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Introduction 

Pseudoconvex domains in C ~+~ are the natural regions in which the ~ equations can be 

generally solved. Any smooth strictly pseudoconvex domain carries a complete Kiihler 

metric given by the mixed second derivatives of the logarithm of a plurisuperharmonic 

defining function 

(1) g = - ~a log r. 

In this paper we investigate in detail the kernel of the resolvent of the Laplacian of such 

'Bergman' type metrics. Although we only treat the Laplacian acting on functions 

below, to limit the algebraic complexity of the problem, the general case of (p, q)-forms 

can be handled by the same method. Since an application of Hodge theory allows the 

equations to be solved in terms of the inverse of such a Laplacian this leads to a 

detailed description of the Schwartz kernel of a particularly natural inverse of a. This, 

and other applications to spectral and scattering theory, will be discussed in detail 

elsewhere. Here we only note how the Dirichlet problem for the Laplacian can be 

solved, with the Poisson operator arising as a limit of the resolvent. 

Our basic methods are geometric and constructive. We start by abstracting from 

the Kiihler metrics of the form (1) a class of complete metrics on the interiors of 

compact manifolds with boundary. As a first step the cr ~176 structure on the domain, q/, is 

altered by adjoining the square root of Q. The new manifold with boundary so obtained 
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is denoted ~ we call it the square root of q/. The significant behaviour of the metric 

at the boundary of q/1/2 is captured by a conformal class of 1-forms, represented by O, 

defined at the boundary. For strictly pseudoconvex domains O induces the contact 

structure on the boundary of q/and is determined by it. 

Once the form O has been isolated, we proceed much in the spirit of [20], [18] and 

[19]. Thus we identify a Lie algebra of vector fields, ~Vo, which vanish at the boundary 

in a manner encoded by O (see (1.4) and (1.5)). This is an example of a 'boundary 

fibration structure' as described in general in [19]; in fact it is a motivating example. 

The Lie algebra ~o forms the space of all smooth sections of a vector bundle, ~ 
over the manifold with boundary X. Over the interior ~ is canonically identified with 

the usual tangent bundle TX. By a O-metric on X we mean a metric on the interior of X 

which extends to a smooth, non-degenerate, fibre metric on ~ The K~ihler metrics 

(1) are O-metrics with X= q/1/2. The Laplacian of a O-metric is a O-differential operator, 

in the sense that it is in the enveloping algebra, Diffo, of ~o. The main construction we 

make is the 'microlocalization' of Diffo (or ~o) to the class of O-pseudodifferential 

operators on X. The resolvent of the Laplacian is shown to lie in this class. 

The main step in the definition of the O-pseudodifferential operators is the replace- 

ment of the product, X2=X• by the O-stretched product, which we denote X g. This 

is a manifold with comers up to codimension three (X 2 has corners up to codimension 

two) which comes equipped with a blow-down map: 

(2) x 2. 

The blow-down map is a diffeomorphism from the complement of one of the boundary 

hypersurfaces o f X  2 (the front face, ff(X~)) onto the complement in X 2 of the boundary 

of the diagonal. In fact X~ and fl~) are constructed by parabolically blowing up the 

boundary of the diagonal in X 2. The choice of the submanifold blown up and the 

parabolic manner of this blow-up are determined, by general principles, from the Lie 

algebra ~Vo. Just as normal blow-up is the invariant version of the introduction of polar 

coordinates, so parabolic blow-up corresponds to the introduction of polar coordinates 

around the submanifold with some variables, in this case just one fixed by O, scaling in 

a quadratic rather than a linear fashion. 

The relevance of the O-stretched product can be seen geometrically in terms of the 

distance function d on X 2, for a metric (1). In essence X 2 is the simplest manifold, as in 

(2), with the property that d is simple when lifted to it in the sense that 

(3) 0 < ~)ib ~)rb[3~ )* cosh d]E ~(X~) .  
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Here 01b and Orb are defining functions for the two boundary hypersurfaces (other than 

ff(X~)) of X~. Not surprisingly, given (3), the kernel of the resolvent family has a 

simple structure when lifted to X~. This indeed is our basic result. 

To make the conclusions more precise, and then to prove them, it is necessary to 

describe the spaces of O-pseudodifferential operators. We consider, for the moment, 

operators acting on metric half-densities on X (for a O-metric). The replacement of X 2 

by X~ has the effect of physically separating the two types of singularities which occur 

in the resolvent kernel, namely the diagonal and boundary singularities. Let rn be a real 

number and z, z' be complex numbers. Then a typical class of operators we consider is 

denoted by 

(4) tp~; z, z' (x;  dgl/2). 

The Schwartz kernel of A E m; z, z' . I//0 (X, dgl/2), K A, is a half-density on X 2. To characterize 

the class (4) we lift the kernels to X~, where we let XA denote that of A. Then for a fixed 

(though slightly singular) half-density,/,, 

_ , , - ,  - z '  E / m ( X ~ ,  A o ) .  (5) A E ~ ; z ' z ' ( X ; d g  v2) ~ ~A--~A[ IA, ~A01b Orb 

Here AocX 2 is the 'lifted diagonal', the closure in X 2 of the interior of the diagonal. It 

is an embedded submanifold meeting the boundary transversally in the interior of 

if(X2). This is an essential property of X 2, as it allows us to study the singularities of 

the kernel along the diagonal and along the boundary successively. The space 

/re(X2, A o) consists of the conormal distributions, of order m, with respect to this 

submanffold, precisely the space which occurs in the usual theory of pseudodifferential 

operators. For example ff m = - oo then I-~(X 2, A o) = %v~(X2). 

There can also be some similar, but simpler, terms in the kernel. Consider the 

'smoothing operators', with power law growth, acting on metric half-densities: 

(6) AE~-~ 1/2) .~  Q~bZQ~bz'gA=a(dg)l/2(~v 1/2, aEC~| 

where v 1/2 is a half-density such that O:~,=dgl/2vl/2E ~ ( g ;  ~~). As the kernels in (6) are 

conormal on X 2 they are not closely related to the O-structure (apart from the bundle 

on which they act) and are residual terms. 

At each p EX the fibre of the structure bundle, ~  is a Lie algebra, on which 

any O-metric induces a Euclidean inner product. Two metrics (possibly on different 

manifolds) will be said to have the same model at respective boundary points if the 
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fibres, at those points, of the structure bundles are linearly isomorphic simultaneously 

both as Lie algebras and metrically. 

Set 

~ = { l m ; m - - l , 3  mod4, m<2(n+ l )}U{-No}  

and put N=dimX+ 1. 

MAIN THEOREM. Suppose g is a ~ O-metric on a compact manifold with 

boundary, X, and that for some non-vanishing smooth function Z E ~ ( X )  the metric is 
i-~Rn+l modeled at each p E aX on the lift to .~uu2 of  the metric of  constant holomorphic 

sectional curvature -Z-2(p) on the ball, then the modified resolvent family o f  the 

Laplacian, A e, acting on metric half-densities, is a meromorphic family 

R(s) = [Ag-x2s(n+ 1 - s ) ] - I  E LIlO2;2s-N/2"2s-N/2(X; dg 1/2) 

(7) + Uxl-| dgl/2), s E C ~  ~. 

Here the operator R(s) is defined as a bounded operator on L 2 when ~Rs>(n+ I)/2. 

The non-positive integers -N0={0, 1,2 .... } c ~  are excluded because the resolvent 

kernel for the Bergman metric itself has poles at these points and accidental multiplicity 

effects lead us to exclude the non-positive quarter-integers in the general case. The 

meromorphy of (7) should be considered as a refined description of the spectral theory 

of Ag, really a form of scattering theory; this, and the behaviour near -No, is pursued in 

more detail elsewhere. The poles of R(s) outside ~ are all of finite rank. 

For fixed dimension all the metrics (1), lifted to a/h/2, have as model at every 

boundary point the metric of constant holomorphic sectional curvature - 4  on the ball, 

rnn+l Thus we can take z=l /2  and then R(s) is essentially the CBn§ n+l, lifted to ~1/2 " 

resolvent family, apart from the rewriting of the spectral parameter. The same is true 

for certain infinite volume, cuspless, qotients F',CB n+~, F~SU(n+ 1, 1) being a suitably 

'sparse' discrete group. In these cases we can also show that the singularities at the true 

negative quarter-integers are, at worst, finite order poles, so ~ in (7) can then be 

replaced by -No. Graham, in [9], analyzed the resolvent kernels of a family of invariant 

operators on the ball, including the Bergman Laplacian. He conjectured an extension of 

his results to general strictly pseudoconvex domains which is, essentially, born out by 

the Main Theorem above. 

The proof of (7) is, as noted above, essentially constructive. A rather precise 

parametrix for Ag-Z2s(n + I - s )  is produced using the symbolic properties of the spaces 
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of O-pseudodifferential operators. In the process of the construction we need slightly 

larger spaces than described in (5), by allowing more complicated expansions at the 

boundaries. These spaces are described in terms of an index family, E=Elb, Erb, Eft, 
consisting of an index set at each boundary hypersurface. An index set 

E .  c C x N0, No= {0, 1,...} fixes the terms which may occur at the corresponding bound- 

ary, so if (z, m) E E .  then a term 0~+k(1og 0,)t may occur, where 0 .  is a defining function 

for that boundary, k and l are non-negative integers and l<~m. Using these more general 

classes of operators we also give a result analogous to the theorem above for the 

K~ihler-Einstein metric of the form (1), where Q is the solution of the complex 

Monge-Amp6re equation. This does not quite fall under the result as stated because the 

defining function in (1) may have logarithmic terms (see [8], [3] and [16]). Similar 

remarks apply to the Bergman metric for a general strictly pseudoconvex domain (see 

[7]). 

The space of O-pseudodifferential operators (4) has four distinct symbol maps, 

corresponding to the singularities at the (lifted) diagonal and at the three boundary 

hypersurfaces. The symbol map at the diagonal is the precise analogue of the usual 

symbol mapping for pseudodifferential operators and allows the construction of a 

'uniform interior parametrix': 

(8) Eo(s) ~ ~o2(X; dgll2), [Ag-xZs(n+ 1 -s)]Eo(s)-Id E W~| dgl/2). 

The absence of powers, z, z', compared to (4) means that the kernels here vanish to all 

orders at boundary hypersurfaces other than the front face, i.e. 

(9) xtI~(X; d g  v2) = 13 qJ~; z, z'(X; dgt/2). 
Z, Z' 

This is the 'small calculus'. However the remainder term in (8) is by no means compact. 

Were the kernel of the remainder to vanish at the front face of X g it would indeed 

be compact. To arrange this we use the symbol mapping at the front face. This is the 

normal homomorphism. It is a non-commutative symbol, taking values in the convolu- 

tion algebra of the solvable Lie group, Gp, at each point p E 8X, with Lie algebra the 

fibre ~ For the case of a contact structure, as arises for the metrics (1), the group is 

a semidirect product with the Heisenberg group: 

(10) Gp -- R§ ~/-P. 

These groups can be thought of as parabolic subgroups of SU(n+ I, 1). This symbol 
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map leads to a global 'model problem' on each Gp, which needs to be solved exactly to 

get a compact error. The model problem for the metrics (1) is always the Bergman 

metric on the ball, CBn+lcc n§ Using the classical theory of rank one symmetric 

spaces we invert the corresponding Laplacian explicitly. 

To prove (7) we also need to make use of the symbol map at the left boundary 

(involving the indicial operator) and iteration. This makes essential use of the composi- 

tion properties of the calculus. To prove such composition properties we construct a 

triple O-stretched product, X~, equipped with projection maps to X 2, corresponding to 

the three projections from X 3 to X 2. We then use general results on products, push- 

forward and pull-back of conormal distributions on manifolds with corners from [19] to 

show that the kernel of the composite operator lies in the appropriate class; for the 

convenience of the reader these results are recalled in an appendix. 

In outline our analysis of the resolvent proceeds as follows. In the first section we 

introduce the general notion of a O-structure and in the second connect it to pseudo- 

convex domains by describing the square root of a manifold with boundary. Next we 

consider the tangent (finite dimensional) Lie algebras at boundary points and, in 

Section 4, the classification of the model problems for O-metrics. The next two sections 

describe the general properties of parabolic blow-up of a submanifold, first without and 

then in the presence of boundaries. In Section 7 the parabolic blow-up is used to define, 

and describe, the O-stretched product, X 2. The motivating example (and model prob- 

lem) for our constructions is the Bergman metric on the ball in C n§ This is discussed 

in detail in Section 8 where it is shown that lifting to X g simplifies the structure of the 

resolvent kernel, i.e. the theorem above is proved by explicit computation for this 

special metric on the ball. Section 9 is devoted to a commutation result for parabolic 

blow-ups which is then used in Section 10 to define the triple O-stretched product, X~; 

this is of fundamental importance in the proofs of the composition properties of the O- 

pseudodifferential operators. These are introduced in Sections 11 and 12. Some map- 

ping properties are demonstrated in Section 13 and the calculus is applied to the 

construction of a parametrix for the Laplacian in Section 14, which contains the formal 

proof of the theorem above. It also contains the extension to the Monge--Amp6re and 

Bergman metrics. In Section 15 the Poisson operator for the Dirichlet problem is 

discussed. For the ball similar results were obtained by Graham [9]. 

There are also two appendices. In Appendix A discrete subgroups of SU(n+ 1, 1) 

are discussed and the applications of the results of the paper to quotients of the ball are 

given. Along the way generalizations of results of Patterson and Sullivan on the 

Hausdorff dimension of the limit set are made. Appendix B contains a summary of that 
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part of theory of conormal distributions for a manifold with corners (taken largely from 

[19]) which is used in the discussion of the O-pseudodifferential operators. 

w 1. O-structure 

We start by describing a general class of algebras of vector fields (boundary structures) 

on smooth manifolds with boundary. These Lie algebras are fixed by the projective 

class of a non-vanishing 1-form, O, at the boundary. We call them O-structures. As we 

shall show in Section 3, algebras of this type arise naturally in the study of Laplace 

operators of complete K~hler metrics on complex manifolds with strictly pseudocon- 

vex boundaries. However the definition of a O-structure which we adopt allows 

considerably more general cases than arise in this way. 

Let X be a ~| manifold with boundary and let O be a 1-form on X defined only at 

the boundary, i.e. 

(I.1) O E ~=(aX; T'X). 

Let t: aX,-->X be the inclusion of the boundary. We require that 0 be non-vanishing 

when pulled back to the boundary 

(1.2) 5*0 * 0. 

Let ~ be a defining function for the boundary of X: 

(1.3) OE~=(X), g~O, aX--{x;9(x)=O), dQ4=Oat OX. 

Associated to the projective class, [0],  of 0 is a space ~o of ~= vector fields, V, 

on X. This space is defined by the following two conditions at the boundary, in which 6) 

is an extension of 0 to a smooth form on X: 

(1.4) V vanishes at aX, i.e. VEO~(X, TX) 

(1.5) 6)(v) ~ e2 ~=(x). 

PROPOSITION 1.6. The space, ~ of vector fields defined by the conditions (1.4) 

and (1.5) is a ~g| and Lie algebra independent of the choice of the defining 
function, of extension 6) and of representative of the projective class, [O]. Conversely 
the algebra ~o determines the projective class of O. 

Proof. That ~ o is a ~| and is independent of the choice of both the 
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defining function and of the representative of the projective class of O follows from the 

qg| of the defining conditions. If O' is another extension of O then the 

difference O ' - O = e ~  for some ~0 1-form ~.  Since (1.4) just means ~(V)E eC~(x)  for 

every such form, (1.5) holds for E)' if and only if it holds for O. Next we show that To is 

a Lie algebra. 

Certainly the commutator of two vector fields vanishing at the boundary also 

vanishes at the boundary, thus we only have to check (1.5) for the commutator. From 

(1.4) it follows that de(V)Eec~| for each VE To. Thus 

(1.7) V[ekqg| ~-ekc~| VkEN, VE T o. 

By taking tensor products, (1.4) shows that 

(1.8) a(V, ..... Vk)Eek~| VaE qg| Ak), V~ ..... VkE T o. 

The formula for the exterior derivative of a 1-form gives 

(1.9) O([V, W])= V(9(W)-WO(V)+d(9(V, W). 

Applying (1.7) and (1.8) to the fight side we see that (1.5) holds for the commutator, 

IV, W] of two elements of To. 

The null space of O at each boundary point is clearly determined by (1.4), (1.5) so 

the algebra determines the projective class of O as a form at the boundary. This 

completes the proof of the proposition. 

Now that we have shown the naturality of the algebra we examine it locally. 

Choose a convenient frame N, T, Y~ ..... Yd-1, in a neighborhood of a point p E OX, 
satisfying 

(1.10) do(N)= I, (9(N)=O 

(1.11) de(Y~)=O, (~(Y~)=O, i = l  ..... d - l ,  

(1.12) de(T) = O, O(T) = 1. 

Clearly such a frame exists, since O is non-zero when pulled back to the boundary. In 

terms of this local basis a vector field, V in To is precisely one of the form: 

d - I  

(1.13) V = aeN+ 2 bie Yi+ce2T 
i=l 

where the coefficients belong to ~| From (1.13) we see that To itself has as a local 
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basis 

(1.14) oN, oYi, 0 2T, i = 1  .. . . .  d - 1 .  

That this is a basis over ~| can be re-expressed in the more geometric form: 

LEUr, IA 1.15. There is a ~oo vector bundle ~  over X with a C | bundle map 

(1.16) to: ~ TX 

which is an isomorphism over f(, is the zero map over aX, and is such that the elements 

of  ~'o lift under to to the space of  all smooth sections: 

r162 ~ = L~(~'o). 

Proof. This is exactly the content of (1.13). More precisely we can define an 

equivalence relation on ~ associated to a point p (not necessarily in the boundary) by 

(1.17) V ~  W r l im(-dO(V-W),a~(V-W) ad-i (V-W) (~(V-W))=O 
P 0 .... ' 0 ' 0 2 

where the at, with do and O, form a dual frame and the limit is at p from the interior. If 

p is in the interior this is just the equivalence relation defining the fibre of the ordinary 

tangent bundle, but at the boundary it is stronger. This gives the map (1.16). Since the 

limit in (1.17), for W=0, just reproduces the coefficients of (1.13) the equivalence 

relation certainly defines acr174 vector bundle. 

The existence of this vector bundle is one reason we think of ~ as a 'boundary 

structure' in that it amounts to a modification of the usual tangent bundle, and hence 

the ~| structure, at the boundary. In our analysis the bundle ~ is a replacement for 

TX. The dual bundle, ~  is particularly important; it has an obvious basis, dual to 

(1.14): 

(1.18) d o at 0 
O 0 '  0 2. 

Let ~ be the kth exterior power of ~ This is a vector bundle as in the usual 

case and moreover the exterior differential operator extends to act on its sections: 

(1.19) d: c~|176 ~|176 k+l) Vk. 

Indeed this is the dual (i.e. Cartan) form of the statement that ~ is a Lie algebra. 
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Let Diff , (X) denote the space of differential operators on X which can be 

expressed as polynomials of degree at most m in vector fields belonging to ~ i.e. the 

natural filtration of the enveloping algebra of ~ Clearly the same definition extends to 

local maps from sections of one smooth vector bundle, E, to another, F, defining 

Diff,(X; E, F). We call the elements of Diff~ 'O-differential operators'. 

LEMMA 1.20. Exterior differentiation, (1.19), gives a natural element 

dE Diff,(X; OAk, ~ for  each k. 

Proof. Leibniz formula 

(1.21) d(a Afl) = da Afl +(--1)degaa A dfl 

and induction show that it is enough to check the action of d on functions. In terms of 

the frame (1.10)-(1.12), and its dual, d can be written as 

d - I  

(1.22) ddp=(eN~p) dQ +~_~(9yiqb ) +(Q~Tep) . 
i= l  

Since (1.18) gives a basis of sections o f ~  this proves the lemma. 

w 2. Square root of a manifold with boundary 

The examples of O-structures most important in the sequel arise from the CR structure 

on the boundary of a strictly pseudoconvex domain. In this case the 1-form is the 

contact form on the boundary, determined by the complex structure. To reduce the 

boundary geometry to a O-structure leads us to a modification of the ~ structure of 

the original manifold by admitting the square root of a defining function as a smooth 

function. 

Let 0//be a smooth (d+ 1)-manifold with boundary. Let r be a defining function for 

the boundary of 0//. Consider the extension of the ring of smooth functions ~g~o(~/) 

obtained by adjoining the function r 1/2. We will denote this ring by ~| In local 

coordinates r, Yl . . . . .  Yd a function is in this ring if it can be expressed as a ~| function 

of rl;Z,yl, .... Yd. This just means it is ~o~ in the interior and has an expansion at a q / o f  

the form: 

f(r ,  x) ~ 2 rJ/2aj (x) 
j=o 
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where the aj(x) are smooth in the usual sense and the difference of f and the sum 

restricted to j < N  becomes increasingly smooth with N. This determines f up to a 

smooth function vanishing with all its derivatives at the boundary. The ring ~| is 

clearly independent of the choice of smooth defining function and invariant under maps 

of 9/smooth with respect to the standard differential structure. In fact the reason for 

the notation is that, equipped with this ring of functions, 0//is a ~r174 manifold with 

boundary--which we denote ~ To simplify the notation we set X---~ the 'square 

root' of 9/. It is easy to see that X is, as an abstract manifold with boundary, globally 

diffeomorphic to 9/. However there is no natural qr isomorphism, since the obvious 

'identity' map 

(2.1) tl/2: X---> 9/ ,  

given by the inclusion of cr in c~=(X), is not smoothly invertible. The boundary aX 

is canonically isomorphic to O~ the interior .~ is also canonically isomorphic to ~;  

it is only the way the boundary is attached that differs. 

Let 0 be a l-form defined on a9/. We shall always suppose that 0 is non-vanishing, 

although later we shall place further restrictions on it. Let 0 E c~=(q/, A 1) be an exten- 

sion of 0 to a form on ~.  Then consider the lift, (~=t~nO of 0 to X. 

LEMMA 2.2. The algebra ~o o f  ~ ~ vector fields on X=9/1/2 determined by O=0[0 x 

depends only on the conformal class of  0 as a form on the boundary o f  ~ 

Proof. If 0 and O' are the pull-backs of two different extensions of 0 then there is 

a smooth 1-form a and a smooth function fl on 9/such that 

0 ' - 0  = t~2(ra+~dr) = e2a ' + e ~ ' d e  

with a '  and fl' smooth on X. From this it is immediate that the class of vector fields that 

satisfy (1.4) and (1.5) will also satisfy O'(V) EQE~(X). 

In the extended differential structure there is a distinguished direction transverse 

to aX, namely the null space of the Jacobian of qn. We will let ~p denote a smooth 

vector field in this direction. If 0 is any ~| 1-form on aa//then for any ~| extension/~ to 

9/, O= t~'/20lax is a 1-form on X at aX which pulls back to 0 on OX and which vanishes on 

~o. This determines | E qg~(aX; T 'X)  uniquely. 

The primary example of this construction is where 9/is a smooth domain in C "+1. 

Then if r is any defining function for the boundary, the form O=iar is non-zero on aq/ 

and well-defined up to a positive multiple. We consider the O-structure on X= d~l/2. In 
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case the domain is strictly pseudoconvex and - r  is plurisubharmonic the Hermitian 

symmetric 2-form 

~i 02 l~174 ~ij [ 02r dz,| - A - f - Z  dzi - Or dzy] (2.3) g = -  
�9 y OZiaZj aziazj pz ~ - ' ~ , e |  

defines a complete (K~Jhler) metric on the interior. This explicit form, (2.3), shows: 

PROPOS]T]ON 2.4. I f  ~ "+l is a cr174 strictly pseudoconvex domain and rE ~| 

is a defining function with - r  plurisubharmonic then lifted to X= ~1/2 the metric (2.3) is 
a smooth positive definite section of Sym2(eT*X), where 0 E qg| T'X) is the lift of  
O=iOr. 

We call such a smooth positive-definite section of Sym2(eT*X) a O-metric. 

w Tangent algebra 

Now let o/e be any O-structure on a manifold with boundary, X. Consider the fibre 

OTp X at a point p E X. The elements of O/8 of the form (I. 13) with coefficients vanishing 

at p form a subspace ~r and the quotient is just 

(3.1) er.x= o/e/~.. 

When p E OX, ~pc o/e is an ideal, so eTp X is itself a Lie algebra. For x E ~" this is not the 

case. 

There is a natural one-dimensional subspace which we denote 

(3.2) K2. . = {VE ~ V= g2W, WE :s174 TX)}/5~p, pEaX. 

There is also a natural hypersurface containing this line 

(3.3) KI,,= {VE O/e; V=QW, W(:.c~'| TX), W tangent to OX)/5~p, p~.aX. 

Both are ideals, related to the central series for ~ 

[e r .X,  ~  = K,,., p~OX 
(3.4) 

[KI, p, Kl,p] = g2,p, p E aX. 

LEMMA 3.5. The Lie algebra KI, p is two-step nilpotent for each p E OX and is 
commutative only / fdO=7^O at p, so except in this case there is equality in (3.4). 
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Proof. This is obvious from the form of the frame (1.10)-(1.12). Indeed K1, p is 

spanned by 9 Y;, i= 1 .. . . .  d -  1 and p2T. Clearly p2T is in the center of KLp and 

(3.6) [~Yi, QYi] = d O ( Y  i, Yj)Q2T Vi, j=  1 , . . . , d - l .  

Thus if d O = y ^ O  at p then the algebra is commutative. Conversely if it is commutative 

then dO=0 on the subspace spanned by the Yi, i.e. modulo O itself, proving (3.6). 

There are only finitely many possibilities for the Lie algebras ~ The structure 

is determined by the rank of dO, the largest integer k such that O^(dO)k=l=0 at p. The 

rank in turn determines the dimension of the centre of KI, p, which is clearly the only 

invariant. Since the rank is determined by a finite number of derivatives of the 

coefficients of a frame it is clear that the set of points in aX near which the structure of 

~ is locally constant is open and dense. 

