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In tro d u c t io n  

One of the main purposes of this article is to make rigorous the old heuristic relation 

between holomorphic dynamics near an indifferent fixed point and dynamics of analytic 

circle homeomorphisms. This folkloric relation has long been known to specialists of the 

subject. For instance, V.I. Arnold in the introduction to his celebrated paper "Small 

denominators I" [Arl] writes: 

"... The problem of the center is a singular case of the problem 

of a map of the circumference into itself whose radius, in the singular 

case, is equal to zero ..." 

In other words, an analytic circle diffeomorphism of an imbedded circle in C looks 

like an indifferent fixed point from far away (it is easier to "see" this for myopic people). 

It is also well known that  this heuristic relation is very fruitful. Almost all the 

techniques that  have proved useful in one of the problems have also been successfully 

applied to the other. This includes KAM techniques (see [Bo]) and more recently the 

geometric techniques initiated by J.-Ch. Yoccoz ([Yo3], [Yo4]). In both cases the proofs 

of the results deal with difficulties associated with "small divisors" and are long and 

technical. The geometric construction we present can be applied to avoid repetition of 

proofs. The cornerstone of this geometric construction is the following theorem. 

THEOREM 1 (semi-local invariant compacta or Siegel compacta). Let f ( z ) =  

Az+O(z2), IA]=I, be a local holomorphic diffeomorphism. Let U be a Jordan neigh- 

borhood of the indifferent fixed point O. Assume that f as well as f - 1  are defined and 

univalent on a neighborhood of the closure of U. Then there exists a set K such that 

(Figure 1): 

(i) K is compact, connected and full (i.e. C \ K  is connected), 

(ii) OEKCU,  

(iii) K n O U # O ,  

(iv) f ( K ) = K ,  f - I ( K ) = K .  

Moreover, if f is not of finite order, f is linearizable at 0 if and only if OE/~'. 
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Fig. 1 

We will call the compact sets K obtained from this theorem Siegel compacta, since 

they can be viewed as degenerate Siegel domains. Recent work shows how fruitful this 

point of view is ([Pe6]). When the fixed point is indifferent irrational and K is not 

contained in the closure of a linearization domain then K is called a hedgehog. This 

theorem can be compared with G.D. Birkhoff's theorem for surface transformations 

f having a Lyapunov unstable fixed point for f and f - 1 .  Birkhoff shows ([Bir D the 

existence of such a compact set K+ (or K_) which is positive (or negative) invariant 

by f ,  i.e. property (iv) is replaced by f(K+)cK+ (or f-I(K_)CK_). In this general 

setting there is no totally invariant compact set, as the case of a hyperbolic fixed point 

shows. 

Our theorem asserts that Birkhoff's theorem can be improved in the holomorphic 

situation to obtain a totally invariant compactum. The proof (w does not involve 

any technique unknown to Fatou or Julia. It is quite surprising that  it has been ignored 

for so long. There is a short proof of the theorem using small-divisor results (w167 II.3 

and III.2), but it is definitely not a small-divisor theorem. We give another elementary 

proof (w which consists of the semi-local extension of the classical study of Leau and 

Fatou of parabolic fixed points. These are the only proofs known to the author of the 

existence of Siegel compacta. The Siegel compacta thus obtained are related to Siegel 

disks, similarly as Aubry-Mather  sets are to KAM invariant curves for a twist map of 

the annulus. 

This theorem answers a question in the book Celestial Mechanics by C.-L. Siegel and 

J. Moser ([SM, Chapter III, p. 187]). In the terminology of these authors, the existence 

of the totally invariant compacta of Theorem 1 shows that  an indifferent fixed point for 

a holomorphic map is always mixed, i.e. in any neighborhood of the fixed point there 

exist points distinct from the fixed point itself, whose full orbit (positive and negative) 

is contained in the neighborhood. 

Using these compacta we can now associate an analytic circle diffeomorphism to an 

indifferent fixed point. Let K be a compact set given by the theorem associated to a 
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g=h-lofoh 

Fig. 2 

small disk U centered at 0. Consider a conformal representation (Figure 2) 

h: C - D - - *  C - K ,  h(cc) = co, 

where D is the unit disk and C is the Riemann sphere. 

The map g=h- lo foh  is univalent and well defined in an open annulus surrounding 

D for which S l = 0 D  is a component of its boundary. Using Carathdodory's extension 

theorem and Schwarz's reflection principle, it is now straightforward (w to prove that  

g extends continuously to an analytic circle diffeomorphism of S 1. The main property of g 

is that  its rotation number Q(g) is equal to (~ where f(z):e27riaz'~-O(z 2) (w A more 

precise version of this construction is done in w167 III.3 and III.4. Observe the fundamental 

role in the construction played by the total invariance of the Siegel compactum K. Thus 

we obtain 

THEOREM 2 (fundamental construction). Assuming the hypothesis in Theorem 1, 

let K be the Siegel compactum given by that theorem. Let h: C - D - + C - K ,  h(oe)--c~, 

be a conformal representation of the exterior of K. Then the map g=h- lo foh  extends 

to an analytic circle diffeomorphism o / S  1 with rotation number 

Using the fundamental construction we obtain a dictionary between the two prob- 

lems. In w we review the classical dynamical results in both problems, and we give the 

theorem correspondence (w implied by our fundamental construction. To prove the 

general existence of Siegel compacta (w we start proving the result for a dense class 

of holomorphic germs (w167 II.2 and II.3), and then this implies the general case (w167 III.1 

and III.2). Two distinct approaches are presented in the proof for a dense class: one via 

rational rotation numbers, and the other one via "good" irrational rotation numbers. In 

the first approach we generalize the classical study by Lean and Fatou of the dynamics 

near a parabolic fixed point. 

Several other applications of the fundamental construction are presented in w We 

give a new natural proof of Nalshul's theorem (w based on Poincard's invariance of 
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the rotation number of a circle homeomorphism by conjugation by orientation-preserving 

homeomorphisms. We prove Dulac-Moussu's conjecture (w We give a new proof 

and a generalization of the snail lemma (w We prove the non-existence of periodic 

points on the boundary of Siegel disks of the first type (w We prove that the closure 

of a Siegel disk of the first type is always full. We apply the fundamental construction to 

the problem of centralizers (w In w we introduce Herman compacta associated 

to analytic circle diffeomorphisms and the class of hedgehogs. We give a glimpse of 

its complex topological structure and its dynamical properties. Their detailed study 

is in progress and will be presented in future work. We give in w a converse of 

the fundamental construction, which generalizes a construction by E. Ghys. Using this 

generalization we show the intrinsic meaning of the fundamental construction (w 

The fundamental construction of this paper was discovered during a visit to the KTH 

in Stockholm in the fall of 1991. I thank the KTH Mathematics Department for this 

stimulating visit. I would like to thank the following people who have contributed with 

useful discussions: J.-Ch. Yoccoz, M. Benedicks, L. Carleson, M. Herman, R. Moussu. 

And again, J.-Ch. Yoccoz for showing me the way to attack the general case of Dulac- 

Moussu's conjecture. And also J. Rogers who has pointed out some mistakes in the 

original preprint. The English of this article has improved thanks to C. Cleveland, 

T. Gamelin, J. Kim, and B. Waldron. E. Risler has corrected some misprints from the 

original preprint. I thank all of them for their help. 

I. Theorem correspondence 

In w167 1.2 and 1.3 we present a list of propositions. Some of them are theorems, others are 

open questions or conjectures, on the dynamics of analytic circle diffeomorphisms and 

indifferent fixed points. In w we give a list of implications concerning these statements 

which follow from the fundamental construction. We start with some notation and 

definitions. 

1.1. Notat ion  and definitions 

For general background on circle diffeomorphisms we refer the reader to [He1] or [Yo5]. 

For indifferent fixed points we refer to [He2] or [Pe3]. 

Let us recall that an analytic circle diffeomorphism g is (analytically) linearizable if 

it is conjugate by an analytic circle diffeomorphism to a rotation. In fact, we always have 

a topological conjugacy on the circle when the diffeomorphism is without periodic orbits 

(Denjoy's theorem). The angle of the rotation is the rotation number, denoted by Q(g), 
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and can be defined by the uniform limit 

~ -  id 
0(g)= lim [mod Z], 

,~--.+o~ n 

where ~ is a lift of g to It ,  the universal covering of the circle. 

