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§ 1. Introduction
On the standard two sphere §?={x ER*|?+x2+x}=1} with metric dsj=dx}+dx3+dx},
when the metric is subjected to the conformal change ds’=e™ dst, the Gaussian

curvature of the new metric is determined by the following equation:
Au+Ke*=1 on §° (R))

where A denotes the Laplacian relative to the standard metric. The question raised by
L. Nirenberg is: which function K can be prescribed so that (1.1) has a solution? There
is an obvious necessary condition implied by integration of (1.1) over the whole sphere:
(with du denoting the standard surface measure on $2)

f Ke*du=4m. (1.2)
s2
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Thus K must be positive somewhere. Some further necessary condition has been noted
in Kazdan-Warner [9]. For each eigenfunction x; with Ax;+2x,=0 (j=1, 2, 3), the

Kazdan-Warner condition states that

f (VK,Vx,) edu=0, j=1,2,3. (1.3)
SZ

Thus functions of the form K=vwox; where y is any monotonic function defined on
[-1,1] do not admit solutions. (We will give in §2 below an interpretation of the
condition (1.3) in terms of conformal transformations of $%.) When K is an even
function on S’ (i.e. K is reflection symmetric about the origin), Moser [12] proved that
the functional

Flul=log—— | Ke¥du——— | |Vufdu—-2- | udu (1.4)
ar o ar | dn )

achieves its maximum on H.?Z (the Sobolev space of even functions with first deriva-

even
tives in L%($%)) and hence its maximum u satisfy the Euler equation (1.1). The proof in
[12] was based on Moser’s sharp form of the Sobolev inequality [11]: Given u € H"2%(5?)
(respectively u € HLZ (5%), there is a universal constant C, such that

f (exp a(u—ﬁ)z/J |Vu|2d;4> du<cC, (1.5)
52 s?

for all a<d4n (respectively a<8x) where #=(1/4n) [ sudu. In [4], we gave the corre-

sponding version of Moser’s result for those K satisfying a reflection symmetry about
some plane (e.g. K(x,,x,, x;)=K(x,, x,, —x,)); in that case we exhibited a solution to
(1.1) also satisfying reflection symmetry by solving the Neumann problem to (1.1) on
the hemisphere H={x € 5?, x,=0}with boundary condition du/8n=0 under the hypoth-
esis that

L K > max (max K(p), 0).

2 J, pESH

In case K possesses rotational symmetry some sufficient conditions were given in Hong
[8]. For example, when K is rotational symmetric w.r.t. the xs;-axis, positive some-
where and max (K(0,0,1), K(0,0, —1))<0. ;

In this paper, we give two sufficient conditions for existence to the equation (1.1).
The first is an attempt to generalize Moser’s result:
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THEOREM 1. Let K be a smooth positive function with two nondegenerate local
maxima (which we may assume w.l.0.g.) located at the north and south poles N, S. Let
@, be the one-parameter group of conformal transformations given in terms of stereo-
graphic complex coordinates (with z= corresponding to N and z=0 corresponding to
S) by @,(2)=tz, 0<t<oo. Assume

inf L | Kog,du> max K(Q). (1.6)
o<i<w 47T | VK(Q)=0
Q#N., S

Then (1.1) admits a solution.

Remark. (1.6) is an analytic condition about the distribution of X which can be
verified for example if K has non-degenerate local maximum points at N, S and in
addition the following properties: (1) K has (suitably) small variation in the region
{Ix;]>¢€}. (2) All other critical points of K occur in the strip {|x;|<e} and there the

critical values of K are significantly lower than the minimum value of K on {|x;|>¢}. We

observe that this is an open condition.

THEOREM I1. Let K be a positive smooth function with only non-degenerate
critical points, and in addition AK(Q)+0 where Q is any critical point. Suppose there
are at least two local maximum points of K, and at all saddle points of K, AK(Q)>0,
then K admits a solution to the equation (1.1).

Remarks. (1) While under the earlier sufficient condition in [12], [8], [4] solutions
obtained were local maxima of the functional F restricted to some suitable subspace of
H"?, it is actually the case that when K is a positive function, no solution to (1.1) can be
a local maximum (i.e. index zero solution) unless K is identically a constant. This

-follows from a second variation computation coupled with an eigenvalue estimate of
Hersch [7]: Suppose u is a local maximum of the functional Flu], then direct computa-
tion yields (for (1/4x) | 5 Ke*=1)

- 1 2u, 2 1 2\ 1 2
=21 — | Ke*v*—(— | Ke*v| |-— | |Vy|
t=0 4 52 4 5? 4 52

for all v € H"2. This implies that the first non-zero eigenvalue 4, of the Laplacian of the
metric Kez“ds(z, satisfies 4,=2. While the estimate of Hersch [7] says 4,<2 with equality

0= & Fl[ ]
=2—Flu+tv
dr

if and only if the metric Ke*dsj has constant curvature one. This coupled with the

assumption that K, u satisfy (1.1) is equivalent to K=constant.

15—-878283 Acta Mathematica 159. Imprimé le 23 octobre 1987
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(2) Based on the analysis in sections 3, 4, 5 of this present paper, we know the
precise behavior of concentration near the saddle points of K where AK(Q)<0, and the
following stronger version of Theorem II will appear in a forthcoming article.

THEOREM I1'. Let K be a positive smooth function with only non-degenerate
critical points, and in addition AK(Q)*0 where Q is any critical point. Suppose there
are p+1 local maximum points of K, and q saddle points of K with AK(Q)<0. If g*p
then K admits a solution to the equation (1.1).

We sketch in the following the main idea of the proofs of Theorem I and II and an
outline of the paper. As explained in the remark above, we should look for saddle
points of the functional F. Thus we look for a max-min scheme for the functional F.
Since the functional does not satisfy the Palais-Smale condition, we need to analyse
when a maximizing max-min sequence fails to be compact. This is given in § 2 in the
Concentration lemma (based on an idea of Aubin [1, Theorem 6]), where it is proved
that for a sequence ;€ H"*(S?) normalized by the condition (1/4x) | 5 e du=1, satisfy-

ing the bound

1 1
S[u; =E‘L2|Vuj|2dﬂ+ELujdusC

then either (i) qu has bounded Dirichlet integral, hence we may extract a weakly
convergent subsequence which gives a weak hence strong solution of (1.1) or (ii) on a
subsequence the mass of > concentrates at a single point P on the sphere in the sense
of measure. Observe that a maximizing sequence u; for a max-min problem will
automatically satisfy the condition S{u;]=C (for some constant C; after normalizing the

secjuence by (1/47) | $ e du=1). Thus if we do not have convergence, we must study

the phenomena of concentrating sequence. Our strategy is that when e is sufficiently
concentrated, we can compare Flu] with J[u] where ’

J[u]=logLJ ez“d/t—if |Vu|2dy—ij udu
4r Je ar o 2 )

whose critical points are known, i.e. e*=det|dp| where @ is a conformal transforma-
tion of S2. In fact J{u]<0 with J[u]=0 precisely when e*= det |dg|. This analysis of J
was due to Onofri [14] and will be recalled in § 3 where we also sharpen the estimates in
§2 in a form which'is used crucially in later analysis (of the saddle points of K). Thus
when 4; is a maximizing concentrating sequence, we will compare €™ with det |dg)|
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where @; is a sequence of similarly concentrating conformal maps. We show that 2u; is
then close to log det|d<pj| in the sense that S[u;] is close to zero (which is the value of
S[4logdet|dg])). This approximation is done in § 4 and reduces the analysis of F[«,] on
the concentrating sequence to that of the analysis of the first term log (1/47) | @ Kezufdy,

which is made explicit in our asymptotic formula (§5) for evaluating such integrals
fsz fe*duy when e® is concentrated. We combine the foregoing analysis in §6 to

conclude that for a 1-dimensional max-min scheme concentration can only occur near a
saddle point Q of K where AK(Q)<0. We then give the proof of Theorem I and ITin § 7.

We remark here that the analysis provided in §4 and § 5 is more than sufficient to
prove Theorems I and II, however for ease of future reference we give the complete
analysis here.

While Theorems I and II and the previously cited work give sufficient conditions
for existence of equation (1.1), there is another result of Kazdan-Warner [10] which
states that for any K positive somewhere on S?, there always exists some diffeomor-
phism ¢ so that the equation Au+Koge®*=1 is solvable. It is therefore of interest to
find some analytic conditions on the class of functions K which is topologically simple
(e.g. K has only a global maximum and a global minimum) that ensures existence of a
solution of (1.1).

In related developments for the analogous equation of prescribing scalar curvature
on a compact manifold M of dimension n, n=3, the corresponding equation becomes

n—1

4 AutR Ut D= Rou

where Ry is the scalar curvature of the underlying metric dsj and R is the prescribed
scalar curvature of the conformally related metric ds’=u*""?ds}. When R=constant,
this was Yamabe’s problem and is recently solved by Aubin [2] and Schoen [16]. While
for the analogous problem of prescribing R on §” (n=3) with dsf, the standard metric on

$”", Escobar and Schoen gave [5] the analogue of Moser’s theorem (for even functions
on §%); Bahri and Coron [3] have announced an analogue of Theorem II' on S°.