The annihilator of O in TpX, for p 6 8X, is a hyperplane which we shall denote as 

Hp. Suppose we choose a complementary line, which we can take to be tangent to the 

boundary 

(3.7) Sp=Tt, OX, Spf)Hp = TpX. 

Such a decomposition fixes a homogeneity structure, an R+-action, by 

(3.8) Mo:TpX\O---~TpX\O, v~-->6-~v, v6Hp, w~---~6-2w, w6S, .  

This transformation can be realized locally as a coordinate dilation. Taking coordinates 

in which 0x, 0y~ ..... 8ya_ 1 span Hp and Sp is spanned by 0y d we obtain (3.8) as the 

infinitesimal version of 

(3.9) Mo: (x, Yl . . . . .  Y a-l, Y d) ~-~ (6X, 6y 1 .... , (~Y d - l ,  r 

In fact such a dilation also realizes (3.1). If V6 Wo then in local coordinates 

(3.10) (M-~),V = V~ 

is a cg~ vector field, defined in a neighborhood of 0 which increases as 6 decreases, 

such that 

(3.11) lim V~ = V' 
050 

is a well-defined smooth vector field on TpX: 

(3.12) ~o-+ ~g~(TpX; T(TpX)). 
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The null space of (3.12) is clearly go. This realizes ~ as a Lie algebra of cr174 vector 

fields on TvX. 
Furthermore, it follows from (3.4) and Lemma 3.5 that the full Lie algebra oTpX is 

always solvable and is a semi-direct product: 

~ = R+~Kl,v 

although there is no natural decomposition of this type. 

The vector fields on TpX in the image of (3.12) all vanish at Tp 0X. Thus it is natural 

to restrict the action to Xp, the inward-pointing (closed) half-space: 

(3.13) 

The image of 2p consists of cr174 vector fields which are homogeneous of degree zero 

under (3.9). At each interior point, q, of Xp the values of the image must span 

TqXp=TpX. The local coordinates in X induce homogeneous coordinates on Xp, by 

using the limit (3.9): 

l imO- lM~x,  l im6-1M~Ys , j =  1 . . . . .  d - I ,  l imO-2M~Yd . 
6,Lo 6~o 6~o 

With only slight ambiguity we shall denote these coordinates in Xp again by x, Yl . . . . .  Yd. 
The range of 2p must then be of the form 

(3.14) 2p(~ = sp x Ox+ E ajyjOy,~ x Oy+ , i= 1 ..... d-1 . 
j= \ j=l  

Conversely this always gives a Lie algebra. Since the cr of (3.14) is the 

Lie algebra ~ on Xp where 

d-1 d - I  

(3.15) Op= dyp- E ajyydx- E IuYidYy 
j=l i,j=l 

every Lie algebra (3.14) arises in this way from some O-structure. Notice in fact that 

the class of 6)p on Xp is given by 

(3.16) Op = lim 6-2M~'O. 
6---,0 

The range of 2p is fixed by the choice of S o and of the coordinates, (3.9), consistent 

with the homogeneity (3.8). By making appropriate choices we can simplify its form. 
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The transformation on Xp: 

d- I  

(3.17) Yd ~ Yd--XZ ajy~, 
j=l 

with the other coordinates fixed alters the basis (3.14) to 

t } 2p(eTpX) = sp xO x, x Oyi+ Z lo.yjOy d -x2aiOyg X20y a, i= 1 ..... d - 1  . 
\ j=l  

Since (3.17) can be viewed as a homogeneous change of coordinates, (3.9), we can 

assume that ai=O in (3.14). Similarly the further change of Yd, only, 

1 d-i 
Yd~-'~Yd---~ Z lo'YiYJ 

i,j=l 

transforms the basis to the same form (3.14) with the lij replaced by their skew parts. 

We can therefore assume in place of (3.14): 

{ ) (3.18) Xp(~ = sp XOx, x 0, + Z loyjOy~ , x2Oyg i= 1 ..... d - I ,  Iu+lji= 0 
\ j=l 

by a suitable choice of the coordinates (3.9) for any choice of Sp. 

In the analytic problem which arises the Lie algebra ~ only appears through 

(3.13). Thus we need to classify the Lie algebras in this sense; fortunately this 

classification problem leads to the obvious notion of equivalence. 

LEMMA 3.19. Suppose OE cr T 'X )  and O'E qC~(aX'; T*X') define O-struc- 

tures on two manifolds with bondary and p E aX, p' E aX' are such that there is a linear 

isomorphism 

(3.20) A: ~ ~--~ ~ X ' as Lie algebras. 

Let 2'p, be the representation (3.13) corresponding to some choice o f  transversal S'p, and 

of  local coordinates (3.9) in X' near p', then for an appropriate choice o f  transversal Sp 

and of  coordinates (3.9) in X near p the coordinate identification, Idcoor of  Xp and X'p, 

gives 

(3.21) Idcoor'2~, = 2~, "A. 

Moreover, i f  the data vary smoothly with parameters then the transversal and coordi- 

nates can be chosen smoothly in the parameters so that (3.21) holds. 
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Proof. The discussion above shows that it suffices to prove the lemma under the 

additional hypothesis that the Lie algebra on X'p, takes the form (3.18) in the induced 

coordinates. We can then introduce coordinates on X so that the same is true on Xp, 

possibly with a different skew matrix lo.. We need to modify the choice of transversal 

and coordinates on X until the image of the basis (3.18) under A -~ is the corresponding 

basis on Xp. We let fi, denote the map, which we wish to reduce to the identity, induced 

by A, 2p and 2p, in terms of these bases. 

Let the coordinates in X, and Xp, be denoted x, y~ . . . . .  Yd and those in X', and X~,, 

x', y~ ... . .  y~. We shall assume that K~,p is not commutative (and leave the less interest- 

ing commutative case to the reader). Then X2ay~ spans KE,p=[K1, p, Kl,p], so must be 

mapped by A to c(x')Eay~. Making the transformation 

Yd ~ CYd 

ensures that fi, is the identity on K2, p. 

Next consider the transformation induced by 

(3.22) A: KI,JK2,p-+ Kl,p,/K2,p,. 

In terms of the bases (3.18) this can be written 

(3.23) x ~ yj ~-~ ~ Tikx' ' yj �9 
"= k=l \ j=l 

d-1 

X~-'>X, y i ~ " ~ T o . y j ,  i = l , . . . , d - 1 ,  yd~--~yd 
j=l 

reduces T to the identity, and from the assumption that A is a Lie algebra isomorphism 

and both l and l' are skew we find l=l'. 

Thus we now have the map on Ki, p of the form 

x' ~ ' +bj(x')Eay~. (3.24) fi~:x a y / + ~  l•yjay d ~ ay;+  l~iy)ay, d 
\ j=l 

The linear coordinate transformation, which is not M~-homogeneous, 

yi~--~Yi--biYd, i = 1 . . . . .  d - 1  

makes the constants bi in (3.24) vanish. This amounts to a change of the transversal Sp. 

The change of coordinates 
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Thus we have arranged that the basis of KI, p is carded into that of Kz,p,. So now we 

have to consider 

(3.25) 
d-I / d-I \ 

"" I----> r r I " t 2 A.xOx x O~,+Eaix (Oy,+ Eloy)Oy,dl+fl(x ) Off 
i=1 \ j = l  / 

Here we know that the coefficient of x'0x, is 1 since commutation with K l ,  p and K2, p 

must be preserved. In fact the additional constraint 

(3.26) 
d - I  

E Iu ai = 0 
i=l 

also follows from this. The coefficient fl can be made to vanish by the transformation 

yd~-->Yd--�89 2. Finally the transformation 

yi~--> yi--ai x 

also removes the coefficients ai. This completes the proof of the lemma since the 

construction is clearly smooth in parameters at each step. 

In order to apply this lemma in a non-trivial way the structure of the Lie algebras 

~ will in general have to be locally constant, or at least change simply. 

w 4. Normal operator and model problem 

The most general metric we consider on X in the present context is a O-metric, i.e. a 

fibre metric on ~ Such a form can be written as a positive definite quadratic 

combination of a coframe: 

(4.1) 
/ ' \ 2  d-1  

g=goo( aO ) + 2 E  go, 
\ O /  i=1 

d~ ai x'~d-I ai (~ d~ O ai d~ 0 O 2 
- -  + ~ ,  gu-2-2- +22a gdi-~"~-" +2g0a--2- _-_-_~ +gdd �9 Q4 

We shall actually consider more restricted metrics below but even in this generality we 

note that the Laplacian is a O-differential operator. 

PROPOSITION 4.2. I f  g is a O-metric on a manifold with boundary then the 
Laplacian, acting on the O-form bundles, is a O-differential operator 

(4.3) A E Diff2(X; ~ Yk. 

This is straightforward to prove but it should be noted that if the O-form bundles 

2-918288 Acta Mathematica 167. Imprim~ le 22 aotlt 1991 
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are replaced by the usual form bundles (on which the Laplacian does indeed act 

smoothly) then the analogue of (4.3) is not true. 

Proof. Simply note that the Laplacian is 

(4.4) A = dd+dd 

where d is the adjoint of  d with respect to the Riemannian inner product and density. 

The inner product is non-degenerate on ~ so it is only necessary to check that taking 

adjoints with respect to the Riemannian density preserves Diff 1. This is certainly true 

for a smooth non-vanishing density. However the Riemannian density, dg, is of the 

form ~-Nv where v is such a density and N = d + 2 .  From (1.13) it follows that this factor 

can be removed by conjugation since 

(4.5) 0/209 V ~  e - l v e  E Diff, .  

When p E OX 

(4.6) 0---~ ,r %--* OTpX--~ 0 

is an exact sequence of Lie algebra homomorphisms. The projection therefore lifts to a 

map of the enveloping algebras: 

(4.7) Diff~(X)--~ ~(~ 

The null space is cr where cd~'(X) is the ideal of smooth 

functions vanishing at p. The image of P E Diff,(X) will be denoted Np(P) and called 

the normal operator of P at p. 

The normal operators form our model problems. Thus the main step in the 

construction of a parametrix for the Laplacian is simply the construction of an appro- 

priate fundamental solution for each Np(P) with smooth dependence on p. Clearly it is 

of the greatest importance that we understand the structure of these families of 

operators. 

The definition of the normal operator is closely related to the definition of the 

indicial operator for the spaces Diff~'(X) of totally characteristic differential operators 

(see [20], [12]). Since 

Diff ,(X) c Diff~'(X) 

this latter definition restricts to the O-differential operators. We can obtain it more 
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directly in terms of a further quotient of the Lie algebra. Since Kl. p is an ideal there is a 

natural exact sequence of Lie algebras 

o4 oLx-, bN, [%X/L 

and the projection from ~ induces a map of the enveloping algebras 

Ip: Diff ~(X) ~ ~ m(bNp OX). 

The 'b-normal bundle' of the boundary, bNaX, can be canonically identified with the b- 

tangent bundle to the fibres of the usual normal bundle, i.e. I(P) is an R+-invariant 

ordinary differential operator on the fibres of the normal bundle NaX. The map, Ip, is 

just the quotient by the ideal Kl,p|176 In terms of the basis (1.14) of Wo the 

indical operator is obtained by dropping all terms containing factors other than oN and 

freezing the coefficients at the boundary. 

We have already shown that, once a transversal Sp as in (3.7) and local R+-action 

(3.9) have been chosen, ~ and hence @(~ acts on Xp. We think of Xp as a 

local model for X. Recall from (3.15) that Xp has a O-structure, given by ~p. Any 

smooth section ct of ~ defines, by the same limit as in (3.11), a section of %T*Xp. 

Thus a fibre metric g on X defines a Op-metric, Rp, on Xp. A local orthonormal frame for 

X, near p, defines a global orthonormal frame on each Xp. The boundary structure on 

Xp is given by any non-vanishing form at aXp which quadratically annihilates all 

elements of ~ in their action on Xp. Clearly different choices of complement, Sp, 

lead to isomorphic spaces. 

PROPOSITION 4.8. For any O-metric, g, on a manifold with boundary, X, and any 
choice of transversal, Sp, as in (3.7) near p E aX the normal operator of the Laplacian 
is, acting on Xp, the Laplacian of the induced O-metric on Xp: 

(4.9) Np(A) = A~p; 

this is a left-invariant differential operator for the transitive group action, Gp, on Xp 
generated by the action of~ 

Proof. Following the proof of Proposition 4.2 it is clear that if gt is a smooth 1- 

parameter family of Or-metrics then the Laplacian varies smoothly with t. The scaling 

(3.9) applied to the metric gives such a family with limit ~p. Since the limiting Laplacian 

is, by definition, the normal operator we conclude that (4.9) holds. 

In the introduction we defined the condition that O-metrics, g on X with structure 
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form O and g' on X' with structure form O' should have the same model at points 

p E aX and p 'E  aX'. Namely this is said to be the case if there is a linear isomorphism 

A: o T p X  <...> O' Tp, X ' 

which is both an isometry and a Lie algebra isomorphism 

g'~,(Av) = ggv) Vv, v' ~ ~ 
(4.10) 

[Av, Av'] = A[v, v'] Vv, v' E ~ 

Applying Lemma 3.19 to the Lie algebra, and using Proposition 4.8, we find 

PROPOSITION 4.11. I f  O-metrics g,g' have the same models at points p,p '  then 

there are choices o f  transversals S e, S~, as in (3.7) and local coordinates near p in X and 

p' in X' such that in the homogeneous coordinates induced on Xp and X~, 

(4.12) Np(Ag) = Np,(Ag,). 

In order to prove the Main Theorem of the introduction we need to investigate the 

conditions under which a given O-metric has the same model as a multiple of the 

Bergman metric on the ball. We examine the metric on the ball in w 8, for the moment 

we express the result more intrinsically. 

First we assume 

(4.13) e~xO is a contact form near p E OX 

which is always true for strictly pseudoconvex domains. Let g be a O-metric. Then the 

ideals corresponding to the central series 

(4.14) K2, p c KI, p c ~ 

lead to an orthogonal decomposition 

~  Mp (~Sp~Kp, 
(4.15) 

Let m E Mp be of unit length and consider the condition 

(4.16) /~:Jp--*Jpf)Kp, #(v) = [m, v] has range in Jp and is 1 x -Id. 
2 
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Since JpcKl, p we also have an antisymmetric bilinear form 

(4.17) JpxJpg(v ,v ' ) , -~to(v ,v ' )ER if [v,v']=to(v,v')Z, Z6Kp ,  g ( Z ) = l  

Of course to is only defined up to sign. The metric restricts to Jr so we can define the 

'Hamilton' map 

(4.18) E:Jp--->Jp, to(v, Ev ' )=g(v,v ' )  Yv, v' eJp. 

From standard linear algebra it follows that ,~ has eigenvalues +i2 i, i= 1 . . . . .  �89 1). We 
require: 

(4.19) the eigenvalues of E are all +iz. 

We can easily construct examples of Lie algebras and metrics satisfying these 

conditions. Namely take the standard contact form 

n 

(4.20) cb = d u -  X (Yi drli-rli dyi) 
i=1 

o n  

(4.21) X =  [0, oo)~xR~,",lx R .. 

The homogeneous elements of ~ are 

1 V~2 x(ay~+ r/j a.), (4.22) -~-xax, 

Consider the metric 

(4.23) 

-~2 x(a,-y~a.), x2a.. 

g l = 4  dx2+2]dYJ2+2]drl]2 . 2  
X ~ x 2 - 7  + x 4 

which has (4.22) as an orthonormal basis; (4.13), (4.16) and (4.19) hold for this metric, 
with Z= 1. 

PROPOSITION 4.24. Suppose a O-metric g satisfies (4. i3), (4.16) and (4~ 19), at each 

boundary point o f  X with Z a non-vanishing smooth function on aX. Then for any 

extension o f  z to a non-vanishing smooth function on X the metric g2g has the same 

model as the metric gl, in (4.23), at 0 and the isometric Lie algebra isomorphism 

between eTuX and a,Toff can be chosen locally smooth on aX. 
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Proof. Replacing g by x2g gives the hypotheses of the proposition with x - l ,  so we 

can assume this from the start. 

By Darboux's theorem we can introduce local coordinates in aX so that the pull- 

back of the form O is given by (4.20). If N is a normal vector field, chosen to be 

annihilated by O then extending the coordinates to be constant along it, except for the 

normal coordinate which should satisfy Nx= 1, reduces O to the form (4.20) at aX. We 

can therefore take O=qb. Thus the tangent algebras are certainly identified. 

We need to choose the Lie algebra isomorphism from ~ to ~ so that the 

metrics are related by it. There is little choice for the Lie algebra isomorphism. 

Certainly it must intertwine the decompositions (4.15). In fact (4.13), (4.16) and (4.19) 

together allow us to choose an orthonormal basis for ~ with the commutation 

relations of (4.22). This only involves a symplectic transformation of Jp and can 

therefore be done, at least locally, smoothly in parameters. 

A simple calculation using the curvature tensor of ~p shows that (4.13), (4.16) and 

(4.19) are actually necessary conditions for the conclusions of Proposition 4.24 to hold. 

w 5. Parabolic blow-up 

We next treat an extension of the notion of normal blow-up, as used previously in the 

analysis of the ~0 and ~Vb boundary structures, see [20] and [18]. This 'parabolic' blow- 

up captures the anisotropic dilation structure characteristic of Bergman type Lapla- 

clans. The construction will closely follow that given in [19] for the normal case. 

First we consider a linear model. Let n > l  be fixed and let S be a linear subspace of 

the dual space (R~) *. We shall choose a complementary subspace S' to the annihilator 

S~ ~ of S and define a dilation structure on R~\{0)  using the splitting R~=S~ For 

z=x+y E R n with x E S ~ and y E S' set 

(5.1) M6(z ) = 6x +62y. 

This is a smooth R§ on R~\{0} and so induces an equivalence relation by z -z '  
ifz'=M6z for some 6>0. We shall denote the quotient by R~\{O}/M6. We then define 

the S-parabolic blow-up of R ~ along {0} to be, as a set, 

(5.2) R~o), s = [ R n \  {O)/M6] llRn\ { 0 ) .  

Let fl{0}, s denote the canonical projection map fl(oL s: R~o), s --~Rn i.e. fl(o), s is the identity 

on R~\{0} and maps all of R~\{0}/M6 to 0 and denote the front face, 
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fl-~olLs(R"\{O)/Mo) by ff(R~0Ls). Notice that 'S-parabolic' means that the quadratic 

variables are those with differentials in S. 

Consider the functions on R" \{0}  which are c~ and homogeneous of degree one 

or zero under the action (5. I). Homogeneous functions of degree zero are just functions 

on a spherical cross-section. It is also easy to construct a function homogeneous of 

degree one. To do so choose a positive definite quadratic form, Q, on R". If z E R" is 

represented as x+y, as above, then consider the function 

(5.3) r(z) = [Q(x)2 +Q(y)] TM. 

Clearly M~r(z)=dr(z). Any other qr174 function homogeneous of degree one is of the form 

ar where a is ~= and homogeneous of degree zero. The function r lifts to a well-defined 

function on R~0),s, vanishing along the boundary R"\{0}/Mo introduced in the process 

of blowing up. Similarly any qr function homogeneous of degree zero lifts to R~0), s. 

We define the topology and cr structure on R~0), s in terms of these functions. Namely 

take the weakest topology with respect to which they are all continuous. To define a 

smooth structure we use Proposition 1.6.5 in [19]. Define the algebra of smooth 

functions on R~0), s to be the algebra generated by the lifts of these smooth functions on 

Rn\{0} homogeneous of some non-negative integral degree with respect to (5.1). It is 

easily verified that this algebra separates points, is local and defines coordinates for 

R~0), s and hence defines a smooth structure on it as a manifold with boundary. Of 

course with this cg~ structure M6 extends to an action of [0, oo), 

showing that 

(5.4) 

M: [0, oo)x R~o),s--~ R~o),s, 

R~o), s ------ [0, 0o) x [ R n \  {0}/M3]. 

The definition of the parabolic blow-up depends, in principle, on the choice of 

complementary space S'. We will show that, as a qg= manifold with boundary, it is 

actually independent of the choice. Of course the definition really only uses the action 

(5.1). Thus any linear transformation of R n which commutes with this action lifts to a 

diffeomorpism of R~0}, s. Such a linear transformation is simply the direct sum of linear 

transformations of S ~ and S'. 

LEMMA 5.5. Let S~ and S~ be two subspaces complementary to S ~ and let Xt and 

X2 be the S-parabolic blow-ups o f  R n along 0 that they define. As manifolds with 
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boundary Xl and X2 are diffeomorphic in a manner giving a commutative diagram 

(5.6) 
X l ' t  I X  2 

1 
R" ' ~ R" Id 

Proof. By the remark above we can assume that 

(5.7) S ~  {(x 1 . . . . .  xk, 0 . . . . .  0)} and S' l = {(0 . . . .  O,y I . . . . .  Y,,-k)). 

Then there is an ( n - k ) x k  matrix, A, such that S~={(Ay, y)}. The lemma now reduces 

to showing that the linear transformation (x, y)--,(x+Ay, y) lifts to a diffeomorpism of 

R~0~, s. In general this transformation does not commute with (5.1) and so does not 

preserve the homogeneous functions. However such a transformation can always be 

obtained by integration of  a linear vector field of the form 

n-k k 

(5.8) v = E ~a au VO, VO:= YiOxj , A = (aij). 
i= l jffil 

Thus it suffices to show that the vector fields V o, lift to be smooth on R{~0}, s. This in fact 

follows from the commutation relation with the infinitesimal generator of (5. I): 

(5.9) [R, Vi/] = V~/, R = x O x + 2 y O  , ,  M 6 = e aR 

since this shows that the lift of  V U is homogeneous of degree one and smooth away from 

the boundary, hence is smooth (and vanishes at the boundary). 

To extend this construction to submanifolds of a manifold we first consider the lifts 

of more general diffeomorphisms of R" to R~0), s. We shall do this using an homotopy 

method and the lifting of vector fields. Note that all the vector fields 

0 0 a a r '  i '  ..., (5.10) Yi='--, Xr ' Yi X, X r , - - ,  r, =1 .... k, i, = 1 ,  n - k  
oy i, aX r, ~ X  r' ay i 

lift to be ~g| on R~o}, s. The first set correspond to linear motions of S' ,  the second to 

linear motions of  S ~ and the third we have just  considered in (5.8). As in (5.9), the last 

set of vector fields are also homogeneous of degree zero hence smooth up to the 

boundary, to which they are tangent. Any vector field which vanishes quadratically at 

the origin is in the span, over *| of the vector fields in (5.10) and therefore lifts to 
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be qg= on R~0},s. Amongst the linear vector fields only those which are tangent to S ~ 

lift--this is precisely the content of (5.10). 

Now we can generalize the lifting to local diffeomorphisms. 

LEMMA 5.11. Let f: U<-->U', where U, U' are neighborhoods o f  O in R n, be such that 

f(0)=0 and f ,  at 0 carries ToS ~ to ToS ~ then f can be lifted to a diffeomorphism 

between neighborhoods o f  the lift o f  0 in R~0), s. 

Proof. This is essentially identical to the argument given in [19]. We first observe 

that if we compose on the right with the inverse o f f ,  at 0 then we get a new m a p f '  such 

that f ' (0)=0 and f ,  is the identity at 0. Moreover, f ,  is a linear map preserving S ~ so it 

lifts to the S-parabolic blow-up. Thus we can assume that f , = I d  at 0. Such a map can 

be smoothly homotoped through diffeomorphisms f ,  for t E [0, I] such that 

(5.12) 

f0 = Id in a neighborhood of 0 

fl = f '  

ft(0) = 0 VtE [0, 11 

( f t ) , = I d  atO VtE[O, 1]. 

As in [19] such a map is always given by the integration of a t-dependent vector 

field Wt. Since both the value off t  and its differential are fixed at 0 it follows that Wt 

vanishes quadratically at 0 and therefore can be lifted as a smooth vector field to R~0), s. 

By integrating the lifted vector field we conclude that the diffeomorphism itself lifts. 

We next add parameters to the theory and define the parabolic blow-up of the zero 

section of a vector bundle. Let V be a vector bundle over the base Y. We can identify Y 

with the zero section of V. Let S be a subbundle of V*. By introducing a positive 

definite metric on V we can define a subbundle of V complementary to the annihilator, 

S ~ of S as the orthogonal complement of S ~ Call this subbundle S'. Now we define the 

S-parabolic blow-up of V along Y, Vr, s, as 

(5.13) Vr, s = H (Vy)to),sy. 
yEY 

This is simply the parabolic blow-up in each fibre. The additional boundary introduced 

by this process will be called (as in the normal case) the front face: 

(5.14) ff(Vr, s) = H [ V y \  {O)/Ma]. 
yEY 
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Again the ~ structure, making this a manifold with boundary, is given by the algebra 

generated by the functions cE ~ on V",, Y which are homogeneous of degree zero or one 

under the dilation (5.1) on each fibre. Under a local trivialization 

(5.15) J r - I ( U ) = U x V ,  for y E U  

the cr174 structure reduces to the product structure from the blow-up on each fibre. 

It is an easy exercise to add parameters to Lemma 5.11 and verify that the 

parabolic blow-up is independent of the choice of complementary subbundle. Indeed 

following the discussion in Lemma 5.5 the question is reduced to the smooth lifting of a 

vector field which is tangent to the zero section and with linearization there tangent to 

S ~ In the local trivialization, a vector field purely in the base certainly lifts so we are 

reduced to the previous discussion with smooth variation from fibre to fibre. Using 

integration to extend the discussion to diffeomorphisms we find: 

LEMMA 5.16. I f  Vr, s is the S-parabolic blow-up o f  the vector bundle V along its 

zero section Y then a vector f ield on V lifts to be qg| on Vr, s i f  and only i f  it is tangent to 

Y and with linearization tangent to S ~ at Y. A ~ diffeomorphism o f  V lifts to be qr i f  

and only i f  it maps Y to i tself  and its differential at each point y E Y maps Ty S ~ to itself. 

The next step in our discussion is to extend the theory to a closed and smoothly 

embedded submanifold Y of a manifold X. The appropriate vector bundles are the 

normal bundle of Y, NY,  and a subbundle of its dual, the conormal bundle, S e N *  Y. As 

a set we define the S-parabolic blow-up of X along Y, Xr, s to be: 

(5.17) Xr, s = ff(NYr, s ) U [ X \  Y]. 

