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1. Introduction

Let M be an n-dimensional compact Riemannian manifold of negative sectional curva-
ture. The geodesic flow ®! is a smooth dynamical system on the unit tangent bundle
TM of M, generated by the geodesic spray X.

Recall that T'M admits four natural foliations W%, W* W, W** which are invari-
ant under the geodesic flow. The leaf W*(v) containing v€T'M of the strong stable
foliation W% consists of all points weT'M with the property that the distance be-
tween ®'w and ®'v converges to zero as t— oo (where we may use the distance on T*M
induced by the Sasaki metric). The leaf W*4(v) through v of the stable foliation W*
is W*(v)=U,cr ®*'W**(v), and the strong unstable foliation W** (or the unstable fo-
liation W*) is the image of W** (or W*) under the flip F:w——w. The leaf Wi(v)
of W* (i=ss, su, s,u) is a smoothly immersed submanifold of 7'M depending continu-
ously on v in the C*°-topology (see [Sh|). Moreover the tangent bundle TW* of W' is a
Hélder-continuous subbundle of TTM.

The purpose of this paper is to investigate ergodic and analytic properties of second-
order differential operators L on T'M with Holder-continuous coefficients and without
zero-order terms which are subordinate to the stable foliation in the following sense:

Definition. A differential operator subordinate to W? is a differential operator L on
TM with continuous coefficients and such that for every smooth function « on T*M the
value of La at v€TM only depends on the restriction of a to W*(v).

If L is subordinate to W*, then L restricts to a differential operator LY on W*(v)
for all v€TM. Call L leafwise elliptic if LV is elliptic for every veTM. A standard
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example of such a leafwise elliptic operator can be obtained as follows: Fix a positive
semi-definite bilinear form g of class C! on T'M with the property that the restriction of
g to the tangent bundle TW* of W* is positive definite, i.e. that g induces a Riemannian
metric on TW?*. The restriction to every leaf of W* of this Riemannian metric is of
class C! and hence g induces for every v€T'M a Laplace operator A” on W*(v). By
our assumption on W* and ¢ these leafwise Laplacians group together to a differential
operator A on T'M with continuous coefficients which is subordinate to W>.

Moreover every second-order leafwise elliptic operator L subordinate to W* whose
principal coefficients are leafwise continuously differentiable can be obtained in this way
up to terms of order <1: Namely for such an operator we can find a continuous, leafwise
C'! Riemannian metric § on TW* such that L coincides with the leafwise Laplacian of g
up to lower-order terms. This follows from the basic computations for standard elliptic
operators as in [IW]. Formally this representation also holds for second-order elliptic
operators whose principal coefficients are just continuous.

Recall that a section Y of TW* over T'M is said to be of class C’f’“ for some k>0
and some a€[0,1) if Y as well as its leafwise jets up to order k along the leaves of W* are
Hélder continuous with exponent a. Let as before g be a positive semi-definite bilinear
form on T'M of class C*“ whose restriction to TW? is positive definite, and denote by
A the leafwise Laplacian induced by g. Let Y be a section of TW* of class C}**. Then
L=A+Y is a second-order leafwise elliptic operator subordinate to W* with Holder-

continuous coefficients.

Now the leaves of W*° equipped with the metric g are complete Riemannian man-
ifolds of bounded geometry, and for every v€T'M the operator LV is uniformly elliptic
with respect to ¢ with uniformly bounded coefficents. Thus LV defines a conservative
diffusion process on W*(v), given by a Markovian family {PY},cws(v) of probability mea-
sures with initial distribution é, on the space >Q+ of continuous paths &: [0,00)—TM,
equipped with the smallest o-algebra for which the projections Ry:£—&(t) are measur-
able. The full collection of probability measures {P"},ecr1p then defines a stochastic
process on T M which we call the L-process.

A Borel probability measure 7 on T'M is called harmonic for L if it is an invariant
measure for the L-process. Harmonic measures always exist ([Ga]); they are precisely
those Borel measures 7 on 7'M which satisfy [(La)dn=0 for every smooth function o
on T'M. Another characterization can be given as follows: Recall that the semi-group
[0,00) acts on Q, by the shift transformations (t,&)—T*¢ where T*¢(s)=E£(s+t). Then
7 is invariant for the L-process if and only if the induced probability measure P on 2,
which is defined by P(B)=[P"(B)dn(v) is invariant under the shift transformations
(see [Ga)).
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Since 7 is harmonic for L we can reverse the time of the diffusion to obtain a new
process on T'M defined by a {T*}-invariant probability measure @ on €2,. This process is
generated by a leafwise elliptic operator L* which we call the n-adjoint of L. Notice that
a priori L* may depend on the choice of an invariant measure for L; it is characterized
by [(L*&)Bdn=[a(Lp)dn for all smooth functions «, 8 on T*M.

Call L self-adjoint with respect to 7 if [ a(LB) dn= [ B(La)dn for all smooth func-
tions , 3 on T'M. We also say that 7 is a self-adjoint harmonic measure for L. In
general self-adjoint measures do not exist; but if self-adjoint measures exist, they are
unique (this is shown in §2).

Now L lifts naturally to a differential operator on the unit tangent bundle T*M of the
universal covering M of M which we denote again by L. Let (-,-) be the Riemannian
metric on M and M; for every veT M the restriction of L to W#(v) then projects
to a uniformly elliptic operator L, on (1\71 ,{+,-)) with pointwise uniformly bounded
coefficients. Call L weakly coercive if the operators L, are weakly coercive in the sense
of Ancona ([An]) for all v€T'M, i.e. if there is a number £>0 and a positive (L,+¢)-
superharmonic function on M.

Let M be the space of Borel probability measures on T*M which are invariant under
the geodesic flow ®¢. For p€ M denote by h, the entropy of . Recall that the pressure
pr(f) of a continuous function f on T'M is defined by pr(f)=sup{h,— [ f do|ecM}.

If  is a harmonic measure for L, then the Kaimanovich entropy hy of the diffu-
sion induced by L on (T'M,n) is defined. We have hy=0 if and only if for n-almost
every v€T'M the leaf W*(v) does not admit any non-constant bounded L?-harmonic
functions ([Ka2}).

Recall that the Riemannian metric g on TW? defines an isomorphism between TW*
and its dual bundle T*W?. If ¢ is a section of T*W?* of class C} for some a>0,
then for every v€T'M the exterior differential dp(v) of the restriction of ¢ to W*(v) is
defined at v and the assignment v—dp(v) is a section of A2 T*W* of class C*. We call
p stably-closed if dp=0. With these notations we show

THEOREM A. Let L=A+Y be as above and assume that Y is g-dual to a stably-
closed section of T*W?*. Then we have:

(1) If pr(g(X,Y))>0 then L is weakly coercive, L admils a unique harmonic mea-
sure 1) and the Kaimanovich entropy hy, is positive.

(2) If pr(9(X,Y))=0 then L is not weakly coercive, L admits a unique self-adjoint
harmonic measure 1 and the Kaimanovich entropy hy vanishes.

(3) If pr(g(X,Y))<0 then L is weakly coercive and the Kaimanovich entropy hp
vanishes.
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If pr(g(X,Y)) <0 then in general a harmonic measure for L is not unique: In [H3]
we give examples of operators as above which admit harmonic measures in uncountably
many measure classes.

Denote by P:T'M—M (or P: T'M—M ) the canonical projection. The kernel of
the differential dP of P equals the wvertical bundle TV, i.e. the tangent bundle of the
vertical foliation of T'M whose leaves are just the fibres of the fibration 7'M — M.

Denote by go the smooth positive semi-definite bilinear form on 7'M which is de-
fined by go(Y, Z)=(dP(Y),dP(Z)). Since the foliation W* is transversal to the vertical
foliation the bilinear form gg restricts to a Hoélder-continuous Riemannian metric g° on
the tangent bundle TW?* of W* in such a way that the restriction of ¢° to every leaf
of W* is smooth. These data then define a leafwise Laplacian A® on T*M subordinate
to We.

Theorem A implies that a harmonic measure w for A® is unique. This fact was
earlier derived by Ledrappier ([L3]) and Yue ([Y2]). In the case that M is a hyperbolic
surface the corresponding result is contained in the paper [Ga] of Garnett; her proof easily
generalizes for the stable Laplacian A® of an arbitrary compact manifold M of negative
curvature (and in fact, Ledrappier and Yue independently rediscover her argument).

§5 of our paper is devoted to a generalization of a result of Ledrappier ([L4]). For this
let M be the ideal boundary of M and let dist be the distance function on M induced by
the Riemannian metric. Let m: T'M —8M be the natural projection which maps veT'M
to the asymptoticy class m(v) of the geodesic v, with initial velocity ~,(0)=v. For zeM
and v£weTIM define the Gromov product (v|w) of v and w by

vw)= lim 1
(v|w) m

z—m(w)

(dist(z, y)+dist(z, z) —dist(y, z)).

For sufficiently small 7>0 the assignment (v, w)—e~7("1*) defines a distance on the fibres
of the fibration T'M— M, the so called Gromov distances ([GH]), which are invariant
under the action of the fundamental group m (M) of M on T'M and hence project to
a family of distances on the fibres of T!M — M which we denote by the same symbol.
Define a (Holder) norm || - ||, on the space of continuous functions f: 7'M —R by

1fll- =sup|f(v)l +sup{sup |f ()= f(w)|e™1™) | v,w € T; M}.
Then we show in §5:

THEOREM B. Let L=A+Y be as above such that pr(g(X,Y))>0. Denote by Q;
(t=0) the action of [0,00) on functions on T*M which describes the L-diffusion. Let
7 be the unique harmonic measure for L. Then for sufficiently small 7>0 there are
numbers C>0 and (<1 such that ||Q.f— [ f dnll- <C{||fl|» for all continuous functions
[T M >R with || fll-<oo and all t>0.
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Theorem B for L=A¢ is due to Ledrappier ([L4]); moreover it implies a central limit
theorem for the L-diffusion (see [L4] for details and further applications).

The appendices contain a discussion of solutions of families of elliptic and parabolic
equations. These more technical results are used for the proof of the above theorems.

Before we proceed we introduce a few more notations which are used throughout
the paper.

For every €M the exponential map at z induces local coordinates on the ball
B(z,1) of radius 1 about z. These coordinates then induce for every integer k>0 and
every a€[0,1) a C**norm for functions on B(z,1). For a function f on M define || f|x.a
to be the supremum of these C*®-norms of the restrictions of f to balls of radius 1 in
M (whenever this exists).

The bilinear form g restricts to Holder-continuous Riemannian metrics g* on the
leaves of the foliations W* (i=su,u, s, ss). For v€T'M and r>0 denote by B*(v,r) the
open ball of radius r about v in (W*(v), g%).

The foliations W* lift to foliations on TMM which we denote by the same symbol.
For veTM let 6., be the Busemann function at the point ~,(co) of the ideal boundary
&M which is normalized by 0, (7,(0))=0. The canonical projection P: T'M—M then
maps W*¢(v) diffeomorphically onto the horosphere §;1(0) and W*(v) diffeomorphically
onto M. For «a€(0,7) denote moreover by C(v,a) the open cone of angle a and direc-
tion v in M, i.e. C(v,0)={P®'w|weTh, M, £(v,w)<a, t(0,00)} where / is the angle
of (-,-).

Define

D={(v,w) e T*M xT*M | we W*(v)}.

Since any two points in M can be joined by a unique minimizing geodesic, the set D
can naturally be identified with the bundle TW* over TM. In particular, D carries a
natural Hoélder structure and a natural foliation F with smooth leaves. Here the leaf
of F through (v,w)€D is just the tangent bundle of the manifold W*(v). The leaf of
F through (v, w) depends Holder continuously in the C* topology on the point (v, w),
i.e. the jet bundles of arbitrary degree are Holder continuous. Let moreover D be the
projection of D under the natural action of 7,(M) on T'M xT'M oD. Clearly D is
naturally homeomorphic to the bundle TW* over T'M.

Recall that an open subset C of T'M admits a local product structure if for veC
there are open, relative compact neighborhoods A of v in W*(v), B of v in W**(v) and
a homeomorphism A: Ax B—C with the following properties:

(i) A(w,v)=w for all weA.

(ii) Av,z)==2 for all z€B.
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(iii) A({w}x B}) is contained in a leaf of W** for all we A.
(iv) For every z€ B the map A,: A—»W?*(z) which is defined by A,(w)=A(w, z) is a
homeomorphism of A into W*(z).

The maps A, are called canonical maps for the local product structure.

2. Harmonic measures for the stable foliation

As in the introduction, let M be an arbitrary compact Riemannian manifold of negative
sectional curvature and let g be a positive semi-definite bilinear form on T'M of class C%©
for some a>0 whose restriction to TW* is positive definite. Denote by v* the Lebesgue
measure on the leaves of W* induced by ¢g. Let A be the leafwise Laplacian induced
by g and let L=A+Y for a section Y of TW? of class C}-®. Lift L to an operator on
TM which we denote by the same symbol. For veTM the restriction LV of L to W* (v)
admits a unique fundamental solution p(v,w,t) (weW?*(v), £>0) of the heat equation
LY—0/0t=0 relative to the volume element dv®. Since the coefficients of L are Holder
continuous, the function p: D x (0, 00)—(0,00) is Holder continuous (see Appendix A)
and it projects to a Holder-continuous function on D which we denote again by p.

Let ﬁ+ be the space of paths &:[0,00)—T 1M , equipped with the smallest o-algebra
A for which the projections Ry:£— Ry(£)=£(t) are measurable. For veT'M the L'-
process on W*(v) is given by a Markovian family {P"},,cws(v) of probability measures
P* on §,. Namely for every t>0 and every Borel set AC T'M we have PY{¢|E(t)eA}=
i) ANWS (v) p(v, w,t) dv®(w); moreover P¥-almost every path in §+ is continuous.

Let II: T*M —T'M be the canonical projection. Then II induces a measurable pro-
jection of (~2+ onto the space Q. of paths £ in T'M. For every weT'M the measure
PY projects to a probability measure on 2, which only depends on lw=v and will
be denoted by P”. These measures describe the L-process on T'M (see [Ga] and the
introduction).

Let n be a harmonic measure for L on T*M. Then 7 is absolutely continuous with
respect to the stable and the strong unstable foliation (see [Ga]), and the conditionals
on the leaves of W* are contained in the Lebesgue measure class. More precisely, let
7i be the lift of 1 to a o-finite Borel measure on T'M. For veT'M and >0 let again
B*(v,r) be the open ball of radius r about v in (W*(v), g*). For r€(0,00) we then can
desintegrate 7j to a measure 7°* on W**(v) by defining 77**(B)=7(U,ecp B*(w,7)). This
measure is locally finite and projects via the projection 7 to a measure on OM. The
measure class of this projection does not depend on >0 or on the base point v and is
invariant under the action of I'=m; (M) (these facts follow from the results in [Ga]). We
denote it by mc(n, 00).
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Recall that the semi-group [0, o) acts on £, by the shift transformations {T*|t>0}
via (T*¢)(s)=&(s+t). The measure P= [ P"dn(v) on £, induced by 7 is invariant under
the shift.

The next lemma describes the ergodic components of a harmonic measure for L, i.e.
it translates the results of [Ga] into our geometric context.

LEMMA 2.1. The measure on €1, induced by n is ergodic under the shift if and only
if mc(n, 00) is ergodic under the action of T.

Proof. Let again P be the measure on 2, induced by the L-process and the mea-
sure 7. Assume first that mc(r, co) is ergodic under the action of T and let ACQ, be a
measurable set which is invariant under the transformations 7% (¢>0). We have to show
that a=P(A) equals 0 or 1. Define a function v: T*M —[0,1] by ¢(v)=P"(A)+1. This
function is measurable and lifts to a function ¢ on T'M. By the definition of P and the
T*-invariance of A we have for every wET'M and every t20 that

Bu) = PH{E|TIT' € A} +1= / (s, w, £)(w) dv* (w). (*)

For veT'M let ¥¥ be the restriction of 9 to the stable manifold W*(v). By (x) the
function ¢" satisfies LY9"=0. Thus v is a bounded positive Borel function on 7'M
which is Z¥-harmonic for 7-almost every veTM.

The Riemannian metric g on TW* induces a continuous Riemannian metric on the
dual bundle T*W?* of TW?® which we denote again by g. Then

(A+Y)(loge) =y~ (A+Y ) () —g(dyp, dyp) p

and hence [ g(dy, dy)yp=2 dn=— [ L(log 1) dn=0, i.e. 1/ is constant along n-almost every
leaf of T'M and consequently 1 is constant 7-almost everywhere on 7'M by ergodicity.
This constant then equals a+1 where a=P(A).

Now the finite intersections of sets of the form R; !(B) (BCT'M Borel, t€ (0, cc))
form a N-stable generator for the o-algebra on 2, . Thus under the assumption a€(0, 1)
there are for every €>0 some Borel sets Bt, ..., Bi CT'M and numbers ti, ..., t; €(0, c0)
(k>0 and i=1,...,1) with the following properties:

(i) The sets BizﬂleRgl(Bj-) are pairwise disjoint.

i) P(U,Bi)>1-a—c.

(i) P(AN(Ui_, Bi)) <e.

But since 1 is constant 7-almost everywhere on T M we have by the Markov property
and the definition of P that P(ANB;)=aP(B;) for allic{1, .., 1}, i.e. P(AN(Ui_, Bi))=
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ozP(L_Ji:1 B;). If a#0,1 then we can choose e <a(l—a)/(1+a) and obtain a contradic-
tion. Hence either P(A)=1 or P(A)=0, i.e. P is indeed ergodic with respect to the
shift.

On the other hand, if mc(n, o0) is not ergodic under the action of I', then we can
find a subset A of T'M consisting of full stable leaves and such that 0<n(A)<1. Then
{£€Q, |€(0)€ A} is a shift-invariant subset of 2, whose measure coincides with n(A),
i.e. the measure induced on 1, is not ergodic under the shift. a

Next let again n be a harmonic measure for L with lift 7 to TIM and let 7j(co)
be a Borel probability measure on M which defines the measure class of mc(7, o).
For v€T'M we then can represent the measure 7 near v in the form dij=a dv®x dfj(co)
where a: T'M — (0, 00) is a Borel function and we identify 7}(oco) with its projections to the
leaves of W** under the restrictions of the map 7. For (v, w)eﬁ define I, (v, w)=l(v, w)=
a(w)/a(v); this function is called the growth of n relative to v° and it is independent of
the choice of 7j(00).

For a continuous section Z of TW* over T'M (or T*M) which is of class C! along
the leaves of the stable foliation write div Z to denote the function on T*M (or T*M)
whose restriction to a leaf W*(v) of W* equals the divergence of Z|w.(,) with respect
to the volume element v°. Moreover for a function f of class C! on T*M denote by V f
the section of TW* whose restriction to the leaf W*(v) equals the g-gradient of f|us(y).
Then we have

LEMMA 2.2. A(a)—div(aY)=0.

Proof. Consider a smooth function f on TM with compact support. Partial inte-
gration then shows

0= /(A+Y)(f) (v)a(v) dv®x dij(co)(v) = /f(A(a) —div(aY)) dv®xdij(o0)
and from this the lemma immediately follows. g

By Lemma 2.2 the function « is differentiable along the leaves of the stable folia-
tion. Hence we can define the g-gradient of n to be the n-measurable section Z of TW*
whose restriction to the leaf W*(v) is just the g-gradient of the n-measurable function
weW?(v)—loga(w)eR.

Next we describe the self-adjoint harmonic measures in terms of their growth:

LEMMA 2.3. The measure 1 is self-adjoint for L if and only if p(v,w,t)l(w,v)=
p(w,v,t) for fi-almost every veT'M and weW*(v), all te(0, 00).