In the same way, a holomorphic germ in Diff(C, 0), f(z)=e2"~i~z+O(z2), c~ER, is 

said to be linearizable if there exists a local holomorphic diffeomorphism h(z)=z+O(z 2) 
which conjugates f to the rotation h -1 ofoh=R~: z~--~e2~riaz. By analogy with the preced- 

ing situation we define the rotation number of f as 0(f) =c~. The domain of linearization, 
or Siegel domain, or Siegel disks, of f is the maximal open domain where f is conjugate 

to a rotation by a holomorphic diffeomorphism. We denote it by 8 ( f ) .  It is easy to 

show ([Si]) that  f is linearizable if and only if the indifferent fixed point is Lyapunov 

stable, i.e. for any neighborhood U of the fixed point there is a neighborhood V such 

that  all the iterates (f'~)n~>o are defined on V and fn(V)C U. More precisely, if f lu is a 

diffeomorphism then V is contained in S(f).  
We denote by s the set of all linearizable circle diffeomorphisms and holomorphic 

germs. Let s be the set of linearizable holomorphic germs for which there is no Jordan 

neighborhood U of $ ( f )  satisfying the hypothesis of Theorem t. 

In this section the rotation number c~EIt will be irrational. For A>0,  Aa is the 

annulus { z �9 C : e -  2,~a < I z I < e2~rA }. We define the sets 

S(a) = {f  e Diff(C, 0): f(z) = e2~z+(9(z  2) univalent on D}, 

S(c~, A) = {g: S 1 --* S 1 analytic diffeomorphism : g univalent in AA, Q(g) = a}, 

S(c~, O)= U S(~, A) (set of analytic diffeomorphisms of $1). 
A>0 

We will be interested in analytic circle diffeomorphisms or holomorphic germs without 

periodic orbits (different from the fixed point 0 for the germs). Thus we define 

S'(c~) = {f  e S(a) :  f has no periodic orbits distinct from {0}}, 

S'((~, A) = {g e S(a, A): g has no periodic orbits}, 

o) = U A). 
A>O 

Arithmetic conditions. We briefly recall the main arithmetic conditions appearing in 

problems of small divisors. For 0<c~<l,  c~ER-Q,  the denominators of the convergents 

(P,~/qn)n>~O of C~ given by the continued fraction algorithm can be obtained by putting 

q0=l  and 

q~+l = min{q ~> 1: Ilqall < Ilqnc~ll}, 
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where Ilxll =d(x, Z)=infpez Ix-pl ([La] and [Sch] are classical references for diophantine 

approximation). 

The diophantine conditions can be expressed by the growth properties of (q,0n~>O: 

aED.C.  r logq,~+l=O(logqn), 

a E B r E logqn+______~l < + ~ ,  
qn n>~O 

a E B' ~ E log log qn+l < q_~. 
n~l qn 

When aED.C, we say that a satisfies a diophantine condition. This is the classical 

arithmetic condition appearing in the works of C.-L. Siegel ([Si]) and V. I. Arnold ([Arl]). 

The Brjuno condition B arises in the linearization problem ([Br], [Ch], [Yo3]) and B' in 

the linearization problem for germs with no (non-trivial) periodic orbits ([Pel]). There 

is another important arithmetic condition, denoted by T/, discovered by Yoccoz [Yo4] 

in the study of the global linearization problem for analytic circle diffeomorphisms. We 

follow the definition of condition 7-/in [Yo4] and [Yob]. 

For a E R - Q  we define the sequence (a,~)n~>0 by the continued fraction algorithm. 

We put a0={a},  where {x} denotes the fractional part of xeR, and for n~>0, 

 n+l = { a n  1 }. 

For aE]0, 1[ we consider the continuous function 

a- l (x - log(a-1)+l )  if x~>log(a-1), 

~ ( x ) =  e x i fx~<loga-1.  

Then we define the sequence (A,~(a))n~>0 by A0(a)=10 and 

= 

Now we can define ? - / 0 = { a E R - Q :  3no, Yn>~no, A~(a)~>log(affl)}. And finally 

7-/= {a e R - Q  : Vn/> 0, a~e  7~0}. 

We have that D .C .cT- /CBCB'CR-Q,  all the inclusions being strict. Another im- 

portant arithmetic condition is 7-/' (defined in w which is not explicitly determined 

in terms of the continued fraction algorithm. From the definition of 7-/' it can be proved 

that 

7-/c ~ ' c  B', 

and in fact it should be true that all inclusions are strict. 
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1.2. Circle diffeomorphisms 

We survey and comment the main theorems and conjectures on the dynamics of analytic 

circle diffeomorphisms. We consider the first pair of propositions: 

a �9 B ~ (3A(a)  > O, S(a,  A(a))  C L:), A.1 (i) 

a q~ 13 ~ (VA > O, S(a,  A) q~ s A.1 (ii) 

Proposition A.1 (i) is the Arnold-Riissman-Yoccoz local linearization theorem for 

analytic circle diffeomorphisms ([Arl], [R/i], [Yo4]). The arithmetic condition in this the- 

orem has undergone progressive improvement by the various authors. V.I. Arnold's first 

proof of the theorem was for aED.C.  Then, according to [Do2], H. R/issman improved 

the proof for a satisfying 

~ log qn+l log log qn+l 
-boo. 

Finally Yoccoz proved the theorem with the hypothesis a EB and proved its opti- 

mality, which is the meaning of A.1 (ii). The local hypothesis is usually formulated 

differently. We refer to the appendix for equivalent statements. 

a �9 B' =~ (3A(a)  > O, S'(a,  A(a))  C/2), A.2 (i) 

a ~ B '  ~ (VA>0,  S ' ( a , A ) ~ / : ) .  A.2(ii) 

The first is an unwritten proposition but it can be obtained in the same way as the 

analogous theorem for holomorphic germs given in [Pel]. The second proposition is a 

theorem which will be proved in this work as a result of our fundamental construction 

and the theorem in [Pel] which will be discussed in w (Proposition B.2 (ii)). Note that  

the arithmetic condition in A.2 (ii) improves the condition appearing in one of the main 

theorems in [Pel] (which was stated without an arithmetic condition). Here is the precise 

formulation of this result: 

THEOREM 1.2.1. For a~13 t and any A > 0  there exists an analytic circle diffeomor- 

phism g univalent in A~ and for which any positive orbit (gn(z) )n>lO remaining in A~  

accumulates S 1. In particular, g is not linearizable and has no periodic orbits. 

The third pair of propositions we consider is 

a E ~  ~ S(a,O)C~E, A.3(i) 

a q~ 7-I ~ S(a,  0) r L:. A.3 (ii) 
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The first proposition is a theorem by M. Herman [Hel] and J.-Ch. Yoccoz [Yo4]. In 

his thesis ([Hell), M. Herman solved a conjecture of V. I. Arnold proving the linearizabil- 

ity of analytic circle diffeomorphisms for almost every rotation number. J.-Ch. Yoccoz 

later improved the arithmetic condition ([Yo2]) and recently ([Yo4]) has found the opti- 

mal condition 7-/. So the second part is also due to J.-Ch. Yoccoz. 

a E 7-/' =~ S ' (a ,  0) C C, A.4 (i) 

a ~ T l '  ~ S ' ( a ,O) r  A.4(ii) 

These two propositions can be seen as the definition of the arithmetic condition 7-/p. 

An open question consists of determining 7-/p explicitly. It is not difficult to show that 

such an arithmetic condition exists, i.e. that it is invariant by the action of PSL(2, Z) 

(see [Pel]). Moreover, from [Pel], this condition is not trivial, 7-/' is not empty and not 

equal to R - Q .  