Thus the front face is, by definition, the front face of the S-parabolic blow-up of 

the normal bundle along the zero section. We have an obvious map 

(5.18) flr, s: Xr, s--~ X. 

The new boundary face in Xr, s will again be called the front face and denoted 

ff(X r, s ) - f f (  N Yr, s). 

We will define a smooth structure by applying the normal fibration (or collar 

neighborhood) theorem. This asserts that if Y is closed and embedded in X then there is 

a diffeomorphism f f r o m  a neighborhood of the zero section, Y, in N Y  to a neighbor- 

hood of Y in X such that 
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(5.19) 
f: Y---~ Y is the identity 

f . :NY---~NY is the identity. 

The condition on f .  is to be understood by using the canonical identification of the 

normal bundle of the zero section of a vector bundle with the vector bundle itself. 

Using this result we can define cr s) by identifying it with cr s) in a 

neighborhood offf(NYr, s). All we need to show is that this is independent of the choice 

off.  As in the normal case if we have two such maps, fl and f0, then we can join them, 

at least in a neighborhood of the zero section, by a smooth homotopy ft with the same 

properties (5.19) for each t. If we set Ft=fo ~ "ft then F t is obtained by integration of a t- 

dependent vector field on NY. The proof is completed by showing that Wt lifts to a 

smooth t-dependent vector field on NYy, s. From the fact that both Ft and (Ft). are fixed 

along Y it follows that Wt is locally a sum of vector fields tangent to Y with coefficients 

vanishing on it. Thus Lemma 5.16 shows that Wt can be lifted smoothly to NYr, s. 
Hence the diffeomorphism Fl lifts to the parabolic blow-up. This shows that the cr 

structure on Xr, s is independent of the choice of normal fibration. 

This completes the definition of Xr, s as a manifold with boundary whenever Y ~ X  
is a closed embedded submanifold and S e N *  Y is a subbundle. Notice that if S is the 

zero section then 

Xr, o = X r  

is just the normal blow-up of X along Y. 

For the case of a vector bundle, V, S-parabolically blown up along its zero section, 

the front face has two natural submanifolds. The first is just the image of S ~ under the 

R§ The second is the image of S'. This is also well-defined, and of course 

independent of the choice of S'. We denote these two submanifolds, both of which are 

spherical subbundles by 

(5.20) fir, s( S ),flr, s(S ) =ff(Vy, s). 

In fact since the front face of Xr, s is just the front face of the blow-up of the normal 

bundle these sphere bundles are always well-defined. Notice that 

(5.21) fly, s(S )nflr, s(S ) = ~  in ff(Xr, s). 

If o is a cr vector field on X which is tangent to Y then its linear part at Y is a bundle 
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homomorphism 

(5.22) Lrv:N*Y---> N*Y, Lyv(df)= dy(vf), yE Y. 

Then we can say that the linear part of  v is tangent to S ~ at Y (or normal to S) if Lrv  

maps S to itself. Set 

(5.23) W(Y, S) = {v6 ~| TX); v is tangent to Y and to S ~ at Y}. 

LEMMA 5.24. I f  Y is an embedded submanifold o f  X and S c N * Y  is a subbundle 

o f  the conormal bundle to Y in X then under the S-parabolic blow-up o f  X along Y 

the space ~P(Y,S) lifts to span, over ~=(Xr, s) the space o f  all vector fields 

wE q~=(Xr, s, TXr, s) tangent to the boundary and to f~,,s(S'). 

Proof. This lifting proper ty  may at first seem counter-intuitive, since it states that 

the lifted vector fields, while tangent to the front face, are not tangent to the lift of  S ~ 

there. Of course this is not so unreasonable when it is recalled that the last class of  

liftable vector  fields in (5.10) are not tangent to S ~ away from zero and yet  are 

homogeneous of  degree 0 under  the R§ On the other  hand the vector  fields in 

(5. I0) not tangent to S' are in the third group. These are homogeneous of  degree 1 and 

hence vanish at the front face. This shows that the lift of  o/fly, S) is contained in the 

space stated. That  the lifts span follows from the fact that the vector  fields in (5.10) 

which are homogeneous  of  degree 0 have this property away from the origin. 

COROLLARY 5.25. I f  fr ,  s:Xr, s-->X is the S-parabolic blow-down map for the 

embedded submanifold Y then for  any p EXr, s the differential 

(5.26) (ElY, s),: bTpXr, s ---> TqX, q = fr,  s(P) 

has range Ty Y i f  yE Y and is otherwise surjective; its null space always contains the 

tangents to the fibres o f  the front face. 

The lifting propert ies of  functions are also of  fundamental  interest.  Suppose that 

f E  qg| is the defining function for an embedded hypersurface,  i.e. df#:O on {f=O}, 

Then there are three distinct cases where the pull-back is easy to understand. First of  

course 

f # : 0  on Y =~ flr, s f - f  
(5.27) 

defines a hypersurface disjoint from ff(Xr, s). 
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The second case is where f = 0  on Y but f is not itself parabolic: 

(5.28) 
* f f = O  on Y, df Irr  Y =*" •r,s =oref' 

where f '  defines a hypersurface containing ~,,s(S'). 

Finally in the third case f is parabolic: 

(5.29) 

__ 2 t f = 0  on Y, df lrES VyE Y =*, flr, s f - O ~ f  

where f '  defines a hypersurface containing flT,,s(S~ 

In both cases (5.28) and (5.29) the differentials o f f '  and 0it are independent where 

f ' = 0 .  In these three cases then the lift of a hypersurface H = { f = 0 }  under flr, s is well- 

defined; we denote the lift of the hypersurface by fl~,, s(H)= {f '  =0}; it is never tangent 

to the front face. 

w 6. Parabolic  blow-up in manifolds with comers  

For our applications we will require something slightly more general than the parabol- 

ic blow-up of  a manifold along a submanifold. In particular we have to deal with the 

case of manifolds with corners. Our conventions, together with some results, on 

manifolds with comers are taken from [19]. By a manifold with comers we mean a 

space locally homeomorphic to R~, which is just the product of k closed half-lines and 

n - k  lines, with ~| transition functions and such that any boundary hypersurface is 

embedded. 

This last global condition is not really crucial to most developments but it greatly 

simplifies the notation. Moreover it is true for manifolds with boundary and is pre- 

served under the taking of products. As shown below appropriate parabolic blow-up 

also leads to a new manifold with comers in this sense, so this class of spaces is large 

enough to handle the problems of interest here. 

If we consider the model space R~ with Y={0} we can easily see that some 

additional conditions are necessary on the subspace S for the parabolic blow-up to be 

well-behaved. In fact the only real requirement is that the dilation structure defined by 

the annihilator S~ n and a complementary subspace S' must carry R~ to itself. This is 

obviously the case if S ~ and S' are complementary in the strong sense that 

/ I  O /1 (6.1) R~ = (R k n S ) x (R k f3 S') .  

This just means that any half-line factors which are not in S ~ must be in S'. This is both 



30 C. L. EPSTEIN, R. B. MELROSE AND G. A. MENDOZA 

a restriction on S, and then on the choice of S'. Certainly it is a consequence of (6.1) 

that the S-parabolic blow-up of R i along {0} can be defined by 

(6.2) R~{0},s c R~0), s 

and is then a submanifold with comers.  In fact the existence of S' such that (6.1) holds 

is the usual cleanness condition on S ~ or equivalently S. Thus if xl . . . . .  xk are the first k 

coordinates then we require 

k 
(6.3) E a i d x i = O  on S ~ =~ aidxi=O on S ~ V i = I  . . . . .  k. 

i=1 

If Y c X  is a submanifold of a manifold with comers  X then we say that Y is clean if 

it is closed and embedded in the usual sense and near each boundary point there are 

local coordinates xl .. . .  , Xn in which X is locally R~, with the point being the origin, and 

Y is the intersection of  R~ and a clean linear subspace in the sense of (6.3). The inward- 

pointing part of the conormal fibre to Y, at a boundary point, is a manifold with corners. 

We say that a subbundle is clean if each fibre is clean in the fibre of N* Y in the sense of 

(6.3). 

Any manifold with comers,  X, can be embedded in a manifold without boundary, 

X, of the same dimension. If  Y c X  is clean, closed and embedded then it can be 

extended to an embedded submanifold I 7" of .,~'. 

THEOREM 6.4. Let X be a manifold with corners, Y a clean (closed embedded) 

submanifold of  X and S c N * Y  a clean subbundle, then the closure, Xr, s, of  the pre- 

image of X \  Y in Xf, s is a manifold with corners which has a ~ structure independent 

of  the choice of  extension. 

Proof. The structure as a manifold with comers  is clear from the lifting results 

(5.27)-(5.29). 

Thus each boundary hypersurface of X lifts to a boundary hypersurface of Xr, s: 

(6.5) fl}.s(B) = cl(fl;.~s(B\ Y)). 

Moreover the lift of Y is itself a boundary hypersurface, the front face. Thus, in 

general, the maximum codimension of a corner of Xr, s is one greater than of X. 

For manifolds with corners X, X' there is special class of c~= maps, namely b- 

maps. The defining condition is just  that the pull-back of  a defining function for a 

boundary hypersurface should be a product of powers of defining functions for bound- 
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ary hypersurfaces. Thus if ~i, i= I  . . . . .  q are defining functions for the q distinct 

boundary hypersurfaces of X and Q~, i= 1 . . . . .  q' those for X' then a ~= map F: X---~X' is 

a b-map if 

(6.6) F*~ = a I ~  ~;(i,j), 0 =~ O~ E (~za(X) 
j = l  

for some non-negative integers e(i,j). 

For fir, s:Xr, s-->X if the boundary hypersurfaces of X are labelled Bj={Qj=O}, 
t__ * j=1  . . . . .  q then we can label the boundary faces of  Xr, s asB~=ff(Xr, s), Bj-fix, rB ~, 

j = l  . . . . .  q. 

LEMMA 6.7. For the S-parabolic blow-up o f  a clean submanifold Y c X  o f  a 

manifold with corners, Xr, s, the blow-down map is a b-map and 

01 " i' i~=l ,  4=0 
(6.8) e(i, i') = i = i' 

d( i) i' = 0 

where 

(6.9) 

d(i)=O if  YNB i=f~ 

d( i )=l  i f  Y c B i b u t N * B i r  

d( i )=2  /f  Y c B i a n d N * B i c S .  

We also need the following consequences of  Lemma 5.24: 

LEMMA 6.10. Under the S-parabolic blow-down map for a clean submanifold, Y, 

of  a manifold with corners, X, the space ~b(Y, S), o f  vector fields tangent to the 

boundary o f  X and in the space T'(Y, S) defined by (5.23), lifts into ~b(Xr.s). 

COROLLARY 6.11. I f  flr, s:Xr, s--->X is the S-parabolic blow-down map for a clean 

submanifoM Y o f  a manifold with corners then for  any p CXy.s the differential 

(6.12) (fir, s).: bTpXr, s -* bTq X, q = fir, s(P) 

has range bTy Y if  yE Y and is otherwise surjective, its null space always contains the 

tangent space to the fibres o f  the front face o f  Xr, s. 

We have already encountered one case of  parabolic blow-up. Namely if X is a 
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manifold with boundary then 

(6.13) Xox, N*ox = Xv2. 

w 7. Stretched product 

Let X be a compact manifold with boundary and O E ~=(aX, T 'X )  a 1-form on X, at 

aX, which pulls back to be non-vanishing as a l-form on aX. We now proceed to define 

the O-stretched product, X 2, of X with itself. 

In the product x E = x x X  the boundary of the diagonal is an embedded submanifold 

sitting in the corner 

(7.1) OA ~ OXxOX ~ X x X .  

Moreover, 0A is certainly clean in the sense of (6.3) since it is an embedded submani- 

fold of the comer, so all differentials of boundary defining functions vanish on it. 

The dual bundle to N(0A), N*(0A), can be identified with the annihilator of TOA in 

T~AX 2. The 1-form O gives a section of N*OA, namely 

(7.2) 0 2 = =~O-at~O over OA. 

By assumption on O this section is non-vanishing. Its span ScN*(OA) is a line bundle, 

so its annihilator H c N ( a A )  is hyperspace bundle. We define the O-stretched product 

to be the S-parabolic blow-up o f X  2 along aA: 

( 7 . 3 )  X~ = Z 2 A , S  , 0(2)  v 2  "v'2 P o  "Ao-'~A �9 

Of course we need to check the cleanness assumption on H to apply Theorem 6.4. This 

follows from the fact that O is non-vanishing on the boundary, so no non-trivial linear 

combination of boundary differentials vanishes on H, a trivial case of (6.3). 

Since the inward-pointing part of the normal bundle to 0A is a quarter space (R2 d+2) 

bundle, the front face of X~ is a quarter sphere bundle over the boundary of X: 

(7.4) 

S~ +1 - -  ff(x ) 

OX. 

Recall from (5.20) that there are two natural submanifolds of the front face, we shall 

denote them H2=fl~)*(H) and H x-a(2)*tH• 2 - - t - ' o  ~. �9 
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, '"  A O 

Fig. 1. The e - s t r e t c h e d  product  

rb 

Consider the action of the Lie algebra ~ on X 2 on the left factor. Since all these 

vector fields are tangent to the left boundary o f X  2 they are certainly tangent to 0A. By 

definition the pairing e(v)  vanishes quadratically at the boundary so that the pairing 

with 02 satisfies 

(7.5) d[O2(v) ] = 0 at aA. 

This shows that Lemma 5.24 applies and that all these vector fields lift to be ~| on X 2, 

where we denote the Lie algebra ~ L. It therefore consists of ~| vector fields tangent 

to all boundaries, including the front face, and tangent to H~-. The submanifold H~-just 

consists of two points in each fibre, H being a hyperplane; they lie in the corner of the 

front face. 

The fibre, ffp(X2), of ff(X 2) over p E aX can be identified, although not quite 

naturally, as a quotient related to Xp. By definition ffp(X 2) is a quotient of the inward- 

pointing part of the normal space to aA at (p, p). The latter is just 

aA. 

Since the tangent space to the diagonal in OXx OX can be naturally identified with Tp 0X 

for either factor the normal space can be identified with 

(7.6) XpxN~ X. 

The (quotient) R+-action on NpX is the standard one, so by choosing any positive 

3-918288 Acta Mathematica 167. Imprim6 le 22 aofkt 1991 
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element ~pp 6 Np X we obtain an identification 

(7.7) ffp(Xg) ~ (XpxN~)/R +. 

Different choices of  ~p~, can give different identifications (7.7). Since the action of  ~ X 

on Xp consists of  vector fields which are homogeneous of  degree zero under this action 

we find 

PROPOSITION 7.8. The lift, ~ L, of the structure algebra ~o from the left factor 

of X to X2o restricts to ff(X~) to give an action o f~  and spans, at each point of  the 

interior of the front face, the tangent space to the fibres of (7.4). 

Let  us label the three boundary hypersurfaces of X 2 as 

(7.9) lb(X 2) = fl~)*(OXxX), rb(X 2) = fl~)*(Xx OX), ff(X 2) = fl~)*(0A). 

Now, the diagonal A c X  2 lifts to X 2 as an embedded submanifold, Ao, meeting the 

boundary only in the interior of ff(X 2) and doing so transversally. An important 

consequence of  this is that if P fi Diff , (X)  is elliptic (in the sense that tIm(P)~O o n  

~ then it lifts to X~, from the left factor, to a qg= differential operator P which 

is transversally elliptic to Ao. The lift,/5, is totally characteristic and in terms of the 

identification (7.7), restricts to the front face to give the normal operator as a family of 

left-invariant differential operators on the Lie groups Gp. 

More geometrically we also see that we can identify 

(7.10) NA o _-_ ~ N*A o ~ ~ 

This will allow the symbol of  a pseudodifferential operator to be transferred to the 

bundle ~ 

We also need to consider densities on X 2. Directly from the definition of the 

parabolic blow-up in local coordinates it follows that acr density on X z lifts to be cr 

on X 2. In fact this lifting gives 

(7.11) fl~)*: c~| | 2. (X~, f~), N =  d i m X + l .  

This is not surjective, but 

(7.12) v*O on X 2 =~ fl~)*v/o~*O on X 2. 

Let  us set ~oz)L = zl L .fl~) and ~(2) _~, .n(2) the two maps from X 2 back to X. These 
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are examples of b-submersions. Any b-map, as defined by (6.6) leads to a map on the b- 

tangent space 

(7.13) bF,:bTeX---~ bTF(p)X' Vp EX. 

Such a b-map is a b-submersion if it is surjective and bF, surjective for each p EX. 

PROPOSITION 7.14. Both maps ~),L and ~ )  o,R are b-submersions which are trans- 

versal to the lifted diagonal; if O is a defining function for the boundary of X then 

(7.15) 
(~o2), L)*O = O~Olb 

(~r(2),R)*O = OffQrb" 

Proof. It suffices to consider ~O2),L. The transversality to the lifted diagonal follows 

from Proposition 7.8. That ~2) _~, n(2) is a b-map follows from the fact that each of ~O,L--~R "P'O 
the factors is a b-map. Thus we need only show the surjectivity of the b-differential. 

This certainly follows if we show that every element V6 ~'b(X) can be lifted to an 

element of ~'b(X20). Lifting VE ~b(X) to the left factor o f X  2 gives a vector field which is 

tangent to the boundary, but not necessarily to 0A. However, if VL and VR are the lifts 

from left and right, then VL+ VR is tangent to all boundary components and to the 

diagonal. Thus we can simply lift VL+VR to X~ using Lemma 6.10. The formulae (7.15) 

now follow from Lemma 6.7. 

w 8. Resolvent for the hall 

The Lie theoretic model problem for the Laplace operator on a strictly pseudoconvex 

domain is given by the Laplace operator for the metric of constant holomorphic 

sectional curvature on the unit ball, CBn+lcC n+l. We shall normalize the curvature to 

be -1 .  In holomorphic coordinates (Zl .. . . .  Zn§ the appropriate metric is given by 

(8.1) 

n+l 

ds2 = E gu dzi d~j 
i,j=l 

g/j = - 4 0  i ~j[log(1-Iz12)] 

The ball is an Hermitian symmetric space of rank 1, the group of automorphisms is 

SU(n+I, 1). The Laplace operator is invariant under the automorphism group and 

therefore the kernel of the resolvent is simply a function of the distance between a pair 
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of points. To determine this function it therefore suffices to study the 'radial' part of the 

Laplace operator. Since SU(n+ 1) is the subgroup of the automorphism group fixing the 

point 0, a function of r=lzl is also radial with respect to the Bergrnan metric. The vector 

field R=�89 is easily seen to have unit length and the volume form of the 

Bergman metric is given by 

4n+ldVe 
dV= 

( l-r2) n+2 

where dV, is the Euclidean volume form on C". 

Thus the Dirichlet form for a radial function f is 

f0 
1 4 n+l 

(8.2) D(f) = IRfl2r 2"+' dr  
(l-r2) "+z" 

If we make the substitution r = r  z, setting g(r)=f(r), the Dirichlet form and norm 

become: 

(8.3) 

1 ~l  Dg 2 4,+l~+ldr 
O(g) -- --2 ,v -~r (1 - 7:)" 

I f01 4n+lr~ dr 
Ilgl12 = T Ig12 ( l - r )  n+2" 

Integrating by parts we obtain the radial eigenvalue equation for the Bergman 

Laplacian: 

I-n+l n ] s (n+l - s )__ , ,  
(8.4) g~+[--r- - -+ l - r ]  gr+ ~ - g - u .  

We have introduced the analytic energy parameter 2=s(n+ l - s ) ;  the 'physical' resol- 

vent set corresponds to ~(s )>(n+ 1)/2 and the spectrum to the line ffi(s)=(n+ 1)/2. The 

radial equation is a classical Riemann ~-equation: 

(8.5) ~ 0 s ; r . 
- 0 n + l - s  

The solution with a pole at r=0  and the correct behavior at r = l  is given by 

F(s)2 ( r -  1) s 2Fl(S, s, 2s-n; l - r ) .  (8.6) r(r; s) = c n F(2s-n) 
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The constant, cn, is determined so as to make r a fundamental solution. Using the 

Gauss relations for hypergeometric functions found in [1;p. 560] one can show that, in 

a neighborhood of r=0,  r can be written as: 

(8.7) r(r; s) = r-nGl(~:; s)+log(r) G2(r; s) 

where G~ and G2 are analytic in a neighborhood of r=0. 

The kernel r(~; s) has simple poles at 

s E - N  0= { 0 , - 1 , - 2  .... ). 

An easy computation shows that 

k 

Pk = lira (s+k)r(r;s) = ~ am.k(1-r) m-k. 
s--+-k m=O 

As a residue of the resolvent Pk acts on ~ ( C B  ~+l) as a projection onto a space of 

solutions to the equation [A+k(n+ l+k)] u=O; if k>0 these spaces are infinite dimen- 

sional. These solutions are of the form u E (1-z)-k~C| The fact that the rank of 

the projection is infinite means that, for the general O-metrics these points require 

special treatment; this will be done elsewhere. 

To solve the indicial problem in the general case for s a half-integer less than 

~(n+ 1) we will need the detailed behaviour of r at such values. The ratio 

2 Fl(s, s, 2s-n; 1-r) /F(2s-n)  

is analytic at these points. A simple calculation shows that 

(8.8) r (~; Ik )=F2(Ik)  ~ ak, . (1-r)  m+~2 
ra=n+l -k  

for k an odd integer less than n + l ,  or an even integer between 0 and n + l .  

Since each complex line through the origin is a totally geodesic submanifold and 

the restriction of the metric to such a line is the standard hyperbolic metric on the disk, 

one easily shows that the variable r satisfies: 

1 - 2  
(8.9) 1 - r  = [cosh-~- d(z, 0)] 

where d(z, w) is the distance between z and w measured in the Bergman metric. To 

complete the story we need to find a formula for the distance between two points in the 
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Bergman metric. It is more convenient to work in the biholomorphically equivalent 

domain defined by the hyperquadric. If z and w are two points in C n then we define: 

i 1 
(8.10) Q(z, w) = - -~ (zj - t ~ l ) -  --~ (z2 iv2+... +z~+l t2n+l). 

The region equivalent to the ball is Q+={z;Q(z,z)>O}. The fundamental point pair 

invariant on Q+ is: 

(8. I 1) (z, w) = a(z, w) 
[Q(z, z) Q(w, w)] 1/2" 

The surface {z2=... =z~+~=O} is totally geodesic and the metric restricted to this set 

is given by ds2=4dw~ dt~/(w~-t~)  2. Using this and the homogeneity of the domain one 

easily shows that: 

(8.12) 

To summarize: 

1 I(z, w)l = cosh-~d(z,  w). 

THEOREM 8.13. For the Bergman Laplacian on the ball the resolvent kernel is 

given by 

(8.14) R(z, w; s) = r(lz, w)J-2; s)| 

where r is given by (8.6) and the eigenvalue, A, is related to s by 

(8.15) A = s(n+ l - s ) .  

We shall generalize this rather explicit formula for the resolvent kernel to more 

general metrics below. We express this general result in terms of the regularity of the 

kernel when pulled-back to the O-stretched product ~+1 2 [CBl/2 ]o. Naturally we wish to see 

how the kernel for the ball lifts in this sense. Let Ro=fl~ )* R. 

r t~nn+112 satisfies PROVOSITION 8.16. The resolvent kernel, lifted to t,_,ul/2 jo, 

(8.17) Ro(s)= 2, 2s , Olb Orb Ro(S) 

where R~ is cr away from the lifted diagonal and is a classical conormal distribution 

o f  order - 2  along Ao (see also section 11). 

Proof, Obviously the way to understand the lift of the kernel to the O-stretched 
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product is to first understand the lift of the point-pair invariant (z, w). We shall show 

that 

(8.18) ifl(~).(z, W) I-1 = ~)lb Orb 

is simply the product of defining functions for the let and right boundaries of the O- 

stretched product. 

It is convenient to introduce 'polar' coordinates for the stretched product. First we 

introduce convenient coordinates for Q+ Since Q(z, z) is a defining function for the 1/2" 
boundary we can take o=Q(z, z) 1/2, u=gt(z0 and (z2 ... . .  z,+l) as coordinates. We shall 

denote coordinates on the left factor with primes, (O',u',z2 ..... z',+l). Setting 

t=u-u'+~r.~.=+21 s an easy calculation shows that 

dtloA = OI0  

and thus we can define 'polar' coordinates for the parabolic blowup by: 

R4=~Q2+Q'2+I~IZi-Z"2) 2 \  2 i=2 +/2 

t z , - z ;  
Olb= '~  -, Q r b = ~ ,  T= R2, Zi- V~" 

Near any point on the front face an appropriately chosen subset of (Qlb, Orb, T, Z) 

along with (R, u, z) will define a coordinate system for the O-stretched product. Using 

(8. I0) and (8.1 1) we see that in these coordinates: 

w ) =  2 2 (Qlb+Qrb+lzl 2-iT)/(2QlbQrb)" 

It follows easily from the definition of the polar coordinates that the numerator in this 

formula is of modulus 1. Thus, changing the defining functions by a factor of X/-2", we 

arrive at (8.18). Notice that although we have proved (8.18) for the upper half-space 

model it must hold globally for the stretched-product of the ball with itself, because of 

the invariance of (z, w). Note also that [(z, w)l is, when lifted to [CB~/:1] 2, homogeneous 

of degree zero under the R+-action corresponding to the blow-up. Thus the behaviour 

of Ro is determined by its behaviour away from the front face. 

To prove (8.17) we simply need to examine the behaviour of r in (8.6) and use 

(8.14). As a function of r, r is certainly smooth away from r=0 and r = l ,  which are the 

singular points of (8.5). From (8.6), (8.14) and (8.18) we see that (8.17) holds away from 
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the lifted diagonal. The singularity at the diagonal is, away from the boundary, 

necessarily a conormal distribution of order - 2 .  From the homogeneity this extends 

down to the front face. This proves the proposition. 

