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In his book [5], Davis discussed various interesting aspects concerning a Schwarz 

function. It is a holomorphic function S which is defined in a neighborhood of a real 

analytic arc and satisfies S(r on the arc, where ~ denotes the complex conjugate 

of ~. 

In this paper, we shall define a Schwarz function for a portion of the boundary of 

an arbitrary open set and show regularity of the portion of the boundary. More 

precisely, let Q be an open subset of the unit disk B such that the boundary af2 contains 

the origin 0 and let F=(af2)OB. We call a function S defined on f~UF a Schwarz 

function of ff~ U F if 

(i) S is holomorphic in f~, 

(ii) S is continuous on f~ U F, 

(iii) S(~)= ~ on F. 

We shall give a classification of a boundary having a Schwarz function. The main 

theorem, Theorem 5.2, asserts that there are four types of the boundary if 0 is not an 

isolated boundary point of Q: 0 is a regular, nonisolated degenerate, double or cusp 

point of the boundary. Namely, one of the following must occur for a small disk B6 with 

radius 6>0 and center 0: 

(1) f2nB6 is simply connected and FAB6 is a regular real analytic simple arc 

passing through 0. 

(2 a) F N B6 determines uniquely a regular real analytic simple arc passing through 0 

and F A B6 is an infinite proper subset of the arc accumulating at 0 or the whole arc. 

f2NB6 is equal to B6\F. 
(2b) f~ A B6 consists of two simply connected components Q~ and f~2. (aQ~)fl B6 

and (af22)OB6 a r e  distinct regular real analytic simple arcs passing through 0. They are 

tangent to each other at 0. 
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(2c) ff~ n B6 is simply connected and F n B6 is a regular real analytic simple arc 

except for a cusp at 0, The cusp is pointing into f~ NB6. It is a very special one. There is 

a holomorphic function T defined on a closed disk B, such that 

(i) T has a zero of order two at 0, 

(ii) T is univalent on the closure/-J' of a half disk H =  {r E B~; Im ~>0}, 

(iii) T satisfies FnB6cT((-e, e)) and T(/I)c~ t3 F, where 

( - e , e ) =  { r ; - e < r = R e r < e ) .  

There are at least two applications of the main theorem. We first consider an 

application to quadrature domains. Let/~ be a complex measure on the complex plane 

C. A nonempty open set ~ in C is called a quadrature domain of/~ if LuI(C\Q)=0 and if 

J'lfl dLul<oo and 

f m,= f fof z, axay (Z=x+iy) 

for every holomorphic and integrable function f i n  f2. If  f2 is bounded, then 1/(z-C) is 

holomorphic and integrable on f~ for every fixed r E C \ f ~ .  Hence the Cauchy trans- 

form O(r162 of ~ is equal to the Cauchy transform #(~)=J" 1/(z-C)d~(z) 

of/~ on C \ t ) .  Since ~(z)+xZ is holomorphic in Q, we see that 

S(z) = ( ~(z) + :,rz-~(z) )/~ 

is the Schwarz function .of (Q nB) 0 ((aft) nB) ifB and the support of/~ are disjoint and if 

0 6 aft. Applying our main theorem, we obtain a regularity theorem on the boundary of 

a quadrature domain. Let f~ be a bounded quadrature domain of/~ such that the support 

of/* is contained in ft. If we make a new domain [Q] by adding all degenerate boundary 

points of f~ to fl, then [f~] is also a quadrature domain of/~ and the boundary of [Q] 

consists of a finite number of real analytic simple curves having at most a finite number 

of double and cusp points. Moreover, by applying our methods to the Schwarz function 

of the boundary of an unbounded domain, we are able to carry out the program 

proposed by Shapiro [10] and see that if an unbounded quadrature domain is not dense 

in C, then it is obtained as a translation of an inversion of a bounded quadrature 

domain. 

We next consider an application to free boundary problems. A typical problem is 

an obstacle problem and it is reduced to a problem to determine F(u) of the following 

function u: u is a nonnegative function defined in the unit disk B such that 
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(i) F(u)=(~f~(u))nB contains the origin 0, where f~(u)={zEB; u(z)>0),  

(ii) u is of  class C l in B, 

(iii) Au(z)= 1 in f~(u) in the sense of  distributions. 

What can we say about  regularity of  F(u)? 

We set 

cqu 
S(z) = Z - 4 ~ z  (z). 

Then S is holomorphic in f2(u), because S is continuous in f~(u) and 

as a2u 
(z) = 1 - 4  (z) = 1 - A u ( z ) =  0 

aZ aZaz 

in f~(u) in the sense of  distributions. By (ii), S is also continuous on f~(u) U F(u). Since u 

is nonnegative in B and u(z)=0 on F(u), 

a___u_Uax (z) = ~-~ (z) = 0 

on F(u). Thus S is the Schwarz function of  f2(u) U F(u). We apply our main theorem and 

see that Q=f~(u) and F=F(u)  satisfies one of  (1) to (2c) for some B6 if 0 is not an 

isolated point of  F(u). In this case, F(u)nB6 is the whole arc for some 6 if 0 is a 

nonisolated degenerate point and the cusp is pointed more sharply if 0 is a cusp point. 

Furthermore, we see that all the first derivatives of  u are Lipschitz continuous on B6 
and all the second derivatives of  u are continuous up to F(u), on Q(u). 

This is a very informative regularity theorem. An accurate description of  the free 

boundary F(u) in two dimensions was given by Caffarelli and Rivirre [2] and [3]. They 

proved that (1) if 0 is not a regular point, then Bo\f~(u) is arranged along a straight line, 

more precisely, there is an increasing function 0 defined on a half-open interval [0, 6) 

such that 0(0)=0 and 

B,~Nf~(u) c (~ E B6; {arg ~5-al ~< o(1~1) or larg ~5-(a+~)l ~< o(1~1)), 

where a denotes a real number,  (2) if 0 is a nonisolated degenerate point, then F(u) NB6 

is a real analytic simple arc and (3) the boundary of  each connected component  of  the 

interior of Br\f~(u) is the union of  a finite number of  real analytic simple arcs. Their 

results are fairly accurate,  but there is still a possibility that an infinite number of  

connected components  of  the interior of  B\Q(u)  exist and cluster around 0. Our main 

theorem excludes the possibility. This is also true even if we replace the constant 
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function with value 1 in (iii) by a positive real analytic function 9 defined in B. The fact 

is quite interesting when we compare it with an example of the free boundary for the 

obstacle problem with C| due to Schaeffer [9]: If we replace the constant 

function with value 1 in (iii) by some special positive C| q0 defined in B, then 

there is a nonnegative function u satisfying (i) to (iii) such that an infinite number of 

connected components of the interior of B\ff2(u) actually cluster around 0. 

The purpose of this paper is to give a proof of the main theorem. The applications 

of the theorem stated above and related results will appear elsewhere. 

Here we shall give a brief outline of the proof. Assume that 0 is not an isolated 

boundary point of s let S be the Schwarz function of f~ U F and set F(z)=zS(z). Then F 

is holomorphic in g2, is continuous on f~UF and satisfies F(~)=[r on F. Take an 

appropriate neighborhood of 0 and restrict F, we denote it again by F, to the intersec- 

tion V of g2 and the neighborhood. We shall show that there are two cases: (1) F is a 

one-to-one conformal mapping of V onto B,\E, where e>0 and E denotes a relatively 

closed subset of a half-open interval [0, e) or (2) for appropriately chosen branches, 

X/-ff is a one-to-one conformal mapping of V onto BvT\E, where E denotes a 

relatively closed subset of an open interval (-V'-Fe, X/--~). 

The essential part of the proof is to show that the number of connected compo- 

nents of E is finite except in the degenerate case (2 a). To do so, we apply the following 

fundamental fact: The valence function of a holomorphic function is finite and constant 

in every connected component of the complement of the cluster set of the holomorphic 

function. In the case of (1), we take the inverse function z=U~(w) of w=F(z) defined in 

B,\E and set Zl(W)=UJ~(w)W~(w)/w, where W~(w)=Wl(tb). We shall show, by taking 

appropriate e, that the cluster set of Z~ is contained in the union of the unit circle and a 

real analytic arc. We apply the above fact to Zl and see that the number of connected 

components of E is finite. It is not easy to show that the cluster set of Z~ at w=0 is 

contained in the unit circle. Since 

W l ( w ) 2 / w  = zZ/(zS(z))  = z /S (z ) ,  

it is sufficient to show that 

lim IS(z)/zl = 1. (*) 
z r f~, z..--,O 

In the case of (2), we take the inverse function qaz of X/F-, set/2(/.U)=LI/2(/.O) %(/.O)/W2 

and apply the above argument. 

This paper consists of five sections. The fundamental fact mentioned above and a 
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sufficient condition for a holomorphic function to have the square root which is a one- 

to-one conformal mapping is given in Section 1. To show (*), we need the Fuchs 

theorem and it is discussed in Section 2. We show (*) in Section 3. In Section 4, we 

show that the valence function of F is equal to 1 or 2 in B~\[0, e) for appropriately 

chosen V and e. The values 1 and 2 correspond to the cases (1) and (2), respectively. 

The final step of the proof of the main theorem is given in Section 5. 

The author is grateful to the referee for his suggestions. 

w 1. Cluster sets, valence functions and branch points 

Cluster sets, valence functions and branch points can be defined for meromorphic 

functions in arbitrary open subsets of Riemann surfaces. Here, however we discuss 

them just for holomorphic functions defined in bounded open sets in the complex plane 

C for the sake of simplicity. 

Definition 1.1. Let Q be a bounded open set in C. For a holomorphic function f in 

f2 and a point ~ on the boundary at~ of Q, we set 

Cf(~) = I'l { f (Q n B6(~)); 6 > 0},  

where/~ for a set E in C denotes the closure of E in C and B~(~) denotes a disk of radius 

6 and center ~. We set 

cs= u{c~[o; ~6 aQ} 

and call it the cluster set of f .  

It is easy to show that Ci(~) and Cf are closed and Cfis not empty if ~ is not empty. 