1.3. Indifferent fixed point d y n a m i c s  

We survey classical and recent results on linearization of indifferent fixed points. 

a E 13 ~ S(a)  C C, B.1 (i) 

a • 13 ~ S(a)  • C. B.1 (ii) 

Proposition B.1 (i) is the celebrated linearization theorem of C.-L. Siegel [Si] and 

A. Brjuno [Br]. C.-L. Siegel proved this theorem for aED.C,  and later, in 1965, A. Brjuno 

improved the proof for aEB.  Recently, in 1987, J.-Ch. Yoccoz ([Yo3]) has shown the 

optimality of Brjuno's condition, i.e. Proposition B.1 (ii) ([Pe3] for a survey on this). 

a E B' ~ S'(a)  C C, B.2 (i) 

a q~ B' ~ S'(a)  ~ C. B.2 (ii) 

These two propositions are theorems due to the author ([Pel]). They mean that 

if the holomorphic germs are without periodic orbits in D - { 0 }  then we can improve 

Brjuno's condition (B is strictly included in B'). Our geometric construction will show 

that B.2 (ii) implies A.2 (ii), and we will obtain Theorem 1.2.1 by the following more 

precise version of B.2 (ii) proved in [Pel]: 

THEOREM 1.3.1. For a~13' there exists a holomorphic germ f ( z ) = e 2 ~ z + O ( z  2) 

defined and univalent in D such that any positive orbit (fn(Z) )n~O remaining in D ac- 

cumulates at O. In particular, f is not linearizable and has no periodic orbits. 

a E Tl ~ S(a)  c C0, B.3 (i) 

a q~ Tl ~ S(a)  ~ Co. B.3 (ii) 
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The first proposition is a corollary of a theorem by M. Herman [He3] which is an 

extension of a theorem by E. Ghys ([Gh]). The second proposition will be proved in w 

using the generalized Ghys construction. We may conjecture the more general fact: 

If  (~E13-7-t then the quadratic polynomial Pa(z)=e2~riaz+z 2 is lin- 

earizable (aEI3) and univalent in a neighborhood of the closure of its Siegel 

domain. 

a e 7~' =~ S '(a)  C JC0, B.4 (i) 

a • H'  ~ S ' (a)  r s B.4 (ii) 

We will show that  B.4 (i) follows from A.4 (i). So taking 7~' as in the definition given 

in w we obtain 

THEOREM 1.3.2. If aETI' then no holomovphic germ f ES(a) without periodic or- 

bits distinct from {0} can be univalent on a Jordan neighborhood of the closure of its 

domain of linearization. 

Indeed, as follows from M. Herman's proof of his theorem in [He3], we have the 

following more general result: 

THEOREM 1.3.3. Let ~ET-l' and let f ES(~) have no periodic orbit distinct from {0}, 

and be such that $ ( f )  is compact and f]os(/) is injective. Then there is a critical point 

of f in OS(f)  or a point in O$(f)  where f is not defined. 

Finally B.4 (ii), as B.3 (ii), will be proved in w using the generalized Ghys con- 

struction. 

1.4. Theorem correspondence 

The similarity between the linearization theorems for circle diffeomorphism and holomor- 

phic germs is striking. In w167 1.2 and 1.3 we have given simplified versions of the theorems. 

They usually have precise estimates or supplementary dynamical properties which have 

been omitted here for brevity. We will discuss this in Appendix 2, but let us remark that  

the full statements of the theorems can also be recovered by the geometric construction. 

All the propositions stated before come in pairs and some arithmetic condition is 

associated with each pair. The first one (i) of each pair is roughly a linearization result. 

The second one (ii) states the existence of non-linearizable examples when the arithmetic 

condition fails. The first and second pair of propositions for each problem can be thought 

of as local propositions. The term local coming from the vocabulary employed for circle 

diffeomorphisms. The third and fourth pairs of propositions are of a global character. 
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A surprising feature which seems to have been missed by the folklore in the subject (an 

exception is [He3]) is the fact that  we can interpret the global lineaxization theorems in 

the setting of holomorphic germs. It is commonly accepted that  the Siegel problem (the 

study of the dynamics of an indifferent fixed point) is a local problem. But with a precise 

formulation we can also obtain global theorems. For a more detailed discussion of local 

versus global see Appendix 1. 

The following theorem (proved in w gives the full theorem correspondence, 

which, for instance, avoids many double proofs. 

THEOREM 1.4.1 (theorem correspondence). Linearization results for analytic circle 

diffeomorphisms imply linearization results for holomorphic gerras; and conversely, ex- 

istence of non-linearizable examples for holomorphic germs implies the existence of non- 

linearizable examples for analytic circle diffeomorphisms. More precisely, for k = l ,  2, 3, 4 

we have 

A.k (i) ~ B.k (i) and B.k (ii) ~ A.k (ii). 

This theorem follows from our geometric construction. As a general principle, for 

any reasonable result on one problem we obtain a corresponding result in the other. Some 

other applications of this general philosophy are given in w and applications to the 

topology of Julia sets are discussed in [Pe4]. They illustrate how the construction sheds 

light on both problems, providing new proofs of classical results and also new theorems. 

Some of the implications given in the theorem are straightforward from the construc- 

tion and its properties. For example, if g is not lineaxizable in the construction presented 

in the introduction, then f cannot be lineaxizable (use the fact that  the property of 

being linearizable is equivalent to topological stability), so B.1 (ii) ~ A.1 (ii). The main 

property of the construction is to recover the rotation numbers, i.e. to prove the relation 

Q(g) =Q(f).  For all the applications except the proof of Naishul's theorem in w it is 

enough to find an invariant continuum K for which this holds (Lemma III.3.3). This is 

simpler than proving the result for every K given by Theorem 1 (Lemma III.3.4). 

II. Semi- local  s t u d y  

II.1.  T h e  f u n d a m e n t a l  c o n s t r u c t i o n  

We consider K,  a compact connected set of the Riemann sphere which does not contain 

the point at infinity. Denote by gtK the component of the complement which contains c~. 

The map f is a holomorphic diffeomorphism such that  f and its inverse f - 1  axe defined 

in a neighborhood U of K such that  f(K)---f-1 (K) - -K.  We also assume that  f (UA ~K) 
is a neighborhood of 0~/~ in ~K. 
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We can associate to the above an analytic circle diffeomorphism which corresponds 

to the action induced by f on the prime ends of QK. The construction is as follows: 

Consider a conformM representation h: C--D--*~K. We normalize h such that 

h(oc)=eo and h is tangent to the identity at cxD (this normalization is not important 

for the construction itself, but it determines h uniquely and this will be used later). 

The map g=h- lo foh  is a holomorphic diffeomorphism defined in an annulus having 

S 1 as one boundary component. The diffeomorphism g maps this annulus into another 

with the same property. It follows from Carath~odory's extension theorem ([Po, p. 24]) 

that g extends continuously to the unit circle 81. Using Schwarz's reflection principle 

([Car, p. 75]) g extends analytically to S 1. We still denote by g the analytic extension 

in a neighborhood of 81 obtained in this way. It is clear that this extension, which is 

also denoted by g, is a holomorphic diffeomorphism in a neighborhood of S 1 such that 

g(S1)=S 1. This means that dis 1 is an analytic circle diffeomorphism. 

The reader familiar with Carathdodory's theory of prime ends will recognize that 

g is the action induced by f on the space of prime ends of f~K. To obtain g we only 

need to use the uniform continuity of g in a compact neighborhood of K. This type of 

construction was done (for the first time?) for planar homeomorphisms by Cartwright 

and Littlewood ([CLi]). A purely topological theory of prime ends related to these types 

of questions has been developed by J. Mather in [Ma]. This action is analytic with respect 

to the analytic structure on the circle of prime ends induced by the embedding of f~K in 

the Riemann sphere (according to Carathdodory, this analytic structure comes from the 

identification of the circle of prime ends with S 1 via the conformal representation h). 

Continuity of the fundamental construction. We consider the space ICe of compact 

connected sets endowed with Carath~odory's topology. This is by definition the minimal 

topology making continuous the map K H  QK from 1Cc onto the space of simply-connected 

neighborhoods of oc endowed with Carathdodory's kernel topology (see [Du, p. 76]). 

LEMMA II.l .1.  Let (Ki)i~>0 be a sequence of elements in ICe converging to KE/Cc. 

Let (fi)i>~o be a sequence of holomorphic diffeomorphisms, fi and f~-i being defined in 

an open neighborhood Ui of Ki, Ki being totally invariant by fi, and f(Uif7f~K~) is 

a neighborhood of O~K~ in ~g~. We assume that the sequence (Ui)i>~o contains in its 

kernel an open neighborhood U of K, and the sequence (f/)i~>0 (or (f/-1)i~>0) converges 

uniformly on compact sets in U to a holomorphic diffeomorphism f (or f - l )  leaving 

K invariant and such that f (UN~K)  is a neighborhood of O~g in ~K. Let (gi)i~O 
(or g) be the sequence of analytic circle diffeomorphisms obtained from the fundamental 

construction applied to fi and Ki (or f and K). 

