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1. I n t r o d u c t i o n  

The discrete quasi-periodic SchrSdinger operator in one dimension 

Z;o: t~(z) -~ 12(z) 

is defined by 

( s )n = -C( Un+ l -t-un-1) + E(  O-t-nw) un , 

where co is a real number and where E is a smooth function on the torus T- -R/ (2~rZ) ,  

belonging to the Gevrey class 

sup IO~E(O)[ < C ( , ! ) 2 g  ~ Vv >10. 
OET 

We shall assume that  co satisfies a Diophantine condition 

Ilkcoll := inf Ikco-n27r] ~ ~ n~Z ~ Vk�9 

for some constants x>O,  T > I ,  and that  E satisfies a generic transversality condition 

I max [O~(E(O+x)-E(O))[ >>.~ >0 VO Vx, 
O~<u~<s 

m a x  IO~(E(O+xD-E(O))l ~> ~llxll VOVx. 

Under these two assumptions we prove the following theorem. 

THEOREM. Assume that E and co are as above. Then there exists a constant e0--- 

eo(C, K,  ~, s, x ,  ~-) such tha t / f  Is] <so,  then Eo is pure point with a complete set of eigen- 

vectors in /2 (Z)  for a.e. O. Moreover, the measure of the set [inf E, sup E]\a(f-.o) goes 

to 0 as e~O.  
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This result generalizes previous work by FrShlich-Spencer-Wittver and by Sinai who 

considered the case when E has only two critical points both of which are non-degenerate 

(see [7], [14], [8])--such functions clearly fulfill the generic condition. 

It is easy to see that the generic condition is fulfilled for any analytic function which 

has no period shorter than 2~r. And if it has a shorter period we can scale the period 

to become 2~r and then apply the theorem�9 In particular the theorem applies to any 

real-analytic function which is not constant. 

It will also be clear (from Proposition 8) that the same result remains true if we 

replace in s the constant difference operator u--*e(un+l +un-1) by any other constant 
N finite symmetric difference operator u---~(~-'~i=_yaiun+i ) . Therefore this result also 

generalizes the work [2]. 

Idea of proof. The formulation we choose for the problem is to consider the operator 

as a symmetric infinite-dimensional matrix that depends on the parameter ~, 

'" 0 / 

E(O-w) - c  
D ( O ) + ~ F ( O )  = - ~  E(O)  - ~  , 

- e  E(O+w) 

0 "" 

and that is close to a diagonal matrix. This matrix satisfies the shift condition 

(D+r = (D+eF)m,n(O+kw), 

a property that permits us to control for example the whole spectrum of the matrix 

for a fixed but arbitrary parameter value 80 by controlling the dependence of a single 

eigenvalue as a function of 8. 

Our goal is to conjugate the matrix (D+r to a diagonal matrix D~o(~,e) by 

an orthogonal matrix made up of a complete set of orthonormal eigenvectors. The way 

to construct such a matrix is by an iterative procedure 

U~.....U~ .(D+eF).U1.....Uj = Dj+I + Fj+I 

that conjugates D+eF closer and closer to a diagonal matrix Dj=diag(EJ(O+kw)). 
During this iteration we will have to deal with almost multiple eigenvalues of the main 

part Dj--i .e .  eigenvalues that are so close so that they prevent a purely perturbative 

construction of the transformation Uj close to the identity. These "almost multiplicities" 

are of finite order and give rise to certain finite-dimensional symmetric submatrices of 
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Dj+Fj that will be diagonalized in a non-perturbative manner. The "almost multi- 

plicities" of D1 =D are of order 

2 8+4 C((s+I)!) 2Ks+l ' 

hut in the following steps this order will grow in a controlled way and we will have to 

handle "almost multiplicities" of higher and higher order. This is a distinct feature from 

the approach of [7], [14], where the "almost multiplicities" remain bounded (by two) 

throughout the iteration. The "almost multiplicities" will be described at the j t h  step 

by a decomposition [.Ji A{ = Z. 

In carrying out this procedure it will be essential that the order of the "almost 

multiplicities" do not increase too fast. Our means to control this will be through a 

non-degeneracy condition on the spectrum of Dj, which at the first step is simply the 

condition on E(8+kw) described above--smoothness and transversality. Such a simple 

condition on the eigenvalues will not persist unchanged under perturbations, and we will 

have to consider in what way the non-degeneracy persists during the iteration. At the 

j th  step this will be through a condition on EJ(8+kw) that involves all the "almost 

multiplicities" of the kth eigenvalues that have been considered at the previous steps. 
J J These will be described by subsets ~t~ D Ai. Another factor that will help us to control 

the "almost multiplicities" is the exponential decay of the perturbation off the diagonal. 

The iterative construction will be carried out completely for all 8. In order to estab- 

lish pure point spectrum one is left with the problem of proving that the infinite sequence 

U1..... Uj of orthogonal matrices constructed will indeed converge to an orthogonal trans- 

formation. This turns out to be the case only for a.e. 8. Our approach provides a way 

to analyze also the remaining 8's. (Confer in this respect [4] where a similar approach is 

made for another perturbation problem.) 

A technical problem concerns the smoothness. If we insist on always having the 

main part Dj in diagonal form it will not be possible to control the smoothness of (the 

non-perturbative part of) the transformation Uj, hence the smoothness of Fj+I. The 

smoothness of the perturbation can be controlled if we give up the diagonal form of 

Dj and only require it to be in block-diagonal form with finite-dimensional symmetric 

blocks--such a matrix can of course be diagonalized. However, such a decomposition 

into blocks would be somewhat arbitrary and would therefore destroy the shift condition 

on Dj and Fj. We prefer to preserve both smoothness and shift and we will therefore 

have to work with a more general normal form which is not block diagonal but which 

can be block diagonalized--this requires a more complex formulation which will have to 

include the dimensions of the blocks, their location in/2(Z) and their smoothness. We 

describe the normal form in w and we give some more explanations of the idea there. 
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The use of Gevrey functions is also a technical point. We could work with piecewise 

analytic functions but would then have to count the number  of pieces. This is avoided 

by Gevrey classes since they contain functions with compact  support.  There is of course 

nothing particular with the Gevrey class we have chosen above - -we  could just  as well 

have chosen another. 

Content of  the paper. The paper  is organized in the following way. In w we present 

some results on finite-dimensional symmetr ic  matrices and in w we study the transver- 

saiity condi t ion- - the  proof of the lemmas in these two sections will be of no relevance for 

the proof of the theorem, only the s ta tements  will be of importance.  In w we describe 

the normal form and a small divisor result related to i t - - L e m m a  5 and Corollary 6. 

In w we prove the inductive l e m m a - - L e m m a  7 - - c o m m o n  for all KAM techniques and 

in w we finally prove Proposit ion 8 and, as a simple consequence, the Theorem. In w 

we discuss some other spectral  properties of the operator.  Some basic results on func- 

tions in the Gevrey class, on parameter  dependence of roots of polynomials, and on 

parameter-dependent  Gram-Schmid t  orthogonalization are given in an appendix. 

Notations. For any smooth function f defined on I we use the norm 

1 
m a x  s u p  1 0 v f ( 0 ) l  . 

If f = ( f l ,  .-., fa) then we let Iovf(0)l be the Euclidean norm 

V/(0v/1 (0)) 2 -F..'i'~ (0V/d (0)) 2 , 

and if f is a matr ix  then we let ]O"f(O)l denote the operator  norm. 

The distance II" II on the circle T = R / 2 7 r Z  is defined above. 

If A is a subset of Z and nE Z then 

diam(A) := sup Ik- l l  and dis t (n ,A)  : :  inf [n-k[.  
k,lEA kEA 

We shall consider positive functions 7(z, x) defined for z in some open set U c R  n 

and for x/> 1 such that  for some j 

7(z, x) ~<exp o . .:oexp(A(z)z),  z E U, x >~ 1. 

J 
We say tha t  7 increases (at most)  superexponentiaUy in x and tha t  1 /7  decays (at most) 

superexponentially in x. 

If  X is a subset of R we denote by IX[ the Lebesgue measure of X.  

Acknowledgment. This work was begun at a visit at  the Depar tment  of Mathematics  

at UCLA in 1994 and it was essentially completed more than  a year after at a visit at  

the Forschungsinstitut fiir Mathemat ik  at ETH,  Ziirich. I am grateful to both  these 

institutions for their hospitality. 
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2. B l o c k  d i a g o n a l i z a t i o n  

Let D be a (d• 2~<d. We let Dm,n denote the component in the mth  row and 

the n th  column. For a subset AC{1, ..., d} we define 

DA : ~ Dm,n if m, n E A, 

( 6rim otherwise, 

R A = { x E R d : x i = O  if i ~A } .  

Then 

DA: R A + R  A• R h + R  A-L , A • = {1, ..., d} \A, 

acting as RAc--*Rd D--~Rd •176 on the first component and as the identity on the 

second component. When there is no risk for confusion we will use DA also to denote its 

first component. 

Let now D(O) be symmetric and smoothly parametrized by 0 on an interval I and 

let 

ID[c~ < c1g~ Vu>/O, (1) 

for some C1 and K1 ~> 1. The dependence in the parameter 0 of the eigenvectors, and more 

generally of the invariant subspaces, is related to the spacing between the eigenvalues. 

This is described in the following lemma which gives estimates on "block diagonalization" 

of D. 

LEMMA 1. For all 0 < 6 < 1 ,  there is a smooth orthogonal matrix Q(O) such that for 

all e in I, 5(O)=Q*(e)D(e)Q(e) is a product of commuting blocks I-I~=15(e)A, which 

are such that 

Em(O) and E,~(O) are eigenvalues of the same block D(O)A~ 
IEm(8)-En(8)l < 4d6, 

Era(O) and En(O) are eigenvalues of different blocks D(O)h~and D(0)hj 
:=> IEm(O)-En(O)l >i 5, 

and such that 
IQ]c~ <<. K~ Vu~>O, 

K2 : 'T1 (C1 /6 )  d(d+ 1) K1 ' (2) 

where "/1 ="/1 ('To, d) increases superexponentially in d, and ~/o is defined in Lemma A1. 

The block decomposition [ .JAi={1,. . . ,d} depends on 0 in a piecewise constant way. 

