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Regularity of a boundary having a Schwarz function
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In his book [5], Davis discussed various interesting aspects concerning a Schwarz
function. It is a holomorphic function S which is defined in a neighborhood of a real
analytic arc and satisfies S(£)=C on the arc, where { denotes the complex conjugate
of C.

In this paper, we shall define a Schwarz function for a portion of the boundary of
an arbitrary open set and show regularity of the portion of the boundary. More
precisely, let Q be an open subset of the unit disk B such that the boundary 3Q2 contains
the origin 0 and let T'=(@Q)NB. We call a function S defined on QUI' a Schwarz
function of QUT if

(i) S is holomorphic in Q,

(ii) S is continuous on QUT,

(i) S¢)=EonT.

We shall give a classification of a boundary having a Schwarz function. The main
theorem, Theorem 5.2, asserts that there are four types of the boundary if O is not an
isolated boundary point of Q: 0 is a regular, nonisolated degenerate, double or cusp
point of the boundary. Namely, one of the following must occur for a small disk B; with
radius >0 and center 0:

(1) QnB; is simply connected and I'NB; is a regular real analytic simple arc
passing through 0.

(2a) I'n B; determines uniquely a regular real analytic simple arc passing through 0
and T'nB; is an infinite proper subset of the arc accumulating at 0 or the whole arc.
QNBs is equal to Bs\TI'.

(2b) QnB; consists of two simply connected components Q; and €,. (3Q,)NB;
and (8Q,) N B; are distinct regular real analytic simple arcs passing through 0. They are
tangent to each other at 0.
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(2¢) QnB; is simply connected and I'NB; is a regular real analytic simple arc
except for a cusp at 0. The cusp is pointing into QN Bs. It is a very special one. There is
a holomorphic function T defined on a closed disk B, such that

(i) T has a zero of order two at 0,
(i) T is univalent on the closure H of a half disk H={r € B,; Im7>0},
(iii) T satisfies TN BscT((—¢, €)) and T(H)cQUT, where

(—g,8)={r;—e<r=Rer<e}.

There are at least two applications of the main theorem. We first consider an
application to quadrature domains. Let u be a complex measure on the complex plane
C. A nonempty open set Q in C is called a quadrature domain of u if |u|(C\Q)=0 and if
JIfldpj<e and

ffdﬂ=fff(z)dxdy (z=x+iy)
Q

for every holomorphic and integrable function fin Q. If Q is bounded, then 1/(z—{) is
holomorphic and integrable on Q for every fixed {€C\ Q2. Hence the Cauchy trans-
form Q(8)=[ol/(z—&)dxdy of Q is equal to the Cauchy transform 4(0)=f 1/(z—¢) du(z)
of u on C\ Q. Since Q(z)+xZ is holomorphic in Q, we see that

52) = Q) +nz—i(2)/n

is the Schwarz function of (Q N B) U((32) N B) if B and the support of x are disjoint and if
0€8Q. Applying our main theorem, we obtain a regularity theorem on the boundary of
a quadrature domain. Let Q be a bounded quadrature domain of x such that the support
of u is contained in Q. If we make a new domain [Q] by adding all degenerate boundary
points of Q to Q, then [Q] is also a quadrature domain of x and the boundary of [€2]
consists of a finite number of real analytic simple curves having at most a finite number
of double and cusp points. Moreover, by applying our methods to the Schwarz function
of the boundary of an unbounded domain, we are able to carry out the program
proposed by Shapiro [10] and see that if an unbounded quadrature domain is not dense
in C, then it is obtained as a translation of an inversion of a bounded quadrature
domain.

We next consider an application to free boundary problems. A typical problem is
an obstacle problem and it is reduced to a problem to determine I'(«) of the following
function u: u is a nonnegative function defined in the unit disk B such that
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() T'(w)=(2Qu)) NB contains the origin 0, where Q(u)={z € B; u(z)>0},
(ii) u is of class C' in B,
(iii) Au(z)=1 in Q(u) in the sense of distributions.
What can we say about regularity of I'(u)?
We set

S@) =z-424 ().
dz

Then S is holomorphic in Q(u), because S is continuous in Q(u) and

2
98 (=1-4" ()= 1-Aux) =0
oz Z

879
in Q(u) in the sense of distributions. By (ii), S is also continuous on Q(u«) UT'(x). Since u
is nonnegative in B and u(z)=0 on I'(x),

u . _OJu, \_
g(z)— 3 (x)=0

on I'(u). Thus § is the Schwarz function of Q(«) UT'(x). We apply our main theorem and
see that Q=Q(u) and I'=I'(x) satisfies one of (1) to (2¢) for some B; if 0 is not an
isolated point of I'(«). In this case, T'(#)NB; is the whole arc for some 6 if 0 is a
nonisolated degenerate point and the cusp is pointed more sharply if 0 is a cusp point.

Furthermore, we see that all the first derivatives of u are Lipschitz continuous on B;
and all the second derivatives of u are continuous up to I'(x), on Q(u).

This is a very informative regularity theorem. An accurate description of the free
boundary I'(«) in two dimensions was given by Caffarelli and Riviére [2] and [3]. They
proved that (1) if 0 is not a regular point, then B;\ Q(u) is arranged along a straight line,
more precisely, there is an increasing function @ defined on a half-open interval [0, )
such that 6(0)=0 and

Bs\Q(w) = {E€By; [arg E—a| < 6(Z]) or |arg {—(a+m)| < O(ED},

where a denotes a real number, (2) if 0 is a nonisolated degenerate point, then I'(«) N B;
is a real analytic simple arc and (3) the boundary of each connected component of the
interior of B;\ Q(u) is the union of a finite number of real analytic simple arcs. Their
results are fairly accurate, but there is still a possibility that an infinite number of
connected components of the interior of B\ Q(u) exist and cluster around 0. Our main
theorem excludes the possibility. This is also true even if we replace the constant
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function with value 1 in (iii) by a positive real analytic function ¢ defined in B. The fact
is quite interesting when we compare it with an example of the free boundary for the
obstacle problem with C”-obstacle due to Schaeffer [9]: If we replace the constant
function with value 1 in (iii) by some special positive C*-function ¢ defined in B, then
there is 2 nonnegative function u satisfying (i) to (iii) such that an infinite number of
connected components of the interior of B\ Q(«) actually cluster around 0.

The purpose of this paper is to give a proof of the main theorem. The applications
of the theorem stated above and related results will appear elsewhere.

Here we shall give a brief outline of the proof. Assume that 0 is not an isolated
boundary point of Q, let .S be the Schwarz function of QUT and set F(z)=2z5(z). Then F
is holomorphic in , is continuous on QUT and satisfies F({)=|{*=0 on I'. Take an
appropriate neighborhood of 0 and restrict F, we denote it again by F, to the intersec-
tion V of Q and the neighborhood. We shall show that there are two cases: (1) Fis a
one-to-one conformal mapping of V onto B,\ E, where ¢>0 and E denotes a relatively
closed subset of a half-open interval [0, ) or (2) for appropriately chosen branches,
V'F is a one-to-one conformal mapping of V onto B ~\E, where E denotes a
relatively closed subset of an open interval (=V'e ,V ¢).

The essential part of the proof is to show that the number of connected compo-
nents of E is finite except in the degenerate case (2a). To do so, we apply the following
fundamental fact: The valence function of a holomorphic function is finite and constant
in every connected component of the complement of the cluster set of the holomorphic
function. In the case of (1), we take the inverse function z=W (w) of w=F(z) defined in
B.\E and set Z,(w)=¥,(w) ¥, (w)/w, where ¥,(w)=V,(@). We shall show, by taking
appropriate ¢, that the cluster set of Z; is contained in the union of the unit circle and a
real analytic arc. We apply the above fact to Z, and see that the number of connected
components of E is finite. It is not easy to show that the cluster set of Z; at w=0 is
contained in the unit circle. Since

¥, (w)/w = 2%/(z8()) = 2/S(2),
it is sufficient to show that

lim [S(z)/z]=1. (*)
Z€Q,z—0
In the case of (2), we take the inverse function ¥, of V F, set Z,(w)=%¥,(w) Wz(w)/w2
and apply the above argument.
This paper consists of five sections. The fundamental fact mentioned above and a
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sufficient condition for a holomorphic function to have the square root which is a one-
to-one conformal mapping is given in Section 1. To show (*), we need the Fuchs
theorem and it is discussed in Section 2. We show (*) in Section 3. In Section 4, we
show that the valence function of F is equal to 1 or 2 in B,\[0, ¢) for appropriately
chosen V and . The values 1 and 2 correspond to the cases (1) and (2), respectively.
The final step of the proof of the main theorem is given in Section 5.

The author is grateful to the referee for his suggestions.

§ 1. Cluster sets, valence functions and branch points

Cluster sets, valence functions and branch points can be defined for meromorphic
functions in arbitrary open subsets of Riemann surfaces. Here, however we discuss
them just for holomorphic functions defined in bounded open sets in the complex plane
C for the sake of simplicity.