For cluster sets, see e.g. Collingwood and Lohwater [4]. 

Definition 1.2. Let f be a holomorphic function in an open set f2. We denote by 

vy(w) the number of solutions z in f~ to f(z)= w and call v s the valence function off .  The 

number of solutions is counted according to their multiplicities and it may be infinite. 

In this section we give several lemmas concerning cluster sets, valence functions 

and branch points. Proofs of them are not difficult and it seems that some proofs of 

them are known. But, for the sake of completeness, we give here all proofs of them. 

LEMMA 1.1. The valence function vf of  a holomorphic function f is finite and 

constant in each connected component of C\Cf .  
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Proof. Assume that f(zj) = Wo for an infinite number of zj in g~, j =  1,2 . . . . .  Taking a 

subsequence if necessary, we may assume that {zj} is a convergent sequence. If the 

limit is an interior point of ~2, t henf i s  identically equal to a constant w0 in a connected 

component D of ~ containing the limit. Hence Wo ~ Cf(r for r E aD, and so Wo E Cf. If 

the limit is a boundary point r of Q, then Wo E Cf(r Therefore vf(w) is finite in 

c\c:. 
The proof will be complete if we show that v: is continuous in C \ C f .  Let 

woEC\Cf  and let {wj} be a sequence of points in C \ C f  converging to w0. If the 

inverse image f-l({wj}f= 1U {w0}) of {wj}f= l U {w0} is empty, then vf(wj)=vf(Wo)=O for 

every j. If it is not empty, then, by the same argument as above, we see that it is 

relatively compact in g~. Surrounding it by a finite number of simple closed curves in ~2 

and applying the Hurwitz theorem, we see that f (z)-wj  and f(z)-wo have the same 

number of zeros in the open set surrounded by the simple closed curves for sufficiently 

large j. Hence vf(wj)=vf(wo) for large j and vf is continuous at w0. Q.E.D. 

Let N= {w E C; vy(w)=O}. Then, by definition, the image f(gD of ~2 is contained in 

C \ N  and the image f(D) of a connected component D of ~ is contained in the exterior 

C \ N  of N if f is not constant in D, because f i s  an open mapping of D if it is not 

constant in D. Lemma 1.1, together with this fact, has many applications. For example, 

we get the maximum modulus principle for bounded holomorphic functions from the 

lemma. We also see that if a bounded holomorphic function defined in a bounded 

connected open set has real boundary values, then it is constant. 

Let W be a connected component of C \ C  s with the nonempty inverse image 

f-l(W). We regard ( f - l (W), f l f - l (W))  as a finite unlimited covering surface of W, 

where f[V for an open subset V of fl denotes the restriction of f to V. 

Definition 1.3. Let W be a connected component of C \ C f  with the nonempty 

inverse imagef- l (w) .  We call z Ef - l (w)  a branch point offiff '(z)=O. The number of 

branch points of f i n  an open subset V off - l (W) is counted according to their degrees of 

ramification, namely, it is the number of zeros o f f '  in V counted according to their 

multiplicities. 

LEMMA 1.2. Let W be a connected component of C \ C f  with the nonempty inverse 
image f-l(W) and suppose that vf(w)=v in W. Let V be a connected component of  
f-l(W). Then 

(1) C:fv= W, 
(2) the valence function vfF v is constant in W and satisfies l<.rflv<-v, 
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(3) the number of branch points o f f  in V is not greater than 2(vfl v -  1). 

Consequently, the number of connected components of f - l (w )  is not greater than 
v and the number of branch points in f- l(W) is not greater than 2(v-1). 

Proof. Let ~ E or. Then f (V N Bo(~))c W. Hence Cflv(r W for every ~ E O V, and so 

CylvcW. Let wE W. Then, by Lemma 1.1,f- l(w) is a finite set. Hence, for ~ a V ,  we 

can find Q>0 and d>0 such that f-l(Bo(w))NBo(~)=f~. This implies that 

Be(w) Nf(VNB~(r and so w is not contained in (?:iv(r for any ~ E aV. Therefore w 

is not contained in C:I v and it follows that CzlvcW\W=OW. 
Assume that Cfl v is a proper subset of aW and let WoE(aW)\Cfl v. Since Cylv is 

closed, we can choose r>0 so that CflvNBr(wo)=O. Take wlEWNBr(wo). Then 

w 0 and w 1 are contained in the same connected component of C\Cft  v. Hence, by 

Lemma 1.1, Vflv(Wo)=Vflv(Wl)>~l. Thus wo=f(zo) for some z0E V, namely, woEf(V)cW. 
This is a contradiction. Hence Cylv=aW. 

The second assertion (2) follows from (1) and Lemma 1.1. 

Finally we shall give a brief proof of (3). We regard (V, f lV) as a finite unlimited 

covering surface of W. Since f has at most a countable number of branch points in V, 

we can take a regular exhaustion {Wj} of W so that there are no branch points on 

VNf-l(awj .) for each j. For each fixed j ,  we slit Wj along piecewise real analytic arcs 

and make a simply connected domain Y such that there are no branch points on 

VNf-1(aY). The number of branch points in VNf-I(Wj) is equal to the number of 

branch points in X=  V N f -  ~(Y). We shall apply the Riemann-Hurwitz formula to a finite 

unlimited covering surface (X,f~X) of Y. The Riemann-Hurwitz formula asserts that 

the number of branch points of f iX  in X is equal to vf~xey-e x, where eR for a Riemann 

surface R denotes the Euler characteristic of R. The Euler characteristic eR is equal to 

2(1--gR)--bR, where gR denotes the genus of R and bR denotes the number of boundary 

components of R. Since gx=gr=O and by= 1, ex=2-b x and ey= 1. Since the number of 

the sheets of the covering is equal to v:~ x and br=l, bx<~Vf~ x. Hence vf~ey-ex= 
vf~-(2-bx)<-2(vfr r-  1). Thus the number of branch points in VNf-~(Wj) is not greater 

than 2(vy~x- 1)~<2(Vfl v -  1) for any j. This completes the proof of (3). Q.E.D. 

Next we shall discuss the case that vf(w)~<l in C\Cf.  

LEMMA 1.3. I f  
(i) f is not constant in any connected component of Q, 
(ii) Cf has no interior points, 
(iii) Vy(W)~<l in C\C:, 
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then f ( ~ ) c C \ C f ,  namely, f is a one-to-one conformal mapping of f~ onto 

{ w E C \  Cf ; vf(w)= l }. 

Proof. Assume that w=f(z)E C i for some z in Q. Then there is ~ E 0• such that 

w E CI(~), namely, for every 6>0 and every 0>0, f (•  NBa(~))NB0(w)~=O. Since f is an 

open mapping at z E Q by (i), for small fixed 0, we can find a relatively compact 

neighborhood U of z such thatf(U)=Bo(w). Take 6 so that UNBa(~)=O. Then every 

value in an open set f (Q NBa(~))NBo(w)=f(Q flBa(~))Nf(U) is taken by f a t  least at two 

points, one in ~NBa(~) and the other in U. Since Cf has no interior points, 

f(E2 N Ba(~)) N Bo(w)\C s should not be empty. This contradicts (iii). Hence f ( ~ ) = C \ C f .  
Q.E.D. 

If vf(w)>l for some w, then f may be quite complicated and it is difficult to 

describefby using conformal mappings. We shall discuss here a special case which will 

appear in the proof of the main theorem. To do so, we prepare the following lemma 

which is easily verified: 

LEMMA 1.4. Let f be a holomorphic function in an open set f2. I f  

(i) f(z)4=O in f~, 
(ii) Ssdargf(z)-O (mod4:r) for every real analytic simple closed curve J in f2, 

then V" f(z) has a single-valued branch in Q. 

Proof. By definition, 

I 
f V ~ - ~ =  exp(-~-logf(z))=exP(2(logIf(z)[+iargf(z))  ). 

Hence X/f(z) is single-valued iff(z)~=0 in f2 and 

1 f j  d argf(z) --- 0 (mod 2~) Y 

for every real analytic simple closed curve J in f~. 

In what follows we write B,, for B,,(0). 

LEMMA 1.5. I f  f satisfies (i) and (ii) of Lemma 1.4, together with 

(i) f is not constant in any connected component of if2, 

(ii) C~,c[0, m) U OBm, where [0, m)= {w; 0~<w=Re w<m}, 

(iii) vi(w)=2 in B, , \ [0 ,  m) and vy(w)=O in C \  B,,, 
(iv) f has no branch points in f-I(Bm~[O, m)), namely, f'(z)~=O in f - l (Bm\[0 ,  m)), 

Q.E.D. 
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then 

(1) f2 is connected and a single-valued function V 7  is one-to-one. The image 

X/-f (f~) of f~ satisfies Bv~\(-X/--m,V'--m)~/--f  (~2)~Bv~, where (-V'-m,V'-m)= 
{w; - x / -~<w =Re w<V-~} ,  

o r  

(2) ~ consists of  two simply connected components and ~ is a one-to-one 

conformal mapping of if2 onto B ~ \ ( - V ~ ,  V ~ )  for appropriately chosen branches. 

Remark. In (iv), we have assumed that f'(z)~O only in f-I(Bm\[O, m)). From the 

conclusion of the lemma, we see that f'(z)=~O in the whole open set ff~. 

Proof. By applying Lemma 1.4, we first define a single-valued holomorphic 

function V--f in f2. By (ii), Cv-/fc(-X/--mm,X/--m)OaBv~ and, by (iii), VvT(W)+ 

vvT( -w)=2  in B v ~ \ ( - V ~ - ,  X/-m-) and vvT(w)=0 in C \ B v ~ .  
If vvT(w)= 1 in one connected component of Bv~\(-V'-m-,  X/-m), then vvT(w)= I 

in the other connected component of Bv~\(-X/-~,V'-mm), and so, by Lemma 1.1, 

Vv7 (w)~ < 1 in C \ C v 7  and {w E C \ C v T ;  Vv7 (w)= I } =Bv-~\CvT. By Lemma 1.3, V-f- 
is a one-to-one conformal mapping of Q onto Bv~\Cv--  f .  If V T ( Q ) = B v ~ ,  then 

X/f(z) =0 for some z in f~. This contradicts (i) of Lemma 1.4. Hence (1) or (2) holds. 