Then the sequence (gi)i>>.o converges uniformly to g in a neighborhood of S 1. 
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Observation. It is easy to prove a similar continuity property for Cartwright and 

Littlewood's purely topological construction. 

Proof. Since the open set U is contained in the kernel of the sequence (Ui)i~>0, the 

analytic circle diffeomorphisms of the sequence (gi)i~o will be defined for i>~io in a fixed 

annular neighborhood A of S 1. We can assume that  A is symmetric with respect to 81. 

Consider a circle C in A homotopic to S 1 and exterior to S 1, as well as its reflection C I 

with respect to S 1. The mappings (hi)i~>0 are converging uniformly to h on C, as well 

as (h~l)i~il to h -1 (for some il~io) on a compact neighborhood of f(h(C)). It follows 

that  (gi)i~il, g~=h~I~176 converges uniformly on C to g=h-lofoh. By reflection with 

respect to S 1, the same is true on C'. By the maximum principle, the sequence (gi)i>~il 
converges uniformly to g in the annulus between C and C .  [] 

II.2. Semi-local  study of  the rational case 

II.2 (a). Local study 

In order to carry out the semi-local study in w we need some classical facts from the 

dynamics of holomorphic germs f(z)=Az+O(z 2) with A=e 2~i~ a root of unity (this is 

the rational case, a E Q ) ,  which are well known since the work of L. Leau [Le], P. Fa- 

tou [Fa] and G. Julia [Ju]. The complete topological classification has been obtained 

by C. Camacho [Cam]; J. Ecalle [Ec] and S.M. Voronin [Vo] have classified the analytic 

conjugacy classes. 

We fix the notation f(z)=Az+O(z2), A=e 2~i~ is not of finite order, and ~=p/q, 
pE Z, q EN*, pAq= 1. The dynamics in a neighborhood of the origin is quite simple and 

can be described in the following way (Figure II.1): 

There exists an integer n~>l and a local flower formed by 2n local cycles of local 
petals. The petals are Jordan domains invariant by fq. In Figure II.1, we have drawn 

the dynamics for fq. Note the existence of two kinds of local petals corresponding to a 
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positive or negative orientation of the dynamics of fq. We will refer to positive or negative 

local petals. The two kinds of petals come in pairs. The petals are not canonically 

determined, i.e. using the non-wandering dynamics we can modify the domains and still 

get the same picture. We introduce some concepts: 

Definition. Let l be a germ of arc landing at 0. The germ of arc defined by l is 

f-invariant if f ( l )  represents the same germ of landing arc. 

Definition. An f-invariant bouquet of germs of f-invariant analytic arcs landing at 

0 is a family of analytic arcs foliating a domain U containing 0 in its boundary, covering 

two adjacent petals as well as the local attracting region between them (Figure II.2). 

In the semi-local study we will need the following lemma: 

LEMMA II.2.1. Let f be as above. There exists nq fq-invariant bouquets which 

form the local flower of f at O. For each bouquet there exists an analytic arc 7 which is 

transverse to all the analytic arcs forming the bouquet and which crosses each one only 

once. Thus we have a one-to-one parametrization of the f- invariant  arcs forming the 

bouquet. 

Observe that  in general the union of these bouquets is not a foliation of a neighbor- 

hood of 0 (in Figure II.3 they do not foliate the shaded zone). 
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The proof of this lemma is simple using classical results (Fatou coordinates). More 

precise estimates can be found in [Fa] for example. We leave the proof to the reader. 

II.2 (b). Semi-local study 

We consider a meromorphic germ f(z)=)~z+O(z2), ~=e 2€ p, q~/1, (p, q)=l ,  defined 

on a neighborhood of 0. When the germ defined by f at 0 is not of finite order, there 

exists a local flower composed by 2n local cycles of q local petals C=(Pi)l~i<~q such that 

0EP/, fq(Pi)=Pi and fqIP~ is univalent (according to the local study in w Each 
A A 

petal Pi is a Jordan domain. An extension of the cycle C will be a cycle C----(Pi)l~i~q 
A ~ A 

such that Pi cPi ,  Pi is a Jordan domain, 0EPi, Pi is contained in the domain of definition 

of fq, fq(Pi)=Pi and fqlp~ is univalent. We prove in this section the following semi-local 

generalization of the classical local description of Fatou: 

T H E O R E M  II.2.1. Let f (z)=Az+O(z2),  ~=e 2nip~q, pEZ, q~> 1, (p, q)=1, be a mero- 

morphic germ defined on a Jordan neighborhood UC C of 0 which is not of finite order. 

We assume that f and f -1  are defined and univalent in a neighborhood of the closure 

of U. If C=(Pi)l<~i<~q is a local cycle of petals at O, then there exists an extension 

of C contained in U, C=(/~i)l~<i~<q, which has a petal P=Pi  whose closure intersects the 

boundary of U. Moreover, there exists such a P where OP is a Jordan arc containing O, 

which is analytic except at O. 

The set P is called a principal petal of the cycle C of f relative to U, C" is a maximal 

cycle of C relative to U. 

When f is of finite order we have a similar theorem: 

T H E O R E M  II.2.2. Let f(z)=)~z+O(z 2) be a meromorphic germ defined on a Jordan 

neighborhood of U c C  of O, of finite order, i.e. fq= id  for a minimal q>~l as germ at O. 

Then the connected component Y of 0 of the set {zEU:O<~i<q-1, f f ( z )EU} is simply- 

connected and composed by the fixed point 0 and periodic orbits of period exactly q and 

if Ur  for every zEOV there exists O ~ i ~ q - 1  such that ff(z)EOU. In particular, 

OVnOU~o.  

Proof of Theorem II.2.2. Using analytic continuation of the equation fq= id  we see 

that V is composed of periodic points of period q (not necessarily minimal). Since U is a 

Jordan domain, the maximum principle relative to U shows the simple connectivity of V. 

Now we argue by contradiction. Suppose that zEOV and for any 0~<i~q-1, ff(z)~OU. 

Then in some neighborhood of z the equation fq= id holds, contradicting zEOV. 

It remains to prove that the minimal period of every zEV-{0} is exactly q. 

There is nothing to prove when q=l ,  so consider the case q~>2. Let F = { z E V :  



258 R. PI~REZ-MARCO 

f k ( z ) = z  for some l ~ k < q } .  The set F is composed of isolated points in V. Other- 

wise for some 1 ~ k < q the equation f k=  id will hold on some open subset of V and then 

F = V ,  contradicting the minimality of q~>l. We prove that  F={0} .  If not, consider 

zoEF, zor Consider a path v c V - F  joining 0 to z0. The curves V, f (v ) ,  ..., fq-l(~/) 

cut the Riemann sphere into q disks ~tl, ..., ~q. Because U ~ C  we have for some index i, 

~ i N ( C - V ) r  The transitive action of f on the domains shows that  this property 

holds for any index and, since q~>2, this contradicts the simple connectivity of V. [] 

Proof of Theorem II.2.1. We start  with several lemmata: 

LEMMA II.2.2. Let g be a homeomorphism of [0, 1] which is real-analytic in a neigh- 

borhood of [0, 1], g(0)=0,  g(1)= 1, and such that the iterates of any point in ]0, 1] converge 

to 1 under iteration by g. 

Then there exists a continuous (in the Hausdorff topology) family of Jordan domains 

(Ut)o<t<l in C such that 

(1) Ut contains ]0, 1[, 

(2) the boundary of Ut is composed of O, 1, an analytic arc ~/ in the upper half-plane, 

and its reflection with respect to the real line, 

(3) the analytic extension of g is defined in a neighborhood of the closure of Ut and 

glu~ is a homeomorphism of [ft. 

Proof. Let I=[a,g(a)[ be a fundamental interval in ]0, 1[ for the dynamics of g. 