Proof. Let (t,u)— Asu be the action of [0, c0) on functions u on T'M which describes

the L-process on T*M. Then 7 is self-adjoint for L if and only if for all continuous func-
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tions ¢, u on T M with compact support and all ¢>0 we have Jo(Aeu) dij=[u(A¢p) dif
(this follows as in the case of the trivial foliation, see [IW]). But

[etaadn= [[ oo, tutw) dr*e) ) dn(oo)) o)
= [ wtwpto,w, )i, ) d ) (a0
=/(/p(v,w,t)<p(v)l(w,v) dys(v))u(w) dij(w)

and this is equal to [u(A¢p) dij= [ ([ p(w,v,t)p(v) dv® (v))u(w) dij(w) for all functions
o,u as above if and only if p(v,w,t)l(w,v)=p(w,v,t) for 7-almost every veT'M,
weW?*(v) and all ¢>0. d

Recall that the fundamental solution p(v, w,t) of the heat equation for L is a Holder-
continuous function on D x (0, c0) (see the appendix). For t€ (0, 00) and veT'M define

d s -
ay(v) = = (p(v, 80, )p(@°v, 0, ) )| _;

the function a;: T*M—R is Holder continuous.

COROLLARY 2.4. There is at most one self-adjoint harmonic measure 1 for L. Such

a measure exists if and only if cy=as=a for all t,s>0 and if the pressure of o vanishes.

Proof. Let n be a self-adjoint harmonic measure for L and write dn=dv°®xdn®* where
7** is a quasi-invariant family of locally finite Borel measures on the leaves of W*%.

Lemma, 2.3 shows that

. ii_ d(nsuoq)s)

= —dnT—(v) o for every t > 0;

a(v)
in particular, oy =as=a for all s,¢>0. Since the function « is H6lder continuous there is
a unique Gibbs equilibrium state defined by « which admits the measures 7°* as a family
of conditionals on strong unstable manifolds. But this just means that the pressure of «
vanishes and that a self-adjoint harmonic measure for L is unique.

Vice versa, assume that a;=as;=a and that the pressure of o vanishes. Then there
is a family of conditionals 7°* on the leaves of W3* of the unique Gibbs equilibrium state
defined by « with the property that

d Su i —
a{ﬂ o®'} t:O—a-

Define a finite measure 5 on 7'M by dp=dv®xdnp*®.
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By the definition of 7, the growth of 7 relative to v* is well defined and can be viewed
as a function ! on D which satisfies (v, ®*v)=p(v, ®°v, t)p(®*v,v,t)"! for all s€R and
all t>0. But ! is a Holder-continuous function, and since p is Holder continuous on
Dx (0, 00) we necessarily have [(v, w)=p(v,w,t)p(w,v,t)~! for all (v,w)eﬁ and all >0
(compare the considerations in [H2]). By Lemma 2.3 this just means that 7 is a self-
adjoint harmonic measure for L. a

Call a section ¢ of APT*W*CAPT*(T'M) of class CJ for some integer j€[0, 00| if
the restriction of ¢ to every leaf of W* is of class C7 and if the jets of order <j of these
restrictions are continuous. If ¢ is of class C] for some j>1, then for every veT'M
the exterior differential dp(v) of the restriction of ¢ to Wi(v) is defined at v, and the
assignment v—dp(v) is a section of APH1T*W* of class C L.

Let 1 be an arbitrary Borel probability measure on T'M which is absolutely continu-
ous with respect to the stable and the strong unstable foliation, with conditionals on the
leaves of W* contained in the Lebesgue measure class. More precisely, we assume that
there is a Borel probability measure 7j(co) on &M and a function a: T'M — (0, 00) which
is measurable and leafwise differentiable, with measurable leafwise differential such that
the lift 7 of 5 to a o-finite Borel measure on TM is locally of the form

dij = adv®x dij(oo)

where as before we identify 7(co) with its projections to the leaves of W** under the
restrictions of the map n. Let Z be the g-gradient of 7.

Recall that the Riemannian metric ¢ on TW? naturally extends to a Riemannian
metric on the continuous vector bundles APT*W* over T'M (p>0).

Define an inner product (-,-) on the vector space C®(A? T*W*) of sections of
NP T*W* of class C° by (¢, 9)=[ g(¢(v), % (v)) dn(v), and denote by HY the comple-
tion of C°(AP T*W*) with respect to this inner product. Then d is a densely defined
linear operator of Hg into Hg 1
determine d*; for this let * be the Hodge star operator on the leaves of W* with respect
to the metric g, viewed as a bundle isomorphism of A? T*W* onto A" P T*W?*. For a
section ¢ of AP T*W* and a section E of TW? denote by E|¢ the inner product of ¢
and E. Then we have

and hence its adjoint d* is well defined. We want to

LEMMA 2.5. Let Z be the g-gradient of 1. Then
p
d*o=(-1)""*""udxp—Z|p for every pc C(AT*W?) (p>1);
in particular, n is a self-adjoint harmonic measure for A+Z.

Proof. If m; (i=1,...,k) is a finite smooth partition of unity for T M, then d*¢=
24" (), xdrp=3, xdx(nip) and Z|p=3; Z](nsp) for all p€CF(A\"T*W*), and
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hence it suffices to show the lemma for forms which are supported in an open subset
C of T*M with a local product structure, given by ve€TM and open, relative compact
neighborhoods A of v in W*(v), B of v in W*%(v) and a homeomorphism A: Ax B—C
as in the introduction.

Let n*“ be a conditional of 7 on B and define a measure 7j on Ax B by dij(d,w)=
dv®(A(D,w)) xdn®*(w). The map A is absolutely continuous with respect to the measure
7 on C, the measure 7} on Ax B and its Jacobian with respect to these measures is given
by the growth I=I,: DN(C'xC)—(0,00) of n with respect to v*, where DCT*M xT'M
is as in the introduction. For z€ B and weW*(z) write I, (w)=I(z, w).

Let now ¢ be a section of AP T*W* of class C! with support in C. For a section
YeCHAP™ I T*W*) we then have

Jovorin=[ [ o et )

N /zeB [/Ws(z) . d¢A*¢:| )

:/ [/ d(lzd)/\*(p):l dnsu(z)
zEB L/ W (2)
[ t@oglavnser(c1rtunase)| arr)
z€B LUWs(z)

= (~1yreint / o(, *dwip) d / g(dlog L, Ap, ) dn

by Stokes’ theorem. The lemma now follows from the fact that g(dlogl. Ay, )=
9y, Z|p). O

Now we can characterize self-adjoint harmonic measures as follows:

CORALLARY 2.6. For a Borel probability measure 1 on T*M the following are equi-
valent:

(1) n is a self-adjoint harmonic measure for L=A+Y .

(2) The g-gradient of 1 equals Y in particular, Y is g-dual to a stably-closed section
of T*W?.

(3) [(div(Z)+g(Y, Z)) dn=0 for all sections Z of TW? of class C1.

Proof. The equivalence of (2) and (3) is a consequence of the proof of Lemma 2.5;
moreover (3) implies (1). Thus we are left with showing that (3) is a consequence of (1).
For this let n be a self-adjoint harmonic measure for L=A+Y, let Z be the g-gradient
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of n and ¢, 9 be smooth functions on T'M. Then
[ oLy an= [ (@iv(ew)+9(9%,Y)-9(V0. V) dn

- / (L) dn= / (div (¥ V) + gV, Y)—g(Vep, V) dn

and consequently
/ (div(eVy—9pVp)+9(p V-9V, Y)) dn=0.

On the other hand, we have V(py)=¢pVy+¢Vyp and [ L(py) dn=0, and from this
and the above formula we conclude that [(div(¢V¥)+g(¢V4,Y)) dn=0 for all smooth
functions ¢, on T'M. Since smooth functions are dense in the space of functions of
class C! on T'M, this identity also holds whenever ¢ is a function of class C} and 4 is
smooth. On the other hand, using a suitable smooth partition of unity for 7'M and local
coordinates it is easy to see that every section A of TW* of class C! can be written as
a finite sum of sections of the form ¢V where ¢ is of class C! and 4 is smooth. Thus
the above equation implies that [(div(A)+g(Y, A)) dn=0 for every section A of TW* of
class C} which is (3). O

Let M be the space of ®!-invariant Borel probability measures on 7'M, and for
PEM denote by h, the entropy of g. Recall that the pressure pr(f) of a continuous
function f on T'M is defined by pr(f)=sup{h,— [ f de| o€ M}. If f is Holder continuous
then f admits a unique Gibbs equilibrium state gf €M, i.e. g5 is the unique element of
M such that h,, — [ f doy=pr(f). Then gy admits a family 0" of conditional measures
on strong unstable manifolds which transform under the geodesic flow via

L {ooat)|_ =+pr(s).

Let X be the geodesic spray on T'M. As an immediate consequence of Corollary 2.6 we
now obtain

COROLLARY 2.7. L=A+Y admits a self-adjoint harmonic measure if and only if
the following is satisfied:

(1) Y is g-dual to a stably-closed section of T*W*.

(2) The pressure of g(Y, X) vanishes.

Proof. Assume that Y is g-dual to a stably-closed section of T*W?* and that the
pressure of g(Y,X) vanishes. Let n°* be a family of conditional measures on strong
unstable manifolds of the Gibbs equilibrium state of g(Y,X) with the property that
d{n-®t}/dt|;—o=g(Y, X). Define a finite Borel measure  on T'M by dn=dv®xdn*.
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Consider the lift 77 of n to T'M. The growth of 7} with respect to v* is a Hélder-
continuous function I: D— (0, 00) such that dl(v, ®'v)/dt|i—o=g(Y; X)(v) for all veT'M.

By assumption on Y, for every veT'M there is a function f, on W*(v) of class C*
such that df, is g-dual to Y'|ys(y). Then f, is uniformly Holder continuous and satisfies
fo(®'w) — fo, (w)=log l(w, ®*w) for all wEW*(v) and all t€R. From Hélder continuity we
then conclude that log(w, 2)=f,(z) — fu(w) for all w, z€ W*(v) (compare the arguments
in [H2]). But this just means that Y is the g-gradient of 77 and hence by Corollary 2.6,
7 is a self-adjoint harmonic measure for A+Y. d

Lemma 2.5 shows that the adjoint d* of d with respect to ( -, - ) is defined on the dense
subspace C° (AP T*W*) of (Hp,(-,-)). Define a bilinear form @ on CZ°(A? T*W*) by
Qp, V)=(p,¥)+(dp, dip)+(d*p,d*1)). Then Q is the form of the self-adjoint extension
of Id +£ where £L=dd*+d*d (we denote this extension again by Id +L). The completion
H} of CZ(A\P T*W*) with respect to @ just coincides with the domain of (Id +£)*/2.

Let 4: Hy — H be the natural inclusion.

LEMMA 2.8. There is a continuous linear map G: H)—(H, Q) with the following
properties:
(i) 3G is self-adjoint and commutes with the operators d and d*.

(i) (Id+L)eG=Id.

Proof. The existence of a continuous linear map G with property (ii) follows as in
the case of elliptic differential operators from the Riesz representation theorem. Clearly
10G is self-adjoint. To show that G commutes with d* let aEHI} and let ¥=Ga. Then

(Id +L£)d* = (Id +dd* +d*d)d*p = d* (Id +dd* ) = d*(1d +L)y = d* o

and hence d*¢y=Gd*a=d*Ga. In the same way we see that G commutes with d as well. O

Denote by HP the vector space of harmonic p-forms, i.e. the space of forms ¢
which satisfy dp=d*¢=0. Then H? coincides with the orthogonal complement in Hg
of the subspace dH,_,+d*H],,; in particular, H? is closed. Now dH}_; and d*H,
are clearly orthogonal as well and hence we obtain an orthogonal decomposition HI(,)=
HPOdH]_ ®d*HY | 1,1 where dH dHI_, denotes the closure of dH}_, in HY. Next we inves-
tigate the spaces dH, ! | and dH! | _, in more detail.

LEMMA 2.9. (i) dd*(Z,_ G'a)—a (k—o0) for every aGdHl
d*d(Zf:I Gia)—a (k—oo) for every aed*H1

Proof. We show the lemma for dH_; _1, the statement for d*H, , follows in the same
way. Denote by || - || the norm on H) lnduced from the inner product (-,-). Let a€dH, dHL_|
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be an element of unit norm ||a?=1, and let a;= G’aedHl . Then doz1 0 for i>1 and
hence a;=(Id +L)a; 1 =1 +dd*a;41, ie. inductively o= aﬁ-z d*o; for all i>1.
Moreover

llo | = 1| (1d +L)aia |1 = i P +2(etiv1, dd* ei1) + || dd* o |17,

i.e. again inductively we see that |la;||?=1— Z 1(2lld* ;)12 +||dd*a;]|?). This shows
that the sequence (||a;||);»1 is decreasing and the sequence (d*a;);>1 converges to zero
in HY.

We want to show that a;—0 (i—o0) and for this it suffices to show that »?
inf;>; [|a;]|*=0. Since (c2:)i>0 is a bounded sequence in the Hilbert space dH, dHY | _p it
admits a subsequence converging weakly to some as. Then d*a;—0 (i-00) 1mp11es
Qoo =0.

Now a convex combination of a weakly convergent sequence is strongly convergent.
This means that for every £>0 there is a number k=k(g)>0, integers 1<i(1)<...<i(k)
and numbers 3;>0 (j=1, ..., k) such that 25=1 B;=1and ||3; azi(j)ﬂj||2<s. But

Z azi(j)ﬁa
j

Zﬁ ”a21(])“2+22ﬂ]ﬁl“az(])+z(1)“ >V

<l

and conséquently v?=0; in particular, the sequence dd* ZLlGia converges strongly in
HY to o (k—o0). a

COROLLARY 2.10. (i) a€dH]_, is contained in dH,_, if and only if the sequence
(a(2F, G'a)), ., is bounded in HY_,

(ii) aed*H; is contained in d*H, ., if and only if the sequence (d (Zle G'a))
is bounded in HY ,

k>0

Proof. Let acdH dH! | _; and for k>0 write G =d* 21 1 G*o. Assume that the sequence
(Bk)k>0 is bounded in Hp_l, by passing to a subsequence we may assume that the
sequence (B¢)k>o converges weakly in HY_; to a form 3. We then have €d*H} and for
every 1€ H} moreover (Bk,d*n)—(8,d*n). On the other hand, Lemma 2.9 shows that
(Br, d*n)=(dBk,n)— (o, n) (k—00) and consequently S€ H}_; and dﬂ:a.

Vice versa, let a=dg for some S€ H}_;. Since (H,_1®dH}, 2)ﬂ _1 is contained in
the kernel of d we may assume that Scd*H}. Then d*(zizlG1 y=d *d(XF, Gip)—
(k—00) by Lemma 2.9; in particular, this sequence is bounded. This shows (i), and (ii)
follows in the same way. O

The above considerations show that we may only consider operators of the form
A+Y where Y is g-dual to a stably-closed section of T*W?*. Namely, if ¥ is an arbitrary
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section of TW* and if n is a harmonic measure for L=A+Y, then we can decompose
Y =Y +Y5, where Y] is g-dual to an element of HléBEg, and Y3 is g-dual to an element
of m Then [ Y>(f)dn=0 for every smooth function f on T*M and hence 7 is also a
harmonic measure for L+Y;. Notice however that there is a problem of regularity here:
In general we can not expect that the sections Y7,Y3 are of class C1® for some a>0 if
this is true for Y.

Denote again by L the lift of L to TM. For every vETM the restriction of L to
W*(v) projects to a uniformly elliptic operator L, on (M , (+,+)) with pointwise uniformly
bounded coefficients. Recall from the introduction that L is called weakly coercive if the
operators L, are weakly coercive in the sense of Ancona for all veT'M. The next lemma

shows that weakly coercive operators do not admit self-adjoint harmonic measures.
LEmMA 2.11. If pr(g(X, Y))=0 then L is not weakly coercive.

Proof. Assume that L is weakly coercive. Then there is a number §>0 such that
L+6 is weakly coercive as well. This implies by the considerations in Appendix B that
there is a Hélder-continuous section Z of TW?* over T'M which satisfies

div(Z)+g(Y, Z)+|| Z|*+6 = 0;

namely if Z denotes the lift of Z to T1M, then for every v€T'M the restriction of Z to
W*(v) projects to the g-gradient of the logarithm of a minimal positive (L, +§)-harmonic
function with pole at m(v).

Now assume to the contrary that I admits a self-adjoint harmonic measure 7.
Then 0=[(div(Z)+g(Y, Z))dn=— [(|Z||>+6) dn which is a contradiction and shows
the lemma. ]

Call L=A+Y of gradient type if Y is g-dual to a stably-closed section of T*W?.
Next we describe the g-gradient of an arbitrary harmonic measure 7 for such an operator.

Namely, denote by L’ the operator which is adjoint to L with respect to n, i.e. L' is
defined by requiring that [(L'f)v dn= [ f(Li) dn for all smooth functions f, on T*M.
Then we have

LEMMA 2.12. Let n be a harmonic measure for L with g-gradient Y +Z. Then Z
is g-dual to a harmonic section of T*W?, i.e. to an element of H*, and L'=L+2Z~=
A+Y +2Z.

Proof. Let o, 3 be smooth functions on T'M. Since the operator A+Y +Z is self-
adjoint with respect to n we have

[ awprin= [aary+2)6)dn- [ a(zs)an
_ / B(A+Y +2Z)(a) dn / Z(aB) dn.
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But 7 is a harmonic measure for A+Y and A+Y +Z, and this implies that [(Zf)dn=0
for every smooth function f on T'M. In particular, since Z is g-dual to a stably-closed
section of T*W* this means that Zc€H'. From this the lemma follows. a

Let now @ be the probability measure on the space {2, of paths on T'M which is
obtained from P by a reversal of time. Let A; (or A}) be the action of [0, c0) on functions
u on T*M which describes the L-process (or the L’-process) on T*M. For Borel subsets
A, B of T'M with characteristic functions x 4, xz we then have

P{w|w(0) € A, w(t) € B} = / xa(Aexs) dn
- / (Atx4) x5 dn = Q{w|w(0) € B, wit) € A},

and @ is induced by the L'-diffusion. In other words we have

COROLLARY 2.13. The reversal of time of the L-diffusion on (TIM ,m) is the L’'-
diffusion with L'=L+2Z.

We conclude this section with the basic examples which were considered earlier in
the literature.

Recall that the Bowen—Margulis measure p on T'M is the Gibbs equilibrium state
of a constant function. There are families p* of conditional measures on the leaves of
W* (i=ss, su) such that du=du®® x du®* x dt (with respect to a local product structure)
where dt is the one-dimensional Lebesgue measure on the flow lines of the geodesic flow.
The measures p* on the leaves of W* which are defined by du*=dp**xdt are in fact
tnvartant under canonical maps.

The above considerations are in particular valid for the Borel probability measure
o on T'M which is locally the product of the Lebesgue measure A® on the leaves of W*
and the (normalized) conditionals of the Bowen-Margulis measure on the leaves of W%,
ie. do=dN xdp**=d **xdu**xdt. Let A® be the stable Laplacian, i.e. the leafwise
Laplacian induced by the lift gy of the Riemannian metric on M.

From Lemma 2.5 we obtain immediately

COROLLARY 2.14. ¢ is a self-adjoint harmonic measure for A+hX.

Remark. We can also investigate harmonic measures for operators subordinate to
the strong stable foliation. Namely, define an inner product (-, - )ss on the vector space
CZ (NP T*W**) of sections of AP T*W** of class C2 by (i, 1)ss=[ g°*(0(v), ¥ (v)) do(v)
where ¢ is defined as above and ¢** is the restriction of gy to TW*°. Let Hg,ss be the

completion of Cge(AP T*W**) with respect to this inner product. As before, we can
define a natural exterior derivation ds;; which is a densely defined linear operator of
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H) ., into H),, ,s; we denote its adjoint with respect to (-,-)ss by di,. Let %, be the
Hodge star operator on the leaves of W*° with respect to the metric g°¢, viewed as a
bundle isomorphism of A” T*W** onto A" P! T*W**. As in the proof of Lemma 2.5
we obtain (see also [Kn], [L3] and [Ka2]):

The restriction of d*, to CX(AP T*W**) equals (—1)(*~YP+"x  d, *s5, and o is a
self-adjoint harmonic measure for A%S.