Assume next that vv- f(w)--2 in one connected component H of 

Bv~\(-X/-m,X/-~) .  Then vv?-f(w)=0 in the other connected component of 

B y e \ ( - X / - m ,  X/-m), and so Vv-ff (w)=0 in C \ ( H  0 (-V~-m, V m )  0 ~Bv-~). Since the ex- 
terior of C \ ( H 0  (-X/m-, X/-m)0 0By- ~) is equal to H, by the fact stated after Lemma 

1.1, X / - f ( f l ) cn ,  and so (X/-f-)- ' (n)=f~.  

Let V be a connected component of (X/-f-)-1(H). By (iv), we can regard 

(V, V'--f-f IV) as an unramified covering surface of a simply connected open set H. 

Hence, by the monodromy theorem, ~ IV is a homeomorphism, namely, V~-IV is a 

one-to-one conformal mapping of V onto H, see e.g. Section 3 of Chapter I of Ahlfors 

and Sario [1]. Thus f~ consists of two simply connected components. We redefine the 

branch of V'--f-f in one of the two connected components of f~ and see that (2) holds. 

Q.E.D. 

w 2. The Fuchs theorem 

In his paper [6], Fuchs proved the following theorem: 

THEOREM. Let D be an unbounded connected open set in the complex plane C 

such that the boundary aD of D in C is not empty and let f be a holomorphic function in 
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D satisfying 

lira sup If(z)l ~ 1 
z 6 D ,  z---~ 

for every ~ on aD. Then one o f  the following must occur: 

(1) If(z){ ~<I in D, 

(2) f has a pole at the point at infinity, 

(3) (logM(r))flog r-->+ oo (r--->+ oo), where M(r)=sup{If(z)l; z 6 D  and Izl=r}. 

In this section, we shall show a local version of the theorem and call it the Fuchs 

theorem. 

THEOREM 2.1 (The Fuchs theorem). Let  C2 be an open set in C and let ~o be a 

nonisolated boundary point o f  if2. Let  f be a holomorphic function in if2. I f  there is a 

disk B~(~o) with radius 6 and center ~o such that 

(i) lim SUpz eQ, z-~r If(z)[ ~< 1 for every ~ on (ag2) N B~(~o)\ { ~o}, 

(ii) If(z)I<.alz-~o[ -~ in g2 f] B~(~o) for  some positive constants a and fl, 

then 

lira sup If(z)[ ~ I. 
z 6 f L z ~  0 

First we note that Theorem 2.1 is equivalent to the following Theorem 2.1' from 

which the theorem due to Fuchs follows: 

THEOREM 2.1'. Let  if2 be an unbounded open set in C such that the boundary Off2 is 

also unbounded and set BI=BI(0). I f  a holomorphic function f i n  if2 satisfies 

(i) lim SUpzeu, z_~r If(z)l~<l for  every ~ on (ag2) \B 1, 

(ii) lf(z)l<.alzl ~ in f ~ \ B i  for  some positive constants a and fl, 

then 

lim sup If(z)l ~ 1. 
Z E ~ ,  Z----~ 

Next we shall give a brief proof of Theorem 2.1' for the sake of completeness. Our 

proof is similar to the proof due to Fuchs. We note the difference between them: Our 

condition (i) of Theorem 2.1' is not for all boundary points but just  for boundary points 

outside of the unit disk. 

Proof  o f  Theorem 2.1'. If f is constant in a connected component D of •, then, by 
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(i), the modulus of  the constant  is not greater than 1 or ODcB~. If  ODcBI and D is 

unbounded,  then C\B~cD=f2. This contradicts that OD is unbounded.  Hence  D is 

bounded if ODcBI, and so DcB1. Thus,  to prove the theorem, we may assume t h a t f i s  

not constant in any connected component  of  f2. 

Assume that lim SUpz e n, z-~= ]f(z)l > 1. Since there are at most a countable number  

of zeros o f f '  in Q, we can choose 2 so that 

lim sup If(z)l > ;t > 1 (2.1) 
ZEf2, Z---~ 

andf'(z)~=0 on the level curves {z E Q; t f (z) l=2) .  We consider the level curves outside 

of the unit disk and set 

m -- {z E g 2 \  Bt; If(z)l--- ;t} 

and 

~-~0 = {Z ~ ~')~ gl;  If(z)l >A}. 

The set Q0 is nonempty,  unbounded and open. From (i), it follows that 

(OQo)\(OB~)=A. 

Each connected component  of A is a real analytic simple arc or a real analytic 

simple closed curve. We divide A into two parts Aa and Ac; Aa denotes the union of  

arcs in A and Ac denotes the union of  closed curves in A. From (i), it follows that 

{(af2)\B1} n A,=Q. Hence  the endpoints of arcs in Aa are all contained in (aB1) n ~ and, 

for every r>  1, there are at most  a finite number of  closed curves entirely contained in 

Ac N Br, where Br=Br(0). 

We consider the following three cases: 

Case 1. There  is an unbounded arc in Aa. 

Case 2. Each arc in Aa is bounded,  but Aa is unbounded.  

Case 3. Aa is bounded.  

Case 1. Take an unbounded arc in Aa and take a fixed point p0 on it. The point P0 

divides the arc into two portions. Le t  J be an unbounded portion of the arc and, for 

R>lpol=ro, let JR be the port ion of  J between P0 and the first point of intersection of  J 

with aBR. Since Jf~ aBI=Q,  it follows that JR n aBl=~3. 

Let  ~o(z, E, D) be the harmonic measure of E with respect  to a connected open set 

D, where E denotes a Borel subset of  0D. The Beurling and Nevanlinna solution of  the 
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generalized Carleman-Milloux problem asserts that 

to(Z, cOBR, BR\J R) <~ to(-Izl, aB., BR\[ro, R)) 

and 

to(Z, cqB 1, B R \ B I \ J R )  <~ to(- [z[, cOB I, C \  BI \ [ r  0, +o0)) 

(2.2) 

m 

for z in B R \ B 1 \ J R ,  where [ro, R)={zEC;ro<~z=Rez<R}, see e.g. Theorem I in 

Section 5 of Chapter IV of Nevanlinna [7]. 

Let M(r)= sup (If(z)l; z E ~ n ant} for r with g2 n aBr4:~. We have assumed that f is 

not constant in any connected component of Q. Hence M(r) is not equal to zero if it is 

defined. We first assume that ~ n a B ~ .  Set 

m 

h(z) = log [f(z)l-(logM(R)) oJ(z, aB R, BR\JR)- ( Iog  + M(1)) to(z, aBe, B R \  B~\JR)-Iog2,  

where log+t for t>0 denotes max{logt, 0}. The function h is harmonic in BR N g~0 and 

lim sup h(z) <~ 0 
zEBRNf~o,Z~ 

for every boundary point ~ of B R N •o, because M(R)>~Z>I. Hence h(z)<~O in B R n g2 o 

and, from (2.2) and (2.3), it follows that 

log If(z)l ~< (log M(R ) ) to(-Izl, aBR, BR \[ro, R ) ) 

+(log + M(1)) to(-  Izl, aBl, C \  B~\[r0, + oo))+log ;t 

in BR fl Qo- 

Since to(-Izl, aBR, BR\[ro, R))<~O(R -I/2) for a fixed z and logM(R)<~O(logR) by 

(ii), letting R tend to +oo, we obtain 

log I f(z)l ~< (log + M(1)) to(-Izl, an~, C \  B, \ [r0, + oo)) + log 

in t20. The point at infinity is a regular boundary point of C \ B z \ [ r o ,  +oo) with respect 

to the Dirichlet problem. Therefore 

lim sup log If(z)l ~< log2 
Z E ~ 0 ,  Z - - "  ~ 

and this contradicts (2.1). 

We next consider the case that s n0Bl=~.  In this case we just replace log + M(1) 

(2.3) 
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with zero in the definition of h, namely, we set 

h(z) = log I f(z)l-  (log M(R)) to(z, aB R, Bn\JR) - log ;t. 

We obtain a contradiction by the same argument as above. 

Case 2. Let r0> 1. In this case, for every R>r0, we can choose a bounded arc in Aa 

such that it intersects with aBe. Since the endpoint of the arc are contained in f~ N aBi, 
we can take a point p with [Pl =r0 on the arc and a portion Jn of the arc between p and 

the first point of intersection of the arc with aBn. We choose such a Jn for each R>ro, 
apply the same argument as in Case 1 and obtain again a contradiction. 

Case 3. Take 0 so that AacB e and fix it. Set f~o(r)=QoO(Br\Be) for r>Q. The 

boundary af~0(r) of Q0(r) consists of a finite number of arcs on f20 n (aB e U aBr) and level 

arcs or curves each of which is a portion of a closed curve or the whole closed curve 

Contained in A~. 

We apply the argument principle to f in each connected component of g20(r) and 

apply the same argument given by Fuchs [6]. Then we obtain 

where 

fe n dr <<. (fl§ + a-71og ~9), 
iP(r) 

r 

7 = dargf(z) 
onaB 0 

and v(r)denotes the number of closed level curves in A~ entirely contained in B r \ B  e. 
Since v(r) is a nondecreasing function of r, this inequality is valid for arbitrary R>O 

only; if v(r)<.fl+7, namely, the number of components in Ac which are entirely con- 

tained in C\B-~ is finite. Hence we can find R>Q such that AccBs, and so 

A=Aa O AccBn. 
Since (aQ0) \ (aBl)=AcBs,  C\Bscf~o=~2. This contradicts the assumption that 

af2 is unbounded. Q.E.D. 

w 3. Boundary behavior of a Schwarz function 

In this section,~ we shall first give several remarks on a Schwarz function and next we 

shall show its specific boundary behavior. 

18-918286 Acta Mathematica 166. Imprim6 le 17 avril 1991 



276 M. SAKAI 

We have defined the Schwarz function in the introduction. We again define it here 

and discuss it in detail. 