Acknowledgement. We are indebted to Lennart Carleson for encouragement,
insightful comments and assistance through our work. We would also like to thank Rick
Schoen and S. Y. Cheng for informative discussions and helpful comments, and Jiirgen
Moser for his interest in our work as well as warm hospitality.
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§ 2. Preliminary facts and notations
The standard 2-sphere S? is usually represented as {x ER’||x’=1}. Relative to any
orthonormal frame e,, e,, e; of R?> we have the Euclidean coordinates x,=x-¢; and we

call (0, 0, 1) (resp. (0, 0, —1)) the north pole (resp. south pole). Through the stereo-
graphic projection to the (xl,xz)-plané we have the complex stereographic coordinates

+ix
z= ot Bk} 2.1
1-x,
which has inverse transformation
2 2 7’-1
X, = Rez, x,=——Imz, x,= . 2.2)
Y14z 2 14|gp P+t

The conformal transformations of S? are thus identified with fractional linear transfor-
mations

az+b
w=

—=—, ad—-bc=1, a,b,c,d complex numbers
cz+d

which form a six-dimensional Lie group. For our purpose we need the following set of
conformal transformations: Given P € §2, 1€ (0, ) we choose a frame e,, e,, e;=P, then

using the stereographic coordinates with P at infinity we denote the transformation
@p,,(2) =tz (2.3)

Observe that @, =id and @, =@ _, ., hence the set of conformal transformations
{op,|PES?, t=1} is parametrized by B’=Sx[1, ©)/S*x {1}, where B’ is the unit ball in
R® with each point (Q, 1) € §2x[1, ») identified with ((t—1)/f) Q€ B*. H'=H"*=H"*(5?
is the Sobolev space of L? functions on S whose gradients also lie in L%

1 12
2
o= ([ (o)
1 172
= (L | (vuPdu) .
= (5 | 1w

We adopt the notation £fto mean the average integral (1/4x) [ ,fdu.

we also denote
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Definition. For u € H"*5?) let

S{ul =f|Vu|2+2fu. (2.4)
Jlul =log f e*—S[ul. (2.5)
Flu]l = F [u] =log f Ke?—S[ul. (2.6)

The critical point of J[u] satisfy the Euler equation
Au+te*=1 2.7

where A denotes the Laplacian with respect to the standard metric. All solutions of
(2.7) are of the form u=1logdet|dg|, ¢ a conformal map of S, Similarly the critical

points of F, [u] satisfy the Euler equation
Au+Ke* =1. 2.8
The functional S{u«] enjoys the following invariance property:
Definition. Given u € H"? and ¢ a conformal transformation. Let
u,= uo g+ilogdet|dg|. 2.9
We also write T'(Q) (u) for u, when =g, ,.
ProrosiTiON 2.1. S[u]=S[u¢].

The proof is left as an exercise in integration by parts, using the equation (2.7) for the
part Llogdet |dg|.

The implicit condition found by Kazdan-Warner [9] is an easy consequence of S[u]
=$ [”w]:

CoRroLLARY 2.1. If u satisfies (2.8) then

f (VK,Vx;) e™=0, j=1,2,3. (2.10)
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Proof. u is a critical point of Flu], hence

LFITQ@wI| =o.
But
FIT(Q) ()] = logf Kexp(QT(Q) (w)) = S[T(Q) (w)]
=log f K expT (Q) (u)) —S[u]
=log f Ke™%e det|dg,, |-S[u]
= log f Koggl,-e®~Slul.
Thus

e,

=1

d ‘ _|d -1
EF[T (Q)(M)]lt=1 = f 7 (Kogy,

But a simple calculation shows

d -
—Ko (pQ,]t

o 1=(VK,Vx3>, if x=x0.

This gives the desired conditions.
More generally, Kazdan and Warner [9, p. 33] found the following implicit conse-
quence by a tricky partial integration. It Av+he’=c then

fevVh-vx,:(z—c)J ehx, i=1,2,3. @.11)

Given u € H"%(5?), ¢ may be thought of as a mass distribution. So we define the
center of mass of e?: C.M.(e?)=fxe*/fe.

Definition. ¥ = {u€H"?}C.M.(e*) = 0}

Fy={u€S|fe =1}

For each Q€ 5?, 0<t<oo,
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L= A{u EH"zlu%,IE %}

For each PE€ §?, 0<d<1,

Cps= {uEH"2

We remark that for each u € H"? with fe?=1, we can find some (Q, #) € §>x[1, «)
with u € p,. This is an easy consequence of the fixed point theorem. A rigorous proof

2u
M) _ p, 1—6=JP-xe2" :
|C-M. (%)

of the fact can be found in [14], but for our purpose later we also need the continuous
dependence of the choice of (Q, 1) in terms of a continuous path of u in H"?(S?). We
state this as (and post-pone the proof to the appendix).

ProrosiTioN 2.2. Given a continuous map
u: R (or A: the unit disc in the complex plane)— H"*(S%),

there is a continuous map
(Q,1): R (or A)— 8§2x[1, 0)/§*x {1}=B?;
so that u(s) € SPQ(S)’ ) for all sER (or sEA).

We are ready to state the Concentration lemma which is the main technical result of
this section.

PROPOSITION A. Given a sequence of functions u;€ H"*(S") with fei=1 and
S{u;)<C, then either

(i) there exists a constant C' such that } |Vul*<C’
J

or

(ii) a subsequence concentrates at a point PE §?, i.e. given €>0, 3N large such
that

f eZ“fB(l—s), for j=N
B(p, ¢)

where B(P, ¢) is the ball in S? of radius ¢, centered at P.
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The proof is based on the following result of Aubin [1, Theorem 6], since a sharpened
version of this result (see Proposition B in §3) will be required later on we refer the
reader to § 3 for its proof.

ProrosiTiON 2.3. [1]. Suppose u€ H"? with fe*x;=0 for j=1,2,3 then for every

>0, there exists a constant C, with

fez"SCEexp <<%+e)f|Vu|2+2fu>. 2.12)

(2.12) is often used in the following way:

COROLLARY 2.2. Suppose u€ ¥, then §|Vul><4(S[ul+logC,,) where C,, is the

same constant as in (2.12) with e=1/4.

Proof of Corollary 2.2. Since u € &, we have ,Cez"=1, thus by (2.12) for each £>0 we

have
log— < <i+s> Vul>+2 } u.
C, 2
Choose e=}. We have

1 2_ 2 (3 2
2 f |V (f [V +2f u) (4 f |Vu| +2fu>‘
< S[ul+logCy,,.

We remark that the statement of Corollary 2.2 should be compared with the sharpened
version of Corollary 3.1 in § 3. It indicates that %, forms a compact family in H 12 in the

subset where S[u] stays bounded. This is a key fact which has also been used in the
proof of Onofri’s inequality ([14]) which we now state:

PROPOSITION 2.4. [14]. Given u€ H"%(S?) then we have J[ul<0 with the equality
holding only for u=1logdet|dg| where ¢ is a conformal map of S

Remark. The functional J[«] has intrinsic geometric meaning which motivated the
study in [14] of Proposition 2.4 above. Namely given u€ H"*(S? with fe*=1, let
ds*=e?ds? and denote A=e"?A the Laplace-Beltrami operator associated to ds?, and
let 0={,<i,<i,<...<i—>» be the spectrum of —A (A and {4} will denote the

corresponding objects belonging to ds3), then it was pointed out in [15] that the limit
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- n 7
detA _ lim ﬂ = =Sl
detA n—© 41 lk

(2.13)

exists. Proposition 2.4 states that under the normalization ($e*=1), S[u] is always =0
and is zero only when e%ds? is isometric to the standard metric dsg. Thus the limit in

(2.13) is always <1, with 1 only obtained by the standard metric (up to isorhetries).
By a simple change of variable, we often refer to Onofri’s inequality in the form

2
fec“ <exp <_C4Tf |Vu|2+Cf u) for any real number C. (2.14)

Notice also that by taking C=2 in (2.14), we have again that foru € H 1:2(8%) with fe*=1
then S[u]=0.

We now finish this section by proving Proposition A.

Proof of the Concentration lemma (Proposition A). Since u,€%, , s0 that

i b
v=T 'f(Qj) (u) € &, and S[vj]=S[uj] we have S[v]<C. It follows from Corollary 2.2 above
that §|V vj|2sC'. We have two possibilities. Either all Po, . lie in a compact set, i.e.
t;=<C", in which case it follows easily that 11\4 uj|2sC(C’,C") or the ¢; do not remain
bounded, in that case a subsequence still denoted u; has #;,— and Q,—P. Further since

Iy vjlzsC’ a subsequence converges weakly to v, € %,. Since

f eZuj — f eZuj
BP, £) 95,1, (BP. )

the right hand side converges to

sz
f B(P, ¢
(ijI"j( (P, €))

which for j large is greater than 1—¢, this proves the Concentration lemma.

