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We show that the pairs of countable ordinals can be colored with uncountably many 
s 

colors so that every uncountable set contains pairs of every color. This gives a 

definitive limitation on any form of a Ramsey Theorem for the uncountable which 

reduces the set of colors on some uncountable square. The first such limitation was 

given by Sierpifiski [21] for only two colors. This was later improved by Laver (see 

[13]) to three colors and then by Galvin and Shelah [4] to four colors (see also Blass 

[1]). Our method is not based on the existence of certain uncountable linear orderings 

(an approach still of interest) as was the case with [21], [13], [4] and [1], but on a fine 

analysis of the concept of a special Aronszajn tree. This analysis will give us also a new 

proof of the existence of an uncountable linear ordering whose square is the union of 

countably many chains and many other facts about the uncountable. 

All sections of this paper can be read independently from each other, but for a fuller 

understanding of our methods and definitions, a reading of the first three sections might 

be necessary. The last section contains a list of most of the recent applications of our 

methods as well as various other remarks concerning the previous uses of the Continu- 

um Hypothesis in coloring pairs of countable ordinals. It should be pointed out that the 

main purpose of this paper is to be an exposition of our m e t h o d  of minimal walks in the 

realm of all c o u n t a b l e  ordinals because it is this case which is most often relevant to the 

Ramsey Problem for the uncountable. This is one of the reasons why many of the 

results, especially those concerning larger squares, are not stated in their full general- 

ity. Interested readers should not have any problems in formulating them in any 

generality they might wish to consider. 

(~) Supported by a grant from Bell Companies. 
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w 1. Minimal walks 

For  an ordinal 0 (usually regular and uncountable) put 

[0] 2 = { (a ,  3 ) :  a < 3 < 0 } .  

In this article we shall quite often recursively define certain functions 

a: [O]2--->X 

where X is either an ordinal or a set of  certain (finite) sequences of  ordinals. For  

technical reasons we shall always need to implicitly assume that 

a ( a , a ) = O  or a ( a , a ) =  ( ) 

in the first case or in the second case, respectively. For  a partially ordered set P, by o1" 

we shall denote  the set 

{s: a ->P :  a E Oral and s is strictly increasing} 

and consider oP as a tree under  the ordering c .  A mapping s with domain an ordinal, 

denoted by l(s), will be called a sequence. Thus for sequences s an~t t, s c t  means s is an 

initial part of  t. For  sequences s and t put 

A(s, t) = rain {6: s(O) �9 t(6)}, 

where we assume that A(s, t)=l(s) if s~ t .  If  X is a set of  sequences with ranges in a 

linearly ordered set A, <a  by <0 and <1 we denote the right and left lexicographical 

ordering on X, respectively,  defined by 

s <  0 t iff s = t or 

and 

For  an ordinal 0, set 

s(A(s, t)) <a  t(A(s, t)), 

s <  1 t iff s c t or  s(A(s, t)) <a  t(A(s, t)). 

Qo = ~0, <o. 

The linearly ordered set Q0 has been quite often used in standard recursive 

const ruct ions  of  Aronszajn trees of  height 0 § A tree T constructed in such a way 

would usually Consist of  sequences from oQ 0 which have maximal elements. This is 

done in order  to ensure T to be special. In this section we shall present  a new and more 

canonical construct ion of  such trees T, but let us first mention a result which says that 
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for certain cardinals 0 there is no  need in taking special care about the elements of T 

since the whole tree oQ0 will be special, anyway. 

(1.1) oQ0 is the union o f  O antichains i f f  cfO~:w. 

Proof. Assume first that c f0=w and let Ar (~<0) be given antichains of oQ 0. Fix a 

sequence 0 i t O, (/<col For t in Q0 let t* denote the Dedekind cut of Q0 determined by 

the decreasing sequence 

t , t " O , t " O 0 , . . .  

Note that the cofinality of the maximal term of t is equal to the cofinality of the cut t*. 

Thus if i<co and if cf(max(t)) = 0i +, then any u in oQ 0 with sup <t* can be extended to a 

v with sup <t* with the property that no extension of v with sup <t* is in 

B i= D A~. 
~<O i 

So recursively on i<w we can build a sequence t i in Qo and an c-increasing sequence v i 

in oQ o such that: 

(I) ti+l<t* 

(2) cf(max(ti))=O +, 

(3) sup O i < t *  , 

(4) no extension of v/with sup <t* is in B r 

Let v = tJ i v i. Then 

v~ OA~. 
~<0 

Assume now cf0>w. By Theorem 14 of [24] it suffices to show that 

oQ 0 f' {3 < 0+: c f6  = cf0} 

is the union of 0 antichains. Let 2=cf0,  and let v be a given member of oQ 0 of length d 

with cfc~=2. Fix a sequence 6,, ~' d, (a<2). For a<2,  set 

s~ = v(6a).  

Let n(v) be the minimal n<co such that 

{a < Isol = n}  
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has size 2. By refining the sequence s~, we may assume that for some s(v) of length 

i<n(v), we have 

(5) s(v)cs~ for all a<~., 

(6) sa(13<s~(0 for a<fl<~. 

Let 

O(v) = sup {s~(i): a < 2} 

It is now easily checked that if ucv  are members of oQ 0 with lengths of cofinality ~., 

then 

(n(v), s(v), O(v) ) * (n(u), s(u), O(u) ). 

Since there exist only 0 such triples, we finish. 

We shall say that (C~: a<O) is a c-sequence on 0 iff C~ is a closed and unbounded 

subset of a for all a<O. We shall always implicitly assume that C~+,={a} although 

many of our definitions will be valid without this assumption. To every c-sequence 

( C~: a<O) we associate 

defined as follows 

Q0 = Q0(C~: a<0) :  [012~ Qo 

O0(a, fl) = (tp (C~ n a)) ~'o0(a, min (C~\a)). 

Note that •0(', a): a---~Qo is strictly increasing for all a ,  whence 

T(Oo) = {O0(', 8) r a:  a < ~ < 0} 

is a subtree of oQ 0, c .  For  t f iQ o and a<O, set 

Ft(a) = {~ ~< a: O0(~, a) ~ t}. 

Note that since Q0(~, a) is a sequence with domain some integer, the inclusion Q0(~, a)~_t 

just means that Q0(~, a) is an initial part of t. Note also that by our convention, a E F,(a), 

and that FQ0r is just  the trace of the minimal walk from fl to a along the sequence 

(Ca: a<O). If ~ is an ordinal <-a then we shall use F~(a) as another way of denoting 

F,(a) where t=Qo(~, a). In case we consider Fr generated by some other function rather 
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than Q0 we shall always add an upper index to F to make the distinction. So the present 

Ft(a) will later be denoted by/~t(a). 

The following is a list of straightforward but useful facts about the function ~0- 

(1.2) Let a<fl, 7<0 and t=Qo(a, fl)=Qo(a, 7). Suppose that C~ fl a=C$ n a for all 

and ~ with Qo(r/, fl)=Qo(~, 7) ~-t. Then Qo(',fl) and Qo(', 7) agree below a. 

(1.3) IT(e0) fl~Q01~<l{Cz Na: a<-fl<O}l+Rofor all a<O. 

(1.4) Suppose a<7<0 and t is an initial part of  po(a, y). Then t~Qo( fl, y) for all fl 

with a<.fl <.min Ft(Y ). 

(1.5) Assume O<a=tJa<fl, 7<O and Q0(',fl) and P0(',7) agree below a. Then 

~o( a, fl)=Qo( a, 7). 

Qo. 

(1.6) ~o(', fl) I a ~-->9o(LI a, fl) is a strictly increasing mapping from T(Po) \ { ( > } into 

(1.7) T(Q0 ) has a P-branch iff there exist club C~O and ~<0 such that for all ~<~a<~O 

there is f l~a such that CN a=C,N [~, a). 