Considering a small transversal l to the real line at a and its image g(l) we can construct 

a fundamental rectangle for the dynamics of g closing the strip determined by 1 and g(l) 

using two symmetric arcs J and J~ whose end points correspond by g. If we choose J 

close enough to the real axes, then the translation arc (.Jnez gn( j )  is well defined, lies in 

the upper half-plane and lands at 0 and 1. This follows from the local structure of the 

dynamics of g near 0 and 1, which are holomorphic fixed points. With points 0 and 1, 

this translation arc and its reflection enclose an invariant Jordan domain which has the 

properties of the lemma. Clearly by the same construction we can obtain a continuous 

family of domains with the required properties (using a continuous family of arcs (Jr)). [] 

LEMMA II.2.3. Let g be a non-linearizable analytic diffeomorphism of the circle 81 

with rational rotation number o(g)=p/q, q>~l, pEZ, (p, q ) = l .  There exists an annular 

Fatou flower F containing 81 invariant under g. More precisely, F is a continuum, 

the interior is composed of Jordan domains bounded by two analytic arcs landing at 

consecutive fixed points of gqlsl, each one containing a component of S 1-  Fix(g q Isl ), and 

each one being invariant under gq. Moreover, there is a continuous and strictly monotone 

family of these annular Fatou flowers (Ft)0~<t~<l such that F1/2=F and Ft--~Fo=S 1 when 
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t--*O. By strictly monotone we mean that the closure of Ft minus the end points of the 

two analytic components of the boundary is contained in the interior of Ft, for t < t'. 

Proof. The diffeomorphism g[sl is analytic and non-linearizable, so Fix(gq) is a 

finite set on the circle. The components of S l -F ix(gq[s0  are permuted by g as a (p/q)- 

rotation. On each cycle we choose a component and we consider gq. The dynamics of 

gq on this component is wandering, and using the previous lemma (II.2.2) we construct 

an invariant Jordan domain bounded by two analytic arcs with the specified properties. 

Then transporting by g we obtain the Jordan domains corresponding to the other compo- 

nents of the cycle. Similarly we construct a family of annular Fatou flowers, considering 

a strictly nested family of Jordan domains containing a component in each cycle (using 

Lemma II.2.2) and transporting by g. [] 

LEMMA II.2.4. Let ~ be a simply-connected domain, relatively compact in C. The 

map f is a holomorphic diffeomorphism defined in a neighborhod of ~ and leaving 

invariant, i.e. f(~t)=~t. 

Let z lE~  and zoEO~ be an accumulation point of (fn(zl))n>~O. Then zo is a fixed 

point of f and f~--*zo uniformly on compact sets of ~. 

Proof. The family of iterates (f~]a)n~>0 is uniformly bounded, so it is a normal 

family. Any limit of a subsequence is constant or a diffeomorphism of fl (Hurwitz). 

Since z0 is an accumulation point of (fn(zl)),~>0, the limit must be constant. If c= 

limk--,+~ fnk, passing to the limit k--*+oe in the equation f o f  ~k =fnk of we get that  c 

is a fixed point of f .  So the possible limits of subsequences of (f"la)n~>0 are finite since 

they are contained in the set of fixed points of the holomorphic map f (since ( f ~ ( z l ) ) ~ o  

accumulates at zo~zl ,  f is not the identity). These limits being fixed points of f ,  it is 

easy to see that  there is at most one limit. [] 

LEMMA II.2.5. Let g be an analytic circle diffeomorphism with rational rotation 

number p/q, q >~ l , (p, q )= l ,  obtained by the fundamental construction from a pair ( f , K)  

as in w Let ~ be an analytic arc exterior to S 1 bounding laterally a petal of an annular 

Fatou petal F of g given by Lemma II.2.3. 

The image of V by the conformal representation h is a crosscut of ~K (using the 

notation of w 

Proof. Let F1 be the annular Fatou flower strictly containing F (it exists by 

Lemma II.2.3). Then ~/ is in the interior of F1. Let U be the Jordan domain which 

is the component of the interior of F1 containing ~ and consider V=h(U).  The domain 

V is simply-connected and fq leaves V invariant. If ZlEV then (fqn(zl))~>~l accumu- 

lates at some point zoEOV. Using Lemma II.2.4, it follows that  the sequence ( fqn)~o  
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converges uniformly to z0 in V. Since f (h(7))=h(7 ), one end of h(7) lands at z0. The 

same argument for f - q  shows that  the other end of ~/also lands, so h(7) is a crosscut 

of f~g. [] 

Observation. Using this lemma it is easy to classify those continua K invariant by 

a holomorphic diffeomorphism f defined on a neighborhood of K whose action on prime 

ends has a rational rotation number. We call them generalized Fatou flowers. It is 

possible to give a combinatorial topological classification, as well as an analytic one, 

generalizing the classical Mather-Ecalle-Voronin invariants. For these results we refer 

to [Pe6] and [Pe7]. There we also determine those full compacta for which the action on 

prime ends has an irrational rotation number. These are always Siegel compacta. 

If K is contained in a Fatou flower associated to a parabolic fixed point z0, we call 

K a Fatou continuum. In this case, z0 is the common landing point of all the crosscuts 

h(7) where 2 runs over the external crosscuts bounding the annular Fatou flower F.  

Conversely if this holds then K is a Fatou continuum. Obviously a Fatou continuum 

has a neighborhood with no periodic orbit other than the parabolic fixed point, and this 

property characterizes them in the larger class of generalized Fatou flowers. Moreover, 

the landing points of ~ in the previous lemma are fixed points of fq. Thus, fixing the 

holomorphic diffeomorphism f with a parabolic fixed point, the space of generalized 

Fatou flowers is closed in the Hansdorff topology. This observation is used in the proof 

of Theorem II.2.1 below. 

Proof of Theorem II.2.1. From the classical local study (w (a)) we obtain the 

existence of a local, continuous and monotone family of Fatou flowers parametrized by an 

interval, and generated by the sheaf of germs of landing arcs as described in Lemma II.2.1. 

Let t E l - c o ,  to[ be the real parameter  of the local family of Fatou flowers. We take to E R 

to be maximal. We prove that  there is a Fatou flower generated by the parameter value to, 

and that  flower cannot be relatively compact in U. Otherwise if K is the filled closure 

of the union of the Ft for t<to, K is relatively compact in U and f induces a rational 

rotation number action on the prime ends of the unbounded component of its complement 

(this follows from the continuity property of Lemma II.l.1). From Lemma II.2.5 and the 

previous observation it follows that  K is a generalized Fatou flower contained in a Fatou 

flower generated by some tl  >to. Also using Lemma II.2.4 we see that  all t<t l  generate 

a Fatou flower. This contradicts the maximality of to. 

II.3. Semi- local  s t u d y  of  the  irrational  case 

We give in this section a simple proof of a weak form of M. Herman's theorem in [He3] 

which is sufficient for our purposes. The proof is simple but  not elementary since we need 
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Siegers linearization theorem for holomorphic germs, as well as the global linearization 

theorem for analytic circle diffeomorphisms. 

THEOREM II.3.1. Let f(z)=Az+O(z2), A=e 2~ia, a E R - Q ,  aED.C., be holomor- 

phic and U a Jordan neighborhood of 0 satisfying the hypothesis of Theorem 1. Then 

the closure of the maximal linearization domain $(f)  of f touches the boundary of U, 

S ( f )nOU#g.  

As we mentioned, this result follows from: 

THEOREM (M. Herman [He3]). Let f(z)=Az+O(z2), Q(f)=~eD.C. ,  be a holomor- 

phic map in a neighborhood of $(f) ,  such that flo~T]~ is injective. Then OS(f) contains 
a critical point of f .  

Remark. These theorems hold for ~ET-/. 

Proof of Theorem II.3.1. By Siegel's theorem, S ( f ) ~ o .  Arguing by contradiction, 

we assume that S( f )  is relatively compact in U. Let K=S( f )  be the fill of the closure 

of the linearization domain of f .  We apply the fundamental construction to K and f.  

Let h: C -D- -+~K be the normalized conformal representation. We conjugate f in the 

exterior of S(f)  to an analytic circle diffeomorphism g. 

Let Kn be an exhausting sequence of invariant closed disks in S(f). We apply the 

fundamental construction to (K~, f) .  Observe that the circle diffeomorphisms (g,~) that 

we obtain have rotation number Q(gn)=c~ since they are linearizable. 

By continuity of the fundamental construction (Lemma II.l.1) the sequence (g~) 

converges to g uniformly on S 1. So we have proved that ~ ( g ) = l i m ~ + ~  Q(g~)=c~ED.C. 

Now the global linearization theorem implies that g is linearizable. Transporting an 

invariant annulus by h, we obtain that the linearization domain for f is larger than K. 

This contradicts the definition of K and finishes the proof. 