§3. A variant of Onofri’s inequality

In this section, we will prove a variant of Onofri’s inequality as stated in §2. The
statement of this variant is somewhat technical, but we need to use a consequence of
the inequality (stated as a corollary below) in the proof of Proposition C and D in §4
and §5.
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ProrosITION B. There exists some a<l such that for all

u€ 9, fez"Sexp (a[|Vu|2+2fu>.

Since (1—a) §|Vul*=S[ul—(a £|Vu|*+2 fu), we get from Proposition B a direct con-
sequence:

COROLLARY 3.1. If u€ ¥, then §|Vul’<(1—a)™" S[ul.

To prove Proposition B, we begin with the idea behind the original proof of
Onofri’s inequality and consider for each a<1, the functional

Ja‘(u)=logf e“—(af |Vu|2+2} u> (3.1

and let #,=sup,c,J, (). Then by the result of Aubin (Proposition 2.3) for each

a>}, M, is achieved by some function u, € &, which satisfies:

For each >0, there exists a constant C, with

f Vuf<C, for 1=a 2—;—+17. 3.2)
2 2 2
alAu,+e = 1+Z ajx;e” on S’ for some constants of, j=1,2,3.  (3.3)
j=1

We claim
u,=0 for a sufficiently close to 1. - (3.4

Assuming (3.4), it is then obvious that #{,=0 for a sufficiently close to 1 and the

assertion in Proposition B follows.
Proof of (3.4). We will first establish a general lemma.

LeEmMA 3.1. Suppose u€ & satisfies the equation

3
aAu+e* = 1+E a;x;e*, on S’
Jj=1

for some constants a; (j=1,2,3) and some a<]. Then a;=0 for j=1,2,3.
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Proof of Lemma 3.1. Applying the Kazdan-Warner condition (2.11) with v=2u,
c=2a, h=(2/a)(1-%}_, a;x), we get for each j=1,2,3,

2 : 2\ 2 \
—-f e“V(Z a,.x,.> Vx;du = (2——) —f e2"<1— E a,-x,-) x;du
a P a/ a i=1 3.5)
3
2\ 2 ,
=—(2—-=)-= " x| x;du.

Multiplying (3.5) by @; and sum over j=1,2,3, we get
3
Z @;X;
i=1

3 2
2 2u 2( 2) 2u
-= 4 x| du=—=(2-=
fep(G )| am-2(-3)f

When a<1, the left hand side of (3.6) is always negative while the right hand side is
always positive (or zero when a=1) unless %>, a.x.=0, i.e. a;=0 for all i=1,2,3, which

i=1 i

) ;
du. 3.6)

finishes the proof of the lemma.
Applying Lemma 3.1 to the functions u, (a<1), we get

aAu+ee=1. (3.3)
We will now use (3.3) to derive some pointwise estimates of u,,.

LemMA 3.2, u, (a<1) satisfies

() f SfUTI = 140(1) as a—,

(b)fua=o(1) as a-—l1,

(¢) actually, u, (&) =o0(1) for all E€ S? as a—l.

Proof. (a) Assuming the contrary, there will be an £>0 and a sequence a,— 1 with

U=, }'uak satisfying fe4"*>1+s as k—o. From (3.2), there is some v€ H' with v,—v

cvy

weakly in H'. Thus by an argument in Moser [12], fe
particular c=2,4, and also v, € ¥ implies v€ ¥. Thus

— fe* for any real number c, in

Jvl=J, [v]=logfe2”—<f |Vv|2+2jv)
=log}' e2”—<f |Vu|2)
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=limsup J, (v))

= lim sup (Jak (vk)—(l—ak)f va|2)

= lim sup (Juak_(l_ak)f |VUk|2>

=0.

On the other hand J, [v]</#,=0 by Onofri’s inequality. Thus J, [v]=0 and hence v is a

solution of the equation Av+e?/fe®=1. This together with the fact that v€ ¥ with
fv=0 implies v=0, which contradicts our assumption that

fe4”=limf e =1+e
k

(b) is an easy consequence of (a): we simply notice that fezu“=1 and hence fe‘“‘“?l
and fu,=<0.

and establishes (a).

(c) To see this, we apply Green’s function to the equation (3.3)’ and obtain for all
£ES?, G(E, P) the Green’s function on $?,

U, (§)+f u,,=f Au, (P)G(§, P) du(P)
s2

- % f (1—e*®) G(&, P) du(P).

1 2u 2 12 2 v
s; (1—e™) ( |G(&, P)|“du(P)
| . 1”2
<const-— <f e "“-—1)
a

and the claimed estimate (c) follows from (a) and (b).
We will now finish the proof of (3.4) by using the fact that «, € &, and that the next

Thus

u, (§)— f u,

eigenvalue of the Laplacian operator in S* greater than 2 is 6. Thus

6 f (e-1) < f |V(*— 1)
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=4 f Vu,2e*
=— f (Au,)e™

=1 f (1-ee™  (by (3.3))

a

=_1_f(e2ua_1)(e4ua_1)

a

=_1_f (ezu"—l)z(ezu“+1)
a

_ 2+(o(1) f @ —1) as aml
a

where the last step follows from (¢) in Lemma 3.2. Thus as a—1, }(eZ"“—~1)2=(), 1.e.
u,=0 as a—1, which finishes the proof of (3.4) and hence the proof of Proposition B.

Remark. In view of Aubin’s inequality (2.2) and (3.2) above, it may be interesting
to see if Proposition B holds with a=}.

§4. A Lifting lemma: comparing F[u] with J[u]
When a function u € H"2 or a parametrized family of functions u, € H"> with fe™“=11s
sufficiently concentrated near a point P € 52, namely u € o, With 121, we can compare

the functional F[u] with J[u]. In fact we will compare F'[u] with J'[u] to construct a
continuous lifting process which increases the value of Flu] and Jlu] simultaneously
until S[«] becomes suitably small while leaving fixed the class &, , to which u or

belongs. We formulate this process as the following Lifting lemma.

ProposITION C. Given u, a continuous family in H"?, where u € %, , with t
large and Slu]<c,, there exists a continuous path U vE€[0, ] with ug\=u,,
uMESPQ:, ‘ Sfor all y€[0, v,] such that Jlu,,), Flug,] both are increasing in y and
Slus, ) =0(t; (log ¢, )?).

The basic concepts behind the proof of Proposition C are the facts that J'[u]=0
only when S[«]=0 and also that the functional value of J[«#] remains unchanged when
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one changes u to T(P)(u). Thus when the center of ¢? is sufficiently close to the
boundary of the unit ball B, we anticipate F[u] to behave like J[u]. To make these
statements more precise, we will break the proof of Proposition C into several lemmas.
The first lemma is a technical one, which lists some properties of functions in %, (recall
S={u€H', fe™=1, fex;=0, j=1,2,3}) which we will use in the proof of Lemmas 4.2
and 4.3.

Lemma 4.1. Suppose u€ &,. Then

fuxj

the matrix Aw) = (A;(w)) with Ay(w)= }' ez“x,.xj, Lj=1,2,3

$—fu$—;-f Vul?, j=1,2,3 4.1)

Suppose S[ul<C,, then

4.2)
has lowest eigenvalue = C(C,)>0.

Proof. The first inequality in (4.1) is an easy consequence of the following inequal-
ities: (with a;= fux;; ii=fu)

' f e*(1-x) = D - )
1 =f e2u(l+xj) > e2:fu(1+xj) — €Z(a+aj).
Thus #—a;<0, a+0;<0, i.e. |a|<—u for each j=1,2,3. The fact —a<}f|Vuf is the

content of Onofri’s inequality. To prove (4.2), for each unit vector C=(C,, C,, C;) we

have

ZC,-x,-

er"(x,x) > (f (x,x))z(f e'z“(x,x)>_l
- (é)zg e‘z"(x,x)>_1

(A(w)C,C) =fe2“

2 3
=fe2“(x,x) where x= 2 C;x;.

i=1

Since
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to see that the eigenvalue of A(u) are bounded from below for u € ¥, it suffices to prove

that the eigenvalue of A(—u) are bounded from above. We can see this latter fact by
applying again the Onofri’s inequality and Corollary 3.1:

fovne(fo=) (o)

< e—2 fu+2 fiVuf?

4

Slu)
< IVl < p1-a

LeMMA 4.2. For each constants C,, C,>0, there exists some constant C(C,, C,)>0
with

inf  sup Jlul @) =C(C,,Cn>0. 4.3)
C,<siuisc vesw vl
u€S,

where

5”(u)={vEH’,fv=0, fe2“vxj=0forj= 1,2,3}.

And if u depends continuously (H"* topology) on some parameter s, v satisfying (4.3)
can be chosen continuously as well.