Definition 1.1. Let Q be a bounded open set in C. For a holomorphic function f in
Q and a point ¢ on the boundary 3Q of Q, we set

C; () = N{f(QNB4(Z));6 >0},
where E for a set E in C denotes the closure of E in C and B,() denotes a disk of radius
J and center . We set
C= U{C,(2); L €3Q)

and call it the cluster set of f.

It is easy to show that C¢({) and Cyare closed and Cris not empty if € is not empty.
For cluster sets, see e.g. Collingwood and Lohwater [4].

Definition 1.2. Let f be a holomorphic function in an open set Q. We denote by
vr(w) the number of solutions z in Q to f(z)=w and call v the valence function of f. The
number of solutions is counted according to their multiplicities and it may be infinite.

In this section we give several lemmas concerning cluster sets, valence functions
and branch points. Proofs of them are not difficult and it seems that some proofs of
them are known. But, for the sake of completeness, we give here all proofs of them.

LeEMMA 1.1. The valence function v; of a holomorphic function f is finite and
constant in each connected component of C\Cy.
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Proof. Assume that f(z)=w, for an infinite number of z; in Q, j=1,2,.... Taking a
subsequence if necessary, we may assume that {z;} is a convergent sequence. If the
limit is an interior point of Q, then fis identically equal to a constant w, in a connected
component D of © containing the limit. Hence wy € C¢(¢) for {€3D, and so wo € Cy. If
the limit is a boundary point &, of Q, then wy€ Cr(§o)=C;. Therefore v(w) is finite in
C\Cr.

The proof will be complete if we show that v, is continuous in C\C;. Let
woEC\Cy and let {w;} be a sequence of points in C\C; converging to wy. If the
inverse image f~'({w;} =, U{w,}) of {w;},U{w,} is empty, then v,(w)=v,(wy)=0 for
every j. If it is not empty, then, by the same argument as above, we see that it is
relatively compact in Q. Surrounding it by a finite number of simple closed curves in €2
and applying the Hurwitz theorem, we see that f(z)—w; and f(z)—w, have the same
number of zeros in the open set surrounded by the simple closed curves for sufficiently
large j. Hence vr(w)=v,(w,) for large j and v¢ is continuous at wy. Q.E.D.

Let N={w € C;vs(w)=0}. Then, by definition, the image f(€2) of Q is contained in
C\\N and the image f(D) of a connected component D of Q is contained in the exterior
C\N of N if f is not constant in D, because f is an open mapping of D if it is not
constant in D. Lemma 1.1, together with this fact, has many applications. For example,
we get the maximum modulus principle for bounded holomorphic functions from the
lemma. We also see that if a bounded holomorphic function defined in a bounded
connected open set has real boundary values, then it is constant.

Let W be a connected component of C\Cy with the nonempty inverse image
f7I(W). We regard (f~'(W), f|f~'(W)) as a finite unlimited covering surface of W,
where f|V for an open subset V of Q denotes the restriction of fto V.

Definition 1.3. Let W be a connected component of C\ Cy with the nonempty
inverse image f~'(W). We call z €f~'(W) a branch point of f if f'(z)=0. The number of
branch points of fin an open subset V of f ~'(W) is counted according to their degrees of
ramification, namely, it is the number of zeros of f’ in V counted according to their
multiplicities.

LEmMA 1.2. Let W be a connected component of C\\Cy with the nonempty inverse
image f~(W) and suppose that ve(w)=v in W. Let V be a connected component of
£ YW). Then

(1) Gy=0W,

(2) the valence function Vpy is constant in W and satisfies ISV”VSV,
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(3) the number of branch points of f in V is not greater than 2(vy,—1).
Consequently, the number of connected components of f (W) is not greater than
v and the number of branch points in f~ (W) is not greater than 2(v—1).

Proof. Let {€V. Then f(VNBs(£))=W. Hence C(5)= W for every L€V, and so
Ciye W. Let w€W. Then, by Lemma 1.1, f~'(w) is a finite set. Hence, for {EJV, we
can find ¢>0 and 6>0 such that f'(B,(w))NBs()=S. This implies that
Bg(w) nmﬁ)=®, and so w is not contained in Cflv(C) for any £ €9V. Therefore w
is not contained in Cy;, and it follows that C;,c W\ W=3aW.

Assume that Cy, is a proper subset of W and let w,€(3W)\ ;. Since Cyyy is
closed, we can choose r>0 so that wanB,(wo)=®. Take w;€ WnBJ(w;). Then
w, and w, are contained in the same connected component of C\Cy,. Hence, by
Lemma 1.1, vflv(w0)=vf|v(w1)21. Thus we=f(z,) for some 7, € V, namely, wo Ef(V)cW.
This is a contradiction. Hence Cy,=3W.

The second assertion (2) follows from (1) and Lemma 1.1.

Finally we shall give a brief proof of (3). We regard (V,f|V) as a finite unlimited
covering surface of W. Since f has at most a countable number of branch points in V,
we can take a regular exhaustion {W;} of W so that there are no branch points on
vnf "(aWj) for each j. For each fixed j, we slit W; along piecewise real analytic arcs
and make a simply connected domain Y such that there are no branch points on
Vnf(3Y). The number of branch points in Vnf (W) is equal to the number of
branch points in X=Vnf~(Y). We shall apply the Riemann-Hurwitz formula to a finite
unlimited covering surface (X, f|X) of Y. The Riemann-Hurwitz formula asserts that
the number of branch points of f|X in X is equal to Viix €y~ €x, where ej for a Riemann
surface R denotes the Euler characteristic of R. The Euler characteristic ¢y is equal to
2(1—ggr)—bg, Where gg denotes the genus of R and by denotes the number of boundary
components of R. Since gy=g,=0and b,=1, e,=2—b, and e,=1. Since the number of
the sheets of the covering is equal to v, and by=1, by<vy. Hence v, ey—ey=
vaX—(Z—bX)sZ(vfIX——l). Thus the number of branch points in VNf 'I(Wj) is not greater
than 2(vle—1)s2(vf|V—1) for any j. This completes the proof of (3). Q.E.D.

Next we shall discuss the case that v,(w)<1 in C\C}.

Lemma 1.3, If

(i) f is not constant in any connected component of Q,
(ii) Cy has no interior points,

(iii) ve(w)=<1 in C\Cy,
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then f(Q)cC\Cy, namely, f is a one-to-one conformal mapping of Q2 onto
{wECN\Cy;vr(w)=1}.

Proof. Assume that w=f(z) € C; for some z in Q. Then there is {€3Q such that

w € C;(£), namely, for every 6>0 and every ¢>0, f(€2 NBs(£)) NB(w)+D. Since fis an
open mapping at zEQ by (i), for small fixed g, we can find a relatively compact
neighborhood U of z such that f(U)=B,w). Take d so that UNBs(£)=<. Then every
value in an open set f(Q N Bs(5) N B(w)=f(R N Bs(£)) Nf(U) is taken by f at least at two
points, one in QNBs() and the other in U. Since C; has no interior points,
AN BL)) N B,(w)\.C; should not be empty. This contradicts (iii). Hence f()=C\Cy.
Q.E.D.

If v/(w)>1 for some w, then f may be quite complicated and it is difficult to
describe f by using conformal mappings. We shall discuss here a special case which will
appear in the proof of the main theorem. To do so, we prepare the following lemma
which is easily verified:

LEMMA 1.4. Let f be a holomorphic function in an open set Q. If

() f(@)+0 in Q,

(i) f,dargf(z)=0 (mod 4x) for every real analytic simple closed curve J in Q,
then V f(z) has a single-valued branch in Q.

Proof. By definition,

VI@ = exp( lo& (@) = exp (> (og] o) +iargf(2) ).
Hence V f(z) is single-valued if f(z)#0 in € and

L f dargf(2)=0 (mod2)
2 J

for every real analytic simple closed curve J in Q. Q.E.D.

In what follows we write B,, for B,,(0).

LemMa 1.5. If f satisfies (i) and (ii) of Lemma 1.4, together with

(i) f is not constant in any connected component of Q,

(ii) C;<[0,m)U3B,,, where [0, m)={w;0<w=Re w<m},

(iii) v(w)=2 in B,,\[0, m) and v;(w)=0 in C\\ B,

(iv) f has no branch points in f (B, \[0, m)), namely, f'(2)%0 in f~'(B,\I[0,m)),
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then

(1) Q is connected and a single-valued function V f is one-to-one. The image
VF(Q) of Q satisfies B, \(—Vm,Vm)gV f(Q) EB,, where (~Vm,Vm)=
{w;—\ﬁﬁ<w=Re w<ﬁ},
or

(2) Q consists of two simply connected components and V f is a one-to-one
conformal mapping of Q onto Bﬁ\(—\/;z-, V'm) for appropriately chosen branches.

Remark. In (iv), we have assumed that f'(z)#0 only in f~'(B,,\\[0, m)). From the
conclusion of the lemma, we see that f'(z)==0 in the whole open set Q.

Proof. By applying Lemma 1.4, we first define a single-valued holomorphic
function Vf in Q. By (i), Cyra(= Vm,Vm)uéB, _ and, by (iii), vy W)+
vyr(~w)=2in B,-\(-Vm,Vm) and v, (w)=0 in C\B,.