Proof. We are assuming here (and everywhere) that 0 is regular and uncountable 

although we actually need only cf O>w. Clearly, only the direct implication needs a 

proof. Let b~_T(Qo ) be a P,branch. Fix a limit nonzero a<O and let 7a~>a be such that 

~)0(", Ya) I a e b. 

Let t,=po(a, 7~). Let ft, E F,o(y,) be maximal with the property that C~a A a is unbounded 

in a. Then C~A a is bounded in a for all ~ E F,o(7,)above fla, so let h(a)<a be an upper 

bound for all of them. By the pressing down lemma fix a ~ such that h " A ~  for some 

unbounded A_~lim FI 0. Let 

C= U {C~o n[~,a):aEA}.  

Then ~ and C are as required. 

The following is an immediate corollary of (1.7). 

(1.8) The following are equivalent for an inaccessible 0>to: 

(a) 0 is weakly compact. 

18-878283 Acta Mathematica 159. Imprim~ le 23 octobre 1987 



266 s. TODORCEVIC 

(b) For any c-sequence (Ca: a<O) on 0 there is a club C~_O such that for all a<O 

there is f l~a with Cfla=C#fla. 

Notice that this gives a rather short combinatorial proof of many properties of a 

weakly compact cardinal such as: 0 reflects stationary sets, 0 is not first inaccessible, 0 

is not first Mahlo . . . . .  etc. 

Let  T be a tree of height 0 and let f :  T-->T. T h e n f i s  regressive i f f f ( t ) < r t  for all 

nonminimal t in T. The tree T is special iff there is a regressive map f:  T-->T such that 

f - l ( t )  is the union of  < 0  antichains for all t in T. By [24; Theorem 14] for 0=u  +, a tree T 

of'height 0 is special iff T is the union of x antichains. Thus in this case our definition 

reduces to the standard one, but the point is that our definition makes sense even if 0 is 

a limit cardinal while the s tandard  one does not. 

(1.9) The following are equivalent for inaccessible O>w. 

(a) 0 is Mahlo. 

(b) There are no special O-Aronszajn trees. 

Proof. Only the implication from (b) to (a) needs a proof. So, assume 0 is not 

Mahlo and let C~_O be a club consisting of singular cardinals. Fix a c-sequence 

(Ca: a<O.) such that: 

(1) Ca+,={a}, 

(2) Ca=(max (C fl a), a) if c f a = a ,  

(3) tp Ca<min C a if c f a < a .  

Let  Q0=~0(Ca: a<O) and T=T(Qo). We shall show that T is special, and to end this it 

suffices to define a regressive f:  TIC-->T so tha t f - l ( t )  is the union of <0  antichains for 

all t in T. 

So let t~0(", Y) I a in T I C be given. Let  t=~0(a, y) and let fl E Ft(y) be maximal with 

property 

sup (C# fl a) = a. 

Then C~ A a is bounded in a for all ~ E Ft(y) above fl, so let 6 be an upper bound for all of 

them. By (3) the type of C, Aa is < a  so the ordinal code e of (6, tp(C~ fla)) is < a .  

Finally, put 

:(Co(", y) r a) = Uo(', r E. 
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This defines regressive f: TIC---~T. It is now easily seen that if t in T has height e, then 

f-l(t)  contains no chain of type e+2, so it must be the union of <0 antichains. 

Assume now that (Ca: a<O) satisfies the following condition reminiscent of the 

[]-principle of Jensen [8]. 

(i) I f  a is a limit point of C a, then Ca=Cana. 

Then an easy pressing down argument shows that T(Q0) has the following property: 

(*) For any regular ~<0 and A~T(Qo) of size ~ there is a B~_A of size r such that 

s N t and u N o are comparable for all s~=t and u:~o in B. 

This property of trees is of independent interest and has already been considered in 

the literature (see, for example, [25]). Note that under (i) the condition of (1.7) reduces 

to 

(ii) There is no club C=_O such that Ca=Cna whenever a is a limit point of C. 

A c-sequence satisfying (i) and (ii) is called a O(0)-sequence. A well-known result of 

Jensen [8] says that, in L, [3(0)-sequences exist on any regular non-weakly compact 

cardinal. The following fact, apparently first noticed by Jensen himself, is an immediate 

consequence of the proof of this result. 

(1.10) If O is regular and not weakly compact in L, then there is a constructible 
E](O)-sequence. 

Proof. We assume the reader is familiar with [8; w and prove that the O(0)- 

sequence (Ca: a<O) constructed in the proof of Theorem 6.1 of [8] remains such in the 

real world. This sequence is constructed by first fixing a set B~O and a first order 

formula q0 (with predicates e, B, D) such that Jo satisfies q~[D, B] for all D~_O but for all 

a<O there is a D~_a such that Jo satisfies ~tp[D, B N a]. The limit ordinals <0 are split 

into two sets Q and its complement Q in such a way that if a is a limit point of C a, then 

a and fl are in the same set. So, if in the real world we have a club C in 0 such that 

Ca=Cna for all a in lim (C), then either lim (C) is a subset of Q, or else it is a subset of 

(~. The second case is impossible since tpCa<a  for all a in Q\{~o} (see Cases 1-4 of 

w 6 and Case 4 of w 5 in [8]). Thus, lim (C) is a subset of Q. By pp. 288-290 of [8], for 

each a in Q there exist fixed f l>a  and D~_a such that D and B O ct are in Ja and Ja 

satisfies ~q0[D, B A a]. Moreover, if a is a limit point of C a, then there is a (uniquely 
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determined) elementary embedding at=Jtaa of Jt~ into J# such that ~rld=id, :r(d)=a, 

ar(/))=D and ar(Bnd)=Bna.  Thus, :taa's for a<d in lim(C) form a directed system 

with well-founded direct limit since cf0>to.  The transitive collapse of this limit is equal 

to some J~ which contains a set D~_O for which Jo, satisfies ~q0[D, B], contradicting the 

choice of B and % 

Thus we have the following corollary. 

(1.11) I f  0 is regular and not weakly compact in L, then there is a constructible 

O-Aronszajn tree with the property (*). 

(1.12) I f  0 is regular and not Mahlo in L, then there is a constructible special 

O-Aronszajn tree with the property (*). 

Proof. Work in L. By [8], we can pick a D(0)-sequence (Ca: a<O) such that for 

some closed and unbounded C~_O, t p C a < a  for all a in C. Let  T=T(Oo) for 

Oo=Oo(Ca:a<O). Then working as in (1.9) one shows that there is regressive 

f: T I C ~ T .  So, T is special. But being special is upward absolute, so we are done. 

Note that if we drop the requirement for the property (*) from (1.12), then we do 

not need the [3-result of [8] since we could simply choose a constructible c-sequence 

with properties (1), (2) and (3) of (1.9). 

Let  us now restrict to the case O=x § for some infinite x. In this case we can choose 

a c-sequence (Ca: a < x  + ) so that tp Ca<<-x for all a<x  § Then by (1.6) there is a strictly 

increasing mapping from T(o0) into Q~ whence T(Q0) is special. So if, moreover, we can 

choose such (Ca: a < x  +) with the additional property 

I(Cana:a~<fl<x+}l~<x fora l l  a < x  +, 

the tree T(Q0) is a very canonical special x+-Aronszajn tree. However, the main 

advantage of  the case 0 = x  + is that we could assume (Ca: a < x  +) to be a D~-sequence 

([81) in which case 00: [ x l ~ Q ~  has many useful and interesting properties such as (see 

[25; Theorem 51): 

(iii) IQ~[AlZI=IAI for every infinite Ac_x + of size ~<x. 

Moreover, in this case we can also use 00 to step up many combinatorial properties 

from x to x +. To illustrate this let us choose one of the principles considered in [5]. 
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Exactly the same argument will show that we can also step up many other properties 

such as the principle Hn(x) of [5], to reprove the Theorem 7 of [25], or to get a uniform 

counterexample to CCa(Ord) of [5] .....  etc. 