Proof. We will argue by contradiction. Suppose (4.3) fails, then there exists some
sequence {u,}, ¢, with u, € &,, C,<S[u,)<C,, ¢,—0 as n— such that for all v, € Au,)
we have

J’[un] (vn) = en ”vn” (44)

Since u, € &, we have

1 &
Vu |*< < .
f‘ o l—aS[u”] 1—a

Thus some subsequence of {u,}, which we will denote by {u,}, again will have a weak

limit in H"? to some u € ¥, with S[«]<C,. We now claim
7 J'u]l(w)=0 forall v€E Auw). 4.5)

To see (4.5), fixe v€ HAu) with [jv],=1, let yi=fe™vx, j=1,2,3, v,=(.,¥%,v}) and

choose B, to satisfy A(x,)$,=v,. Then v,,=v—Z‘.J3=1 Bix;is in Au,) and we have
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3
flvvn|2=f|vvl2_4zﬁjb += 2 2('31 2 (4.6)
i=1
where b= fvx; (thus |b|<}|jv|[*=)) and

3
Tl ) =T[u)(v)~-2 B f Vu, Vx,

J=1

4.7
=J'[u,) (v,)— 42,31(11
where a}=fu, x;.
We now notice that by (4.2) we have (y=(fez“vxj) =0)
B,= (A@w) 'v,—»(AW) 'y=0 as n—oow, 4.8)
We also have from (4.1) and Corollary 3.1
. 1 )
il = 1< <___ 4.9
e f”"xf <7 Mt <517 Sl <53~ a) “-9)

Substituting (4.8), (4.9) and (4.4) into (4.6), (4.7) we conclude that ||vn||2—>1 and
J'[u,1(V)—0 as n—o. Since J'{u,] (v)—J'[u] (v) from the definition of weak conver-

gence, we have proved that J'[u] (v)=0 for all v€ HAw) as claimed in (4.5).

Since
%J’[u] (v) = f Py— ( f VuVo+ f v)
=f(e2"+Au—1)v,

an immediate consequence of (4.5) is that u satisfies

3
Aute™ = 1+2 djxjez“
j=1
for some coefficients d;,j=1,2,3. Since u€ %, we apply Lemma 3.1 to conclude d;=0
for all j=1,2,3. Thus Au+e*=1 and we have (since u € ¥,) u=0.
We will now see that u=0 contradicts our assumption that S[u,]=C, by the

following reasoning: Applying (4.4) and similar arguments as in (4.5)~(4.9), we obtain
|J'(u,]| =0=|J'10]]. Thus
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' ' ' 1 12 12
0 e < Tl i <10 (1) T
C 12
< |J'[u,)| (—1) —0 as n—oo,
1—a
20'[w,) (u,) = f |V, [~ f e "(u,—ii,)
-—>f IVunlz—f e*(u—i)
—>f |V, as n—o.
Thus {|Vu,—0 as n—w. Since §|Vu,’=S[u,]=C, for all u, with fe*"=1. We have
obtained a contradiction and thus established (4.3) in Lemma 4.2.

The continuous dependence assertion follows from the following observations,
Firstly Au) depends continuously on u, since for all ¢ € H"? we have

1p /g 1r 1 1 1
f (=) g | < (f ez”“> <f |e2‘5"—1|"> (J <p’> foral —+—+—=1,
p q r

and the middle factor can be estimated by

(J |e26u__1|q> sf(2‘6u|e26u)q
12 12
< (f (2|(5u|)2> <}' 64"6") —0 as |04, ,—0.

while the remaining factors stay bounded.

Therefore as u varies continuously in the parameter s, sup, ¢ &, ,J'[#]v/||v)] also varies
continuously in s. By taking the projection of v,, (Which achieves sup, ¢ i, , J'[u]v/|jv]])
0

into the nearby HAu,); we can achieve in a neighborhood of s a continuous choice v
such that

5

Ieje) 1 T[]

[[v,] 2 vestw) ol
A partition of unity then gives the desired continuous choice of v, such that

JMu]@ J'[u
_LM;_I_ Sup __u(.v_) for all s.
vl 2 vestw) vl

16—878283 Acta Mathematica 159. Imprimé le 23 octobre 1987
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The next lemma establishes the complimentary case of Lemma 4.2, i.e. the case when
S(u] is small.

LEMMA 4.3. There exists a constant n>0 whenever u € ¥, with S{u}<n. Then
sup J'[ul)/||v||= C(p) (S[u])? for some C(n)>0. 4.3)
vE Au)
Remark. Actually in the case of (4.3)’, the function v can be expressed explicitly in

terms of u (as is apparent in the proof of the lemma), hence clearly depends continuous-
ly on u.

Proof. We will make the explicit choice of v namely v=—(u—12—)2}=1/3jxj) where

p=(8) satisfies A(u) B=v with y,=fe™ux;. To see that v satisfies (4.3)', we write

3 3
olF = 9o = 1943 B,04 2325 .oy
=1 =1

where ;= fux; and
3
27 [u)(v) = f VuP~2>> B a+ f e*(v—0). @.7)
Jj=1

To see that J'[u] (v) is bounded from below, we first observe that for u € &,

—f ez"(v—ﬁ)=fe2“(u—12)
= f e(a—i)

where 4=u—3La;x; with i satisfying fi x;=0. Thus

f (a—a‘)zs% f |va|2=% f Vul?,
- 172 172
fez"(a—ﬁ)=f(e2"—1)(a—a)s (f (ez“—1)2> (f (a—a')?)

1 12
< (er|Vu|2+ZS[u]_ 1)1/2 (f lV“|2>
V6

and

/
(Onofri’s inequality) (4.10)
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< 2 (f IV”|2> P @(1=a) Sl
V6

We now begin to estimate the coefficients a;, ;. To simplify notations, we will write
S=S[u]. Notice that it follows from Corollary 3.1 that §|Vu|>~S[u] for u € &%,. Thus by
(4.1) |a|=0(S). To estimate B;,, we notice that

A,-j(u)=fez“x,.xj=f(ez“—1)x,.xj if i+j,

A,.,,.(u)=feZ“x,?=f(e2"—1)x§+%.

Hence similar estimates as in (4.10) indicate that A (u)=O(S"?) when i%j,
Ay (@)=}+0(S") for all i,j=1,2,3, and B=A""y=(3+0(5"))y. Thus to estimate f; it

suffices to estimate y;. To do so, we rewrite
V= oty o= aj"'f (€™~ 1) ux;

=aq+ f (e=1)(u—i) x;

172 172
<a-+ (f (e¥— 1)2> (f (u—ﬂ)2>

= a;+0(S).

And conclude that [y|<|a|+O(S)=0(S). It now follows from (4.6)’, (4.7)" and (4.10) that

||v||2=f |Vul*+0(S? 4.6)"

and

2l (v) = (1— 7%_6— e“’“-ansl"l) f Vuf~O(S).

It follows that when S=S[u«] is sufficiently small we have

J'lu (v)?% (1—%) f IVuf?
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>1 (1——”) (L))o}
3 Ve

We have thus finished the proof of Lemma 4.3.
As immediate consequences of L.emma 4.2, 4.3, we have

COROLLARY 4.1. Suppose u€ %, with Slul<c,. Then there exists some positive

constant C(c,) and some v, € H' with | ||<1, fv,=0 and
J'ul () = Cc)(S[uD"?, and f v, x;=0 forall j=1,2,3.

COROLLARY 4.2. Suppose u€ Fo, with Slul=c,. Then there exists some constant

C(c,) and some v, € H" with ||v||<1 and

(@) J'[ul(v,) = C(c) (SuD™

() i f VuVu,+ f v,
C d 2TQ) (u+sv,)
( ) E <f e xj)

Remark. v, can be chosen to depend continuously on u.

sl—l—(S[uD”Z
—a

=0 forall j=1,2,3.
s=0

Proof. Given u€ ¥, , denote p=g,, ,, then u,=T'(Q) (u) € #,. Choose vu=vu‘p0<p",
where the pair (u,, vuw) satisfies the condition in Corollary 4.1. Then

(a) Tl (@) =T {u (v, ) = C(c)) Slu,] 2= C(c,)) STul"

(b) J Vu-Vu,+ f v, = f Vi, Vo, + f v, = f Vi, Vo,
L\ )\ 1 12
< ( f e ) ( fwe] ) < (1 s1)
12
=(LS[u]> i
1—a

- ( d er(u¢+sv"°qJ)xj>
=0 ds

=2 f ez""vuwxj= 0 by Corollary 4.1.

c 4 AT @rsw)
ds !

_ 2f ezuw(vuO(p) X;
s=0
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We will now begin to estimate the difference between J'[«] (v,) and F'[«] (v,) when
u€ 9, , with t—. For computational purpose, we will now adopt the coordinate
system in the plane through the stereographic projection treating Q as north pole.
Denote 0=(0,0,1). Then through the projection x, a point §=(x,, x,,x,) in S? corre-
sponds to z=(x, y) in the plane with

2y Jef
P 72 1+ 7 P+

X

Using these notations, we first list a preliminary estimate of ffe’ (which we will
sharpen later in §5) when u € ¥, ,, f some %’ function.