Definition 3.1. Let ~ be an open subset of a disk Br(~o) of radius r and center ~o 

such that r E Of/. Set 

r = (af2)  n O,(~0). 

A function S defined on f/U F is called a Schwarz function of f~ U F if 

(i) S is holomorphic in f/,  

(ii) S is continuous on f/U F, 

(iii) S(r on F, where ~ denotes the complex conjugate of r 

If it is necessary to indicate the center r or the disk Br(r we call S the Schwarz 

function of f/U F at r or in BX~0), respectively. 

First we note that if f2 U F has a Schwarz function S in B,(r then there are no 

connected components D of f / such  that aDcB,(r Indeed, ifD is such a domain, then 

SDcF, and so S(~)=~ on aD. Since two harmonic functions S(z) and ~ have the same 

boundary values on aD, S(z)=~ in D. This contradicts that ~ is not holomorphic in D. In 

particular, f /n  aBe(~0)~=O for every ~ with 0<&<r if f/U F has a Schwarz function in 

B,(~0). 
Next we note that if F has an accumulation point in B,(~0), in particular if the center 

~0 is an accumulation point of F, and if there exists a Schwarz function of ~ U F in B,(~0), 

then it is determined uniquely. If F is of positive capacity, then the theorem of 

Riesz-Lusin-Privaloff type guarantees the uniqueness, see e.g. Theorem in 7A of Sario 

and Nakai [8]. If F is of zero capacity, then a Schwarz function which is holomorphic in 

~2 and continuous on Q U F--B,(~0) is holomorphic in the disk B~(~o) and is determined 

uniquely by values on F, because F has an accumulation point in B,(~0). 

To discuss the boundary behavior of a Schwarz function, we may assume that r= I 

and ~0---0 by the following lemma: 

LEuraA 3.1. (1) Let S be the Schwarz function of  ~OF at ~o. Then 

S,fz) = S(z + ~o)- r 

is the Schwarz function of  (fI-~o)U(F-r at O, where E-~o for a set E denotes a 

parallel translation { z -  ~o; z E E} of E. 

(2) Let S be the Schwarz function of  fIO F in B,=B,(0). Then, for a nonzero 

complex constant k, 
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S~(z) = ~S(z/k)  

is the Schwarz function o f  (kff2)U (kF) in kBr=Bl,lr, where kE for a set E denotes a set 

{kz ; z6E)  similar to E. 

Proof. (1) If z6(ff2UF)-~0, then z+r and so St is holomorphic in Q-~0 

and continuous on (fl-r U (F-~0). For ~ 6 F-~0, S , (~)=S(~+~0)-~=(~+~)-~0=~,  

and so St is the Schwarz function of (~-r (F-~0). 

(2) Ss is holomorphic in kf~, is continuous on (kfl)U(kF) and Ss(~)=kS(~/k)= 

k(-~)=~ on kF. Thus S~ is the Schwarz function of (k~)U (kF). Q.E.D. 

Remark. More generally, let T be a one-to-one conformal mapping of B~(~0) into C 

and let T(w)=T(a~). Then S r = T o S o  T -1 is the Schwarz function of 

(T(Q) N B~(T(~o))) U (T(F) t3 B~(T(~o))) 

in B6(T(r ) for some 6 if S is the Schwarz function of f~ U F in Br(r 

We shall show 

PROPOSITION 3.2. Let S be the Schwarzfunction of  Q U F in BI=B1(0) and assume 

that 0 is an accumulation point o fF,  in other words, 0 is a nonisolated boundary point 

o f  if2. Then 

lim IS(z)/zl = I .  (3.1) 
z E f~, z--~O 

Remark. If f l = B l \ { 0 ) ,  then F={0) and the Schwarz function S of s F is just a 

holomorphic function S in B1 satisfying S(O)=O. Hence, in the proposition, it is 

necessary to assume that 0 is a nonisolated boundary point of Q. 

The proposition follows from the following key lemma and the Fuchs theorem: 

LEMMA 3.3. Let S and ~ be as in Proposition 3.2. Then there is a disk B~=B~(O) 

such that 

IS(z)l > Izl/5 in ~ fl B~. 

Proof  o f  Proposition 3.2. First we consider S(z)/z. The function is holomorphic in 

f~ and satisfies 

lim IS(z)/zl = I~/r = 1 
z ~ , z ~  
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for every ~ on F \{0 )=(aQ)NB1\{0} .  Since S is bounded in ~2 nB6 for 6 with 0<6<1,  

IS(z)/zl<.alzl in ~flBa 

for some a>0. Applying the Fuchs theorem, Theorem 2.1, we obtain 

lim sup IS(z)/zl ~< 1. (3.2) 
z E g~, z--,O 

Next we consider z/S(z). If Lemma 3.3 is true, it follows that z/S(z) is holomorphic 

and satisfies 

Iz/S(z)]<5 in f~nB 6. 

We again apply the Fuchs theorem and obtain 

lim sup Iz/S(z)l ~< 1. (3.3) 
z E Q ,  z--~O 

From (3.2) and (3,3), we obtain 

1 ~< lim inf IS(z)/zl ~ lim sup IS(z)/zl ~ 1 
zE f~, z- ,0 zErO, z---,0 

and (3.1) holds. Q.E.D. 

Proof of Lemma 3.3. Let c be a complex number with Icl<l  and let 

Fc(z)=z(S(z)-cz). We shall first show that Fc is not constant in any connected compo- 

nent of ~.  Assume that F~ is identically equal to a constant k in a connected component 

D of f~. Then 1~12-c~2=lr176 on (aD)flnp where ~=1~1 ei~ If k=0, then ~=0 

and this contradicts that 0 is not an isolated point of a[2. If k~0, then the line 

{w;argw=argk} and the circle {w;Iw-ll=lcl} cross  at most in two points. Hence e '~~ 

has at most two solutions to the above equation, and so r162 i~ has at most four 

solutions if c=~0. This is again a contradiction. Hence c=0 and lr This means that 

(aD) nBl is contained in a circle with center 0. If (aD) nB~ is not the whole circle, then 

D=B1\((aD)nBO and 0 is not the boundary point of f2, a contradiction. Hence 

(aD) NB1 is the whole circle and there are two possibilities: D is a disk surrounded by 

the circle or D is an annulus surrounded by the circle and the unit circle. In the latter 

case, there is another connected component of f~ inside of the circle, because 0 is a 

boundary point of f~. Hence, in both cases, there is a connected component of f~ whose 

closure is entirely contained in BI. This is a contradiction as mentioned after Definition 
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3.1. Thus we have proved that F~ is not constant in any connected component  of f2 if 

Icl<l. 
Now we consider the case c=0.  By the above argument,  Fo(z)=zS(z) is not 

constant in any connected component  of  ft.  We choose r so that 0 < r < l  and Fo(z):4:0 on 

C=f~naBr, and fix it. We note that Fo(z) tends to ~=l~12=r  2 as zEC tends to 

~E Fn aBr. In particular, inf(IF0(z)l; z ~ C}>0 and F0 is continuous on the closure t~ of  

C. The set C consists of  at most  a countable number  of open at:cs Cj on aB, if C*aBr. 
We shall next  discuss how to choose a small positive number  e. First choose e so 

that 

0 < e < 1/5. (3.4) 

Since F~(z)=z(S(z)~-cz) converges uniformly to Fo(z) on C as c tends to O, we can 

choose e so that 

m = inf{IF~(z)[; z E C and [c I <~ e} > 0. (3.5) 

By virtue of  (3.5), the integral J ' cd  argFc can be defined for each open arc Cj of  C by 

fcjdargFc= lim I~176 
Of' ~72 >0' '~0 ,J 011 +711 

where Cj={rei~ 0jl<0<0j2 }. A detailed discussion will show that J'cjldargF~l is finite, 

but here we do not use the fact. We note that .fcjdargFc is well-defined and it is finite. 

Since F0(~)=r 2 for  ~ E C \ C c F  n OB,, for  every small rl>0 we can find a compact  subset 

K of C such that Fo(C\K)cB~(r2). Let  r/=r2/5. Since IF~(z)-fo(z)l=lczZl<er2<r2/5 by 

(3.4), F~(C\K),--Ba/5)~2(r2)c {w ~ C; Re w>0} for every c with Icl<~e. Hence  there exist 

only a finite number  of  Cj such that .fcjdargFc>~:r for some c with Icl< . We set 

tc -- E '  fcjdargF~ ' 

where E' denotes the sum of  terms satisfying ScdargFc~zr. We again note that Fc 

converges uniformly to F0 on C as c tends to 0 and see that ScdargFr converges to 

ScdargFo for  every f ixed j .  Thus we can choose e so that 

t = sup{re; Icl < +oo. (3.6) 

Now we choose e so that e satisfies (3.4), (3.5) and (3.6), and fix it. 
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Next take 2 so that 0<2<m,  where m is defined by (3.5), and set 

mx, = {z6QNBr; IF~(z)l =2}.  

Since F~(z) converges uniformly to 0 on {cfiC;lcl<~e} as z tends to 0, we can find 

Q=~(2)>0 such that 

B e n {z 6 f~ nB~; IFc(z)l ~> 2} = O 

for every c with ]c]~<e. 

Now take a regular exhaustion {f2.} of f2. The boundary Of~. of ~ .  consists of a 

finite number of real analytic simple closed curves. Since F0(r162 z on F, we can find a 

neighborhood U(r of r  such t h a t  U(~)cB(I/3)Ir and Fo(f~nU(r 
B 1~12(1r For z fi P N U(r 

IFc(z ) -Fo(z) l  = Icz21 <~ e(1 + 1/3)21r < 2el~l 2. 

Hence F~(Q n U(~))~B3tIr 2) for r e F n K \  (0}. Set 

V = U (B3etz(t2) ; 0 < t ~< r} 

and 

U= [J(U(~);~l"~n Br\(0}}. 

Then F~(QN U)cV. Now take g2. so that (QNf~.)n(BrNBe)cU. Let 

~.,~,~ = {z e Q. nBr; IFc(z)l > ~}. 