If we let zj=rl:+iy j then the metric of constant holomorphic sectional curvature - 1  

is given by 

(8.19) 
o2 

/ .i=~L\ P I 04' 

where r A unit frame is given by 

I a 1 l._~o(ay_rlja,,), 
-~e o, ~ e ( a , j + Y : a . ) ,  v 2 . 020.. 

In the bulk of the paper we will consider operators acting on half densities, so for 

the sake of consistency we will restate this theorem in that context. The natural way to 

extend the Laplacian to half-densities in the interior is to use the Riemannian half- 

density to trivialize the bundle, so setting 

(8.20) P(s) ~ = lzP(~,g-1), tp E ~g| /z= dg 1/2. 

Of course dg is a non-vanishing section of the O-density bundle f~o=o-NQ, N= 
dimX+ 1. Thus, (8.20) gives an action of P on qg| fl~/2). 

The resolvent of  P acting on the O-half-densities is also obtained by conjugation, 

so can be expressed in terms of the kernel R by 

(8.21 ) R" = Rdg~/2 dg~ 2. 

If we use the discussion of the lifts of densities in w 7 we see that R" lifts to a half- 

rt, n,+h2 which is of the form density on t...v~/2 Jo 

(8.22) fl~*(R"(s)) = Ro(s)  o - N % ,  O *  v E  ~r174 . ~t:2). 

We absorb the extra singular factor at the front face of the stretched product into the 

density bundle, so consider the bundle flgz=offN/2 ill/2. Thus R" is just a non-vanishing 

~,o section of this bundle multiplied by Ro in (8.17). Although the kernel in this form is 

attractively symmetric we have chosen (perhaps unwisely!) to express the results on 

the O-pseudodifferential calculus in terms of operators acting on ordinary half-densi- 

ties. This amounts to conjugating the operator by a power of  a boundary defining 
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function, since by definition 

(8.23) s = ~-NF2~'~I/2. 

Having chosen such a defining function let us set 

(8.24) (~_ *off'~lin+ 1. ~,'~ 1/2), P ( s )  U = QN/2p($) o -N/2u ,  u ~ ,v I.~..Vl/2 , 

giving the action on ordinary half-densities. Similarly set 

(8.25) " N/2 H -N/2 N/2. I/2, [O~N/2 dgg2]. R(s) = OL R (s) OR = R[O L a g  L I 

2n 2 Of course since OL/On lifts to [CBv2] o to be of the form 01b/0rb we see that the lift of the 

kernel g can be written in the form 

( 8 . 2 6 )  /3~)*/~(s) --'~ elb-2S Orb-2S-NntlXogb'J/-x V, 0 ~= V E ~ | ([CBI/2n+l ]0,2" offN/2 ~-~ 1/2), 

with R' as described in Proposition 8.16. 

We have not actually shown here that R(s) is the resolvent kernel of the Laplacian, 
�9 ~ n+l  although we have certainly checked that it is a right inverse on ~ (CB~/2 ). To show 

r2tr'n~+~" dg). This is a that it is the resolvent it suffices to show that it is bounded on ~ ,---1/2 , 

consequence of the boundedness properties of O-pseudodifferential operators dis- 

cussed in w 13 and the interpretation of the form (8.26) for the kernel, which in the 

notation of w 12 is just 

(8.27) a~,k ]]~fS`1 ~ UJ-2;2S'  2s-N(f'~Rn+l" 1")1/2"1 
x O  ~-~"~1/2 ' ~ / �9  

As noted above the asymmetry between the indices at the left boundary and the right 

boundary is a consequence of our forcing the operator to act on regular half-densities, 

on which it is not formally self-adjoint for s real. 

w 9. Commutation of blow-ups 

When the technique of parabolic blow-up is used below in the construction of the triple 

product of  the space X with itself the iterative blow-up of  submanifolds becomes 

necessary. We now give a sufficient condition to allow such iterative blow-up and then 

discuss a commutativity result permitting the order of the blow-ups to be changed�9 

Suppose that Y~c Y2,-X are two embedded submanifolds where, for the moment, 

we assume that aX=~3. Let $1 cN*Y~ and S2cN*Y2 be the subbundles of the respective 

conormal bundles with respect to which the blow-ups are to be parabolic. The extra 
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condition we impose is 

(9.1) S, NN~, = S2nN~, ' Y2" 

Notice that, since Y1cY2, N~, 1Y2cN*Yl in a natural way. 

PROPOSITION 9.2. Suppose Ylc YzcX are embedded submanifolds and Sit-N*Yi, 

i=1,2 satisfy (9.1). Let fll:Xrvsl--~X be the blow-down map for X, Sl-parabolically 

blown-up along Y1, then the lift of  Y2, 

(9.3) Y2,1 = fl~(Y2) = c l [ f l~(Y2\  Y0] c Xr,,n ,, 

is an embedded submanifold meeting the boundary cleanly with the closure, $2,1, 

of SzI (y2\rl ) being a clean subbundle of N*fl](Y2). 

Proof. Clearly the regularity statements are local near points of YI. Thus we may 

linearize the geometry and take local coordinates (x, y, z) in which 

Yl={x=O,y=O},  S,=sp{dx' ,dy'},  
(9.4) 

r2 = {x = 0) ,  s2 = sp{dx '}  

where x=(x', x") E R k and y=(y', y") E R p is a further splitting of these coordinates. The 

form of $1 and $2 is possible precisely because of (9.1). 

In these local coordinates the result is obvious since Y2 and $2 are homogeneous 

with respect to the dilation used to define the Sl-parabolic blow-up along Y1 if the 

transversal surface is taken to be {x"=y"=0}. 

The coordinate form (9.4) also shows that a result analogous to Proposition 9.2 is 

true for the S2-parabolic blow-up along Y2. Thus the lift 

(9.5) YI,2 = fl21(Y1) 

is a ~= submanifold meeting the boundary cleanly and f12. N~, Y1--~N~ YL2, for each 

r' =f12(0, v E Y1,2. Then we set 

* . 
(9.6) $1,2 -- f12 $1, 

it is a clean subbundle of N* Y1,2. An important tool in the manipulation of the blow-ups 

is the following commutativity result. 

PROPOSITION 9.7. Under the hypotheses of Proposition 9.2 there is a diffeomor- 
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phism between the two iterated blow-ups, giving a commutative diagram: 

Xy~, s~ X r  v s 2 

X ~ ~ X 
Id 

Proof. Clearly the result is local near the lifts of  points in Y1. Thus we can use the 

local coordinate form (9.4). We proceed to compute the successively blown-up spaces. 

First 

(9.9) Xyvs2= [0, oo)x{(X' ,X")ERk;  IX'I2+tX"I 4 = 1 ) x R P x R  ~, p + k + n  = dimX. 

The blow-down map is 

t tt (9.10) flr2.s2: (r, (X', X" ) ,  y, z) (r2X , rX , y, z). 

The  lifts are also easily computed 

(9.11) YI,2 = { r = 0 , y = 0 } ,  Sl,2=sp{dy'}. 

Thus the second blow-up gives 

(xy2,s)Y,.2,s,. 2 = [0, oo)x ( ( x ' , x " ) ;   x'12+lx"l ' = 1) 

(9.12) • Y', Y")~- [0, oo)xRP;R4+Iy'I2+IY"I 4= 1 ) x R  n 

fll,2"/32: (0, (X ' ,X" ) ,  (R, Y',  Y")) ~ (ezR2X ', oRX",  oZY ', oY" ,  z) EX.  

Similarly starting up the left side of (9.8) we find 

Mrs, sl = [0, oo)x {(~', ~", t/', t/'3 E RkxRP; l~'12+l~"14+lt/'12+lt/"14 = 1} xR  n 

(9.13) /3yl,st(S, (~, t/), z) ~ (s2~ ', s~", s2t/', st/", z) EX, 

Thus we see that there is indeed a ~ map, which covers the identity on X, 
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(9.14) ~": (Xrvs2)rt. 2 s, 29(Q, (X',X"),(R, Y', Y"))~--~(o, R2~',R~ ", Y', Y",z)EXrt,s: 

which is just the S'-parabolic blow-up of the surface {~=0}, where S'=sp{d~'}. This is 

just the definition of (Xr, ' s)r2.,,s2.~ and the resulting map ~, is therefore an isomorphism 

as claimed. 

(9.15) Remark. This result extends immediately to the case of manifolds with 

corners, provided all the submanifolds and bundles are clean. We can also analyze the 

differential of the composite blow-down map. 

COROLLAaY 9.16. Let fl=fl2, t'flt be the iterated blow-down map from the space 
X2, l=(Xrt,s)r2:,s2.1 under the conditions of  Proposition 9.7 then for all p EX2, l 

(9.17) fl.:bTpX2.t--, bTqX, q= fl(p) 

has range bTqYl,bTqY 2 or bTqX as qE YI, qE Y2 \  Y1 or q E X \  Y 2 and has null space 
containing the tangents to the fibres of  both boundary hypersurfaces introduced in the 
blow-up. 

w 10. Triple product 

The most intricate construction we need to carry out is of the O-triple product of  X, 

which we denote X~. This plays a fundamental r61e in our (geometric) proof of 

composition formulae for the O-pseudodifferential operators defined above. In these 

proofs we need certain basic properties. 

First, X~ should be obtained from X 3 by a sequence of (parabolic) blow-ups of 

embedded submanifolds. The overall blow-down map will be denoted 

(I0. I) t-'on~ ,---3 X 3. 

The blow-up should be symmetric in the sense that the permuation group on X 3, 

generated by the exchange of factors, lifts to a group of diffeomorphisms on X 3. 

Even more important than the symmetry is the requirement that the three projec- 

tions 

(10.2) arF, arc, ats: X3 ~ X3 

off the left, middle and fight factors of X when lifted to X~ should factor through 

smooth maps 

(10.3) aro, o:X3o---,X 2, O=F,C ,S .  
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Here the three suffixes 'F ' ,  'C' and 'S' refer to the three operators involved in a 

composition formula A-B= C, B being the 'first' operator, corresponding to ~F, A being 

the 'second' operator, corresponding to Z~s and C being the composite operator, 

associated to Ztc. These maps lead to commutative diagrammes 

:rto, 0 

X 3 ~o , X2 

O = F , C , S .  

The existence of the smooth maps (10.3) is important because they allow the kernels of 

the two operators to be lifted to X~ and the product to be projected to X2o as the kernel 

of the composite operator. An important property of the construction is that the three 

maps ato. o are b-submersions in the sense of (B5.2). 

Now to the actual construction. We shall construct X 3 in two stages, both 

involving parabolic blow-ups. In X 3 we need to consider the boundaries of the three 

partial diagonals, since these are blown up in the process of defining X g, so must be 

blown up in the construction of X~. These three embedded submanifolds can be written 

(10.5) 7o=Zol[0A],  a A =  { ( x , x ) ; xEaX} ,  O = F , C , S .  

We cannot simply blow up these submanifolds and keep the symmetry of X 3 because 

they meet at the boundary of the triple diagonal: 

~A T = ( (p, p, p); p E aX} c [aXl 3 c X 3 
(10.6). 

BAr= 7FNyc = ycnYs = ys nyF = yFflTcflYs. 

This embedded submanifold lies in the codimension three boundary of X 3. At aAr 

there are three forms of the type (7.2): 

O F - -  * * 

(10.7) 0 c = :r 0 - ~ 0  

O s = z t / O - z u O .  

Any pair of these are linearly independent, but of course 

(10.8) OF+Oc+O s = O. 
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The span is therefore a subbundle of rank two 

(10.9) G = sp{O v, O s, Oc} c N*0A r. 

Clearly G is independent of the span of the boundary conormals at aAr. 

In the first step of the construction we G-parabolically blow up X 3 along the 

boundary of the triple diagonal and set 

3 z ~ x  3, ff(z)=/~?~(aAr). (10.10) Z=(X)aArO,  ill: 

The three boundaries of the partial diagonals in X 3 each contain aAr as an 

embedded submanifold and Proposition 9.2 applies to each of them. Thus they lift to Z 

as smooth manifolds 

(10.11) Yl,o=fl~(yo)=cl[fl-fl(yo\aAr)]cZ for O = F , C , S .  

The images of the yo'S in the parabolic normal bundle to aAr are disjoint so the Yl,o'S 

are three disjoint embedded submanifolds in Z. Moreover the three line bundles, 

SocN*y o, spanned by Oo, for O=F, C, S also, separately, satisfy (9.1) with respect to 

G. Thus Proposition 9.2 applies to show that these bundles lift to So~N*yl,o . The 

disjointness of the three submanifolds means that we can set 

(10.12) yl,.mYl,FU~/1,cU~l,S, S = S  o over 71,o, O = F , C , S  

and thereby blow up the Yl, o jointly, but independently. We set 

(10.13) X~ = Z~tl, . '  S" 

This is the triple O-product. 

We shall label the boundary hypersurfaces of X 3, all of which are embedded, as 

(10.14) aX~ = flU fs O cs U ss U lb U mb U rb. 

Here ff(X~) is the lift of the front face of Z, i.e. the face introduced by the blow-up of 

OAr. The 'sides' fs, cs and ss are the faces introduced in (10.13) by the blow-up along 

Yl,o for O=F, C, S. Finally the remaining boundary hypersurfaces lb, mb and rb are the 

lifts of a X x X  2, XX a X x X  and X2x~X from X 3. To prevent confusion with the defining 

functions for the similarly named boundary faces of X 2 we will denote by 



RESOLVENT OF THE LAPLACIAN ON STRICTLY PSEUDOCONVEX DOMAINS 47 

Off, s, 01b, 3 and Orb, 3 defining functions for the front face, right boundary and left bound- 

ary of X~; the others are simply denoted Ofs, Oss, Ocs and Omb" 

The full partial diagonals A o c X  3, also lift as clean submanifolds to X~ where they 

are denoted 

(10.15) At, o ~X~.  

PROPOSITION 10.16. For O=F, C, S there is a commutative diagram (10.4) where 

ero, o: X3---~X2 is a b-submersion which is transversal to the lifted partial diagonals 

Ao,,ofor 0'=4=0 and which embeds the triple lifted diagonal 

(10.17) AT, O =  Ar, o ~ Ac, e NAs, o 

as the diagonal o f  X 2. 

Proof. The existence of ere, o is clear from Proposition 9.7, since this shows that X~ 

can alternatively be constructed by two blow-ups from XxX2o. Namely, first paraboli- 

cally blow up the lift of aAr, then blow up the lifts of the boundaries of the two partial 

diagonals, i.e. the lifts of Yc and Ys. Thus ere, o is the product of three b-maps, two 

blow-down maps and a projection hence is itself a b-map. 

Next consider the surjectivity of  the b-differential, i.e. (B5.2). From Corollary 9.16 

we can calculate the range of the b-differential at each point of X3; it is just the b- 

tangent space to the smallest submanifold through that point which is blown up in the 

construction. However these submanifolds are both graphs over X~, so err, o always 

has surjective b-differential. 

Similarly the transversality to the lifted diagonals corresponding to the 'other' two 

projections follows from Corollary 9.16, since where they meet the new boundary 

hypersurfaces they are transversal to the tangents to the fibres; elsewhere the transver- 

sality is obvious. That erv, o restricts to Ar to give an embedding as the diagonal of X 2 

can be checked by a simple computation. The assertions for the other projections 

follow from the symmetry of the construction of X~. 

We note, for later reference, precisely how the defining functions of X 2 lift under 

these blown-up projections: 

er~', O Olb =Omb Oss~ 

(10.18)  Jr~, o Orb = Orb, 3 0r 

er~, e Oft = Off, 3 Ors, 

er.~, @ Olb = Olb, 3 Ocs, 

erS, O O r b -  Omb Ors, 

er* S, O0ff = Off, 3 Oss, 

Yt'C, | Olb Otb, 3 ~)ss' 

erC, OQrb ~ Orb, 3 Ofs, 
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w 11. Small calculus 

We now discuss the 'small' calculus of O-pseudodifferential operators. This symbol- 

filtered algebra extends the enveloping algebra Diff,(X) of ~ o. The operators are fixed 

in terms of their Schwartz' kernels, which have conormal singularities at the diagonal 

of the O-stretched product and are otherwise smooth, as sections of the appropriate 

bundle, and vanish to infinite order near the left and fight boundary components lifted 

from X 2. Such a calculus cannot contain good parametrices for its elliptic elements, the 

inversion of which involves boundary conditions in a generalized sense. Thus one must 

augment the 'small' calculus to include operators with kernels that are singular on 

various of the other boundary components, this is discussed in Section 12. 

For the usual reasons of symmetry we shall work with half-densities. Consider 

continuous linear operators on sections of the half-density bundle of the rather general 

type: 

(11.1) A: ~| Qu2)___~ ~-| f2u2). 

The Schwartz kernel theorem shows that these operators are in I - 1  correspondence 

with the (extendible) distributional half-densities on the product 

(11.2) A ~.  K a E ~-| f2'/2). 

The kernels of the operators we consider are much simpler in form on the O-stretched 

product. Since X 2 is obtained from X 2 by the blow-up of a submanifold of the boundary 

there is a natural isomorphism 

(11.3) #2).: ~-| ++ ~-| 2) 

so we can just as well look at the kernels there. For half-densities (11.3) becomes 

(11.4) <s174 f2'/2)---~ c~-| 

Now, from (7.1 l) it follows that the lift of densities gives an isomorphism 

(11.5) R(2)*f31/2[y2"~ - -  ['" hN/2r ~ N = dimX+ 1 

Rather than use this to rewrite the right side of (11.4) we insert further powers of Off and 

consider the kernel, on X2o, of an operator (11.1) to be 

(l 1.6) 
Ka++g a under ~-=(X2;~v2)++~-| N = d i m X + l .  
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That is, if the lift ofKA to X~is  written/~.M, with#E(0n)Na~| 1~) using(l l .4)  

and (11.5) then 

(11.7) : effN , c eft 

The reason for the normalization (11.6), (11.7) is easily seen by considering the 

identity operator. The kernel, in terms of local coordinates x, y, x', y' in X 2 is just 

(11.8) Kid = 6(x-x') 6(y-y ')  y),', 

where ~, and 7' are non-vanishing qg| half-densisites on the two factors of X. Since this 

has support equal to the diagonal, its lift to X~ will have support equal to Ao. We can 

choose local coordinates (x, z, t, z') in X 2, near Ao, so that the local R§ used to 

define X 2 is just 

(11.9) (x, Z, t, x', z') ~'~ (6x, 6Z, r r Z') 

and 

(11.10) A = { x = x ' , z = O , t = O } ,  OA={x=x '=O,z=O, t=O} .  

Suitable local coordinates in X 2, near the lifted diagonal, are then given by 

x-x___~' z ,  t and z'. 
(11.11) x', s =  x' ' Z = x  7 T=(x')2 

When Kid is lifted to X 2 it becomes 

(11.12) 6(s-  1) 6(Z) 6(r) (x')-2vfl(o2)(yy'). 

Using (7.12) and the definition (11.6) we conclude that in these local coordinates 

(1 I. 13) ~i0 = 6(X- 1) 6(Z) 6(T) v z, 0 * v 2 E ~| 0~ Nt2 t2 v2) 

as is only reasonable! 

As noted in Section 7 the diagonal lifts into X~ to be the smooth submanifold Ao 

which meets the boundary only in the interior of the front face. The intersection is 

transversal and therefore obviously clean. Using the conventions of w and the 

ordering of the boundary hypersurfaces of X2: 

(11.14) aX :Iburbuf  

4-918288 Acta Mathematica 167. Imprim6 le 22 ao~t 1991 
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let E=Et~,, Erb, E~f be the index family 

(11.15) E = O ,  O, ((0,0)). 

Following the discussion in w B6 we then define 

(11.16) ~ ( X ;  f~,/2) = ~ / ~ ( X ~ ,  Ao; e~ N,2 f~,,2). 

This space of kernels is to be interpreted as a space of operators on half-densities using 

(11.6), (11.7) and (11.2). By the choice of index family (11.15) these kernels are, as 

sections of the bundle Q~lv/2 •u2, smooth up to all boundary faces and they vanish to 

infinite order at both lb and rb. 

Before proceeding to the discussion of the properties of these operators let us 

examine the Schwartz kernels of the differential operators in Diff,(X; f~1/2). Of course if 

P E Diff,(X; f~u2) then we can write its action in the form 

(11.17) Pq~ = P.IdqL 

For any operator A as in (11.1) the kernel of P . A  is just PLKa where PL is the 

differential operator on X 2 given by the action of P in the left factor. Since P acts on 

half-densities it is given by a sum of products, with cr coefficients, of up to m factors, 

each the Lie action of an element of T'o or the identity. From Proposition 7.8 we know 

that this action lifts to the X2o . Since the vector fields are all tangent to the boundary the 

Lie action extends to the scaled bundle ~ffN/2 t21/2. Thus we see that the kernels of the 

elements of Diff,(X; f~u2) are just given by the repeated application of the elements of 

~| to the kernel of the identity. Since this Lie algebra is transversal to the lifted 

diagonal we conclude that: 

LEMMA 11.18. The taking o f  kernels gives a Hnear isomorphism between 

Diff~)(X; if21/2) and the space o f  all conormal sections o f  order at most m o f  QffN/2 ~')1/2 

associated with, and supported by, AocX2o . In particular 

(11.19) Diff,(X; ~-~1/2) c W~o(X; ~-~1/2) Vm E N. 

This simple result justifies describing the small calculus W~(X) as the 'microlocali- 

zation' of To, or Diff,(X), in the sense that the relationship is the same as that of the 

pseudodifferential operators to the differential operators, or the cr174 vector fields, on a 

compact manifold without boundary. 

The symbol mapping for the small calculus arises directly from the symbol calculus 
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for general conormal distributions. Thus, from (11.16) and (B6.10) we get 

(11.20) ore:/re(X2, Ao;-N/2 1/2 (m} , * -N/2 1/2 0fr fl )-->S (N AO)~)~fibre(N Ao)t~0ff 

with the tensor product being over ~| using the translation action on densities on 

the fibres. To accord with the usual convention for pseudodifferential operators we 

have not compactified the conomal bundle and reinterpreted the symbols as conormal 

functions as in w B6; symbols are more convenient to deal with here, as there are no 

other singularities at the boundaries of Ao. We can also remove the density factors 

altogether: 

LEMMA 11.21. There are natural bundle isomorphisms covering X*->Ao which give 

identifications 

(11.22) ~fibre(N*Ao) <--> ff2fibre(~ 

and 

(11.23) 
~f fN/2  ~'~ 1/2 <._> ~,-~fibre(O T X )  

~ d f i b r e ( ~  -~ ~')fibre(f~p), P (~ff(X2). 

Proof. To get (11.22) one only need use (7.10), so consider (11.23). Over any 

submanifold the density bundle of the whole manifold splits into the tensor product of 

the density bundle of the submanifold and the fibre densities on the normal bundle. 

Thus 

(I 1.24) o--NI2 .'-. ll2 -NI2  .". l12 . ~ . .  ,e'~ ~ l/2 ." = r A  ". 
,..~ = Qff  ~.s (.A ) ~ l - . S  fibre[lV lAO)  

where 0 is now a defining function for the boundary of X. Using (7.10) again, on the 

second factor, and the identifications 

(11.25) Q - N ~ ' ) ( X )  ~ ~ ~ ~'~fibre(~ N = d i m X +  I ,  

we get (I 1.23). 

Of course the immediate consequence of this lemma is that the density factor in 

(11.20) is canonically trivial. Thus we find the more satisfactory symbol map 

(I 1.26) veto: f f k l ~ ( X ;  ~,'~1/2) ..._> s(m)(OT,X) Vm E R. 
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Carrying through the computation directly we see that 

( 1 1 . 2 7 )  %0(Id) = 1. 

The discussion above of the kernels of the O-differential operators shows that (11.26) is 

consistent with the usual symbol map, i.e. if PEDIff~(X; [2v2) then ~ is just the 

polynomial of degree m on ~ obtained from its principal part in the usual sense. 

The exactness of the symbol map follows from (B6.12). Hence if q~ E qg| is a 

non-vanishing function we conclude that 

(11.28) W~(X; [21/2) ~ A ~ ~-IA~ E qJ~(X; [21/2) 

is an isomorphism which induces the identity on the symbol map. Thus if we define the 

space qJ~)(X) of O-pseudodifferential operators acting on functions by using a non- 

vanishing ~| half-density v to write 

(11.29) ud~(X) ~ A <--> rAy -1E W~(X; [21/2) 

we conclude that the symbol map is well-def'med, independent of the choice of v. 

We summarize these properties in the following theorem, in which only the 

composition properties remain to be proved. 

THEOREM 11.30. For a compact manifold with boundary, X and a projective class 

of  non-vanishing 1-forms at OX, [O], the O-pseudodifferential operators form a symbol- 

filtered ring o f  operators 

(11.31) A: ~| ~| 

For any m E R the symbol map defines a short exact sequence: 

OOrn 

(I 1.32) 0---> v~- l (X)  t._> ~ ( X )  ----> s{m}(~ 0 

and composition gives 

m m t m + m  t 
u2e(X)" ~ o  (X) = ql o (X) 

(11.33) 
~ B) = earn(A)" ~ mod sm+m'-l(OT*X). 

Proof. First we need to check the mapping property (11.31); this also shows that 

the composition of O-pseudodifferential operators is well-defined. 

If ~ E ~| [2v2) and A E W~(X; f~v2) then Ar  ~-| [2v2) by the easy direction 
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of the Schwartz kernel theorem. We can make this explicit in terms of the push-forward 

of distributional densities by choosing a non-vanishing half-density v6qg| 

Then as a density on X 

(A~O) v = (~rt),[zt ~ v .K A.at~ t/p] 

in terms of the push-foward from X 2. Combining the two half-density and lifting to X 2 

we can write this as 

(11.34) (A~) v = (rot fl~)), [~a �9 (fl~))*(V" q0]. 

NOW, by (7.11) we know that 

(i 1.35) (/~))*(v. ~) E (o~)N~ ~ ~(X~; ~'~). 