Moreover, the block decomposition is constant on intervals of length 6/C1K1. 
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Proof. Choose a family of continuous eigenvalues E1 (8), ..., Ed(8). Fix a 8, say 8----0, 

and decompose the eigenvalues into groups 

El(O),..., Ekl (O), 
Skl+l (O),..., Ek2 (O), 

Ek,_1+1(8), ..., Sd(8), 

such that  any eigenvalue of one group is separated from any eigenvalue of any other 

group by at least 2(5 and any two eigenvalues of one group are separated by not more 

than 2d5. It follows that  on a whole symmetric neighborhood I~9 0 of length 25~< 5/CIK1, 
any eigenvalue of one group is separated from any eigenvalue of any other group by at 

least 5, and any two eigenvalues of one group are separated by not more than (2d+l )& 

We now restrict the discussion to the smaller interval I ~. 

By Lemma A2, the characteristic polynomial P(A, 8) of D(8) satisfies 

- P, dKV [P(~,')[C~<~/2t~I 1 V~>0,  

in !~1 <R=C1 + 1; all "),-constants will depend on ~/0 and increase superexponentially in d. 

We can write P(~,  8) =P1 (~, 8)./51 (A, 8), where 

d-k1 
l I  ed-k -jZ. 

i>kl j=0 

Since all eigenvalues lie in IEil < R - 1  we get by Lemma A4 

d l_j__ J d l  K 
'EJICU~ (~3RCI,d-1) ('~3Cl,d 11 , 

and the corresponding result holds of course for the other groups of eigenvalues. 

Let ql, ..., qd be a positively oriented orthonormal basis of eigenvectors for D(0) and 

define 
{ Pl(D(O),8)qm/PI(E~(O),O), rn<~kl, 

= i 

Pp(D(e),8)qm/Pp(Em(O),O), kp-x <m<~d. 

Then v 1, ..., v d will be an orthonormal basis for 8=0 and will span p orthogonal subspaces 

for all 8EI ~. Moreover, 
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It follows that 

for all (?El' if only 

( ~_~1 ) d(d+l) 1 
I,, ~ ((?) - v" '  (o) 1 .< "),4 K ,  I(?1 < 4d2 3,~+------~ 

54(d+1) 
5'< 

"[5 cd( d+ 1 ) K~ " 

Moreover, v 1, . . . ,  v d will be a basis also on / ' - - indeed  on this interval we get 

1 
](~,v~)lco< 4d23d+4, m # n ,  

1 1 
1 4d23d+----------- ~ < Ivmlco < 1-~ 4da3a+ a . 

Now we do Gram-Schmidt orthogonalization on this basis, obtaining an orthonormal 
basis ~51, . - . ,  ~d on I t. By Lemma A3, 

Q = (~1, ..., oe)  

will verify the lemma with the estimate 

/C,\e(d+l) V 

Suppose now that we have made two such constructions of orthogonal matrices 

Q1, Q2 on two intervals I~ and I~ that intersect each other on an interval I of length 5', 

let us say If = ] -5 ' ,  5'[ and I~=]0, 25'[. To Q1 and Q2 are associated two decompositions 

UA/I=UA2={1,  .,.,d}. Let us first assume that the decomposition of Q1 is finer than 

that of Q2, so that Q1 also has the block decomposition U A2. We want to interpolate 

Q 1  o n  (?< 15' with Q2 on (?>~5' by a matrix Q such that Q*DQ is block diagonal with 
_ _  $ block decomposition U A/2. For this we consider P-QIQ2. It is a block-diagonal matrix 

with block decomposition U A~ and we need to interpolate it with the identity matrix 

by a block matrix B with the same blocks as P. Then we can take Q=Q1B. 
Write P((?) =P(5')(I+_P((?)). Then 

I~lcv < 45'K~ ('yrK~) ~. 

Let now e s~ and eS=I+P, and let So=r S=r where r is a C~-cut-off 
2 I function which is 0 for (?<�89 and 1 for (?>~5. Now S can be expressed as a power series 

in P each term of which can be estimated by Lemma A2, r is estimated by Lemma A1 

and the estimate of S is again obtained by Lemma A2. This gives 

ISIc~ < 425'K~ 
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if ~'78K~ < l - - t h e  same estimate holds for e ~o with the only difference that  the factor 2 

is replaced by another constant, e so e S is the matrix B. 

If Q] and Q~ are defined by decompositions of which neither one axe finer than the 

other, then we can construct on [0, 6 ~] a finer decomposition and an orthogonal matrix 

Q3 associated to this decomposition. Using it we can now interpolate Q1 and Q2 via Q3. 

We leave the details. [] 

Let F be a symmetric (dx d)-matrix, smoothly parametrized by O, and assume that  

[Flc~ < CaK~ Vu >10. (3) 

LEMMA 2. For all 0<~5<1 there are a smooth symmetric matrix G and a smooth 

anti-symmetric matrix X on I such that 

(q(O),G(8)q'(O))=O if IE(8)-E'(8)I  ~4d5, 

for any two eigenvalues E(8), E'  (8) and corresponding eigenvectors q(8), q' (8), and 

IX, D] = F -  G, 

and such that 
61XIc +JGle  < 72cag  W >0, 

(4) 
K4 = max(72(C1/5)d(d+l)+l K1, K3), 

where 72(70, d) increases superexponentiaUy in d. Moreover, if F has compact support 

in I, then G and X also. 

Proof. Fix an interval I '  of length 5 '=K~ -1, defined in Lemma 1, and let Q be 

an orthogonal matrix on I '  with constant decomposition [J Ai as in Lemma 1. Let 

F=Q*FQ,  D=Q*DQ and define 

Gm n = [ F,~,n if m, n belongs to the same Ai, 

' ( 0 otherwise. 

a n d / 9  are estimated by Lemma A2, and it follows that  

I~'[Cv < 73Ca max(K2,/(3) ~'. 

Let 

X&,Aj DAj -- D& X&,Aj = ( F -  G)&,Aa, 

Xm,,~--0 if m, n belongs to the same Ai. 
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Since the eigenvalues of/gh~ a n d  Dhj are more than 5 apart we get 

Differentiating the equality gives 

0V'~A, ,Aj/~Aj -- /~A, 0V2A,,Aj  

=O~(F_G)Ai,A_E ,nv-i~ ai~ Oil) O,-i~ , ~,t* AAI,Aj u Aj -- Ai AI,Aj)~ 
i=1 

from which the estimate 

C1 v 
[XIc v <'ys~Camax("/5-~-K2,Ka 1 

follows by induction. 

Choose now a parti t ion of unity {r with supp(r  lI5[<5'. 

have X a- and Gj such that  

[Xj (O), D (O)] = F(O) - G j  (0), 

(q(e), Gj(e)q'(r = 0 if I E ( e ) - E ' ( e ) [ / >  4d5, 

161 

On each I~. we 

with the above estimates. Now we only need to set X = ~  CjXj and G = ~  CjGj, and 

we obtain the estimates from Lemmas A1 and A2. [] 

3. T r a n s v e r s a l i t y  

In this section we shall analyze a kind of transversality condition which should be fulfilled 

by the spectrum of our matrices. Such a condition was considered by Pyartli  in relation 

to Diophantine approximation [12].(1) 

Let I be an interval and let u be a smooth function on I such that  

]u]c,, < CsK~ gu ~< r e + l ,  

1 ~, max ~ O  u(O) >~ VSEI. 
0.<~.<.~ ( . ! )2K~ 

(5) 

(1) A similar condition has been used by N. Nekhoroshev under the name of steepness and by 
R. Krikorian under the name of Pyartli transversality. 
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LEMMA 3. For all e>0 ,  there is a disjoint union of intervals Uias Ii such that 

# J  <~ 2m [2CsKs~m+1)21I[+1] , 

2 {2~'~ 1/'~ 

lu(O)l ~>e vo �9 

Notice that  the estimate of # J  is independent of ~. 

Proof. Assume for simplicity that  0 � 9  and IOmu(O)l/>/3(m02K~ n. Then there is an 

interval I of length 

l =  2C5K5(m+ l) 2 

such that  IOmu(O)I>~�89 on L 

Consider now Om-tu on I.  There exists an interval I1 such that  

/ , , ,  \ l / m  ) 
, .  1 

I/~1 < ~ - -  �9 

vo E i \ z l ,  

Consider n o w  Om--2U on I \ I 1 .  There exist two intervals /2 , /3  such that  

etc. 

/ ~  \21m 
v0 �9 i \ I1  uI2uI3, 

Hence we obtain in ],  2 m -  1 (possibly void) intervals Ii such that  

lu(O)l ~>~ V O E i \ U I i ,  

II~l < Ks \ # ) �9 

On the whole interval I we get at most 

2mx [2CsKs~+ I)2 ,I,+ I] 

many such intervals. [] 
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Let now uj be a sequence of smooth functions defined on an open interval I and 

satisfying 
[ujlc~<C6K~ V v < ~ N = m l + . . . + m j ,  

1 ~ [ (6) 
max - - O  uj(8) >1 13 V O � 9  

o~<,,~<mj (v!)2K~ ' I 
with C6 ~> 1. 

LEMMA 4. I f  V-=-Ul.....uj then 

Iv lc~<4J- iCJK~ V v < ~ N = m i + . . . + m j ,  

max ~ 0  v(#)l/> Y S e l .  

Proof. The first par t  follows from Lemma A2 in the appendix so we concentrate on 

the second estimate. Fix a 0, say 8=0.  We can assume without restriction that  

1 

Then 

1 
KN(NI)  2 og(ui. . . .  �9 u j)(0) = 

Z 
e i ! ' . . . ' eJ!  ~ 1 1 

Consider now a vector (Li, ..., ~j) in Z J such tha t  

t i+ . . .+L j - - - -N  and t m i - t i l + . . . + f m j - e j l = 2 1 .  

Then 

and 

min(ml ,  ~ i ) + . . . + m i n ( m j ,  ~j) = N - l  

1 rr~ll.....mj! <~Nl ' 
Nl <~ ~l!'...'~J! 

and there are ct ~< j2l many such vectors. 

Since at least one of the brackets in the sum is larger than  B J, the sum will be larger 

than  i ~ J . m i ! . . . . . m j ! / N !  unless for some [mi--ei[+. . .+]mj--Ljl=21#O , 

1 1 ~ 1 mi!.....m_____jl~j 
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But this implies that 

1 
K~($i,)2 0*'ui(O) ~ (--~6J6J2N)l~ J Vi. 

We now have an estimate for derivatives of smaller order, min(mi, ~i), and the result 

follows by induction. (This induction is immediate for N~>3 and requires a little more 

details when N = I  and 2.) [] 

4. N o r m a l  forms 

Consider a symmetric matrix 

D : Z • 2 1 5  

smoothly parametrized by PET and satisfying the shift condition 

Dm+k,n+k(~) : Dm,n(O+kw), 

where w is a Diophantine number, 

x 
Ilkwll)~k-- ~ Vke Z\{O}, 

with x>O, r > l .  