We shall apply the argument principle to Fc in each connected component of 

~'~n, ~., c: 

fa = 0. dargF~ 
~n.;,,c 

We note that f~.,a, c=Br\BQ -'---, F C is holomorphic on ~2.,x, c and IFr on Of~.,~,c. 

We may assume that 8ff2.,x, c consists of a finite number of piecewise real analytic 

simple closed curves. Each component of 0f~.,~,c consists of portions of C, 

Az, c and Og2.. Since 2<m and [F~(z)l>~m on C by (3.5), CflAa,~=O. w e  divide 0f~.,z, r 

into two parts. The first is the union of simple closed curves contained entirely in C, 

A~,c or 3~ .  and the second is the union of simple closed curves which consist of 

portions of both C tl Aa, ~ and Off~.. 



REGULARITY OF A BOUNDARY HAVING A SCHWARZ FUNCTION 281 

If  a curve J of aff~n,~, c is entirely contained in C, then J=C=aBr and 

SsdargFc=SoBrdargFc. If a curve J is entirely contained in A~, c, then SjdargFc is 

equal to a positive integer multiple of - 2 x .  If  a curve J is entirely contained in alan, 

then it is entirely contained in f l n  U, because (aft ,)  n (Br\Be)~ U. Hence 

F~(J) c F~(f213 U) ~ Vc {w E C;Re w > 0}, 

and so fjdargFc=O. 
Now we discuss the nontrivial and final case: a curve J of afln,~,~ consists of 

portions of both C U Aa, c and af~ n. We express J as the union of an even number of arcs 

Jj, j = l , 2  . . . . .  2l, such that J jcaQn for odd j and Jj.~C or JjcA~,~ for even j .  Since 

Fc(Jj)c V= {w E C; Re w>0} for odd j ,  we can find, for every j,  an integer a i such that 

Ik=~s dargF~-2xaj <2" 

21 Hence we can express f j d a r g F ~  as 2zla2t=2ztEj=l(aj--aj_l), where a0=0. If  aj>aj_ l, then 

j is even and J F  C. Further  it follows that j'j~ d arg F>~zr and a j - a  j_ ~<(1/zt) ~jj d arg Fc in 

this case. Hence 

fjdargFc<-2zc2(aj-aj-~)<22'fjdargF~, 
ai> aj _ i 

where E' denotes the sum of terms satisfying f jjdargF~>~x. We note that each Jj is a 

connected component of f~n N C. 

Summing up the estimations of all cases, we obtain 

0=~ dargFc.-2zw.,~,c+2~'fc darg F~, 
~'~n, 2, c n,j 

where v~,a, ~ denotes the number of components of afl~,a, ~ which are entirely contained 

in Aa, ~, C~,j denotes connected components of f ~  n C and E' denotes the sum of terms 

satisfying J'c~,~ d arg Fc~>zt. Hence 

vn,~,~<~' f%dargf c. 
By letting n tend to + o0, we see that 

v~,a, ~ <~lim v~,~,~ <<-12' fcdargF~= t-L. 
n ~  ~ .IT , 
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The value Lc/ar does not depend on the choice of n and 2. If  Fc has a zero in f2 A Br, then, 

for sufficiently large n and sufficiently small ;t, there corresponds a curve J of  ag2,,a, c 

which is entirely contained in Ax, c. The above estimation implies that the number of 

zeros of Fc in g2 ABr is finite. 

Thus we can find a small disk B6, such that Fc(z)~:O in f2 AB6,, namely, S(z)~cz in 

f~nB61. If  61 does not depend on c when c varies on then IS(z)l> lzl. But 61 

may depend on c and we need further consideration to prove the lemma. 

By (3.6), we see that v,,~,~<~t/:r. We set 

v =  sup{v,,~,c; n E N ,  0 < ; t < m ,  Icl 

We take no, ;to and Co so that V,o, ao,__~o=V. We shall show that there is an el>0 such that 

V,o, Xo, ~=v for every c on B,t(Co)N B,. 
Let Zx, c be the union of v,o,x ' ~ components of af~,o,X ' c which are entirely contained 

in Aa, c. We fix co and vary ;t near ;to. Then X~, co moves near Xao, Co" More precisely, let Jxo 

be a curve of EXo ' Co. If;t<;to (resp. 2>20) and if;t is sufficiently close to ;to, then there is a 

curve Jx of Z~, ~ which is contained inside of (resp. outside of) J~o and is close to Jao" 

Since the number of  components of  XXo ' Co is finite, we can take such a ;t valid for all 

components of Z~o ' Co. 

We take such ;tl and ;t2 sufficiently close to ;to so that 21<20<22 and fix them. Next 

take r/>0 so small that r/<;t2-;t 0 and r/<;to-;tl, and fix it. Since Fc(z) is a continuous 

function of c, we can find et>0 such that 

and 

IFc(z)l I> 22-,7 > 2o 

IFc(z)l ~< 21 +r /<  20 

on Y'~2, Co 

on X~t,c ~ 

f o r  every c in Bei(Co). Let  A be a doubly connected domain surrounded by J~i and J~2 

which lie near a curve J~o ~  Z~o,C0 and are contained in Y~a~,C0 and Xa2,c0, respectively. 

Then, by the above inequality, there is a curve J which is contained in A and is a 

component of X~o ' c for every c in Bet(Co). ,Thus we have proved that V.o ,~o, c~>v for every c 

in B,t(Co). By the definition of  v, v,0,~0,~=v for every c o n  Bel(co) fq B e. 

Now take e2>O and cl so that Be2(cl)'-'Bet(c o) fl B e. By the definition of ~0=0(20), 

Be0 N {z E f2 N Br; IFc(z)l I> 2o) = o 

for every c in B~2(cl). Since v,,a, c=v for every n>~no and 2~<20, Fc(z)4:0 in f2 fl Boo for 
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every c in B,~(cl), namely, S(z)*cz in fl nBoo for every c in B~2(cl). This implies that 

S(z)-clz4=(C-Cl)Z in QNBoo 

for every c with IC-cll<e2. Hence 

IS(z)-qzl ~e~lzl in f~nBeo. 

We now apply the Fuchs theorem to z/(S(z)-cl z). Since 

lim - z I =  ~_~cl~ ~ < ~ 1  
zeU, z-~r S(z)-clz 1-e 

for every ~ on (a~)ABe0\{0 } and 

I z <~ 1 in ~ O Bo o , S(z)-clz e2 

by the Fuchs theorem, we obtain 

l imsupl  z [<~ 1 
z~,~-~o S(z)--qz l----e" 

Hence there exists a positive number 6 such that 

I z t~  < 2 in f2 NBa. 
S(z)--c~z I-~ 

Since 

((1-~)/2)lzl ~ IS(z)-c~zl ~ IS(z)l+4zl, 

by using (3.4), we obtain 

I S ( z ) l ~ ( ~ - 3 e ) l z l > ~  in ~2 OBa. Q.E.D. 

w 4. Estimation of a valence function 

Let fl be an open subset of the unit disk Bt such that 0 is a nonisolated boundary point 

of fl and let F = ( ~ )  ABl. In this section we always assume that 0 is a nonisolated point 

of F. Assume that there is a Schwarz function S of f~ U F in Bi and let F(z)=zS(z), which 

19-918286 Acta Mathematica 166. Imprim~ le 17 avril 1991 
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was denoted by Fo(z) in the proof of Lemma 3.3. Let Q be a positive number such that 

F(z)*O on f~ n B a and set m=inf{lF(z)t;z ~ R n SBe}>0. The existence of such a p is 

guaranteed by Lemma 3.3. 

We shall discuss the cluster set and the valence function of FI~flB e. Since 

]F(z)l>~m on f~ A SB e and F(z)=zs on F, the cluster set C~tanB~ of FIR AB e is 

contained in {w E C; Iwl~>m} U [0, m), where [0, m)= {w; 0~<w=Re w<m}. Since F is not 

constant in any connected component of R and limzen, z_~oF(z)=O, VFI~nB (W)~>I for 

some w which is close to 0 and is contained in Bm~[O,m). By Lemma 1.1, V~nnB ~ is 

equal to a constant, say v, in Bm~C~nB ~. Therefore v=vt~nn(W)>~ 1 in B , , \ [0 ,  m). We 

shall show 

PROPOSITION 4.1. It follows that v=l  or 2. 

Proof. Let {ft.} be a regular exhaustion of f2 and let wEB,.\[O,m). Since 

VvlnnB(W)=V<+ ~, there are v w-points of F in R. AB e for sufficiently large n. By the 

argument principle, we obtain 

f 
v= v~nB (w)= ~ J darg(F(z)-w). 

z~ Jo(Q. nna) 
(4.1) 

We note that (0R.)fl (OB o) consists of a finite number of points. We may assume 

that 8(g2.nBe) is expressed as the union of R.NSBQ and (SRn) fl Be: 8(RnNBo)= 
R nflaBo+(aR.)flB e . As we have noticed in the proof of Lemma 3.3, 

J'un0so d arg(F(z)-w) is well-defined and finite, because inf{lF(z)[;z E f2 o OBQ} =m>lw[ 

and F(z)=Q2>0 on (0R)fl (OBQ). Since F is continuous on R U F and F(z)= [zt:~>0 on F, 

we see that 

f ~ i  darg(F(z)-w)=O (4.2) 
\~n)nO o-(Of~.) n~ 

for large n. Hence, by dividing (4.2) by 2~z and adding it to (4.1), we obtain 

v = d arg(F(z) - w). 
naB o 

The equation holds for every w in B , , \ [0 ,  m). By letting w tend to 0, we obtain 

v = d arg F(z). 
haBo 

(4.3) 
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The equation (4.3) is valid for every smaller p, because F(z)*O in f2 nBQ and the right- 

hand side of (4.3) is continuous with respect to Q. 