Recalling the density factor in the definition of the kernels in (1 I. 16), and the fact that q~ 

vanishes to infinite order at the boundary, we conclude that the distribution on the right 

in (11.34) is an element of o 2 . Mpb, lm(Xo, Ao, f~), all index sets empty. It follows from 

Proposition B7111 and Proposition 7.14 that the push-forward under flu ) can be carried 

out, giving 

(I 1.36) (Aq~) v 6 (#L), [SCpO~/re(X2, A; Q)] c c~(X; r )  

since the projection is transversal to the diagonal. This proves (11.31). 

Our proof of (11.33) is in a similar spirit, using the geometric properties on the O- 

stretched triple product discussed in Section 10. Figure 2 may be of help in this 

discussion. Thus we first find a suitable representation of the kernel of the composite as 

a push-forward. Suppose that A 6 ~ ( X ;  ill/2) and B 6 tF~'(X; flu2) and let C=A .B. If 
/~ 6 0 N/2 ~| f~/2) then 

(I 1.37) Uc'/~ = (~c)*[ (ZlS)*Ua " (~e)*un" (:~c)* Iz] 

is given as the push-forward of a distributional density on X~. The product in (11.37) is 

justified by Proposition B7.20, which together with Proposition 10.16 also shows that 

E -n/4 3 E' '-n14 3 edE" lm+m'(y2  (~0,[6~phg/rn (X~, As).  ,~phg/m (X~, AF)"~] c- "~ phg-- ~,"o, Ao)~ tt 
(11.38) 

E=(O,O,E~), E'=(O,O,E;r), F'=(O,0,EUE'~). 

The orders in (11.38) reflect the effect of the pull-back, n=dimX being the codimen- 

sion. 
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CS 

ff 

mb 

Fig. 2. Triple blow-up and projections 

Since the symbolic property in (11.33) also follows from Proposition B7.20 this 

completes the proof of the composition theorem. 

We also remark that the basic mapping properties of  these operators are easily 

proved using the same techniques. Thus from Proposition B7.11 it also follows that 

(11.39) A: ~*(X)--> ~| VA EqS~)(X). 

If ~ E cr is extended to ~ E ~r then 

(11.40) A(~)lox = Ao• E ~| 

is independent of the choice of extension. In fact A0 is just a multiplication operator. 

In addition to the symbol associated to the singularity at the diagonal a O- 

pseudodifferential operator also has a well-defined 'normal operator;' this just arises 

from the symbol mapping at the front face, as in (B6.11). Since the index set at the front 

face is just {(0, 0)}, we identify this with the restriction of its kernel to the front face of 

(11.41) W~(X; f~l/2) ~ A ~ N(A) = (XA)lfr E Im+l/4(ff(g3o), aAo; ~fibre(ff)). 

Here we have identified density factors at the front face using (11.23). The action of this 

kernel as an operator on the tangent Lie group at each boundary point is readily 

described. Since we shall not use this action we simply note that in the special case of a 
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differential operator it can easily be identified with the normal operator as defined in w 4 

and even more importantly 

(11.42) N(P.A)= N(P)N(A) VPEDiffg(X), A E~g'(X). 

In the general case the normal operator of the composite is given by convolution in 

terms of the group structure on each fibre of the front face: 

Np(A. B) = NF(A)*pNF(B). 

From the definition of the normal operator it is clear that N(A)=O if and only if the 

kernel of A is of the form 

Qtr~ with x E ~ ( X ) .  

In addition to the symbolic filtration we therefore have a second filtration by order of 

vanishing at the front face, we shall denote those elements of W~(X) which vanish to 

order k at the front face by 9 k ~ ( X ) .  By reviewing the proof of (11.33) it is clear that 

(11.43) k m k' m' _k+k ' l"r ,m+m' t 'v"~  Q f r ~ o ( X ) . o f f ~ o ( X ) c e n  w e ~A). 

The residual space of the small calculus, Wo| consists of kernels which are 

smooth on the stretched product and vanish to infinite order at the top and bottom 

faces. As shown in w 13 these kernels define bounded operators on L2(X) which are 

moreover infinitely smoothing in the interior, however they do not give any additional 

decay near the boundary and hence do not in general define compact operators. Since 

(11.44) A E eefW~)(X) <=~ A = eB, B E W~(X) 

it is the case that QfrqJo~(X) consists of compact operators. Using the symbol map, 

(11.32), and (11.33) in an iterative manner it is possible to construct an approximate 

inverse for an elliptic element of P E ~ ( X ) ,  i.e. Q E uJOm(x) such that 

(11.45) e 'Q-Id ,  Q.P-IdEUJo~(X). 

The non-compactness of these operators means that such an approximate inverse is not 

really a parametrix. In order to construct parametrices it is necessary to remove at least 

the first term in the Taylor series of the kernel of the go-residual operator. This 

amounts to inverting the normal operator and as we shall shortly see this leads 

inevitably to kernels which have singularities along the top and bottom faces. In light of 

this we proceed to a detailed discussion of the full calculus. 
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w 12. Full calculus 

In the previous section we considered a class of operators with Schwartz kernels 

concentrated near the diagonal in X 2. From our formulae (8.6) and (8.14) for the 

resolvent of the Bergman Laplacian on the ball it is apparent that it does not belong to 

this 'small calculus' since its kernel does not vanish to infinite order at the left and right 

boundary faces. Rather, the kernel has a simple power law behaviour at these faces 

with the leading order of singularity determined by the null space of the indicial 

operator of the Laplacian. In this section we extend the small calculus to include 

boundary terms of this type. It is in this context that the full power of the blow-up 

method becomes evident. Its effect is to physically separate the diagonal and the 

various other boundary components on the product space. Once the interaction be- 

tween them has been removed these two types of singularities can be treated succes- 

sively. 

Recall that the small calculus of O-pseudodifferential operators was defined by 

fixing the space of kernels as a subspace of the extendible distributions on X 2, see 

(11.16). The most obvious class of kernels which contains the resolvent of the Bergman 

Laplacian on the ball is obtained by adjoining the smooth sections of the bundle 

OffN/2 f~/2 with a power law behaviour at the left and right boundary faces. In terms of 

index sets as defined in w B 1 we set, for any a, b E C, 

(12.1) tpo| a, b ( x ;  ~'~ 1/2) = cd' ((a, 0)}, {(b, 0)}, {(0, O)}(X2; ~)ffN/2 ~,'~ 1/2). 
"~  phg 

We generalize (12.1) by choosing an index family E=Elb, Erb, Eft, corresponding to 

the ordering of the boundary hypersurfaces of X 2 in (11.14) and then set 

~t l rn;E(x 'o  ~ , ~-~1/2) - -  --O'UIm'Elb' Erb' Eft(-(~[[; ~1/2)  

(12.2) _ E 2. -N/2 ill/2) - d p h g / ' ( X ~ ,  Off 

__ o ~ , ~ , E f f  l m ( y 2  - -  . - N / 2  r,,I/2x-- ,,E tx,"2 . -N/2,-xl/2x 

where we use the fact that Ae only meets the boundary in the front face. I f  m = -  oo then 

the first term is contained in the second and 

(12.3) WO| = ,5~tphg[2~b, O f f H E  ,x,-2 . - N / 2  h,p,-'-l/2x). 

These operators, without singularities on the lifted diagonal, form the first and main 

class of "boundary terms" in the calculus. 
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If Elb, Erb or En consists of a single element (z, 0) we replace it by z in the notation, 

so for example 

(12.4) We;{(z'~176 f21/2) ~-" uxlra;z'z"Effo (X;~'~ 

for any index set Err for the front face. Moreover, if Err={(0, 0)} then we drop it 

altogether and set 

Vdm;E,b,Emfy. ~-)1/2) = qlO;E~,Erb,0(X; ~)1/2) = ~O;E,~,,E~, ((0,0)}(X; ~t/z). (12.5) --o , " ,  

On the other hand we drop the remaining two index sets, for the left and right 

boundaries, only if both are empty. This gives a notation quite consistent with (12.1) 

and also with the notation for the small calculus, for instance: 

�9 ~(X; ~t~2) = ~,~,O(X; f2~J2) 
(12.6) 

o~'~(X; f~/2) = ~ ; o , o ,  k(X; f~/2). 

We also need to admit certain 'residual' terms, which are compact operators, into 

the calculus. These are not special to the O-structure and are in fact best described on 

X 2 itself. Thus for index sets E~b and Erb giving an index family, E, for X 2 set 

= r~Ero'Erb(Y 2. O1/2~ (12.7) ~ - |  ~-~1/2) = Iu ~'~1/2) "~" phg ~, . . . . .  1" 

We shall even use this notation when E is an index family for X~, then Err should simply 

be ignored. Thus a general 'boundary term' is an element of 

(12.8) Wo~;E(X; Q1/2)+ W-| ~1/2) = ~o=;Elb,Ea,,e~(X; Ql/2)..F ttl-| Eeo(X; ~,)1/2). 

Of course, since all these kernels are extendible distributional half-densities on X 2 

or on X 2, and hence on X 2, the corresponding operators are well defined as maps (11.1). 

The following basic mapping property allows us to check when the composite of two 

such operators is defined. We use the following notation for the 'extended union' of two 

index sets 

EI-OE2 = {(z, m)6 CXNo; ( z ,m)6E  1 or ( z ,m)EE 2 or m= ml+m2+l 
(12.9) 

i f  ( Z - k l ,  ml)  E E l, ( z - k 2 ,  mE) E g 2 f o r  some k l, k 2 6 No}. 

PROPOSITION 12.10. For any index family E=EIb, Erb, Eft, for X 2, and index set El, 
for X, 
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AEqJ~;E(X;~I/2) . E, . v2 Eo . 1/2 =~ A. dphg(X , ~ )-"> ,~phg(X,  ~ ) ,  
(12.11) 

prov ided  El+Erb > - 1 and  E o = Elb 0 (Eft+El). 

Proof .  We start by considering the action on c~| ~1/2). If v is a ~| half-density 
on X, and r E c~~176 Qv2) 

(12.12) Aq~.p--~ (2) (2) , (2) * (~L'flo), [(~L'fie ) ~'~A "(~R'fie ) r ~ ~r Q). 

Since (~rR.fl~))*$ vanishes to infinite order at rb(X 2) and ff(X 2) the density on X 2 

pushed forward in (12.12) is an element, v, of 

Ejb,~ ,O 2 (12.13) Mphg (X~; f~). 

Using Proposition B5.6 and Proposition 7.14 we see that this pushes forward into the 

appropriate space of conormal distributions, ~ f~). This is the trivial case of 

(12.11), when El=~:  

E~b . 1/2 (12.14) A ~. q I~ 'E (x ;Q  1/2) ::~ A:  c~(X;f21/2)---> S~phg(X,Q ). 

Applying the obvious adjoint identity 

(12.15) [qJ~);e(X; flUE)]. = qj~);E'(X; f~u2), E' = (E2, E~ ,E  3) if  E =  (E~,E2, E 3) 

we conclude by duality from (12.14) that 

Erb . 1/2 ' ~'~ I/2). (12.16) AEUd~(X;f21/2) ~ A:  [Mphg(X, f2 )] --~ ~-| 

From the multiplicative properties of conormal distributions, Lemma B3.5, we know 

that 

(12.17) 6~phg(X; [Mphg(X;  El+Erb > - I 

so we conclude that the operator in (12.1 l) is well-defined, with range in ~-~ ~'~1/2). 

To check the regularity of the range in (12.11) we first apply Proposition B4.3 and 

Lemma B3.5 and so conclude that in (12.12), 

y/~ . (2) F 2 .  b 
A~p "/z E ( L flo ) *Mphg(Xo ,  ~'~)" 

(12.18) 

F = (Elb+ 1, Erb+El+ I, Elf+El+ 1). 
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Applying Proposition B5.6 we find that 

AS. E c . ~ phg(X ' b~'~), 

where G=(Jr L.fl~))b(F) and we use the assumption El+Erb>-1.  Using (B5.4) and (7.15) 

to compute we find that 

(12119) G = (Elb+ 1) O (Elf+El+ 1). 

Changing the density bundle from b~ back to ~ gives (12.11) and proves the proposi- 

tion. 

We are mostly interested in the spaces with kernels 'smooth up to the front face'. 

By definition 

(12.20) W~;e,F(X; f~1/2) = W~(X; Qv2)+Wo| f21~). 

Moreover, for any index sets E and F 

(12.21) q J ~ ( X ;  ~-~1/2) f)lyII~o~;E,F(x; ~-~112) = ly~/~oo(X; ~--~1/2). 

This allows us to extend the symbol map from the small calculus to 

~ W~; e. ~(X; Q1/2) ~ s{m~(OT, X) 
(12.22) 

~ = ~ if B = B' + B", B' E tP~(X', ~~I/2), t~" E l~lO~176 ~'~l/2 ). 

This clearly results in a short exact sequence as for the small calculus in (11.32): 

O o 

(12.23) 0---~ w~-t;e'F(X) ~ W~; E' F(X) -~  s(m)(~ O. 

We can also extend the definition of the normal operator to these spaces. Namely 

by interpreting 

(12.24) N(A) = [XA]]ffE M<E'F)r ~" c~1/2 ~ n u 2  phg K i, O], ~fibreV-~a~fibre ! 

using the identification of densities in Lemma 11.21. In fact this normal operator is just 

the symbol of the kernel at the front face in the sense of (B6.11). We certainly have an 

e x a c t  s e q u e n c e  

r ~iim;E,F[ y .  (31/2~__> edm, E, F lF f l y2 , t .  o l / 2  /~O1/2 ~_..> f't (12.25) 0--~ ~);e,e,  l(X; f2t/2) N 
- - 0  ~,~-, ~ '  / "~phg ~xx~,~OJ' ~fibre '~ '~fibre ;' ~" 
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Note that the smoothness of the normal operator, m----0% E=F=f~ does not imply that 

it is negligible. Moreover there are also symbols at the left and fight boundary faces. 

(12.26) (e},F.a O , . -N/2 1/2 ~,'~1/2). tIlb(A)EMpM ( ~zN(OX),Pn Q ), AEof~;e'e'a(X; 

Here we have used the identification of the normal bundle, in X 2, to lb(X g) with the lift 

of the normal bundle to the boundary of X, from the left factor: 

(12.27) ~ = 8X, ~ N(lb(Xg)) =- ~ 

Thus we have an exact sequence 

m'E+l  F G 1/2 -----> m'E F G . 1/2 _ ~  {E} F G O , -N/2  1/2 (12.28) 0 ~ W  o' ' '  ( X ; f ~ )  W o ' ' '  ( X , f ~ )  Mphg'' (~tzN(aX);Q n f~ )--*0 

and similarly for the right boundary. 

These four symbol maps are not completely independent. The common range is 

subject to the following conditions: 

(12.29) Crm( N(A ) ) - - - -  (Im(A )]ff(xZo) 

(12.30) Olb(N(A)) = Olb(A)In(X~ ) 

(12.3 I) arb(N(A)) = Orb(A)lff(X~) 

although these conditions do not appear explicitly in our step-by-step construction. 

To start the composition results we consider first the 'trivial' case when one of the 

operators is differential. See Figure 2. 

PROPOSITION 12.32. Let P E Diff,(X; ~,/2) and A E ~o';~'b'ze~ ~v2) then 

satisfies 

(12.33) 

(I2.34) 

(12.35) 

P. A E Iu  g,'~ 1/2) 

N(P.A) = N(P). N(A) 

om+m,(P'A) = am(P)'Om,(A) 

Olb(P.A) = I(P).Olb(A). 

Proof. Since Diff~ is the part of the enveloping algebra of ~Vo of order at most m it 

suffices to consider the special case when P = ~ v  is given by the Lie action of VE ~Vo on 
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half-densities. Thus the kernel of P-A is just given by the lift of ~v to X 2 acting on the 
kernel of A: 

(12.36) n(~v" A) = ~v"~x(A). 

This is just the Lie action of the lift, 17' of V to X~, from the left factor, on the weighted 

density bundle eft Nr2 QI/2. Since 12 is tangent to all boundaries it is clear that 

(12.37) ~ v . A  E ~+1;e(X;  if]v2). 

The formula (12.33) for the normal operators is a direct consequence of the tangency of 

r~ to the front face of X 2 and the definition of the normal operator of an element of 

Diff,(X; f]v2). Similarly (12.34) follows from (12.36) and the definition of the symbol 

and (12.35) follows from (12.36), the definition of the boundary symbol and the 

definition of the indicial operator of a differential operator. 

From this general composition result we deduce two corollaries which will be used 

in the construction of parametrices. 

COROLLARY 12.38. Suppose P E Diff,(X; f~v2) is elliptic then for any index family 

E=Elb,Erb,Efr and any RE  r;e . fly2) W o (X, there exists F E qs~-m;e(X; f2 v2) such that 

(12.39) P ' F - R  E qso| f~v2); 

moreover the construction o f  F can be carried out smoothly in parameters in any 

compact manifold. 

Proof. This just uses standard iteration with the symbol map associated to the 
diagonal singularities. 

COROLLARY 12.40. Suppose PEDiff~(X; ~-'~1/2) and the indicial operator I(P), on 

the fibres o f  NaX, is elliptic with constant characteristic roots (independent o f  the base 

point) and E=(Elb,Erb, Eff) are index sets such that there is no point (z, m) EEIb with z+k 

a characteristic root o f  I(P) root for kENo, then for any RE W~E(X; f~1/2) there exists 
FE qJo| ~'~1/2) with 

(12.41) P. F - R  E U~e' (X; QI/2), E' = O,Erb,E ft. 

Proof. This is only a matter of solving the indicial operator iteratively. 

These composition formulae allow us to construct the leading term of the parame- 
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trix rather directly in Section 14 below. To remove the error terms we need to compose 

more general elements of the calculus. 

THEOREM 12.42. I f  E=EIb, Erb , Eft and E' =E(b, E~, E~f are index families for  X2o 
such that 

(12.43) Erb +E;b > --1 

then for any A E qJ~;E(X; ~'~1/2) and B E u~';E'(X; Qv2) the composite operator A .B is 

well-defined and 

A'BEU/~+m';E'(X;QI/2) where E . . . . . . . . .  - Elb, Erb, Eft, 
(12.44) 

E ~'b = Elb-O [Eff + E {b ], E':b= [ E ~ + Erb] U E ~, E ~= [ E ~f+ Eff] O [ E :b + Elb + N] ; 

the symbol formula at the diagonal (12.34) continues to hold. 

We reduce the proof to the following push-forward lemma. 

LEMMA 12.45. Let G=Gff, Gfs, Gss, Gcs, Glb, Grb, Grab, be an index family for  X3o with 

(12.46) Grab > - 1 

then push-forward from the triple O-stretched product gives a continuous linear map 

0 . G 3 ( ~c) . . .~phj , , (X~, ,At . ; f l )~  E 2 Sfphs(X:s; f~), 
(12.47) 

Elb=GlbOGss, Erb=Grb-OGfs, Eff=GffOGcs. 

Proof. Given the change of density bundle this is just Proposition B7.20 applied to 

the map ~ using (I0.18). 

Proof of Theorem 12.42. The formula (I 1.37) for the kernel of the composite still 

holds. Thus, if/, is a non-vanishing smooth section of Q~/2 fli/2 over X~ we see that the 

kernel of the composite operator is determined by the push-forward formula: 

(12.48) Xc./~ = (ZC, O).[(at~,O(~A)~,O(~B) arc, o/~ ] *  

where the bracketed expression is a distributional density. Let /~ 'E <r174 0~ 2v/2 ~21/2) 

be a non-vanishing section. Applying Proposition B7.6 to the two kernels we see that 
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(12.49) 

, i F -d/4 3 
'7gS, (9(MA//'1 ) ~ ~phg ]m (X~9 ' As ) 

, t F' ' -d/4 3 3"g'~;, O(XB/~/,~ ) ~ a phg/m (X~, AF) 

where the index families on X 3 are: 

(12.5o) 
Eft = Eft, Ffs --- Erb , Fss = Eft, F~s = Elb, Fib = Elb , Frb = { (0, 0)}, fmb = Erb 

t m t P - -  t ! I ! - -  r I - -  t t 
= = F'mb- E[b. e;r, e b, e;b, Fis - F~ F~s - F;b {(0, 0)}, F;b - E;b, 

Taking the densities together we find that 

(12.51) . , , . s qC| g2). Zrs, o~ ~F,O/~ Zrc, oPEec~ 

Applying Proposition B7.20 now gives the theorem as stated. 

It is also straightforward to generalize the formulae (12.33)-(12.35) for the normal 

operator, symbol and boundary symbol of the composite, since we do not need them 

below they will nevertheless be omitted here. 

In view of the form of the terms which actually arise in the iterative procedure 

below, we note some special cases of the general composition formula, Theorem 12.42. 

COROLLARY 12.52. For any index sets Erb,Erb and any integers k, l, 

(12.53) I.ilo| eeo, k(x; ~'~1/2).~O~;O,E'rb, l(X; ~ ' ~ 1 / 2 )  C UflO~;O"[Ee~176 ~'~1/2). 

COROLLARY 12.54. For any index sets Elb,Eeo and E~ and any k E N  

(12.55) tljo;etb, eeo(X; ~'~1/2).kilo~;f~,E~,k(g; ~-~1/2) C U20|176176 ~"~1/2). 

We also need the corresponding composition properties for the spaces 
LI$- r E(X; ~-~ 1/2). 

THEOREM 12.56. For index sets Elb, Erb and Eft forming an index family for  X 2 and 

index sets E~' b and E~b forming an index family for X 2 satisfying (12.43) 

(12.57) U~d~);E(x; ~-~1/2).I.IJ-Oo;E'(x ' ~']1/2) C: I-I-I-~176 ~-~1/2) 

where " -  - ' " - ' EIb--EIbU [Eft+E~b ] and Erb-E~b. Similarly i f  E' is an index family for  X 2 and 

(12.43) holds then 

(12.58) W - ~ , e ' ( x ;  ~r~l/2). I~I-~o;E(x; ~-~1/2) c kt I-~;Eib'Ee~ 
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and if  F is an index set for  X with F + E r ~ > - I  then 

(12.59) ~-| 1/2 e 1/2 ~r~ ) . .~phg(X;~- ~ )~t~E'Ib[V.C)I/2~ 
. ~  phg~,-~, - -  / .  

Proof. These are simpler versions of Theorem 12.42 and Proposition 12.10. They 

can be proved in the same way. For example in (12.57) one should lift to the partial O- 

stretched product X 2 x X ;  all three projections are b-submersions: 

(12.60) 

X:o' X2oxx ' X 2 

1 
x 2 . 

For (12.58) and (12.59) one only needs lift to the standard triple product, X 3, and double 

product, X 2, respectively. 

w 13. Mapping properties 

The basic mapping property we need to establish is the boundedness, on L 2, of the 

operators which are of order at most zero and which have sufficiently rapid decay at 

the right and left boundaries. 

PROPOSITION 13.1. I f  m<.O and the exponent sets satisfy Elb>--1/2, Eeo>-1/2 and 

Efl-~O then each A ~vkI~;E(x;~'~I/2) defines a bounded operator on L2(X;~)I/2); the 

operators in ~IS-| ~t/2) are compact on L2(X; QI/2). 

Proof. We first use H6rmander's elegant symbolic argument to reduce to the case 

m=-o0.  In fact if A has order m~<0 then by choosing a large positive constant and 

exploiting the symbolic formula (12.34) an approximate square root can be constructed: 

(13.2) C I d - A *  "A = B* .B+R, R E qSo| g21/2) 

for a new index family which however still satisfies the hypotheses of the proposition. 

So now assume m = -  oo. Let v be a non-vanishing smooth half-density on X. Then 

we need to show that for some constant CA 

(13.3) l fva(gv) <- CA IlfvllL2<~ IlgvllL:<x) vf, g ~ i~=(x). 
3 x  
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As usual we lift the integral on the left to X~. There it can be written 

(13.4) fXZo UA($~L, o)*(g v) (~R, o)*(fv) �9 

The lift of v from the two factors combine with the singular density factor, O~ N/2 f~u2, in 

UA to give a smooth density on X~, so (13.4) can be written 

(13.5) f:oa( z o ) * ( : ) . ,  2. , , a E Mphg(Xo), # E ~ (X~, ~). 

Applying the Cauchy-Schwarz inequality gives the bound 

(13.6) 

I f A(g v) <<" [ fxg lall(:rL, o)*(g)12g(Olb/Orb)l~] V2[ fxg lall(nR, o)*(f)12#(Orb/Olb)l/2] l/2. 

Thus it suffices to estimate these integrals. 

Consider the lift, toR, to X 2, from the right, of a non-vanishing volume form, to, on 

X. From the (7.15) it follows that a smooth form a=dOrb ... an can be chosen on X~o so 
that 

(13.7) ton^a = Orb#,/. 

By assumption on the index family the kernel in (13.6) satisfies 

(13.8) [a[(Orb/Qlb) 1/2 ~ C~reb , E >" 0 .  

Applying Fubini's theorem to the second integral in (13.6), using (13.7) and (13.8), gives 

fxg laH(:rR, o)*(f)12(Oru/O,O~:2# <<- C fxlfl2to. 

The bound for the other integral follows in the same way, proving the first part of the 

proposition. The second part follows directly from the Cauchy-Schwarz inequality on 
x 2. 

From this basic result we can easily investigate more general boundedness and 

compactness results. For each positive integer consider the non-homogeneous Sobolev 

5-918288 Acta Mathematica 167. Imprim6 le 22 ao~t 1991 
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spaces defined by 

(13.9) ~ ( X ;  ~-)1/2) __~ (u  E L2(X; ~-~1/2); ovj O ut_L2(X; ~"~1/2) Vj <~ k}. 

Clearly this space has a natural Hilbert space topology (although no natural inner 

product) with respect to which ~| Qu2) is a dense subset. The dual of ~k (x ;  f~l/2), 

which we denote ~ok(X; [21/2) is characterized by the condition 

(13.10) u E ~(ok(S; ~V2) <e, U = X Pi ui, Pi E Diffk(x; s u i E L2(X; f21/2). 
i 

More generally we can replace the ring of O-differential operators by the small 

calculus and define, for any real number, m, 

ff(~(X; ~1/2) = {u E LE(x ;  ~-)1/2); I~./~ u c L E ( X ;  ~-)1/2)}, m I> 0 

(13.11) 

~(X;  f~m) = {u E *-| f~/2); u = ~ Pi ui, Pi~ u2o m u, ui E L2(X; tim)}, m-< 0. 
i 

We can also add weighting by the real powers of a defining function to the boundary 
and set 

(13.12) ~S~o(X;~ ' ) l /2)= { u ~  ~-~176 e - S u ~  ~o(X;~dl/2)}  Vs, m E R .  