(A)  ESTIMATES. 

(A1) 
{ Ce-lm-nlr KV Vv >~ O, 

]Dm,,~lc~ <<. (7) 
O, Im-nl >. N. 

(B) BLOCK DIAGONALIZATION. There exist a symmetric interval I20 and a disjoint 
decomposition U Ai=Z such that 

(B1) #Ai~<U Vi; 

and there exists a smooth orthogonal matriz Q on I such that the conjugated matrix ~)= 
Q*DQ is a product of commuting blocks 

I-[ b,,,(e) ve i, 

and 

(B2) Qm,n~O only if Im-nl<-..N, and diam(Ai)~<MN Vi; 
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(B3) for all m, Qm,,~O for at most M different n; 

(B4) [Qlc.<~K ~ V~>~O. 

The decomposition, which is independent of 0, defines an equivalence relation k~ l  
on the integers and for each k we denote its equivalence class by A(k). 

To each Ai there is associated an invariant subspace Q(O)(R A~) of 0(8). (81) bounds 

the dimension of this space. By (B2) its diameter is at most (M+2)N,  and by (B3) at 

most M invariant subspaces Q(0)(R h') occupy a fixed site m, i.e. the mth component 

of Q(0)(R A~) is identically 0 except for at most M many A~'s. 

There are of course also one-dimensional invariant subspaces, but we have no control 

on their regularity. The regularity of Q(0)(RA~), however, is controlled by (B4). 

We can extend Q to a neighborhood I+kw of any point kw by the shift condition. 

In this way we get a piecewise smooth Q defined on all T and, in particular, D(0) is pure 

point with a complete set of eigenvectors for all 0. The most important assumptions will 

be related to these eigenvalues and their eigenspaces. 

(C)  EIGENVALUES. There is a piecewise smooth function E(O) such that 

{E(kw)}keA~ are the eigenvalues of L)Ai (0) Vi, 

and there are sets ~iDAi such that 

(C1) for all n, if infteA~ IE(lw)-E(nw)l<a,  then 

n w e m w + � 8 9  for some mCf~i, 

Q(O)(RA(n))CRn~+n-m VOEI; 

(C2) for all i, the resultant 

ua~ (x, 8) = Res(det( D( O+ x)n~ - t I ) ,  det( D(O)a, - t I )  ) 

satisfies 

lua~lc. < (4MC)2M2L~ Vv <<. sM 2+1, 

O < v < s M  2 1 max ~ O ; u a ~ ( x , e )  >~/~ Vx VOLT; 

(C3) #i2~<M Vi; 

(C4) the intervals {nw+I}dist(n,~)<g are pairewise disjoint; 
(C5) diam(fti)<<.(1/A) r+2 Vi; 
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(C6) for all i and for all xEI, 

I n, lc,'< (4M'�89 <sM2+l ,  

1 ~, /3( 1-[ II=+(k-O ll) roe T. max e) /> 
O<<'v<~sM2 [1]!)zLv \k,lef~i 

The sets f~i play a double role: by the first condition of (C1) they restrict the 

possible eigenvalues E(nw) that are equal to E(kw), kEAi, up to an approximation a - -  

if nw~iw+�89 then ]Z(k~v)-Z(n~)l>~&; by the second condition of (C1) they also 

describe the location of the eigenvectors corresponding to such eigenvalues. 

ua, measures the difference of the eigenvalues of the submatrices D(O+x)a~ and 

D(0)~,, and among these eigenvalues there are precisely certain eigenvalues of D(O+x) 
and D(0) respectively, when 0+x, 0EI. 

The norm of ue, is in (C2) with respect to the variable x and in (C6) with respect 

to the variable 0. 

Remark 1. Hence, a normal form is an infinite-dimensional symmetric matrix, para- 

metrized by 0ET, satisfying a shift condition with respect to a Diophantine rotation 

of T and satisfying conditions (A), (B) and (C). The normal form depends on several 

parameters: C, K, r, N give upper estimates on D; M, N, K give information about Q; 

&, C, M, L,/3, N, A, which give lower estimates on the spectrum. It also depends on the 

parameters s~>2 and x>0,  T>I  (through w) which will be kept fixed. 

Remark 2. Capital letters can be increased and small letters decreased, but not 

independently because the parameters are interrelated. For example if we increase M we 

must also increase L, and if we increase L we must decrease/3. 

Remark 3. It follows from the generalized Young inequality [5] that (A1) implies an 

estimate of D in the operator norm on/2(Z)~/2(Z):  

v < C  e r + l  ID(O)[c er-1K~ <c4-g~'r 

if r~< 1. Notice that this provides an estimate of the eigenvalues of D(0) and of their first 

derivatives with respect to O. 

Remark 4. un~(x, 0)=det Pi(0, D(x+O)a,), where Pi(O,t)=det(D(O)a,-tI). The 

det(D(0)n~-tI) is a sum of ~<M! many monomials of degree #f~i in the matrix ele- 

ments of D(O)a,- t I .  Introducing D(O+x)a, for t we get a matrix whose elements axe 

~<M! (M) M-1 many monomials of degree #f~i in the matrix elements of these two matri- 

ces and in their differences. Taking the determinant gives this number to the power #f~i, 
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times (~f~i)!. This shows that  ua, (x, 0) is a sum of less than M 2M~ many monomials 

of degree less than # f l i  • #f}i in the components of D(O)a~ and D(O+x)a~ and their 

differences. In particular, if C>~ 1 it follows that  

lua, lc ~ < (4MC)2M2KV Vv >/O. 

Idea of proof--continued. Consider a perturbation D(O)+cFI(O) of a normal form. 

Condition (B) implies that  D(O) is pure point with finite-dimensional eigenvectors (i.e. 

eigenvectors that  only occupy finitely many sites). Conditions (A) and (B) will enable 

us to solve the equation 

[X1 (/9), D(0)] -- F1(/9) - G1 (O) 

for some anti-symmetric matrix X1 and some symmetric modification G l - - w i t h  rea- 

sonable estimates. (This will be done in Lemma 5.) Then, with U(O,e)=e ~xl(~ we 

have 

U(O, r (D(O) +r (0)) U(O, c) = D (O) +r (0) + 0 2 (r (8) 

Conditions (C1)-(C3) will then guarantee that  the main remaining part D+cG1 
is pure point and satisfies conditions (A) and (B) (with different parameters). The 

conditions (C4)-(C5) are added in order to assure that  D+eG1 also satisfies (C) (with 

different parameters), and hence permits an inductive construction--condition (C6) will 

play a role only when we take the limit of this construction. That  D+r will be in 

normal form will be proved in Lemma 7 and the iterative construction is carried out in 

Proposition 8. 

For technical reasons we will in Lemma 7 consider the solution of (8) not only to the 

first order in r but to some much higher order--such a solution is derived in Corollary 6. 

Consider now a symmetric matrix F ,  smoothly parametrized on T, satisfying the 

shift condition and such that  

< ee-lm-nleg~ Vv ~> 0. (9) 

Let D be in normal form and let qk(R) be an eigenvector of D(0) corresponding to 

the eigenvalue E(O+kw). The following result will not make any use of condition (C). 

LEMMA 5. Assume r<<.l <~C. For all 0<5<1 ,  there are a smooth symmetric ma- 

trix G and a smooth anti-symmetric matrix X on T, both satisfying the shift condition, 
such that 

(qm(O),G(O)qn(8)) = 0  if IE(O+mw)-E(O+nw)l ~ ,  

[X, D] = F - G ,  
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and for all u>>.O, 

r61Xm,~te~ + IGm,~le~ < "y3N2 e6MNece-]m-nlO K[o, 

Klo = max(73(C/r6)2M2(2M2 +l)+X K, 73N T, "I3/lli, Ks), (10) 

where 73(70, x,T,M) increases superexponentiaUy in M. Moreover, if Fm,n-O when 
[m-n]>~J2-(2M+4)N, then both Xm,n and Gr~,n-O for [m-n]>~g 2. 

Proof. Let us first consider the case when F has only two non-zero "diagonals": 

Fm,n - 0 unless n - m  = +k. 

By a partition of unity we may arrange so that  Fo,k(O) is supported in a small interval 

I '  of length 3t where 

3t = min r ' ' 

and there is no restriction in assuming that  I '  is contained in the middle of I.  Such a 

localized matrix will then satisfy 

IFIc~ < 23 ee -Ikle max(Kg, 7o/ t ) ~, 

where, we recall, the norm is the operator norm. (This follows from Lemmas A1-A2.) 

Due to the shift condition and the Diophantine condition, only for few entries on 

each of the two non-zero "diagonals" will Fi,j 50.  Indeed two entries on a "diagonal" for 

which F i d e 0  will be more than 8 ( M + 2 ) N  sites apart. 

Consider the matrix Q given in condition (B) and let F=Q*FQ and ff)=Q*DQ. 
By (B4) and Lemma A2 we get 

I_Plc~ < 27r -Ikle max(Kg, "yo/t, K) ~, 

Iblc~ < 26CK~. 
r 

Most components of/~ are identically 0. In the strip 

S: k - 4 ( M + 2 ) N  <<. m+n <~ k+4(M+2)N, 

for example, Fm,n -0  except for (m, n) belonging to the two "squares" 

B((k, 0); N) = {Im-kl ~< N, Int ~< N} and B((0, k); N). 

(This follows from the first part of (B2).) Moreover, in these "squares" Fm,,~--0 unless 

(m,n)EZkxZoUZoxZk,  #Zi<~M, i=O,k. 
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(This follows from (83).) 

Assume now that  ]kI>(2M+2)N and let A i be the union of all Av such that  

A~MZ/r i=O,k. Then for i=O,k, 

# A  i<~M 2 and A i C [ i - ( M + I ) N , i + ( M + I ) N ] .  

(This follows from (B1) and the second part of (B2).) In particular A~ 

By Lemma 2 we can solve on I '  

[X~A, 5 A ]  ~--~ . ~ A -  GA, A = A ~  k , 

with d = 2 M  2 and with 5 replaced by 5/8M 2. This gives 

rSlX--m,~[c~+lGm,nlc~ < 74ee-Iki~ v Vu~>0, 

K' = max( 74( C /rh)2M=(2M2 + l)+ l K, max(K,  %It, Kg ) ), 

and XA and GA has compact support in I ' .  