Let G(z)=S(z)/z. Then F(z)=z2G(z). and so argF(z)=2argz+arg G(z). We set 

for r with 0<r<Q. Then 

A(r) = ft~naB d arg G(z) 

A(r)= 2erv-2 f~ dargz. 
n aB r 

To show that v<~2, we shall estimate the value of A(r). 
Take e with 0<e<l /2 .  By Proposition 3.2. we can find 6 with 0 < 6 < 0  such that 

1 - e ~  Ia(z)l ~ l + e  in f l n B  a. (4.4) 

Since (a arg G(z))/(as)=(a log IG(z)l)/(ar) along ff~ n aBr, we obtain 

= ~ alog IG(z)l A(r) r d O ,  

Jo n aB r ~ r  

where z=re i~ Dividing by r and integrating the equality from r/to c5, we obtain 

A(r) dr= f f. a log ,G(z), dOdr. 
--7-- n ~ \ ~  ar 

To apply the Fubini theorem, we shall show that (a log IG(z)l)/(ar) is integrable on 

Q N (B~\B~) for every r/with 0<r/<6. We note that I(a log IG(z)l)/(ar)l<<.l(log G(z))'l = 

[G'I/IG I and G'(z)=(F/z2)'=F'(z)/zE-EF(z)/z 3. Since IFl=lzl21Gl<<.(l+e)lzl 2 in Q N Ba, we 

may assume that F(QflBa)cBm. Hence SnnBJF'lEdxdy<.v.areaBm<+ oo. Thus, by 

using the Schwarz inequality, we see that F '  is integrable on f~flBa. Therefore 

(a log IG(z)l)/(ar) is integrable on Q n (Ba\B-'~). 

We apply the Fubini theorem and make first the integration with respect to r. For 

fixed 0, the set Q n (B6\B~)N {z; argz=0} consists of at most a countable number of 

segments. At the endpoints of the segments, log IG(z)l has the value 0 except two points 

rle i~ and c)e i~ if they are contained in ~ .  By (4.4), 

-2e<log(1-e)~<loglG(z)l<.log(l+e)<2e in f~ nB6, 
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because we have chosen e so that 0 < e < l / 2 .  Hence  we obtain 

If~ ~ OI~ dr I <~4e, 

and so 

for every small r/. 

We note that 

f ~ dr <- 8ere 
A(r) 

r 

(4.5) 

r 
A(r) = 2zlv-  2 ~ d arg z I> 2 : rv-  4zr (4.6) 

/ 

�9 I ~ A O B  r 

and assume that v~2 .  Then A(r)>-O by (4.6), and so A(r)<2~t for small r by (4.5). Hence  

v~<2 by (4.6). Q.E.D.  

Now we define an index of  f~ U F at 0. 

Definition 4. I. Let  f~ be an open subset of  a disk Br such that 0 is a nonisolated 

boundary point o f  f~ and let F = ( 0 ~ )  NBr. If  there is the Schwarz function of  f~ U F in Br, 

we call v in Proposit ion 4.1 the index of  f2 U F at 0. It is equal to I or 2. The index at ~0 

for an open subset f~ of  a disk Br(r and F=(0f2)nBr(r is defined by using a parallel 

translation of  the Schwarz function if r is a nonisolated boundary point of  f2. 

COeOLLARY 4.2. It follows that 

f j d  F(z) = 2~vn(J, O) arg 

for every real analytic closed curve J in f] A B e, where v denotes the index of E2 U F at 0 
and n(J, O) denotes the winding number of J with respect to O. 

Proof. We may assume that J is a simple closed curve. Since 0 is not contained in 

f~ ABQ, there are two cases: 0 is contained inside or outside of  J. 

Assume that 0 is contained in the inside D of  J. For  w EBm\[O,m), there are 

exactly v w-points o f f  in f l  AB e as we have seen at the beginning of  this section. These  

v w-points of  F are contained in D for w E Bm \ [0 ,  m) sufficiently close to 0. Le t  {f~n) 

be a regular exhaust ion of  f~. Then f~n contains these v w-points of  F and J for  large n. 
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We apply the argument principle to F - w  in f2n N D and obtain 

1 f d arg(F(z)- w) = v.  

2az I 0(~.no) 

We divide O(f2, OD) into two parts: O(f~, nD)=(a~2,)ND+J. 

Since F is continuous on g2 OF and F(z)=lzl2>~O on F, S~m.)nodarg(F(z)-w)=O for 

large n. Hence we obtain 

j d  arg(F(z)- w) = 2~rv. 

Finally, by letting w tend to 0, we obtain 

j darg F(z) = 27iv. 

If  0 is contained outside of J, then v w-points of F in g) N B e are contained outside of 

J for w E Bin\[0,  m) sufficiently close to 0, and so there are no w-points of F contained 

in D. Hence 
I 

( d arg(F(z)- w) = 
1 

0 
Ja 

for f~, with J ~ , .  By the same argument as above, we see that S ,dargF(z)=O. Q.E.D. 

w Proof of the main theorem 

First we prepare the following proposition: 

PROPOSITION 5.1. Let g2 be an open subset o f  the unit disk B1 such that 0 is a 

nonisolated boundary point o f  ~ and let F=(ag2)ABi. Then 

(1) there exists a Schwarz function o f  (f2 ABe)U(FflB~) in B~ for some r>0 with 

index 1 at 0 i f  and only i f  there exists a function c~j defined on (f2UF)NB~ for some 

6>0 such that 

(i) q)l is holomorphic and univalent in f2 NB~, 

(ii) O1 is continuous on (g2UF)NB~, 

(iii) ~l(~)=l~l 2 on FNB~, 

and 

(2) there exists a Schwarz function o f  (f2 NBr)O (F A Br) in B~ for some r>0 with 

index 2 at 0 if and only if there exists a function cb: defined on (Q U F) N B~ for some 6>0 
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satisfying (i) o f ( l )  and 
(ii') ~2 2 is continuous on (f2UF)NB6, 
(iii') +~(r162 on F nB~, 

(iv) +2(f2 NB~)O(-e, e)for e>0 contains a neighborhood of w=O. 

Proof. Assume that S is the Schwarz function of (f2 OBr) O (F flBr) in Br  with index 1 

at 0. Take BQ and m as mentioned before Proposition 4.1. Let V=F-I(Bm)Ag2OBQ, 
where F(z)=zS(z). Then C~vc[O, m)O a n  n and Vtqv(W)<~l in C\Ct~ v. Hence, by Lem- 

ma 1.3, ~l(z)=(Fl(')(z ) is holomorphic and univalent in V, and continuous on f'. Since 

F is continuous at 0, there is a disk B6 such that f2nB6cV. By the definition of the 

Schwarz function, ~l(~)=F(r162 2 on FAB~. Thus ~1 satisfies (i) to (iii). 

Assume next that the index is equal to 2. We use the same notation as above. Then 

FIl/is holomorphic in V, is continuous on 17' and does not vanish in V. From Corollary 

4.2, it follows that F satisfies the condition (ii) of Lemma 1.4. Since the number of zeros 

o f F '  in F-1(Bm\C~v) N V is at most two by Lemma 1.2, we can take smaller 0 and m 

so that F'(z)4:0 in F-I(Bm\[O, m))n V. Now f=FIV satisfies (i) to (iv) of Lemma 1.5. 

Hence, by Lemma 1.5, we can take appropriate branches of X/f(z) so that 

*2(z)=X/f(z) is holomorphic and univalent in V. On the boundary of V, we take 

arbitrary branches of X/if(z) and set ~ 2 (z )=V~z) .  It also follows from Lemma 1.5 

that ~2(V)U(-X/--m,X/--m)=Bv% ~. Since ~(z)=F(z) on V, ~ is continuous on 

(t2 U F)NB6 and satisfies ~(r o n  r n B6. Thus ~2 satisfies (i), (ii'), (iii') and (iv). 

Conversely, let ~l  be a function defined on (~2 O F)AB6 satisfying (i) to (iii). Then 

the function S defined by S(z)=a~l(z)/z for z E (f~ OF)AB6\{0} and S(z)=0 for z=0 is 

holomorphic in f~flB6 and continuous on (g2UF)AB6\{0}. On FAB6\{0},  

Hence, S is the Schwarz function of (g2 AB6) 0 (F fiB6) in B6 if it satisfies 

lim IS(z)l = o.  (5 .1)  
z q ~, z--.~O 

Take t/ with 0<r/<6 and we shall apply the Fuchs theorem to S in f~AB~. If 

E F N B ~ \  {0}, then 

lim sup ISCz)l = 
zEfLz--,~ 

Since ~! is bounded in a neighborhood of 0, IS(z)l<.a/lzl for some a in f~ fiB~. Hence, by 

the Fuchs theorem, 

lim sup IS(z)l = ,7. (5.2) 
zEQ, z-+O 
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The inequality (5.2) holds for every ~ with 0<~<6,  and so (5.1) holds. Thus S is the 

Schwarz function of (f~ ABe) U (F ABe) in B~. Since F(z)=zS(z)=~l(z) and ~1 is univa- 

lent, the index of (Q NB6) U (F ABe) at 0 is equal to 1. If ~2 satisfies (i), (ii'), (iii') and (iv), 

then, by using the same argument as above, we see that the function S defined by 

S(z)=(~2(z))2/z for z E (fl U F)N Be\{0}  and S(z)=0 for z=0 is the Schwarz function of 

(f~OBe)U(FnBe) in B6 with index 2 at 0. Q.E.D. 

Now we shall show the main theorem. 

T H E O R E M  5.2. Let Q be an open subset of  the unit disk B1 such that 0 is a 

nonisolated boundary point of  ~ and let F=(aQ) NB1. I f  there exists a Schwarz function 

of Q U F in Bl, then, for some small 6>0, one of  the following must occur; (1) and (2) 

correspond to the index 1 and 2 of  ~ U F at 0, respectively: 

(1) ff~flBe is simply connected and FflB6 is a regular real analytic simple arc 

passing through O. 

(2 a) F N Be determines uniquely a regular real analytic simple arc passing through 

0 and FNB6 is an infinite proper subset of  the arc accumulating at 0 or the whole arc. 

QAB6 is equal to B e \ F .  