If Vs {w)=1 in one connected component of B \(— Vm,Vm), then Vs (w)=1
in the other connected component of B,—\(-Vm,Vm), and so, by Lemma 1.1,
vv—(w)<1 in C\CV— and {wGC\CW, vv—(w) 1}= BV—\C\/— By Lemma 1.3, V f
is a one-to-one conforrnal mapping of Q onto B\/—\C‘/— If VFIQ)= =B, ., then
V f(z) =0 for some z in Q. This contradicts (i) of Lemma 1. 4 Hence (1) or (2) holds.

Assume next that iy (w)=2 in one connected component H of
B\ (- Vm,Vm). Then v\/—(w) =0 in the other connected component of
B —\(— Vm,Vm), and so vv—(w) =0 in C\(HU(-Vm, \/_)UaB\/—) Since the ex-
terior of C\(HU(-V'm, \/_)Uan—) is equal to H, by the fact stated after Lemma
1.1, VF(Q)cH, and so (Vf ) '(H)=Q.

Let V be a connected component of (V f ) '(H). By (iv), we can regard
(V,Vf|V) as an unramified covering surface of a simply connected open set H.
Hence, by the monodromy theorem, V f |V is a homeomorphism, namely, Vf|Visa
one-to-one conformal mapping of V onto H, see e.g. Section 3 of Chapter I of Ahlfors
and Sario [1]. Thus Q consists of two simply connected components. We redefine the
branch of V' f in one of the two connected components of Q and see that (2) holds.

Q.E.D.

§ 2. The Fuchs theorem
In his paper [6], Fuchs proved the following theorem:

THEOREM. Let D be an unbounded connected open set in the complex plane C
such that the boundary 3D of D in C is not empty and let f be a holomorphic function in
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D satisfying

limsup | f(z)| <1
z€D,z>¢
for every ¢ on 3D. Then one of the following must occur:
(D) |[f@)|<1lin D,
(2) f has a pole at the point at infinity,
(3) (log M(r))/logr—+ (r—+x), where M(r)=sup{| f(2)|;2z€D and |z|=r}.

In this section, we shall show a local version of the theorem and call it the Fuchs
theorem.

TueoREM 2.1 (The Fuchs theorem). Let Q be an open set in C and let §y be a
nonisolated boundary point of Q. Let f be a holomorphic function in Q. If there is a
disk Bs(Ly) with radius 6 and center &y such that

() limsup,eq , ¢ |f(2)|<1 for every & on (3R)NBy(E)\{&o}

(i) | f)|<alz—&o|™ in QN Bs(&) for some positive constants a and B,
then

limsup |f(g)|=1.
Z€Q, 7,
First we note that Theorem 2.1 is equivalént to the following Theorem 2.1’ from
which the theorem due to Fuchs follows:

THEOREM 2.1, Let Q be an unbounded open set in C such that the boundary 9Q is
also unbounded and set Bi=B(0). If a holomorphic function f in Q satisfies

() limsup,cq ,_¢|f(2)|<1 for every { on BQ)\B,,

(i) | f2)|<alzff in Q\ B, for some positive constants a and B,
then

limsup |f(z)| < 1.
2€Q,z>®
Next we shall give a brief proof of Theorem 2.1’ for the sake of completeness. Our
proof is similar to the proof due to Fuchs. We note the difference between them: Our
condition (i) of Theorem 2.1’ is not for all boundary points but just for boundary points
outside of the unit disk.

Proof of Theorem 2.1'. If fis constant in a connected component D of Q, then, by
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(i), the modulus of the constant is not greater than 1 or 8DcB,. If 8DcB, and D is
unbounded, then C\ B;cDcQ. This contradicts that D is unbounded. Hence D is
bounded if 8DcB;, and so D<B,. Thus, to prove the theorem, we may assume that f'is
not constant in any connected component of Q.

Assume that limsup,¢q ,_,.. | f(2)]>1. Since there are at most a countable number
of zeros of f' in Q, we can choose A so that

limsup | f(7)|>A>1 2.1
ZGQ,Z—-)OO

and f'(z)+0 on the level curves {z€ Q;|f(z)]=A}. We consider the level curves outside

of the unit disk and set

A={z€Q\B;|f@|=4)
and |
Q,= {zEQ\ B;|f(2)|>4}.
The set Qq is nonempty, unbounded and open. From (i), it follows that
(0€20)\(6B1)=A.

Each connected component of A is a real analytic simple arc or a real analytic
simple closed curve. We divide A into two parts A, and A.; A, denotes the union of
arcs in A and A, denotes the union of closed curves in A. From (i), it follows that
{(3Q)\B;} n A=@. Hence the endpoints of arcs in A, are all contained in (3B;)NQ and,
for every r>1, there are at most a finite number of closed curves entirely contained in
AN B,, where B,=B,(0).

We consider the following three cases:

Case 1, There is an unbounded arc in A,.

Case 2. Each arc in A, is bounded, but A, is unbounded.

Case 3. A, is bounded.

Case 1. Take an unbounded arc in A, and take a fixed point py on it. The point p,
divides the arc into two portions. Let J be an unbounded portion of the arc and, for
R>|po|=ry, let Jg be the portion of J between p, and the first point of intersection of J
with 8Bg. Since JN3B,=J, it follows that JxN3B,=2.

Let w(z, E, D) be the harmonic measure of E with respect to a connected open set
D, where E denotes a Borel subset of 3D. The Beurling and Nevanlinna solution of the
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generalized Carleman-Milloux problem asserts that
(z, 3By, By\Jg) < 0(—|2|, 3By, By \Ir, R)) 2.2)
and
w(z, 3B, B\ B,\Jg) < w(—|z|, 3B,, C\ B,\Ir;, +=)) (2.3)

for z in BR\E\JR, where [ry, R)={2€C;ry<z=Rez<R}, see e.g. Theorem 1 in
Section 5 of Chapter IV of Nevanlinna {7].

Let M(r)=sup{| f(2)|;z€EQNSB,} for r with QNIB,+. We have assumed that f'is
not constant in any connected component of Q. Hence M(r) is not equal to zero if it is
defined. We first assume that QN3B,+0. Set

h(z) = log| f(z)| —(log M(R)) w(z, 3By, Bx\Jg)—(log* M(1)) w(z, 3B,, Bx\ B,\J)—log 4,
where log*t for >0 denotes max{logt,0}. The function A is harmonic in BxN <, and

limsup h(z)<0
ZEBRNQ, z¢

for every boundary point ¢ of BN <Q,, because M(R)=A>1. Hence h(z2)<0 in ByNQ,
and, from (2.2) and (2.3), it follows that

log | f(z)| < (log M(R)) w(—|z]|, dBg, Bx \[r, R))

+(log* M(1)) w(~|z|, 3B,,C\\ B, \[ry, +=))+log 1

in BR n Qo.
Since w(—|z|, 3Bz, Bx\[ry, R)N<O(R™ ') for a fixed z and log M(R)<O(logR) by
(i), letting R tend to +, we obtain

log | f(z)| < (log* M(1)) w(~|z|, 3B,, C\. B, \[r,, +®))+log 4

in Q. The point at infinity is a regular boundary point of C\ B;\\[rg, +) with respect
to the Dirichlet problem. Therefore

limsup log|f(2)| <logi
z€

Q, 2>®

and this contradicts (2.1).
We next consider the case that QnaB,=@. In this case we just replace log* M(1)
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with zero in the definition of 4, namely, we set
h(z) =log | f(z)|—(log M(R)) w(z, 3Bk, Bx\Jg)—log A.
We obtain a contradiction by the same argument as above.

Case 2. Let ry>1. In this case, for every R>r,, we can choose a bounded arc in A,
such that it intersects with 3Bp. Since the endpoint of the arc are contained in Q0 3By,
we can take a point p with |p|=r; on the arc and a portion Jx of the arc between p and
the first point of intersection of the arc with 3Bz. We choose such a Ji for each R>r,,
apply the same argument as in Case 1 and obtain again a contradiction.

Case 3. Take g so that A,cB, and fix it. Set Qo(r)=Qoﬂ(B,\§;) for r>g. The
boundary 8Q(r) of Qy(r) consists of a finite number of arcs on Q,N (8B, U3B,) and level
arcs or curves each of which is a portion of a closed curve or the whole closed curve
contained in A,.

We apply the argument principle to fin each connected component of Qy(r) and
apply the same argument given by Fuchs [6]. Then we obtain

R
J 0 4r<(B+y)log R+(log* aylogo),
r
Q

where

y=—|  dargf
27 Q,n3B,

and »(r) denotes the number of closed level curves in A, entirely contained in B,\ﬁg.
Since »(r) is a nondecreasing function of r, this inequality is valid for arbifrary R>p
only. if »(r)<B+y, namely, the number of components in A, Which are entirely con-
tained in C\ B, is finite. Hence we can find R>p such that AccBg, and so
A=A,UA.CBg. |

Since (3Q¢)\(8B))=AcBg, C\ Br=Q,c=Q. This contradicts the ‘assumption that
Q2 is unbounded. Q.E.D.

§3. Boundary behavior of a Schwarz function

In this section, we shall first give several remarks on a Schwarz function and next we
shall show its specific boundary behavior.