III. P r o o f  o f  the theorem correspondence 

III.1. Compact  spaces and Hausdorff  distance 

Let (X,d) be a compact metric space. For A c X  and ~>0, we denote by V~(A)={xEX: 

d(x, A)<a} the ~-neighborhood of A. The Hausdorff distance between two compact sets 

K1, K 2cX  is 

dH(K1, K2) = inf{a > 0 :K1C V~ (K2) and/(2  C V~ (K1)}. 
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Observe that  for xEX, 
and 

It is easy to see that  d is a distance on the space t : (X)  of compact subsets of X. 

Moreover, 1C(X) endowed with the topology defined by the Hausdorff distance is a com- 

pact space ([HY, p. 102] or [MZ, p. 17]). A compact set K c X  is connected if and only if 

for every e>0  there exists an e-chain in K joining two arbitrary points of K ([Ne, p. 81]). 

Using this criterium it is easy to prove that  the space t:c(X) of continua (i.e. compact 

connected non-empty sets) of X is a closed subset of/C(X). Also, fixing a compactum 

Kc X ,  the space of compact sets of X containing K is closed in/C(X). 

Now, suppose that  X and Y are compact metric spaces and fEC~ i.e. 

f: X--*Y is a continuous map. The map f is uniformly continuous by compactness 

of X. We denote by w the modulus of continuity of f ,  so 

Ve>0,  36=w(e)>O, Vx, x'EX, d(x,x')<.6 ~ d(f(x),f(x'))<.e. 

Let f . :  IC(X)---~IC(Y) be defined by f . (g)=f(K) .  We have 

LEMMA II I . l .1 .  The map f.  is uniformly continuous with the same modulus of 
continuity as f .  

Proof. If KxCVh(K2), then for xlEK1 there exists x2EK2 such that  d(xl,x2)~6. 
Then d(f(xl),f(x2))<~e if 6=w(e) and f(K1)cV~(f(K2)). Also if K2cV~(K1) then 

f(K2)cV~(f(K1)), and finally 

dH(K1,/(2) < 5 = w(e) ::~ dH(f(gl) ,  f ( K 2 ) )  < e. 

Conversely, a modulus of continuity for f .  is also a modulus of continuity for f .  [] 

We consider the topology of uniform convergence in C~ obtained from the 

distance 6 defined, for f, gEC~ Y), by 

6(f, g) = sup d(f(x), g(x)). 
xCX 

{f(x)}cV~(s,g)({g(x)}), so for g e t ~ ( Z ) ,  f(g)CV~(],g)(g(g)) 

dH(f(K), g(K)) <~ 6(f, g). 

The following lemma will be useful: 

LEMMA III.1.2. The map 

C~ Y) • --*/C(Y), 

(f,K)~-*f(K) 

is continuous. 
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Proof. Consider a sequence ((fn, Kn))n>/O such that  limn--.+~(fn, K n ) = ( f ,  K).  Let 

~>0 and N~>I be large enough such that  for n>~N, dH(K,~, g)<~5=w(~) and 5(f~, f)<~, 
where w is the modulus of continuity for f .  Then we have 

dH(f~(Kn), f ( g )  ) <. dH(fn(K~), f(Kn))+dH(I(K~), f(K)), 

<~ 6(fn, f)+e <~ e +e = 2e. [] 

III .2 .  T h e  m a i n  t h e o r e m  

We prove Theorem 1 in this section. Observe that  the last sentence in this theorem follows 

from the general theory of indifferent fixed points. Fix a Jordan neighborhood of 0, U, 

as in Theorem 1. Let ~'u be the set of all continuous functions f in 0 satisfying the 

hypothesis of Theorem 1. Endow the space ~'v with the topology of uniform convergence 

on 0 .  Observe that  if fEJ:v then f - lEJ:v,  and f~_+f-1 is continuous. 

PROPOSITION III .2.1.  The set of elements of .~v satisfying the conclusions of The- 
orem 1 is closed. 

Proof. Take a sequence (f,~)n>~O in ~'v satisfying the conclusions of Theorem 1 and 

converging to fEJ:u. More precisely, for each fn there is an fn-invariant compact con- 

nected set 0EKn C U such that  KnNOU~O. Using the compactness of K:c(U) we extract  

a convergent subsequence K~k--+KE]Cc(U ). The set K is compact, connected and non- 

empty. Property (ii) as well as (iii) clearly hold in the limit. Using Lemma III.1.2 we 

obtain the total invariance of K by f .  The filled compactum K satisfies Theorem 1 for 

f and U. [] 

So it is enough to prove Theorem 1 for a dense class. Now Theorem II.2.1 and 

Theorem II.3.1 prove Theorem 1 for holomorphic germs having a rational rotation number 

and holomorphic germs having an irrational rotation number satisfying a diophantine 

condition, respectively. In view of these considerations the next lemma, III.2.1, finishes 

the proof. 

Note that  we have two different proofs: the first one using approximation by rational 

rotation numbers and the second by "good" irrational ones. Observe that  the first 

proof based on Theorem II.2.1 is completely elementary. In particular, we do not need 

any result from the theory of small divisors. On the other hand the second approach 

uses Theorem II.3.1 whose proof relies on Siegel's linearization theorem and Herman's 

global linearization theorem for circle diffeomorphisms. The first approach is preferable, 

although it is more tedious, to establish the theorem correspondence (Theorem II.4.1). 

This elementary approach is needed to prove Siegel-Brjuno's linearization theorem from 

Arnold-Riissmann-Yoccoz's theorem. 
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LEMMA III.2.1. Let E c T  be a dense set. The set of maps f E ~ v  such that f ( z )= 
e2'~i~z+O(z 2) with aEE is dense in ~v.  In particular, the subset of elements of Yzv 

with rational rotation number (or irrational rotation number satisfying a diophantine 
condition) is dense in Yz v. 

Proof. Let fE~'v.  It is enough to consider fn(z)=e2~i~ such that t~n+o(f)eE 
and ~,~ small enough. Then fn E.Tv and fn--* f .  [] 

III.3. Properties of  the fundamental  construction 

First we do the main construction in a form suitable for the apphcations. Let a E R  

and fES(a) .  By Koebe's one quarter theorem, for 0<r<�88 the map f satisfies the 

hypothesis of Theorem 1 with U--Dr. In the following, we fix such an r. Let Kr be a 

Siegel compactum given by Theorem 1 associated to U=Dr,  i.e. 

(i) Kr is compact connected and full, 

(ii) 0cKr  cDr ,  

(iii) KrAOD~#O, 

(iv) f ( g r ) = f - l ( g r ) = g r .  
Let hK~:C-D--- ,C-Kr be a conformal representation satisfying hK~(C~)=c~ 

(Figure 2 in the introduction). 

By the total invariance of Kr the conjugated map ggr=hglofohg~ is well defined 

and univalent on an open annulus surrounding D such that S I=0D is a component of 

its boundary. 

LEMMA III.3.1. The map gg~ extends continuously to an analytic circle diffeomor- 
phism of 81. 

Proof. See w [] 

LEMMA III.3.2. If Q(f)EQ or Q(f)eD.C., then there exists a Siegel compactum K~ 

such that ~(gg~)=Q(f). 

Proof. We begin by considering the case Q(f)ED.C. Let Kr be the maximal in- 

variant piece of S(f )  inside Dr. Theorem II.3.1 guarantees that ,~(f) is not contained 

in Dr. (In this situation it is easy to check the uniqueness of K given by Theorem 1: 

K is intersected by all the invariant circles forming Kr, thus this shows that necessarily 

K = K r  since the dynamics of f in these circles is minimal and K is closed.) The invariant 

closed disk Kr is surrounded by real-analytic invariant Jordan curves where f acts with 

rotation number Q(f). This shows, using reflection with respect to S 1, that S 1 is also 

surrounded by gg~-invariant curves. So gg~ is linearizable and Q(gg~)=Q(f) since gK~ 

acts with rotation number Q(f) on the gg -invariant curves surrounding S 1. 
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Now we consider the case o(f) E Q. We take Kr  to be an invariant subflower of the 

semi-local Fatou flower given by Theorem 1 associated to U=Dr. We can assume that  

the boundary of each connected component of its interior is a Jordan curve, analytic 

except at the point 0 (Figure III.1). 

The point 0 is accessible from C \ K ~  by each one of the nq repelling cusps (repelling 

for fq) between the nq bouquets (o(f)--p/q, n > l ) .  For each landing a r c  (~i)i<i<nq in 
--1 these cusps hK~(Ti ) is a landing arc in S 1 using Koebe's theorem ([Oh, pp. 270, 285]). 