LEMMA 4.4. Suppose u€ ¥, , with Slul<c, and f some C? function defined on S?,
then there exists some neighborhood N(Q)=N(Q, f) such that when t— .

f If~RQ) ¥ =01, } e =00™"). (4.11)
N©) N

Proof. Assume w.l.o.g. that 0=(0,0,1), the north pole. Assume also that in a
neighborhood of Q, say |z|=M we have

A& =AD) +ax,; +bx,+O(x,>+x,/) for &= (x;,x, x;) €S (4.12)

We now choose N(Q)={&' € §?, m(§')=z', |7'|=t"M} for some a>0 chosen later. Then

f If~AQ)| (&) e ®duE’) = |f-RQ) o @q , () exp (2T(Q) () (£)) du()
NQ) .

@g (N©Q))

= f |Rz0)—fQ)] exp (2T (Q) (4)(2)) dA(2)
lzl=t*" M

where
2 B
A =L 4L 4
7T (14]2]%)
is the area form on the plane.
From (4.12), on the range |z|=¢*"'M we have the pointwise estimate

If(zt)—f(Q)|=0< i )+0( e )

1+ |zt (1+|zt)?

< 0(&%0(?) = o(tia).

4.13)
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Thus

f RO < 0(i) f exp 2T'(Q) () = o(i). 4.14)
N(

o t 2

On the other hand, when & €(N(Q))°, applying the same change of variable as
before, and noticing that U, € ¥,, we have

f et = f exp 2T'(Q) (1) (2)) dA(2)
N(Q)° lzj<®'M
= f (exp RQTY(Q) (w))—1)dA(z)+ f dA(2)
el<®!

l2j<e'M
f (exp 2T (Q) () (§)—1)*

1 1
2 ( f dA(z)) 2
|ej<e* M
+ f dA(2)
|22~ M

= O(S[u1e™™) o= )+ Oy
= 0.

=

(4.15)

From (4.14), (4.15), it is clear that the choice of a=} would satisfy (4.11).

LemMA 4.5. Suppose u€ 4, , with S(ul<c,, then as t—% we have for all vEH'

fVqu+f v

Proof. Fix v€ H' and denote A=fKe®v, B=fKe™, A,=K(Q) fe*v, B;=K(Q) fe**
=K(Q). Then ’

IF'[u) (0)~J'[u] (V)| < 6, (S[u]+

o f |Vv|2> 16,  (4.16)

where ,=0(t""?), 8,=0(t""*log 1).

1., , A A 1
- Flul@—-J [u](v»=§—?:=ﬁ¢l[(A—Al)B1+A1(B,—B)].
Thus
|F'[u] ()—J'[u] (V)] <2 ‘i‘ e +-2|a,-al.
B,| |B] B
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Since |B|=inf K, to obtain (4.16), it suffices to estimate |A,|, |B,—B|, and |A,—A|. For A,
we apply Onofri’s inequality to get, if A,=0,

A, =fe2"vslogj ez“e"s%f |V(2u+v)|2+f QQu+v)

‘ 4.17)’
=S[u]+<f Vqu+fv>+%f VoP.
If A,<0, we apply the above argument to —v and get
|A,| < S[u]+ fVqu+fv +%f [Vul2. 4.17)

For the term B,—B, we apply Lemma 4.4 with f=K, N(Q)=N(Q, K), then from
(4.11) we have

|B,—B| < f |K-K(Q)| e*+2||K]]., f e =001™'"). (4.18)
N@Q) NQ)Y

To estimate A,—A, we apply Lemma 4.4 again with N(Q)=N(Q, K) and notice that
from (4.13)

0= sup |K(12)—K(Q)|
ZEN(Q)
that 6=0(:""?). Thus if we rewrite
A-A= f (K—K(Q)) e*v = f (K-K(Q) o g, (&) exp 2T (Q) (W) (E) vo g,y (8) du(§)
and denote #(z)=T"(Q) () (8), (n(§)=2), i(zx)=vo @, ,(§). Then A,—A =I+II+1I1, where
1= J (K(t2)—-K(Q)+20) ez'z(l)ﬁ(z) dA(2)
tzZENQ)

= f (K(t2)— K(Q)+20) e*9(z) dA(2)
1z € N(Q)°

Il = -26 f e v.

Denote A(z)=K(tz)—K(Q)+20, then the choice of § implies that £>0 on t"'N(Q) with
||h||.<46 on t~'N(Q). Thus
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J’ he*e’dA(z)
ZENQ)

I< f he*dA(z) log
tzEN(Q)

tZEN(Q)

where

he*dA(z)

= C{log . C¥log

0 <4c§ L 2 e e'jdA(z)>

CP = f he**dA(z) <40 = O(t™'?).
1ZEN(Q)

And fe* e’=fe™ ¢'. Applying the same estimate as in (4.17)" we conclude that

1 1
ISC&I)logC—g)+C§) (S[u]+f Vu-Vv+} v+7f |Vu|2>.

Applying similar estimates to —v, we get

< cg'nogci +ci <S[u]+

(1)
[

fVu-Vv+fv

+ L f |Vv|2>.
4

We may apply the same technique, as in the estimation of I, to estimate II, using e as

weight, and observe that from (4.15), (4.11) we have

P = f S IdA() =
B 6(0))

Thus

1

[T < CPlog
c@

+4||K||., CP+CY <S[u]+

(N

A direct application of (4.17) also gives

1IN <26 <S[u] +

Combining the estimates in I, II, III

IA-A,|<4, [S[u]+

where 8,=0(t""?), 6;=0(t"og ).

fVu-Vv%—fv

we obtain

fVu-Vv+fv

e™Odu(&) = o(™"?).

fVu-Vv+fv

1 2
+—t [Vu|° ).

4.19)
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Combining (4.17), (4.18), (4.19), we obtain the estimate (4.16) as claimed in the lemma.

CoroLLARY 4.3. Given u€ ¥, , with t—>~ and with Slul<c,, then there exists

some v, € H"* with |jv ||<1 and which satisfies:
J'[ul(w,) = Cle,) (S[u)'? (4.20)

F'{ul(v,) = C(c,) (STul)*— O ™og t) 4.21)

% (f exp 2T Q) (u+sv,) xj>

Proof. Choose v, associated with u € SPQ_ , as in the statement of Corollary 4.2 then

=0 forall j=1,2,3. (4.22)
s=0

(4.20), (4.22) are automatically satisfied. To see (4.21), we apply condition (b) and

Lemma 4.5 to the pair (4, v,) then
f (Vi) Vo, + f , +% j |Vvu|2)—62

> J'lul (v,)—0, <c1+c:/21—1—a+%> —s,

=J'[ul(v,)-O(t "log )

F'lul(v)=zJ'[u] (v,)-9, <S[u]+

= C(c, (STu]) -0 log 1)
which establishes (4.21).

We are now ready to prove Proposition C.

Proof. Suppose u,€ ¥, , with ¢ large and S[uy]<c,, we will first prove a version of
the proposition which corresponds to lifting above the point u,. To do this we apply
Corollary 4.3 to obtain some vuoeH ! satisfying (4.20), (4.21) and (4.22). We can now
construct the path «, by solving the ordinary differential equation duy/dy=vuy with ug
given and normalize the solution by fe”=1 for all y. It then follows from (4.22) that for
all j=1,2,3,

diy f exp RT(Q) (1)) x,= 2 f exp2THQ) (U )V, ©@g %,

= gds_f exp 2T (Q) (u,,+svuy))xj —o

=0.
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Then

J’ exp (2T (Q) (u)x;=0= f exp(2T(Q) (u,)) for all y.

We may now apply (4.20), (4.21) to the pair Uy v, to conclude that J{u, ], Fl [uy] both are

increasing functions of y and we can continue this lifting process till we reach the point
where S[u, 1=—J[u,]=0("'(log 1)?).

If u varies continuously in the parameter, then according to Lemmas 4.2, 4.3 and
Corollaries 4.1, 4.2 we have continuous dependence of v, on u, hence we have

continuous dependence of the O.D.E. solution du,/dy=v, on the initial data u.

§5. An asymptotic formula

In this section we will derive an asymptotic formula (Proposition D) which will be used
in the analysis of the concentrated masses. This formula is a sharpened version of the
corresponding estimates (4.11) in Lemma 4.4. Again, we will break the derivation of the
formula into several technical lemmas.