Let us now define -~.~,~=X'.~,n for (m, n ) c A  k x A~ ~ • A k and ~'m,n=0 otherwise, 

and define Gm,~ in the same way. Then 

= Om,  

foral l  (m,n)ES. I f w e n o w l e t  / - �9 ~_ - . X =QXQ and G -QGQ , then X' ,n  and Gm,r~ are -=0 

unless (m, n) belongs to the larger "squares" B((k, 0); ( M + 2 ) N )  or B((0, k); ( M + 2 ) N ) .  

Moreover, on I ' ,  

( [ X ' ,  ' = D ])m,n Fm,,~-a:n 

for all (m, n) in the smaller strip 

S':  k -  ( 4 M + 6 ) N  ~< m+n <~ k+(4M+6)N. 

(Here we use again the first part of (B2).) 

In order to get a solution we now extend X '  to a matr ix X defined for all 0 satisfying 

the shift condition and such that  

X,~,,~(O)=X'm,n(O), (m,n)eS,  OeI', 

and we do the same for G'. This gives the solution. In order to recover the exponential 

decay we must multiply the estimates by e(2M+4)No~e 6MNg. 
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In the case IkI<~(2M+2)N, A ~ and A k may not be disjoint. But then A •  

and we define Xm,n to be X--m,,~ if (m,n)EA• and to be 0 otherwise--and the same 

for Gm,n. With this difference the construction of the solution is the same in both cases. 

Suppose now that F has two non-zero "diagonals". Take a partition of unity {r 

supported in intervals I~ of length <3t (and such that no three intervals have non- 

void common intersection). Then we apply the above result to each r  obtaining 

Xi and Gi. Then ~ Xi and ~ G~ will be a solution with estimates that are at most 

const-(2M+4)N<.const.MN larger than those of Xi and Gi respectively. 

Suppose finally that F is arbitrary and decompose it into ~ Fk, where 

(Fk)m,n--0 unless m-n==l=k. 

Then we construct X~ and Gk as above, and ~ Xk and ~ Gk will be solutions with 

estimates that are at most const-(2M+4)N ~ const. MN larger than those of Xk and Gk 

respectively. This completes the proof of the lemma. [] 

Notice that the solution looses no smoothness with respect to F but only with respect 

to D. This is important in the next corollary, where we shall apply this construction 

several times. 

COROLLARY 6. Assume r, p~ l  ~C and 

1 > 6a+Sb, (11.1) 

( p3 ~s and ea<{  ap ~4 (11.2) 
e < \216v3N2e6MNoC ] ~2-~-NMN]' 

c > (8M 4 +4M 2 +2) b, (11.3) 

eC<min(l { r "~SM4+4M2+2 1 N - r K ,  I l I i K  , ~---~). (11.4) 

Then there are a smooth orthogonal matrix U and a smooth symmetric matrix G on T, 
both satisfying the shift condition, such that 

U* (D+ F) U = D+G+ F', 

<qm(O),a(O)qn(O)) =0  if IE(O+m~,,)-E(O+nw)l >~e b, 

Gm,n-O if t in-hi/> (lie) a, 

and for all u>~O, 

I(U--I)m,nlc" < vi~ e-lm-nlel2( ( l le)~K) ~', 

la.,,nle- < viTe-lm-'q~ v, 

IF' ,nle. < e( ll~):i~12 e-I'~-nlQI2 ( ( l le )~K) v. 
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Proof. Let us first fix 5=~ b and J=(1 /e )  a/2. Let us then define for j~>l, 

[Xj,D] = Fj-ProjD,~(Fj)  , 

Gj = ProjD,6 (.~j), 

Fj+I = e -z~ ... e -z~ ( D + F ) e  z~ ... e x j  - D -  (G1 +. . .+Gj) ,  

where FI=F,  Fj is the truncation of Fj at distance ( 1 / r  from the main 

diagonal and ProjD,~(.~j) is the G defined in Lemma 5. We shall estimate these matrices 

using this lemma. 

If Klo is defined by (10) and if 
Q 

~01 = ~, ~2 = L01 - -  ~ ' - j ,  

then 

with A =.',/3 N2 e 6MN~ . 

Xl's satisfies 

e l  ~ C, C2 ~--- ~3 /2 ,  

1 m n V 
I(Xl)m,nlC~ < -~ASle  -I - I~ 

In order to estimate e • - I  we note that an/-fold product of 

1 (  42 ~_~A~llie_lm_nlO2K[o" I(xl.....x~),~,nlc~ < ~ \ o l -o~ " 

Using the power series expansion of e • we get 

25j ] 
I(e• --I)m,nlC~ < -~Aele-lm-nl~ 

0 r o -  

u n d e r  conditions (11.1)-(11.2). Using power series expansions and estimating products, 

we also get 

I ( F2 )m,~lc~ < e2e-lm-'q~ g~o. 

(Here we used the second part of (11.2) in order to estimate the difference F1-F1.)  

Proceeding in the same way with 

= 0 -  ~ j  ( J - l )  and ej+l =E (j+2)/2, ~j 

we get, under conditions (11.1)-(11.2), that 

I(G~)m,~lc- < A~je-lm-~'o~g[o, 
m ?~ V I(x~)m,~lc~ < r-~A~je-' - I~ 

25J 1 'm n' 1 - A e . e  - I  - , o j +  K I(e •  r5 3 lo, Q 
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By (11.3)-(11.4) we get KlO<(1/r  

We now let G=G1 + . . .+ G j ,  U=e  X' ... e XJ and F ' :  F j + I. These matrices will satisfy 

the estimates of the corollary. [] 

5. T h e  i n d u c t i v e  l e m m a  

LEMMA 7". Let D be in normal form on an interval I with parameters C, K,  r, M,  N,  a, 

L, fl, A, and let a < b < c  be numbers restricted by 

1 b c 1 

TM3sM3 ~ a < 20sTM~ < IOOs2TM8, c ~ 5sM2sM 3 . 

Assume, as simplification, that 

I ~ L < . K ,  8<~M, 1 < C < 2 ,  r ,a ,  j 3 ~ l .  

Let F be a symmetric  matrix satisfying the shift condition. Assume that 

IFm,nlc~ < r K ~ Vv >~ O. 

Then there is a constant F=F(x ,T , s ,~ /o ,M) ,  superexponentially decaying in M ,  

such that i f  

[e I < r [  K N "  e -Nr  

then there is a smooth orthogonal matrix U, satisfying the shift condition, such that 

and 

I(U-I)m,nlc  < v ~  e- l '~-nlr'(K')  ~ 

U*(D+ F)  U = D'  + F ~, 

with D' in normal form on an interval I ' ,  with parameters 

C I= (1ArE1/2)C, K ' =  ( i / E ) C K ,  r l =  1 ~r~ 

A'= (~)M'c b ' M ' = M  sM3 ' N'_-- ( l /c )  a , 

L '  --  OZ = C c, K, ~' = cbK, 

and with 

[I'[ <. E b, 
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In addition, 

I E ( l w ) - E ( k w ) l < M ' K ~  b VleA'(k) ,  
r 

Q'(O)(RA'(k))C E Q(O)(RA(O) VOeI', 
I E A ' ( k )  

1 I D' is in normal form with the same parameters also on ~ I .  

Finally, if M ~ 2T then the closure of the sets 

{nw: IE(nw)-E(nw+lw)l  < 2M'(K/r )e  b} for all 4(l/A) ~+2 < Ill <~ M'N ' ,  

{nw: IE(nw)-E(nw+lw)[ < 2~ l/s} for all M ' N '  < Ill <~ 4(1/A') ~+2 

are unions of, respectively, at most  ~ -b/5sM2 and C -M4b many  components, each compo- 

nent being of length, respectively, at most ~ b/4sM2 and C 2Mab. 

In order to avoid any confusion, let us point out that  Q, Ai, 12i and Q', A~, ~ are the 

orthogonal matrix and sets referred to in the definition of the normal forms of D and D' 

respectively. ~, ~-, s are constants which are the same for both D and D'. 

Proof. In the sequel we shall, without further mentioning, denote by 9'4,h'5,..- 

constants that  only depend on x,  % s, "f0, M, and that  decay superexponentially in M. 

In the proof we shall verify several inequalities involving ~ and the parameters 

C, K, r, .... These inequalities will be fulfilled if F is small enough and it is important 

that  F does not depend on the parameters but only on x,  T, S, 9'0--we will not in general 

stress this any further. 

Construction of U and D'. Condition (11) is fulfilled with Q=r and K g = K  since 

. ( l a ' )  

(Here we used r~<1<C<2 and  <lZl.) So we can apply Corollary 6. Clearly U, D'= 

D +G and F '  satisfy the required estimates and it remains to verify that  D'  satisfies 

conditions (B) and (C) for the appropriate parameters. 

Construction of A~. We define an equivalence relation ~ '  on Z by declaring that  

two integers k and 1 are equivalent if Ik- I  I <2N '  and 

IE(kw)-E(lw)l  < 2 9 M K ~  b, 
r 

or if there is a sequence k=kl ,  k2, ..., k~+l =l such that  each consecutive pair (kj, ky+l) is 

equivalent in the first sense. This equivalence relation defines the decomposition U A~ = Z. 

We shall show that  condition (B) is fulfilled for any interval I '  of length <~b. 
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Verification of (B1). Let kEAi be given and consider a sequence of integers k= 
kl k2 ... kn, where Ikj-kj+ll<2N'. We shall show that  the number n of such 

integers must be <~M'/29M<~ �89 so assume that  n=M'/29M. 
We have that  

~I := M~ K g b  < c~ 
r 

if 

< (12) 

(For any given constant "Ys, (12) is fulfilled if F is small enough. Of course, it is sufficient 

that  v5=l/M ', but since we will refer to a similar condition several times we prefer to 

give (12) a more general form. This practice will be used in the sequel without explicit 

mention.) 

