 

{01 ifTEX, 
(~,,x"> = i f ~ E ( A U B ) \ X .  

Then x" E(~", and wxV=x v for w ~ Wx. On the other hand, as /~ is contained in 

R+(AUB) each w E W x .  must leave /(n{xV=0} pointwise fixed; therefore 

wx ~ E ~(X). This shows that Wxux* is contained in the stabilizer of ~(X). 

To prove the opposite inclusion, let w E W send ~(X) to q~(Y). By what is already 

proven we may assume wx v E C ~ o u r * ;  that is, 

<a, wxV)>~O for all aE(An  DU Y*. 

We show that this inequality holds, in fact, for all aEA.  Thus let a E A \ ( Y U  Y*). We 

distinguish two cases. 

If YmU{a} is a mixed subset of AUB then the cone Kv, u{~} strictly contains 

K~---see Lemma 9.2. Thus we find some y E K r ,  with (y, a v ) <0. As wx" is in ~(Y) 
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we have (y, wx")=O but (way, wx")>O. From the relation 

(waY, WX v ) = (y, WXV)--(y, a v ) (a, wx v) 

we conclude (a, wx v )>0. 

In the second case a6A\ (YUY*)  is such that ymu{a} is not mixed. Then 

Y~U {a} is a special subset of A. By Lemma 9.9 the form wx ~ E~(Y) vanishes on the 

positive Y~-roots, and as (a', wx~)>-O for all a 'EAN Y this implies (a ' ,xw~)=O if 

a '  E Y~. Now let 

Y= E Ya'a'+Ya a 
a ' E  y s 

be a positive (Y~ U {a})-root. On y E/~ forms in q~(Y) must be positive, and we obtain 

0 <  (y, wx ~ ) =Ya (a, wx") .  

As ya>0 we have (a, wx")>O too.  

We now know that both x" and wx ~ belong to the dual fundamental chamber C", 

and conclude that x~=wx ~ and that w E Wx. Thus q~(X)=~(Y), and the stabilizer of 

q)(X) is exactly Wxux* as claimed. Finally, we have X= Y, for Lemma 9.9 and the 

following lemma allow to recover X from the set/ON {x"=0}. Q.E.D. 

LEMMA 9.13. Let X c A U B  be a mixed subset, and let x" E q~(X). Then 

K N {x v = O} = Kx. 

In particular/~fl {x" =0} spans the vector space RX. 

Proof. We may assume that x v is the standard linear form given by (V, x v) =0 

(yEX), ( 7 , x~ )= l  ( yE (AUB) \X ) .  Let flEB, xEWfl  such that (x ,x" )=0 .  Then f l E X  

and x E Wxfl. In fact, choosing among the w E W with x=wfl one of minimal length l(w) 

we may argue by induction: the case l(w)=0 is trivial, and if l(w)>0 then 

x=wax' =x'+(x, aV)a 

where l (waw)=l(w)-I  and (x, a v)>O. The inductive hypothesis applies to x' and it 

follows that a EX. 

Now let xEKN {x"=0}. Then x=Ej2j.wjflj with ;tj>0, wjE W, fljEB, and neces- 

sarily (wjflj, x~)=O. Therefore wiE Wx and f l jEX whence xEKx.  This proves 
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K N {x" = 0} = Kx, 

the other inclusion being obvious. 

The last clause of the lemma holds because Kx  has non-empty interior in RX, by 

Lemma 9.2. Q.E.D. 

Note that Theorem 9.5 now follows from Lemma 9.6 and Propositions 9.7 and 9.12. 

Likewise we have established the unproven statements made in Section 1. We need 

only remark that the cone K is closed if the root basis (A, 6) has a finite Weyl group. 

Thus Theorem 1.2 follows from Lemma 9.13, Lemma 9.2, and Theorem 9.5 while 

Proposition 1.5 follows from Proposition 9.12. 

In Section 1 we have assigned to each diagram ~ a torus embedding f f c~ .  In the 

present more general context ~ i s  obtained by a recent construction of Looijenga [33]. 

The object ~wil l  be a mere topological space with W-action, but the quotient ~ / W  will 

carry a natural analytic structure and will turn out to be a Stein manifold. 

We briefly recall Looijenga's construction as far as it is relevant to the problem. 

The place of the torus ~r= Vc/A is now taken by 

~-= ( V - i F ) / A ;  

/~ is the topological interior of the Tits cone I so that J i s  an open subset of an algebraic 

torus. By Looijenga [28], (1.14) and (2.17), the Weyl group W acts properly discontinu- 

ously on ~r, with finite reflection groups as isotropy groups. By Chevalley's Theorem 

the quotient ~r/W is an analytic manifold. In order to describe the partial compactifica- 

tion ~ of i f  we need some preparatory notation. 

Let A " c V "  be the dual of the lattice AcV. 

LEMblA 9.14. The convex hull o f  K"  NA" is K" .  