LEMMA 5.1. Suppose fis a C? function defined on S*. Then for t—

f fogy , =AQ)+2AMAQ) (r Ylog)+0(7%). 5.1

Proof. We will use the plane coordinates deriving from the stereographic projec-
tion treating Q as north pole as explained before in Lemma 4.4. Using the Taylor series
expansion of f around Q=(0,0, 1), we have

Axy, %) = RO)+ax, +bx,+Ax?+Bx, x,+Cxa+ O(x P +|x,)) (5.2)

which holds in a neighbourhood of Q say N(Q)={z€C, |z|=M}.
Now we let R be the region in C such that (g, ,(R))=N(Q), i.e. R={z€C, |z|=M/t} then

Mit 9 9
fdA(z)=if dgl___1_M 2=0(—12-) as 1o (5.3)
Re 2 )y A4z 2 P+M t

and

f fog,,= f At dA(Z) = f At2) dA(2)+ f RAtz) dA(2). (5.4
52 C* R * R®
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In the region R we apply (5.2) and notice that since

_ 2Rez _ 2cosé] o= 2lmz _ 2sin 6)z]
1+zP 1+ 7 14+ 1+

1

and R is a symmetric region w.r.t the x, and x, coordinates, we have

X
J' ( (tz)) dA(2)=0
R \X2

J X, X, (tz) dA(z) = 0.
R
Thus

3
f Rez)dA(R) = f RO dA(D)+A f 1 (tz) dA(2)+C f x5 (2) dA(z)+0(j—ll—ZJ7dA(z))
R R R R r (1+]t2]*)

=RAO)+0(¢ H+A f

13 (t2) dA(z)+C f x2(12) dA(2)+O()  (from (5.3)).
R

R

And (5.5

@ 2.3
oano-s [ fd__dd
J;zx‘( DAUE w=me L+ (1+]2)’

=49.

Similarly we have also

J X5 (1) dAGR) =4 4,
R

Now an explicit calculation yields that $=¢"*logt+0(t™?).

Combining the estimates in (5.6), (5.5), (5.3) into (5.4), we get the desired estimate (5.1)
as in the statement of the lemma.

LemMA 5.2. Suppose g=0 is a bounded function defined on %, and w€ &, with
Slwl=c, for each >0 we have, setting c,=(1—a)/2

rLE S} ge™ < U,

where { U,= %" ( f g>+||g||w O(e—szc‘fs[w])

_ el
| Le= e (f g) —|lell.. OCe™* ™)
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Proof. For the fixed function w€ ¥,, >0 denote A,={£€ %, |w(f)~w|=¢}. Then
by the inequality of Moser (1.5),

|Ae| < Coe—eZ/ﬂle2

Thus for each positive function g we have

fgeZw;} ge2w+f geZw
|w—w|<e |w—w|ze
) 12
< ez(w+s)f g+“g“w <f eAw) lA£|1/2

_ 2 2 2
< eZ(w+e)}’ g+C0||gl|m er]Vw( +2$[w]e €2 f|Vuw)|

i sl _
Sez(w+e)fg_i_co“guwel_a we &c,/Slw] - Us (by Corollary 3.1).

Similarly, we may obtain the lower estimate L, of fge*.

We will now apply the estimates in the lemma above to evaluate the center of mass
of e with u€ ¥, ,.

LEMMA 5.3. Suppose u€ 4 , and S[u]=0(t%) for some a>0 and for t sufficiently

large assuming 0=(0,0,1), we have

fx,- e =0, fori=1,2, foranya <al2 5.7
f x, €% = 1—4tlog t+0(t ™) (5.8)

f xZe™ =4t Nogt+0(t™Y), for i= i,z , (5.9)

} x,x, 6% =0(7?). (5;10)

Proof. For the given u€¥,, denote w=u, @=@y, Then w€ with
S[wl=Slul<c,. It follows from Lemma 5.2 that for i=1,2,

- g2 . 2% S
ez(w €) f x,00 _O(e € ca/S[W]) sf x,0 (peZw < eZ(w+e) f x0Q +0(€ £, [w])‘
x;20 x=0 x=0

(5.10)



PRESCRIBING GAUSSIAN CURVATURE ON S° 245

Similarly we have estimates for f__,x;0 @. Since fx;0 =0, we have

f xio‘P:_f X;o@
x;20 x=0

f xop=007").
x, 20

i

2u __ 2w 2 2w
}'x,.e —}(x,.ow)e —}' xi01pe'”+j xoqe
x;20 x;<0

_ - —£%,/S
< (eZ(w+e)_€2(w e)) <} X0 +0(e £'c, [w])
X

=0

and by an explicit computation

Thus

i

<e 0(%) +0(e™ " (19=0).
Similarly we have

f x; 8% = (2070 - g2+ 9)) f (x,0 (p)—O(e_Ezc"/s[w])
x,.BO
= (—¢) 0(%) ~ (e~

Since S[w]=S[u]=0(t"%), we may pick ¢ with e2~log t/t* such that

e—ezca/S[w] _

| = 0(™Y);
with this choice of ¢, (5.7) follows.

For the terms fx?e®, i=1,2, we apply Lemma 5.2 directly and obtain

22 (f x,2 ° (p) _O(e—e%a/S[w]) < f x? 2 = f x?o @ &

- —p2,
< 209 < } xZo (p> +0(e* ),

Since fx?og@=4r"logt+0(: %) by Lemma 5.1, we observe that

_Ls[w]
e 1-a < eZwS eS[w].
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Thus the same choice of ¢ as before gives (5.9).
For (5.8), since x;=(|z’~1)/(|z[>+1), a computation indicates that

f X309, = 1-4tInt+0(7?).

Thus we may apply Lemma 5.2 to the function 1—x,, similarly as we did for x? (i=1,2),
and obtain (5.8).
Formula (5.10) can be verified similarly as (5.7) based on the information that

fxlx20¢=0 and f x,x,0¢ = O0(t?logt)
X1 x,20

with the same choice of ¢ (e?~(log #/t%)) as before.

Now we are ready to prove Proposition D. We first simplify some notations. For
the given u € S, With S[u]l=0(t"%), we assume w.l.0.g. that 0=(0,0, 1) and (x,, x,, x3)
the coordinate system with Q as north pole. We also denote P=(p,,p,. p3)ES2, the

projection of the center of mass of ¢* on the sphere, i.e.
P.

P,~=fe2“x,./<§<J eZ“x,.>2)m for i=1,2,3.

Then by estimates (5.7), (5.8) in Lemma 5.3 we have p,=0(t"'"%), p,=0("'"%)
(a'<a/2) while p;=1-4r"%Int+0(t™?). Denote by (y,,y,, y,) the coordinate system in S
treating P as north pole. And to simplify notation, we may rotate coordinates in the
(x;,x,)-plane and assume w.l.o.g. that P=(p,,p,,p;) with p,=0(t™"), p,=0, p, un-

changed as before. Then in the new coordinate system we have
Y1=x(p3,0,=p)) = p3x,—p; x;
V=X, (5.11)
y3=xP=p x;+p;x,.

To compute ffe’ for a general € function, we now expand fin a Taylor series in a
neighborhood of P say

J1:Y2¥3) = fp)+ay +by,+Ayi+By, y,+Cy3+O0(y P +|y,|") (5.12)
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for (y,,7,,y,) in the same neighborhood N(Q)={z€C, |z|=M} as in the expansion (5.2)
before. Denote again R={z€C, |z|=M/t}. Then

ffe2“=ffo<pQ’,e2w= ffoq)Q,,ez"’dA(z)+j fopg, €™
R R

Applying (5.3) and Lemma 5.2 to the function g=X e We have (adopting the same

argument as in Lemma 5.3)

f fopy £ <||fll. f e = 0(t™Y). (5.13)
RC

RC

In the region R, we apply the expansion (5.12) and notice that by our choice of the
coordinate system (y,, y,,y;) we have

J'y,.Oqui,ez"’=fyie2"=0 for i=1,2.

Thus

f fitz) eYdA(z) = IP)+A f Yiegy e dA(x)+C f Y309, €™ dA)

R R R
(5.149)
+B j Y1Y209, e dAR)+O0U?).
R

Now, applying (5.11), we have

f yio Pg.: e dA(7) = J (p3x,—p,x;)°© @g,{2) e dA(z)

R R

= P§ f xf 0@y, e dA —2p,ps f X X309, rezwdA(Z)
R R

+p%f X090, £ dA.
R

Applying the estimates- in (5.9), (5.7) and (5.13), and noticing that xi=1—x}-x3,

X, x;=—x; (1—x;)+x,, we have

f Yio@,  edA = 4t Yog 1+0(t7). (5.15)
R N
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Applying (5.9) and (5.13) directly we have

f Y309, € dA = J 09y, €“dA = 41 "log 1+0(7). (5.16)
R R
For the cross term y, y, we have from (5.11)

f Y1¥,°9, € dA =p3f x, x2°¢pQ,,e2wdA—p,f X, X309, dA.

R R R

We can apply (5.10) to estimate the term involving x, x,, and estimate the term involving

X, x; in the same way as we treated x, x; before. We get the conclusion that
fy1y20<pg‘,e2"’dA= o). 5.17)
R

Combining (5.15), (5.16), (5.17) and (5.14) we have obtained the formula

f fe = fiP)+2AP) (1 log )+ O ™)

as desired in Proposition D below.
We may now summarize what we have proved above in the following:

ProrositioN D. Suppose u€ ¥, , with S[ul=01"%) for a>0 and t sufficiently
large, then u€Cp s where 0=4tnt+0(t™? and |[P—Q|=0(™", and for every @

function f defined on S* we have

f fe* = fAP)+2AfP) t Aogt+0(t™%) = f(P)+% AfP)6+0(8Nlog1/8).  (5.18)

We also want to remark that we can run above parameter changes (from ¥, , to

Cp, ) backwards, and obtain:

COROLLARY 5.1. Suppose u€ Cp s with S[ul=0(6%) for some B>0 and O sufficient-
ly small. Then u€ Sp,, where 0=41"%logt+0(t™?) and |P—Q|=0(t"‘) and (5.18) holds
for any € function f.