(1.13) Assume E]u. Suppose that for some regular 2>~o and finite n~2 there is a 

c: [x]n---~x such that for all A ~ x  o f  size 2 there exist X E [A]" and a EA \ X  with c(X)=a. 

Then x + and 2 satisfy the same property with n replaced by n+ 1. 

Proof. Fix a [3;sequence (Ca: a < x  +) and let Oo=Oo(Ca: a<x+). Without loss of 

generality we may assume that c maps [Q~]n into Q~ since clearly Q~ has size x. 

Fix an XE[~+] n+l and let a<f l<  7 be the last three elements of X. Let 

t=Oo(a, Y) N O0(fl, Y) and let 6 E [fl, y] be determined by 00(6, 7)=t. If fl<6 set 

d(X) = Qo(', 6)-~(c((eo(~, 6): ~ ~ X n b})), 

when this is defined; otherwise set d(X)=0. A simple pressing down argument shows 

that d: [x+]n+l-ox + is as required. 

We finish this section with an interesting variation of 00. So, let (Ca: a<O) be a c- 

sequence and define 

02 -- 02(Ca: a<0):  [012~ co 

as follows 

Q2(a, fl) = 02(a, min (Ca\a))+ I. 

Thus, Q2(a, fl) = IQ0(a, fl)l, i.e., Q2(a, fl) is the number of steps of the minimal walk from fl 

to a. To state an interesting property of Q2, let the distance between two sequences of 

integers s and t be equal to the supremum of absolute values of s(~)-t(~) for ~ in 

l(s) N l(t). 

(1.14) I f  (Ca: a < 0 )  is a O(O)-sequence, then 02=02(Ca: a<O) has the following 

properties: 

(a) The distances between 02(', a) and 02(' ,fl) is finite for all a<fl<O. 

(b) For any O-sequence t o f  integers there is a ~<0 such that the distance between 

t and 02(', 6) is infinite. 

(c)/'(02) is a O-Aronszajn tree. 
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Proof. (a) is proved inductively on a and 13, and it is an immediate consequence of  

the property (i) of  (Ca: a<O} which gives that 00(' ,  a)COo(" ,13)whenever a is a limit 

point of C a . 

To show (b) pick an integer n such that the set S of  all ~<0  for which t(~)=n is 

unbounded.  Now find a closed enough ordinal 6 < 0  such that there is an arbitrarily long 

walk from 6 to an element  of  Sf l6 .  This will use the property (ii) of  (Ca: a<O}. 

(c) is an immediate consequence  of  (a), (b) and (1.3). 

w 2. The functions e~ and 

In this section w e  shall assume 0=~ + and we shall define two new closely related 

functions 01 and Q. Again  we shall start with a c-sequence (Ca: a < u  § ) but with some 

additional properties,  

For  an ordinal v let v § denote  the minimal infinite cardinal above v. Le t  u be an 

infinite cardinal and let (Ca: a < u  § ) be a fixed c-sequence such that 

tp C a ~< x for all a < ~+. 

Define 01 = Ol(Ca: a<u+):  [9~+] 2''->~r by 

01(a, t3) = max {tp (C a N a), 01(a, min Ca\a) }. 

Thus, Ol(a, 13)=max (range Oo(a, 13)). 

(2. I) I f  a<13<x + and v<u,  then 
(a) I{~<a: 01(~, a)<"-v}l <v+, 

(b) I{~<a: 01(~, a)~=O,(~, 13)} [<Ol(a, 13)+. 

Proof. The proof  is by induction on a and 13, respectively. Since the proofs of  (a) 

and (b) are very similar let us prove only (a). So let A~_a be a set of  type v +. We have to 

find a ~EA such that 01(~, a)>v. This will certainly be true if t p (C  a N~)>v for some 

~EA. So assume 

tp (C a n ~) ~< v for all ~ E A. 

Then there exist ~ E C a and B~_A of  size v + such that ~/=min ( C a \ ~ )  fo r all ~ E B. Hence  

Ol(~, a) = max {tp (C afl r/), 01(~ r/)} 
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for all ~EB. By induction hypothesis pick a ~EB such that 

~)1(~' ~) > lJ ~ tp (C~ fl r/) = tp (Ca A ~). 

Then Ol(~, a)=ol(~, r/)>v. This finishes the proof. 

Note that 01(', a) is not necessarily 1-1 .  This can be corrected as follows, where 

the operations in question are ordinal multiplication and exponentiation. 

01(a, fl) = 2 ol(a'~)" (2"tp {~ ~< a: 01(~, fl) = Ol( 6t, fl)} + 1). 

The following is an easy consequence  of  (2.1). 

(2.2) I f  a<fl<x + and v<x, then 
(a) 0~(. ,a)  is 1 - I ,  

(b) [{~ ~ a: 01(~; a) 4: 01(~' f l ) } [ (  01 (0~' fl)+" 

Assume now (C,:  a<•  + ) is a [:],-sequence, i.e. that (C,: a < g  + ) moreover satis- 

fies the property (i) of  w 1. For  a < f l < g  + let 

~/,r = maximal limit point of  C~ N (a+  1), 

if any exists; otherwise let q ~ = 0 .  Now we are ready to define 

O=Q(C.: a<~+):[x+]2~x 

by 

e(a, fl) = max{tp (C~ n a), Q(a, min C~\a) ,  Q(~, a), (~ E Ct~ n [r/@, a))}. 

(2.3) I fa<f l<r<g +, v<g ,  and 0<6 = U 6 < e < g  +, then 

(a) t{~<a: o(~, a)<v}l<v +, 
(b) o(a, y)~<max {o(a, fl), 0~ ,  Y)}, 
(c) o(a, fl)<max {o(a, y), O~, Y)}, 
(d) there is a ~<6 such that 0(~, e)>~O(~, 6) for all ~<~<6.  

Proof. The proof of  (a) is almost identical to the proof of (2.1) (a). Let  us prove (b) 

and (c) simultaneously by induction on y. First of  all note that the condition (i) of  w 1 

implies 

(iv) If a is a limit point of  Ca, then O(', a)co(" ,fl). 
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Let v=max {o(a, fl), 0([3, 7)}, and let 

~,~ = m i n ( C r \ a )  and ~t~ = min(C~\fl) .  

We have to show o(a, 7)<v. 
Case 1. a<r/ar. Then by (iv) 

e(a, 7) = o(a, ~ ) .  

On the other hand, o(a, fl), O(rl~r, fl)~v SO by (c), o(a, r/#y)~<v and we are done. 

Case 2. a>~rlc~y. Then r/m,=r/r so if ~=~a,  o(a, 7)<<-v follows easily from 0(fl, 7) <-v. 

ff ~a<~a, then 0(~a, fl)<.v, and so by (c), o(a, ~)<<.v. Similarly one checks 0(~, a) <~v for 

all ~ E Cy fl [r/~y, a). Thus, 0(a, 7)~<v. This proves (b). 

Assume now v=max {o(a, Y), 0(/3, 7)} and let ~ and ~a be as above. 

Case 1. a<r/~y. Then again by (iv), 

o(a, rl~y) = o(a, 7) ~ v. 

But 0(r/ay, fl)~<v so by (b), o(a, fl)<.v. 

Case 2. a>~rla r. If ~a=~a=~, then o(a, ~), 0([3, ~)<<.v, so by (c), p(a, fl)<-v. If ~a<~ 

then 0(~,  fl)~<v and o(a, ~)<~v so by (b), p(a,t~)~v. This proves (c). 

To prove (d) let t=00(6, e). Let/x E Ft(t)be maximal with the property that C~ f)6 is 

unbounded in/~ and let ~<6 be an upper bound of 

Cen6, ~E F t ( t ) \ ~ +  I). 

Then OoCg, e)m-00(~, e) for all ~ in [r whence 

0(~, t) t> 0(~,#) for all ~ E [r 

But this finishes the proof since 0( ' ,  6)m-0(" ,P) by (iv). 
Again 0( ' ,  a) is not necessarily 1-1 and we can correct this by putting 

0(a, fl) = 2 Q(~'#)" (2-tp {~ ~< a: 0(~, a) ~< 0(a, fl)} + 1). 