(2b) f~f~B6 consists of two simply connected components ~1 and ff~2. (~O0NB6 

and (afrO2) ABe are distinct regular real analytic simple arcs passing through O. They are 

tangent to each other at O. 

(2c) f2NB6 is simply connected and FNB6 is a regular real analytic simple arc 

except for a cusp at O. The cusp is pointing into Q ABe. It is a very special one. There is 

a holomorphic function T defined on a closed disk B--~ such that 

(i) T has a zero of  order two at O, 

(ii) T is univalent on the closure I:I of  a half disk H={rf iB~;Imr>0},  

(iii) T satisfies F AB6cT((-e,  e)) and T(I~)cff2 O F. 

Conversely, if( l) ,  (2 a), (2b) or (2c) holds, then (if2 flBr)U (F flBr) has the Schwarz 

function for some r>0. I f  (1) or (2 a) holds, then the Schwarz function can be extended 

holomorphically onto a neighborhood of O. I f  (2b) holds, then the Schwarz function 

can be extended from ff~l onto a neighborhood of  O and from f22 onto a neighborhood of  

O. The two extensions are distinct in a neighborhood of  O. I f  (2c) holds, then the 

Schwarz function can not be extended onto any neighborhood of  O. 

Proof. Assume first that there is a Schwarz function of ff] tJ F in B~ with index 1 at 

0. By Proposition 5.1, there is a function 4'1 satisfying (i) to (iii) of Proposition 5.1. 

Since ~ is continuous at 0, by Lemmas 1.1 and 1.3, we can find a neighborhood U of 0 
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and e>0 such that r N U is a one-to-one conformal mapping of g2 N U onto B , \ E ,  
where E is a relatively closed subset of [0, e) containing 0. Let z=tP~(w) be the inverse 

function of r N U defined in B , \ E .  Let Wt(w)=Wl(tO). Then W1 is holomorphic in 

B , \ E ,  and so Zl(w)=Wl(W)U)l(w)/w is holomorphic in B , \ E .  
To apply Lemma 1.2 to Zl, we shall determine the cluster set of Z1. Since Wt is a 

bounded function, by the Fatou theorem, W~(u+iv) converges as v>0 (resp. v<0) 

tends to 0 for almost all fixed u on [0, e). By (iii), the modulus of the limit must be 

equal to X/d- for u on E. We denote the limit by X/--u-e ;~ (resp. g " ~ e i ~  I f  

V'--d'ei~247 i~ a.e. on E, then, by the generalized Painlev6 theorem, tItl can be 

extended holomorphically onto B,. Since z=0 is a nonisolated point of F, w=0 is also a 

nonisolated point of E, and so the extended holomorphic function, we denote it 

again by W1, satisfies IqJl(U)l=x/--d - as uEE tends to w=0. This contradicts that 

I~l(w)[=O(lwl) if u21 is holomorphic at w=0. 

Hence 

, - - - -  iO+(u) P = {u E E; V u e and g r - - u - e  iO-(u) exist and X~--fie '~247 �9 "~/--u-e iO-(u)} 

has positive linear measure. Since 

lim Zl(u+iv) = e i(O*(u)-~ :4= 1 
v--*+O 

and 

= e-i(O+(u)-O (u)) lim Zl(u+iv ) - = 1/ei(~176 = 1 
v-.-~-O 

for u EP, Z1=-1 if Z~ is a constant function. Now take a smaller e>0 so that e EP and 

Z~(w)*l on OB,\{e) ,  and fix it. We can take such an e, because Z~ is not the constant 

function with value 1. We denote again by Zi the restriction of Z~ onto B , \ E  and 

denote again by E the intersection of E and B,. Then O{Cz,(~); ~E OB~\{e)) is a real 

analytic arc J which does not contain 1. The Lindel6f theorem asserts that the 

existence of a limit X/-~e ;~ (resp. q-u-ue i~ at u of the function ~ t  implies the 

existence of the limit for any non-tangential approach to u. For the Lindel6f theorem, 

see e.g. Theorem 2.3 of Collingwood and Lohwater [4]. In particular, Wl(u+iv) con- 

verges to X/-Te i~ (resp. V'-~ee iO-(~)) as u+ivEOB~ with v>0 (resp. v<0) tends to e. 

Hence J has two endpoints ei(~176 1 and eSi(~176 1. :If r E E tJ {e} \ {0}, then 

Cz~(r because IqJl(w)l tends to X/--~- as w tends to r {e}\{0}. 

Since 
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and 

I't/I(W)2 Z 2 Z 2 Z 

w '~(z) F(z) S(z)' 

by Proposition 3.2, we see that 

lim [Z l (w)  t = 1. 
w E Be \E ,  w--*O 

Hence Czl(O)COBl, and so Cz cJU OB I. 

Take a small disk B~(1) with center  1 so that JNB~(1)=~.  By Lemma 1.2, we see 

that Z~I(B~(1)\OBO has at most  a finite number of connec ted  components ,  sayn.  Now 

we shall show that E has at most n + l  components .  Assume that E has more than 

~u(J)~,+~ with centers on [0,e) so that n + l  components.  Take n + l  disjoint disks t~  Jj=~ 

each B (j) contains at least one component  of E and t.JaB(J)cB,\E. We can take 

{B (j)} so that Zl(W)4=l on t.laB (j) and we can choose ~ with 0<~<~/ so that 

Zl(t.JaB (j)) NB~(1)=O. Since Zl(w)=lWl(w)i2/w>O for w E [0, e) \E  and IZl(w)l---~l as 

w~E, we see that, for each j ,  there is a point wfiB(J)N([O,e)\E) such that 

Z~(wj)EB~(1)\OB 1. This means that at least one connected component  of  

Z(~(B~(1)\OBO intersects with B(i)\E. We have chosen ~ so that ZI(t.JOB (j)) N B~(1)=O. 

Therefore each connected component  of  Z(~(B~(1)\OBO does not intersect with 

t.JOB (j), and so there is at least one connected component  of  Z(~(B~(1)\OBO in each 

B(J ) \E .  Thus the number  of  connected  components  of  Z~I(B~(1)\OB~) must be not less 

than n+ 1. This is a contradiction and we have proved that E has at most a finite number 

of components.  

Since 0 is a nonisolated point of  E, we can choose e~>0 so that [0, eO=E. We take a 

smaller neighborhood U of  0 such that ~dg2 N U is a one-to-one conformal mapping of  

f~ N U onto B ~ \ [ 0 ,  e l l  L e t ~  be a one, to-one conformal mapping of  Q n U onto 

H = { r E B v T f ; I m r > 0  ) and let z=T(r )  be its inverse function in H.  Set 

~T(~), z E H  
T(r) = L S - ~ f ) ) ,  f E H .  

Then Tis  bounded and "i'(Q+ia) converges as a>O or a<O tends to 0 for almost all fixed 

{) in (-V'-~-I, ~ f ~ ( ) .  If the limit limo_++ 0 T(Q+io)=limo_)+ o T(o+ia) exists and is equal to 
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r then it is on F and 

lim T(Q+io) = lim S(T(Q+io)) = S(~) = ~. 
o--+-0 o--}+0 

Hence, by the generalized Painlev~ theorem, T can be extended holomorphically onto 

Bx/-ff~ and the extension, we denote it again by T, is univalent in a neighborhood of 0, 

because JT(o)}=tO] for Q E ( -  X/-q[, V ~ f ) .  Thus we can find B~ with center z=0 stated in 

(1). FflB~ is regular analytic, because it is the image of an interval in the real axis un- 

der T. 

In the case of index 2, we take Z2(w)=W2(w)U)2(w)/w 2 instead of Z l, where qJ2 is 

the inverse function of (1)2 in (2) of Proposition 5.1. u)2 is defined in B ~ \ E  and E is a 

relatively closed subset of ( - e ,  e). By the same argument as above, we see that 
�9 . iO+(u) �9 . i0  (u)  

llmo__,+oW2(u+tv)=lule and hmo__,_o~2(u+w)=lule - exist a.e. on E. 

If lulei<<")=luleie-~") a.e. on En( - r / , r / )  for some ~>0,  then W2 can be extended 

holomorphically onto B~ and the extension is univalent in a neighborhood of w=0,  

because Ilule'e+<")l=lu I on E and w=0 is a nonisolated point of E. Hence this is the case 

(2 a). 
Assume next that PA(-~],  ~1) has positive linear measure for every r] with 0<r/<e,  

where 

P = {u E E; [ule i~ and lule i~ exist and lu[e ia+(') # [u[eiO-(u)}. 

Since P O ( - e ,  0) or P n (0, e) has positive linear measure, we may assume that P A (0, e) 

has positive linear measure. If  P f l ( - e ,  0) has zero linear measure, then tlJ2 can be 

extended holomorphically onto ( - e ,  0), and so Z2 can be also extended holomorphically 

onto ( -e ,  0). We denote again the extension by Z2. We take a smaller t > 0  so that e E P  

and Z2(w):I=I on 8B~ \ {e } .  We restrict Z2 onto B ~ \ E .  If  PA ( -e ,  0) has positive linear 

measure, then take first e' E P f l ( - e , 0 )  and take next e"EPfl(O,e) so that ZE(W):M on 

8B,,(Uo)\{e' ,  e"}, where Uo=(e'+e")/2 and el=(e"-e ' ) /2 .  We denote again by Z2 the 

restriction of  Z2 onto B,,(Uo)\E.  In both cases, we see that Cz2cJUaB 1 for a real 

analytic arc J or the union J of two real analytic arcs such that 1 ~J ,  because 

1~/2(W)2 Z 2 Z 2 Z 

w 2 ~2(z) 2 F(Z) S(z) 

, and 

lim ]Z2(w)] = 1. 
w E B ~ \ E ,  w--~O 
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Thus, by the same argument as above, we see that E has at most a finite number of 

components in a neighborhood of w=0. Since 0 is a nonisolated boundary point of E, 

there is a relatively closed interval in ( - e ,  e) which is a component of E and contains 0. 

There are two possibilities: 0 is an interior point of the interval or 0 is an endpoint of the 

interval. 