In fact, the measure ¢ is the unique harmonic measure for A**. Namely, the strong
stable foliation is of subexponential growth and consequently every harmonic measure
for A®¢ is fully invariant ([Ka2]), i.e. it defines a transverse measure for the strong stable
foliation which is ¢nvariant under canonical maps. On the other hand, an invariant
transverse measure for W** is unique (up to a constant) and induces the measures u* on
the transversals W*(v) (v€T'M) to the strong stable foliation ([BM]).

The subspaces dssH;,s.s are not closed in Hg 1 45 (or the spaces d;‘sH; 41,55 are not
closed in Hg’ss). To see this, let C be the orthogonal complement of the space of constant
function with respect to the L2-inner product defined by o. Observe that under the
assumption that dysHg ,, is closed in HY ,,, the differential d,, is a continuous one-to-
one linear mapping of the Hilbert space H&’SSOC onto the Hilbert space dssHé’SSCH?’ ss
and hence it admits a continuous linear inverse ¥. Thus ¥ is in particular bounded,
i.e. there is a number ¢>0 such that (dss@, dss)ss = 0(ip, @)ss for all peHJ ,,NC. On
the other hand, if M is a compact locally symmetric space of negative curvature, then
o is just the Lebesgue measure A, and in particular, ¢ is invariant under the geodesic
flow. Let f:T'M—R be any smooth function with [ fdA=0 and [ f2dA\=1. For teR
define fy=fo®'. Then (dssfi, dssfi)—0 (t—o0) but fic€C and (fi, fi)ss=1 for all teR
contradicting our assumption that dg, Hg ,, is closed in HY .

Recall that for every yeM the ideal boundary &M can naturally be identified with
the exit boundary for Brownian motion on M emanating from y. In other words, the
Wiener measure on paths starting at y projects to a Borel probability measure w¥ on
oM NTyIM . The measures w? transform under T=m (M) via w¥¥=wVs(d¥)~!, and
hence they project to measures on the fibres T2 M of the fibration T°M —M (z€M).
Define a Borel probability measure w on T*M by w(A)=[ w*(ANT; M) dAp(x) where
Apr is the normalized Lebesgue measure on M. Then w is the unique harmonic measure
for the stable Laplacian A® ([L3], see also [Y2] and [Gal).

For ve€T1M denote by Y (v) the gradient at Pv of the logarithm of a minimal positive
harmonic function with pole at the point 7(v) of the ideal boundary OM. Via the natural
identification of W*(v) with M the vector Y (v) can be viewed as an element of T, W?.
The assignment v—Y (v) is then a section of TW* of class C¢® which is equivariant under
the action of the fundamental group I" of M on M , i.e. Y can be viewed as a vector
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field on T'M. Clearly Y is the go-gradient of the measure w. Hence we obtain
LEMMA 2.15. d*o=(=1)"P*"Hxdxo—Y | for every pcC®(APT*W?®) (p=1).

Let now £€HY? be go-dual to the vector field Y. The following corollary is an
immediate consequence of the above considerations.

COROLLARY 2.16. (i) d{=d*£=0, i.e. £ is harmonic.

(i) fa(A*(p)+Y (¢)) dw=[p(A%(a)+Y (a)) dw=— [(V*a, V°p)dw for all smooth
functions o, ¢ on T*M; in particular, w is a self-adjoint harmonic measure for A*+Y .

(iii) [Y(@)dw=0; in particular, [ aA*(p)dw= [ p(A*(a)+2Y (a))dw for all smooth
functions o, ¢ on T'M.

3. Operators of non-zero escape

In this section we consider again an operator L of the form L=A+Y where A is the
leafwise Laplacian of a positive semi-definite bilinear form g of class C%>* on T'M whose
restriction to TW* is positive definite and Y is a section of TW* of class C}** which is
g-dual to a stably-closed section of T*W?. We assume in addition that pr(g(X,Y))#0.
By Corollary 2.7 this is equivalent to the non-existence of a self-adjoint harmonic measure
for L. We then call L of non-zero escape, a notion which will be justified below.

The purpose of this section is to show that such an operator L is necessarily weakly
coercive in the sense of Appendix B. First of all notice the following:

LEMMA 3.1. For an operator L of non-zero escape there is a number >0 with the
following property: Let 1 be a harmonic measure for L with g-gradient Y+Z. Then
SN ZI1? dnzs.

Proof. Assume to the contrary that for every j>0 there is a harmonic measure 7;
for L with g-gradient Y +Z; and such that [||Z;||*dn;<1/j. Let n be a weak limit of a
subsequence of the sequence {7;}; which we denote again by {n;}. For every section A
of TW* over TM of class C! we then have

[ vy vatv, 4 an| = i | [ o2, ya,

1/2 1/2
<timsup( [l an, ) ([ 1z dn;) =0
J—o0

and hence 7 is a self-adjoint harmonic measure for L. This contradicts the assumption
that pr(g(Y, X))+#0. O
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Let 1 be a harmonic measure for L=A+Y with g-gradient Y+Z. We use n to
define the Hilbert space H} as in §2. The g-dual ¢ of Z is pointwise uniformly bounded
in norm with pointwise uniformly bounded leafwise differential; in particular, ¢ is con-
tained in H{. Since CX(T*W?*) is dense in H} we can approximate ¢ in Hi by Hélder-
continuous leafwise smooth sections of 7*W$. However, since the harmonic section ¢ of
T*W* (in the sense of §2) is in general not continuous it is a priori not clear whether ¢
can be approximated in H} by Holder-continuous leafwise closed sections of T*W¢. The
following lemma answers this question in an affirmative way:

LEMMA 3.2. Let Y+Z be the g-gradient of n and let p be g-dual to Z. Then there
is a sequence {@;} CCL*(T*W?) of Holder-continuous stably-closed forms p; with the
following properties:

(1) pi—yp in Hi (i—00).

(2) The forms ; are pointwise uniformly bounded in norm, independent of i>0.

Proof. Write f=¢(X)=g(X, Z). Recall that for n-almost every v€T M the restric-
tion of Z to W*(v) is the g-gradient of the logarithm of a function 1 on W*(v) which
satisfies A(4)+Y (¥)=0. In other words, 9 is a solution of an elliptic equation with co-
efficients of locally uniformly bounded C'**-norm. Schauder theory for elliptic equations
then shows that the restriction of the function f to a leaf of W* is locally uniformly
bounded in the C*“-norm.

Choose a smooth partition of unity for 7'M, given by functions 41, ..., which
are supported in open subsets C1,-..,Cy with a local product structure. More precisely,
we arrange the set C; in such a way that the local product structure on C; is given
by a point p;EM, an open ball A; about p; in M, an open subset B; of T,,M and a
homeomorphism A;: A; x B;—C; which satisfies A;(y, w)eW*(w) and P<A;(y, w)=y for
all (y,w)€A; x B;. Then for every wée B; the restriction of A; to A; x {w} is smooth, and
its jets of arbitrary degree depend Hdélder continuously on w.

Denote by Aps the Lebesgue measure on M. For every y€ M there is a unique finite
Borel measure 7% on Ty M such that n(A)= [ n¥(ANTyM)dAy(y) for every Borel set
ACTM (see [H2]). The measures ¥ are positive on open sets. For every i€{1,...,k} the
map A; is absolutely continuous with respect to the measures Ay xnPi on M XTI}iM )
A; X B; and the measure 1 on C; CT*M, with uniformly bounded Jacobian.

For weT'M and e>0 write S(w,e)={2€T}L M| Z(z,w)<e}. Choose £¢>0 suffi-
ciently small that for every point z in the support of 1; the cone S(z,2¢g) is contained
in C;. Let a: R—10,1] be a smooth function with a(t)=1 for t< 3, a(t)=0 for t>1 and
for e<ep and weTM write

of (w)= a(Z(w, 2)e ) dnf*(2) > 0.
S(w,e)
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From the explicit description of the measures nF* (weT'M) ([H2]) it is apparent
that the functions ¢ are Holder continuous. For ¢€{1,...,k} and e<g( define a function
f£ on T*M with support in C; by

fi(Aily, w)) = aE(W)_I/S( )(wif)(Ai(% 2))a(£L(w, z)e™") dif” (2).

Then fe=3", ff is Holder continuous and moreover pointwise uniformly bounded,
independent of e>0. The restriction of f to a leaf of the stable foliation is locally
uniformly bounded in the C**-norm.

Recall from §2 the definition of the Hilbert space H{} of functions on T'M which
are square integrable with respect to 7, with square integrable leafwise differential. The
functions f° converge as e—0 in H] to f. In fact, convergence even holds in the Sobolev-
type space of functions which are of class L?" (with respect to ) with leafwise differential
again of class L?". The usual Sobolev embedding theorem then implies that for 7-almost
every v€T'M the restriction of f¢ to W*(v) converges uniformly on compact subsets of
W#(v) to the restriction of f as e—0.

Recall from the introduction the definition of the set DCT'M xT M. Let f" be
the lift of f. to T'M. Then for every v€T!M the restriction of f. to W*(v) is locally
uniformly Holder continuous, and hence there is a unique function Ge: D—R such that
B (v, <I>tv):f0t fE(®*v) ds for all veT M and teR. For example, for we W (v) we have

B () = Jim [ (@)= (@) ds

(compare [H2]).

The function (¢ is invariant under the diagonal action of m1(M)=T on Dc
T'M xT'M and satisfies 3¢ (v, z) =% (v, w) + 3¢ (w, z) for all v€T'M and all w, ze W*(v).
Moreover € is globally Hélder continuous.

Recall now that f¢ is differentiable along the leaves of the stable foliation, with
uniformly Hélder-continuous leafwise differential. This implies that there is a Hélder-
continuous, 71 (M )-equivariant section @€ of T*W* over TM such that for every ve TM
the restriction of @ to W*(v) is the leafwise differential of the function w— G (v, w).
We have 3°(X)=f¢, and if Y €T, W** is tangent to the strong stable foliation at v, then

i
&(Y)= lim | d®°(Y)(f%)ds
t—oo fq
(compare [LMM]).
The 1-form @€ projects to a section ¢ of T*W?* over T*M. Now ¢F is in fact a form
of class C}*, which follows from the fact that f° is a function on 7'M of class C%2.
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For example we obtain the divergence of the g-dual of ¢¢ at v simply by computing the
derivatives as asymptotic integrals of second derivatives of f¢ as above (compare [LMM]).

Moreover the norm of ¢f, viewed as an element of H}, is uniformly bounded inde-
pendent of £>0.

Let now {e;}; be a sequence such that £;—0 (i—0) and the sections ¢ converge
weakly in the Hilbert space H] to a section . Then ¢ is stably-closed and a section
of T*W? of class L*; moreover p(X)=¢(X). But this necessarily implies that g=¢.
Then a convex combination of the forms ¢ converges strongly to ¢ in H{ and defines
a sequence as stated in the lemma. |

As an immediate corollary we obtain

COROLLARY 3.3. There is a number x>0, an integer k>1 and k sections A1, ..., Ay
of TW* over TM of class C} with the following properties:

(1) |1As||(v)<1 for all veT'M.

(2) A; is g-dual to a stably-closed section of T*W?.

(3) For every harmonic measure  for L there is i€{1,...,k} such that

[ +ov, 49y dn> x

Proof. Let n be a harmonic measure for L. By Lemma 3.1 and Lemma 3.2 there is
a section Ay, of TW* of class Cf such that a,=[(div(4,)+g(Y, A,)) dn>0.

Let £ be the space of harmonic measures for L, equipped with the weak*-topology.
Then € is a compact convex subspace of the space of probability measures on T'M. For
every nef the set U,={¢€&| f(div(4,)+g(Y, A,)) d(>La,} is a weak*-open neighbor-
hood of  in £. Choose finitely many 71, ..., €E such that & CU?=1 U,,. Then the
corollary is satisfied with A;=A,, and x=min{ia,,|i=1,...k}. a

As in §2 denote by f2+ the space of continuous paths &: [0, oo)—>T1]\~4 and for veT*M
let PV be the probability measure on 2, which describes the diffusion on W*(v) induced
by L|ws () with initial probability &,.

Let moreover 2. be the space of continuous paths w: [0,00)—T'M and for veTM
denote by P the probability measure on €, which lifts to the measure P¥ for one and
hence every lift w of v to TM.

For i€{1,...,k} and t>0 define now a function f}:Q), —R as follows: Let wef,
and let T2, be a lift of w. The restriction to W#(@(0)) of the lift of the section A
from Corollary 3.3 is the differential of a function o;. Define f}(w)=a;(@(t))—a;(@(0));
this does not depend on the choice of the lift @. If {T%|¢>0} is the semi-group of shift
transformations on . then we have fi,,(w)=f}(w)+fH{(Tw).
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Let again x>0 be as in Corollary 3.3. The proof of the next lemma is essentially
due to Ledrappier ([L4]):

LEMMA 3.4. For every e>0 there is a number T(e)>0 such that

! / fidP>x—¢
112?éxk TJ)'* ZX

for all veTM and all T>T(e).

Proof. (Compare the proof of Proposition 2 in [L4].) We argue by contradiction and
we assume that the lemma is false. Then there are numbers T;, >0 such that T, —oo
(n—o0) and points v, €T'M such that (1/T5,) [ f}, dP'~ <x—e¢ for every i€{1,...,k}.
By our assumption we can find a number ;>0 small enough that

[ siap

for every i€{1,...,k}. By the Markov property for the L-diffusion and the fact that
¢t (W)=fUw)+ f{(T*w) there are then integers N;>0 such that N;—oo (j—o00) and

sup sup < %e

0Kty weTIM

1
tho

/fzivjto dPY < x—3e.

Denote by @Q: the action of [0,00) on functions on T*M which describes the L-
diffusion. Take a weak limit 4 of a subsequence of the sequence u; of probability measures
on T'M defined by p;=(1/N;) ZkN;gl Qkto 0y, where 6, is the Dirac mass at v;. Then

i is Qy,-invariant and
1 ,
%/ftlo du< x—5€

for every i€{1,...,k}. Let u'=(1/t;) fot"(Qs;z) ds. Then p' is Q;-invariant and hence
a harmonic measure for L. On the other hand we have (1/to) [ fi du'<x—3}e for i=
1,...,k, which is a contradiction to the fact that maxigick limi—oo(1/t) [ ffdu'>x by
Corollary 3.3. This shows the lemma. U

Let again we 2, and let HeC), be a lift of w. For t>0 define
e(w) = dist(PE(0), P(2));

this clearly does not depend on the choice of &. Since for every i€ {1, ...,k} the g-norm
of A; is pointwise bounded by 1 there is a constant 3>0 such that

r(w) > B max | £ (w)]

for all £>0 and all weQ,. This together with Lemma 3.4 then shows
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COROLLARY 3.5. There are numbers To>0, b>0 such that (1/T) [ o1 dP">b for
dl veTM and al T>T,.

Now by the subadditive ergodic theorem, for every harmonic measure 1 for L, for
n-almost every v€T'M and Pv-almost every w the limit o, (w)=1lim¢— o0 (1/t) pt(w) ex-
ists. The assignment w— . (w) is measurable and invariant under the shift. We call
J Yoo APV dn(v) the non-signed escape rate of the diffusion induced by L and . By Corol-
lary 3.5 this non-signed escape rate is not smaller than >0 for all . The arguments
of Prat ([Pr]) then imply that for every v€TM and PV-almost every path we(), the
limit limy_, o w(t)=w(o0) exists and is contained in OM and consequently the measure
P? projects to a probability measure ¢, on OM. The measures Cu (UGTIM } are then
equivariant under the action of 71 (M) on TM and M. The following lemma gives some
properties of the measures (,.

LEMMA 3.6. For L=A+Y with pr(g(Y, X))#0 the following are equivalent:
(1) There is vETM such that the support of (, is not m(v).
(2) For every veT'M, ¢, does not have an atom at 7(v).

Proof. Clearly (1) above is a consequence of (2). Thus we assume that (1) above is
satisfied.

Denote by S the set of all vectors v€TM with the property that for one (and hence
every) lift b of v to T 1M the support of (; is not equal to w(¥). By our assumption S is
not empty; moreover S consists of full stable manifolds.

We show first that S=T'M, and for this it is enough to show that for pc M the
intersection of S with T, M is open in T1M.

As in the introduction, denote for weT'M and a>0 by C(w,a) the open cone
of angle o about w in M, ie. C(w,a)z{Ptth|z€T}>wJ\~4, Z(w, z)<a, te(0,00)}. Let
dC(w, o) be the boundary of C(w,a) as a subset of MUSM.

Let veT*M be a lift of a point of S and ap € (0, ) be such that g=(, (8C(—v, ag))>0.
Choose numbers «a; €(ag, ), az€(a;,m). By Corollary 3.5 and the arguments of
Prat ([P1]) there is a number 7>0 such that for every weT'M and every €T M
we have

Cw(0C(2,02))+ 50> Guiw| Pw(r) € C(2,01)} > Cu(0C (2, a0)) — G-
By Ito’s formula (compare [Pr]) there is a number R>0 such that

P*{w|dist(w(0),w(r)) 2 R} < 0
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for every weT'M , where 7>0 is as before. Let B CM be the open ball of radius R about
Pvin M. Then
p(v, 2, 7)dv*(2) > Fo
PzeC(~v,a;)NB
by the above consideration.
By Corollary A.5 from Appendix A the kernel p is Holder continuous and hence
there is an open neighborhood U of v in T}%M such that

plw,z,7)dv*(2) 2 50

PzeC(-v,a1)NB

for every weU. But this just means by the above that (,(0C(~v,a2))>10 for every
weU. In other words, the projection of U to T'M is contained in S. This then shows
that for every weT'M the support of ¢, is not 7(w).

For veT'M write now A, ={weQ, |w(0)=v, lim;_,o, @(t)=mn(?) for alift & of w with
w(0)=0}, and let A=J,cr1ps Av- Then A is a subset of 2, which is invariant under
the shift, and PY(A)<1 for every veT'M by the above. But this implies that for every
ergodic harmonic measure 7 for L we have P(A)=0 where P= [ P¥ dn(v). Since ergodic
harmonic measures for L are just extremal points in the space of all harmonic measures,
this implies that P(A)=0 for every measure P of the form [P dn(v) where 7 is an
arbitrary harmonic measure for L.

On the other hand, every shift invariant measure for the diffusion induced by L is
of this form and thus we conclude that P¥(A4)=0 for every v€T'M. This is equivalent
to saying that for every #€T'M the measure (s does not have an atom at (7). In other
words, (2) above follows from (1), and hence (1) and (2) are equivalent. o

Let now X be the section of TW* over T*M whose restriction to W*(v) equals the
g-gradient of the negative of a Busemann function at w(v). If g is the lift go of the
Riemannian metric on M, then X just coincides with the geodesic spray X. Let n be a
harmonic measure for L and define the signed escape rate of the L-diffusion to be

()=~ [ (v(X)+o(¥, X)) dn.
Notice that a priori [,,(L) depends on the choice of the harmonic measure 7. However we
obtain the following,.

COROLLARY 3.7. Assume that L satisfies the assumption in Lemma 3.6 and let b>0
be as in Corollary 3.5. Then l,(L)>b for every harmonic measure n for L.

Proof. 1t suffices to show the corollary for ergodic harmonic measures 77 for L. Let
7 be such a measure, let P be the measure on 2, derived from 7 and let &')efhr be the
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lift to T M of a typical path for P. Let @ be the lift to W*(&(0)) of the Busemann
function at 7(w(0)) which is normalized at P&(0). By Ito’s formula and the Birkhoff
ergodic theorem we then have

Jim 0@G(©)=6@©) =~ [ (@iv(X)+9(r, ) dn

On the other hand, since @w(o0)#7w(0) by Lemma 3.6 there are numbers to>0, R>0
such that 0(w(t))>dist(Pw(0), PU(t))—R for all ¢>to. This then implies that [,(L)=
— [(div(X)+g(Y; X)) dn>b by Corollary 3.5. O

In the sequel we call an operator L which satisfies the assumption of Lemma 3.6 of
positive escape.