Any l=kj must satisfy 

IE(kw)- E(lw)l < 71 

so lwEmw+lI for some m e f ~  by (C1). Condition (C1) also implies that  the eigenvec- 

tor q~(0)eR a~+t-m for all ~EI.  In particular, E(lw) is an eigenvalue of Da,+Z-m(O)= 
D~((l-m)w). Since E(kw) is an eigenvalue of D~,(0) it follows that  (l-m)w must 

belong to the set 

{ x e I :  lu ,(x, 0)1 < n(16/r)M2}; 

the eigenvalues of Da, are bounded by C. 4/r<8/r since C<2 .  By (C2) and by Lemma 3 

there are not more than 

Ml := 2sM212(8M)2M2~(sM2 4- I )2 ,I, 4_ I] 

many components of this set, each component being of length at most 

Z \ T j  �9 

Hence, if l,'Jk then lw must belong to one out of at most M1M many intervals of this 

length--because ~ f ~ M  by (C3). 

Due to the size of the intervals and the distance between the kj's, no such interval 

can contain more than one number kjw since 

b > 2sTM2a, (13.1) 

/~ -M2+1 (13.2) cb/2 < ~6 g . . 
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This forces n to be smaller than M1M, which is smaller than M'/29M. (Here we use 

LIII<~3 and M>~8.) 

Construction of Qt. Consider now the block matrix (written symbolically) 

I "~ L)A_ 1 
= Q*DQ = Dho 

where each block is defined on I and of dimension ~ M. We now block diagonalize these 

blocks using Lemma 1 with d<~M and ~=(27K/r)cb: 

~176149 ~ / 
DA-1 

D=Q*DQ= Dio , 

DM "o�9 
where the blocks now decompose into subblocks 

~176 / 
DA~._I 

DA~ = DA~,o 

DA~,I 

~176 

Then Q) will be a block matrix over the decomposition [.J Ai=Z.  

Since 
27 

lDlv~ <~ 23K v and [D[c~ <<.--Kv=:C1K[, r r 
the decomposition into subblocks is constant over intervals of length 

~ ~b 
C1K1 

i.e. over the interval I ' .  Hence, two eigenvalues E(ko~) and E(nw) of a subblock DA~,~ (0) 

will be separated by at most 

4d~i ~< 2 9 M K e  b. 
r 



176 L.H. ELIASSON 

Since the blocks have diameter less than MN and since MN<2N'  if for example 

1 
E a < "YT~, (14) 

it follows that  k,.Jn. Hence, D(O) decomposes as blocks over the decomposition Z- -U A~ 

for all 0 E I ' .  

Let now Ek (0) be a continuous branch of an eigenvalue of DA(k) (0) starting at E(kw) 
for 0=0. Suppose that  (qk (0), G(O)qZ (0))50 for some O CI r, where qk (0), ql(0) are eigen- 

vectors corresponding to Ek(O) and Et(O) respectively. Then we know by Corollary 6 

that  

IE~(O)- Ez(O)I < c b, 

lk- l l  < + 2( M + 2)N. 

By (14) this implies--recall Remark 3 - - tha t  

IEk(O)-Ez(O)I<Eb+16Ke b and Ik- l l<2N' ,  
r 

i .e.k.,,rl.  Hence, also G(O) decomposes as blocks over the decomposition Z = U A  ~ for 

each 0EI  ~, so with Q'=QQ. we have 

- ,  r . D , r  Dr, D = ( Q )  Q = I I  h~" 

Verification of (B2)-(B4). If Qm,z Qz,n~0 then 

In-m] <. In-l[+]l-m] ~ M N + N  ~ N' 

under condition (14). This proves the first part of (B2)-- the second part is fulfilled by 

construction, because we have seen ~A~ ~<~M1 r. 

Assume Qm,lQz,n~0. For each m there are at most M different/ 's such that  Qm,l~0 

by (Ba), and for each l there are at most M different n's such that  (~l,n~0 because (~ is a 

block matrix with blocks of dimension ~<M. Hence, there are at most M 2 many n ' s - - th i s  

proves (B3). 

(B4) follows easily from Lemma 1 if 

c > 2(M2+M)b, (15.1) 

~b < ~/S. (15.2) 
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We now turn to condition (C). Let us first define E'(O) from E(O) by analyticity in 

the perturbation. 

Construction of ~ .  The set ~ is certainly not unique and we shall make a con- 

struction that  depends on a choice of kEA~--we denote by ~(k) the particular f~j con- 

taining A(k). 

Since the eigenvalues of D and D ~ differ by at most x/e C. 4/r it follows that  for any 

l~' k, 

[E( kw)-E(nco)[ < rl+c~' +v~ .16/r < 2~ < c~ 
IE'(la~)-E'(nco)l < a '  ~ and 

]E(lw)- E(nw)l < a ' + v ~ ' 1 6 / r  < Z(~', 

if (12) holds and if for example 2b<c<�88 Then nwEmnw+lI and lwEmtw+�89 for 

some mn,mtE~(k), and, as in the proof of (B1), nw-(l-mt+mn)oJ will belong to the 

set 

{x E I :  [uu(k)(x, 1-ml)l < 2d(16/r)M2}. 

This set has at most 3//1 (defined in the proof of (B1)) many components, each of length 

less than 

L \ r ]  \ ~  ] " 
This bound is < M if 

c > 2sM2b, (16.1) 

C c/2 < ~/9rM2~. (16.2) 

Hence, we can cover x:=Uleh~{nw:lE'(lw)-E'(nw)l<(~' } by <.M2M 2 many 

intervals--because r and ~ A ~ M M l - - e a c h  one of length A ~ and intersecting 

f~(k)~+ �89 If X1, X2, ... are these intervals, then the first condition of (C1) is fulfilled if 
t 1 t f~iw§ DUXj. The additional statement even says that  ' x ~iw+~I D(JXj, which will 

require no extra work. 

Let now 

A'(Xj) = {n: n+m E A'(m), for some mwEXj with inf IE'(lw)-E'(mw)l < (~'}. 
leA~ 

It is easy to see, as in the proof of (B1), that  #A'(Xj)<.MIM. In fact, if n,n'EA'(Xj) 
then [E(mw+nw)- E(kw)I <2~/and tE(m'~+n'w)- E( kw)l <2~? for some mw, m' ~EXy. 
By (12) it then follows that  (m§ and (m'§ will belong to a union of at most 

MM1 many intervals, which are of length <M if (16) holds. Now if n#n ~, then 

i(m§ § I >1 x eb 
(2M'N')  ~" 
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which is >~b if 

b > 2~-a, (17.1) 

s < ")/10. (17.2) 

Hence, (m+n)~ and (m'+n')w will belong to different intervals. 

Choose now kj such that XjCkj~+�88 for each j - - t h e  distance of kjw from Xj 
must not exceed, say, 2-48 b since we want [I'[ to be less than ~b--we don't require that 

kjwEXj but if it is then we can choose [I'I=8A'. 
If nEA'(Xj) then there is some mwEXj such that m+n~'m and 

Then 

IE'(lw)-E'(mw)i<a' for some 1EA~. 

IE(mw+ nw)- E( kw)l ~ IE(mw+nw)- E(mw)t + lE(mw)- E' (mw)l 

+lE ' (mw) -E ' ( /~ ) l+ lE ' ( lw) -E( lw) l  
8 , 8 

+lE(lw)-E(kw)l < z}+-v~ +a +-v~ +~, r r 

which is less than a under condition (12). By (C1) it follows that 

(m+n)wEpw+�89 for some pEl2(k). 

Since II(kj-m)wI[<c b and A~<II I it follows that (kj+n)wEpw+3I if 

~b < ~11A. (18) 

Hence, if we define [kj +n]a(k) to be this integer p--notice that it is unique by (C4)-- 

condition (C1) implies that 

VO E I. Q(0)(R i('~+~)) C R a(k)+m+"-[kj+n]"(~) 

By the construction of Q '=  QQ we have 

Q'(0)(R A'(m)) c Q'(e)(R c Q(0)(RA(m+n)) 
m - i - n  ~ t  m m-.I-w, ~ l  m 

C Z Rfl(k)+m+n-lkj+n]a(k) 
m + n ~ l m  

C E Rfl(k)+k~+n--[k~+n]a(k)+(m--k~) 
m+n~'m 

C R f~+(m-k~), 
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if 

So if we choose 

~D U [~(k)+kj+n-[kj+n]a(k)]. 
nEAt(Xj) 

a~ = a ( k ) +  U {kj + n -  [kj +n]a(k) : n �9 A'(Xj)} = a ( k ) + a ( k )  
J 

then condition (C1) will hold. 

Notice again that  A(k)w C 3 I i t h i s  will be used in the verification of (C6). 

Since 

# ~  ~< # f l ( k ) . # A ( k )  ~< M . M 2 M 2 . M M 1  < M', 

also (C3) will hold. 

For 11 #/~EA~, 

(Here we used that  M~>8.) 

X X 

I h - l ~ l  ~ ( 2 M ' N ' )  r ' 

which is >e b if for example (17) holds. Hence, each lw, IEA~, belongs to one and only 

one Xj.  We can therefore include among the kj's all elements of A~ assuring that  

Verification of (C5). In order to verify (C5) we must restrict the choice of the kj's. 

If XjNA~w={lw},  then we are forced to take kj=l.  If X j n A ~ m = o ,  then we have some 

freedom in the choice and we decide to choose k j w E X  d in such a way that  kj is as close 

as possible to A~. There are one or two such choices. (Indeed, suppose that  there are at 

least two such choices, kl and k2 say. Then 

e b t> I I ( k~ -k2 )~ l l />  

so by (17), 

X 

Ikl-k21" 

( ~  1/" > M' 1 = diam(A~). Ikl-k2[ >i f eb /  ~ 

This means that  A~ must lie in between kl and k2, which excludes a third choice.) 

If there are two, choose any one of them. It is an easy exercise, using the Diophantine 

property of w to show that  for any interval 11 of length ~> A' and any sequence of integers 

l, l§  l, ..., l+n of length 
21r (27r'~ ~'+1 

~ t , ~ )  ' 
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there is (at least) one integer k in this sequence such that kwEI t. Hence, we can choose 

the kj's so that 
2~ ~2u~  r+l 

dist(kj,A~) ~< x ~.~' ] " 

Then 

_< �9 t 2 w  2 ~  r+l d i a m ( ~ )  -.~ dlam(Ai) + 2 ~ -  ( ~ 7 )  § ( 1 / ' + 2  

under conditions (17)-(18). 

Verification of (Ca). This is somewhat delicate and we will have to change the choice 

of the k j ' s - - in  order to guarantee that  fl~DA~ we are not allowed to change those kj 's 

that belong to A~--in order to cover Xj by kjw+�88 with [I'[<r b, we must keep kj~ at 

distance less than 2-4e b from Xj--in order to keep the bound (C5) we cannot increase 

the kj 's too much. 