18—918286 Acta Mathematica 166. Imprimé le 17 avril 1991
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We have defined the Schwarz function in the introduction. We again define it here
and discuss it in detail.

Definition 3.1. Let Q be an open subset of a disk B,({) of radius r and center o
such that ,€9Q. Set

I'=(8Q)nB,(%).

A function S defined on QUT is called a Schwarz function of QUT if

(i) S is holomorphic in Q,

(ii) S is continuous on QUT,

(iii) S(&)=E€ on I, where £ denotes the complex conjugate of .

If it is necessary to indicate the center &, or the disk B,(§), we call S the Schwarz
function of QUT at , or in B,({,), respectively.

First we note that if QUT has a Schwarz function S in B,({), then there are no
connected components D of Q such that 3D<B /(). Indeed, if D is such a domain, then
8DcT, and so S(&)=C¢ on 8D. Since two harmonic functions S(z) and Z have the same
boundary values on 8D, S(z)=7 in D. This contradicts that 7 is not holomorphic in D. In
particular, Qn3B;(y)+ for every 0 with 0<d<r if QUT has a Schwarz function in
B (&)

Next we note that if I has an accumulation point in B,({o), in particular if the center
&0 is an accumulation point of T, and if there exists a Schwarz function of QUT in B(&o),
then it is determined uniquely. If T is of positive capacity, then the theorem of
Riesz~Lusin—Privaloff type guarantees the uniqueness, see €.g. Theorem in 7A of Sario
and Nakai [8]. If I' is of zero capacity, then a Schwarz function which is holomorphic in
Q and continuous on QUI'=B,({,) is holomorphic in the disk B{({,) and is determined
uniquely by values on I, because I has an accumulation point in B,({).

To discuss the boundary behavior of a Schwarz function, we may assume that r=1
and &,=0 by the following lemma:

LemMma 3.1. (1) Let S be the Schwarz function of QUT at &y. Then
5(2) =S(z+&)— &,

is the Schwarz function of (Q—EL)U(T—&y) at 0, where E~§, for a set E denotes a
parallel translation {z—{y;z€E} of E.

(2) Let S be the Schwarz function of QUTI in B,=B/0). Then, for a nonzero
complex constant k,
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S.(2) = kS(z/k)

is the Schwarz function of (kQ)U(KT) in kB,=B,k|,, where KE for a set E denotes a set
{kz;z€E} similar to E.

Proof. (1) If z€(QUT)—&, then z+&EQUT, and so S, is holomorphic in Q—&,
and continuous on (Q—)U(T—E). For ET~Ey, S(O=SCE+E)—Eo=C+)—-T=¢,
and so S, is the Schwarz function of (Q—Ey) U —Ep).

(2) S, is holomorphic in kQ, is continuous on (kQ)U(KT) and S,(&)=kS(g/k)=
k(EJk)=€ on kL. Thus S, is the Schwarz function of (k&)U (kI). Q.E.D.

Remark. More generally, let T be a one-to-one conformal mapping of B,(Z,) into C
and let T(w)=T(w). Then S;=ToSoT ! is the Schwarz function of

(T(R)NB(T(C M) V(T NB(T(E,))
in B4(T(g,)) for some & if S is the Schwarz function of QUT in B(&).
We shall show

ProrosITION 3.2. Let S be the Schwarz function of QUT in B;=B(0) and assume

that 0 is an accumulation point of T', in other words, 0 is a nonisolated boundary point
of Q. Then

lim |S(z)/z]=1. (3.1)
Z€Q,z-0

Remark. If Q=B;\ {0}, then I'={0} and the Schwarz function § of QUT is just a

holomorphic function § in B; satisfying S(0)=0. Hence, in the proposition, it is
necessary to assume that 0 is a nonisolated boundary point of Q.

The proposition follows from the following key lemma and the Fuchs theorem:

LemMMA 3.3. Let S and Q be as in Proposition 3.2. Then there is a disk Bs=B;(0)
such that

|S@)|>zl/5 in QNBs.

Proof of Proposition 3.2. First we consider S(z)/z. The function is holomorphic in
Q and satisfies

lim [S(2)/z] = |§/5]=1
€Q, 28

14



278 M. SAKAI

for every & on I'\\.{0}=(8Q) N B,\ {0}. Since S is bounded in QN B; for § with 0<o<l1,
IS@2)/z] < alz|' in QNB,
for some a>0. Applying the Fuchs theorem, Theorem 2.1, we obtain

lim sup |S(2)/z| < 1. (3.2)
ZEQ, 720

Next we consider z/S(z). If Lemma 3.3 is true, it follows that z/5(z) is holomorphic
and satisfies

|z/S(@)) <5 in QNnB;.
We again apply the Fuchs theorem and obtain

limsup |z/S(z)| < 1. (3.3)
Z€Q, 20

From (3.2) and (3.3), we obtain

1 < liminf |S(z)/z] < limsup |S(z)/z| <1
2€EQ,z—0 2€Q, 20

and (3.1) holds. Q.E.D.

Proof of Lemma 3.3. Let ¢ be a complex number with |c|<l and let
F.(2)=2(S(z)—cz). We shall first show that F is not constant in any connected compo-
nent of Q. Assume that F, is identically equal to a constant k in a connected component
D of Q. Then [¢f—cE2=|¢f(1—ce™)=k on (8D)N B,, where ¢=|Ele”. If k=0, then {=0
and this contradicts that 0 is not an isolated point of Q. If k=+0, then the line
{w;argw=argk} and the circle {w;|w—1|=|c|} cross at most in two points. Hence e
has at most two solutions to the above equation, and so ¢=|{|e” has at most four
solutions if c+0. This is again a contradiction. Hence ¢=0 and {|*=k. This means that
(8D)N B, is contained in a circle with center 0. If (8D)Nn B, is not the whole circle, then
D=B,\((8D)NB;) and 0 is not the boundary point of Q, a contradiction. Hence
(8D)N B, is the whole circle and there are two possibilities: D is a disk surrounded by
the circle or D is an annulus surrounded by the circle and the unit circle. In the latter
case, there is another connected component of Q inside of the circle, because 0 is a
boundary point of Q. Hence, in both cases, there is a connected component of Q whose
closure is entirely contained in B,. This is a contradiction as mentioned after Definition
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3.1. Thus we have proved that F. is not constant in any connected component of Q if
e|<1.

Now we consider the case ¢=0. By the above argument, Fy(z)=2z5(z) is not
constant in any connected component of 2. We choose r so that 0<r<1 and Fy(z)#0 on
C=QnaB,, and fix it. We note that Fy(z) tends to ¢E=|¢*=r* as zEC tends to
{ETNAB,. In particular, inf{|Fy(z)|;z€ C}>0 and F, is continuous on the closure C of
C. The set C consists of at most a countable number of open arcs C; on 3B, if C+0B,.

We shall next discuss how to choose a small positive number &. First choose ¢ so
that

0<e<1/5. 3.4

Since F(z)=2z(S(z)~cz) converges uniformly to Fy(z) on C as c¢ tends to 0, we can
choose ¢ so that

m = inf{|F (2)|;2€ C and |c| <&} >0. (3.5)

By virtue of (3.5), the integral fcjd arg F,. can be defined for each open arc C; of C by

0]‘2_”2 .
f dargF, = lim f darg F (re®),
c,

: N1, 122>0—0 8411

where C;={re"’;0,,<6<6,}. A detailed discussion will show that fc\dargF | is finite,
but here we do not use the fact. We note that fcjdarg F . is well-defined and it is finite.
Since F(,(§)=r2 for teCN\CcI'n 3B,, for every small >0 we can find a compact subset
K of C such that F(C\K)cB,(r). Let n=r%/5. Since |F (2)—F(2)|=|cz}|<er’<r’/5 by
(3.4), F(C\K)<B, rz(rz)c{we C;Re w>0} for every ¢ with |c|<¢. Hence there exist
only a finite number of C; such that fcj darg F,=x for some ¢ with |c|se. We set

L= z,f dargF,
G

where L’ denotes the sum of terms satisfying [, darg F,=n. We again note that F,
_ g

converges uniformly to F on C as ¢ tends to 0 and see that fcj darg F, converges to

fcjd arg F, for every fixed j. Thus we can choose ¢ so that

t=sup{i,; |c| s e} <+, (3.6

Now we choose ¢ so that ¢ satisfies (3.4), (3.5) and (3.6), and fix it.
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Next take A so that 0<A<m, where m is defined by (3.5), and set
A; = {zZ€EQNB,; |[F(2)| = i}.

Since F.z) converges uniformly to 0 on {c€C;|c[<e¢} as z tends to 0, we can find
0=0(4)>0 such that

B,N{zEQNB,; |[F,()| =4} =0

for every ¢ with |c|=e.

Now take a regular exhaustion {Q,} of Q. The boundary 9Q, of Q, consists of a
finite number of real analytic simple closed curves. Since Fo(&)=|¢ on T, we can find a
neighborhood U(C) of LETN E;\{O} such that U(C)CB(IB)ICl(t:) and Fy(QnUE))<=
B,.(I2P"). For z€QnU(),

[F (2)—Fy(2)| = ez’ < e(1+ 1/3)Y¢) < 2¢|E.