Using the composition and conjugation properties the calculus, together with Proposi- 

tion 13.1 the boundedness of the elements of the full calculus on these spaces is easily 
described: 

PROPOSITION 13.13. I f  r, m, s, s' are real number such that the index sets satisfy 

(13.14) Elb>s ' - 1 ,  Erb+S> - 1 ,  s+Eff>~s ', 

then each element o f  U/o"e~'e~'e~(x; f2 v2) defines a continuous linear operator 

s �9 1/2 s' r-m I/2 ~ o ( X ;  Q )---'~ ~o (X;g2). 

Proof. This just follows by applying Proposition 13.1 to the operator 

I]ffm ; Elb-S', Erb + s, Eff + s-s'[ y ~-~ 1/2). (13.15) Q-~'AQ ~ E ~ o  ,--; 

The inclusions between the weighted O-Sobolev spaces are obvious enough, 



(13.16) 

and 

(13.17) 

From this we easily deduce that: 

LEMMA 13.18. A6Uff;;~b'Ee~'En(X;QI/2) is 

0s X,~o(X; f~ v2) to ps' ~ ( X ;  if2 l/E) if (13.14) holds and 

(13.19) Ef f>s ' - s ,  m < r ' - r .  

RESOLVENT OF THE LAPLACIAN ON STRICTLY PSEUDOCONVEX DOMAINS 

es~(X;~'/2)~--~@s'~'(X;Q v2) <* s ~ s ' ,  m ~ m '  

(13.16) is compact iff s > s' and m > m'. 
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compact as an operator from 

It is also relatively easy to define, and show boundedness properties for, the O- 

H61der spaces. 

w 14. The resolvent 

Now we turn to the proof of the main result, that the resolvent for an appropriate class 

of O-metrics is in the space of O-pseudodifferential operators. Thus let g be a O-metric 

on a compact manifold with boundary, X, where O induces a contact structure on the 

boundary. We shall assume in addition that it satisfies the normalization conditions 

described in w thus as well as (4.13), (4.16) and (4.19) hold for somez  E ~| From 

Proposition 4.24 we know that this implies that the normal operator of the Laplacian is 

always reducible to the Bergman Laplacian on the ball, locally smoothly in the 

parameters in OX. 

To conform with our consistent emphasis on operators acting on half-densities we 

shall replace the usual action of the Laplacian on functions by such an action, ff dg is 

the Riemannian density of g the half-density 

(14.1) kt=oN/2dg 1/2, N = d i m X + l ,  d i m X = 2 ( n + l )  

trivializes the half-density bundle. Thus we consider the Laplacian to act on half- 

densities by setting 

(14.2) Qu = (A~)/[/ if U = ~/tg ~ (~~176 ~',~1/2), ~ ~ ( ~ ( X ) .  

We are interested in the modified resolvent family of Q. By definition this is a bounded 
family of operators on QN/2L2(X; ~1/2): 

(14.3) R(s) = [Q-zEs(n+ 1-s)] - l ,  D~(S) > n+ 1. 
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The boundedness for s in this range follows from the positivity of Q. 

Our main result is an analytic continuation theorem for the family R(s); for a 

general O-metric satisfying the appropriate normalization conditions, this family may 

fail to be analytic on the set: 

(14.4) ~ =  -~-m; r e = l , 3  rood4, m < 2 ( n + l )  U{-N0}. 

However, if there is a defining function, 0 for OX such that the Taylor series for the 

metric at 0X only involves even powers of Q then the singular set reduces to -No, We 

will call such a metric D-smooth. If the manifold, X is the square root of another 

manifold, ~ as in w 2 and the metric is pulled up from 0-//then it will obviously be D- 

smooth on X. 

THEOREM 14.5. Let g be a O-metric on a compact manifold with boundary X 

where O induces a contact structure on the boundary and the normalization conditions 

(4.16) and (4.19) hold, then the modified resolvent family (I4.3) extends to be meromor- 

phic as a family o f  operators, 

(14.6) C \  ~ 3 s .--> R(s) E ~klo2;2s'2s-N(x; ~'~l/2)+ Ltl-~176 ~--~ I/2) 

with poles (at points other than ~ given by (14.4)) of  finite rank. I f  g is D-smooth then 

R(s) is meromorphic on C \ [ - N 0 ] .  There are only real poles in R(s)>~n+l) ,  i.e. in the 

interval (�89 1), n+ 1), and these correspond to QN/EL2 eigenspaces o f  finite dimension. 

The Main Theorem of the introduction is an immediate consequence of this result. 

Proof. We proceed by constructing a parametrix for Q-zEs(n+l-s )  which is a 

good approximation, in terms of regularity both in the interior and at the boundary, to 

R(s). 
By assumption the normal operator of Q is a family of differential operators 

depending smoothly on parameters in aX and locally smoothly reducible to the Lapla- 

cian on the upper half-space. Thus, using the results of w 8, and the surjectivity of the 

normal mapping (12.25) we can construct 

Eo(s) E 1I-/02;2s' 2s-N(x; ~'~1/2) such that 
(14.7) 

[Q-zEs(n+ l-s)] "Eo(s) = Id-Rl(s) ,  Rl(s) E uJ~ 2s~ 2s-N, 1(X; [21/2). 

The indicial roots of I (Q-zEs(n+l-s) )  are 2s, 2 (n+ l - s ) .  Hence from (12.35) we 
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conclude that in fact 

(14.8) Rl(s) E I ~  2s+1' 2s-N, l ( x ;  ~-~1/2). 
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The situation described in (14.13) only arises if the operator Q is not D-smooth. If it is 

D-smooth the expansion of N(Eo(s)) along fin lb involves only even powers of Ptb, and it 

can be extended to retain this property. Then the series (14.11) will only involve terms 

The coefficients, at are functions smooth in a neighborhood of the left boundary. A 

moments consideration shows that at depends only on the ai for i<.l and their deriva- 

tives. From the formula it is apparent that poles may occur whenever s=~(n+l)-~l. 

There are essentially two cases in which the poles can be removed: 

1 (14.13) s is a quarter-integer less than -~-(n+ 1) but not a half integer 

(14.14) s is a half integer less than l ( n + l )  or an integer between 0 and l ( n + l ) .  
2 Z 

Thus Corollary 12.40 applies and we can remove part of the error term Rl(s) by taking 

EI(S ) ~ ux/oao;2s+l,~,l(x; ~-~1/2) such that 
(14.9) 

[Q-z2s(n+ 1 -s)]  . El(s)-Rl(s) E W~ ~'2~-N' 1 

Using this we find that 

E(l)(s) = Eo(s)+ El(s) E Wo2;Z"Z~-N(x; f~l/:) satisfies 
(14.10) 

[Q-z2s(n+ l - s ) ]  .Eel ) = Id-R2(s), R2(s) E W~ ~ I(X; flu2). 

In order to obtain the optimal meromorphy results one needs to carefully consider 

the solution of the indicial equation in (14.9). Along the left boundary R~(s) will have an 

asymptotic expansion: 

(14.11) Rl(s ) 2s+l 
~--" ~)lb al. 

/=1 

The solution to the equation in (14.9) is of the form: 

o o  _2s+l 
E~(s "~ L ,  ~'tb ~t (14.12) 

i=1 �89189 I)" 
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with l even. In this case the poles at the quarter-integers will not arise. To treat (14.14) 

we use formula (8.8) to show that the expansion of N(RI(s)) near to lb N rb will be of the 

form: 

(14.15) N(Rl( lk))~ =2(~+l_,)+,am (z /lk](olb)m+k" 

As Eo(s) is defined by extending N(Eo(s)) one can easily arrange to have: 

(14.16) R 1 ( l k )  - ~ am(+k)(Olb) re+k, 
m=2(n+ l-k)+ l 

as well. From (14.16) and the way in which al depends on the [a/], it follows easily that 

ct/(�89 fo r /=0  . . . . .  2 (n+ l -k ) .  Since the at(s) are analytic near �89 it follows from 

(14.12) that El(S) extends analytically across these values of s. Thus we see that the 

poles of Eo)(s) lie in ~ in the general case and in -No in case Q is D-smooth. Next we 

use the ellipticity of Q and apply Corollary 12.38 to find 

(14.17) 

This means that 

E2(S ) 6 1u ~'~1/2) s u c h  t h a t  

[Q-z2s(n+ l - s ) ]  " Ez(s)-R2(s) E Iu ~;@'2s-N' I(X; ~') 1/2). 

(14.18) 
E(2 ) -- Eo(s)+EI(S)+E2(s) E Ux/~92;2s'2s-N(x; ~,'~1/2) satisfies 

[Q-z2s(n+ l - s ) ]  -E(2)(s)) = Id -R3(s ) ,  R3(s) E Wo =;~ 1(X; flu2). 

To proceed further we use Corollary 12.52 to examine the Neumann series for the 

inverse of Id-R3(s). By (12.53) we have 

(14.19) R~(s) ~ Uxl~9~;O'Jk'k(x; ~-~1/2) VkE N, 

where )k is the index set: 

(14.20) ~k = {(2s-N, 0), ( 2 s -N+  1,1) . . . . .  (2s -N+k,  k- 1)}. 

We shall also set 

(14.21) 5~= 0 5~ k. 
k>0 
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We can asymptotically sum the series and so construct 

(14.22) 
E3(s) E W~ |176 s'l(X; ore) such that 

Id-(Id-R3(s)).(Id-E3(s)) E ~ o  |176 ~' ~ ff~ u2). 

Then we find that 

(14.23) 
EO) = E(2).(Id-E3(s)) fi tFo 2;2s' 2s-U(X; flu2)+tIJo =;2" s, S'(X; f~u2) satisfies 

[Q-z2s(n+ 1 -s)]  .E(3 ) = Id-R4(s), R4(s) E Wo |176 s'~ f2 v2) 

where 

(14.24) 5~' = ((4s, 0), (4s+l,  1), ..., (4s+k, k - l )} .  

The remainder term here is 'extremely compact'. In particular for any a 6R such 

that a + 2 s - N > -  1/2, 

(I4.25) R4(s): QaL2(X; ~,gl/2)._.) c~| ~,-]1/2) ~ QaL2(X; QI/2) 

defines a compact holomorpohic family in 2s -N>-a-1 /2 .  This allows us to apply 

analytic Fredholm theory. If the choice of operators above is made with inordinate bad 

luck it might happen that Id-R4(s) is not invertible in any open set in s. So we first 

make sure that this is so. The operator Id-R4(N), has finite dimensional null space and 

is of index zero. From the mapping property (14.25) it follows that the null space is in 

cr174 Thus by subtracting from R4(N) a finite rank operator with Schwartz 

kernel of the form 

(14.26) Z dPi| dPi, ~Pi E c~| 
i 

we can ensure that Id-R4(N) is invertible on o~L2(X; f~l/2). To do this we need to solve 

the equations 

(14.27) [Q+z2N(n+ 2)] ui = r 

Now, since R(N) is bounded on L2(X; •i/2) this has a (unique) solution in L2(X; QI/2). 
Since Q is real and self-adjoint our construction above of a right parametrix, E(3), can 

equally well be applied to obtain a left parametrix E~3 ). By the mapping properties this 

can indeed be applied to L2(X; f~1/2) and shows that ui=oNvi, vie rg| f~1/2). Thus we 
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only need modify E~3) to 

(14.28) E(4) = E(3)+~  02sui@~i ~ i.i/o2;2s , 2s-N(x; ~-~l/2)_[_l~o~;2s,.~,.~'(X; ~-~1/2) 
i 

to ensure that 

(14.29) 
Id-Rs(s ) = [Q-x2s(n+ l - s ) ]  "E(4 ) with 

Rs(s ) ~ Wo| Q1/2) and (Id-Rs(N)) invertible. 

Now consider the meromorphic family 

(14.30) (Id-Rs(s)) -1 = Id-S(s) ,  S(s) ~ I-I-/o~;~ ~-~1/2). 

This is, by analytic Fredholm theory, meromorphic away from -No or ~ depending on 

the smoothness of Q at aX. This proves that 

(14.31) R(s)=E(4 )" (Id-S(s)) E Woz;2s' 2~-N(x; ~1/2)+~0| f~u2). 

Since Q is a self-adjoint operator o n  Z2(S, dg) it follows that, if we use the volume 

form of the metric to trivialize the density bundles then the kernel of R(s) must be 

symmetric. The index sets on the left and right boundaries would then be the same. 

Thus, the logarithmic terms are absent from the right boundary: 

(14.32) R(s) = PI(S)+ P2(s), pl(s ) ~ U~O2;2s,2s-N(x; ~"~1/2), P2(s ) ~ ~-oo;2s, 2s-N,#'(X; ~-'~1/2). 

The only point remaining in the proof of (14.6) is the analysis of P2(s). We need to 

show that it actually lies in W-| Since the index set ) '  involves the 

powers 4s+j it follows that at the front face there can be no cancellation between P1 

and P2. We conclude that 

(14.33) [Q-z2s(n+ 1-s)]P2(s ) ~. l'Ilo| QI/2) c Uf-| ~1/2). 

Thus we can apply Corollary 12.40 to find a new term 

P2(S)' E 1"I/02;2s+l'~'~(X; ~'-~1/2) t= I.I I-~176 

such that 

(14.34) [Q-z2s(n+ 1 -s)](P2-P ~) E tP-~;~'2"-N(X; ~1/2). 
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Now we see that: 

(14.35) [Q-z2s(n+l-s)](Pl(S)+P2(s)' ) = I d - R 6 ( s  ) where R6(s) EuJ-~176 ~'~1/2). 

We can therefore apply the resolvent to R6 on the left to obtain P3(s)=R(s)" R6(s). Using 

the composition formula (12.57) it follows that P3(s)E W-| f~1/2). Thus 

(14.36) [Q-z2s(n+ 1-s)](Pt(s)+ P2(s)' + e3(s)) = Id, 

and for fit(s) large this kernel maps L2(X; f2 ~n, dg) to itself. By the uniqueness of the 

resolvent kernel in the resolvent set it follows that R(s)=Pl(s)+P2(s)'+P3(s) and 

therefore R(s) has the smoothness claimed in (14.6). 

To complete the proof of the theorem we need to consider the poles in the interval 

(n+ I/2, n+ I). These poles are introduced in the inversion of Id-Rs(s)  and are therefore 

of finite rank. If such a pole occurs at So then we can find a function ~ such that 
__ 2s . ~ 1/2) (Id-Rs(s0))~0=0 evidently ~pE (~(X;~') 1/2) hence u-E(4)(So)~OE~phg(X, is either 

zero or an LZ(X, dg) eigenfunction of Q with eigenvalue s(n+ 1-s). The value s=n+ I is 

excluded as a simple integration by parts argument shows that u would have to be a 

constant and therefore, since it is in L 2, zero. This completes the proof of the theorem. 

If the defining function r in (1) is taken to be either the solution of the complex 

Monge-Amp6re equation (see [8], [3] and [16]) or the kernel of the Bergman projector 

restricted to the diagonal ([7]) then it is not necessarily smooth, but rather of the form 

r = ro+a log r 0, a E ~| 

where r0 is a smooth defining function. The resulting metric can be handled by the 

arguments above with only modifications to handle the logarithmic terms. Consider the 

index set 

M(s) -- {(2s, 0), (2s+2n+2, 1) . . . . .  (2s+k(2n+2), k) .... }. 

Then Theorem 14.5 continues to hold provided Theorem 14.5 is replaced by 

(14.37) C \ ~ 3  s ~-> R(s) E qJoE;M(s)m~s)-N(X; f~1/2) +qJ-| M(s)-N(X; f~ V2). 

If u is a solution to 

(15.1) 

w 15. Dirichlet problem 

(A-z2s(n+ 1 -s ) )  u = 0 
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belonging to ~r then the roots of the indicial equation correspond to the leading 

terms in the asymptotic expansion of u: 

(15.2) u -- Z [ajQ2s+J+b~Q2("+'-~)+J]" 
j=O 

For s a quarter integer equal to or larger than �89 1), logarithmic terms can also arise, 

we will ignore them for the time being. For the remainder of this section we'll assume 

that ~Rs>�89 1). In this case (15.1) has well defined Dirichlet and Neumann problems: 

(15.3) ( A - z 2 s ( n + l - s ) ) u  =0, b o = f  Dirichlet, 

(15.4) (A-zZs(n+ l - s ) )  u = O, a o = f  Neumann, 

the Dirichlet problem is always well-defined and the Neumann problem is well defined 

provided 4 s - 2 ( n + l ) ~  N. In this section we will solve the Dirichlet problem by con- 

structing the 'Poisson kernel' as a limit of the resolvent kernel constructed in w 14. To 

define this kernel we begin with the resolvent kernel for the action of A-zEs(n+ l - s )  

on singular half densities, 

(15.5) Ro(S ) ~ Iu ' offN/2 ~-~I/2)+ ~-~;2s-N/2,2s-N/2(X ' offN/2 ~'~1/2). 

If dg is the metric density then the kernel defined by 

(15.6) R~(s) = R o/(dg t dgr) v2 

belongs t o  lYIl~)2;2s'2s(x)+lu and satisfies: 

(15.7) (Ao-Z2s(n+ 1-s)) R'  o = 6,,,0. 

Here 0 is either R or L. Let ~ denote a defining function for OX, then we define the 

s-Poisson kernel, E(s) by: 

(15.8) E(p, s) = lim ~r~, o(Q-2S) R~(q, s) 
q.....p 

here p is a point in the interior of the left boundary lb; the limit is computed in X 2. To 

begin our analysis of E we identify the left boundary, which is the closure of its interior, 

with a parabolic blow-up of OXxX. At OA=OX 2 in a X x X  the form L~xO--O is normal to 

aA, i.e. spans a line bundle ScN*(0A).  
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PROPOSITION 15.9. The left boundary of the O-stretched product, lb(X~), is 
canonically isomorphic to the S-parabolic blow-up of aA in OXXX; we will denote this 
by (aXXX)o. 

Proof. For clarity let us denote by N+(0A, aXxX) the inward-pointing part of the 

normal bundle of aA in aXxX  and let N+(aA,X 2) denote the corresponding normal 

space in X 2. Clearly S satisfies the cleanness conditions in w 6, thus the S-parabolic 

blow-up of aA in lb is well defined. In fact in order to define the S-parabolic blow-up of 

0A in X 2 we need to choose a complement to the annihilator H'  of ~q. In the construc- 

tion of X~ in w 7 the complement H • to the annihilator H of the line bundle G spanned 

by (7.2) was chosen to lie in T(aX• Thus we can use the same space H x as 

complement here. From this it is immediate that the S-dilation structure defined on 

N+(aA,X 2) restricts to define a ~r structure on N+(OA, ~XxX). As the ring of 

cr174 functions on the parabolic blow-up is defined by homogeneity properties it is 

immediately clear that the canonical inclusion of N+(aA, aXxX) into N+(aA, X 2) lifts to 

a ~| map: 

(15. i0) t': N+(aA, aXxX)aa ' s '--> N+( aA, X2)oa, s" 

From this it follows that the inclusion of OXxX into X 2 lifts to a smooth inclusion of 

(aXXX)o into X 2. Since the image is closed it is clearly just lb(X2). 

This identification shows that the maps 

fl'o: (aXXX)o--" OXxX 

(15.11) ~R,o: (aXXX)o--~X and 

er~.o: (aXXX)o---, aX 

are all b-submersions. 

The O-blown-up boundary, (0XxX)o has two boundary components, the right 

boundary, rb' and the front face if'. From Theorem 14.5 and (15.8) it follows that E(s) is 

a classical conormal distribution on (aXxX)o of the form: 

(15.12) r t 2s r ~ 2s 
(Orb/Off) E l ( S ) + ( O r b O f r )  E 2 ( s ) .  

Here E,(s) is in qg|215 and E2 is the pullback via fl~ of a function in ~=(~XxX). 

To define a map from ~ ( a X )  to cr we choose a smooth volume form, v, on 
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OX and set: 

(15.13) P ff = (a~'R, O),(X'L, o*(fv) E(S)). 

It follows from the fact that the projections onto the factors are b-submersions that: 

PROPOSITION 15.14. If fE ~| then P~f belongs to ~r where 

E = {(2s, 0)} U {(2(n+ l-s), 0)}. 

Thus we see that if s is not a quarter integer larger than ~(n+ I) then Psf has an 
expansion as in (15.2), in any case the 'Dirichlet' data is obtained by computing: 

(15.15) lim O2(s-"-l)Psf(p) 
p---~p' 

where p' is a point on OX. 

15.16 THEOREM. I f  ~Rs>~(n+ l) then the limit in (15.15) equals 

w(p')S f (p ' )  
2 s - n - 1  ' 

where w E c~(aX) is positive. 

Proof. Choose a smooth density/~ on X, then 

(P J)/' = ~,o.[(~,o)*f~*(v/') E(s)]. 

The pull-back of the density v/~ is of the form (0~)2("+I)w, where ~o is a smooth, 

nonvanishing density on (OX• Thus we are pushing forward an element of 

Sg~'hg((OX• g2) where E'=(2s, 2(n+1)-2s}+{2s, 2(n+1)+2s}, provided s is not a 
quarter integer. We will leave the modifications necessary for this case to the reader. 

Now Q~s-"-~)P,fl~ is the puslfforward of an element of ~Ehg((aXXX) o) where 

(15.17) E" = {4s-2(n+ I), 0} + {4s-2(n+ I), 4s}. 

ffp is a point in ~" then (~'z,o)-1(p) is simply a copy of OX however as p tends to p' in 
the boundary the fiber of the projection converges to a union of p x 0X",,,(p, p} with the 

fiber of the front face of (OX• lying over p. We will denote this fiber by Fp. From 

(15.17) and the fact that ~Rs>~(n+l) it follows that as p tends to the boundary only the 

part of the integral along Fp, contributes to (15.15). Along this fiber f reduces to the 
constant f(p'). Moreover, this fiber is simply the intersection of the fiber of the front 
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(15.19) 

where 

face of X~ lying over p' with lb. It is therefore easy to see from (15.8) and (12.28) that 

the integrand in (15.15) is simply 

(15.18) r~2s'2(n+l),,~ -2s  lkf ( D '  )l ,,~' 
~'rb ~'lb " ' p ' ~ , " O / l l b n f f  W �9 

We can choose coordinates so that on the fiber of the front face this is simply the kernel 

for the ball with the Bergman metric. Hence it follows that there exists a smooth, 

positive function w defined on aX such that the limit in (15.15) is 

f ( p ' )w(p ' ) "  lim (1-Jyl2)'-n-1 ( Eo( Y, rl ; s) do, 1 
IYI-~I JS2n+t 

F(s)Z(1-1YIZ) s 
Eo( Y, rl, s) = cn r (2 s -n ) l l - r / .  I~l 2s 

is the s-Poisson kernel for the ball. 

We are reduced to computing the limit in (15.19). Let u(Y) denote the integral in 

(15.19). This function is a radially symmetric solution to the eigenvalue equation which 

moreover satisfies u(O)=c,,(F(s)2/F(2s-n)) and Dru(O)=O. Using the analysis presented 

in w 8, one easily concludes that: 

1"(2)2 (l-lrl2)"+l-~2Fl(n+ l - s , n +  l - s ; n +  l ; IYI2). (15.20) u(Y) = c' n F(2s-n)  

Because ffts>~(n+ 1) the hypergeometric function is analytic in the closed unit disk and 

its limit as IYI~I is 

F(n+ 1) F ( 2 s - n -  1) 
r(s) 2 

From this and (15.20) it follows that the limit in (15.19) is c " / ( 2 s - n - 1 ) .  This completes 

the proof of the theorem. 

If we define u = P s ( ( 2 s - n - 1 ) f / w  ~) then u is a solution to (15.3). Note in particular 

that if s=n+ 1 then u is a harmonic function, so the (n+ 1)-Poisson kernel is the Poisson 

kernel in the usual sense. In contradistinction to the general case of pinched negative 

curvature treated in [2], the Poisson kernel is smooth on a compactification of X rather 

than HOlder continuous. For the case of a metric on a strictly pseudoconvex domain 

the Poisson kernel is not smooth in the standard qg= structure but only in the square 

root structure. In the standard structure the kernel will be H61der I/2; as the curvature 

is asymptotically 1/4 pinched this is precisely what is predicted by the result in [2]. 
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Appendix A: Discrete subgroups of SU(n+l,  1) 

In this appendix we present the basic facts about the geometry of the unit ball, 

CB~+1cC ~+~, equipped with the Bergman metric. This is a model for the Hermitian 

symmetric space with constant biholomorphic sectional curvature. We then discuss 

discrete subgroups with infinite volume quotients and a generalization of the results of 

Patterson and Sullivan on the Hausdorff dimension of the limit set of a convex co- 

compact group. Similar results were obtained independently, a bit earlier, by Kevin 

Corlette. He has studied the case of a general rank 1 symmetric space, 

see [4]. 

w A1. Complex hyperbolic geometry 

We first introduce the elements of the geometry of the Hermitian symmetric space 

SU(n+I,  1)/SU(n+ I). This is the complex hyperbolic space; the canonical bi-invariant 

metric has constant holomorphic sectional curvature. As with the real hyperbolic space 

there is a profusion of different models, each with its own advantages and disadvan- 

tages. 

The first model arises from the fact that the group SU(n+ 1, 1) acts as the orthogo- 

nal group of the hermitian form: 

= + . . .  

On the set {Q(~)=-1} the quadratic form restricts to give a positive semi-definite 

inner product. The null direction can be eliminated by dividing out by the SLaction 

~- ,  exp(i0) ~. A somewhat more natural description of this model is to take the quotient 

{Q(~)<0}/C*. The quotient of the light cone, {Q(~)=O}/C* defines the geometric 

boundary. The main advantage of this model is that the group action is linear. In the 

interior of the light cone we can define a potential function by q~=Q(r162 2. The 

K~ihler metric defined by this potential agrees with that defined by the restriction of Q 

to the tangent space modulo the SLaction. The potential is well-defined on the quotient 

by C* and defines a K/ihler metric there as well. 