Suppose that the intervals {row + I t: [m- kj [ ~ 2M~N ', j/> 1 } are not pairwise disjoint. 

Then there are two kj's, k~ and k2 say, such that (kl+nl)w+F and (k2+n2)~+I' 
intersect for some In1], In2[ ~< 2MtN t, i.e. 

[[klw-(k2+n)w]] < ]I'[, [nl = [n2-n , [  <,.4MtN'. 

This implies that  

Ikl -k21>~ (-~-b ) l /~-4MtN `, 

which is >2M~N ' under condition (17). In particular, both kl and k2 cannot belong 

to A~--if one does, let it be k2 say. Moreover, 

(k2§247 l.9I'DklW§188 X1, 

and for all Ira[ <4MtN t, m?tn, 

under (17). 

x At/>1 ~ c a  r>>cb 
(8M'N')  ~ 2 (8M') ~ 

Hence, if we replace kl by k2+n--s t i l l  denoted k l - - a n d  increase I '  to 9I ' - - s t i l l  

d e n o t e d / ' - - w e  can assume that 

and 

{mw+I': [m-kj[ <~ 2MtNt, j =  l,2} are pairwise disjoint, 

k l ~ +  �88 k2~+  �88 D X1 UX2. 
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It is now sufficient that the intervals {inca + I': Ira- ka I < 4 M'N ' ,  j ~> 2} are pairwise 

disjoint. If they are not, then there are two kj's, k2 and k3 say, such that (k2+n2)w+I  t 

and (k3+n3)w+I'  intersect for some In21,1n31<~4M'N', i.e. I Ik lw-(k2+n)wH<lI '  I for 

I nl = In3- n21~ 8M~N '. Now we proceed inductively. Hence, by changing those kj's that 

do not belong to A~, and increasing the size of I ~, we can achieve that 

and 

{mca+II}lm_k~l<.2M,N,,j>~l are pairwise disjoint, 

U ky+�88 U xj. 
j/>l j/>l 

Since the number of k3's is less than M2M2<<.Mt-1, the kj's increase by at most 

4MIN'  + 2.4MINI + 22.4MINt +... + 2M'-1 .4MIN l <~ 2M' + 2. M ' N  ', 

and therefore 

dist(kj, A~) ~< 2 x \ ~' ] 

under condition (17)--hence, (C5) still holds. 

Since we can start the induction by an interval I ~ of size 8)~ ~ and since the interval 

increases at most 9 M'-I  times, it will remain smaller than ~b. 

Finally, if dist(n, f ~ ) < N '  it follows that 

if 

This proves (C4). 

dist(n, {kj: j />  1}) < N'+M'N'+diam( f~(k ) )  <. 2M'N '  

ea < 9'12)~. (19) 

Verification of (C2). Let us denote f~(k) and A(k) by ~ and Ai respectively, so 

that f ~ = f ~ i + A i .  The construction of ~i together with condition (C4) imply that f~i+k 
and f~ i+ /a re  separated by at least N sites, unless k=l.  Hence, by condition (A), 

D(e)a: = H D(e)a~+k 
kEAi 

for all 8. Hence, 

u ~  ( x, t~ ) = Res( det ( D ( O + x)a~ - t I), de t (D(~)a~- t I ) )  

= H Res(det (D(O+x)a,+k- t I ) ,de t (D(~)a~+l- t I ) )  
k,lEAi 

= I I  
k,lEAi 
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By Remark 4 we have, for ~ fixed, that 

[u~lc ~ < (4CM)2M2(L') ~ Yv >~ O, 

and applying Lemma 4 gives 

1 O~un~(z,O)[ >~2/~', max 
O•.•s(M') 2 (v!)2(L') ~ ) 

since 
L sM2 (Mt/M)2(8(M')2+l) ) e b < Y~3 -~ 

What we want is an estimate for u~', which is defined as u ~  but with the matrix D' 

instead of D. For this we only observe that, for O fixed, 

[U~ --ufl: [C~ < (4CM') 2(M')2 v~ (KP) ~, 

which is <~bK~ for all u<.s(Mp)2+l, if 

! > b+(s(M')~+l)c, (21.1) 4 

C1/4 < 714" (21.2) 

This implies the second part of condition (C2). 

Using the estimate of [u~ Ic ~ obtained from Remark 4, Lemma 4 gives an estimate 

of [u~ Ic ~. The estimate of [ u ~ - u ~  [cv above now gives the first part of (C2) if for 

example (21.1) holds. 

Verification of (C6). The first part follows exactly as in (C2). As for the second 

part we let / -1 
vni(Y'O)----u~(Y'O)( ~ne NY+(m-n)w[[ " 

If we notice that u~(y,  0)EO([y[ #n') then we have, for [y[< 4 [I[ fixed, that 

M2 1 2 

<: (8M)  2M2 (sM')4M(L')M(L') v Vv~<s(M')2+I, 

where we have used (C4) to estimate I[Y-(m-n)wti from below by ~IlI~>~A when rn~tn. 
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Let now 

v ~ : ( ~ , 0 )  = 1] 
k,lEAi 

and observe that  if xEI', then 

vn,(x+(k-O,,,, o+lo~) 

4 I Ix+(k-l)o.,l < I/'l+~lll < NIl 

if (18) holds--recall that AiwC 31. By Lemma 4 we get that  

[ 1 v , max O~ vn 2j3', O~<8(M') 2 (v!)2(L,)~ ,(x,O) ~> 

since 

Hence 

1 /" )~ 2M2 [ ' L \ S M 2 \  (MTM):c(~(M')2+I) 

) 

o.<~.<~(M')~ 1 IIx+(k-0~N). max (ul)2(L,)vO~un;(x,O)l>~213'(k,t~en~ 

If we notice that  u ~  (x, 0) E O (ix] #n~), then we have, for x fixed, that  

( (v+M').I 2 , M' =H#f~_ (4CM,)2(M')2 -~, ) ( g )  [["-tt v [u~,-un; [cv < \ (K') ~ 

for all v~>0. Now this is bounded by 

(4CM')2(M')~(sM')aM'(K')M'IIxH#n',v~(K') u Vu~ s (M' )2+I ,  

and since 

this is less than 

t 
min H(k-1)wiI ~ I I'] >~ (~)M b k#le~ 

H Hx+(k-l)wll) ebK~ Vv<~s(M')2+I' 
k,lEf~ 

if 

(20') 

�88 > b((M')2+l)+(s(M')2+l+M')c, 
E I/4 < 7 1 6 ( 1 / K )  M' , 

This gives the second part of (C6). 

(21.i') 
(21,2') 
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The additional statement. This is just a formulation of the construction made in the 

proof. 

The final statement. This is the only part  where we use condition (C6). Consider 

{ { n ~ :  IE(nw)-E(nw+l~)l  < 277 = 2M'(K/r)r 

4(1/A) ~+2 < Ill M'N'. 

Divide T into intervals of length r~/16K and choose a k~ in each interval. For any n 

the minimum of IE(nw)-E(kw)l over all such k is <�89 If now 

[E(nw)-- E(nw+lw)l < 2rl, 

then by (C1), noJemw+�89 and (n+l)w�9189 for some m,m'eg~(k). Hence, 0= 
(n -m)wEI  belongs to the set 

Z := {0 �9 I :  lUg(k)(x, 0)[ < 2rl(16/r) M2 }, 

where we have put x=(l-m'+m)w.  
For any ml ,  m2E~(k)  we get by (C5) that  

0 < II-m'+m+(ml -m 2 ) l  < M'N'+4(1/A) ~+2, 

which is less than 2M'N' under (19). Hence, we get that  

X 
Nx+(ml-m2)~ll/> 

(2M,N,)~" 

Using now (C6) together with Lemma 3 we find that  Z has at most 

many components, each of length less than 

which is <• b/4sM2 under condition (13). 

Since #12(k)~M,  since the number of l's is less than 2M'N' and the number of k's 

is less than const.K/rc~, we get the result if 

b > 20srM4a, (22.1) 

~b < .717(roL/K)IOsM2 (22.2) 

The estimate of the second set is completely analogous-- i t  is here we use that  

M >i 2 T. [] 
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6. P r o o f  of  t h e o r e m  

PROPOSITION 8. Let D be in normal form on an interval I with parameters C, K, r, M, 

N, a, L, ~, )~, satisfying the assumptions 

I<L<~K,  max(8,2~-)~<M, 4 < C < 5 ~ ,  r,c~,j3~<l, 

and r N = l .  

Let F be a smooth symmetric matrix satisfying the shift condition. Assume that 

A < lxl < Z/L, 

IF,~,~lc~ < ee-~'~-~J~K ~ Vv >t O. 

Then there exists a constant F~--F~(x, ~', s, ~0, M ), superexponentialIy decaying in M, 

such that if 

I l<r'\ e 

then there is a smooth orthogonal matrix U, satisfying the shift condition and such that 

U * ( D + F ) U = D ~ ,  

where D~(O) is a norm limit of matrices with pure point spectrum. Moreover, D~(O) 

is pure point with finite-dimensional eigenvectors for a.e. 8, and the measure of 

q ( D ) k a ( D + F )  goes to 0 as e-~.O. 

Proof. Let us choose 

aj 
C j + I = ( X - ] - ~ I / 2 ) C j ,  K j - } _ I = ( 1 / ~ j ) c j K j ,  r j+ l - -~-c j  , 

(I~MJ+I bj sM] 
"~j+l = \'~1 r , Mj+I = M~ , Nj+I = (1/r ~ , 

- -  C j  aj+l -- ej , Lj+I = Kj, Zj+I = r Kj,  
1 f 1 ",aj/2 

s ~ Ej 

where we let CI=C, K I = K ,  ... be the parameters  of the normal form DI=D,  where 

~1 = e  and 

a j = - ; k - ~ j j  , bj=2OsrM]aj,  cj=-~sk--~j ] . 

We choose 
1 

= exp . . . . .  exp(AM4),  A -- A(~,  ~-, s, ~0), 
F ' ( M )  
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in such a way that  for all j~>0, 

r'(Mr >/( l le)  O/r'cMD)'/2, 
sM~* 

r ' ( M y m  < (i/~) e '+', 

r'(Mj) ~< r(Mj), 

where F is the constant in Lemma 7. 