Proof. We will use the same notation as in the proof of Proposition D and denote
0=(0,0,1), P=(p,,p,,p;) with the coordinate system x=(x,, x,,x;) and y=(y,,¥,,¥;)
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related as in (5.11) as before. Then following the computations in (5.7), (5.8) and
observe that for S[u]=S[T*(Q) (1)]=0(5*) we can choose & small with

¢S &%
Thus (5.7), (5.8) appear in the form

f x;e®=00")+0* for i=1,2 S.7

f X, €% =1—-4t Yog t-+ Ot} + O(d?). 5.8y

Since (1-0)?=L2_, (fx,e*)’, we have d=4¢"log t+0(t). Substituting (5.7)’, (5.8)’
into (5.11) we get

1 e B

Since p,=0 by our choice of coordinate system we conclude that |0—P|=0(""), which
finishes our proof of the corollary.

As it turns out, sometimes it is more convenient to express the asymptotic formula
(5.18) in terms of the (Q, f) parametes of a function u € Fo.r- The only disadvantage in

using these parameters is that if we expand f€ €%(S?) in terms of its Taylor series
expansion in a neighborhood of 0=(0,0, 1), we have

Axy, x5, x3) = Q) +ax, + bx,+Axi+Bx, x,+ Cx3+O(x]). (5.12)

Then fx;e*=0for i=1, 2, hence in the formula (5.18)’ we pick up some |VAQ)| term. We

may estimate this linear term as:
f x; €= f X0, exp 2T (Q) ()
= f x99, exp(2T(Q) )

2 s
< (O(t_zl()g t))l/Z(S[u])l/Ze 1—a

using the fact that u, € ¥, for i=1,2. Thus we have
Po.1 0

17-878283 Acta Mathematica 159. Imprimé le 23 octobre 1987



250 S.-Y. A. CHANG AND P. C. YANG

COROLLARY. Suppose u€ .?Q,, with S[ul=0(t™") for some >0, and t large. Then
for any f€ €X(S?) we have ’

f fe¥ = RO)+2AAQ)  Hog 1+0(™ )+ O(VAQ)|(r Hog ' A(Su)').  (5.18)

§6. Analysis of concentration near critical points

In this section we apply §4 and §5 to analyze the phenomenon of concentration near
critical points of K. We will consider the concentration which occurs in the variational
scheme Var (Pa,Pﬂ), which we now define.

" Given two points P, P; on S? we formulate the one-dimensional scheme
Var (P,, Py) as follows. Let AP, Pﬂ)={u: (~», 0)>H"*(§%), u,: —o<p<o is a con-

tinuous one parameter family of functions in H"*(S?) with fe’»=1 and satisfy:

$)) Slu, 10 as |p|— o
) lim f xe’?=P,, lim f xe™r = Pﬂ}.
p——> P>+
Let
c= sup minFJu].
WEHPL Py p [44]

Given a maximizing path 4® which assumes its minimum at p, denoted by u;':), then if
{u’,jk} converges weakly in H!, then the limit # will weakly satisfy the Euler equation
(1.1). Consequently by the regularity theory for elliptic equations u will be a strong

solution of (1.1). In the proofs of Theorem I and II in § 7, we will show that such a
scheme converges for suitable choice of P, P;.

We first remark that in the scheme Var(Pa,Pﬂ), we may restrict the class of

competing paths in such a way that if concentration occurs along the paths then the
functional § must be small at such points so that we may apply the asymptotic formulas
of § 5. More precisely we define the class of paths

P, (P, P = (u€ PP, P)|u,€ %, ,,t=2t,=S[u,] = O(t"'(log 1))}
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Choose ¢, and constant C large so that the lifting Proposition C holds for all u€ ¥, ,,

t=t,. For each u, €%, ,, there exists u,,, 0<r<rt(u,) continuous in 7 with u o=u,,

57

u, €%, ,, Flu, ] and Jiu, ] both monotone increasing in 7 such that at r=1(u,), Slu, ]
=0(t"'(log ). Let o()=min [1, (t—1£,)/t,] for 1€ [t,, ). For u € ¥, , let

- Uy, o) eu) ift=1¢
o u ift<t,

s

Then u;€ P, (P,, Py). While Flu]=Flu,]. Hence it follows that

sup min Flu ] = sup minFlu].
uEP, s u€EP s

In view of the equality above, we will assume that all paths « in the scheme belong to
the lifted path class &} (P, Pp).

Assuming u, is an unbounded sequence in H"? and a max-min sequence for the
scheme Var (P, Py), it then follows from Proposition A (the Concentration lemma) that
the masses e2""(uk=u§,’?) converges (perhaps on a subsequence) to a delta function
concentrated at P, €S2, Our first proposition says that in this case we may assume

without loss of generality that P_ is a critical point of K. We state this as

ProrositioN E. For the variational scheme Var(P,, Pp), if the maximizing se-

quence of minima {u,} does not converge, then we can construct another maximizing
.. . 2

sequence of minima {v,} for the scheme (if necessary) such that e % concentrates at a

critical point of K.

Proof of Proposition E. Our 1irst observation 1s that 1or the max-min sequence {u,}
we have u, € ka, b with P,—P_ € §?, and t,—, since we choose to work in path class
9”;0, this means S[#,]—0. We construct a competing max-min sequence of paths by
replacing our given sequence of path over the intervals where the (Q, 7) parameters fall
in the region D={|VK(Q)|*=ct™';t=1,} by paths obtained from the given one using the
following flow W, in H"*(§?) associated to the gradient field VK on §.

d d

ds U= dr o us,t; U . = (us)R(Q,—tG)
=
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where usES/’QJ_ 0 R(Q, 6')=rotation in the plane spann (@, KVK(Q)), with angle of

rotation 6'; 6=0(Q, 1) |VK(Q)|, o is a cut off function with support in 2.

Since R is a rotation, uz € £, o, foru€d, . Thus the flow W_does not change the

t-parameter of a function while it rotates the Q parameter along the gradient line of K. It
follows from the asymptotic formula that along the flow dF[u,]/ds is positive, hence F is

increasing. Since the gradient flow VK has critical points as limiting values, it follows
that our modified sequence of paths concentrates at a critical point of K.

Turning our attention to the situation where a maximizing sequence of minima u;,’:)
concentrates at a critical point P_ of K, the next Proposition F rules out the possibilities
that P, can be (a) a local. maximum (b) a local minimum and finally (c) a saddle point Q

with AK(Q)>0. This is accomplished with the asymptotic formula (Proposition D)
which can be applied to evaluate the functional F on very concentrated mass distribu-
tions e*.

ProrositioN F. In the problem Var (P, Pg) where P, Py are local maxima of K,
if @ maximizing sequence of paths u® € g’,’o (P,, Py) has minima e B concentrating at a
critical point P, then w.l.o.g. we may assume that

(@) P cannot be a local maximum of K

(b) P, cannot be a local minimum or a saddle point of K where AK(P,)>0.

Proof of Proposition F. We begin with a simple consequence of the asymptotic
formula: under the hypothesis of the proposition we have

sup min F [up] = lim F[ ul(,’:)]
k—oc

2u®
= lim log f Ke "*—S[uf,’j]

k—»

2u®
= lim log f Ke * because u®€ 2, 6.4

k—o
= lim log [K(P)+0(6,)]  where UVEC, 4
=log K(P,).

We choose coordinates x,, x,, x; so that P,=(0,0, 1).

For assertion (a) observe that for any path u,€ 9‘;0, the path of the center of mass
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pn—)C.M.(eZ"")= fxezu" is continuous in p. Hence if for some p, C.M.(ezu") is very close to
P., the path C.M.(¢**) must hit the disk x;=1—¢;, for some small ¢jand for some p=p,.

Since u, € %, we apply the asymptotic formula to estimate Flu,, .
2u
Flu,]= logf Ke ”°—S[up0]

2up0
<log t Ke
<log [K(P0)+ % AK(P,) 60+o(60)] , where u, ECp ;.

Since |Py—P |<V &, AK(P)<iAK(P,)<0 we find

K(P.)—K(P,)~ % AK(P) 8, — % AK(P.)-(P,—P.}+6;) = —% AK(P.)¢,.

Thus F[uPo]slogK(Pm)—Ca(,, which contradicts (6.4).