For a number ¢>0 define a function o4:§2, =R as follows: Let weQ, and let @
be a lift of w to T M. Denote again by 67() the function on W*(&(0)) which satisfies
6¥©)(5(0))=0 and which projects to the negative of a Busemann function on M at 7 (v).
Define o¢(w)=6%©)(Z(t)); this does not depend on the choice of the lift & of w.

For an operator of positive escape the arguments in the proof of Lemma 3.4 imply
(compare also [L4]):

LEMMA 3.8. If L is of positive escape, then for every >0 there is a number T'() >0
such that (1/T) [or dP">b~¢e for oll v€T'M and all T>T(g), where b>0 is as in
Corollary 3.5.

From Lemma 3.8 we conclude with the arguments of Ledrappier (see Proposition 3
in [L4]):

LEMMA 3.9. If L is of positive escape, then there is a number 7¢>0 and for every
7€(0,70] a number (=((1)<1 such that [e 7t dP"<(" for all sufficiently large >0
and all veT'M.

Proof. Again we follow Ledrappier. By the Markov property and the properties of
the functions o, it suffices to show the lemma for a fixed time T

For t>0 define a function %, on (2, as follows: Let we$2, and let & be any lift of w
to T'M. Then ty(w)=(dist(P@(0), Pa(t)))2edist(P&(0),Pa(t))

Choose T>T(3b) as in Lemma 3.8. We then have e~7%t <1—70;+27%4; for t<T
and 7>0.

Since the coefficients of the differential operators L, on M are uniformly bounded
with respect to the Riemannian metric (-,-), independent of veT M , & comparison
argument shows that there is a constant C' >0 such that f ¥ dPY<C for all veT*M and
all t<T. By Lemma 3.8 we then have

/ e” 77T dP’ <1-47b+27°C
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and moreover
/e"”" dP’ < 1+7C+272%C

for all ¢t<T.

Choose now 7>0 sufficiently small that a=1~ %Tb+272C<1. If k21 is sufficiently
large that (=a* (147C+27%2C)<1 then we obtain the lemma for this number 7 with
¢=CYUT", O

COROLLARY 3.10. Let L=A+Y be as before. If L is of positive escape then L is
weakly coercive.

Proof. Assume again that L is of positive escape. Recall the definition of the subset
D of T*M xT'M from the introduction and let p: Dx(0,00)— (0, o0) be the fundamental
solution of the Cauchy problem L—8/8t=0 on T'M. Let v€T'M and for >0 let B,
be a ball of radius r about v in W*(v). Let 7>0, (=¢(7)<1 be as in Lemma 3.9. Then
e~ > >0 for all weB,.

Choose t3>0 such that for all t>tg the conclusions of Lemma 3.9 are satisfied, and
let 5:—% log (>0. Then

1
/ e'p(v,w, t) dus(w)g—/ etp(v, w, t) e~ %) du® (w)
B.

r CT
< leet/ e—TUc de < le—et
Cr Cr

by Lemma 3.9, and consequently the Harnack inequality for parabolic equations implies
that for vs£w the integral f0°° ef'p(v, w,t) dt is finite. But this just means that there is a
positive (L, +¢)-superharmonic function on M ; in other words, L is weakly coercive. O

We are left with the investigation of operators L=A+Y as above with pr(g(X,Y))#0
which do not have the properties described in Lemma 3.6. We call such an operator of
negative escape. In other words, if L is of negative escape, then for every veT'M the
measure P¥ projects to the Dirac mass at w(v).

For a harmonic measure 7 for L denote again by 1,(L)=— [(div(X)+g(Y, X)) dn the
signed escape rate of the L-diffusion with respect to 7. We want to show that 1,(L)<—b
for every harmonic measure 7, where b>0 is as in Corollary 3.5.

For this denote by DTM the smooth fibre bundle over M whose fibre at ze€ M
consists of pairs (v,w) of elements of TAM and denote by DTM the corresponding
fibre bundle over M. We then obtain a Holder-continuous foliation DW* on DTM by
requiring that the leaf of DW* through (v, z)éDT]\Zf consists of all points (w, u)GDTM
with 7(u)=n(z) and 7(v)=m(w). The first factor projection Ry: DTM —TM and the
second factor projection Ry: DTM—TM map the foliation DW* to the stable foliation
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of T'M; moreover we have a natural embedding (T*M, W* )—>(DT]\~J , DW#) of foliated
spaces by mapping veT 1M to the element (v,v) of the diagonal in DTM. In the sequel
we identify T2M with this diagonal.

The fundamental group w1 (M) of M acts naturally on DTM and this action pre-
serves the foliation DW?*. Thus we obtain a corresponding foliation DW* on DTM and
an embedding (7'M, W*)—(DTM, DW?) of foliated spaces as before. The structure of
this foliation can be described as follows:

LEMMA 3.11. Ewery leaf of DW*CDTM contains the diagonal in its closure.

Proof. Recall that the closure of every leaf of DW? in DTM is a union of leaves
and that moreover every leaf of the stable foliation of T'M is dense in T*M. Thus it
suffices to show that the closure of every leaf of DW?* contains a point of the diagonal.
For this let (v,w)eDTM and let (€M —{x(v),m(w)}. If {z;}CM is any sequence of
points which converges as j—oc¢ in MUBM to ¢, then the angle under which the points
w(v), m(w) are seen at z; tends to zero as j—oo. From this the lemma follows. O

Recall from the introduction the definition of the Gromov product on 8M (see [GH]).
Namely for z€M and ¢, n€OM define

€z = liné 1 (dist(z, y)+dist(z, 2) —dist(y, 2))
y—)

z—n

and for €M and v#weTLM write also (v|w)=(r(v)|m(w))z. There is then a number
¢>0 only depending on the curvature bounds such that (£(v, w))¢<e™ ") (£ (v, w))Y/¢
for all v,wGTj]\zf and all zeM ; in particular, for a sufficiently small number 7>0 the
assignment (v, w)—e~"("1*) defines a distance on the fibres of the fibration T'M— M.

For veT'M let again 6, be the Busemann function at 7(v) normalized by 8, (Pv)=0.
Recall the following observation (see (GH]) which we state as a lemma for further refer-
ence:

LEMMA 3.12. (7(v)|7(w))y—(7(v) |7 (w))e=35(6s(y)+0u(y)) for all z,y€M and all
v#weTIM.

Now the assignment (v, w)— (v|w) can be viewed as a function on the complement
of the diagonal in DTM which is clearly invariant under the action of the fundamental
group of M on DTM and hence it descends to a function on the complement of the
diagonal in DT'M which we denote by g.

Notice that g is well defined and continous on DTM —T'M and (v, w)— oo if and
only if (v, w) converges to the diagonal.
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Recall that the first factor projection DTM —T*M maps DW* to the stable foli-
ation, and hence the operator L lifts to a leafwise elliptic differential operator DL on
(DTM, DW#*), with Holder-continuous coefficients and without zero-order terms.

In other words, DL induces a diffusion process on DTM which restricts to the
L-diffusion on the diagonal.

After this preparation we are ready to show

LEMMA 3.13. If L is of negative escape, then l,(L)<—b for every harmonic measure
1 for L, where b>0 is as in Corollary 3.5.

Proof. We argue by contradiction and we assume that the lemma does not hold.
Denote by @, the action of [0, 00) on functions on T*M which describes the L-diffusion.
Then there is v€T'M and a sequence {t;};C[0,00) with t;—o00 (j—00) and such that
the following is satisfied:

(1) The measures p;=(1/t;) Otj (Q+,) dt converge weakly as j—oo to a harmonic
measure 7.

(2) For P?-almost every path w the limit lim¢_oo(1/t)¢r(w) exists and equals
b>b>0 where ¢, is defined as in Corollary 3.5.

(3) For Pv-almost every path w the limit lim;_ . o(w) exists and equals ¢>—b
where o; is as in Lemma 3.8.

Let now w#v and consider the restriction of the diffusion induced by DL on the
leaf DW* (v, w) of DW*. Denote by P(vw) the corresponding probability measure on the
space of paths in DTM with initial condition (v,w). We claim that for P(**)-almost
every path w the limit

Jim %Q(W(t))
exists and equals 1(b+c)>0. To see this consider a lift (,@) of (v,w) to DTM. The
restriction to DW*(%, w) of the DL-diffusion can be identified with the diffusion induced
by L on W*(%). Let 83 be the Busemann function at 7(w) which is normalized by
05(Pw)=0. Since L is of negative escape, P’-almost every path converges to () #m(w).
But this just means that for P?-almost every path w the limit lim;_, o 85 (w(t))/t exists
and equals b, where b>0 is as above. On the other hand, by our assumption (3) above
the limit lim,_,o 05(w(t))/t exists PY-almost everywhere as well and equals c. It is
then immediate from Lemma 3.12 that lim;_ o(w(t))/t=13(b+c)/t>0 for P(**)-almost
every w. In other words, P(""*)-almost every path w of the DL-diffusion approaches the
diagonal in DTM as t—oo. But this contradicts the fact that the projection of P to
DM equals the Dirac mass at #(¥) and 7(@)#n (). This contradiction then finishes the
proof of the lemma. 0
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Now Lemma 3.13 together with the arguments in the proof of Lemma 3.9 and
Lemma 3.10 show that an operator L of negative escape is weakly coercive as well.
In other words we have shown

PRrROPOSITION 3.14. If pr(g(X,Y))#0 then L=A+Y is weakly coercive.

4. Weakly coercive operators

In this section we investigate an operator L of gradient type of the form L=A+4Y with
pr(g(X,Y))#0. Proposition 3.14 shows that L is weakly coercive. We continue to use
the assumptions and notations from §2. Our goal is the proof of Theorem A from the
introduction. The next lemma is partially a consequence of the considerations in §3.

LEMMA 4.1. For a weakly coercive operator L=A+Y the following are equivalent:

(1) There is a harmonic measure 1 for L with 1,(L)<0.

(2) For every ergodic harmonic measure n for L, 1,(L) equals the negative of the
non-signed escape rate for the diffusion induced by (L,7n).

(3) There is veT'M such that the minimal positive L,-harmonic function on M
with pole at w(v) is constant.

(4) For every veT'M the minimal positive Ly,-harmonic function with pole at 7(v)
s constant.

Proof. Let ACT*M be the set of all vectors v€T*M with the property that the
minimal positive L,-harmonic function with pole at w(v) is constant. Then A consists
of full stable manifolds and is invariant under the action of (M) on T*M.

Assume now that (3) is satisfied, i.e. that A#@. Then for every peM the set
AﬂT;AZ‘ is dense in 7, ;M . Thus for an arbitrary v€T'M and every >0 there is a point
wGT}%J\Zf NA with Z(v,w)<e. Let f be a minimal L,-harmonic function on M with
pole at 7(v). Since the constant function is minimal L,,-harmonic with pole at 7(w) the
Harnack inequality at infinity (Corollary B.5 of Appendix B) shows that the restriction
of f to the cone C(—v,7-—2¢) is bounded from below by a positive constant. Martin’s
theory then implies that the support of the L,-harmonic measure at Puv is contained in
the intersection with &M of the closure of C (v,2€¢) in MUBM. Since £>0 was arbitrary
we conclude that the harmonic measure for L, is an atom at m(v), in other words we
have ve A. This shows that (3) and (4) above are equivalent.

Assume now that (4) above is satisfied and let 77 be an ergodic harmonic measure
for L. Since L is weakly coercive, the non-signed escape rate for L is positive; moreover
for n-almost every ve TM the exit boundary of the L,-diffusion consists of the single
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point 7(v) by our assumption (4). With the notations from §3 this just means that L is
of negative escape, which implies (2) by the arguments in §3.

On the other hand, (2) clearly implies (1). But if (1) is satisfied, then L does not
satisfy the assumption in Lemma 3.6 and hence for every veT'M the exit boundary of
the diffusion induced by L, is the single point 7(v) which implies (4). O

As before, we call an operator L as in Lemma 4.1 of negative escape.
LEMMA 4.2. If L is of negative escape then pr(g(X,Y))<0.

Proof. Since pr(g(X,Y))#0 by Lemma 2.11 we may assume to the contrary that a=
pr(g(X,Y))>0. Let ¢ be a family of conditional measures on strong stable manifolds for
the Gibbs equilibrium state of g(X, Y) such that d(g*$c®*)/dt|¢=0=—9¢(X,Y)—a. Choose
moreover a harmonic measure i for L and let n°* be a family of conditional measures on
strong unstable manifolds for 7 such that dp=dv® x dn** with respect to a local product
structure. Denote by Y +Z the g-gradient of . Since L is of negative escape, for every
vETM the constant function is a minimal L,-harmonic function with pole at m(v) and
consequently by the Harnack inequality at infinity and Martin’s theory we conclude that
there is a number ¢>0 such that fot 9(X, Z)(®~*v) ds>—c for all veT*M and all £ 0.

Let o be the Borel measure on T'M which is defined by do=dp®® x dn®*xdt with
respect to a local product structure; we may assume that ¢(T'M)=1. Then we have
d(go®7t)/dt|;=o=a—g(X, Z) and hence for t>log(c+2)/a the Radon—Nikodym deriva-
tive of oo ®~t with respect to ¢ is at least 2 at every point v€T'M. Since o is finite, this
is impossible and shows that pr(g(X,Y))<0. O

Next we consider weakly coercive operators which admit a harmonic measure 7 such
that 1,(L)>0. As in §3 we call such an operator of positive escape. By Lemma 4.2 these
operators include all weakly coercive operators with pr(g(X,Y))>0. For veT'M let w,
be the hitting probability of the L,-diffusion (recall that this is well defined) on OM.
Then w, (M —n(v))=1 by Lemma 3.6 and Lemma 4.1, and moreover the measure class
of w, is independent of vETIM. The next lemma contains a more precise statement of
this fact:

LEMMA 4.3. There is a number c¢; >0 with the following property: Let v>0 be as in
Corollary B.3 of Appendiz B, let veTM and let wET},v]\zf with Z{v,w)<v. Then the
restrictions to 8C(®!(—v), 1r)NAOM of the measures wy,wy, are absolutely continuous
and their Radon-Nikodym derivatives are contained in the interval [c] ', c1].

Proof. Recall that the sets Boo (v, 17)=8C (v, 11)NOM (veT'M) form a basis for
the topology of OM. Since the measures wyp are Borel it thus suffices by Corollary B.5
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to show that there is a constant »>0 such that for all veT'M, all weTh,M with
£(—v,w)<3im and all t>0 we have

wy (Boo (®*w, 7)) K} (Pv, P®'w, m(v)) "1 € [, ]

where as in the appendix we denote for v€T1M by K,: MxMx0M —(0, 00) the Martin
kernel of L, and by K the Martin kernel of its formal adjoint L.

For this let weTh,M with Z(—v,w)<1r, let t>0, £€ Boo (®tw, 17)C Boo (v, i)
and write also z=®'w. The Harnack inequality of Ancona, applied to the positive
L,-harmonic functions y—K,(z,y,7(w)) and y— K,(z,y,£) which are defined on
C(—@tw, %ﬂ') and vanish on BC(—Qtw, %ﬂ)ﬂ@fl, shows that there is a number ¢>0
not depending on v, w,t, £ such that

K, (z, Pv,m(w))K,(z, Pv,&)"*c[c7}, c].

Let now x>0 be such that w; (B (2, 17)) > x for all z€T'M and all 7€TH, M. The
existence of such a constant again follows from the uniform estimates of Ancona ([An]).
Let zeW#(v) be such that Pz=z. Then

wo (Boo (¥w, 37)) = /B o j:‘z’ (§) dw-(§) = / K, (, Pv,£) dw:(€)

by the definition of the Martin kernel K, and hence
'YKy (, Pu, m(w)) S wy (Boo (®'w, 17)) < cKy(z, Py, m(w))

by the above estimates. On the other hand, Lemma B.9 shows that there is a number
co>0 such that
cg P < K} (z, Pv,m(—w)) Ky (x, Pv, 1(w)) < co.

But for every weTh, M with £(—v, w)< 17 the function y— K (Pv,y, 7(—w)) is posi-
tive and L¥-harmonic on C(—v, 7) and vanishes on dC(—v, im)NdM. Thus another
application of the Harnack inequality at infinity for the weakly coercive operator L7
yields

K (Pv,z,n(—w)) (K} (Pv,z,m(v)) " € [c},c].

This shows that
Ky (z, Pv,m(w)) < coKX(x, Pv,n(—w)) ! < cocK: (Pv, z, m(v))
and similarly

Ky(z, Pv,m(w)) = calej (z, Pv,m(—w))™1 > co‘lc_lK;f(Pv, z, mw(v)).
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From this we obtain that
¢y K} (Po,2, (1)) <wo (Boo (91w, 1)) < 20K (Pv, 3, 7(v))
and this is just the desired inequality. O

Remark. The estimates in the proof of the above lemma imply in particular that
the measures w, (v€T'M) do not have atoms.

Garnett showed in [Ga] that a harmonic measure for the stable Laplacian A® on a
compact surface of constant negative curvature defined by the lift gy of the Riemannian
metric is unique, a fact which was generalized to arbitrary compact negatively curved
manifolds M by Ledrappier ([L3]) and Yue ([Y2]) with essentially the same proof. We
want to generalize their result to operators L=A+Y of positive escape. For this recall
the definition of the set DCTIM xT'M from the introduction. Let K: D x M —(0,00)
be the function whose restriction to W*(v)x W*(v)xOM equals the Martin kernel of
the operator LY=Ly s(.); the function K is invariant under the action of I'=m;(M) on
Dx3M. For veT'M define x(v)=dK (v, ®'v, 7(v))/dt|;=o. The function x is clearly
invariant under the action of I'; moreover by Corollary B.7 (see Appendix B) it is Hélder
continuous and hence x projects to a Holder-continuous function on T'M which we
denote by the same symbol. Then 8=x+g(X,Y) is Holder continuous as well.

LEMMA 4.4. The pressure of 8 vanishes.

Proof. For vET'M denote by w, the hitting probability on OM of the diffusion on
M which is induced by the operator L, and which emanates from Pv. Since w, has
no atoms we may project w, along the geodesics which are asymptotic to w(v) to a
Borel probability measure &, on W**(v). For weW**(v) the measure w,, is absolutely
continuous with respect to w,. This means that we can define a family 1n°® of locally
finite Borel measures on the leaves of W** such that for v€T'M the restriction of 7°° to
W#2(v) is absolutely continuous with respect to @, and its Radon-Nikodym derivative
with respect to &, at weW**(v) equals (dw, /dw,)(w). By Lemma 4.3 the measures are
quasi-invariant under canonical maps; moreover by the estimates in the appendix there
is a number ¢; >0 such that ¢! <n**B** (v, 1)<¢; for all veT'M.

Let now 7*" be a family of conditionals on strong unstable manifolds of the Gibbs
equilibrium state induced by 8. The measures n°“ are well defined on every leaf of
Ws*CTIM, they are locally finite, positive on open sets and quasi-invariant under canon-
ical maps. As before there is a number c;>0 such that ¢;'<n**B**(v,1)<cz for all
veTM.

Now the measures 7** are invariant under the action of I'=m1(M) on T'M and
hence they project to locally finite Borel measures on the leaves of W**CTIM which we



HARMONIC MEASURES FOR COMPACT NEGATIVELY CURVED MANIFOLDS 71

denote by the same symbol. We then obtain a locally finite Borel measure 5 on T'M by
defining dn=dn®® x dn®* x dt, where dt is the one-dimensional Lebesgue measure on the
flow lines of the geodesic flow. By the above estimates the measure 7 is in fact finite and
positive on open sets.

Let ¢€R be the pressure of 3. The measures °* are quasi-invariant under the action
of ® and they satisfy d(n*“o®')/dt|;—o=F+¢q. Also, the measures 7°* on the leaves of
W*$ are quasi-invariant under ®* and we have

d S$s t _ d t
S )| = 2K, 1(-v)).