Since we can choose 7i to be fq-invariant as germs of arcs landing at 0, the arcs hKl(7i) 

will be gq-invariant. Their landing points are fixed points of gq in S 1. Moreover, the 

action of f on a q-cycle of arcs 7i is the same as the action of gg~ on the landing 

h-1 points of K~(7i)- Since f induces a (p/q)-permutation this shows that  gK~ will have a 

(p/q)-periodic orbit. Thus Q(gg~)=p/q=o(f). [] 

Remark. It is easy to see that  the periodic orbits obtained in this way are repulsive 

(p/q)-periodic orbits of gg~. Considering attracting cusps we obtain n attracting (p/q)- 
periodic orbits. If n>~2 we can choose K~ to be a subflower only containing some of 

the cycles of petals, in order to obtain a circle diffeomorphism with (p/q)-periodic orbits 

wich are parabolic with convenient multiplicity. 

We remove the assumption on the rotation number: 

LEMMA III .3.3.  There exists a Siegel compactum Kr such that Q(gK~)=Q(f). 

Proof. The Siegel compacta K~ given by Theorem 1 are obtained as filled limits 

of Siegel compacta for germs f with rational rotation number (or irrational satisfying 

a diophantine condition) according to w We will prove the lemma for such Siegel 

compacta: K~=(limn_~+~K(n)) A, fneS(an), aneQ. 
By the continuity property of the fundamental construction (Lemma II.1.1), we have 

gg~=limn-~+~ gK(~) uniformly on S 1. By Lemma III.3.2 we know that  Q(f~)=Q(gK(~)), 
and by continuity of the rotation number O(gg~)=lim~_.+~ Q(gK(~))=Q(f). [] 

Lemma III.3.3 will be sufficient for all the applications in the sequel except for the 

proof of Naishul's theorem (w We will need there (but only for irrational rotation 
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K~CK~ 

hK~ 
t [  

Fig. III.2 

~fl( '~2)---- '/l:hKl('y) 

numbers) the general rotation number correspondence for arbitrary Siegel compacta. 

There follows an elementary proof. We now have a new, more natural, proof of this 

result using the technique of quasi-invariant curves developed in [Pe6]. 

LEMMA III.3.4. For any Siegel compactum Kr we have Q(gKr)=Q(f). 

Proof. Let K ~  be the maximal Siegel compactum associated to Dr.  This is the con- 

nected component of 0 of the set {zEDr :VnEZ, fn (z )EDr} .  From Theorem 1 we have 

K~MODr~o. Any other K~ given by Theorem 1 is a subset of K ~ .  Since K~MOD~O, 
let zoEKTAODrcK~NDr (Figure III.2). 

We consider the conformal representation ~: C -  D-+ C -  (D U h~l  (K m - K~)), ~ = 

hKlohK~. The point z0 is accessible by a germ of arc ~ from C - K r  TM. The germ of 
-1  arc ~/l=hK.(7 ) lands at z I E S  1 and ~/~=hK~(7 ) at z2ES 1. We have ~1=p(72) and for 

n~>0, g~- (~/1)=~(g~:~(~'2)). Let z[ n) and z~ ~) be the landing points in S 1 of g~:~(9'1) 

and g ~  (72). The topological Lemma III.3.5 (below) shows that,  when the q points 
((~)~ zl )o<~<~q are distinct, they have the same ordering in S 1 as the corresponding distinct 

(z (n)~ (to get an annulus in order to apply Lemma III.3.5 blow up the point points ~ 2 ]O<~n<~q 
~(~)~ 

at infinity and prolongate the germs of arcs landing at the points ~i )- 

Take l~<q~<+~ maximal such that  the points in the sequence (z~n))n~>0 are all 

distinct. If q=+cc then the ordering of these points determines Q(gK~). Also the same 
(~)~ 

holds for the infinite sequence of distinct elements (z 2 )n~>0 and the rotation number 

~(gK~)- Thus these two rotation numbers coincide. 

If q~>l is finite, then (z~ ~ ..., z~ q)) is a periodic orbit of gK~, and g/~ acts on it as a 

(p/q)-permutation where p/q is the rational rotation number of gK~. Then gKp acts in 
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the same way on (z~ ~ ..., z~q)), so again O(gK~)=p/q=o(gKr). 

Now, by Lamina III.3.3, there exists gKr such that o(f)=o(gK~). We conclude that 

O(gK~)=o(f). Finally for every Kr, O(gK~)=Q(f). [] 

LEMMA III.3.5. Let A be a topological annulus embedded in the plane, whose bound- 

ary has two connected components C1 and K,  with C1 homeomorphic to a circle and K 

containing C2 homeomorphic to a circle. A cut of A will be a path in A landing at two 

points, one in each component of the boundary of A. Let 7~, ...,Tn be n disjoint cuts 

of A, with 7i landing at x~ E C1 and at x~ E C2. Let g2 be the space of prime ends of 

the boundary of K (g2 is homeomorphic to a circle). Consider the prime ends ei2Es 

corresponding to the landing arcs 7~. We assume that the sequences (xil) and (x~) are 

composed of distinct points. Then the ordering of the sequence (xi2) in C2 and the ordering 

of the sequence (e~2) in $2 are the same. 

Proof. Let A be the annulus containing A and bounded by C1 and 6'2. The paths 

(7i) are disjoint cuts of A, thus the ordering of (x~) and (x~) in C1 and C2 respectively, 

are the same. We can map the annulus A conformally onto an annulus .4 bordered by two 

circles. In this way we get an explicit representation of g2, and by the same argument 

applied to A, we obtain that the ordering of (x~) and (e~) in C1 and g2 respectively, are 

the same. [] 

Finally we prove 

PROPOSITION III.3.1. For fES(ol) and 0 < r < r o = ~ ( 3 - v ~ ) <  1 we have 

(1) o(f)=a=O(gK~), 
(2) es( , (1/2.)log(r0/r)), 
(3) if gg~ is linearizable then f is linearizable, 

(4) if f is linearizable then there exists O<rl( f )<ro such that D r l ( I ) c S ( f ) ,  and 

for O<r <rl ( f) ,  gg~ is linearizable, 

(5) if f has no periodic orbits in a pointed neighborhood of O, U\{0}, and Q(f)E 

R -  Q then there exists O<r2 ( f)  < ro such that D~ 2(1) C U, and for O< r <r2 (f) ,  gK~ has 

no periodic orbits in a neighborhood of S 1. 

Proof. (1) has already been proved. (3), (4) and (5) are straightforward (same type 

of argument as in the proof of Lemma III.3.2). We prove the estimate (2). For this we 

need ([Du]) 

LEMMA III.3.6. For f eS(a), we have for zeD, 

If(z)l < Iz------L-I 
( l - H )  2" 
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, 1 (3-x/-5).  If we let ~4K~=hK 1 ( D r ~ - K r )  for r<r' o It follows that  f ( D ~ ) C  D for r 0 - 3  r 

then mod,4gr-----mod(D~ -K~)~>mod(Dr;  - D r ) =  (1/27r)log(r~/r). The maximum mod- 

ulus in Grhtsch's extremal problem ([Ahl]) shows that -4K. contains the annulus A a - D  

with 

1 e2 ~ rood .AKr ~ 1 r~ /> r0 

Now gg=hKlofohK~ is well defined and univalent in A ~ - 2 ,  so 

III.4. The  theorem correspondence  

In this section we prove all the implications contained in Theorem II.4.1. 

A.1 (i) ~ B.1 (i). Assuming the Arnold-Riissman-Yoccoz theorem we prove the 

Siegel-Brjuno theorem. Let c~EB and f E S ( ~ ) .  Let 0 < r < r 0  be small enough such that 

(1/2~r)log(ro/r)>~A(~). We apply the fundamental construction as described in the 

previous section. By Proposition III.3.1 (2) we obtain a circle diffeomorphism 

gKrES a, ~-~log C S ( a , A ( a ) ) C s  

Thus gK~ is linearizable and by Proposition III.3.1 (3), f will also be linearizable. 

B.1 (ii) ~ A.1 (ii). Let a ~ B  ( a E R - Q )  and f be non-linearizable. For any A>0 ,  we 

can choose 0 < r < r 0  sufficiently small such that (1/27r) log(ro/r)~>A. By the fundamental 

construction we obtain gg.ES(o 6 A) (Proposition III.3.1 (2)) and gK~ is not linearizable 

(point (3)). 