For assertion (b) we will construct a flow ®, which will yield a competing sequence
of paths which have minima achieved at functions ﬁ';k not concentrating at any critical
points Q with AK(Q)>0. Given P€E §?, let @p , be the conformal transformation given in
stereographic complex coordinates z with z(P)=%, z(—P)=0 defined by ¢,  (2)=7z.

Choose £ small enough so that in each ¢ disk B(Q, ¢) centered at any critical point Q of
K with AK(Q)>0 we have AK(P)=M>0 for all P € B(Q, ). Choose a smooth function g,
defined on $2x(0, 1], 0<o<1 with

suppoc U B(Q,e)X(0,d,]
Q critical
AK(Q)>0

where dy=41;%log t,, o=1 on

U B(Q,&/2)x(0,8,72].
critical
AQK(Qt)>0

Define the flow ® (u)=u, by the o.d.e.

us=9(ps,as)dir _T'P)(). where u,€C, ;.

T
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Claim (6.5). For u € C(P, 8) with

(P,0)€ 0 U lB(Q, £)%(0, 6]
critical
AK(Q)>0

we have u € C(P,,d,) where J, increases as s increases.

To prove claim (6.5) choose coordinates x;, x,, x, so that P=(0,0,1). Then

d

U d 2u
CM. (") =2 :
ds € ds f).xe

=}'x%_e2u,=2fxQ(Ps’as).eZu:_:j_

= f xo(Ps,ag%

] TP (uy)

=

. exp(T*(P) ()

7=

=Q(Ps’ds)fd;dt' xog, ) &M= ——Q(Ps,és)f (Vx,Vx-P,) €™
=1 s
Observing that |Vx;*=1~x2, (Vx, Vx;)=—x,x, for i=1,2,
A(Vx) = =2+6x2, A(Vx, Vx;) = 6x.x;,
we apply the asymptotic formula (Proposition D) to the integral to find

f |Vx,f2e™ =26,+0(3,)
] (Vx, Vx,) e =0(d,) for i=1,2.

Thus it follows that

d% (C.M.(€™), C.M.(e™)) <0,

verifying the claim (6.5).
Claim (6.6). The flow ®, increases the value of the functional F:

d d w, d
—_— = —— s S
@ Flu] R log f Ke Is (u,]
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_ 2u5 - d

= <f Ke ) Q(Ps’és)f?;
-1

= <f Kez"‘) o(P,, 6s)f (VK,Vx-P,) P

. -1 \Y% -P
- <f Kezu’) Q(Ps’és) [_A_<_K;Zx_,’_>(ps) 534.0(55)].

-1 2u
K o ()DPS,I e’
=1

2

Taking the Taylor expansion of K around 0=(0,0,1) where P,=(a,0, V1-a?)€
B(Q, e),

K(x;, x,) = K(Q)+Ax}+Bx, x,+Cx2+O(x).
We have

(x-P,) = ax;+V1-a’x; = ax,+V1-a’ \V/1-x1-x;

and
A(VK,Vx-P,) (P,)=—2AK(P)+O(a).
Thus we find for u,€ C, , with P,€B(Q,¢)

a4

-1
- Flu] = ( f Kezu’) o(P,, 8 )[(AK) (P,)~£) 6,+0(3,)] = 0.

Otherwise du /ds=0 hence dFu])/ds=0, verifying claim (6.6). Thus to finish the asser-
tion (b) we apply the flow ®_ to a maximizing sequence whose minima concentrates at a

critical point Q with AK(Q)>0, then for large values of s, we obtain a competing
sequence which do not concentrate at Q in fact not at any such Q because of claim
(6.5). This finishes the proof of Proposition F.

§7. Proof of Theorems I and 11

In this section we will use the analysis in § 6 to prove Theorems I and II.

Proof of Theorem 1. The first observation is: Suppose K is a function which allows
a solution u for the equation (1.1), then so is Kog with u,as a solution for any
conformal transformation ¢ of S?. Thus we may assume w.l.0.g. using conformal

transformation that the given local maxima of K are located at the north and south poles
of the sphere which we denote by N, S respectively.
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We now consider the variational scheme Var(N, §) introduced in §6, and let c=
max, min, e _., ., Flu,]. Let «® denote a maximizing family of paths with min, F uP)=
F[ué’f]; we abbreviate uf,’? by u,. Normalize u, by fe™=1, and apply the Concentration
lemma (Proposition A) to the sequence {«,}. If £|Vu,|* stay bounded, then u,—u weakly

in H"?, and the function u would be a weak solution, hence (e.g. [12]) a strong solution
of (1.1). Thus we assume u, has a subsequence which we also denote by «; which is a

concentrated sequence with its mass e converging to a point P_ €S2, Assuming
u € %y, , and assume w.l.o.g. (via Lemma 6.1) that 0, —P,, and t,—» as k—>, and

since u™® € P, (N, S) we get S[uJ=0(t; !(logt,)?) after applying Proposition C and
c=logK(P,). 7.1

We now apply Proposition E in § 6 and conclude that we may assume w.l.0.g. that
P_ is a critical point of K. Next, we apply part (i) of proposition F in §6 to conclude,
since N, S both are local maximum points of K, that

¢ <max (log K(N), log K(S)). 7.2)

On the other hand, the assumption (1.6) of Theorem I indicates that for the test
functions #,=llog|dp,| with @,(z)=tz in the stereographic projection coordinates
based at N, we have

Flu)= log}' Ke™—S[u)
slogf Kldo|
=logf Kog;! =longoq),_,.

Thus by our assumption (1.6) in Theorem I,

inf Flu]l> sup log(K(Q))
VK(Q)=0

O<t<oo
Q+*N, S8

which implies (by definition) that

c¢> sup log(K(Q)).
VK(Q)=0
O+N,§
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We draw from (7.1), (7.2), (7.3) a coentradiction, and conclude that the original
max-min sequence {u,} for the scheme Var (N, §) must converge to a solution # which

satisfies (1.1). We have thus finished the proof of Theorem 1.

Proof of Theorem II. Choose any two local maxima P, P, of K and do the
variational scheme Var (P, P,). It follows from our study of the concentration phenom-

enon that a maximizing sequence of minima must converge to a solution.

Appendix. Proof of Proposition 2.2

First we will recall the proof (cf. [14]) that given u € H"*(S?) with fe**=1, there exists
some conformal transformation @, , so that the center of mass of exp (2T '(Q) (w)) is at

the origin. To see this, we consider the map

X:B={g,,|0€8, 1<t<o}>R’ given by X((pQ’,)=fx°<pQ,,e2“.

This is obviously a continuous map, with the continuous boundary value

lim X(®,, ) = Q.

t—x
Thus the Brouwer degree theorem gives the existence of some (Q, f) with the required
property
f xexp 2T(Q) (w)) = f xogg! e =0.

Next to produce a continuously varying set of ¢, , when u € H"*(S?) depends

continuously on the parameter s, we will first prove the existence of a continuously

varying ¢ with
2u,)
J xe =0

where @, is a general conformal map of $?, not necessarily of the form ®g,,- To see this,
we will apply the Implicit function theorem. Denote by G the full group of conformal
maps of S% onto itself. Given u€ H"? consider the map X:G—R® defined by
X(g)=f(xo0g) e® for all g€ G the same map as before. We claim that the differential of
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the map X evaluated at the identity map g=1 has full rank equal to 3. To see this, we let
e,, €,, €; denote an orthonormal frame in R* and x;=x-¢;, i=1,2,3. Then

2u
! f X0 Peyi €
1=

gives a linearly independent tangent vector to G at g=1. Thus the differential dX of the
map X at g=1 expressed in the coordinates x; has the matrix dX|g=1=(A,B) where

A=(A,)} ) With A;=£(Vx;-Vx;) ¢* (B another 3X3 matrix) with rank (dX|,_)=3 as

ii.i=

d
dt

claimed. Thus the ordinary differential equation

d w,_ | d
s=()f (xquS)e _f ds

ds

2 2,945
(xo@,)e™+2 ¢t xe
§=0 ds 5=0

with @y=¢, uy=u satisfyiﬁé fe*x=0 is always solvable for some ¢, € G with

d

ds

f (xogp,) e’ =0.
s=0

Continuing the flow ¢, we get a continuous family of ¢, € G with f(xo@) e"=0 for
given continuous family u,.
Finally we show that the conformal map ¢, € G chosen above may in fact be chosen

of the form ¢, =g, , . For this we observe that for every rotation R of R? we have

f(XO(pOR)e2”=0 if f(x0<p)e2“=0.

Hence we may appeal to the following basic fact about Lie-groups:

Polar decomposition [13]. Given ¢ € G= the conformal group of $2. Then ¢ may be
uniquely written as p=PR, where R is a rotation of S and P is a positive hermitian
matrix (which corresponds to P=g,, for some Q€ S?, 1<t<w). Furthermore, the

choices of R and P depend continuously on ¢.
Choose P, corresponding to ¢, in the polar decomposition. Then Ps=<p(:,s" ‘ for a

continuous map of Q, ¢, with
f xoexp 2T (Q,) () = f xoP e =0.

This finishes the proof of Proposition 2.2.
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