In other words, for t€R and v€T'M the Radon-Nikodym derivative of no®* with respect
to 1 at v equals
fo(®') K (v, ®'v, 7(v)) K (v, v, 1(—v)) e

where f, is the unique function on W#(v) which satisfies f,(v)=1 and such that the
g-gradient of its logarithm equals Y|y s(y).
Recall from Lemma B.8 and Lemma B.9 in the appendix that there is a number
¢>0 such that
fo (@) K (v, ®*0, 1(v)) K (v, v, m(—v)) € [}, ]

for all teR. Assume that g0 and choose 7€R in such a way that €?” >2¢. By the above,
the Radon—Nikodym derivative of 770®” with respect to 7 is >2 everywhere on T*M. But
this is a contradiction to the fact that the measure 7 is finite. From this we conclude
that necessarily ¢=0. d

COROLLARY 4.5. Let v° be the family of Lebesgue measures on the leaves of W*
induced by g and let n°* be a family of conditional measures on the leaves of W** of the
Gibbs measure induced by 3. Then the measure n on T'M defined by dn=dv®xdn® is
the unique harmonic measure for L (up to a constant).

Proof. By Lemma 4.4 and its proof, the family 7** of conditionals on the leaves of
W of the Gibbs equilibrium state 1y defined by 3 transforms under ®* via

d sU t —
E{n o'} t:o_ﬁ'

Let n be defined by dn=dv®xdn** and let | be the growth of n with respect to v°. Then
for every veT'M the function l,: W*(v)—R defined by I,(w)=I(v,w) is L:-harmonic,
which means that 7 is a harmonic measure for L. Notice that mc(n, 0o) is ergodic with
respect to I' since a Gibbs equilibrium state is ergodic with respect to ®¢.

Now let g be any ergodic harmonic measure for L and denote by I(v, w) the growth
of p with respect to v°. Then for g-almost every v€T*M the function a,: W*(v)— (0, co),
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w— 0 (w)=l(v,w) is L*|ws(y)-harmonic. Since L* is weakly coercive this means that
for every vET!M there is a unique Borel probability measure {, on M such that the
function «, satisfies

av(w) = /K*(U’ w, 6) d(v(g)

Let 17°% be a family of locally finite Borel measures on strong stable manifolds such
that the measure 79 on T'M defined by dno=dn**xdn**xdt is the Gibbs equilibrium
state 7 of the function 8. The measures n** are well defined on every leaf of the strong
stable foliation and hence we obtain a finite Borel measure ¢ on T'M by defining

dy=dn®* xdp®" x dt.

Via normalization of the measures ¢* by a universal constant we may assume that
W(T'M)=1. Let ¢ be the lift of 1 to T1M.

For veT'M and weW?* (v) we have a, =a,,(v)ay,; in particular, the measures (,, (w
define the same measure class and hence they have the same support. By ergodicity
we can assume that for 4-almost every v€T'M the measure (, does not have an atom
at w(v).

Let v€T'M be such that the function a, is defined and L*-harmonic on W*(v). The
Harnack inequality at infinity of Ancona together with the maximum principle shows that
there is a number ¢>0 not depending on v such that a,(®~*v)>cK*(v, & v, 7(v)) for
all 0. But a,(®~tv) K*(v, v, m(v)) ! equals the Radon-Nikodym derivative at v of
the measure 1o®~* with respect to ¥ which implies that ®o®~*>cty) on TM (compare
Lemma B.8 from Appendix B).

Let now @ be an accumulation point of the sequence {(1/k) Ele Yo® " }x>0. Then
@2y, and moreover @ is Pt-invariant. Since mc(rn, oc) and me(p, 0o) are ergodic with
respect to the action of I" we obtain from this the existence of a ®*-invariant ergodic
measure w on T'M which is contained in the measure class of 4. If & is the lift of w to
T™M, then for &-almost every v€T*M we have

lim inf K* (v, ®v, 1(v)) o (') > 0

which implies by Martin’s theory that the measure ¢, has an atom at w(v). This is a
contradiction to our assumption and shows that a harmonic measure for L is unique. [

Remark. Corollary 4.5 shows in particular that we can define the escape rate {(L)>0
of the L-diffusion to be the escape rate of L with respect to its unique harmonic measure.
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COROLLARY 4.6. If L is of positive escape, then the pressure of g(X,Y) is positive.

Proof. For veT'M let again x(v)=dK (v, ®ty, w(v))/dt and denote again by x the
projection of x to T'M. Since the operator L does not have a zero-order term we obtain
from Martin’s theory that liminf,,o(1/t) f5 x(®v) ds>0 for all veT'M. Thus if o is
any ®!-invariant Borel probability measure on 7'M then

hg—/g(X, Y)do> hg_/(X+g(X7 Y))do
and hence the pressure of g(X,Y) is non-negative by Lemma 4.4. However the case
pr(g(X,Y))=0 is excluded by Lemma 2.11. O
Recall the definition of the functions 3 and x on T!M. We have

LEMMA 4.7. If L is of positive escape, then there is a number £>0 such that

1 [t 1/t
lim sup n / x(®7*v)ds<—¢ and limsup n / B(® v)ds< —¢
0 0

t—o0 t—o0

for all veT*M.

Proof. We consider first the function y. Assume to the contrary that there is a
sequence {v;} CT'M and a sequence {t;} CR such that t;—o0 (i—00) and

1

ti
—/ x(®°v;)ds <
ti Jo

1
-

For a Borel set A of T*M denote by c4 its characteristic function and define a Borel
probability measure v; on T'M by v;(A)=(1/t;) foti ca(®%v;)ds. Let v be a weak limit
of the measures v;. Then v is invariant under ®¢, and moreover f x dv<0 since x is
continuous.

For v€T'M define a function f, on W*(v) by f,(w)=K(v,w,m(v)). Let Z be the
(Hélder-continuous) section of TW?* over T*M whose lift Z to T'M restricts on W*(v)
to Vlog f, for every vET'M. Recall that L, does not have a zero-order term and
hence by the maximum principle the Green function G, of L, is uniformly bounded
on {(z, y)eM x M |dist(z,y)>1}. Since f, projects to a minimal positive L,-harmonic
function on M with pole at 7(v) the Harnack inequality at infinity of Ancona ([An])
implies that there is a number ¢>0 such that f,(®~tv)<e® for all veTM and all t30.
This means that f(;' x(®*v) ds>—c for all veT M and all ¢>0.

By Lemma 4.1, for every veTM the harmonic measure for L, does not have an atom
at w(v). Martin’s theory then shows that lim,_,, inf fot x(®°v) ds=o0 for all veT'M.
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For T>0 define a set CrCT'M by CT={’U€T1M|f0t x(®%v) ds=4c for all t>T}.
Then CrCC; for T<7, and moreover |Jr, Cr=T'M by the above considerations.
Thus there is a number 7>0 such that ¥(Cr)>3. Then

/ xdv = % / < /O @) ds) dv(v)
_ % [ /C ] ( /O (@) ds) dv(v) + /T o, ( /O (@) ds) du(v)]

1 c 3c
> — _—— = —
/T(2c 2) 2T>0’

a contradiction. This means that the lemma holds indeed for .
Consider now the function 8. Observe that for veT'M and ¢>0 we have

¢
/ B(®°v) ds = log K* (v, ®'v, 7(v))
0

where as before K* is the Martin kernel of the formal adjoint of L. Since the Green
function G, of L, is uniformly bounded on {(:v,y)E]VI x M |dist(z,y)>1}, the same is
true for the Green function G}: (z,y) =G5 (x,y)=Gy(y, ) of L;. As before, this means
that there is a number ¢>0 such that fot B(®%v) ds>—c for all v€T'M and all t>0.

We argue by contradiction and assume that the statement for [ is false. Then
there is a ®*-invariant Borel probability measure ¢ on 7'M such that [3dpe<0. Since
by Lemma 4.4 the pressure of 3 vanishes, the measure ¢ has vanishing entropy and
coincides with the unique Gibbs equilibrium state for 4. In particular, we can decompose
do=dp*" x dg** x dt where ¢’ is a family of locally finite Borel measures on the leaves of W*
(i=ss, su) and we have d(g*“<®*)/dt|;—o=0. Since the function 3 is Holder continuous
we obtain moreover from the Birkhoff ergodic theorem that

t
lim 1/ﬂ(q)_sw)ds:O
t Jo

t—oo

for every v€T'M and p**-almost every weW?**(v).

Consider the lifts of the measures o' to the leaves of W*C T*M which we denote by
the same symbols. Then the projections of the measures p°“ to OM define the measure
class me(n, 00) where 7 is the unique harmonic measure for L. The considerations in the
proof of Lemma 4.3 show moreover that for every vETIM the projection of 0°%|yyss(y)
to OM determines the measure class of the exit measure of the L,-diffusion on M.

Together with Lemma B.9 from Appendix B this means the following: Let veTM
and let {, be the exit measure of the L,-diffusion emanating from Pv. Then for (,-
almost every ¢ €OM the minimal positive L,-harmonic function with pole at £ grows
subexponentially along a geodesic ray with endpoint &.
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Let now Z'uéﬁJr be a typical path of the L-diffusion on TM for which the limit
limy o0 P&(t)=&(00) exists and is contained in &M —m(&(0)). Let ¥ be a minimal

positive Lz(g)-harmonic function on M with pole at w(oo). Then

lim log ¥(&(t)) —log ¥ (w(0))

t—00 t

equals the Kaimanovich entropy hy, of the L-diffusion (see [Kal], [Ka2]). On the other
hand, since a typical path follows a geodesic ([Pr]) this limit has to vanish by the above
considerations. But the support of the exit measure for Lg) is all of OM and hence
this entropy is strictly positive ([Kal], [Ka2]). This gives the required contradiction and
finishes the proof of the lemma. O

For v€T'M denote now by G, the Green function of the operator L,. Then we have

COROLLARY 4.8. There are numbers ¢>0, a>0 such that Gy (z,y)<ce™*Ust(zv)
for all veT'M and all ,yeM with dist(z,y)>1.

Proof. By Lemma 4.7, Lemma B.9 from Appendix B and the Harnack inequality
at infinity of Ancona, for all v, weTM with Pv=Puw there is a number £>0 such that
limy—, 00 (1/t) log G, (Pv, P®tw) < —¢e. We just have to derive from this a uniform estimate.

For this recall from the results of Ancona ([An]) that there is a number o>0 not
depending on v and w such that G, (Pv, P®*°w)<e® G, (Pv, PO'w) G, (P®'w, P& w)
for all v, weTM with Pv=Pw, and all s,t>1.

Let DTM be the compact subset of T'M x T*M consisting of vectors which project to
the same point in M. For (v, w)€DTM there is then by the above a number T'(v,w)>1
such that G, (Pu, P®T("®)z)<e=2* for every lift (u,z) of (v,w) to TMxT'M. By
continuity the same is true for every point of an open neighborhood U(v,w) of (v,w)
in DTM.

Choose finitely many points (v;,w;)€DTM (i=1,...,k) such that the sets U,=
U(v;,w;) cover DTM. Write T;=T(v;,w;) and let To=max{T;|i=1,...,k}. By the
Harnack inequality there is then a number a>1 such that G,(z,y)<aG,(z,z2) for all
ueT™M and all points z,y, z€M with dist(z,y)>1, dist(z, 2) >1 and dist(y, 2) <Tp. Let
uweTM, weT*M with Pu=Pw and choose ip€{l,...,k} such that (u,w) projects to
a point in Uj,. Define inductively a sequence {i;};50C{1,...,k} as follows: If ¢; is al-
ready determined for all j<jg and jo >0 then let TZZ;O:() T;,, let u€ W*(u) be such that
Pi=P®Tw and choose ij,4; in such a way that the projection to DTM of the point
(@, ®Tw)eT M xT*M is contained in U;,

jo+1- The required property now follows from

the estimates of Ancona:
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Namely, for t>1 there is a unique integer {0 such that t€ [E;zo Tij,zf;}) T;,);
clearly t<(I+1)Tp. Ancona’s inequality then implies inductively that G, (Pu, P®‘w)<

ae~ Ve and hence G, (Pu, P®'w)<ae~¢* where e=a/T,. This shows the corollary. O

As another application of the above results we obtain a better estimate for the
fundamental solution p of the Cauchy problem L—90/9t=0. For this recall again the
definition of the Gromov distances on dM (see [GH]). Namely for €M and ¢ ,nEOM
define

€= z,lll—>m< %(dist(w, y)+dist(z, z)—dist(y, 2)).
z—7

For 2€M and v£weTM write also (v|w)=(n(v)|7(w))z. Then we have

COROLLARY 4.9. Assume that L=A+Y is of positive escape. For veTM let
Do M x M x(0,00)—(0,00) be the fundamental solution of the L,-Cauchy problem. Then
there are numbers a,b>0 and §>0 such that for all t>2 we have

Py (2,4, t) —pw(z, y, t)| < ae™ % [e—b("(v)IW(w)),, +e-b(7r(v)|7r(W))y].

Proof. By Corollary 4.8 and uniform boundedness of coefficients there is a number
6>0 such that L+26 is weakly coercive and such that moreover for every veTM the
Green function G26 of L, +26 is bounded on M x M —{(x, y)|dist(x, y)<1} by a universal
constant independent of v. Since G2¥(z, y)= [;~€?*'p,(z, y,t) dt this implies by the Har-
nack inequality for parabolic equations that there is a number ¢>0 such that for every
veT*M and every €M, t>1 the C-norm of the function y—py(z,y,t) is bounded from
above by ce2%t,

Let now ¢>1, z€ M and define fZ(y)=pu(y, z,t). Schauder theory for parabolic equa-
tions then shows that there is a constant ¢>0 not depending on z€M and t>1 such that
| fZ]|2,o <Ce~2%t where the C%*-norm || - ||2,q is defined as in the introduction.

For zeM and s3>0 define now

us(z,)= [ pu(e,0,6) 70 dy=po(a,2,5+)
and uy(x, s)= [ py(z,y, s) f7(y) dy. Lemma A 4 then implies that
(g — 0 ) (, 1)| < Ge™AT@IT(W)); o =58

where a>0 and 3>0 are constants depending on 6.
Let now L} be the operator on M which is formally adjoint to L,. By our assumption
on L there is then a positive function f on M such that L*(p)=f"1L,(f¢) for every
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smooth function ¢ on M. Thus if B is a ball in M, if t>0 and if v is a function
on Bx|0,t] which satisfies <0 on Bx{0}UdBx|[0,t] and (L}—30/8t)v>0 then fv is
a function on Bx[0,t] with fv<0 on Bx{0}udBx[0,t] and (L,—9/0t)(fr)>0. The
maximum principle for the parabolic operator L, —8/8¢ without zero-order terms then
shows that fv<0 on Bx[0,t], and hence ¥<0 on Bx[0,t]. In other words, the argument
given in the proof of Lemma A.4 in Appendix A can be applied to L}. Now for zeM
define g% (y)=pw(z,y,t); with the same argument as above we have ||g7 ||2,o <Ce™ 2.
Let 1y (2, 5)= [ py(y, 2, 5) 9§ (y) dy and 1, (2, 8) = [ pw (¥, 2, 8) 97 (y) dy=puw (2, 2, s+1).
The above argument can now be applied to the functions i, and 4, using the parabolic
equation L¥—8/0t=0 (which is possible by the above remark) and shows that

(i — i) (2, 1)| < G~ PTINT(w), g=6¢
Combining the two estimates we then obtain that
lpo(, 2,2t) —pu (2, 2, 2t)| < et [e—ﬁ(W(v)lr(w))z _,_e—ﬁ(W(v)lﬂ(w))z]

for all t>1. O

In a similar way we obtain a better estimate for all solutions of the Cauchy problem
L—-9/8t=0.

COROLLARY 4.10. There is a number x>0 with the following properties: Let v,w€
T'M with n(v)#m(w) and let f: M—R. be a function with ||f||2,.<oo. Denote by f,
(or fu) the solution of the parabolic equation (L,—8/0t)f,=0 (or (Ly,—90/0t)f,=0)
with fo(z,0)=f(x) (or fu(z,0)=f(x)) for all € M. Then

|(fo=fu)(@ )| < XM fllz,0e XTI )= for all (z,t) € M x [0, 00).

Proof. Let €>0 be sufficiently small that the operator L+¢ is weakly coercive and
~ that moreover there is a number a>0 such that for every ve€T*M the Green function
G, of L,+¢ satisfies G, (z,y)<a~le~*dst=v) for all x,ye M with dist (z,y)>1; such a
number exists by Corollary 4.8.
Let K, be the Martin kernel of the operator L, +¢ and define a function ¢, on M
by
Pu(y) = Ko(Pv,y, m(v)) + Ko (Pv,y, m(—0)).

Since

1 1
lim inf 7 log K,(Pv, P®'v,w(v)) > a, lim inf < log K, (Pv, P& tv,n(—v)) > o
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the restriction of ¢, to the geodesic v with initial velocity +'(0)=v is bounded from
below by a number ¢p>0 not depending on v.

On the other hand, ¢, is a positive (L, +¢)-harmonic function and hence the gradient
of the logarithm of ¢, is pointwise bounded in norm, independent of ve€TM. Thus there
is a constant 9>0 such that g, (¥(t))>coe2* for every geodesic ¢ in M which meets v
orthogonally in ¢(0) and every teR. Since on the other hand we have e~ ("@)ImT(=¥Dw
c1e~111/2 for some ¢; >0 and every such geodesic 9, this implies that there are constants
c2>0, 6>0 such that 02(<pv(y))5Be_("(”””("”))y for all ye]\].

Now by our assumption on L there is a number b>0 such that |(L,—L_,)u(z)|<
b1|u|2,0 e ¥ @Im(=9D)= for all functions u on M with ||ul|z,a <co and all ve T*M. If we
choose >0 smaller than b and c; 1, then ¢} is a L,-superharmonic function (since L,
does not have zero-order terms) and |(L, — L _, )u(z)| <b™!||ulj2,a (v (z))® for all functions
u with ||u]|2,« <0o. On the other hand we have L, (%)< —&¢? for some £>0.

We use now the argument in the proof of Lemma A 4 to derive the desired conclusion.
Let f: M—R be a function with || f||2,« <co and let f, (or f_,) be the solution of the L,-
Cauchy problem (or the L_,-Cauchy problem) with f,(x,0)=f(z) (or f_,(z,0)=f(z)).
Following the argument in the proof of Lemma A.4, the C>®*-norm of the functions
friz— fo(z,t) and ft,:z—f_,(x,t) is bounded from above by al| f||2,a, where a>0is a
universal constant not depending on v.

As in the proof of Lemma A.4 choose again a non-decreasing function % of class
C> on (0,00) such that ¢(s)=0 for s€(0,1] and v(s)=s for s>1. Define p(z)=
(dist(Pv,z)). Then there is a number k>0 not depending on v such that |L,p|<k.
Let N=2|/f|lo and for R>1, z€M and s>0 define

(@, )= (fo = =) (@, )~ = (0+ks) (2) —a2 ™5 ot (o).
Since
(2= 5 ) (o= £ = I T~ Lo ] <5l Flaah(a)
for all z€ M we have (L, —d/8t)v >0, and moreover
v<0 on B(Pv,R)x{0}UdB(Pv, R)x|0,t].
As in the proof of Lemma A.4 we conclude from this that
(Fomfoo)(@5) <aE 67 fllp.agh (@)

for all (z,s)eM x [0, 00).
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Let now exp be the exponential map of M , and let
A,={expsY|Ye quyvl\z[ﬂ(q)tv)l for some t € [-1,1], seR}.

By the Harnack inequality at infinity of Ancona, applied to the function ¢, on A,, and
the estimates for the Green function G, there is then a number x>0 such that

aé_lb—lgag (y) < X—le—X("(”)|""(_”))y

for all yc€A,. On the other hand, for every tcR we have foiu,=f, and f_¢iw=Ff_o
and consequently the above arguments applied to ®‘v then show that (f,—f_,)(z,s)<
X U fll2,aeXT@IT(=D)e for all zeM. Exchange of the role of v and —v then yields
|fo=F—ul(@, 8) <X M| fllz,a e XTIz for all veT M, z€M and s€[0, 00).