(2.4) The function 0: [~+]:--~ also satisfies (2.3) (a)-(d) and, moreover, 0(',  a) is 
1 - 1 for all a < x  +. 

(2.5) Assume ~ < a < f l < g  + and 0(~, a)>p(a, fl). Then 0(~, a)=p(~, fl). 
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Proof. By (2.3) (b) and (c), 

Q(~, fl) ~< max {Q(~, a), Q(a, fl)} = ~(~, a), 

Q(~, a) ~< max {Q(~, fl), Q(a, fl)}. 

But the last maximum must be equal to Q(~, fl) because ~(~, a) is bigger than o(a, fl). 

Note that we have actually shown that any a :  [h~+]2---->u satisfying (2.3) (a), (b) and 

(c) also satisfies (2.1) (a) and (b). The next result shows that, at least in the cases of  a 

successor of a regular cardinal, some sort of  a converse to this is true. We do not give 

the proof  since it is very similar (and easier) than the proof  of (2.3). 

(2.6) Suppose x is regular and a: [u+]2--->u satisfies 

(a) I{~-<a: a(~, a)<.v}l<x for all a<u + and v<u, 

(b) I(~<-a: a(~, a)4:a(~, fl)} < u  for all a < f l < u  +. 
Define Oa: [u+]2___>u by 

q~(a, fl) = min {v: a(a, fl) ~ v and V~<a(a(~, a) 4= a(~, fl)--->a(~, a), a(~, fl) <~ v)}. 

Then for all a<fl<y<u + and v<u, 

(d) Pa(a, y) <<. max {Qa(a, fl), Q~(fl, ?)}, 

(e) Qa(a, fl)~<max {Qa(a, ~,), Qa(13, Y)}. 

We shall now see that the restriction to u regular in (2.6) is essential. For  

r: [u+]2--->u by T(r) we denote the tree 

{r( . , t~)r  a: a - < t ~ <  ~+}, ~ .  

(2.7) I f  r: [x+]2---->~ satisfies (2.6) (c), (d) and (e) (with r in place of  ~ ) ,  and if 2~=u, 

then T(r) is a x+-Aronszajn tree. 

Proof. It suffices to show that levels of  T(r) have size ~<u. So let a < u  + and let 

t=r(' , f l)Ia be a given element of  the ath level of  T(r). By (2.5), t is uniquely 

determined by its restriction on 

(~ < a:  r(~, a)  ~< ~(a, t~)} = (~ < a: ~(~, t~) <~ ~(a, t~)}. 

But there exist only u such restrictions. 
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(2.8) Suppose now c fu=w and there exists 7: [u+]2---->~ satisfying (2.6) (c), (d) and 

(e). Then there is an order type qD o f  size u + and density u so that every ~<~q~ o f  size u is 

the union of  N o weliorderings. 

Proof. Fix an increasing sequence (u,: n<to) converging to u. For a < u  + define 

f~ E~u by 

f~(n) = tp {~ ~< a: ~(~, a) ~< u~}, 

and set r ({fa: a<u+},  <0). We claim that r is as required. To see this first note that 

f~(n) <f~(n) for all n with ~ I> z(a, fl). 

Thus, if 

Fn(a) = {~ <- a: ~(~, a) <<- xn}, 

then fr for all ~4=~ in F.(a). 8o {f~: ~ E F.(a)}, <0 is a well=ordering. But this 

clearly finishes the proof. 

It is well-known that an order type as in (2.8) does not exist if we collapse a 

supercompact cardinal to w 2. This shows that our use o f a  U]~-sequence in the definition 

of Q is in some sense necessary. 

The definition of Q can also be given in the following form (resulting to the same 

function). 

•(a, fl) = sup {tp (C~ N a), t~(a, min (C~\a) ) ,  e(~, a), (~ e C~ t3 a)}. 

In this case a proof that the supremum is always <n  (even ifx is singular) must be given. 

This is done by a straight-forward induction on fl using the property (i) of the  

D,-sequence (Ca: a < u  + ) (which gives the property (iv) of t~). The advantage of the 

present definition is that for regular x it makes sense even if ( C j a < u  +) is not 

necessarily a Vl~-sequence but only a c-sequence with the property tp Ca~<n for all a. In 

this case the proof of (2.3) shows that Q has the properties (a), (b) and (c). 

Finally, we note that the function t~ has also a very strong stepping-up potential 

which has been already used in several recent applications (see [29]). 

w 3. Aronszajn trees and Countryman types 

We shall say that a linearly ordered setA, < has a Countryman type i fA is uncountable 

and A 2 with the product ordering is the union of R0 chains. It is easily seen that if A is 
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Countryman then, in fact, any finite power A n is the union of  1% chains. In this section 

we shall see that both Q0 and QI (and hence ~) give us a Countryman type. 

From now on in this section we fix a c-sequence (C~:a<to l )  on to I such that 

tpC~E {0, 1,~0} for a l ia<to  1. Let  00=Q0(C~: a<o~ 0 and Q~=Q~(C~: a<t01), i.e., 

Oo(a,/3) = (tp (C a n a))  ~'00(a, min C a \ a ) ,  

o1(a,/3) = m a x  {tp (C a n a), Ol(a, rain Ca\a ) } .  

The following two facts have already been proved in w167 1 and 2. 

(3.1) T(Oo) and T(O0 are Aronszajn trees. 

(3.2) T(Oo) is special since Oo(',/3) I a~Oo( tJa,/3) is a strictly increasing map from 

T(o0) \{ (  )} into Q,o. 

(3.3) T(o0), <0 and T(OO, <1 are both Countryman types. 

The proof  of  (3.3) will be given below in a slightly more general form. When 

considering a: [~ol]~---~w we shall as always assume a(a, a ) = 0  for all a<~o I and write 

a a for a ( ' ,  a). By a~=*a a I a we denote the fact 

(~ < a: a(~, a) ~ a(~, fl)} is finite. 

Thus (2.1) is saying that (Ol)a is finite-to-one and that (O0~=*(Ox)a I a for a<fl<oJ 1. 

Suppose u and v are two functions with domains sets of  ordinals. Then we write 

u = v  

iff there is a strictly increasing map h from dom (u) onto dora (v) such that u(a)= v(h(a)) 

for all a E dom (u). Note  that there exist only countably many isomorphism types of  

finite functions from ordinals into co. 

Suppose a: [~0112---~c0 satisfies (2. I) (a) and (b) and let A =  {as: a<t01}. Assume that 

we have a chain-decomposit ion h: A2---~to of  A s with the product ordering. Then a chain 

decomposit ion of  (T(a)) 2 is defined as follows. Let  (a s I a, a 61 Y) be a given member  of  

(T(a)) 2. Then we set 

(aala ,  a~Iy)  E K =  K(io, il,i2, u,v) iff 

h(a~, a 7) = io, pa(a, fl) = il, 0~(~', 6) = i 2 (see (2.6)), 

as I {~ ~< a: a(~, a) ~< it} ---- u and a~ I {~ ~< ~: a(~, ~) ~< i2} --- v. 
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It is straightforward to check that K is a chain in (T(a)) 2. Since there are only b: 0 

parameters this gives a chain-decomposition of (T(a)) 2 into N 0 chains. 

(3.4) Suppose aa is finite-to-one and a~=*aaI a for all a<fl<co 1. Then T(a), <l is 

a Countryman type. 

Proof. By the above remark, it suffices to decompose {(a~, as): a<fl<tol} into 

N 0 chains. For a<fl<to I set n~=Oa(a, fl) (see (2.6)) and 

Fo~ = {~ ~< a: a(~, a) ~< nM} (= {~ ~ a: a(~, fl) ~< no~}). 

Clearly, to get the decomposition it suffices to assume that for some a<fl and y<6,  we 

have a~< 1 ar and 

no~=ny6=n, a~IFo~ayIF~6,  a~IFo~-~a6IF#, 

and then prove that a#<l a~. To end this set 

~y = A(aa, at) and ~a~ = A(aa, a~). 