Hence F.(QnU(&)cB lz(|g°,|2) for LETN B,\{0}. Set

3¢|¢]
V= U{Bse,z(’z)? 0<t<r}

and
U= U{U©);£€TN B, \{0}}.
Then F(QnU)cV. Now take Q, so that (Q\Q,)n(B, \B,)cU. Let
Q,,.=1{z€Q,NB,;IF(2)|>4}.

We shall apply the argument principle to F. in each connected component of
Q

n, A, c*

f dargF_=0.
aQn,,{,c

We note that Q, , .=B,\B,,F, is holomorphic on Q, ; , and |[F(2)|=4 on 32, ; ..
We may assume that 3Q, ; .
simple closed curves. Each component of 9Q, , . consists of portions of C,
A, . and 8Q,. Since A<m and |F(z)|=m on C by (3.5), CNA,; .=2. We divide 39, , .
into two parts. The first is the union of simple closed curves contained entirely in C,
A, .or 3Q, and the second is the union of simple closed curves which consist of
portions of both CUA,  and 39,.

consists of a finite number of piecewise real analytic
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If a curve J of 9Q,, . is entirely contained in C, then J=C=08B, and
fydargF ={,; dargF . If a curve J is entirely contained in A, ., then [ dargF, is
equal to a positive integer muitiple of —2z. If a curve J is entirely contained in 9Q,,
then it is entirely contained in QN U, because (392,) n(F,\BQ)c: U. Hence

F.()cF.(QnU)c Vc{wEC;Rew>0},

and so f,darg F.=0.

Now we discuss the nontrivial and final case: a curve J of 8Q, ; . consists of
portions of both CUA, _ and 8Q,. We express J as the union of an even number of arcs
Ji j=1,2,...,2l, such that J;c3Q, for odd j and J;cC or JicA, , for even j. Since
F(J)cVc{w€C;Rew>0} for odd j, we can find, for every j, an integer a; such that

Jj
E darg F —2na,

<Z,
k=147, 2

Hence we can express [, darg F. as 2ma,=2a%} (a;—a,_,), where ay=0. If a;>a;_,, then

Jis even and J;=C. Further it follows that |, darg F =z and a;—a;_,<(1/) §, darg F  in
J J

this case. Hence

JdargFCSZn Z (aj—aj_1)<22'jdarch,
J Jj

a>aj

where L’ denotes the sum of terms satisfying [, darg F,=x. We note that each J; is a
J
connected component of Q,NC.
Summing up the estimations of all cases, we obtain

0==f darchS—ZJw,,’LﬁZEIJ' dargF_,
agn.ﬁ.,c Cn.j

where v, , . denotes the number of components of 3Q, ; . which are entirely contained
in A; ., C, ; denotes connected components of Q,NC and L’ denotes the sum of terms
satisfying [ darg F.=n. Hence

i

vn’lhcs-—:;Z,J’ dargF .
Cnj

By letting n tend to +, we see that

n—w

. 1 ! te
Vo1 o< lim vn,us—z dargF,=—.
n c T
J
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The value ¢./7 does not depend on the choice of n and 4. If F_ has a zero in QN B,, then,
for sufficiently large n and sufficiently small 4, there corresponds a curve J of 3R, ; .
which is entirely contained in A; .. The above estimation implies that the number of
zeros of F, in QN B, is finite.

Thus we can find a small disk Ba, such that F.(z)#0 in Q nBé;’ namely, S$(z)#cz in
QnB; . If 6; does not depend on ¢ when ¢ varies on {|c|<e}, then |S(z)|>¢|z|. But 9,
may depend on ¢ and we need further consideration to prove the lemma.

By (3.6), we see that V2 cStfm. We set

v=sup{v, ;. n€EN, 0<A<m, [c[<¢}.

We take ng, 4o and g so that v, ; . =v. We shall show that there is an ¢,>0 such that
Vy.ipc =V for every c on B, (cy)n B,.

Let 2, . be the union of v, ; .components of 9Q, , .
in A; .. We fix ¢o and vary 4 near 4. Then Z, . moves near %, . More precisely, let J;
be a curve of = oo If A<Aq (resp. A>4o) and if 4 is sufficiently close to 4o, then there is a
curve J; of X, o which is contained inside of (resp. outside of) J. o and is close to J R
Since the number of components of X, _ is finite, we can take such a 4 valid for all
components of 2, .

We take such A; and 2, sufficiently close to 4, so that A;<4y<4, and fix them. Next
take #>0 so small that y<l1,—1¢ and #<2Ae—4,, and fix it. Since F.(z) is a continuous
function of ¢, we can find £,>0 such that

which are entirely contained

|Fc(z)| 2A’Z—n > 1’0 on le,co
and

FsA+n<i, onZ;
for every c in B, (cy). Let A be a doubly connected domain surrounded by J; and J,
which lie near a curve J 3 Of Z;, ¢, and are contained in ; and X, . respectively.
Then, by the above inequality, there is a curve J which is contained in A and is a
component of %, _for every c in B, (c,). Thus we have proved that v, , =v for every ¢

in B, (c). By the definition of v, v, ; .=v for every c on B, (c))N B..
Now take &,>0 and ¢, so that B, (c,)=B, (c,) NB,. By the definition of g,=0(4,),

B, N{z€EQNB,; [F.(2)| =4} =

for every c in B, (c,). Since v, ; .=v for every n=ng and i<, F(2)+0 in QnB, for
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every ¢ in Bsz(cl), namely, S(z)#cz in Q nto for every c in Bgz(cl). This implies that
S()—c;z*#(c—cPz inQNB,
for every ¢ with |c—c|<ée,. Hence
IS@)—ci2|Z&)lz] inQNB,.

We now apply the Fuchs theorem to z/(S(z)—c,z). Since

z =& 1< 1
2€Q,2¢ | S(2)—¢c,2Z ¢—c, & 1-¢
for every £ on (3Q) NB,\ {0} and
z_ |1 .
——I<— inQNB,,
S@—cz| & o
by the Fuchs theorem, we obtain
lim sup z < 1 .
2€Q,2-0 |S(2)—c,z|  1-¢
Hence there exists a positive number 6 such that
Z_ <2 inanB
S(@2)—c,z 1-¢ é

Since
((1-8)/2)|z| < |S@)—~c,z| <|S(2)| +¢lz],
by using (3.4), we obtain

1 3 lz] .
15@)| = (7 - 78) J2] > inQnB, Q.E.D.
§4. Estimation of a valence function

Let Q be an open subset of the unit disk B, such that 0 is a nonisolated boundary point
of Q and let T=(8Q) n B,. In this section we always assume that 0 is a nonisolated point
of I'. Assume that there is a Schwarz function S of QUT in B, and let F(z)=2z5(z), which

19918286 Acta Marhematica 166. Imprimé le 17 avril 1991
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was denoted by Fy(z) in the proof of Lemma 3.3. Let o be a positive number such that
F(z)#0 on Qﬂﬁzand set m=inf{|F(z)|;z€ QNn3B,}>0. The existence of such a g is
guaranteed by Lemma 3.3.

We shall discuss the cluster set and the valence function of FIQnB,. Since
[F@)|=m on QndB, and F(z)=zz=[z’=0 on T, the cluster set Cpqonp of FIQNB, is
contained in {w € C; |w|=m} U[0, m), where [0, m)={w;0<w=Re w<m}. Since F is not
constant in any connected component of Q and lim,¢q , o F(2)=0, vggq, Bg(w)?l for
some w which is close to 0 and is contained in B, \[0,m). By Lemma 1.1, vgq, B, is
equal to a constant, say v, in B, \Crgq, B, Therefore v=vgq, Bg(w)?l in B,,\[0, m). We
shall show

ProrositioN 4.1. It follows that v=1 or 2.

Proof. Let {Q,} be a regular exhaustion of Q and let w€B,\[0,m). Since
VEgn Bg(w)=v<+oo, there are v w-points of F in Q,N B, for sufficiently large n. By the
argument principle, we obtain

1

V="Ypons (w)=——f darg(F(z2)—w). 4.1
¢ 2 3(@,nB,)

We note that (322,)N(8B,) consists of a finite number of points. We may assume
that (Q,NB,) is expressed as the union of Q,N3B, and (3Q,)NB,: 3(Q,NB,)=
Q,n8B,+(®Q,)NB,. As we have noticed in the proof of Lemma 3.3,
fgnaBgd arg(F(z)—w) is well-defined and finite, because inf{|F(z)|;z€ 2N dB,}=m>|w|
and F(z)=¢">0 on (3Q) N(3B,). Since F is continuous on QUT and F(z)=|z>=0 on T,
we see that

[ darg(F(z)—w)=0 4.2)
(@\Q,)n3B,~-(9Q)NnE,

for large n. Hence, by dividing (4.2) by 27 and adding it to (4.1), we obtain

v=——j darg(F(2)—w).
27 Janas,
The equation holds for every w in B,,\[0, m). By letting w tend to 0, we obtain

y=—L darg F(2). 4.3)
27 QnaB,
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The equation (4.3) is valid for every smaller g, because F(z)+0 in QN B, and the right-
hand side of (4.3) is continuous with respect to o.
Let G(z)=5(2)/z. Then F(z2)=2*G(z), and so arg F(z)=2arg z+arg G(z). We set