Now if v,w€T'M are arbitrary with 7(v)#m(w) then there is 2€TM such that
n(z)=n(v) and m(—z)=n(w). Then L,=L,, L_,=L,, and hence the corollary follows
from the above considerations. O

5. A central limit theorem for operators of positive escape

In his paper [L4] Ledrappier proves a central limit theorem for the leafwise diffusion
induced on T'M by the stable Laplacian A®. In this section we generalize his results to
operators L=A4Y of gradient type as in §§ 2-4 with pr(g(X,Y))>0.

Recall from §3 the definition of the bundle DTM over T'M and the definition of the
foliation DW* of DTM.

Recall that the first factor projection DTM —T'M maps DW?* to the stable foli-
ation and hence the operator L lifts to a leafwise elliptic differential operator DL on
(DTM, DW?) with Holder-continuous coefficients without zero-order term. In other
words, DL induces a diffusion process on DTM which restricts to the L-diffusion on the
diagonal. In the next lemma we describe the harmonic measures for DL; this lemma
basically coincides with Proposition 1 of [L4]:

LEMMA 5.1. Every harmonic measure for DL is supported in the diagonal of DTM.

Proof (compare the proof of Proposition 1 of [L4]). For (v,w)eDTM let P®w)
be the probability measure on the space of paths on DTM which is induced by the lift
of DL to DTM, with initial probability the Dirac mass at (v,w). Via the first factor
projection the measure P.w) projects to the measure P on the space of paths in T'M
induced by L and the initial probability the Dirac mass at v.

Now the hitting probability on M of the L-diffusion on Wé(v) is well defined
and does not have an atom (this follows from the explicit description of this hitting
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probability in §4). In other words, for PV-almost every path & the limit lim; . &(t)
exists in W*(v)UAM and is contained in M —{x(v),n(w)}. By the argument in the
proof of Lemma 3.11 this just means that for P®w)_glmost every path w the distance
between @(t) and the diagonal goes to zero as t—o0o. From this the lemma immediately
follows (compare Proposition 1 of [L4]). O

The unique harmonic measure 5 for L on T'M now induces a harmonic measure
Dy for DL on DTM which is supported on the diagonal. Lemma 5.1 together with
Corollary 4.5 then imply

COROLLARY 5.2. Dn is the unique harmonic measure for DL on DTM.

Recall that the DL-diffusion on DTM leaves the complement of the diagonal in-
variant. Thus if Q; denotes the action of [0,00) on functions on DTM which describes
the D L-diffusion then we can evaluate J; ¢ outside the diagonal. The following evaluation
is due to Ledrappier (Proposition 2 of [L4], compare also Lemma 3.3):

LEMMA 5.3. For every >0 there is a number T(e)>0 such that

=(@ro—0)(v,w) >1-¢

for all (v,w)e DTM —T'M and all T>T(c), where I=I(L) is the escape rate of the L-
diffusion.

Proof. Our lemma is a slightly improved version of Proposition 2 of [L4], so we
repeat the proof for the convenience of the reader.

Assume that the lemma is false. Then there are numbers T}, >0 such that T,, — o0
(n—o00) and points (v, w,)€DTM —TM such that (1/T, )@, 0— 0)(Vn,ws)<l—¢.

By Lemma 3.12 and the assumptions on L we can find a number ¢3>0 small enough
that

sup sup _ Qslo—o(v, w)|(v,w) < e
0<t<to (v,w)eDTM-T'M

Thus by our assumptions we can find integers N; >0 such that N;—o0 (j—o00) and

1
tho

(QnN,t00—0)(vj, w;) <l—3e.

Define a function ¢ on DTM ~T'M by ¢(v,w)=(1/t0)(Q:,0—0)(v,w). Then ¢ has a
continuous extension to the diagonal by defining (v, v)=(1/t9) Q¢, (») Where 9, is the
function on W#(v)CT'M which is given by 1, (®W?*(v))=—t.
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By the above, there is a sequence of integers N; such that N;—o0 (j—o0) and
points (v;,w;)€DTM such that

— Qe (vs, w;) <l—1Le.
Njkzzo AT 2

Take a weak limit z of a subsequence of the sequence of probability measures p; on
the compact space DTM defined by p;=(1/N;) ZkNingktoé(vj,wj) where 6§(v;, w;) is
the Dirac mass at (v;,w;). Then p is Q4 -invariant and satisfies [ du<i—2e.

Now p'=(1/to) ng(qu) ds is Q-invariant and we have [¢du<l—1e, a contradic-
tion to Corollary 5.2 and the definition of I. O

Ledrappier uses Proposition 2 in his paper [L4] to deduce a uniform estimate for
the speed of contraction of the L-diffusion. The following corollary is the equivalent to
Proposition 3 in [L4]} and can be proved with exactly the same arguments (compare also
the proof of Lemma 3.4):

COROLLARY 5.4. There is a number 79>0 and for every 7€(0, 7o there is a number
¢=¢(1)<1 such that (Q:e~79) (v, w) < te "W for all (v,w)EDTM and all sufficiently
large t>0.

Proof. The corollary follows immediately from Lemma 5.3 with the arguments of
Ledrappier (proof of Proposition 3 in [L4]). d

Recall that every leaf of the stable foliation W* of TM is locally diffeomorphic
to M. Hence as before, via the lift of the Riemannian metric on M we can define for
every v€T'M and 7€(0,1) a C*>7-norm |- ||3 . for functions on W*(v).

By abuse of notation denote again by @ (£0) the action of [0, %) on functions on
T'M which describes the L-diffusion. Then we obtain

LEMMA 5.5. For sufficiently small 7>0 there is a number cy=c1(7)>0 such that
sup, ||Q: f1I3 , <cisup, | f(v)| for every continuous function f on T'M and all t>1.

Proof. Let f:T'M—R be continuous. Then clearly sup, |Q:f(v)|<sup, |f|=m for
all £20.

Now for every v€T'M the function f,: W*(v)x[0,00)—=R, fu(2,t)=(Q:f)(2) is a
uniformly bounded solution of the parabolic equation LY—9/0t=0. Schauder theory
for parabolic equations then tells us that for every t>1 and for 7>0 sufficiently small
(depending on the coefficients of L) the C*7-norm of Q;f |w(v) is bounded from above
by a constant multiple of m. This shows the lemma. O
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For 7>0 define now a norm || - || on the space of continuous functions f on TM by
| f1l-=sup, | f(v)|+sup{| f(v)— f(w)|eT®¥®) | (v,w) € DTM} and let H, be the Banach
space of functions f on T'M with || f||, <oc.

For a function ¢ on DTM write moreover

lello= sup lp(,w)l, llell-,1 =sup{lp(v, w) —p(v,v)|e™**) | (v,w) € DTM}

(v,w

and
lpll72 = sup{le(v, w)—p(w, w)|e™®™*) | (v,w) € DTM?}.

First of all we have

LEMMA 5.6. Let 74>0 be as in Corollary 5.4, let 7<7o and let (={(7)<1 be as in
Corollary 5.4. Then ||Q:¢|l+1 < |@llr1 for every continuous function ¢ on DTM with
llell-1 <00 and all sufficiently large t>0.

Proof. Let ¢: T'"M —R be such that ||¢||.,1 <oo and for (v,w)€ DTM let b(v,w)=
lo(v, w)—p(v,v)|<e~Te@ ) ||p||, ;. Corollary 5.4 then shows that

|Qe0(v, w) = Qep(v,v)| < (Q:b) (v, w) < C*llpll 7778

for all sufficiently large ¢t>>0, and from this the lemma immediately follows. O

For a function f on T'M denote by f its lift to DT'M via the second factor projection
Ro: DTM —T'M, i.e. f(v,w)=f(w) for all (v,w)e DTM. Then we have

LEMMA 5.7. For sufficiently small 7>0 there is a number co=ca(7)>0 such that
|Q:(Q1 /)l 2<casup, |f(v)| for all fEH, and all t>1.

Proof. Let feH, and write o=@ f. Let {v,w)eDTM and let (u, z)EDT?\A/}r be a
lift of (v, w). The restriction to W*(z) of the lift of ¢ to T*M then projects to a function
@ on M which satisfies |@ll2.» <e1sup,|f(v)| where ¢; >0 is as in Lemma 5.5.

Denote by @, (or @,) the solution of the Cauchy problem L,—3/3t=0 (or
L,—0/0t=0) with initial condition @,(z,0)=@(z) (or ¢.(z,0)=@(z)). Corollary 4.10
then shows that for sufficiently small 7>>0 there is a constant y=x(7)>0 such that

1Q:(v, w) - Q:p(w, w)| = |Pu(Pu, t) — G- (Pu, )]
<xe 7 gllg,r < xere” T sup | ()|
v

for all t>0. From this the lemma follows. O
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COROLLARY 5.8. For sufficiently small 7>0 there is a number cz=c3(7)>0 such
that ||Q:f||-<cs||fl- for all feH, and all t21.

Proof. Recall that the fundamental solution of the L-diffusion on T'M is Hélder
continuous; this means that there is a number p>0 such that ||Q1f]|- <ol f|l- for all
fEH,. Write o=@ f. From Lemma 5.6 and Lemma 5.7 we then obtain for sufficiently
large ¢ >0 that

[Qer1fllr <|QeBllo+[1Qedl -1+ QeI
<|Bllo+¢ 1llr 1 +e2ll fll- < llll +e2ll fll- < (e+e) I £+
from which the corollary follows. O

Since Qo4¢=Qs°Q; for all 5,¢>0 Corollary 5.8 shows that {Q:|t>1} is an equi-
continuous family of linear endomorphisms of H...

As before let now 1 be the unique harmonic measure for L and let H2 CH, be the
closed subspace of functions f€H, which satisfy [ f dn=0. Clearly H? is invariant under
the action of @, (¢20).

LEMMA 5.9. For every >0 there is a number ko(g) >0 such that

k
> (Qif)w)

=1

<elfll-

ol W

sup
v

for all feHO and all k>ko(e).

Proof. Since Q; is a linear operator on H? it suffices to show the lemma for all
feB={pen?|llell-<1}.
Define a norm ||| -||| on the space of functions f on T'M by

A =1171l-+sup 1713 .-

Then [||-]]| is a Holder norm in the usual sense (since the stable foliation is transversal
to the vertical foliation of T*M) and there is a constant ¢>0 such that |||Q;f]||<c for all
feB and all t>1 by Lemma 5.5 and Corollary 5.8.

For veT'M and j>0 let p, ; be the image of the Dirac mass at v under the time-j-
map of the L-diffusion. Then p, ; is a Borel probability measure on 7M. Since 7 is the
unique harmonic measure for L, the measures (1/k) Z;:é Wy,j converge as k— oo weakly
to i (see [Gal).
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By Arzela-Ascoli’s theorem the inclusion of {@Q; f| f€ B} into the space C°(T"M) of
continuous functions on M is precompact. Since [(Q1f)dn=0 for all f€B this implies
that for £>0 there is a number k(v,€)>0 such that

1k-—1
T (Q f)d v,j
k}_;zo/ 1 Ho,j

for all feB and all k2k(v,¢).

The Holder norm of the functions w— (1/k) Z§=1(Qj f)(w) is bounded independent
of k>1 and fe€B. Thus there is an open neighborhood U(v,¢) of v in T'M such that
(1/k) 5_1 (Q; £)(w)| < 2¢ for all welU(v,¢) and all k>k(v, ¢).

Choose now finitely many points vy, ..., v, ET*M such that the sets U(v;,€) (i=
1,...,m) cover TM. Let ko=max{k(v;,e}|i=1,...,m}. It then follows from the above
that |(1/k) Y5_1(Q;f)(v)| <2 for all f€B and all veT'M, k>ko. O

<e€

1 k
- [z S @inw

j=1

COROLLARY 5.10. For every >0 there is a number ky(¢)>0 such that

1 k
”;Z@‘f
j=1

<elfll-
.

for all feHO and all k>k,(¢).

Proof. Let £>0 and choose ko{e/6c1c2)=Fk as in Lemma 5.9, where c¢;>0 is as in
Lemma, 5.5 and ¢ >0 is as in Lemma 5.7. Let f€H? and write o=Q;((1/k) Z;?:o Q;f).
Lemmas 5.5, 5.7 and 5.9 then show that ||Q;&|l-2<ge||f||- for all j>1, and from this we
conclude with the arguments in the proof of Corollary 5.8 that [|Q;((1/k) Zf:o QuAll-<
e||f||- for all feH? and all sufficiently large j>1. Now for m>1 we have

1 mk 1 m~—1 1 k-1
HEZsza(Z Qik(EZQJ))'
j=1 i=0 j=0

Since the operator norm of the maps Q; (j>1) is uniformly bounded, from this the
corollary immediately follows. 0

COROLLARY 5.11. (Id —Q1)H? is dense in HO.

Proof. The closure in H2 of (Id —Q1)H2 consists of all functions feH? which satisfy

k
o1
Jm 7 2 Qi =0

in H%. Thus the corollary follows from Corollary 5.10. O
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COROLLARY 5.12. The spectral radius of Q1 is strictly smaller than 1.

Proof. Since the operator norm of @y is bounded independent of k>0, the spectral
radius of ¢}y is not larger than 1. Thus it suffices to show that 1 is contained in the
resolvent set for Q1. By Corollary 5.11 it suffices for this to show that there is a number
£>0 such that ||[(Id —Q1) f||-=¢]| f||~ for all feHO.

We argue by contradiction and we assume to the contrary that there is a sequence
{f;};CH? such that | f;||l,=1 for all j>1 and ||f;— Q1 f;ll-—0 (j —00). Thus we may
assume that 2>|Q1f;|l->2 for all j>1. Now the operator Q; is continuous and con-
sequently we also have ||Q1(f; —Q1fj)|l-=1Q1f; — Q27| —0 (j—00); in particular, we
may assume that 2>(|Q2f;(» >3 for all j>1.

Recall that there is a number ¢>0 such that [|Q1f;li-+sup, ||Q1f;]l3,,<c for all
j=1. Thus by the theorem of Arzela—Ascoli we may assume by passing to a subsequence
that the functions Qi f; converge as j—oo in C%(T'M) to a continuous function ¢.
Since Id —Q; extends to a continuous operator on C%(T*M) we then have (Id —Q; )¢ =0.
Now [(Q1f;)dn=0 for all j>1 implies [ ¢ dn=0; moreover ¢p=Q1¢ means Ly=0 and
consequently ¢=0.

Consider now the functions Q»f;. Since Q1f;—0 in C°(T*M) it follows from
Lemma 5.7 that IIQk(é—z\/fj)HT’z—)O as j— oo, uniformly in k>1.

On the other hand we have [|Qk(@—;/fj)||0 —0 uniformly in k>1 as j—oo and
||Q2fj”‘r<% for all j21. Thus by Lemma 5.6 there is a number £>1 and a number
jo>1 such that ||Qx f;l|l- <3 for all j>jo.

But also f;—Qrfi=Y"1—p Qi((1d—Q1)f;), and since ||(Id —Q1)f;[l, —0 (j—00) we
conclude that || f; —Qx f; ]l —0, a contradiction to || f;]|-=1 and ||Qx f;||- <3 for all j>o.
This shows the corollary. g

Now Corollary 5.12 implies that there is a number k>0 such that the operator norm
of Qx as a linear endomorphism of H? is strictly smaller than 1. Write now N for the
operator on continuous functions on T*M which associates to f the constant J fdn. Then
we obtain a generalization of Theorem 3 in [L4]:

THEOREM 5.13. For sufficiently small >0 there are numbers C>0 and (<1 such
that ||Q:—N || <CC* for all t>0.

As in the paper [L4] of Ledrappier we deduce from this the following.

COROLLARY 5.14. For every function f€H? there is a unique function u€H2 such
that Lu=f. The function u is of class C? along the leaves of the stable foliation.

Recall that there is no continuous non-constant function f on T'M which satisfies
Lf=0. However the next corollary implies that the space of non-trivial sections ¢ of
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T*W* with the property that for every v€T'M the restriction of ¢ to W*(v) is the
differential of an L-harmonic function is infinite-dimensional.

COROLLARY 5.15. Let Z be a section of T*W?* of class C1* for some a>0. Then
there is a function u€H® such that div(Z+Vu)+g(Y, Z+Vu)= [(div(Z)+g(Y, Z)) dn.

Corollary 5.15 contrasts sharply the case when L=A+Y admits a self-adjoint har-
monic measure 7. In this case the vector space of L2-integrable sections ¢ of T*W?*
which restrict to differentials of L-harmonic functions on the leaves of W* is just the
vector space H! of harmonic 1-forms in the sense of §2. We then have

PROPOSITION 5.18. Let ) be a self-adjoint harmonic measure for L=A+Y and let
H be the space of harmonic sections of T*W* over (T'M,n). Then dimH'=1.

Proof. Clearly dimH'!>1. So assume to the contrary that there are square-
integrable linear independent sections A, E of TW* which are g-dual to elements of M.
For every smooth function f on T'M we then have [A(f)dn=0=fE(f)dn and hence
for all a,e€R the measure 7 is harmonic for the operator L+aA+eFE.

Let X be defined as in §2. If [(div(X)+g(Y+A,X))dn=0 then 7 is a self-
adjoint harmonic measure for L+ A, a contradiction to the fact that the g-gradient of 7
equals Y. Thus by suitably rescaling A we may assume that [ g(A, X) dp=—1. Similarly
we may adjust E in such a way that [(div(X)+g(Y +E, X))dn=[g(E, X)dn=1. Then
J(div(X)+g(Y+A+E, X))dn=0 and hence 7 is self-adjoint harmonic for L+A+E.
Thus A+E=0, a contradiction to our assumption that A and E are linearly indepen-
dent. a

Appendix A

In this appendix we collect some basic properties of solutions of parabolic differential
equations on a simply connected Riemannian manifold (]\~4 ,{-,-}) of bounded negative
sectional curvature.

Fix a number r€(0, c0) and recall that for every TEM the exponential map of {-,-)
at z maps the Euclidean ball B of radius r about zero diffeomorphically onto the ball
B(z,7) of radius r about z in M. These coordinates define for every j>0 and a€(0,1]
a C?-norm for functions on B(z,r); we refer to these norms in the sequel.

Let g be a Riemannian metric on M which is uniformly equivalent to (-, -) and such
that for some a€(0, 1) the C1**-norm of g on the balls B(z,r) in exponential coordinates
is uniformly bounded independent of z. Since the curvature of M is bounded this is for
example true for g=(-,-). Let Y be a uniformly bounded continuous section of TM
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with uniformly bounded C1**-norm in the exponential coordinates on the balls B(z,r),
and let A be the Laplacian of g and define L=A+Y".

For a C'-vector field Z on M let moreover div(Z) be the divergence of Z with respect
to the volume element dz on M induced by g.

Let 1o: M—R be continuous. A continuous function u: M x [0,7)—R (I'>0) is a
solution of the L-Cauchy problem with initial condition ug if the following is satisfied:

(1) ulfzx (o, i of class C? in the space variable, of class C? in the time variable.

(2) Lu—08u/8t=0 on Mx(0,T).

(3) u(z,0)=ug(x) for all z€M.

A non-negative measurable map p:]\~4 x M x (0,00)—R is called a fundamental so-
lution of the L-Cauchy problem if for every bounded continuous function g on M the
function

{ Ji p(z,y,t)uo(y) dy  for t >0,
u(z, t)=
up(x) fort=0
is a solution of the L-Cauchy problem with initial condition ug.

We first construct a fundamental solution of the L-Cauchy problem in a probabilistic
way. Namely, recall from Corollary 6.2 of [IW] that the operator L induces a unique
diffusion on M. This diffusion is a stochastic process which can be described as follows:
Compactify M by adding a point ¢ at infinity; M=M U{¢} is naturally a topological
space. Let 0, (M) be the set of all continuous maps w: [0, 00)— M with w(t)=( for all
t2inf{s>0|w(s)=¢}=C¢(w).