C t a i m .  = = 8 .  

To see this note that F=Fo~fl~y is an initial part of both Fo~ and Fy~, whence 

a~ I F=a~ ~F. Then apI~y=a ~ I~r ,  and so ~a~>~ar" Similarly one shows ~ r ~ .  

If ~ E Fo~\Fr~ then 

which means a s < 1 a6. 

If ~ E F y 6 \ F ~  then 

contradicting a a < 1 av .  

ff ~ ~ Fo~ U Fy 6, then 

a~,(~) = a,~(~) > n >I a#(~) 

aa(~) > n >t ay(~) 

aa(8) = ao(~) < a~(~) = a6(8),  

which gives a s <~1 a~. This completes the proof. 
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In the proof that T(Q0), <0 is Countryman the role of  the finite sets Fo~ will be 

played by the sets F(a, fl)~_a+ I defined as follows: 

~EF(a, fl) if ~EF(minC#\~ ,a)  and 

E F(a, min CZ\~)  and 

min C a \ ~  < a, or 

rain C a \  ~ ~> a,  

where we agree that always F(a, a)=  {a}. An easy induction on fl shows that for all 

~<a<~<~o t, 

Qo(~, a) = Oo(minF(a, fl) \ ~, a)"Oo(~, min F(a, f l ) \~ ) ,  

00(~, fl) = Q0(min F(a, fl) \ ~ ,  flY'Oo(~, min F(a, fl) \~ ) .  

It should now be clear that the finite sets F(a, fl) can indeed take the role of the sets Fa~ 

in the proof of  (3.4) and give us a decomposition of (T(o0)) 2 into l~ 0 chains. 

w 4. Coloring pairs of countable ordinals 

In this section we give several proofs of  the main result of  this article. Our partitions 

will have one of the following forms: 

(1) a: [a~112--->091 such that a<a(a, fl)<~fl and a"[A] 2 contains a club for all uncount- 

able A_~o t. 

(2) b: [0.)112"->O1 such that a<~b(a, fl)<~fl and b"[B] 2 is cobounded for all uncountable 

B~_%. 

(3) c: [Ol]2-->09 and c"[C]2=oj for all uncountable CGaJ 1. 

(4) d: [oz]2--->wl such that d(a, f l )<a  for nonzero a and d"[O]2=~0l for all uncount- 

able D~_co I . 

Any of the forms will be sufficient for the main result of this paper. For  example, 

to get d from a one simply composes a with a decomposition of to I into 1~ 1 stationary 

sets. So it remains to see how to get b and d from the existence of  c. For  this fix an 

e: [(/.)112--'>(./) such that e a is 1 -1  for all a and define 

b(a, f l )=  max {a, e~Z(c(a, fl))}, 

d(a, fl) = e-~l(c(a, fl)), 
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where we put b(a, fl)=a and d(a, fl)=0 when the corresponding term on the right hand 

side is undefined. Then it is straightforward to check that b and d have the desired 

properties. 

From now on we fix a c-sequence ( C a : a < w l )  on to 1 such that tpCaE {0, l ,w} 

for all a < w  r Let  Q0 and 9l be the corresponding functions. For  ~ < a < f l < w j  and n<w 

set 

oo(a, fl) = max {r/~< a: ~00/, a) = ~00/, fl)}, 

A(a,/~) = A(O~(., a),  q~(. ,~)), 

a~(a, t~) = • t~),/~), 

~ ( a )  = {~ ~< a: qo(~, a) ~_ Oo(~, a)} ,  

FI.(a) = { ~ <~ a: e,(~, a) <~ n}. 

(Note that o o is well-defined by (1.5).) Finally, define our first two partitions 

ao: [Wl]2---)Wl and al: [Wl]2---*Wl by 

ao(a, fl) = min (F~162 

al(a, fl) = min (FIo~(.,Z)(fl)\a). 

(4.1) a~[A] 2 contains a club for all uncountable A~to 1. 

(4.2) a~'[A] 2 contains a club for all uncountable A~_to 1. 

Proof. The proofs of (4.1) and (4.2) are very similar so we prove only (4. l). So let 

A~_~o~ be uncountable,  let ~ be a large enough regular cardinal and let M<Hx be 

countable such that A,(Ca: a<wl) EM. It suffices to find a<fl in A such that 

ao(a, fl) = M Nwt = b. 

Fix a fl 6A above 5 and let t=  00(5, fl). Then for all ~ E F~t(fl) above 5, C~ N 5 is bounded in 

so we fix a bound 7<6 for all of them. Then t~_t~0(r], fl) for all r] in [7, 6). Let  

B o = {a  E A: Po(',  fl) I Y c 0o(' ,  a)} ,  

Then B o E N and fl E B o, so B o is uncountable. Since 7"(0o) is Aronszajn there must be a 

v E T(0o) I c~ such that 

Oo(', 3) r r c v r 
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is uncountable. Let  

Then for all a in C N N, 

C =  {aEBo:v~Qo( ' , a )}  

e = max {r/: 0(77) =1= Oo(r/, fl)}. 
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ao(a, 3) = e and F~t(fl) ~_ F~(fl) 

So if a in C n N is above F~(3) n 6 then 

ao(a, 13) = min (F~(3) \a )  = min /~  (fl) = 6. 

This completes the proof. 

Let  T be a special Aronszajn tree and let a: T->co be an antichain-decomposition. 

Let < be a fixed well ordering of T such that ht(s)<ht(s) implies s<t,  and let 

[T] 2= { ( s , t ) : s < t  and s, tET} .  

We also assume that for all s, t E T, 

s A t = m a x  {uE T: u<<-rS and u<<-rt ) 

exists. For  n<co and t in T set 

F,(t) = {s <<-rt: s = t or a(s) <<- n}. 

Then Fn(t) is a finite chain in T. Finally, define b: [T]Z-->T by 

b(s, t) = min (u E Fa<,^o(t): s < u}. 

Then the proof of  (4.1) also gives the following. 

(4.3) b"[A] 2 intersects club many levels o f  T for  any uncountable A c T .  

For A~_co I set 

K A = { ( a ,  f l )  E [o)112: ao(a, fl) E A  }. 

Let ~d A denote the graph (col, KA). Then an easy adjustment of the proof of (4.1) gives 

the following. 
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(4.4) I f  AAB is stationary in co l, then ~gA and ~B contain no isomorphic uncount- 

able subgraphs. 

For  two sets of  ordinals E and F we define a relation R=R(E,  F)~_F 2 as follows: 

aRfl iff [a, fl]NE~_F and [fl, a]NE~_F. 

Then R is an equivalence relation on F with convex equivalence classes. Set 

osc (E, F) = IF/R(E, F)[, 

that is, osc (E, F) is the cardinality of  the set of  all equivalence classes of  R on F. NOw, 

we are ready to define two new partitions Co: [col]2-->co and c1: [col]2-->co as follows: 

c0(a, f l )=  the exponent  of  2 in osc (F~ F~ 

Cl(Ct, fl)= the exponent  of  2 in i 1 osc (Fo,~,t~)(a), f~,~, ~)(fl)). 

(4.5) cg[A] 2 = co for all uncountable a~co 1. 

(4.6) c~'[A] 2= to for all uncountable a~_co I. 

Proof. The proofs of  (4.5) and (4.6) are very similar, so we prove only (4.6). For  

E, FE [col] <'~ put 

E ~< -F  iff E is an initial part of  F. 

Then [col] <~', < .  is a tree and we shall consider any T=_[co~] <~ as a tree under  this 

ordering. Le t  n denote  a positive integer. Then we say that T=_[co~] <~ is an n-tree iff 

(a) T has a root,  

(b) he ight (T)=n+ 1, 

(c) if E has height < n  in T then the set succ (E) of  all immediate successors of  E in T 

has size 1~ 1 and ( F \ E :  FE succ (E).} is a disjoint family. 