Al = darg G(z)

QnaB,

for r with 0<r<g. Then

Alr)= 2m}—2f dargz.
QnaB,

To show that v<2, we shall estimate the value of A(r).
Take ¢ with 0<e<1/2. By Proposition 3.2, we can find 6 with 0<d<p such that

1-e<|G(z)|<1+¢ in QNB;. (4.4

Since (Sarg G(z))/(as)=(é log |G(2)])/(r) along QN 3B,, we obtain

A= f Slog|Gla)| rde,
Qnes, or

where z=re”. Dividing by r and integrating the equality from 7 to 8, we obtain

é
J’ AW 4 _ f f 310g|GQ 4 4.
n Qn(B,\E,)

r

To apply the Fubini theorem, we shall show that (3log|G(z)|)/(3r) is integrable on
QN (Bs\\B,) for every 5 with 0<y<d. We note that |(81log|G(2)))/(@n)|<|(log G(2))'|=
|G'|/|G| and G'(2)=(F/z%' =F'(z)/z*—2F(2)/Z’. Since |F|=|z[|G|<(1+¢)|z}* in QNB;, we
may assume that F(QnB;)cB,. Hence fs.m,élF'|2 dxdy<v-areaB,<+o. Thus, by
using the Schwarz inequality, we see that F' is integrable on QnB;. Therefore
(810g|G(2)))/(3r) is integrable on QN (Bs\ B,).

We apply the Fubini theorem and make first the integration with respect to r. For
fixed 6, the set QN (Bs\ B,)N {z;argz=0} consists of at most a countable number of
segments. At the endpoints of the segments, log |G(z)| has the value 0 except two points
ne and de” if they are contained in Q. By (4.4),

—2e<log(l—¢)=<log|G(z)|<log(l+€)<2¢ in QNB,,
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because we have chosen ¢ so that 0<e<1/2. Hence we obtain

é
f Olog|G@)| dr| <4e,
or
n
and so
* A0
f 2 dr| <8ne 4.5)
n r
for every small #.
We note that
A(r)=2mv-2 f dargz=2nv—4n 4.6)
QnaB,

and assume that v=2. Then A(r)=0 by (4.6), and so A(r)<2x for small r by (4.5). Hence
v<2 by (4.6). Q.E.D.

Now we define an index of QUT at 0.

Definition 4.1. Let Q be an open subset of a disk B, such that 0 is a nonisolated
boundary point of Q and let T'=(8Q) N B,. If there is the Schwarz function of QUT in B,,
we call v in Proposition 4.1 the index of QUT at 0. It is equal to 1 or 2. The index at &,
for an open subset Q of a disk B,(&,) and I'=(3Q) nB() is defined by using a parallel
translation of the Schwarz function if , is a nonisolated boundary point of L.

CoROLLARY 4.2. It follows that

j darg F(z) =2avn(J, 0)
J

for every real analytic closed curve J in QN B,, where v denotes the index of QUT at 0
and n(J, 0) denotes the winding number of J with respect to 0.

Proof. We may assume that J is a simple closed curve. Since 0 is not contained in
QnB,, there are two cases: 0 is contained inside or outside of J.

Assume that 0 is contained in the inside D of J. For w€ B, \[0,m), there are
exactly v w-points of F in QN B, as we have seen at the beginning of this section. These
v w-points of F are contained in D for w € B,,\[0, m) sufficiently close to 0. Let {Q,}
be a regular exhaustion of Q. Then Q, contains these v w-points of F and J for large n.
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We apply the argument principle to F—w in ©,nD and obtain

1 darg(F(2)—w)=v.

2n (€, nD)
We divide 3(Q2,n D) into two parts: 3(2,ND)=(3Q,)nD+J.
Since F is continuous on QUT and F(2)=|z’=0 on T, [ sq )npd arg(F(z)—w)="0 for
large n. Hence we obtain

J darg(F(2)—w) = 2nv.
J

Finally, by letting w tend to 0, we obtain

f darg F(z) =2av.
J

If 0 is contained outside of J, then » w-points of F in Q@ B, are contained outside of
J for w€ B, \\[0, m) sufficiently close to 0, and so there are no w-points of F contained
in D. Hence

1

— darg(F(z)—w) =0
27 Ja@,np)

for Q, with JcQ,. By the same argument as above, we see that § ,darg F(z)=0. Q.E.D.

§5. Proof of the main theorem

First we prepare the following proposition:

PrOPOSITION 5.1. Let Q be an open subset of the unit disk B, such that 0 is a
nonisolated boundary point of Q and let T=(8Q)NB,. Then
(1) there exists a Schwarz function of (QnB)U(T'NB,) in B, for some r>0 with
index 1 at 0 if and only if there exists a function ®, defined on (QUT)NB; for some
0>0 such that
(i) @, is holomorphic and univalent in QnB;,
(ii) @, is continuous on (QUI)INB;,
(iii) @,(6)=|¢f on TNB,,
and
(2) there exists a Schwarz function of (QNB)YU('NB,) in B, for some r>0 with
index? at 0 if and only if there exists a function ®, defined on (QUI) N B, for some >0



288 M. SAKAI

satisfying (i) of (1) and
@i') <I>§ is continnous on (QUI)NB;,
(iii") D)=L on TN B,
(iv) D,(QNB;)U(—¢, €) for >0 contains a neighborhood of w=0.

Proof. Assume that S is the Schwarz function of (QnB,)U(I'NB,) in B, with index 1
at 0. Take B, and m as mentioned before Proposition 4.1. Let V=F (B, )nQnNB,,
where F(2)=z5(z). Then Cm,c[O, m)U3B,, and vm,(w)sl in C\Cmv- Hence, by Lem-
ma 1.3, ®,(z)=(F|V)(z) is holomorphic and univalent in V, and continuous on V. Since
F is continuous at 0, there is a disk Bs such that QN B;cV. By the definition of the
Schwarz function, ®({)=F()=|¢[* on T'nB,. Thus @, satisfies (i) to (iii).

Assume next that the index is equal to 2. We use the same notation as above. Then
F|V is holomorphic in V, is continuous on V and does not vanish in V. From Corollary
4.2, it follows that F satisfies the condition (ii) of Lemma 1.4. Since the number of zeros
of F'in F _I(Bm\CF]V) NV is at most two by Lemma 1.2, we can take smaller ¢ and m
so that F'(z)+0 in F~Y(B,,\\[0, m))n V. Now f=F] |V satisfies (i) to (iv) of Lemma 1.5.
Hence, by Lemma 1.5, we can take appropriate branches of Vfz) so that
d>2(z)=\/f(_z) is holomorphic and univalent in V. On the boundary of V, we take
arbitrary branches of V'F(z) and set ®,(z)=V F(z). It also follows from Lemma 1.5
that ®,(V)U(—=Vm,Vm)=B, . Since @3z)=F(z)onV, ®} is continuous on
(QUI)NB; and satisfies ®3(¢)=|Z[’ on ['NB,. Thus @, satisfies (i), (i), (iii’) and (iv).

Conversely, let ®; be a function defined on (QUI)NB; satisfying (i) to (iii). Then
the function S defined by S(z)=®,(z)/z for z€E(QUT)NBs\ {0} and S(z)=0 for z=0 is
holomorphic in QnB; and continuous on (QUID)NB;\{0}. On I'nB;\{0},
S(©)=|¢/*/t=E. Hence, § is the Schwarz function of (QNBs)U(T'NB;) in B; if it satisfies

lim |S(z)|=0. 6.1
2€Q,2—0

Take n with 0<ny<d and we shall apply the Fuchs theorem to § in QnB,. If
£ErnB,\{0}, then

limsup |S(2)| = || < 7.

Z€Q,2¢
Since @, is bounded in a neighborhood of 0, |S(z)|<a/|z| for some a in Q2N B,. Hence, by
the Fuchs theorem,

lim sup |S(2)| = n. (5.2)

2€Q,z-0
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The inequality (5.2) holds for every 5 with 0<#7<d, and so (5.1) holds. Thus S is the
Schwarz function of (QnBs)uT NB;) in B;. Since F(z)=2z5(z2)=®(z) and P, is univa-
lent, the index of (Q N B;s)U(I'NBs) at 0 is equal to 1. If &, satisfies (i), (ii"), (iii") and (iv),
then, by using the same argument as above, we see that the function S defined by
S(2)=(Dx(2))*/z for zE(QUT) NBs\ {0} and S(z)=0 for z=0 is the Schwarz function of
(QnBs) U NBs) in B with index 2 at 0. Q.E.D.

Now we shall show the main theorem.

THEOREM 5.2. Let Q be an open subset of the unit disk B, such that 0 is a
nonisolated boundary point of Q and let T=(3Q) N B,. If there exists a Schwarz function
of QUT in By, then, for some small 6>0, one of the following must occur; (1) and (2)
correspond to the index 1 and 2 of QUT at 0, respectively:

(1) QNnB; is simply connected and T'NBy is a regular real analytic simple arc
passing through 0.

(2a) I'NB; determines uniquely a regular real analytic simple arc passing through
0 and T'NB; is an infinite proper subset of the arc accumulating at 0 or the whole arc.
QnNB; is equal to Bs\T'.