We can obtain a model for the complex hyperbolic space in the unit ball in C n§ by 

setting: 

One easily sees that the image of the interior of the light cone is the set 

c n  "+1  = {Iwl2+lzll +...+lz.I 2 < 1} 
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(A1.3) 

where 

and moreover the defining function $ becomes the usual defining function of the ball 

which we will also denote by q~. If (w, z) lies in the ball then ~(w, z)=(w, z, I) lies in the 

interior of the light cone. We can use this identification to deduce the action of 

SU(n+ 1, 1) on the ball: 

A.  (w, z) = ((A~(w, z))0 .. . . .  (A~(w, z))n)/(A~(w, z)),+l 

In Section 8 we introduced the fundamental point pair invariant: 

(A1.2) (r ~) = O(~, ~)/(O(~) Q(~))vz 

and we showed that if ~ and ~ are thought of a points in the quotient then 

I(~, ~)l = cosh(d(~, ~)/2). 

If X and Y are points in the unit ball then the fundamental invariant is given by 

(X, Y)= 1-(X, Y) 
(1 -IXlZ)l/2(1 -IYI2) rE' 

(X, Y) =X 1 Yi+...+Xn+l Y-n-4i" 

From Fefferman's transformation formula for solutions of the Monge-Amp~re 

equation we can deduce the Jacobian determinant of an element of Aut(CHn+l). If ~v is a 

solution of the Monge-Amp~re equation on a domain r then the volume form 

dV=dVcucUd/(W) ~+2. I f F  is a biholomorphic map from 0-//, to 0//then we can pull back the 

defining function, ~0, by 

7/  (p) = ~O(F(p) )lF' (p)l 2/"+ 2 

to obtain a solution of the Monge--Amp6re equation on a//,, see [8]. The volume form is 

given by the same formula with ~p' replacing % If we apply this in the linear model to 

the defining function, tp, which is a solution of the Monge-Amp~re equation we obtain 

a new defining function, q~A, given by 

•A(r = r 1 6 2  (lr162 z 

from which we can deduce that the complex Jacobian determinant is 

(A1.4) IJA(W, Z)I = 1 / Ia~(w,  Z)l 2"+2, 

generalizing a well known formula in real hyperbolic geometry. 
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The final model is a generalization of the upper half space model of the real 

hyperbolic space. The boundary of this model is the hyperquadratic; the model is 

defined by: 

~+ = {(x, y); ~(x)-IYl2/2 > 0). 

A transformation that carries the ball into ~+ is given by 

x = i ( l+w) / (1 -w) ,  Yi= 21/2zi/(1-w), i= 1, ..., n. 

The fundamental invariant in this model is given in Section 8. 

w A2. Classification of group elements 

As in the case of real hyperbolic space the elements of the automorphism group can be 

divided into three disjoint sets. Each set is determined by the geometry of the fixed 

point set. The classification is most easily deduced in the linear model. 

A general fact that follows easily from the defining equations of the group is that 

the spectrum ofA -1 is the same as the spectrum of A*, from which it follows that if/z is 

an eigenvalue of A then so is 1/~i. We will set 

(A2.1) S- = {Q(~) < 0}, S + = {Q(~) > 0}, L = {a(~) = 0}. 

If A has an eigenvector, v, in S- then the fact that Q(Ar162 implies that the 

eigenvalue must be of modulus 1. Let 

(A2.2) v • = {w; Q(w, v) = 0}. 

Since v lies in S- its orthocomplement lies in S § As A is orthogonal it also 

preserves v t.  The quadratic form restricted to v • is positive definite and therefore the 

spectrum of A on this subspace must lie on the unit circle. From these considerations it 

follows easily that an element with a fixed point in the interior of the light cone has all 

of its spectrum on the unit circle and is conjugate to an element of the form 

(A2.3) 
I eiO~ 1 ",. ,4 = eiOn 

where 00+...+0n+~p=0 modulo 2:r. We will call such elements elliptic. 
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If  A does not have an eigenvector in S-  then it must have an eigenvector on the 

light cone. An easy calculation shows that this is the only way in which A can have an 

eigenvalue which is not on the unit circle. If  A has an eigenvalue/~ of modulus greater 

than one then by the above remark it also has an eigenvalue, 1/~, of modulus less than 

one. Let  Vl and v2 be the corresponding eigenvectors. Both lie in the light cone and one 

easily sees that the orthogonal complement of sp{vl, 02} lies in S § As before this set is 

invariant under A and the spectrum of  A on this set lies on the unit circle. One can show 

that an element of  this type is conjugate to one of the form: 

(A2.4) 

-eiOl 
".  

eiOn 

e it cosh(x) e it sinh(x) 

e it sinh(x) e i ' c o s h ( x ) .  

here 01+... + 0,+2t--0 modulo 2zt. We will call such an element hyperbolic. 

The final case is that A has an eigenvector, v, on the light cone with eigenvalue, ~t, 

of modulus 1. In this case v • = v + H  where H lies in S § If  we let T=(A-/~) v • then T is 

contained in V • and moreover has dimension at most n as v belongs to v • One can 

easily show that T is invariant under A and lies in S +. Therefore A restricted to T has 

spectrum on the unit circle. In the generic case dim(T)=n and T • is two dimensional. 

The eigenvector v belongs to T • and either A is diagonalizable on this subspace in 

which case A is elliptic or A is not. In the latter case we will say that A is parabolic; it 

will be conjugate to an demen t  of the form: 

-eiOl 
*., 

(A2.5) ei~ 

eir 1 

0 eir 

here 01+...+0n+2~o---0 modulo 2z~. 

The nongeneric cases are again either elliptic or parabolic depending on whether A 

is diagonalizable or not. As we will be primarily interested in groups composed entirely 

of hyperbolic elements we will not pursue this question further. 

From the normal forms it is easy to deduce the geometric actions of the different 

types of elements on the complex hyperbolic space. Note in particular that a hyperbolic 

6-918288 Acta Mathematica 167. Imprim6 le 22 aoOt 1991 
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element will fix a two dimensional subspace which will project to a totally geodesic 

complex 'line' in the complex hyperbolic space. On this line the metric restricts to the 

standard real hyperbolic metric and the element leaves a geodesic lying within the line 

invariant. We call this the axis of the element. The endpoints of the axis on the 

geometric boundary are the fixed points of the element. The distance which the element 

translates a point on its axis is called its translation length. 

For the remainder of this appendix we will work in the nit ball model. We use X. I 7" 

to denote the standard Hermitian product on C ~+~ and ISl =S. . 

w Boundary geometry 

As remarked above the quotient of the light cone by the C*-action identifies the 

geometric boundary with the unit sphere in C n§ The metric in the interior of the unit 

ball blows up as the boundary is approached, at two different rates. To make this 

precise we consider the restriction of the metric to the sets 

S r = {dp = - r } .  

On vectors that lie in TI'~ the metric blows up like I/~, whereas on vectors transverse 

to this subspace the metric blows up like 1/~ 2. From this it is evident that in order to 

find a curve of shortest distance between two points on Sr one should try to make the 

tangent vector lie in the subspace TL~ From this we can deduce that if we rescale the 

metric on Sr so as to keep the diameter constant then as we approach the boundary the 

geometry of Sr will tend to the Carnot geometry of the (2n+ 1)-sphere. This is a metric 

geometry defined by considering only paths whose tangent vectors lie in the contact 2n- 

plane field. This distribution is defined as the annihilator of the contact form 

(a~-a~)/2i. Such a curve is called Legendrian. We define the distance between two 

points as the infimum of the lengths of Legendrian curves joining them. We will 

measure the lengths of these curves in the standard spherical metric. For the details of 

this geometry we refer the reader to [15]. 

One can show that the distance between two points X and Y on S 2n+~ is given by: 

(A3.1) d~(X, Y)= [1-(S,  y) f2 .  

This metric is manifestly SU(n+l)-invariant, the full group of automorphisms act as 

conformal maps in the sense of Mostow, see [15]. 

Using this metric one can define Hausdorff measures on the sphere and the 

corresponding Hausdorff dimensions. The sphere itself has dimension 2n+2 in this 
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sense. This arises because a Legendrian curve has dimension 1 whereas a curve 

transverse to the contact field has dimension 2. In the sections that follow we will 

consider a generalization of the results of Patterson and Sullivan relating the Hausdorff 

dimension, in the sense above, of the limit set of a discrete subgroup of SU(n+ 1, 1) to 

the exponent of convergence of a Poincar6 series and also to the lowest eigenvalue of 

the Laplace operator. 

To that end it is useful to have a normal form for hyperbolic elements that is 

adapted to the Carnot geometry of the boundary. A moment's thought indicates that 

what we want are representatives of the double cosets" 

SU(n+ 1)\SU(n+ 1, 1)/SU(n+ 1). 

There are essentially two invariants. The first is the translation length and other is 

the inner product of  the fixed points, which is in this case a complex number within the 

unit disk. We normalize so that one fixed point is (1,0 .. . . .  0) and the other lies in the set 

{(w, zt, 0 .. . . .  0)). We further normalize to remove the rotational part about the axis. 

The most general element of  this type is of the form: 

(A3.2) 

I cosh(x)-s-it (2s)l/2e -x/2 0 ... 0 -sinh(x)+s+it] 
-(2s~l/2eX/2i ol O. . .O1 ... 0 (2s); 2ex/2~ I 

L-sinh(x)-s-it (2s)l/2e -xr2 0 ... 0 cosh(x)+s+it _1 

where s>~0 and x, t are real numbers. 

If x>0 above then ~_=(1,0 ..... 0) is the repelling fixed point and 

(A3.3) 
~+ = ( 2 s -  (sinh(x) + s -  i t )  (1 - e-X),  

2 sinh(x) (2s)V2e -~/2, 0 ..... O, (2s+(sinh(x)-s+it) ( I -  e-~)) 

is the attracting fixed point. 

w A4. Discrete groups 

There is a rich theory of discrete subgroups of SU(n+ 1, I) though it is much less 

developed than the corresponding theory in the real case. One important difference is 

that the complex hyperbolic space has no totally geodesic submanifolds of real codi- 

mensionone. This complicates the construction of a fundamental domain for the action 
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of a discrete group. The construction of  the Dirichlet region still works to give a 

fundamental domain with real analytic boundaries. 

For purely hyperbolic groups one can also use a modification of the isometric 

hemisphere construction. For an element A we define the 'halfspace' 

(A4.1) HA= {p; IJA(P)I < 1}. 

From the formula, (A1,4), for IJAI it is apparent that the set 

Co; IJA(P)I = 1) 

is an embedded disk which separates the ball into two components. The set defined as 

the intersection of the H a  over all elements, A, of a discrete group defines another 

fundamental domain with real analytic boundaries. 

If F is a discrete subgroup of SU(n+ 1, 1) then one defines the limit set, Ar, as the 

set of cluster points of the orbit of a point in the interior which is not the f'Lxed point of 

any elliptic element. Since the group is discrete this set necessarily lies on the 

boundary. As in the real case the limit set is independent of the choice of the interior 

point. 

Since we are primarily interested in compact manifolds with a strictly pseudocon- 

vex boundary we restrict ourselves to groups whose quotient is a manifold of this type. 

By considering the Dirichlet region one easily sees that such a group is composed 

entirely of hyperbolic elements. In order for the quotient to be of this simple type one 

can show that there is a finite sided fundamental region whose closure is disjoint from 

the limit set. This is the so called convex co-compact case. 

One can easily construct examples by using the Schottky construction: take a 

finite collection of hyperbolic elements which identify pairs of imbedded codimension 1 

disks. If the pairs of disks are pairwise disjoint with boundaries lying in the unit sphere 

and their union is the boundary of a connected region in CH n+l then the argument used 

in the real case suffices to show that the group generated by these elements will be 

discrete and convex co-compact. The underlying abstract groups are free groups. 

A distinctive feature of Schottky groups is the fact that the boundary of the 

quotient is a connected manifold. This is of course a substantial restriction in the real 

case. However it follows from a theorem of Kohn and Rossi, see [14] that this is always 

the case for a strictly pseudoconvex manifold. One easy consequence of this is that Ar 

cannot separate the sphere. Hence in some sense all convex co-compact subgroups of 

SU(n+ 1, 1) of infinite volume are of 'Schottky type. '  It seems an interesting question to 
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determine if the theorems of Phillips, Sarnak and Doyle on nontrivial upper bounds on 

the dimension of the limit set of a Schottky group extend to a result for all convex co- 

compact subgroup of SU(n+ 1, 1). See [21], [6]. 

w A5. The exponent of convergence and the Patterson measure 

We follow the presentation in Sullivan's paper, [22], stressing only the differences 

which arise as a consequence of the change from real to complex hyperbolic geometry. 

Following Patterson and Sullivan we define the Poincar6 series for a discrete 

group F: 

(AS.l) gs (X' Y) = E e-*a(x'vr~" 
y E r  

As in the real case, it follows from the discreteness of F that this series converges 

for s>n+ I. Following Sullivan's argument one easily shows that if the series converges 

for one pair (X0, Y0) then it converges for any pair. We denote the infimum of the s fqr 

which the series converges by 6; this is called the convergence exponent for the group. 

Next consider the family of measures: 

1 ~ e_~d(X, rr)6 (p) ( A 5 . 2 )  = g, r, " 

It is easy to show that the total measure is bounded above and below independently of 

s. We assume that the series, gs diverges at the convergence exponent; as in [22] this 

hypothesis can be removed but will be seen to hold in the convex co-compact case. Let 

(A5.3) /~6(x) = lim/~, (x), 
si_.~6 " 

denote a weak limit of these measures. In light of our assumption that the Poincar6 

series diverges at the convergence exponent this defines a measure concentrated on the 

limit set of F. 

If X' is a different point then a6(X) and/~6(X') are easily seen to be mutually 

absolutely continuous. From our formula for the fundamental invariant we see that: 

e a~x'yY~ (X, ~,Y) 
(A5.4) e a~x',yr) (X', yY) 

2 [1-X. ~--Y[2(1-[X'[2) 

I I - X '  . FFI 
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If  we allow yY to approach ~ on the boundary of CB "+1 then we see that 

ed(X, Y Y) 
(A5.5) - -  ---> 

ed(X ', v r) 

I1 - X .  412(1 - [S'l 2) _ e(X.X%. 

li-X,. 12(1-1xl 2) 

Therefore we obtain the formula: 

d/z6(X') _ e6(X,X%. 
(A5.6) d~(X)l~ 

Following [22] we wish to obtain a comparison between the measure p~ and the 

Carnot-Hausdorff  measure of  dimension 26. To that end we prove the following 

lemmas; to simplify notation we will let/~=p~(0). 

and set 

LEMMA A5.7. Let  y be a hyperbolic element, let 

r~, = e -d(0' ~'-10)12, 

~5 v _ Y - 1 0  
UI01" 

There is constant Co, such the image under y o f  the Carnot ball centered at ~, o f  radius 

Co, rv, will cover the solid angle to. The constant Co, does not depend on y. 

Proof. Since a solid angle on the sphere can be identified with a solid angle in the 

tangent space to CH n+l at zero by following geodesic rays originating from zero, it 

suffices to show that the image of the endpoints of these geodesic rays under a 

transformation that carries 0 to 7,-10 and preserves the line that joins these two points 

lies in a ball of radius Co, ry as in the statement of the lemma. Without loss of generality 

we can assume that ~= (I, 0 . . . . .  0); if we let d=  d(0, ~-10) then a transformation carrying 

0 to ),-10 and preserving the line between them is given by 

(A5.8) A: (w, z) ~ (ch(d/2) w+ sh(d/2), z) 
(sh(d/2)+ch(d/2)) 

A solid angle centered on (1,0 . . . . .  0) is defined by 

91(X-(1,0 . . . . .  0 ) ) = R e ( w ) < r ;  - 1  < r <  1. 

With X = ( w ,  z) it follows from (A3.1) and (A5.8) that the square of the Carnot distance 
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of AX from (1,0 .... ,0) is: 

cosh(d/2) w+sinh(d/2) _ e - d / 2 l l - w  I e -d/2 

(A5.9) 1 -  sinh(d/2) w+cosh(d/2) Iw sinh(d/2)+cosh(d/2) I < sinh(d/2) 

This completes the proof of the lemma. 

LEMMA A5.10. For S in a ball as in Lemma A5.7 

d/~(y~) = J(S) d/~(S) 

where J(~) satisfies: 

(A5. I 1) 

11+31. 
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It now follows easily that 

(A5.14) 

lAy(S, 1)n+ll 2" 

J(S) = (I/lAy(S, 1)n+l[) 2e. 

Hence all that is required is an estimate for I(Ay(S, 1))n+ll 2 for S in the Carnot ball 

produced in Lemma A5.7. To that end we will employ the normal form (A3.2). A 

simple calculation shows that: 

(A5.15) c o s h ( l  d(o, 7-10)) = lcosh(x)+s-it,. 

Moreover 

(A5.16) Y-10 
i~_,Ol = Sy = 

(sinh(x) + s -  it, - (2s)1/2e -x/2, 0 . . . . .  O) 

(cosh(x) + s-i t)  (1-1/Icosh(x)+s-itl2) in 

r 

Cl < < c2 

here the constants depend only on the solid angle in Lemma A5.7. 

Proof. Let Ay denote the element of SU(n+ 1, 1) which defines y. Using the formula 

for the fundamental invariant we find that: 

eaO.y 'r) ( 1 - l ~ ' y I  z) 
(A5.12) 

ed(O,w ' r)  ( 1 - - ly '  YI 2) " 

By using the formula for the fundamental invariant in the linear model one easily sees 

that as y'Y tends to S this tends to 
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It is now a simple exercise to show that if ~ satisfies 

II-~e.-~ I < Cr2y 

then 

(A5.17) c I e -d~ < 1/[Ay(~, 1),+ll < c 2 e -d/2 

as desired. 

Using these lemmas and Sullivan's observation that any sufficiently large solid 

angle must contain a fixed proportion of the total measure of/~ we obtain Sullivan's 

result in this case, that for these special balls, Bc,(~y): 

(A5.18) cl(ry) 20 < kt(Bcry(~y)) < c2(ry) 20. 

where as usual C 1 and c 2 are independent of y. 

Sullivan has shown that one can compare the Patterson measure to the 26 Hans- 

dorff measure on the radial limit set. A point, ~, is in the radial limit set provided that 

for ! a geodesic ending at ~ there are infinitely many points in the set {y0; y E F} within a 

fixed distance of I. Evidently if this is true for some geodesic ending at ~ then it is true 

for any such geodesic. In the case that F is convex co-compact the radial limit set 

coincides with the whole limit set. Using the following geometric lemma we can 

generalize Sullivan's results to the complex case: 

LEMMA A5.19. Let ~ be a point on the unit sphere and X a point in CB n+l such that 

the complex hyperbolic distance from X to the line through 0, ending at ~, is less than 

L, then 

(A5.20) 1 - ] ~ l  .~1 <~f~[-2Ce-d(~ 

Here the constant depends only on L. 

Proof. Let Y be the point on the line closest to X. By the triangle inequality 

d(0, Y)~>d(0, X ) - L .  Moreover we have 

(A5.21) {1 - X -  I7"12 < C(1 -IX] 2) (1 - ]  y[2). 

Using the relation between the fundamental invariant and the distance and the estimate 

for d(0, Y) we see that the right hand side of (A5.21) is smaller than C'e -2d(O'X). On the 
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x $ x f'] IIXllYl-X.fl 
1 - - ~ .  = 1 ~ ]  i~- [ = IxIIrl 

< ((1-1xIIYI)+II-X" El) 
txtlrJ 

211-X. I:" I 

lXllrl 
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This completes the proof of the lemma. 

Using this lemma and Sullivan's argument we can show that for balls of sufficiently 

small radius centered on points lying in the radial limit set, B,(~) we have: 

C 1 ~ < ]l~(Br(O) < C 2 F 2b (A5.22) 

for some positive constants independent of r a n d  ~. This gives: 

THEOREM A5.23. For a convex co-compact  group, F c S U ( n + I ,  I), the Poincar~ 

series diverges at the critical exponent  and the limit set has finite and positive 26 

Carnot-Hausdorf f  measure. 

If we define the counting function: 

N(R)  = # {y: d(O, yO) < R} 

ce ~R < N(R) < Ce ~R. 

then we have the estimate: 

(A5.24) 

w A6. The Poisson kernel 

On the complex hyperbolic space there is a family of fundamental eigenfunctions for 

the Laplace operator with their singular support a single point on the boundary. If we 

define the kernel: 

(A6.1) 

then P satisfies: 

(A6.2) 

[- 1 - - ~12  lis+( n+l)/2 

p(y,~,s)= k i1-~. ~l~j 

AP-(s2+(n+ 1/2) 2) P = O. 
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This assertion is most easily proved in the hyperquadratic model where one easily sees 

that (~x) is+(n+l)/2 is an eigenfunction. The kernel is then obtained by composing this 

function with automorphisms. 

If  we specialize the formula (A5.6) for the Radon-Nikodym derivative, 

dp(X')/dl~(X) to X=0  we obtain: 

(A6.3) dp(X')[~ = P(X', ~, o) d/t 

here cr=i((n+ 1)/2-6). 

From the construction of/~(X) it is apparent that, as a function of X the total mass 

of/~(X) is invariant under the action of F; let ~p(X) denote the total mass of the measure 

/~(X). From formulae (A6.1) and (A6.3) it is obvious that ~o(X) is an eigenfunction of  the 

Laplace operator with eigenvalue 2 = - 6 ( 6 - n - 1 ) .  In the convex co-compact case it 

follows from the fact that there is a fundamental domain whose closure is disjoint from 

the limit set that 

(A6.4) I 0(X)l < Ce -oa<~ 

on F \ C H  "+l. Thus we see that if 6 > ( n +  1)/2 then ~p(X) will be an L z eigenfunction on 

the quotient manifold. Since ~p(X) is positive it follows by a standard argument that 2 is 

the lower bound of  the spectrum of the Laplacian on the quotient. Hence we obtain a 

generalization of the Theorem of  Patterson and Sullivan: 

THEOREM A6.5. I fF  is a convex co-compact subgroup of  SU(n+ l, 1) such that the 

convergence exponent, 6, is larger than (n+l)/2 then the Laplace operator on the 

quotient has an L 2 eigenvalue below the continuous spectrum and the lower bound o f  

the spectrum, 20, is related to the convergence exponent by: 

(A6.6) 20 = - 6 ( 6 -  n -  1). 

w A7. The resolvent kernel for a convex co-compact group 

The results of Sections 9, A5 and 14 can now be combined to yield a representation of 

the resolvent as a convergent sum for 9~(s)>6. If  the spectral parameter is given by 

2 = s ( n + l - s )  it follows from (8.6), (8.9) and (8.12) that the resolvent kernel on CB n+l is 

given by: 

(A7.1) R(x, y; s) = (cosh((d(x, y)/2))-2Sr(cosh(d(x, y)/2)-2); s) 

here r(r;s) is a smooth function for rE [0, oo). It follows easily from (A7.1) and (A5.24) 
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that the series: 

(A7.2) Rr(x, y; s) = E R(x, yy; s) 
?EF 

converges locally uniformly for 9]s>6. For s in this range and q~ ~ ~| "+~) 

u = Rr(S)'C p = f Rr(x, y; s) r dVBerg 

is a solution to [A-s(n+l-s)]u=dp and moreover u EL2(CB"+I,dVBerg). From the 

uniqueness of such a solution it follows that Rr(s) is the resolvent kernel in this region. 

From Theorem 14.5 we conclude that the resolvent has a meromorphic extension 

to the whole plane, the essential spectrum of A is the interval [((n+ 1)/2) 2, oo) it i s  

continuous spectrum of uniform infinite multiplicity and any point spectrum is of finite 

multiplicity. 

From the series representation (A7.2) it is apparent that for ~ s  large enough 

[ G~ ] 
(A7.3) Rr(x,y;s)=(1-lxlZ)s(1-]yl2) ~ I I - ( x , y ) l  2s +Gl(x,y;s ) 

where Go and G~ are qr functions near x=y. From this we see that Rr actually has a 

nontrivial second component in the decomposition (14.6). 

In a subsequent publication we will show that there is no point spectrum embedded 

in the continuous spectrum (cf. [17]) and hence all such specrum lies in the interval 

[6 2, ((n-[-1)/2)2), provided 6>(n+1)/2. Otherwise there is no point spectrum. We will 

also construct an eigenfunction expansion from the resolvent kernel. 

Appendix B. Polyhomogeneous conormal distributions 

In the definition of O-pseudodifferential operators, and even more in the proofs of their 

composition and mapping properties, we make use of the theory of polyhomogeneous 

conormal distributions on a manifold with comers. In this appendix the definition of 

these distributions is recalled and the symbolic properties and behaviour under various 

operations are described. For a more complete treatment, and proofs, of the results 

described here the reader is referred to [19]. 

For simplicity we shall assume throughout that the manifolds with corner satisfy an 

additional global constraint. Namely we require that: 

(B. 1) Each boundary hypersurface is embedded. 
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This is not a severe constraint and in any case all the manifolds in the body of the paper 

satisfy it. The useful consequence of (B. 1) is that each boundary hypersurface B has a 

defining function 0B such that there is a neighbourhood q/of  B which is diffeomorphic 

to a product 

(B.2) q/--- [0, 1)xB 

where the normal variable, in the first factor, is just ~B. 

w Multiple expansions 

The spaces of polyhomogeneous conormal functions on a manifold with comers, X, 

satisfying (B. 1), are fixed by an index set for each boundary hypersurface. By an index 

set we mean a discrete subset EcCxN0,  N0={0, 1,2 .. . .  } such that 

(BI.1) (zvml)EE, I(Zvml)[-->oo = 9t(zl)--->oo. 