If  T is an n-tree then by T* we denote  the last (nth level) of  T. 

(4.7) Suppose S and T are n-trees with roots E o and F o, respectively. 

Let l=osc  (E0, Fo). Then for each k E (l, l+ n] there exist uncountable X=_S* and Y~_ T* 

such that osc(E,F)=k for all E E X  and FE Y with m a x E < m a x F .  

Proof. The proof  is by induction on n. The case n=  1 follows immediately from the 

definition of  an n-tree. So assume the result is true for n=m and prove it for n=m+ 1. 
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To end this p i ck  a n  E l in the first level of  S and an Ft in the first level of  T so that 

max F 0 < min (E 1 \ E 0 )  ~< max (E l \ E  0) < min (V 1 ~ F 0 ) .  

Set 

U=(EES:E~<<..E} and V={FET:FI<<..F}. 

Then U and V are m-trees with roots E~ and F~, respectively such that 

osc (E 1 , F 1) = l+ 1. 

By the induction hypothesis  for  each kE(l+l,l+l+m] we can find uncountable 

X~_U*c_S* and Y~-V*cT* such that 

osc (E, F) = k for all E E X and F E Y with max E < max F. 

The same conclusion for k=l+ 1 follows from the case n=  1. This finishes the proof.  

We are now ready to finish the prof  of  (4.6). So let A~_to I be uncountable and let 

i<r We have to find a<fl in A such that cl(a, fl)=i. 

Let  n = 5 . 2  i and let {Mk: k<.n} be an E-chain of  countable elementary submodels of  

H a containing everything relevant. Le t  

6 k = M k f l tOl,  (k<.n). 

Fix a flEA above 6 n and rh<to such that 

{6/: k ~< n) ~_ F~(fl). 

Fix a ~<60 above  Fl(fl)  N 60, and let t=01( ' ,  fl) I ~- Define 

B o= {aEA:tcOl(.,a)}. 

Then B o E M 0 and fl E B 0 so B 0 is uncountable.  Using 

f~(~) n [~k-t, ~k) 

(6 l=0,  6,+1=w0 as parameters  and elementari ty of  the Mk's, by downward induction 

one shows the existence of  an (n+l ) - t ree  S o in M 0 such that 

S~_  {F~(a): a E B0}. 

19-878283 Acta Mathematica 159. Imprim6 le 23 octobre 1987 
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Since T(o0 i s  Aronszajn, by shrinking S 0, we may assume that there exist uE T(oOI6o 

and uncountable C~_B o so that: 

(a) tcUCOl(. , a) for all a E C, 

(b) S~= {F~(a): a E C } ,  

(c) uCQ~(. ,/~). 

Let v=ol(.,fl)II(u). Then again for the same reasons we can find an (n+l) - t ree  

T O in M 0 and uncountable DcB o such that: 

(d) v=ot(" ,fl) for all flED, 

(e)/~0= {F~(fl): fl E D}. 

Let  e=A(u, v) and let m=v(e). Then m < m  and al(a, fl)=m for all aEC and flED with 

a<fl. So we can find (n+ D-trees S and T such that 

S * c  { F ~ ( a ) : a E C }  and 7"*_ {F~):fleD). 

Let E 0 and F 0 be roots of  S and T, respectively and let l=osc  (E 0, F0). Pick a j such that 

2/(2j+ 1) E (l, l+n+ 1]. ' 

By (4.7) we can find F~(a) in S* and Ftm(fl) in T* such that a<fl and 

osc (F~(a), F~(fl)) = 2/(2j+ 1)2 

Since re=el(a, fl) this means that cl(a, fl)=i: This completes the proof. 

We conclude this section with a corollary to the proof  of  (4.6). Let  O=O(Ca: a<to  0 

be the function from (2.4). For  n<w and a<to~ we set 

P,(a) = { ~ <<- a: 0(~, a) <<. n}. 

To the function # we now associate a sequence 

: d,: [to,]2--* w, (n< to )  

of partitions as follows. First of  all we put d,,(a, fl)=O i f f  

the ith member  of  Pn(a)~the ith member  of  Pn(fl) 
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for all i for which such members exist. Otherwise, let 

d#(a, fl) = max { 1, osc (en(a), P~(fl))- 1 }. 

By the properties (b) and (c) o f  0, it follows easily that d~(a, fl)=0 for all n>~(a, fl). 

Thus since the (0) /s  are one-to-one, 0Ed~[A] 2 for any set A of size >n .  On the other 

hand, we have the following 

(4.8) For all i>0 and uncountable A, Bc_to I there is an m such that for all n>~m 

there exist a EA and fl EB with a<fl so that d~(a, fl)=i, 

w 5. Coloring larger squares 

In this section we make slight modifications of partitions a 0 and c o of w 4 which will 

work on some higher cardinals as well. Roughly speaking, we have only to redefine 

o0(a, fl) in such a way that we no longer make the implicit assumption that the clubs 

relevant to oo(a, fl) agree below the maximum of their intersections. 

So let 0 be a fixed regular cardinal and let (Ca: a<O) be a c-sequence on 0. We 

shall  need a slight modification o: [0]2-->Card of the function osc of w defined as 

follows: 

o(a, fl) = osc ( C a \ ( m a x  (C a N Ca)+ 1), C a \ ( m a x  (C a N Ca)+ 1). 

Now we make the following assumption about 0 and the Ca's. 

(5.1) O=~+ for some regular ~ and tpCa<~ for all a<O. 

The first partition a: [x+]E-->;e of this section is defined by 

a(a, fl) = max {~ E F~e0(a,~)(fl): o(r/, ~) I> 2 for the 77 ~< a with O0(r/, a)=o0(~, fl)}, 

if this set is nonempty;  otherwise a(a, fl)=fl. Let  

S~= {6 < x + : c f 6  =x} .  

(5.2) a"[A] 2 contains a club relatioe to S~for all A~_~ § of  size ~+. 

Proof. Let  A ~ x  + have size x~" and let M be an elementary submodel of H~ 

containing everything relevant such that 

6 = MNx + E S~. 
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Furthermore, we assume M is the union of an E-chain of submodels with the same 

property. It suffices to find a < f  in A such that a (a , f )=6 .  Fix a f l E A  above 6 and let 

t=Q0(6, 8). Then 

m a x ( C ~ N 6 ) < 6  for all ~EF~t(f l ) \ (6+l) .  

For s c t  put 

7s = max (C~ n 6), where Qo(~, 8) = s. 

We can now choose submodels M o E M l E M of H~ containing ( Ca: a < u  + ), A, {Ts: s e t )  

such that 

6 i = M i A u + E S , ,  (i<2) and C 6 n [ 6 o , 6 ~ ) . 0 .  

For a EA, let 6(a, t) be the unique ~ such that O0(~, a)=t,  if it exists. Let  B0be the set of 

all a EA for which 6(a, t) exists, and let 

B = {a E B0: ~,, =.max (C~ N 6(a, t)) for all s e t  and ~ < a  with O0(~, a ) = s ) .  

Then B E M o and fl E B. The elementarity of M o now gives us that for all large enough 

7<u + there is an a EB such that 6(a, 0 > 7  and 

max (C6(a, t) n ),) = Yt, 

where 7t=max(C6 n 60). Applying this in M l for 

f , = m a x ( C o n 6  p 

fix an a E B A M 1 such that 6(a, t )>~ and 

Yt = max (C6(a, t) n ~2). 

Then 

and 

and 

t ~ Qo(a, f ) ,  o(6(a, t), 6) = 2, 

o(r/, ~e) = 1 for all ~EF~oo(~,~)(fl)\(6+l) = F~t~)~(6+l )  

r/~< a with Qo(r/, a)  = 0o(~, fl). 
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Hence a(a, fl)=6. This finishes the proof. 
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It should be clear that in the above proof of (5.2) we can replace u+ by any regular 

uncountable 0 and S~ by any stationary Sc_ 0 with property C afl S = ~  for all limit a<0 .  