Proof. As K" is closed in V v it is the convex hull of its extremal rays. The non- 

zero points of such a ray must form a one-dimensional facet of K",  for by Lemma 9.4 

each facet is open in its support. By Theorem 9.5 each ray is spanned by a lattice point, 

and the lemma follows. Q.E.D. 

If qb is a facet of K v we put 

V* = {x E V I (x, x" ) = 0 for each x" E ~}. 

We let :r~ denote the projection 

~,r : V o V/V*,  
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or, ambiguously, the induced epimorphism 

~.:  Vc/A--, V c / ( ~ + A  ). 

Finally, we let 3-~Vc/(V~c+A ) be the image of 3-under no. 

Then ~is ,  by definition, the disjoint union of the 3-r where @ runs through the set 

of facets of K v. The set ~f is topologized as in Looijenga [33]. The group W acts 

naturally on ~. In fact, by Proposition 9.12 the stabilizer of a typical facet @(X) 

(XcA  U B admissible) is 

= 

and as er~,(x~ (F) is contained in Px.cV/V~'~X~--seeLooijenga [28], (2.7)--the W-action 

permutes the strata 3-~c~.  Thus the quotient ~T/W is the disjoint union of the analytic 

manifolds 

3-r (X~A U B admissible). 

Let x v E K v. Then for any facet qbcK v the Fourier series 

E e2ray,, 
yVEWxVn@ 

converges on compact subsets of V - i F ,  and these series define a W-invariant function 

Sv on ~ a s  follows: if ~E 3-0 is represented by xE V - i P  then 

Sx"(~) = E e2~i(x'yV)" 
yV EWxV n@ 

Looijenga shows that the topological quotient ~g/W admits a unique normal analytic 

structure such that the functions Sxv induce holomorphic functions on ~/W. In fact ~g/W 

is a Stein space--see Looijenga [33]. 

The formal invariant theory of the situation still is virtually the same as that 

described in Looijenga [28], Section 4. One has to study the ring ~ consisting of 

complex-valued functions f on A"N K" which have finitely dominated support in the 

sense of [loc. cit.]. Thus eachfE  ~ is a formal sum 

pEAVAK v 
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and there exists a finite subset D E C "  such that fp=O unless d - p  E Z+A" for some 

dED. 

The lattice A" is spanned by the basis 

{~"1~' ~A U B) c V ~ 

which is dual to A UB. The ring ~ contains the W-invariant functions 

Sv= 2 ep (TEA UB). 
p E Wy* 

As the F* are linearly independent the functions S v are algebraically independent in ~ ,  

and the embedding 

C[X),]vE A oB__. > ~ W  

Xv~Sv 
makes ~ w  an algebra over the polynomial ring C[X~,]veAuB. In general, though, this 

fails to be an isomorphism. We let 

A O B = A S U  Y 

be the decomposition ofA 0B into its greatest special subset and its complement. Note 

that the function S v has finite support in A" NK v if VE Y while it is an infinite formal 

series for 7, EA s. 

LEMMA 9.15. The set 

a = { fE  ~] each p E Supp (f)  is positive on some a EA s} 

is an ideal in ~ .  

Proof. Let x be a positive AS-root. By Proposition 9.3, K" is contained in I",  and 

by Looijenga [28], (2.2) each p E l  v is either positive on x or vanishes on each a EA s. 

Thus 

if p, q E K  v, and (a ,p )>O for some a E A  s then ( x , p + q ) ~ ( x , p ) > O ,  

so (a, p + q ) > 0  for some a EA s. This implies the assertion. Q.E.D. 

The following is the proper generalization of Theorem 2.14. 

THEOREM 9.16. (a) The embedding 

C[X~]v ~A uB---' ~ w  

X~Sv 
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induces an isomorphism o f  C[Xe]~ e r-algebras between the formal power series ring 

c[x d 

and the completion o f  ~ w  with respect to the Meal a w. 

(b) The ~Wmodule  ~ - w  o f  anti-invariantfunctions in ~ is freely generated by 

J = E (det w) e we* 
wEW 

where Q*=Ea EA a * .  

Proof. The proof of Looijenga [28], (4.2) applies with only minor changes. Q.E.D. 

The formal functions Sy and j2 actually correspond to holomorphic functions on 

~g/W, and the theorem has consequences for the geometry of ~/W similar to those of 

Theorem 2.14. 

COROLLARY 9.17. (a) ~/W is smooth, and so is the closure o f  each stratum 

~-.~xgW.oo. 
(b) The discriminant of ~--,ff'/W--the set of orbits with nontrivial isotropy group 

--is  the analytic hypersurface defined by j2. 

Proof. Similar to Looijenga [28], (5.5), (5.6). Q.E.D. 

As in the case of finite W, the quotient ~/W carries natural C*-actions induced by 

lattice points wEAvr The weights (to, y*) (yEAUB) need no longer be positive, 

though. The discriminant is still quasi-homogeneous of degree 2 Ea ~A (to, a*).  
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