In the former case, take a smaller e so that ( - e ,  e )~E and set H =  { w E B~; Im w>0}. 

Let 

'W2(w), w E H 
TI(w) = [ . ~ ) } ,  ~ E H .  

Then T~ can be extended holomorphically onto B~ and the extension is univalent in a 

neighborhood of 0. The same holds for 

~S(~2(W)), w e H 

/'2(w) = [ ~ 2 ( w ) ,  w e H. 

We note that 271=~ 2rz. Indeed, if T1=Tz, then limw+oU22(u+iv)=limo~_oW2(u+iv) a.e. on 

( -e ,  e) and contradicts that P fl ( - e ,  e) is of positive measure. Thus this is the case (2 b). 

Now we discuss the final case. We may assume that 0 is an endpoint of an interval 

in the positive real axis, namely, we may assume that [0, e)cE and EN ( - e ,  0 ) = 0  for 

some e>0. We apply the same argument as in the proof of the case (1) replacing 

V ~  with V~-~2. Let  T be the inverse function of ~ and let 2r be its extension onto 

B~- .  In this case, 2r is not univalent in a neighborhood of 0 but i" has a zero of order two 

at 0, because IT(0)]=Q 2 for QE(-X/-/ ,X/-e-) .  By the definition, T is univalent in 

H={vEB~%-; Imr>0} .  If  T is not univalent on /4 for every e, then T((0, V'-{-)) 

and T((-  X/-/,  0)) are on the same real analytic simple arc. Since IT(e)l=e z 

for Q E ( - V ' e , V ' - / - ) ,  this implies that i"(-O)=2r(0) for OE[0,V"~-). Hence 

limv__,+0 u/2(u+iv)=limv_,_ o u/2(u+iv) a.e. on [0, e) and contradicts that P N [0, e) is of 

positive measure. Thus :t is univalent o n / 4  for some e. This is the case (2 c). 

Next we shall show the converse. Let  ~ and F be as in the case (1). Then there is a 

holomorphic and univalent function T defined in a disk B~ such that I"(0)=0, 
T((-e,e))cF and T(H)~g~, where H={vEB~; Imr>0} .  We note that S(v)=r is the 

Schwarz function of HU(-e,e) in B~. By Remark to Lemma 3.1, Sr=ToSoT -l= 
: t o t  -1 is the Schwarz function of (f2 NBr)U (FNBr) in B~ for some r>0.  

The same argument is valid for the cases (2 a) and (2 b). The argument is also valid 

for the case (2 c). Indeed, T has a zero of  order two at 0 in this case, but it is univalent in 

H. Thus ToT  -~ is well-defined in ~2 NBr for some r>0  and it is the Schwarz function. 
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The Schwarz function can be extended from one side of the boundary to a 

neighborhood of 0 in the cases (I), (2 a) and (2 b), because it is expressed as 7~o T -1 and 

T -1 can be extended from one side of the boundary to a neighborhood of 0. If (2c) 

holds, then the Schwarz function S is not univalent in t)OB6 for any 6>0, because 

S(r on FABr. If S can be extended onto a neighborhood of 0, then it must be 

univalent in a neighborhood of 0, because limz__,0 IS(z)/zl= 1. Hence the Schwarz func- 

tion can not be extended onto any neighborhood of 0 if (2c) holds. Q.E.D. 

Remark. In the case of (1) we have constructed a holomorphic function T, which 

was denoted by T, in B, such that T(0)=0, T((-e ,  e))cF and T(H)cf2 ,  where H={rEB, ;  

Imr>0}. The function T is canonical in the sense that T satisfies IT( )I=IQI on  e). 

The Schwarz function S can be expressed as ~o T -~ by T. We note here that S can be 

expressed as ToT -~ by any holomorphic function T in B, such that T(0)=0, 

T((-e,  e))cF and T ( H ) c f L  The same holds for the other cases. 

Definition 5.1. We call the origin 0 a regular point of F if (1) holds, a nonisolated 

degenerate point if (2a) holds, a double point if (2b) holds and a cusp point if (2c) 

holds. We call the origin 0 a degenerate point if 0 is an isolated point of F or (2 a) holds. 

COROLLARY 5.3. Let  S be the Schwarz function off2 OF in BI and assume that 0 is 

a nonisolatedpoint o fF.  IfO is a regular, nonisolated degenerate or double point, then 

IS(z)-a~zl<-alzl 2 on (ff~UF) AB 6 (5.3) 

for some a and 6>0, where al=g2, and s denotes the unit vector with initial point at 0 

and tangent to F or the arc determined by F. In particular, 

F n na ~ {~ E g6; Ir ~< ar z) U {r E Bo; Ir ~ ar2}, 

where r=l~ I. 

I f  O is a cusp point, then 

IS(z)-a 1 zl < - alzl 3/2 on (f~ UF) NBo (5.4) 

for some a and 6>0, where a~=g 2, and s denotes the unit vector with initial point at O, 

tangent to F and pointing into f~. In particular, 

r n B ~ =  (r EBb; I~+rsl <~ ar 3/2} 

where r= I~l, 
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Proof. Assume that 0 is a regular or nonisolated degenerate point. We denote again 

by S the extension of the Schwarz function onto a neighborhood of 0. Let 

S(z) = alz+a2z2 +.. ,  

be the Taylor expansion of S at 0. Since 

a ,  = S ' ( 0 )  = l i m  S(~)/~ = lim ~]~, 
~EFNBo,~--,0 

lall = 1 and a l = g  2, where s denotes the unit tangent vector of F or of the arc determined 

by F with initial point at 0. If 0 is a double point, the same holds for another extension 

of the Schwarz function. The two extensions are distinct, but their first coefficients a~ 

are identical, because a l = s  2. Thus (5.3) holds in these cases. For ~ on F nB6, we obtain 

Since 

we obtain 

and so 

IC-~ I  = IS(~)-a~l ~ ad.  

I~-rsl Ir = 1r = rl~-~s21 = r l~ -~21 ,  

I~-rsl I~ +rsl ~ ar 3, 

I ~ - r s l < a ?  or ]~+rsl~<r. 

In the latter case, it follows that I~-rsl>~r, and so 

I~+rsl ~< ~ ~< ar 2. 

Assume next that 0 is a cusp point. We use the notation as in the proof of Theorem 

5.2. Let V ~ z  be a one-to-one conformal mapping of Q U U onto H=  {r E By.z; Im r>0} 

and let z = T(r) be its inverse function defined in H. Let T be its extension onto Bv-z. 

Since I]'(Cg)l=~ 2 for Q E (-X/-{-, X/T), the Taylor expansion of 7" at r=0 is of the form 

z = :t(r)= -s(r2+b3r3+...), 

where s denotes the unit tangent vector of F with initial point at 0 pointing into f~. The 

right-hand side of the equality can be written as -sr2f(r), where f(r) is a holomorphic 
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function in a neighborhood of 0 with f (0)=l .  Hence it follows that X/-z-= 

r X/f(z'), where ~ in fl denotes an appropriately chosen branch and X/f(r) 

denotes a branch defined in a neighborhood of r=0 satisfying X/f(0) = 1. The function 

V'f(r) is holomorphic, and so ~ is a holomorphic function of 3, say g(r), in a 

neighborhood of 0 satisfying g(0)=0 and g'(0)=V-Zs. Hence 

z" = g-l(V'~-) = (1/V'Z-s ) V'z--(1 +c 2 V'-z-z + c 3 z+...). 

Since " g 2 = W = ( I ) 2 ( Z ) = ~ ,  we obtain 

Z 2 
z S ( z )  = r 4 = 7 ( 1 4 - 4 c 2 ~ " - q - . . . ) ,  

and so 

S ( Z )  = ~ 2  ( I  + 4 c  2 V ' z ' - + . . . ) .  

Hence (5.4) holds. For ~ on FnBo with small 6>0, we obtain Ir in this case. 

Hence 

_ _3/2+ 1 
[r ~< ~ ~< a r  3/2. Q.E.D. 

We note that we also obtain (5.3) and (5.4) by using the expression S=To  T -1 of 

the Schwarz function. Next we show 

COROLLARY 5.4. Let S be the Schwarz function o f  g2UF in B1. Then both 

limzea, z_~r and limzE~,z__,r S'(z) exist and are identical for every ~ on F. 

They are equal to S'(~) if  ~ is an isolated point o f  F and are equal to s(~) -2 i f  ~ is a 

nonisolated point o f  F, where s(~) denotes the unit vector with initial point at ~ and 

tangent to F or the arc determined by F. 

Proof. For an isolated point r on F, the limits exist and are equal to S'(r because 

S(~)=~. If 0 is a nonisolated point of F, then, by the proof of Corollary 5.3, we see that 

lim S(z)/z= lim S'(z)=s(O) -2. 
z E f~, z--~O z E fL z-~O 

The corollary follows from equalities (S(z)-~)/(z-~)=S,(r)/r and S'(z)=(dS,/dr)(r), 

where r = z - ~  and St(r)=S(r+~)-~ denotes the Schwarz function of ( f2-~)U(F-~)  

at 0. Q.E.D. 
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Further we shall show two corollaries which follows immediately from Theorem 

5.2 and Corollary 5.4. 

COROLLARY 5.5. Let S be the Schwarzfunction of f2  UF in B1. Set 

~ ( z )={S( z )  in f~ 
- o n  B 1 \ ~ .  

Then S is a Lipschitz continuous function on B-~ for every 6 less than 1 and satisfies 

a ~(z)={So'(Z) in g2 
3z a.e. on Bl\ f f2,  

a ~(z)={01 in Q 
9Z a.e. on BI~"2 

in the sense o f  distributions. 

COROLLARY 5.6. Let S be the Schwarz function of  ff2UF in B1. I f  Br~\~) has no 

interior points for some 61>0, in particular, if the area of  Br~\f~ is equal to zero for 

some 61>0, then S is holomorphic in Br . Furthermore, ifO is a nonisolated point o fF ,  

there is a 62 with 0<62<61 such that 

rnB~= (~eB~2; IS'~)l = 1}. 
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