It is also clear that the exact analogue of (4.4) holds in this situation as well. 

In order to consider an analogue of c o of w 4 in the present situation we now make 

the following assumption. 

(5.3) 0 is regular and uncountable and there is no club C~_O such that for all a<O 

there is a fl>~a so that Cna~_ C#Na. 

Clearly, any successor cardinal 0=x  + and (Ca: a<O) with the property tp Ca~<u for all 

a<O satisfy the condition of (5.3). The function 

is defined by 

a2: [0] 2--> Qo 

a2(a, fl) = min {t~ lg0(a, fl): o(~/, ~) ~> 2 if @0(r/, a) = @0(~, fl) = t}, 

where the min is taken in Q0 with respect to c ,  and where we set a2(a, fl) = ( ) if the set 

on the right hand side is empty. Finally define c: [0]2---->Card by 

c(a, fl) = o(min F~ min F~ 

(5.4) c"[A]2D_w\2 for all A~O of size O. 

Proof. Fix an A~O of size 0 and an integer n~>2. We have to find a<fl in A such 

that c(a, fl)=n. Pick an h;/<Ha containing everything relevant such that 

 =Mn0 0. 

Fix a flEA above ~ and let i=@o(~,fl ), Let 

be maximal with the property 

sup (c6 n & = 6, 
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and let t=Oo(6,fl)(~_i). Then for each se t ,  if ~ f i  is determined by O0(~,fl)=s, then 

Ys = max (C~ n 6) 

is an ordinal <6 .  We may assume 3Y/contains a large enough regular cardinal g and an 

E-increasing continuous 0-chain ~ of elementary submodels of Hu containing {Ts: s c t), 

(Ca: a < 0 )  and A such that MNOEO for all M E M .  Let  

C= {MNO:MEM}.  

Then C is a club in 0 and by the assumption (5.3) no endsection of C N 6 is contained in 

C 0. So we can find an E-subchain {Mi: i<~n) of d~ N.~ such that if 6i=M i n 0 t hen  

C6f116i-l ,6i)*~ 

and Cifl6 ~ is bounded in 6; for i<~n, (6_1=0). 

For a EA, let 6(a, t) be the unique ~ < a  determined by 0o(~, a)=t, if it exists. 

Let B 0 be the set of  all a in A for which 6(a, t) exists, and let 

B = { a E B0: 7s = max (C~ fl 6(a, t)) for all s m t and ~ ~< a with Q0(~, a) = s }. 

Then B E M 0 and fl E B. 

Let  us now extend the notion of an n-tree of w 4 to the present context by simply 

replacing the requirement of uncountable splitting by the requirement of 0-splitting. Let  

e i = max (C6 n 6 i) 

for i<.n. Using the 6i's and e[s as parameters,  by downward induction along the models 

M;, one can show the existence of an (n+ 1)-tree S in M 0 with root {e0} such that 

(a) If  F is an immediate successor of  E in S then IF \E l  =2. 
(b) For all F* in S* there is an a E B  such that if 

F* = {to, 6~, tr 6~[ .... .  t~, 6~, 6(a, t)} 

is the increasing enumeration of F*, then 

e* = max (C~a, o n 6*) 

for all i<~n. 
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Since S in M 0 E., .  E M n is a 0-splitting tree we can inductively find a top node P of  

S in Mn and an d in B n M n as  in (b) such that if 

,r (~0. %, ~, ~, .... ,~., ~., ~(a, t))<, 

then 

El<  (~i-I ~ Ei < (~i 

for all O<i~n. Then it follows immediately that 

o(5(a, t), 5(fl, t)) = n. 

On the other hand, by the definition of  B (and 7s, set ) ,  we have that  o(r/, ~)--- 1 fo r  all r/ 

and ~ for which r d)=@0( ~, fl) is a proper initial part of  t. Thus 

a2(d, fl) = t, 

and so c(a, fl)=n. This completes the proof. 

w 6. Concluding remarks 

The key idea of  our coloring can roughly be stated as follows: If  the set of interesting 

places is stationary then in any unbounded set we can find a<fl such that walking from 

fl to a along the C~'s we pass through at least one interesting place. The functions a 0, o 1 

(and a 2) are designed in such a way in order to pick one interesting place from our 

(finite) trace. We should note, however, that in most cases the exact kind of ou r walk is 

not so important as it m a y  seem at first. For  example, the partitions of  w 4 could also 

be defined as follows. 

b(a, /3) = min (Fo(a,a)(fl) \ a), 

c(a, fl) = the exponent of  2 in osc (Fo~,~,a)(a), Fot,~,a)(fl)), 

where 

F.(a)  = {~ < a: e(r a) < n}, 

and 

a(a, fl) = min {n: ra(n) :4: 9(n)}, 
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for any e: [tol]2--,to with e~'s 1 -1 ,  and any 1 - I  sequence {r~:a<to~}___~ We have 

chosen the most canonical forms in w167 and 5 because these are the forms which are 

likely to have further applications and modifications. 

The work of the present paper started in May 1984 by a discovery of a new proof of 

the existence of a Countryman type. (The Countryman problem was originally solved 

by Shelah [14] using an Aronszajn-type construction ([ll]).) The main result was 

obtained in September 1984 and the whole work was completed by the Fall of 1984 and 

circulated as [26]. Since then several papers appeared using the method of [26] to some 

other related problems concerning the uncountable ([16], [17], [I9], [20], [18], [6].) 

Since more applications are to be expected, we have decided to present [26] in the 
present more explicit form. 

It is readily seen that any of our partitions 

p: [012---,I 

(when reduced in one of the forms (3) and (4) of w 4) has the following property. 

(6.1) For any finite n and disjoint {F~: a<O}c[O] n there exist i: n2---~I and unbound- 

ed A~O such that for  (ct, fl) E A  2 and (k, l) E n 2 \ A ,  

p(F~(k), F#(l)) = i(k, l). 

In [19], Shelah and Steprans give an interesting application of (6.1) to Group Theory 

removing the assumption of CH from previous works. Incidentally, the same proprety 

o fp  has been also used in [28] for a quite different purpose. The property (6.1) is telling 

us that we have not much freedom in getting different colors on (Fa(k), Fa(l)) for k~=l. 

This was also the case with the partitions from [21] and [4]. The first example of a set of 

reals X of regular cardinality 0 and a partition 

p-" [S]2---~ o)~ 

with a complete freedom in calculating p(Fa(k), Fa(I)) for different k and I was given by 

the author in [23]. Using the methods of [26], Shelah [18] constructs partitions with 

similar properties for many cardinals 0 above the continuum. 

The main result of Shelah [16] shows that certain extensions of a whole group of 

results including ours are impossible. But [16] also contains a different-style presenta- 

tion of our partition a 0 from w 4 with certain generalizations. In particular, [16] gives 
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attempts of extending (5.2) to successors of singular cardinals. Concerning this let us 

note tha~ the partition of [27] can be used in stepping-up the partitions of the present 

paper in order to get an analogue of (5.2) for any ~r which is the coth successor  of a 

countable product of cardinals I>2. 

Our partitions p have also the following interesting property. 

(6.2) For any finite n and unbounded A~_O there is a disjoint { Fa: a<O}c[A] ~ such 

that for all i in I and unbounded B~_O there is an arbitrarily large finite C~B such that 

p"F~XF~={i} for all a<fl in C. 

This is probably most easily seen for the partition b of (4.4). In this case we first find an 

antichain { t j  a<col} of Tand for each a an F~in [A] n such that t~<r t for all t in F~. It is 

now clear that b on { F j  a<col} behaves the same way as b on {ta: a<col}, so we finish 

as in the proof of (4.4). In [17] Shelah shows that by identifying certain colors of such a 

p the resulting partition 

q: [0]2---> I 

has the following property. 

(6.3) For any fn i t e  n, unbounded A~_O, and h: [n]2-->l there is an increasing 

f'. n-->A such that p(cffi),f(j))=h(i,j~ for all i<j<n. 