We shall show that  for all j >~ 1, 

�9 . T Y 2 e esM3~ 

k, KjN~ 

This implies that  

< , 

so aj decays very rapidly. 

Let us assume that  the inequality holds for j and then prove it for j + 1. If it holds 

for j then 

sM4 
/ a  ~ r r ~ T  2 Ne  e 34-1 

3+1/ / -P---------DT---r e | 
\ zXj+llVj+l / 

(1)  (1/r'(Mj))aff2 (1 "M4+l 
, 
[,ej 

I/Stl\Mi+1~'2\e e'M~+' !(1"L~%/a4,~j, ~e" ,M}+, �88176 
>~ Ej ~Ej ~ ~) ) /> ~j ~3 , 

which is greater than aj+l.  Hence, the basic smallness assumption of Lemma 7 is 

fulfilled--all other assumptions of that  lemma are immediate. 

By Lemma 7 there is for each j ~> 1 an orthogonal matrix U s satisfying the shift 

condition and such that  

and 

I ( U j - I ) m , ~ l c ~  < , ~/~= e - l m - " l ~ + ~ K  ~ v ~3 j+l 

(UI'..." Uj)* (D+ F)(U1..... Uj) = Dj+I + Fj+I, 

where Dj+I is in normal form with parameters Cj+I, Kj+I ,  r j+l ,  Mj+I,  Nj+I,  a j+ l ,  Lj+I,  

~j+l,  Aj+I, and where 

I(Fj+I)~,.Ic~ < ~j+le-lm-nl~J+~K~+p 
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Hence 

U1.....Uj--+U, Fj--+O and Dj--+Do~ 

in norm, and it remains to check that  D ~  is pure point. For this we need the additional 

and final statements of Lemma 7. 

Clearly there is a uniform limit 

E' (0) ~ E ~ (o) 

which describes the spectrum of Doo (0) - - i t  is the closure of the image of E ~176 Consider 

now the closure ZJ of the set of all 0 such that  

IE~(O)-Z~(O+l~)l < ~Vj for some 4 ( 1 / ) , S + ~ <  lzl < M~§ 

or  

3 i / 8  lEa(0)-E~(O+l~))l < -~j for some Mj+INj+I < Itl ~< 4(x/Aj+IY +2, 

~7j=Mj+I(Kj/rj)~ j. According to the final statement of Lemma 7 this set where is of  

measure less than 
. bj /2OsM 2 

cons~, ej 

From this we conclude that  for a.e. 0 each O+koa will belong to only finitely many 

ZJ's. Suppose 0=0 is of this sort, i.e. for all k there is a jo(k) such that  kw~Z j for 

j~jo(k). Hence, for such j 's ,  

IE~(koJ)-EJ(koa+l~)l ) 2~j for all 4 (1 /Aj ) '+2<  IZl < Mj+Nr 

and 

>~ i / s  IEJ(koa)-EJ(kw+lw)l ~ 2:j  for all Mj+INj+I < I/]-< 4(1/~j+1) ~+~. 

This implies that  AJ(k)C[k-4(1/Ajo(k))r+2, k+4(1/Ajo(k)) ~+2] for all j>~jo(k). 
blocks A j (k) therefore become eventually stationary: 

AJ+m(k)=AJ(k) Vj~jl(k), 

The 

and D(0) is pure point. (Here we used the first two additional statements of Lemma 7.) 

The same argument works for an arbitrary 0 and shows that  D(0) is pure point for 

a.e. 0. One only needs to convince oneself tha t  when we shift base point on T from 0 to 
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00 then Z~o = Z  j -00. In order to see this, observe first that  if D is in normal form on an 

interval I with orthogonal matrix Q, block decomposition Z =  [.J A~, spectral function E 

and sets {~i}, then D(O)=D(O+kw) will be in normal form with corresponding objects 

I, TklQTk, U( Ai - k ) ,  F,(O)=E(O+kw), {hi-k}, 

where Tk is the shift by k sites. (But /9(0)=D(O+O0) may not be in normal form for 

arbitrary 00.) 

The D' obtained by Lemma 7 is special however. If ~0 is given, choose k so that  

Ilkw-~oll<~]I'l. Then D'k~(O)=D'(O+kw ) is in normal form on I' and on �89 is 

the third additional s ta tement- -wi th  

T[IQTk, U ( A , - k ) ,  E~(~)=E'(O+kw), {f~i-k}. 

Then it follows that  D~0(t?)=D'(O+00 ) is in normal form on 3I '  since 

(kw-00)+  1~(~I)D3 ' �88 and (k~-Oo)+(3I')cI '. 

Moreover, E'(O+0o) is a spectral function for D~o. 

Hence, we can choose a sequence kjw such that  ]lkjw-OoH < ~lIjl. T h e n / ~ o ( 9 ) =  

DJ(0+O0) will be in normal form on 3Ij with EJ(O+Oo) as spectral function, and 

D~o(~)--*D~o(O)=D~(O+Oo) and EJ(O+Oo)--*E~(O+Oo). 

Hence E~o (O)=E~176 and ZJoo=ZJ-Oo. 

Finally, the resolvent set of D3+l consists first of all of a modification E}+ 1 of all 

the gaps of De under the perturbation Fj,  and secondly of newly created gaps which are 

contained in the image under EJ of the set of 0 such that  

IE j (O)-EJ (0§ < 2~j 

for some III<~Mj+INj+I. These contributions are easy to estimate and the estimate 

converges as j--*cr to something that  goes to 0 with ~. [] 

Proof of theorem. In order to prove the theorem we first observe that  we can assume 

that  IEI<I ,  so we can take -~<C< 5. 

Now we let D(O)=diag(E(O+nw)). It satisfies condition (A) for g of the theorem, 

for N =  1, and for r= 1. 
If we let I be any symmetric interval around 0, A(k)={k} for all k, and if we let Q 

be the identity matrix, then also condition (B) is fulfilled for N--1 and any M~>I. 
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Let now 

By Lemma 3, 

\ I Ks+l ((s+l)])  2 ) 
M=maxf2S+4C 2T, 8 . 

IE(O)-E(kw))l >~ a 

outside a set of at most M many intervals, each of length at most 

l(o~):=2 (2~ 1/s 
K~, ~ " 

By taking a small enough we can assume that  each interval is separated from any other 

by a distance ~>4l(ao). Choose then a even smaller so that  

27r(2r~ '~ r+l ( 1 ~+2 

7 t, zT-(-(a7) "< t, aTCa-7) 
and 

/7 
4/(a) ~< 7 '  

where/3, L will be defined below (independent of a). 

We choose a mw in each such interval with the integer rn as close to k as possible, 

7 t,/-TA-7) ' 
and we let f~(k) be the set of such m's. Then (C1) and (C3)-(C5) are fulfilled for M as 

above and for A=ili<~41(a). 
The first part of (C2) and (C6) holds with L = K - - b y  Remark 4. By Lemma 4, the 

second part of (C2) and (C6) will be fulfilled for 

4 8 M  2 

( 
~= \ e ]  \(CK(sM2+I)=)=K*(s!) 2 

as in the verification of (C2) and (C6) in Lemma 7. 

With this choice of parameters, D(8) will be of normal form and satisfy the assump- 

tions of Proposition 8. The perturbation 

F(O) = 

satisfies 

:i:) 
"~176 

- e  0 - e  0 

0 - e  0 - e  

[Fm,,Ic~ < (ee)e-I '~-" l rK ~. 

Now the theorem follows from Proposition 8. [] 
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7. S o m e  further properties 

We have not studied the spectrum as a set, nor the occurrence of gaps-- these  play no 

role in the proof. One would, however, expect that  gaps occur (at least for analytic 

potentials) and that  the spectrum is a Cantor set. 

We want to discuss the continuity of the eigenvalues as functions of 8. Since Dj (8) 

is smoothly conjugated to a block matrix with finite-dimensional blocks, there are con- 

tinuous choices E~(8) of eigenvalues of Dj (8) on T \ { p o i n t } - - w e  don't  claim that  they 

are continuous on the whole of T.  We can choose the continuous branches in such a way 

that  E~(0)=EJ  (kw) and 

IEJ(8)-E~+I(8)I  ~< IDj(8)-Dj+I(8)I < const, v f ~  
2 " r j  

It follows that  there are continuous choices of the eigenvalues of D~(8) ,  and hence of 

D(8)+F(8). This analysis, however, does not permit us to conclude anything about 

smoothness. 

Another question we like to address is the multiplicity of the spectrum. The "almost 

multiplicities" we have been dealing with are unbounded, but in the end the true mul- 

tiplicity is always one. Indeed, if D ( 0 ) §  had a double eigenvalue E~(O)=E~(O) 
there would also be two orthogonal eigenvectors, q~  (0) and q~(0).  This means that  

--e(U~+I + U~--O+ Vnun = ZUn (,z) 

has two independent solutions in /2(Z)  when z=E~(O)=E~'(O). But if (*z) has two in- 

dependent solutions in 12(Z) for one z then this will be the case for all z - - see  for example 

[3, p. 245], where the proof in the continuous case translates directly to the discrete case. 

But for sufficiently large Izl the equation is reducible to a constant-coefficient equation 

so there are no solutions in /2 (Z)  at all. Hence, the spectrum of D ( 0 ) + F ( 0 )  must be 

simple. 

Since our approach permits us to analyze the system for all 8 to any degree of ap- 

proximation, one can use it to t ry  to understand the equation also for 8 in the exceptional 

measure-zero set. We expect that ,  for generic 8 and for generic potentials (in the Gevrey 

class we have studied, or perhaps in some weaker Gevrey class), the blocks do not become 

stationary but continue to increase and give rise to eigenvectors in l ~ (Z) and a singular 

continuous spectrum for D(8)+F(8). (A result of this type has been announced in [9].) 

As for the exponential decay of the eigenvectors, we have not provided any proof of 

this. The reason why we don't  immediately get such decay is that  the parameter r j ,  with 

which we measure the exponential decay, decreases in order to control the factor e N~r~ 
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appearing in Lemma 5. This cannot be avoided since r is a global parameter, measuring 

the minimal exponential decay of all the eigenvalues--therefore it must decrease to zero. 

However, if we measured the exponential decay of eigenvectors associated to a given block 

AJ (k) we would probably see that  the decay stops once the blocks become s ta t ionary--  

only a very small decay, which does not go to zero, will be required by the construction 

in Corollary 6. 