Let us number the boundary hypersurfaces Bj, j= 1 ..... q and let Ej be an index set 

for each l<~j<~q with Qj corresponding defining functions. The collection of index sets 

will be written E= {Et . . . . .  Eq}. Now to define the space MpEhg(X) of polyhomogeneous 

conormal distributions associated to these index sets we proceed by induction over the 

maximum codimension of a boundary face, i.e. the maximum number of boundary 

hypersurfaces which have a common intersection. 

The trivial case is a compact manifold without boundary; there are no index sets 

and we adopt the superfluous notation 

(B1.2) , .~phg(X) = ~ ~ 1 7 6  i f  a X  = ~ .  

Proceeding inductively we suppose that Mehg(Y) is defined as a topological vector 

space whenever Y has boundary codimension at most k -  1. In particular this means the 

associated spaces 

(B1.3) ~([0,1);MpEhg(Y)) and ~J([o,I);MEphg(Y)),jENoN( oo} 

are well-defined topological vector spaces. The second space consists of the j-times 

continuously differentiable functions on [0, 1) with values in MpEhg(Y) and which vanish 

to order j at 0 and in some neighbourhood of 1. Now consider one of the boundary 

hypersurfaces Bj. Let E(j) be the collection of index sets for the boundary hypersur- 

faces of X which meet Bj (other than Bj itself). Thus E(j) is a collection of index sets for 

the hypersurfaces boundaries of Bj. Consider a function on [0, 1)xBj which has an 
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asymptotic expansion 

<B1.4) u -  z 1o Q)( gQj):fzk,, fz k E c~c ([0, 1 ) ; ,  ** '~phgE(J)(Bj))" k 

(z, m) E Ej k<~m 

Of course we need to specify the precise meaning of this asymptotic expansion. For 

each rER set Ej(r)={(z, m)EEj;DI(r)<r}. This is a finite set, because of (BI.1). Then 

(B1.4) means that for each p E N there exists R=R(p)E R such that 

(B1.5) u -  Z ZoO(log k 1); Mphg(Bj)) Vr>R(p) .  
(z, m) E Ej k~m 

Conversely, the asymptotic completeness of these spaces is the result (really a 

form of E. Borel's lemma) that for any sequence, fz, k, parametrized by Ej, 

f , ,  ,:  Ej--* c~([O, " eO) B l ) ,  ~phg ( 9 ) 

there exists u satisfying (B1.4), i.e. (B1.5). 

DEFINITION B1.6. By induction over the maximum codimension o f  a boundary 

face we define, for  any manifold with corners satisfying (B. I) and any collection o f  
index sets E, 

(B1.7) . f fp~-  u = ~ + Z u j ; ~ E ~ |  andujsat is f ies  (B1 .4 ) foreach j  . 
k j=l 

The topology on ~/pEhg(X) is given by the seminorms on the coefficients fz, k in (B1.4) and 

on the remainders in (B1.5). 

It is straightforward to check that ~r is defined independently of the choice of 

product structure near the boundary hypersurfaces. It is always a ~| This 

implies in particular that we can define such polyhomogeneous sections of any ~= 

vector bundle over X by using the tensor product definition 

(BI.8) e . e cs174 G). J~phg(X, G)  ~-- ~ p h g ( ~ ( X )  

This just means that the coefficients are polyhomogeneous in the sense above in any 

trivialization of the bundle in a suitable local coordinate patch. 

Note also that if E' and E are index sets and EjcEj for all j then 

<B1.9) Jfhg<X) = ~/pehs(X ). 



94 C. L. EPSTEIN, R. B. MELROSE AND G. A.  M E N D O Z A  

In fact there may be redundancy in the index sets. If (z, m)E Ej then dropping any 

element (z+l, m') E Ej where l, m' E No and m'<~m does not affect the space. 

Certain 'trivial' cases are worth noting. If one of the index sets should be empty 

E j=~  then the space is, locally near that face, just 

�9 oo ,,~IE(j)r B ) (BI.IO) U~M~hg(X), supp(u)~ flj o UE %~ ([0, 1); O~phg, jj) 

where flj. is a neighbourhood as in (B.2) for Bj. Another similar case is where 

Ej.= {(0, 0)}. Since B i is embedded it is possible to double X across Bj to a manifold with 

corners 2jX (the double of X across the j th boundary.) Then if E'(j) is the family of 

index sets obtained by omitting Ej 

(BI . l l )  E _ ~,E'(j)t 2 X ~ ,5~ phg(X) - -  ,~g phg t, j ] a"  

As a particular case of this, 

(Bl.12) Ej= {(0,0)) Yj =~ Mp~hg(X)= <r 

w B2. Symbol mappings 

One of the important properties of conormal distributions, and in particular the polyho- 

mogeneous conormal functions just defined is the existence of a symbol mapping, 

which is an effective replacement for the Taylor series expansion of a smooth function. 

Since we are assuming each boundary hypersurface to be embedded we can interpret 

the map (B.2) more abstractly as a local identification of a neighbourhood of the 

boundary hypersurface in the manifold with a neighbourhood of the zero section of its 

normal bundle. 

Recall that the normal bundle NB is a line bundle over B with fibre 

(132.1) NpB= TpX/TpB YpEB. 

The subset consisting of the image of the inward-pointing part of the tangent space is a 

half-line bundle N+B over B; it is a manifold with corners, since B may have corners up 

to one less codimension than X. As a vector budle the zero section is naturally 

identified with B and the inward-pointing normal bundle to the zero section in N+B is 

naturally identified with N+B. Thus we can place the following restrictions on a local 

diffeomorphism, Z, from a neighbourhood, ff~, of B in X to a neighbourhood fl '  of the 

zero section in N+B: 
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(B2.2) 

z:X~ f~-->~' cN+B 

X is the identity on B 

Z, is the identity on N+B. 

The collar neighbourhood theorem asserts the existence of such a diffeomorphism; it 

follows in any case from (B.2) and it is by no means unique. 

If E is a family of index sets for the boundary hypersurfaces of X and B is a 

boundary hypersurface set 

(B2.3) 
E"[-1B= {E l . . . . .  Ej_I,EjdI-1,Ej+I . . . . .  Eq}, 

E j + I =  {(z+l,m);(z,m)EEj} if B=Bj 

and similarly with 1 replaced by any integer n. The space of polyhomogeneous 

conormal distributions associated with this shifted index set can also be written 

(B2.4) , •E+ lB, T . phg IX) = (~p E ~| q~ = 0 on/~} .,~per~(X). 

In particular we can consider the quotient which we write as 

(B2.5) ~:~}B~-~ E E+IB "'*'phg ~.'~xJ = " ~ p h g ( X ) / ' ~ p h g  ( X ) .  

The boundary hypersurfaces of N§ are uniquely associated with boundary hypersur- 

faces of X and so in particular the same space is defined there. Now a map (B2.2), being 

a local diffeomorphism, identifies the spaces with supports in the appropriate sets 

(B2.6) 

More significantly the quotient is well-defined, independent of the choice o fz  satisfying 

(B2.2); this is called the symbol mapping for the face B: 

(B2.7) 

It is such that 

(B2.8) 

O'B: ~2~phg[,A ) ~ '  " " "  ..._> 
,ff  
O,~phg ~ � 9  u j .  

--E+IB" " ~ E {E} + 
O - ' - > a p h g  ( X )  , .~phg(X) - - -> ,~phg(N B)--->O 

is always exact. 
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w Elementary operations 

There are three 'elementary' operations we consider on polyhomogeneous conormal 

distributions: addition, multiplication and the action of differential operators. Using the 

definition it is easy to analyze each of these. 

For addition the corresponding operation on index sets, E, F c ( C •  q associated 

to the boundary hypersurfaces of a manifold with corners, is set-theoretic union of the 

components, we write 

(B3.1) E O F =  {E, UF a ..... EqUFq}. 

LEMMA B3.2. Addition gives a separately continuous bilinear form 

(B3.3) ~ v EOF ,5~phg(X)'~-J~phg(X ) C= ~phg (X). 

The operation on index sets corresponding to multiplication is addition, in the 

following sense. If E and F are collections of index sets put 

Ej+Fj= {(z,m); z = z ' + ~  ', (z ' ,m')EEj,  (~',m'3EFj, m=m'+m"}  
(B3.4) 

E~-F = {EI+F , ..... Eq+Fq). 

LEMMA B3.5. For any compact manifold, satisfying (B.I), multiplication o f  rg| 

functions in the interior extends to give a separately continuous bilinear map 

(B3.6) JpEhg(X )" J~Fhg(X ) C: "~ phgE;F(x) 

and for any boundary hypersurface B 

(B3.7) aB(U" V) = aB(U) "OB(V). 

As far as the action of differential operators is concerned we shall limit our 

attention to totally characteristic operators, elements of the enveloping algebra, 

Diffb(X), of ~b(X), the space of ~= vector fields on X tangent to all boundary 

components. If P E Diff~'(X) and B is a boundary hypersurface then the indicial opera- 

tor at B, IB(P), is well-defined as an element of Diff~'(N+B). 

LEMMA B3.8. I f X  is a manifold with corners satisfying (B. 1) then for any index set 

E and any P E Diff,(X) 

(B3.9) P: ~r ~r ) 
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and for any boundary hypersurface, B, 

(B3.3) oB(Pu) = IB(P)'aB(u) Y u  E ,$~pEhg(X ). 
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w B4. Pull.back 

After these elementary operations we consider the pull-back of conormal functions 

under a qg~ map between manifolds with comers. Naturally we cannot expect to have a 

simple result for an arbitrary smooth map, since it need not be really related to the 

boundaries. We therefore consider the notion of a b-map. This is really a local notion, 

but for simplicity we stick to the case of manifolds, X and Y, satisfying (B.1). 

Let 0;, r, i= 1 . . . . .  q ' ,  be defining functions for the boundary hypersurfaces of Y and 

similarly Qi, x, i=1 . . . . .  q, defining functions for X. The condition we impose on a ~r174 

map F: X ~  Y in order that it be a b-map is that 

(B4.1) F*Qi, r = ai I-[ ej, x'~e(i'J), 0 ~ a i E rC~(X), i = 1 ..... q'. 
l-~j<~q 

Of course the powers e(i,j) are then necessarily non-negative integers. Clearly the 

composite of two b-maps is again a b-map, so it is easy to see that manifolds with 

comers satisfying (B. 1) and b-mappings form a category, i.e. this is a reasonable notion 

of 'smooth map'! 

With a b-map we shall associate a mapping of index sets. Namely if E' is a family 

of index sets for the boundary hypersurfaces of Y let 

(B4.2) 
Fb(E ') = {g, . . . . .  

E j = ( ( Z , M ) ; Z j =  E e(i,j)zi, Mj= E mi,(zi, mi)EE~}. 
1 <~i<~q ' e(i,j)~O 

PROPOSITION B4.3. Let F:X--->Y be a b-map between manifolds with corners 
satisfying (B. 1) then for any family of  index sets, E', for Y the pull-back of  ~| functions 
in the interior extends to a continuous linear map 

(B4.4) F* : ,.d ~hg ( Y) -~ ~a Fb(e') (X ~ phg ~ z. 

Notice that if for some j, e(i,j)=O for all i, then the component of F~(E ') corre- 

sponding to Bj is Ej={(0, 0)) i.e. the pull-back is ,,~o~ up to" that boundary hypersur- 

face. 

7-918288 Ac ta  Mathemat i ca  167. Imprim~ le 22 aoflt 1991 
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w Push-forward 

Recall that the tangent vector fields ~b(X) form all the smooth sections of the com- 

pressed tangent bundle bTX, with dual bT*X. A direct consequence of the definition of 

a b-map is that associated to it there is a pull-back map on this bundle: 

(B5.1) b , .b  , y_~b , Fp. TF(p) TpX YpEX. 

In order to have a useful result for push-forward we need to add a b-submersion 
conditon, namely that 

(B5.2) b . Fp is injective VpEX. 

As another consequence of the b-mapping condition (B5.1) we can divide the 

boundary hypersurface of X into two sets, corresponding to those indices j for which 

e(i,j)>O for some i and those with e(i,j)=-O. We can write the corresponding decompo- 

sition of the index sets as 

(B5.3) E = E'O)E". 

Now we want to define the push-forward G=Fb(E') of the index set; as indicated this 

only depends on E'. Thus G={GI ..... Gq,} is to be an index set for Y. We set 

G i = {(Z, M); 3 (zj, my) E Ej for those j with e(i,j) * 0 and Ej* 0 such that 

(B5.4) 
e(i , j)Z= zj for o n e j  and M + I  = X ( m j + l ) }  

J 

Notice here the big difference between how we have defined the push-forward and the 

pull-back of index sets. In (B5.4) the multiplicity corresponds to the sum of the 

multiplicities, plus one less than the number of hypersurfaces in X which 'contribute' to 

a given hypersurfaces in Y. 

To simplify the form of the push-forward we consider b-densities, i.e. (conormal) 

sections of the density bundle bfl associated to bTX. This is just 

(B5.5) Ill] bf~ ____ 0i ~ ,  
L 1 <~i<~q I 

where Q/, i= 1 .. . . .  q are defining functions for the boundary hypersurfaces. 
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PROPOSITION B5.6. Let F: X - .  Y be a b-submersion, in the sense that it is a b-map 

satisfying (B5.2), then for  any index sets E for X with a decomposition (B5.3) such that 

(B5.7) ~R(z)>0 V(z, m)EE)', 

push-forward gives a continuous map 

(B5.8) F , :  j~pEhg(X; b~'~)_...~ ~Fb(E)f v .  bt~ ~ "~phg ~Jt~ m~;. 

w B6. Clean submanifolds 

We need to further extend these results to allow for certain conormal singularities in 

the interior of the manifold. A subset YcX ,  with YN~'4=~, is a clean submanifold of a 

manifold with comers, X, if near each point p E Y there are l=codim(Y) smooth 

functions zb. . . ,  zt locally defining Y, 

(B6.1) Yn~ = {qE~;  zi(q)=0, i=  1 . . . . .  l} 

for some neighbourhood f~ of p, and such that 

(B6.2) dzl .....  dzt, dxl .....  dxk are independent at p. 

Here x~ . . . . .  xk are local defining functions for the k boundary hypersurfaces through p. 

This condition just means that locally X can be decomposed into a product 

(B6.3) X N K ~ = X ' x X "  such that Y = X ' x { p " } ,  p"EX"  

in a way which trivializes Y. Here we can assume that X" has no boundary. One 

particular case is if the submanifold Y is embedded in the interior of X; not surprisingly 

we need more general cases than this. 

The theory (although not the name) of conormal distributions associated to an 

embedded submanifold of a manifold without boundary was formalized by H6rmander 

in [10]. The local definition is reduced by (B6.3) to the case of a point in Euclidean 

space. There 

(B6.4) 
uE/m(R n, (0}), supp(u) c c R  ~ r 

E ~-| a(~) = (2z0 -~ f e-n'~u(x) dx E sm-n14(Rn). U 
J 

The space of symbols, Sm(Rn), can be directly related to the conormal functions we 
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have been discussing. Namely let SP: R~,--->W be the stereographiccompactification of 

R n to a ball. Then SP gives an isomorphism 

(B6.5) SP*: M~g(P") ~ S-M(R ") VM E R 

where the single exponent M stands for the index set {(M,  0)}. Under the local product 

decomposition the space of conormal distributions associated to Y is just 

(B6.6) ~ ( x ,  Y) n %-~(n) = W(x';/m+('~x')/4(X", (p"))) n '*~-| 

The strange looking order normalization is useful in the theory of pseudodifferential 

operators (including the ones in this paper). These spaces are independent of the local 

decomposition (B6.3) of Y. The local coordinate symbol leads to a coordinate indepen- 

dent symbol. If we let PN* Y be the stereographic compactification (fibre by f ibre)of  

the conormal bundle to Y and f~b,~b~e be the b-density bundle on the fibres of PN* Y then 

the symbol map can be written 

(B6.7) 

Here 

am: im(x ,  y).__> ~ {secm))tp~v, v. ff~b, able)" o,~ phg " ~ "  " ~ '  

(B6.8) SP(m) = ( _ m +  1 I 0) -~- d imX+ -~- codim Y, 

is the index set corresponding to one leading power and, as before, the brackets in the 

exponent mean the quotient by the space of functions one order lower in growth (i.e. 

'vanishing' to one order higher). The symbol mapping gives an exact sequence 

o, 
(B6.9) 0-'->/m-l( X, Y)  ~ Im( X ,  Y)  ---> ~a ~sP~m)~r v" phg " -  - ,  "'b,r~re)" ~ O. 

TO generalize this to the case of a clean submanifold of a manifold with comers we 

proceed just as in Definition B1.6, only working locally and starting with/~(X, Y) in 

place of ~| in the case of a manifold without boundary. We denote the general 

space, corresponding to order m at Y and to the index sets E1 . . . . .  Eq at the boundary 

hypersurfaces by e Mph~/m(x, Y). In terms of an asymptotic expansion (B1.4) we just 

allow the coefficients to be elements of qg~([0, 1); ~ Irn+l/4(R Yj)) where Yj=BjN Y " ~  phg ~ ~ v j ,  

and the decomposition (B.2) is of X'. 

For this extension of the notion of a polyhomogeneous conormal distribution (the 

elements need no longer be functions) we need to reconsider the results described 

above, starting with the symbol mappings. There are three types of symbol mappings. 
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First is the direct extension of ( B 6 . 9 ) :  

(B6.10) am: M~phslm( X' Y)-'-> -'r Y" ~'~b fibre)" 

Here E(Y) denotes the index family for the boundary of Y, i.e. the index sets from the 

boundary hypersurface components of X which meet Y. Together with SP(m), given by 

(B6.8), this gives an index family for PN* Y, which is a ball-bundle over Y. The suffix Y 

on the index set denotes, as usual, the quotient by the space with index set increased by 

1 at, in this case, the sphere bundle over Y forming a boundary hypersurface of PN* Y. 

The second type of symbol map corresponds to the symbol at boundary hypersur- 

faces of X which meet Y: 

(B6.11) on: Mpehg/m(x, Y)---~ ~(e}s tmt~r+R + �9 ~p~ - - ,  . . . .  N;n y). 

The third type is at a boundary face which does not meet Y. This is just (B2.7), (B2.8) 

again. 

In all cases the symbol maps lead to exact sequences: 

Tr~ ~(SP(m),E(Y')}r/w~xr.  xr r \ (B6.12) 0--* ~ p E h g r n - l ( x  , Y ) ~  ~pEhg/m(x , o= I )  -.-4...~t phg I, IVl~/ 1 ;  ~'~b, fibre) ~ 0 

.._. {e)8 + +   phflm(x ' o8 (B6.13) 0---~O~phg --(X, Y) Y) ~tp~ I~(N B,N~nrB)---~O , B f ~ Y * ~  

oae.ls r~._ y) ~ M~hgl~(X ' ~ (e}B § (B6.14) 0---~phg --(•, Y)----~l~p~ (N B) O, Bf) Y* f~ .  

As a consequence of the assumption that Y c X  is a clean submanifold its conormal 

bundle, spanned by the dzt in (B6.2) can be consistently considered as a subbundle of 

the compressed cotangent bundle, so giving a commutative diagram: 

(B6.15) 

r ,x 

\ 
b T I X .  

Thus if P E Diff~'(X) its symbol, am(P), restricts from bT ~,X to N* Y. Of course this 

restriction is the same as if P is regarded as an element of Diffm(X). 
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PROPOSITION B6.16. I f  Y is a clean submanifold meeting the interior o f  a manifold 

with corners then for any P E Diff,(X), any M E R and any index family, E, for the 

boundary hypersurfaces o f  X 

p: e ~ y)___> odE IM+m(~r y), �9 5~ phg / (X, "~ phg- ~'~, 

(B6,17) OM+m(eU ) "~- Om(P)IN. r" (7M(U), 

%(eu) = IB(P) oB(u) 

for each boundary hypersurface B. 

E m w Operat ions  o n  ~ p h g l  (X, Y) 

There are also some less elementary results we need concerning the pull-back and 

push-forward operations. 

The pull-back result is a straightforward extension of Proposition B4.3. Let Y' cX '  

be a clean submanifold. It follows that the compressed tangent bundle of Y' injects into 

that of X' 

(B7.1) bTyY' C---> bTyX' VyE Y', 

which is to say that the inclusion map is a b-map. A b-map F:X--->X' is said to be 

transversal to Y' if 

(B7.2) bF,(bTxX)W bTF(x)Y' -- bTF(x)X' VxE F-I(Y'). 

I f F  is transversal to Y' in this sense it follows that Y=F-~(Y ') is a clean submanifold of 

X. Another consequence of (B7.2) is that the pull-back map defines a linear isomor- 

phism 

(B7.3) bF*: * ' N~x)Y ~-->N*Y VxE Y. 

This means that the fibre-b-density bundle over PN* Y', lifts under bF* to the fibre-b- 

density bundle over PN*Y. From (B7.3) we therefore have a b-map, which is an 

isomorphism on the fibres, 

(B7.4)  F: PN* Y---> PN* Y'. 

Thus Proposition B4.3 applies to define a pull-back map, which we shall denote 

E' * '" S~pEhg( PN* Y; f~fibre)" (B7.5) F~: "~phg( PN Y, f~abr~)-'-> 
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PROPOSITION B7.6. I f  F:X-->X' is a b-map o f  compact manifolds with corners, 

satisfying (B. 1), and Y' c X '  is a clean submanifold to which F is transversal then for 

any index family E' for the boundary hypersurfaces o f  X' and any m E R  there is a 

naturally defined continuous pull-back map 

(B7.7) F*: Mpehg/'n(X ', Y')-* S~EphglM(x, Y) 

where, in terms of(B4.2), 

(B7.8) E = Fb(E), M = m+ l ( d i m X - d i m X ' )  
4 

and the symbol at Y is given by 

(B7.9) ou(F*u) = F~om(u) Vu E Mph~Ie' re(X,, Y'). 

There is a small difficulty here, which we simply note, with the naturality of the 

pull-back operation. Namely smooth functions are not dense in the space 

~phg/m(x , Y') so continuity alone is not enough. This is easily overcome by enlarging 

the conormal space to include non-polyhomogeneous distributions and thereby ensur- 

ing the density of ~=, or by using duality in terms of the push-forward of smooth 

functions. 

Turning to the push-forward operation we shall give two results, although the first 

is actually contained in the second. The first is the obvious extension of Proposition 

B5.6. Namely we consider a clean submanifold Y c X  and a b-submersion F: X--~X'. 

The condition relating the two is that F should be transversal to Y, meaning 

(B7.10) null(bF,)+bTy Y= bTrX Vy E Y, bF,: bTrX---> bTF(y)X'. 

PROPOSITION B7.11. Let F:X--~X' be a b-submersion transversal to a clean 

submanifold YcX,  then for any index family E for X with a decomposition (B5.5) such 

that (B5.7) holds, push-forward gives a continuous linear map 

(B7.12) F.: M~hg/m(x, Y; bf~)__. ~,Vbte)ty,. bO~ 
~ p h g  x"~ ~ ~ J "  

Thus under such a push-forward all the interior conormal singularities are integrat- 

ed out. We also need a more complex result which is essentially the standard composi- 

tion formula for pseudodifferential operators. Here we have two clean submanifolds 

Y1, Y2 c X  each satisfying the hypotheses of Proposition B7.11. The distribution we 
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consider is the product of two conormal distributions. As in the case without boundary 

we need to assume that Y~ fh I/2 = Y for this product to be defined, i.e. 

(B7.13) bTyyl +bTyY2= bTyX VyE Y= YI II Y2 . 

Then Y is necessarily a clean submanifold too. We do not want to assume that F is 

transversal to Y, rather we suppose that 

(B7.14) F: Y---,X' embeds Y as a clean submanifold, Y'. 

As a consequence of this assumption the conormal bundle of Y' embeds as a 

subbundle of that of Y: 

(BT. 15) F*: N* Y' ~ N* Y. 

Now, by the transversality of the intersection of Yl and II2, 

(B7.16) N* Y = N~, Yt ~ N~, ]/2. 

Moreover from the assumed transversality of F to both III and Y2 the image in (B7.15) 

can meet neither of the components in (B7.16). This means that there is a well-defined 

product: 

(B7.17) J~ SP(ml)'El(r2)(Dlkr~: V ~. ~ISP(m2)'E2(Y2)[DAr* V ~__> ~SP(mI+m2)'EI~'E2(Y)(D~J* V~ 
phg ~a~v ~I ! "~phg l a l v  ~2J ~ ~,~" ~/"  

This is just a consequence of Lemma B3.5 and Proposition B4.3. Also as a conse- 

quence of (B7.14) and the transversality of the intersection of I/i and Y2 there is a 

natural identification of b-density bundles: 

(B7.18) [b~"2(X)@~'~b, fibre(PN*Y1)@~b, fibre(PN*Y2)]ly~b~'2(X')lY~b, flbre(Y), 

Combining these maps gives us a bilinear map, by restriction to N* Y': 

. {SP(m l ), El( YI ) } YI t'l's • r ,  {SP(m2)' E2( Y2)} Y 2 , ~ N ,  y . .  
F#: aphg [l-zv YI; bf~(X) | ~"~b,flbre)" J~phg [,it" 2, ~'~b, fibre) 

(B7.19) 
r V. bc l (Yt '~ t~  ~'~b,fibre)" " '> "~phg l a ~ ,  z ,  ~ x  jv.~, 

With these preliminaries out of the way we can now state the result: 

PROPOSITION B7.20. Let F:X--*X' be a b-submersion between manifolds with 
corners satisfying (B. I) and suppose that II1, Y2~X are clean submanifolds meeting 
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transversally in Y= Y1 fh Y2 such that F is transversal to YI and Y2 and embeds Y as a 

submanifold Y' o f  X' ,  then for  any index families E1 and E2for the boundary hypersur- 

faces o f  X and any ml, m2 E R multiplication on X followed by push-forward to X' gives 

a separately continuous bilinearform 

(B7.21) 
u• F.(u.v) ,  

El I ~r b,"~x _,r ~ml+m21,tlt ~t phgl m (X, eL 2 Yl)X,~phg/m (X, 12; x.~).---> ..~tphg 1 tat , Y',bf2) 

such that the symbol map at Y' satisfies 

(B7.22) O,n,+m2[F,(u. v)] = F~,[Om,(U) "o,, 2 (v)]. 
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