Namely, fix an one-to-one {ra: a<O} ~_~ and let {hi: i E I} enumerate all 

h: [n212---> I, 

where n<co. Let ni<co correspond toh i. For a<fl<O set 

q(a, fl) = hp(a,#){r ~ I np(~,#), rt~ I np<~,#)}. 

Then it is easily seen that q satisfies (6.3) when p has the property (6.2). The paper [20] 

gives an interesting application of (6.3) to the Banach Space Theory removing the use 

of diamond from previous constructions. 

An interesting application of the methods of [26] also appeared in [6] where Hajnal, 

Kanamori and Shelah gave a new characterization of Mahlo cardinals in terms of the 

existence of infinite min-homogeneous sets for certain regressive partitions. We note 

that the characterization of [6] can also be achieved more directly by an application of 
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the more  natural characterization (1.9) (=Theorem 7 of [26]). For this one has  to 

consider the following partitions 

p: [T]2--> co and q:[T]3-'>T 

associated with a special 0-Aronszajn tree T and the regressive map )2 T-~T: 

p(s, t) = min {m: height fm(s A t) = 0}, 

and 

q(s, t, u) =fn(tAU), 

where n is the minimal m such that fm(t^u) has height less than the height of s, if such 

an m exists; otherwise q(s, t, u) is the minimal point of T below t ^ u .  (Here,f  ~ denotes 

the mth iterate of the regressive map f and f0=id.) 

After the first limitation to the Ramsey Theorem for the uncountable given by 

Sierpifiski [21] (and rediscovered by Kurepa [12]) several other much stronger limita- 

tions appeared using mainly the Continuum Hypothesis or the negation of the Souslin 

Hypothesis. One of the strongest is the following CH-result of Erd6s, Hajnal and 

Milner [2]. 

(6.4) There is a p: [(.Oi]2--->(/)1 such that for  every infinite A~_to I and uncountable 

B~_to I there is an a E A  so that {p(a, f l): f lEB}=co r 

It turns out that (6.4) is just a reformulation of an earlier CH-proposition 

P3 of Sierpifiski [22] which we state in the following form. 

(6.5) There is a sequence fn: t~176 (n<co) such that for  any uncountable A~_co l 

there is an m so that j~A=col  for  all n>-m. 

To deduce (6.5) from (6.4) define fn: 091\tO--~tOl by 

fn(fl) = p(n, fl). 

To deduce (6,4) from (6.5) fix an e: [col]2--,co such that 

(6.6) e a is f inite-to-one and ea =*e~ I a for  a<fl<ta I , 

and define 

p(a, fl) = f,~a)(/3). 
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The proposition (6.5) does not change if we assume that the f~'s map to! into to 

rather than into tol- To see this suppose g,:tol--~to (n<to)satisfy (6.5) and define 

f~: toz--~tol, (n<to) by 

fn(a) = ~ l(g~(a)) 

(see (2.2) for the definition of d from e) when this makes sense; otherwise fn(a)=0. Then 

thefn'S also satisfy (6.5) which is easily checked. This reformulation of (6.5) is of some 

interest since in this form it is an easy consequence of the existence of an uncountable 

Luzin set [22]. To see this fix an 1 - I  sequence {r~: a<tol}~_~'to with no uncountable 

nowhere dense set and definef~: tol---~to, (n<to) by 

fn(ct) = ra(n). 

Then it is easily checked that thefn's satisfy (6.5). 

In the above stepping-up we don't really need to assume e~=*ea I a fora<fl<to 1 

but just the weaker condition that T(e) is Aronszajn. But we have seen in w167 3 and 4 that 

(6.6) is of independent interest, so let us give a brief historical remark concerning this 

proposition. This proposition is implicit in many constructions of Aronszajn trees [11] 

but the closest implicit forms of (6.6) we are aware of are those of Galvin [3] and 

Warren [30], while the first explicit construction of (6.6) is in Kunen [9], [10]. So let us 

explain this in more detail. Warren [30] essentially proves the following proposition. 

(6.7) For all a<to I there is a disjoint partition a•  a OBa such that: 

(a) I f  a = U a  and n<to then for  some ~<a,  {(~,n):  ~l<<-~<a}cA~. 

(b) For all ~<a there is an m<to such that { ( ~, n )  : m<--n<to} cB~. 

(c) A~A(A# n (axto)) is f inite for  all a<fl<to 1. 

To get the e~'s from the A~'s set 

e~(~) = min {m: {(~, n): m ~< n < to} ___B~}. 

To get the A~'s from the e~'s set 

a ~ =  {(~, n): ~ < a  and n <  e~(~)}. 

Galvin [3] ([7]) proves the following. 
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(6.8) E I0)1 can be represented as a union o f  an increasing sequence {<i: i<0)} o f  

tree orderings o f  heights <<.0). 

To get the e~'s from the </ 's  set 

e~(~) = min {i: ~<ict}. 

To get the </ 's  from the e~'s set 

a<ifl  iff eo(a)<.i and V~<a(e~(~)*ea(~)--->e~(~),ea(~)<<-i). 

Thus (6.6), (6.7) and (6.8) are all "equivalent" .  But we should not ignore the fact 

that they are telling us quite different things about the uncountable. It should be noted, 

however, that these connections have not been realized before. For example, it has not 

been noticed before (cf. [3] and [7]) that (6.8) doesn ' t  really change if we strengthen its 

conclusion to: height (w l, <i) is finite for all i. Namely,  if we define <i 's  from ea's as 

above and assume e~'s are, in fact, one-to-one (which we can by the obvious stretching- 

up procedure of (2.2)), then (wl, < )  has height ~<i+2 for all i. Finally, we note that the 

proofs of [30], [3] and [9] all work only for successors of regular cardinals, so our (2.1) 

seems to be new. 

In the final remark of this section we show (once again) the usefulness of the ideas 

of w167 1 and 2 by defining a name for a Souslin tree in the standard poset 

~ 

for adding one Cohen real. The first such name was given in Shelah [15] using an 

involved "morass - type"  construction. To commence,  fix an e: [0)112--->0) as in (6.6) and 

by stretching-up (as in (2.2)) assume that the e~'s are, in fact, one-to-one. Now for each 

real rfi~'0) we define another er: [0)112---> 0) by 

er(a, fl) = r(e(a, fl)). 

Clearly, 

T(e) = {e,(" ,fl) I a: a ~</~ < wi} 

is still a tree of height 091 with countable levels. Note that 

T(eid) = T(e) and T(econst) ~- w I, E. 
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Our point is that 

(6.9) T(e,) is Souslin i f  r is Cohen. 

The proof of (6.9) is straight-forward. For example, to show that every antichain is 

countable fix an uncountable A~to~ and p E "c0. Assume that 

Fn(a) = { ~ a : e ( ~ , a ) < ~ n } ,  ( a E A ) .  

form an increasing A-system with root F and that the e~'s agree on F. Fix now a<fl  in A 

and extend p to a q which corrects the finite disagreement of e a and e~. 

Identifying a with (e,)~ we may consider the induced tree ordering <r on to~ and get 

the same conclusion. That is, we may define <r on % by 

a<, f l  iff V~ < a(r(e(~, a)) = r(e(~,fl)) 

and get 

(6.10) to 1, <r is Souslin i f  r is Cohen. 

To have a nicer forcing relation let us now assume that e also satisfies (2.3) (b) and (c). 

For example, we can put e=~ (see (2.4)). Now for pedro anda<fl<tol we set 

a < , f l  iff e(a, fl) Elp[ and V~< a(e(~, a) E[p[-->p(e(~,a)) =p(e($,fl))).  

Clearly, the properties (2.3) (b) and (c) of e give us the following facts about <p. 

(6.11) (a) (oi, < ,  is a tree o f  height ~<~oJ+l. 

(b) p~_q implies <p C_<q. 

(c) <r=U{<rr,:  n<to} for r in ~ 
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