Denote by B (or B;) the o-algebra on €2, (M) generated by the Borel cylinder sets
(or the Borel cylinder sets up to time t) (compare [IW, p. 189]). The L-diffusion is then
determined by the unique family {P,}yes7 of probability measures on (€, (M), B) with
the following properties:

(1) Pp{w|w(0)=z}=1 for all zeM.

(i) flw(t))—f(w(0))— fot (Lf)(w(s))ds is a (P, B;)-martingale for every smooth
function f on M with compact support and every zeM.

Let 2o€M and let B be an open ball of radius r€(0,00) about g in M. Then there
is a unique fundamental solution gp of the equation L—8/8t=0 on B x (0, 00) vanishing
on the boundary 0B of B ([LSU, Chapter IV]).

Let Bj, Bs,... be an exhaustion of M by open balls such that EjCBjH and
U2, B; —M. Define
gs,(z,y,t) for z,y € B;,

qi(x7yat):{

By the maximum principle for parabolic differential equations ([PW, §III]) we have ¢; >0
and g;y+12>¢; for all i>0. Define p(z, y,t)=sup, ¢;(x,y, t).

0 otherwise.
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LEMMA A.1. For every z€M and every Borel set ACM, t>0 we have

Po{w|w(t) € A} = /A p(z,y,1) d.

Proof. For every t>0 and every i>0 the function ¢; induces an operator Q% on
L2(Bi) by

@N@= [ a0 ) dv.
If f: B,—R is a continuous function vanishing near 8B;, then the function u: (z,t)—
(Q:f)(z) is a solution of the equation L—8/8t=0 on B; x (0, 00) which satisfies
lim u{z,t) = f(z).

t—0

Since such a solution is unique ([LSU, Chapter IV]) we have in particular

qi(x,y,t+s)=/ gi(z,2,t)qi(z,y,8)dz

for all z,yeB;, t,5>0. It follows from the maximal principle for parabolic differential
equations ([PW, §II1]) that ¢;(z,y,t)>0 for all z,y€B;, t>0 and also [ g¢;(z,y,t)dy<1.

Compactify B; by adding a point 3 at infinity and define Q,(B;) as before. We then
obtain a Markovian system of probability measures {ﬁ;}ze B, on ,(B;) by defining
Piwlw(t)eA}=[ ", (2,9, t)dy. The measures {P:} s then describe the unique L-
diffusion on B; ([IW, Chapter V, §3]). For a path we(Q, (M) with w(0)=xz€B; and t>0
let 7;=inf{s>0|w(s)eM—B;} and tAr;(w)=inf{t, 7;(w)}. Then 7; is a stopping time for
(92, (M), B) and consequently

tATi(w)
F (AT ()~ F(@(0)) ~ /0 (Lf)(w(s)) ds

is a (P, B)-martingale for every € B; and every smooth function f with compact support
in B;.
Let {P:},¢p, be the unique family of probability measures on Q(M) which is defined
by
Piw|w(t) € A} = P {w]|w(t) € A, t< 1 (w)}

where x€B;, t>0 and ACB; is a Borel set. By the above consideration these measures
describe the L-diffusion on B;. Thus Pi=P: for all € B; and i>0. Since on the other
hand clearly

P {w|w(t) € A} =sup P:{w|w(t) € A}
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we obtain
Pp{w|w(t) GA}=Sup/ gi(z,y, 1) dy=/ p(z,y,t) dy
i A A
by Lebesgue’s theorem of monotone convergence. This shows the lemma. O

Remark. As an increasing limit of continuous functions the function
p: M x M x (0, 00) — (0, 00)
is measurable and lower semi-continuous.

Next we conclude that p has the required properties:

LEMMA A.2. The function p is a fundamental solution of the L-Cauchy problem
with the following properties:

(i) p(z,y,t)>0 for all z,yeM and all t>0.

(ii) p(z,y,t+s)=[5;p(x,2,t)p(2,y,s)dz for all z,yEM and all 5,t>0.

(iii) Ifu: M x[0,T)—R is a bounded solution of the L-Cauchy problem then u(x,t)=
S p(z,y,t)u(y,0)dy for all zeM and all t>0; in particular, [ p(z,y,t)dy=1 and the L-
diffusion is conservative.

Proof. Let f be a continuous function on M with compact support contained in
some ball B;. Then feL?(B;) for all j>i and consequently by Lebesgue’s theorem of
monotone convergence and the fact that [ ¢;(z,y,t) dy<1 for all €M we have

uj(w,t)=/qj(x,y,t)f(y) dy—>u(w,t)=/p(x,y,t)f(y) dy (j— o).

For j>i the function u; on B, X (0, 0) is a solution of the parabolic equation L—08/0t=0
which is uniformly bounded in absolute value, independent of j>0, {>0. Since L is
uniformly elliptic on B(z,r) with C®-coefficients of uniformly bounded C*-norm we
may apply Schauder theory for parabolic equations (see [LSU]) to conclude that for
every t>0 the C®*-norm of the functions z—u;(z,t) on compact subsets of B; (j>1) is
uniformly bounded. Thus the functions u; converge uniformly on compact subsets of M
to a solution of the equation L—8/8t=0. In other words, the function

(1) = u(z, £) = / p(, 9. ) () dy

is a solution of the L-Cauchy problem.
To determine its initial condition, let z€ B; and let U be an open neighborhood of
z in B;. For j>1i we then have

1< lim / gj(z,y,t) dy <limsup / p(z,y,t) dy.
t—0 U t—0 U



90 U. HAMENSTADT

But [p(z,y,t)dy<1 for all t>0 and consequently limsup,_, fM_Up(:c, y,t) dy=0. Since
U was an arbitrary neighborhood of z it follows that

lim / p(z,9,8) f(y) dy = f(z)

and consequently p is a fundamental solution of the L-Cauchy problem. Property (ii) for
p is an immediate consequence of the corresponding properties of the functions g;.

For the verification of (iii) we use the arguments in the proof of Theorem 2.2 of [Dod].
Namely, let u: Mx [0,7)—R be a bounded solution of the L-Cauchy problem and define
a(x,t)=[p(z,y,t)u(y,0) dy for zeM, t>0 and @(z,0)=u(x,0). We have to show that
u=4. Assume for simplicity that u(z,0)>0 for all z€M. Choose a non-decreasing
function ¢ of class C% on (0,00) such that ¢(s)=0 for s€(0, 3) and ¢(s)=s for s>1.
Let zo€M and for z€M define r(z)=dist(xg, z) (where dist is the distance induced by
(,-)) and p(z)=per(z). ~ ~

Let A be the Laplacian on M of the metric (-,-). Since M has bounded geometry
there is then a number ¢>0 such that

Alo)(z) < ¢"(r(z))+e¢/ (r(x))

for all z€ M (see [Dod]). But g is uniformly equivalent to (-, - ), and of uniformly bounded
Cl-norm (in exponential coordinates); moreover the vector field Y is uniformly bounded
and hence by the choice of ¢ we conclude that Lo< K for some constant K >0.
Let
N =sup{|(u—a)(z, )| | (u,t) € M x[0, )},

let R>0 be a large positive constant and choose i >0 sufficiently large that B(zg,2R)C B;.
For j>i let x;: B;—[0,1] be a continuous function with compact support which
satisfies x;(z)=1 for z€B;_,. Define a bounded function u;: B; x[0,00})—R by

wi(z, ) = / 03y, 8) x; (¥) u(y, 0) dy

for t>0 and u;(z,0)=x;(x)u(z,0). Then u; —& pointwise on B(xo, R) x [0, 00).

Let £>0, let € B(xo, R) and let t€[0,T]. There is a number j(z,t)>i such that
|@(z, t)~u;(x,t)|< ke for all j>j(z,t). Then |uj(z,t)—u(z,t)|]<N+3e and hence by
continuity of u; and u there is a neighborhood U(z,t) of (z,t) in Mx|0, T] such that
[Uj(z,0) (Y, 8) —uly, s)| <N+e for all (y,s)eU(z,t). Now for (y,s)cU(z,t) the sequence
of numbers a;=wu;(y, s) is monotonically increasing and consequently for every j>j(z,t)

we have

Ja;—u(y, )| < max{la;, —u(y, I, a(y, s)—u(y, )|} < N+e.
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But this means that |u;(y, s)—u(y, s)|<N+e for all (y,s)eU(z,t) and all j>j(z,t).
By the compactness of B(zg, R)x[0,T] there is then a number j(¢)>0 such that
|uj(z,t) —u(z,t)|<e+N for all (x,t)€B(xo, R) x[0,T] and all j>3j(¢).

Let j>j(e) and define

v(z,t)=u(x,t)—u;(z,t)— N+e

(o+Kt).

Then <0 on
B(zo, R)x{0}UdB(z0, R) x[0,T)

and consequently (see [Dod])

lu(z, £)—u; (2, 1) < s (o(x) + K1)

for all (z,¢)€B(zq, R)x[0,T) by the maximum principle. Since £>0 and j>j(¢) was
arbitrary this implies

Ju(e, 1) -z, O] < % (o(a) +K ().

Now R>0 was arbitrary as well and hence u=1 follows (compare [Dod]). This finishes
the proof of the lemma. O

Remark. (iii) shows in particular that we have u(z)=[p(z,y,t)u(y) dy for every
bounded function u on M which satisfies Lu=0.

LEMMA A.3. For every z€M and t>0 the functions z—p(z, z,t) and z—p(z,z,t)
are of class C** with C%-norm on the balls B(y,r) bounded independent of y.

Proof (compare [Ch, p. 197]. Recall that p(z,y,t)=p(y,z,t) is a fundamental solu-
tion for the equation L*-—-8/8t=0 where L*u=Au—div(xY) is the formal adjoint of the
operator L. Now if u is any smooth function on M with compact support then we have

5 [ p@ ) do= [ Loy, ute) da= [ plo,0,0 (L)@ o
for all yeM . From this we conclude that
gt/p(w y,t)dz —/p(w,y,t) div(Y')(z) dwéz/p(x,y,t) dz

where »=sup__; |div Y (z)|<oo. This implies that [p(z,y,t)dz<e** for all t>0.

Let now f be a smooth function on M with compact support and for z€M and
t>0 define u(z,t)=[p(z,y,t) f(y) dy. The Cauchy-Schwarz inequality for the measure
p(z,y,t) dy yields v*(z,t)< [ p(z,y,t) f2(y) dy and hence

/Muz(sc,t) dmé//p(w,y,t)fz(y)dydx

:/f2(y) (/p(a:,y,t) dx) dygext/f2(y) dy-
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Thus for every ¢t>0 the L?-norm of u(-,t) does not exceed e*! times the L2-norm
of f. Using Schauder theory for parabolic equations with Hélder-continuous coefficients
(see [LSU]) we conclude that for every ¢>0 there is a constant c(t)>0 such that

sup |u(z, t)] < c(t)- | fll2-
TEM

But u(z,t) equals the L2-scalar product of f with p(z,-,t). Since f was an arbi-
trary function with compact support it follows that the L2-norm of p(z,-,t) does not
exceed c(t); in particular, the sequence of functions {g;(z, - ,t)};>0 from above is bounded
in L2(M).

The functions g;(z,-,t) are solutions of the equation L—8/9t=0. Therefore, using
Schauder theory for parabolic equations we conclude that the C%2-norm of g;(z,-,t)
on B(y,r) (in exponential coordinates) is bounded independent of z,yeM and j>0.
Then the functions g;(z, - ,t) converge as j— oo uniformly on compact sets to p(z, -, t).
Moreover p(z, -,t) satisfies the properties stated in the lemma.

Similarly, for a smooth function f on M define U(y,t)=[p(z,y,t) f(x)dz. Since
Jp(z,y,t)dy=1 for all t>0 we obtain from the above argument that the L2-norm of
(- ,t) does not exceed e2** times the L2-norm of f for all £>0. The functions g;(-,y,t)
are solutions of the equation L*—38/0t=0. Therefore we obtain as above that the func-
tions g¢;(-,y,t) converge uniformly on compact sets to p(-,y,t), and that moreover
p(-,y,t) satisfies the properties claimed in the lemma. 0O

Remark. The proof of the above lemma shows that p(z, - ,t) is square integrable for
z€M, t>0 with L?-norm bounded from above by a constant c(¢) which only depends on
t and C'*-bounds for the coefficients of L in exponential coordinates.

We assume now that M is the universal covering of a compact manifold M and we
consider families of differential operators on M which are projections of the lift to T'M
of a differential operator L on the unit tangent bundle T'M of M with Holder-continuous
coefficients which is subordinate to the stable foliation.

Let g be a positive semi-definite bilinear form on TM of class C1* for some a€ (0,1)
whose restriction to TW? is positive definite. Let Y be a section of TW* of class C1'* and
write L=A+Y where A is the leafwise Laplacian subordinate to W* which is induced
by g. For every ve€TM the restriction of L to Ws(v)NM then projects to a second-order
uniformly elliptic operator L, on M with Hélder-continuous coefficients.

Recall from the beginning of this appendix the definition of the C** norms || f||2,a
for functions f on M (a>0).

Recall from [GH] and the introduction the definition of the Gromov product on oM.
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Namely, for z€M and &, ne OM define

&nz= lim£ 1 (dist(z, y)+dist(z, z) —dist(y, 2)).
y—)
z—n

For the proof of the following lemma compare [Dod]:

LEMMA A.4. For every §>>0 there is a number 3=3(6)>0 and a number c=c(6)>0
with the following properties: Let f: M—R be a function with ||f||z,o<co. For veT'M
denote by f, the solution of the parabolic equation (L,—0/0t) f,=0 with f,(z,0)=f(x)
for zeM. Then |(fo— fu)(@, t)|<c||fl|2,aette PO for v weT™M and dll (z,t)€
Mx0,00).

Proof. Let xq €M be arbitrarily fixed. As in the proof of Lemma A.2 choose a non-
decreasing function ¢ of class C™ on (0, c0) such that (s)=0 for s€ (0, 3] and ¢(s)=s
for s>1. Define go(x)=¢(dist(xg,z)). Then there is a number k>0 such that |L,o|<k
for all zeT'M.

Let v,wETlﬂ and let p, (or p,) be the fundamental solution of the equation
L,—8/8t=0 (or L,—8/8t=0). Let f be a function on M with || f||2,« <co and define

folz,t) = / pol@y,t) F(y)dy and  fulz, )= / pulz,y,t) £ () dy.

Since [py(x,y,t) dy=1= [ py(z,y,t) dy for all z€M and all >0, the C%norm of the
functions fI:z— f,(z,t) and f!:z— f,(z,t) is bounded from above by | f|lo independent
of t>0. Using Schauder theory for parabolic equations (see [Fr, pp. 64-65]) we deduce
that there is a number a>0 not depending on v such that

1£5)2,0 <all fll2,a

for all ¢>0.

By our assumptions on L there are numbers b>0, 3>0 such that |(L, — Ly, )u(z)|<
bllullz,a e PF@IT®)) for all functions w on M with |ul|z,o<oco and all v, weT M.

Let §>0. By eventually decreasing 3 we may moreover assume that the function
P:z—e ArIT(W) satisfies |L,9|< 361, independent of v and w. Let now N=2||flo
and let ¢=2ab. For R>1, z€M and $20 define

N oK) @)l f .

V(:I), 3) =(fw_fv)(x’3) E(

Since

(253 ) o)l =20 L) al < Sevto)
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by the choice of ¢ and the above estimates we have (L,,—38/8t)v>0 and moreover v<0
on B(zg, R)x{0}UdB(zg, R) x[0,t]. The maximum principle then implies that <0 on
B(zo, R)x[0,t], and since R>0 was arbitrary we obtain

(Fo—Fo) (@, 8) < || fllz,ae’® e PT@IT@D= for all (z,5) € M x (0, 00).

Similarly we obtain an estimate for f,— f.,, and from this the lemma follows. a

Denote by p, the fundamental solution of the parabolic equation L, —9/dt=0. From
the above estimates we then obtain

COROLLARY A.5. There are numbers a>0, b>0 such that
1o (2,4, 1) —Pu(@, 3, 1)| < e [e XTIz 4 embmIm(y)

for all v,weTM and all t>2.

Proof. Let v, wGTIM, 2€M and for >0 define a function fé on M by fE(y)=
pv(y,2,t). Lemma A.3 and its proof shows that there is a constant c¢; >0 not depending
on z such that || ff,]l,<er Now for t>1 we have f7(y)=[po(y,u,t—3)po(u, 2, 1) du,
and since [ py(y,u, t—1) du="V'for all t>1 this means that || fZ|lo<c for all >3 and all
z€M. Schauder theory for parabolic equations then shows that there is a constant c; >0
such that || 7], o <c2 for all £>1 and all ze M.

Let now t>1, and for z€M and s>0 define

w(@9)= [ule,00) Wy and wnl@9)= [pulen,) fi () dy
By Lemma A .4 there are then numbers a, b, ¢>0 such that

o —uw)(z, 8)| < ce®S e br@)in(w)),
for all (x,t)eM x (0, 00).

On the other hand, for z€ M and s>0 write ¢%(y)=pw (2, ¥, s). The above arguments
then show that there is a constant ¢3>0 such that ||gF || o <c3 for all zeM and all s>1.
Another application of the arguments in Lemma A .4 for the operators L}, Ly, which are
formally adjoint to Ly, L., shows that |ue(z,s)—pw(z, 2, s+1)|<ce®®e b)), for
all ze M and all >0 (where we might have to adjust the constants a, b, ¢ from above).
Together this just means that

(3, 2, 26)— Pu (T, 2, 2)| < ce® 7PNz gm0 rEIm(w) ]

for all £>1. |
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Recall from the introduction the definition of the set DCTM xT'M and let p:
D x(0,00)—(0,00) be the function whose restriction to {v} x W*(v) x (0, 00) just equals
the solution of the L|ys(,)-Cauchy problem with initial condition the Dirac mass at v.
As an immediate consequence of Corollary A.5 we obtain

COROLLARY A.6. The function p: Dx (0,00)— (0, 00) is locally Holder continuous.

Appendix B

This appendix is devoted to the investigation of operators L on T'M with Hélder-
continuous coeflicients which are weakly coercive. Our general assumption will be that
M is a compact Riemannian manifold of negative sectional curvature and g is a positive
semi-definite bilinear form on T'M of class C1* for some a€ (0, 1] whose restriction to
TW?* is positive definite. Let Y be a section of TW* of class C1* and let x be a function
on TM of class C®. Write L=A+Y +x where as before A is the leafwise Laplacian
subordinate to W* which is induced by g. The operator L lifts to an operator on TM
which we denote again by the same symbol. For every vETM the restriction of L to
W (v)~M then projects to a second-order uniformly elliptic operator L, on M with
Holder-continuous coefficients.

For a section Z of TW* of class C! denote by div(Z) the function on T*M whose
value at v€T'M equals the divergence at v of the restriction of Z to the Riemannian
manifold (W#*(v), g). Write L*=A-Y +(x—divY). For every vET'M the operator L
is then formally adjoint to L, with respect to the projection of gy () to M.

We call L weakly coercive if for every vETM the operator L, is weakly coercive in
the sense of Ancona ([An]). To clarify this notion we observe first of all

LEMMA B.1. The following are equivalent:

(1) L is weakly coercive.

(2) There is veTM such that L, is weakly coercive.
(3) There is veT'M such that L} is weakly coercive.

Proof. Since (1) obviously implies (2), assume that there is some v€T'M such that
L, is weakly coercive. We have to show that for every weT'M the operator L., is weakly
coercive. For this choose a number §>0 such that there is a positive (L, +6)-harmonic
function ¢ on M~W? (v). Let pEM and let wETZ}M be arbitrary. Choose a sequence
{¥:}:Cmi (M) such that ¥;(n(v))—7(w) in OM. Let w;€TM be such that m(w;)=
T;(m(v)) and define @;=poW0; /o(¥;}(p)). Then ¢; is a positive (L, +6)-harmonic
function on M which is normalized to be 1 at p. Since the coeflicients of the operators

L,,, are uniformly Hélder continuous we may assume by passing to a subsequence that
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the funcions ¢; converge uniformly on compact subsets of M to a function . But
L,,+6—L,+6 and hence necessarily (L, +8)(p)=0. In other words, L, is weakly
coercive and (1) and (2) are equivalent.