Considered as a dynamical system on T • SL(2, R) the theorem implies, by Kotani's 

theorem [1, Proposition VII.3.3], that  the skew product 

u' 

has non-zero Lyapunov exponents for almost every )~. 

Appendix 

LEMMA g l .  There is a C~ r on R,  supported in [_1, �89 such that 

for some 70>0. 

Given two intervals I2 c I1 with dist( I2, 011) >~5. Then there is a smooth function 

r of compact support in I1 which is - 1  on I2 and such that 

w > o .  

Proof. The class of all C~-functions satisfying such a bound is not quasi-analytic 

[13, 19.11]. Hence it contains a non-zero function r which satisfies this bound for some 

70>0 and which is compactly supported [13, 19.10J--by a scaling we can obviously 

assume that  it is supported in [-�89 �89 Then if we take r162  and replace Vo by a 

suitable larger constant we have our function. 

By multiplying the function by an appropriate constant we can assume that  its 

integral equals one. We localize then our function on the left component of/1 \I2. Since 

such a component is of length at least 6, it will satisfy 

70 (7o " w >0. 
Ir < T 6 / 

We now define r on the right component in the same way, but negative, and then we 

take the primitive of this function. [] 

Let now uj be a sequence of smooth functions defined on an open interval I. 
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LEMMA A2. Assume that l u j l c v<CjK  ~ Vu)0.  Then for all u )O,  

lu~ "...'ujIc~ < 4a-1 (C1 "..." C j ) K  ~, 

I e~, lc~ < e 4c,K~, 

1 1Vr-4-~ Ic~ < ~ K ~ 

< ~ 7C~K 

i f  C1 < l , 

i/Iu~I >6. 

Pro@ 

" [ ' v~n ,_ iu  niu I ( C i C 2 ) g , ( u ! ) 2 ~  (i!)2((u-i)!) 2 
IO"(u,u~)l= t j ) "  ' '  '1 < 

_ ~ = o  ( u ! ) ~  ' 

and the result for J = 2  follows since ~ i ~ 0  (~) -1<4  for all u - - jus t  notice that  (~) ~>2 i if 

i~< �89 For J~>3 the result follows by induction. 

We use the power series expansions of e" and ~ which converge absolutely in 

lul<cx~ and in lu l< l  respectively, to prove the second and third estimates. 

Notice that  lu11>6 implies that  C1>6. By a scaling we can suppose that  6=1 and 

C1 )1 .  The fourth statement is obvious for u=0  so we proceed by induction. Hence 

Ov 1 = 1 

i = 1  ( u ! ) 2  

< (u!)2(4C~K) ~. [] 

Remark. The preceding lemma is valid also for matrices if we understand by 1/u 

the inverse of u, and if we use the operator norm satisfying 

I~vl < M" Ivl. 

LEMMA A3. Let v 1, . . . ,V  d be a basis of I:t ~ for O E I c R ,  d>.2, such that 

Iv"lc~ < C K  ~ V u ) O ,  
1 

I(v m, v n) Ico< 4d23a+------- ~ ,  m r n, 

1 1 
4d23a+---------- ~ < Lvmlc o < 1-t- 4d23a+------ ~ ,  
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for all m,n and for C>~I. Then the orthonormal basis Ol,...,od obtained by Gram- 
Schmidt orthogonalization verifies 

I~mlc,. < (dS~CK)" 

Proof. We have 

Vv~>0. 

1 ) (CK)'. 
[vmIC. < 1-~ 4 d 2 3 d +  4 

By Gram-Schmidt we first obtain an orthogonal basis 91, .-., ?~d, and if we define 

{ w l  ~___~I=vl  

w,'~ = Iwl  [2..... i~,~-~ 12.w, 

then these vectors will satisfy 

1) 
wm=lwll2.....lwm-l[ 2 v m_ ~ (vm,wJ) l-~12 wJ . 

j = l  

(Notice that  there is no division in this formula.) From this we get by induction, using 

Lemma A2, 

which gives 

Iw~lc. < Cm(CK) ~', 

Cm =mdm42m-2(C1 "..." Cm-1)2C1, C 1 -~- 1 ~ - - -  
1 

4d23d+ 4 < 2, 

Cm ~ ( 42m-2mdmCl )3m-2 C~'3m-2 ~ (42mmdm) 3m-2. 

It follows also that,  for each m, 

and from Lemma A2 that  

w m  C ~ 
x/(w m, win) < (46dC3CK) ~" . [] 

Polynomials. Let P(A, 8) be a polynomial in A of degree d with leading coefficient 1, 

smoothly parametrized by ~EI,  and satisfying 

IP(A,.)Ic.<CK" W,~>O, 

in a disk IAi < R  of radius R. Assume that the roots {Em(~)}l d are real and lie in IAI < R -  1. 
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LEMMA A4. If  the roots belong to two groups, 

El(O), ..., Ek(O), 

Ek+l (O),..., Ed(O), 

such that any root of one group is separated from any root of the other group by at least 

5< 1, then the polynomial 

k k 

II (~-Em(Ol)= Y~ ek_~(O)~J 
m = l  5=0 

satisfies 

le~lcv < 4d+aRC 2 d + 2 c  K . 

Proof. Choose a curve A(0) in [A[< R -  �89 piecewise constant in 8, keeping a distance 

>/�89 to all the roots E1(8), ..., Ed(8) of P(A, O) and surrounding the first k of these roots. 

A(0) may consist of several components so we can choose it to be of length at most drr& 

Then we have for all AEA(0), 

IF(A, 0)1/> (�89 d = 0, 

1 <1 

P(a, . )  e~ < 4 2 c -  ~ C K  , 

where the second and third estimates follow from Lemma A2--we have used the Cauchy 

formula to estimate IPa(X, ")It- on I~l<R-�89 
Consider now the power symmetric functions in the first k roots: 

pj(e) = EI(0F +...+Ek(0)5. 

We have the integral representation 

(o) P($, 0) dA, 

from which we get 
C 4C 

IPjlc~ < 4d5 K R 3. 
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The ej's are the elementary symmetric functions in the first k roots and we have the 

relation 
'Pl 1 0 l 

(-1)~ |p~ pl 2 
ej--- j! det /piP3 P2 Pl 

for j /> l  [11, p. 20J--of course e0=l .  

: : ". " . .  

pj-1 pj-2 pj-~ ... 

So j! ej is a sum of at most j! many products 

P~I"...'P~z, tl+...+ez=J<~ k<d, 

each with a coefficient that  is at most ( j - l ) ! .  From Lemma A2 we now get the estimate 

we want. [] 

Symmetric matrices. Let D(0) be a symmetric (dx d)-matrix, smooth in the para- 

meter eeIca ,  and let {Era(0)} d be its eigenvalues and {qm(0)}d the corresponding 

eigenvectors. The eigenvalues and eigenvectors are smooth in 0 when all eigenvalues are 

simple. The eigenvalues can in fact always be chosen to be continuous, and even C 1 

[10, p. 122], in 0, but this is not the case for the eigenvectors. A noteworthy exception is 

when D is analytic in the parameter because then the eigenvalues and the eigenvectors 

are analytic [6]. For example, if D=Do+cD1 with Do diagonal, then the analyticity in 

gives a unique choice of the eigenvalues. 

We always have estimates of the first derivative OXEm in terms of D. 

LEMMA A5. 

IE~(e)I~<ID(O)I and IOE.~(e)I~<IOD(O)I. 

Proof. Let qm(O) be the eigenvector corresponding to Era(O). Then 

(0(0)-E1 (0)I) q1(0) = 0 

and if we take the scalar product with ql(O) then we get an estimate of El .  

If we differentiate the relation and take the scalar product with q1(8), and use that  

the eigenvectors are orthogonal, then we get an estimate of OE~. [] 

For higher-order derivatives we have no such estimates. For example, if 

:o) 
then E I ( O ) = = I = ~  and, hence, 02El=• 



196 L.H. ELIASSON 

References  

[1] CARMONA, R. ~s LACROIX, J., Spectral Theory of Random SchrSdinger Operators. Birk- 
hs Boston, MA, 1990. 

[2] CHULAEVSKY, V.A. ~: DINABURG, E.I. ,  Methods of KAM-theory for long-range quasi- 
periodic operators on Z ~. Pure point spectrum. Comm. Math. Phys., 153 (1993), 
559-577. 

[3] CODDINGTON, E. A. • LEVINSON, N., Theory of Ordinary Differential Equations. McGraw- 
Hill, New York-Toronto-London, 1955. 

[4] ELIASSON, L.H., Floquet solutions for the one-dimensional quasi-periodic SchrSdinger 
equation. Comm. Math. Phys., 146 (1992), 447-482. 

[5] FOLLAND, G.D., Introduction to Partial Differential Equations. Princeton Univ. Press, 
Princeton, N J, 1976. 

[6] FRIEDRICHS, K. O., Perturbation of Spectra in Hilbert Space. Amer. Math. Soc., Providence, 
RI, 1965. 

[7] FROHLICH, J., SPENCER, T. ~z WITTVER, P., Localization for a class of one-dimensional 
quasi-periodic Schr6dinger operators. Comm. Math. Phys., 132 (1990), 5-25. 

[8] JITOMIRSKAYA, S. YA., Anderson localization for the almost Mathieu equation: a non- 
perturbative proof. Comm. Math. Phys., 165 (1994), 49-57. 

[9] JITOMIRSKAYA, S. ~ SIMON, B., Operators with singular continuous spectrum, III: almost 
periodic SchrSdinger operators. Comm. Math. Phys., 165 (1994), 201-205. 

[10] KATO, T., Perturbation Theory of Linear Operators. Second edition. Springer-Verlag, 
Berlin-New York, 1976. 

[11] MACDONALD, I. G., Symmetric Functions and Hall Polynomials. Clarendon Press, Oxford, 
1979. 

[12] PYARTLI, n.  S., Diophantine approximation on submanifolds of Euclidean space. Functional 
Anal. Appl., 3 (1969), 303-306. 

[13] RUDIN, W., Real and Complex Analysis. McGraw-Hill, NewYork-Toronto-London, 1966. 
[14] SINAI, YA. G., Anderson localization for the one-dimensional difference SchrSdinger oper- 

ator with a quasi-periodic potential. J. Statist. Phys., 46 (1987), 861-909. 

L.H. ELIASSON 
Department of Mathematics 
Royal Institute of Technology 
S-10044 Stockholm 
Sweden 
hakane@math.kth.se 

Received February 20, 1996 
Received in revised fo~ra November 6, 1996 