(2b) QNB; consists of two simply connected components Q, and Q,. (3Q)NB;
and (3Q,) N B are distinct regular real analytic simple arcs passing through 0. They are
tangent to each other at 0.

(2¢) QNB; is simply connected and TNB; is a regular real analytic simple arc
except for a cusp at 0. The cusp is pointing into QN B;. It is a very special one. There is
a holomorphic function T defined on a closed disk B, such that

@) T has a zero of order two at 0,
(i) T is univalent on the closure H of a half disk H={1€B,;Im >0},
(iii) T satisfies TNBscT((—¢, €)) and T(H)cQUT.

Conversely, if (1), (2a), 2b) or (2¢) holds, then (QNB,)U(I'NB,) has the Schwarz
function for some r>0. If (1) or (2a) holds, then the Schwarz function can be extended
holomorphically onto a neighborhood of 0. If (2b) holds, then the Schwarz function
can be extended from Q, onto a neighborhood of 0 and from Q, onto a neighborhood of
0. The two extensions are distinct in a neighborhood of 0. If (2¢) holds, then the
Schwarz function can not be extended onto any neighborhood of 0.

Proof. Assume first that there is a Schwarz function of QUT in B, with index 1 at
0. By Proposition 5.1, there is a function ®, satisfying (i) to (iii) of Proposition 5.1.
Since &, is continuous at 0, by Lemmas 1.1 and 1.3, we can find a neighborhood U of 0
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and £>0 such that ®|QnU is a one-to-one conformal mapping of Qn U onto B,\E,
where E is a relatively closed subset of [0, £) containing 0. Let z=¥,(w) be the inverse
function of ®,|Qn U defined in B,\\E. Let W, (w)=W,(w). Then W, is holomorphic in
B.\E, and so Z(w)=Y(w)¥(w)/w is holomorphic in B,\E.

To apply Lemma 1.2 to Z;, we shall determine the cluster set of Z;. Since W, is a
bounded function, by the Fatou theorem, W,(u+iv) converges as v>0 (resp. v<0)
tends to 0 for almost all fixed « on [0, ¢). By (iii), the modulus of the limit must be
equal to Vu for u on E. We denote the limit by \/_u_eio*(“) (resp. Vu eio‘(“)). If
Vu e =V e®"™ ae. on E, then, by the generalized Painlevé theorem, ¥, can be
extended holomorphically onto B,. Since z=01is a nonisolated point of I', w=01is also a
nonisolated point of E, and so the extended holomorphic function, we denote it
again by W, satisfies III’I(u)|=\/7 as u€E tends to w=0. This contradicts that
(¥, (w)|=0(|w)) if ¥, is holomorphic at w=0.

Hence

i0 i0 . i0 0
P={u€E;Vue®™ and Ve exist and Vu e + Vu e’ )
has positive linear measure. Since

(6, ()~6_(u))
e

lim Z,(u+iv) = +1

v—+0

and

i ; (6, ()9 RO
lim Zl(u+w)= e (6, ()—=0_(w) __ 1/61( () _(u»#l

v—>—0

for u€P, Z,=—-1if Z, is a constant function. Now take a smaller £>0 so that ¢€ P and
Z\(w)#1 on 3B, \ {¢}, and fix it. We can take such an ¢, because Z, is not the constant
function with value 1. We denote again by Z; the restriction of Z, onto B,\ E and
denote again by E the intersection of E and B,. Then U{CZ](C); CEAB,\{¢}} is a real
analytic arc J which does not contain 1. The Lindelof theorem asserts that the
existence of a limit Vu ™" (resp. Vue® ") at u of the function. lI‘lyyimplies the
existence of the limit for any non-tangential approach to u. For the Lindelof theorem,
see e.g. Theorem 2.3 of Collingwood and Lohwater [4]. In particular, ¥,(u+iv) con-
verges to Ve e (resp. Vee ) as u+iv€dB, with v>0 (resp. v<0) tends to &.
Hence J has two endpoints €@ - %1 and ¢ @ x1. If £EEU{£} \ {0}, then
C,(D)<dB,, because [¥ (w)| tends to V¢ as w tends to {EEU {e} \ {0}.
Since
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W (w)?
w

!Zl(w)lz =

“Pl(wﬁ,(w) 2_ ‘w.(w)z

w

and

‘I’l(W)zz A
w0,k Fz S’

by Proposition 3.2, we see that

im  |Z,w)|=1.

wEB\E, w—0

Hence C; (0)=3B,, and so C; cJUSB,.

Take a small disk B,(1) with center 1 so that JnB,(1)=2. By Lemma 1.2, we see
that Z,“(B,I(l)\aB,) has at most a finite number of connected components, say n. Now
we shall show that E has at most n+1 components. Assume that E has more than
n+1 components. Take n+1 disjoint disks {B(j’};’:l' with centers on {[0,¢) so that
each BY) contains at least one component of E and USBY’=B,\E. We can take
{BY} so that Z(w)*1 on UBBY and we can choose £ with 0<i<y so that
Z,(UBBY)NBL(1)=@. Since Z,(w)=|¥(w)]"/w>0 for wE[0,&)\E and |Z,(w)|-1 as
w—E, we see that, for each j, there is a point w;€BYn([0,¢&)\E) such that
Z\(w)€B(1)\3B,. This means that at least one connected component of
Z'(B(1)\3B,) intersects with BY"\(E. We have chosen £ so that Z,(U3B")n B(1)=2.
Therefore each connected component of Z,"'(Bs(l)\aB,) does not intersect with
U8B, and so there is at least one connected component of Z;'(B«{(1)\3B,) in each
BY\E. Thus the number of connected components of Z; '(B,(1)\\9B,) must be not less
than n+1. This is a contradiction and we have proved that E has at most a finite number
of components.

Since 0 is a nonisolated point of E, we can choose £,>0 so that [0, &;)<E. We take a
smaller neighborhood U of 0 such that ®;|Qn U is a one-to-one conformal mapping of
QnU onto Bel\[O,el). Let \/®, be a one-to-one conformal mapping of QnU onto
H={7€B N Im >0} and let z=T(t) be its inverse function in H. Set

3 {T(T), 1€EH
I@) =y —x _
S(T®), tT€E€EH.

Then T is bounded and T(o+i0) converges as 0>0 or 0<0 tends to 0 for almost all fixed
oin (=V'e;, V& ). If the limit lim,_,,, T(o+io)=lim,_, ,, T(0+io) exists and is equal to
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¢, thenitis on I" and

limo T(o+io) = 1in+10m =5SQ=¢t.
Hence, by the generalized Painlevé theorem, T can be extended holomorphically onto
B VE and the extension, we denote it again by T, is univalent in a neighborhood of 0,
because |T(0)|=o| for 0 €(— V¢, , V¢, ). Thus we can find B, with center z=0 stated in
(1). I'nB; is regular analytic, because it is the image of an interval in the real axis un-
der T.

In the case of index 2, we take Z,(w)=W(w)¥,(w)/w* instead of Z,, where W, is
the inverse function of ®, in (2) of Proposition 5.1. W, is defined in B,\E and E is a
relatively closed subset of (—e¢,¢). By the same argument as above, we see that
lim,_, ,o W, (u+iv)=|ule”“ and lim,_,_, W,(u+iv)=|ule’-“ exist a.e. on E.

If |ule”*“=|ule®-“ a.e. on En(-7,n) for some #>0, then W, can be extended
holomorphically onto B, and the extension is univalent in a neighborhood of w=0,
because |jue”*“
2a).

Assume next that Pn(—», ) has positive linecar measure for every  with 0<zn<e,
where

|=|u| on E and w=0 is a nonisolated point of E. Hence this is the case

i (1)

P={u€E; 'ulei6+(u) and |u|eia,(u) exist and |u]e”” i0 (u)

* |ule
Since PN(—¢,0) or PN(0, ) has positive linear measure, we may assume that Pn(0, ¢)
has positive linear measure. If Pn(—e¢, 0) has zero linear measure, then ¥, can be
extended holomorphically onto (—¢, 0), and so Z, can be also extended holomorphically
onto (—¢, 0). We denote again the extension by Z,. We take a smaller £>0 so that e€EP
and Zy(w)#1 on 9B\ {¢}. We restrict Z, onto B,\\E. If PN(—¢, 0) has positive linear
measure, then take first ¢/ €PN (—¢,0) and take next £"€PN(0, &) so that Z,(w)=+1 on
ale(uo)\{e’,e"}, where uy=(¢’+¢")/2 and &,=(¢"—¢')/2. We denote again by Z, the
restriction of Z, onto Bel(uo)\E. In both cases, we see that szcJ U8B, for a real
analytic arc J or the union J of two real analytic arcs such that 14J, because

Ywy g2 2 z

w P F@)  S@

.and

lim |Z,w)|=1.
wEB,\E, w—0
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Thus, by the same argument as above, we see that E has at most a finite number of
components in a neighborhood of w=0. Since 0 is a nonisolated boundary point of E,
there is a relatively closed interval in (—¢, ¢) which is a component of E and contains 0.
There are two possibilities: 0 is an interior point of the interval or 0 is an endpoint of the
interval.