On the other hand, if L, is weakly coercive for some vET'M then there is >0 such
that L, +8 admits a Green function G on M. Then G*(z,y)=G(y, x) is a Green function
for L} +6 on M and hence L? is weakly coercive as well. This shows that (2) and (3) are
equivalent and finishes the proof of the lemma. O

We assume from now on that L is weakly coercive. Recall from the introduction the
definition of the set DCT M x T'M. Let K: DxdM—(0,00) (or K*: DxdM—(0,00))
be the function whose restriction to W*(v)x W*(v) x M equals the Martin kernel of
the operator Liws(,y (or L*|ys(,)) and define Koo: D—(0,00) (or KZ.: D—(0,00)) by
Koo (v, w)=K(v,w,n(v)) (or KX (v,w)=K*(v,w,n(v))). We want to show that K, is
Hélder continuous.

Choose 6>0 sufficiently small that for every veT 1M the operator L,+36 on
M ~W?#(v) is weakly coercive. As in the introduction, for veTM and ac(0,7) let
C(v, a) be the open cone of angle o and direction v in (M, {-,-)).

For veT'M and we W*(v) define @, (Pw) =Ko (v, w). Then ¢, is a minimal positive
L,-harmonic function on M with pole at w(v). Similarly let ¢, (or 7,) be the unique
positive minimal (L,+2§)-harmonic function (or positive minimal (L, —26)-harmonic
function) on M with pole at m(v) which is normalized by v, (Pv)=1 (or n,(Pv)=1).

Let again dist be the distance on M induced by (-,-) and write z=Pv. Since the
operators L,—26, L, and L,+26 are weakly coercive, there are constants Cp>1 and
B1>B2>0 such that

Co te™Pr It en) <min{ ey (y) /%0 (4): 0 (¥) /0o ()}
< max{p, (y)/%o(¥), 1o (y)/u(y)} < Coe™P2 dist(=4)

for all yeC(—v, 3m) (see [An]).

Recall that for every smooth function f on M we have

‘P;lLv(‘Pvf) =A(f)+Y(f)+2Vlog u(f)

and hence since L, is weakly coercive the same is true for A+Y +2Vlog¢,. For £>0
denote by 0, . the unique minimal positive (A+Y +2V log ¢, —¢)-harmonic function on
M with pole at m(v) which is normalized to be 1 at Pv. Notice that o, =1 since ¢, is
minimal. Then we have
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LEMMA B.2. For every e€(0,1] there is a number t(¢)>0 such that for every ve
TM the following is satisfied:
(i) The function wﬁ“"e s 7V s (Ly—60y,¢)-subharmonic on C(®®)(—v), i).

1 [

(ii) The function 1y "y is (Ly+60, c)-superharmonic on C(®*®)(—v), 1r).

Proof. Fix a number £>0 and for veTM arbitrarily fixed write simply ¢ (or ¥, 7, o)
instead of ¢, (or ¥y, 1My, 0y.¢). The lemma now follows from the above estimates for the
functions ¢, 1, n and a simple computation.

Let as before g be a positive semi-definite bilinear form on 7'M inducing A and for
v€T'M and a smooth function & on M denote by Vo the glws()-gradient of o (here
we identify again W*(v) with M ). Let || || be the norm on TM induced by glws(v) and
write simply A instead of A, and Y instead of Y,, x instead of x,. Let a, 8 be positive
functions of class C2 on M. By the definition of ©, % we then have:

A(log ) +Y (log ¥) =9 (A(¥)+Y () — |V Iog ¢||* = 26— |V log ¥|*—x, (1)
A(log @) +Y (log ) = — ||V log o||* —x, (2)

A +Y (%) +axy® =9 [A(alog ¥)+Y (alog ) +ax+||V(alog ¥)||’]
=¢*[(log ¥)(A(a)+Y (@) +29(Var, Vlog ¥) —26cx
—a||Viog ¢[|*+||(log ) Vart-aV log 9||] 3)
=4%a[~26—||Vlog ¢||*+(log ) a ™ (A(@)+Y ()
+2g(Vlog o, Vlog 1) +a| (log 4)V log a+V log %],
29(V(¥*), V(' F)) =2¢%" P g(V(alog ¥), V((1-B) log »))
=2)*¢p' Palg(Viog s, Vieg p)+(log ¥) (Vg o, Vieg )  (4)
—B9(V log ¢+ (log 1)V log a, V log ¢+ (log ) V log B)],

AP +Y (1 P)+(1-B)xe' P
=" P[A((1-B)log )+ Y ((1-B8) log ) +(1—B) x+|V((1—8) log )|?]
@' P[(B-1)|IV log ¢||*> — (log ) (A(B)+Y (B))
—2g(V3, Vlog p)+||V log o—(BV log ¢+ (log )V B) |I%]
=o' PB[=|[Viog ¢l - (log ) B (A(B)+Y (8)) —29(V log 8, VIog )
—2(log ¢) g(V log ¢, V log B)+ ]|V log ¢+ (log ) V log B]|*].
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Now let B=a. Then we obtain from the above computations
A ') +Y ($20' ) +x9p 0! T =9 T A®Y?)
+29(Vy*, Vo' =) +92 A (0! 7%)
PPV WY (6 ) e
— ot a[—25— ||V log b~ V log 4| (6)

+2g(Vloga, Vieg v—Vlog )
+a7H(A(a)+Y (@) (log p—log )
+2g(Vlog a, V log ¢)(log ¢ —log ) +aR]

where

R=||(logy—log p)V log a+V log y—Vlog ¢||°.

Recall that the geometry of M is bounded and that the operator A is uniformly elliptic
with respect to (-,-), with uniformly bounded coefficients. This implies that there is a
number € >1 such that

sup{(||V log ]| +[|V log $[|+ ||V log n]| +[| V log o)) (v) | y € M} <
(see [GTY).
Since
log Co+ 61 dist(z, y) > log ¢(y) —log ¢(y) > Bz dist(z, y) —log Co
for all yEC(—v, %w) by the above estimates there is a number 7(g) >0 such that

2
(log ¥ —log ©)(y) > g;_q_q

for all yeC(®™®)(~v),i7). On the other hand we have o(y)<ce P4=(=4) for ye
C(-v, 1n) with some 33>0, ¢>0 and hence we can find a number t(¢)>7(¢) such that
loR|(y)< 36 for all yeC(®*)(—v), 3m), where the function R: MR is defined as in
(6) above.

Let now a=0. Since
o Y (A(0)+Y(0))+29(Vioga, Viogp)=¢
we obtain
AT ™) +Y (Y70' ) Hx ! 77

=97t~ g[~26+2g(V log o, Vlog ¥—V log ) — ||V log 1 — V log ||
+e(logy—log p)+0oR).
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Together with the above estimates this shows that the function 17!~ is indeed
(Ly~60)-subharmonic on C(®*)(—v), 1) which is (i) of the lemma.
The same computations and estimates can also be applied to the functions

ey (weT'M)
and yield (ii) above. 0

For yeM and v€T'M define m,(y)=W*(v)UP~}(y). We use now Lemma B.2 to
compare the function ¢, (veT'M) on C (—v, i7) with certain L,-harmonic functions
on C(—v, 37) provided that weTM is close enough to v.

CoroLLARY B.3. There are numbers a,v>0 with the following properties: Let
veT'M, weTh,M with Z(v,w)<v and let f be the unique Ly,-harmonic function on
C (—v, %ﬂ’) which coincides with @, on 8C (—v, %7‘() Then

(1=Z(v,w)*) pu(2) < f(2) < A+ ZL(v,0)*) pu(z)
for all zeC(~v, im).

Proof. Let 11>0 be sufficiently small that 7(w)¢dC(—v, %ﬂ)ﬂ@]\? for all veT'M
and all wET};UJ\zf with Z(v,w)<wv;. Since asymptotic geodesics approach with an ex-
ponential speed and since the stable foliation of TM is Hélder continuous there are
numbers a1 >0, s >0, a1 >0 such that

4(7.(“ (y)’ Tw (y)) < ale—xl dist(Pv,y)(é(,U, w))al

for all veT'M, all weTh, M with Z(v,w)<v; and all yeC{—v,im).

For yel\zf and 7>0 let B(y,r) be the ball of radius r about y in (M, (-,-)). Since
the geometry of Mis bounded, exponential coordinates centered at y on the ball B(y, 1)
induce a C?-norm for functions on B (y, %) with the property that for every 2€T'M and
every e€[—26,26] the C?-norm on B(y, 3) of every positive (L,+¢)-harmonic function
B on B(y,1) is bounded from above by a constant multiple of 5(y).

For £€[0,1] and z€T*M write u, .=¢7*°p; °>*. Fix v€T*M and write z=Puv.
By the above estimates there are then numbers ag, 32, @2 >0 not depending on v and
z,¢ such that for every e€[0,1], all 2 W*(v), every weTIM with /(v,w)<u; and all
y€C(—v, 37) we have

| (Lv - Lw)uz,e Po I (y) <age™ ™ dist(z.) (Z(U, w))ag Uz,e Py (y)

Following Ancona, the functions o, . were defined in such a way that we can find a
number £>0 such that

— ez dist{ Pz,y)/2

cre < Uz,s(y) < cl—le—2x3 dist{Pz,y)
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for some ¢; >0, s3€ (0, %zz) and all yeC (—z, -é—‘tr) This implies in particular that there
is a number r9>0 such that do, . (y) = aze™*? dist(Pz,¥) and

—e 3 dist(Pz —x3 dist(Pz,y)

¥ g logu, (y)<e

for all yeC(pm(-2), m), where z€T'M is arbitrary.
Let now ¢(¢)>0 be as in Lemma B.2 and define 7=max{t(¢),ro} and

v=min{v, (a; ‘e 72)"/*2} > 0.

Let weT}%M with x=Z(v,w)<v and define s=s(x)=(—logas—aslog x)/32>7 and
z=®%.
For yeC(—v, 47) we then have

_x2(dist(Pv,y))+T))uz ce9u(y)

Li(tz,ep0)(y) > (Ly—aze
> —a2 dist(Pz,y))(,u’z’s 901;) (y) > O,

(60, .:(y)—aze
i.e. the function u, ¢, is L,-subharmonic on C(—v, ;7). With

— 35 _ 3]/ x30p [ 2
38 = g3/ %2y a0/

o(x)=e

it follows moreover that e=¢™u, .o, <p, on C(-v, ).

Let now f be the unique L,,-harmonic function on C{—v, 37) which coincides with
¢y on JC(—v, 7). Then ey, ., —f is Ly-subharmonic on C(-v,ir) and <0
on AC(-v,3m) and hence by the maximum principle f>e~ ¢y, ¢,>e 26Xy, on
C(—v, 7). On the other hand, by the definition of g(x) there is a number a>0 such
that e2¢X) >1— 2 for all y<v and consequently f3>(1—Z(v, w)®)y,. This yields the
first inequality in the corollary; the second one follows in exactly the same way by

comparing with the (A, —8c, . )-superharmonic functions 72> L 7> on C(-v,3m). O

Ancona showed in [An] that there is a number ¢>0 such that for all v, weT*M and
all positive L,-harmonic functions f,u on C(w, 17) which vanish on 8C(w, 7)NOM we
have

P!
Z:g; gcﬁpq)lz; for all z€ C(®'w, 7).

As a corollary of the above considerations we obtain a similar Harnack inequality for L,,-
and L,-harmonic functions. For this let >0, a>0 be as in Corollary B.3 and define
¢=(14v*)c?. Then we have
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COROLLARY B.4. Let veT'M,weTh,M with £(v,w)<v and let f (or u) be a
positive L,-harmonic function (or a positive L,,-harmonic function) which is defined on
C(—v, i7) and vanishes on 8C(—v, %W)QBM. Then

1 SR _ f(@)
u(P@ () S u(e)

f(P2l(—v))
u(P21(-v))

<c¢

for all zeC (@ (—v), 37).

Corollary B.3 can now be combined with the arguments of Anderson—Schoen (in the
proof of Theorem 6.2 of [AS]) to show

COROLLARY B.5. There is a number 3>0 such that

~Z(v,w)P u(2) v, w)?
1—Z(v,w) S(pw($)<1+é(, )

for all veT'M, weTph, M with /(v,w)<v and all zeC(—v, 3m).

Proof. Let ¢>0 be the constant as above (whose existence is due to Ancona) and
define y=(c—1)/(c+1)<1. Let w, 2 T*M and let u, f be positive L,-harmonic functions
on C(z,17). By the arguments in the proof of Theorem 6.2 of [AS] we then have

L ®2)
i) SX @)

for all z,yeC(®*+1z, 1) and all s>0.
Let v€T'M, z=Puv and let weTIM be such that Z(v, w)<v where v>0 is as in
Corollary B.3. Recall that there is a number >0 such that

(@, 1y, (PO)) < ™ L (v, w)

for all t>0 where 7,,: M —W?*(w) is defined as before. Define

5= s(L(v,w)) = log v—log £ (v, w)

23

and let 5=®%v, z=m,, (P®%v).
Let f, be the unique L.-harmonic function on C(—, £7) which coincides with @3
on OC (-7, 3). Since £(3, z)<v'/2Z(v,w)'/? we then have

1-v%2/(v,w)*/? 4;”(@)) < 1+v22 L (v, w)*/?
z
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for all yeC (—17, %’R) where a>0 as in Corollary B.3. Moreover the Harnack inequality
for vz together with the Harnack inequality at infinity of Ancona shows that there is a
number ¢; >0 such that

gt o(y) <ep for all ye C(®'(-0), i7).

By the above estimates, for y, j€C(—v, §7) we then obtain

eu(y) @l _ () [%(17) %(17)]

u(®) 0@ wa(@) Le:(¥) @.(7)

fy)  f:(5)

<a+v2(,w)?) 0:(y) ()

as2 f2(8)
©(7)

fz (g) —¥u (g)

z 1% L(v, w)
)

+cy

But

by the above estimate,

|£2(8) = 0o (@) S V2 L(v,w)* 2c10:(5)
by Corollary B.3 and

1_ [logv—log Z(v,w)

logx* " = P 1| log x

and consequently there is a number >0 such that

eo(y)  u(P) 3
euly)  gulm) S0

for all y,j€C(—v, 7). In particular, by choosing §=z (or y=z) in the above inequality

we obtain
o (Y) s
1-Z(v,w)P < <1+Z(v,w)
( ) uw(y) h
for all yeC(—v, 37). But this is just the assertion of the corollary. O

As a consequence of Corollary B.5 we obtain
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COROLLARY B.6. The function Ko: D—(0,00) is Hélder continuous.

Proof. By the results of Ancona ([An]) and Anderson—-Schoen ([AS]), for every fixed
vET'M the Martin kernel K,: M x M x8M—(0,00) of L, is uniformly Holder contin-
uous. Since Ko (v, w)=K,(Pv, Pw,m(v)) we thus only have to show that for every
(y, z)€M x M the assignment v—Ky(y, z, m(v)) is Holder continuous.

For this let y,zeM and let veT'M. Let 5: [0,00)——>]\A/:f be the geodesic ray in M
which satisfies v(0)=y and y(co)=n(v). Since the angle at v(t) of the geodesic triangle
in (M, (-,-)) with vertices y, z,7(t) converges to zero as t—oo (see [HI]) there is to=0
such that 2€C(—v'(to), 37). By Corollary B.5 the maps w— K, (7(to), 2, 7(w)) and

w— Kw(y, 7(t0)7 ’R’(w)) = (Ku (7(t0)> Y, W(w)))_l

are Holder continuous near v and hence the same is true for the assignment

w — Kuy(y, 2, m(w)) = Ku (y, (to), 7(w)) Ku (Y(to), 2, m(w)).

This shows the corollary. a
As another consequence of Corollary B.5 we also obtain

COROLLARY B.7. The function

d
v— d—tKoo(v, d'v) o

is Holder continuous on T'M.

Proof. For veT'M let again K,: M x M xdM —(0,00) be the Martin kernel of L,.
Then for every fixed veT*M the assignment w—dK, (Pw, P®'w, n(w))/dt|s=o is Holder
continuous (Lemma 3.2 of [H1]) and hence we only have to show that for every veT'M
the assignment

© (PO

- d
1 ¢ -
weTp,M— o K, (Pv, P®%v, n(w)) o= o

is Holder continuous at v.

For this recall from Corollary B.5 and the estimates in the proof of Corollary B.3 that
there is a number x>0 such that for every veT'M, every weTh M with (v, w)<v and
every ye€M which is contained in the ball B (Pv,1) of radius 1 about Pv in (M, {-,-)) we
have | Ly, (y)| <Z(v,w)* and |@, —pw|(y) <Z(v,w)X. Let s=/(v,w)X and recall that
there is a number ¢y >0 not depending on v such that c;* <, (y) <co for all ye B(Pv, 1).
Define ¢=(1+2cos) ¢y —pw. Then x<@<(14+2c3)s and |L,p| <3 on B(Pv,1) which
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means that there is a continuous function ¢: B(Pv,1)—[-1,1] such that (L,+¢)@=0.
By our assumption on the coefficients of L, we then necessarily have

d ‘ d
= log @ <a, |Zeu(PO) <
dt log p(P® v)‘tzo R T (Pe") ::0‘ “
for some ¢; >0 not depending on v, w and hence
d ¢ d d
L \Fv T FYw g__qu)t‘ 2 _qu)tl
GeeaPe)|_|<|Saupat) |20 P,
< e1e(1+2co+2c3).
This shows the corollary. O

We conclude this appendix with some remarks about the relation between the oper-
ator L and the operator L* which is leafwise formally adjoint to L. For this recall that
K denotes the Martin kernel of the operator L} which is formally adjoint to L,. To
explain the relation between K, and K assume for the moment that for every ve M
the vector field Y, =Y |yys(,,) on W*(v) ~M is the g-gradient of the logarithm of a function
fv on M which we assume to be normalized in such a way that fo(Pv)=1. Then we have

LEMMA B.8. K*(Pv,y,&)=fu(y)Ky(Pv,y,&) for all veT'M, £€OM and yeM.
Proof. For a smooth function @ on W* (v)~1\~4 we have
L3(@) = Ay(@)—div(pYy) + P xo-
Now if ¢ is any positive L,-harmonic function on WS(U)NM then
Ly (pfo) = fo8o(9) +29(Vp, V fu) 0 Ay (fo) —div(pV fu) + X
= fu(Bu(p)+Yu(p)+x0) =0

and hence the assignment ¢— ¢ f,, maps the space of positive L,-harmonic functions on
M to the space of positive L}-harmonic functions. From this the lemma immediately
follows. O

Assume now again that L is an arbitrary weakly coercive operator on T'M with

Holder-continuous coefficients. Then we have
LEMMA B.9. There is a number co>0 such that
cg ' < Ky (Pw, P®'w, n(w)) K} (Pw, P®'w, n(—w)) < co
for all v, weT'M and all t>0.

Proof (compare Lemma 3.10 and Corollary 3.11 of [H1}). For vETM let Gy
M xM—(0,00) be the Green function of the operator L,. For fixed z€M the func-
tion y—G,(y, z) is positive and L,-harmonic on M—{z} and its values on the distance
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sphere of radius 1 about x are bounded from above and below by a positive constant not
depending on v and z. The Harnack inequality at infinity of Ancona ([An]) as quoted
in the text preceding Corollary B.4 then shows that there is a number ¢>0 such that
1<Ky (P®'w, Pw, m(w))/Gy(Pw, P®'w)<é for all v, weT M and all t>1.

Now G%(z,y)=G,(y, z) is the Green function of the formal adjoint L7 of L,. Hence
another application of the Harnack inequality at infinity for positive L;-harmonic func-
tions on M shows that & <K} (Pw, P®'w, m(—w))/Gy(Pw, P®'w)<é Together this
shows the lemma. a
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