In the former case, take a smaller ¢ so that (—¢, €)cE and set H={w € B,; Im w>0}.
Let

o [T, wEH
@)=\ sw@), wen.

Then T, can be extended holomorphically onto B, and the extension is univalent in a
neighborhood of 0. The same holds for

- [SOE@). weH
W=y w), wen.

We note that T\+T,. Indeed, if T,=175, then lim,__ ,, ¥, (u+iv)=lim, ,_,¥,(u+iv)a.e. on
(—¢, €) and contradicts that PN(—¢, ¢) is of positive measure. Thus this is the case (2b).

Now we discuss the final case. We may assume that 0 is an endpoint of an interval
in the positive real axis, namely, we may assume that [0, £)cE and EN(~¢, 0)=3 for
some £>0. We apply the same argument as in the proof of the case (1) replacing
V/®, with \/®,. Let T be the inverse function of \/®, and let T be its extension onto
B, . In this case, T is not univalent in a neighborhood of 0 but Thas a zero of order two
at 0, because |T(Q)|=Q2 for o €(—V'e,Ve). By the definition, T is univalent in
H={t€B ; Im7>0}. If T is not univalent on H for every &, then T(0,V¢e))
and T((—V'e,0)) are on the same real analytic simple arc. Since |T(g)|=0"
for 0€(-Ve,Ve), this implies that T(—g)=T(¢) for @€[0,Ve). Hence
lim, , , W,(u+iv)=lim,_,_,¥,(u+iv) a.e. on [0,¢) and contradicts that PN[0,¢) is of
positive measure. Thus T is univalent on H for some ¢. This is the case (2¢).

Next we shall show the converse. Let Q and T be as in the case (1). Then there is a
holomorphic and univalent function T defined in a disk B, such that T(0)=0,
T{(—¢, )<l and T(H)<=Q, where H={r€B,;Im7>0}. We note that S(z)=7 is the
Schwarz function of HU(—¢,¢) in B,. By Remark to Lemma 3.1, S;=ToSoT '=
ToT™!is the Schwarz function of (RN B,)U('NB,) in B, for some r>0.

The same argument is valid for the cases (2a) and (2b). The argument is also valid
for the case (2 ¢). Indeed, T has a zero of order two at 0 in this case, but it is univalent in
H. Thus ToT ™! is well-defined in QN B, for some >0 and it is the Schwarz function.
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The Schwarz function can be extended from one side of the boundary to a
neighborhood of 0 in the cases (1), (2a) and (2b), because it is expressed as ToT ' and
T! can be extended from one side of the boundary to a neighborhood of 0. If (2¢)
holds, then the Schwarz function S is not univalent in QNBs for any >0, because
S()=C on I'nBs. If S can be extended onto a neighborhood of 0, then it must be
univalent in a neighborhood of 0, because lim,_,|S(z)/z|=1. Hence the Schwarz func-
tion can not be extended onto any neighborhood of 0 if (2¢) holds. Q.E.D.

Remark. In the case of (1) we have constructed a holomorphic function 7, which
was denoted by T, in B, such that T(0)=0, T((—¢, ¢))<T and T(H)cQ, where H={t€B,;
Im7>0}. The function T is canonical in the sense that T satisfies |T(g)|=|o| on (—¢, ¢).
The Schwarz function S can be expressed as ToT ! by T. We note here that § can be
expressed as 7oT~' by any holomorphic function T in B, such that 7(0)=0,
T((—¢, &))<T and T(H)<=Q. The same holds for the other cases.

Definition 5.1. We call the origin 0 a regular point of I if (1) holds, a nonisolated
degenerate point if (2'a) holds, a double point if (2b) holds and a cusp point if (2¢)
holds. We call the origin 0 a degenerate point if 0 is an isolated point of T or (2 a) holds.

COROLLARY 5.3. Let § be the Schwarz function of QUT in B, and assume that 0 is
a nonisolated point of T. If 0 is a regular, nonisolated degenerate or double point, then

IS(2)—a,zl < alz* on (QUT)NB, (5.3)

for some a and 6>0, where a,=5§*, and s denotes the unit vector with initial point at 0
and tangent to T or the arc determined by T. In particular,

T'nBsc {CEB,; |t—rs| < ar*} U{CEBy; |C+rs| < ar?},

where r=|g|.
If 0 is a cusp point, then

IS(z)—a,zl < alz|® on (QUI)NB; (5.4

for some a and >0, where a,=5*, and s denotes the unit vector with initial point at 0,
tangent to T and pointing into Q. In particular,

I'NBs; = {SEBs;|C+rs|< ar’?}

where r=|g|.
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Proof. Assume that 0 is a regular or nonisolated degenerate point. We denote again
by § the extension of the Schwarz function onto a neighborhood of 0. Let

S@) = a,z+a,7+...

be the Taylor expansion of § at 0. Since

a,=8'0)= lim SE&)/¢=lmE/,
LETNB,, £—0

la;)=1 and a,=5%, where s denotes the unit tangent vector of I' or of the arc determined

by I with initial point at 0. If 0 is a double point, the same holds for another extension

of the Schwarz function. The two extensions are distinct, but their first coefficients a,

are identical, because a;=5%. Thus (5.3) holds in these cases. For ¢ on I'N B;, we obtain

|E—5%C| = |S(©)—a,l| < ar.

Since
|&—rs|[E+rs| = |2 —rs?| = rig—Es?| = r|E— &Y,
we obtain
|&—rs||E+rs| <ar’,
and so

|E—rs|<ar’ or |C+rs|<r.

In the latter case, it follows that |{—rs|=r, and so

|E+rs| < ar’ <ar’.
|&—rs]
Assume next that 0 is a cusp point. We use the notation as in the proof of Theorem
5.2. Let \/®, be a one-to-one conformal mapping of QU U onto H= {r€B ;Im7>0}
and let z=T() be its inverse function defined in H. Let T be its extension onto B .
Since |T(g)|=0" for o €(—V ¢,V &), the Taylor expansion of T at 7=0 is of the form

z=T@)= —S(T2+b3‘[3+...),

where s denotes the unit tangent vector of ' with initial point at 0 pointing into Q. The
right-hand side of the equality can be written as —s7?f(r), where f(7) is a holomorphic
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function in a neighborhood of 0 with f(0)=1. Hence it follows that Vz=
V=5 1 Vf(t), where Vz in Q denotes an appropriately chosen branch and V f(z)
denotes a branch defined in a neighborhood of 7=0 satisfying V f(0) =1. The function
V f() is holomorphic, and so V'z is a holomorphic function of z, say g(z), in a
neighborhood of 0 satisfying g(0)=0 and g'(0)=V—s. Hence

=g '\WZ)=(I/N=5)VZ 1+, VZ +eyz+...)
Since ?=w=®,(z)=Vz5(z), we obtain
2
5@ = t4=z—2(1+4c2\/_z_+...),
s
and so

5@ =5 (1+4c,VZ +..).
§

Hence (5.4) holds. For ¢ on I'nB; with small 6>0, we obtain |—rs|=r in this case.
Hence

2+1

[C+rs|< @ <ar’ Q.E.D.

|G—rs|
We note that we also obtain (5.3) and (5.4) by using the expression S=ToT ! of
the Schwarz function. Next we show

COROLLARY 5.4, Let S be the Schwarz function of QUL in B,. Then both
lim,cq z_,;(S(z)—f)/(z—@) and lim,¢q, ,_,, S'(2) exist and are identical for every ConT.
They are equal to S'(§) if ¢ is an isolated point of T and are equal to s©iftisa
nonisolated point of T', where s(§) denotes the unit vector with initial point at ¢ and
tangent to T or the arc determined by T.

Proof. For an isolated point ¢ on I, the limits exist and are equal to S'({), because
S(&)=C. If 0 is a nonisolated point of T, then, by the proof of Corollary 5.3, we see that

lim Sz)/z= lim §'(z)=s(0)"2
Z2€Q, 7250 2€Q, 70

The corollary follows from equalities (S(z)—)/(z—{)=8/7)/r and §'(z)=(dS,/d7)(7),

where 1=z—{ and S/ (7)=S(+¢)—¢ denotes the Schwarz function of (2—{UT—E)

at 0. Q.E.D.



REGULARITY OF A BOUNDARY HAVING A SCHWARZ FUNCTION 297
Further we shall show two corollaries which follows immediately from Theorem
5.2 and Corollary 5.4.

COROLLARY 5.5. Let S be the Schwarz function of QUT in B;. Set

S(z) in Q

@)= {z’ on B\ Q.

Then § is a Lipschitz continuous function on B for every 6 less than 1 and satisfies

—@—S( )= S§'(z) in Q
dz “=10 a.e. on B\ Q,
3 @)= 0 in Q
3z Y= a.e. on B\ Q

in the sense of distributions.

COROLLARY 5.6. Let S be the Schwarz function of QUT in B,. IfBBI\Q has no
interior points for some 6,>0, in particular, if the area of Bél\Q is equal to zero for
some 0,>0, then S is holomorphic in B; . F urthermore, if 0 is a nonisolated point of T',
there is a 0, with 0<d,<0, such that

TNB, = {EEB,;|S' Q)| =1).
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