A.2 (i) ~ B.2 (i). The same proof as for A.1 (i) =~ B.1 (i) works choosing O<r<r2(f) 
at the beginning and using Proposition III.3.1 (5). 

B.2 (ii) ~ A.2 (ii). We follow the same proof as for B.1 (i) ~ A.1 (i) using Proposi- 

tion III.3.1 (5). 

A.3 (i) ~ B.3 (i). We consider f E S ( a ) ,  nET-/, and we prove that there is no Jordan 

neighborhood U of S ( f )  such that f and U satisfy the hypothesis of Theorem 1. Other- 

wise, we can use the fundamental construction (Theorem 2) taking K = S ( f )  to obtain 
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a circle diffeomorphism g, with rotation number a. Then g will be linearizable and this 

contradicts the maximality of 8(f) .  

B.3 (ii) ~ A.3 (ii). Let f E S(c~) with f ~ s Applying the fundamental construction 

to f with K=S( f ) ,  we obtain a non-linearizable circle diffeomorphism g with rotation 

number a. 

A.4 (i) ~ B.4 (i). The same proof as before, observing that  the circle diffeomorphism 

g has no periodic orbits. 

B.4 (ii) ~ A.4 (ii). For a~7-/p, as before, we construct a non-linearizable circle diffeo- 

morphism with no periodic orbits. 

IV.  Se lec ted  app l i ca t ions  

In this section we present some selected applications of the geometric construction link- 

ing holomorphic fixed points and analytic circle diffeomorphisms. Other applications 

concerning the dynamics of rational functions and the topology of Julia sets will appear 

in [Pe4]. In each application a new result is obtained or a new proof of a classical result 

is presented. 

IV.1.  Naishul 's  t h e o r e m  

V.I. Naishul proves in [Na] by delicate topological considerations the following theorem: 

THEOREM I V . I . I  (V. I. Naishul). Let 

and 

be two holomorphic germs topologically conjugated by an orientation-preserving homeo- 

morphism of the plane in a neighborhood of O. Then al--Q(fl)=~)(f2)=a2.  

This theorem strongly recalls the topological (orientation-preserving) invariance of 

the rotation number for circle homeomorphisms. Using this result for circle homeomor- 

phisms (which is due to H. Poincard) and our construction, we give a new short and 

natural proof. For background on prime ends we refer to [CLo], [Po] or [Oh]. 

Proof. Let ~ be the homeomorphism conjugating f l  and f2, f l  = ~ - 1  of  2o~. Consider 

an invariant continuum K for f l  given by Theorem 1, associated to a small ball U 

around 0. Construct the associated circle diffeomorphism gl as in w We consider the 

invariant continuum for f2, ~(K),  and the associated circle diffeomorphism g2. Since ~ is 
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f • /  ~ h2 C g2 

Fig. IV.1 

a homeomorphism in a neighborhood of K onto its image, it induces a homeomorphism 

in the space of prime ends of C - K  onto the space of prime ends of C - ~ ( K ) .  This result 

follows from the uniform continuity of ~ on a compact neighborhood of K. Thus the 

map r  h~-1o ~ohl extends continuously to an orientation-preserving homeomorphism of 

S 1 and conjugates gl and g2- It follows that ~(gl)=Q(g2). On the other hand we have 

proven (Lemma III.3.4) that Otl=Q(fl)=~(gl) and oL2-~Lo(f2)=Q(g2) so (~1----c~2. [] 

IV.2. Du lac -Moussu ' s  conjecture  

The study of singular points of holomorphic vector fields in the Siegel domain is closely 

related to the holomorphic dynamics near an indifferent fixed point using the holonomy 

construction. More specifically, an analytic differential system defined in a neighborhood 

of (0, 0)EC 2, 

{ ~b = Alx+ ..., 

9 = A2y+ ... 

(dots meaning higher-order terms), is said to be in the Siegel domain if A2~0 and 

A1/A2ER_. These singularities are particularly interesting since they are irreducible, 

i.e. we cannot decompose them into simpler ones by blowing up the singular point. 

When A1/A2<0 there always exist two invariant solutions (or leaves of the corre- 

sponding holomorphic foliation) ~-x and ~u going through the origin and tangent respec- 

tively to {x--0} and {y=0} (Figure IV.2). For classical references and more detailed 

explanations we refer to [MM] or [PY]. 

Considering a small circle ~/in ~'y surrounding the singularity at the origin we can 

lift it (by the "flow-box" theorem) in the neighboring leaves. On a holomorphic transver- 

sal disk ~, to ~-y meeting % the return map of the lifted paths in the neighboring sheets 

defines a holomorphic map which has an indifferent fixed point and rotation number 

a=-A2/A1 (taking the orientation as in Figure IV.2). The dynamics of f reflects how 
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, ,E 

S 
Fig. IV.2 

the leaves cut the transversal E. The local topology of the holomorphic foliation defined 

by the differential system is completely determined by the holonomy on E by "pushing" 

E along the leaves. J.-F. Mattei  and R. Moussu ([MM]) have proven that  the conjugacy 

class of the holonomy determines the conjugacy class (by Diff(C 2, 0)) of the singularity. 

Conversely every conjugacy class of holomorphic germs corresponds to a holonomy of 

some singularity of the preceding type. This was first established by J. Martinet and 

J.-P. Ramis ([MR]) in the rational case ( a e Q ) ;  it results from Siegel-Brjuno lineariza- 

tion theorems in both problems when a E R - Q  but a E B .  The general result (without 

conditions on a) has been obtained by J.-Ch. Yoccoz and the author ([PY]). Thus the 

study of the two problems are equivalent. The holomorphic vector field is linearizable if 

it can be holomorphically conjugated to the linear form 

{ :~ = )~1 x ,  

= A2y. 
The linearizability of the singularity of the vector field is equivalent to the linearizability of 

its holonomy. H. Dulac studies in his remarkable doctoral dissertation [Du], the existence 

of solutions of the differential system which accumulate at the singular point. This 

memoir is difficult to find and has been unfairly ignored in the modern literature. There 

we can find many results which are nowadays wrongly misattributed. An illustrative 

example is "Seidenberg's desingularisation theorem" (sic), which is well known and used 

by Dulac, who at tr ibuted it to M. Autonne. 

It is straightforward to check that  the only solutions of the linear system which 

accumulate at the origin are $-~={x=O} and ~'y:{y-~O}. This observation suggests the 

following conjecture, which is implicit in H. Dulac's work as a question(1) and which has 

been pointed out repeatedly by R. Moussu: 

(1) The main question left open by H. Dulac in his doctoral dissertation is the existence of "null 
solutions". This is similar to the above question. It is equivalent in the setting of holomorphic germs 
to: Does there exist an orbit distinct from the indifferent fixed point converging to it by iteration? This 
question has now been solved in [Pe6], where the dynamics of hedgehogs is studied in detail. 
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DULAC-MOUSSU'S CONJECTURE. Every non-linearizable holomorphic vector field 

in the Siegel domain has a solution jz distinct from Jrx and J:y accumulating at the 

origin, i.e. (O,O)E~. 

By the preceding equivalence of problems we can formulate the equivalent conjecture 

for holomorphic germs: 

Every non-linearizable holomorphic germ f(z)=Az +O(z2), IAI=I, 

has an orbit (fn(z) )neZ:O(Z), z#O, which accumulates at the origin, 

i.e. O~O(z). 

All the attempts to prove the conjecture in the strict setting of holomorphic singu- 

larities or holomorphic germs have failed. It is amusing to note that the introduction of 

an associated analytic circle diffeomorphism to the holomorphic germ, which in turn has 

been obtained from the holomorphic singularity, will be the cornerstone of the solution. 

The rational case (A=e 2~i~, aEQ) is clear from the local study in w (see [Cam]). 

We consider the irrational case. Let f be a holomorphic germ and K a Siegel com- 

pactum attached to the fixed point 0 given by Theorem 1 taking U to be a small ball 

centered at 0. The non-linearizability of f is equivalent to OEOK. From the fundamental 

construction (Theorem 2), points in OK correspond heuristically to points of S 1 by the 

conformal representation h (of course the correspondence only holds for accessible points 

of OK). The dynamics of f outside of K (and perhaps in most of OK) corresponds to 

the dynamics of an analytic circle diffeomorphism g, with Q(g)=~ER-Q.  The diffeo- 

morphism g is minimal in S 1, i.e. every orbit in 81 is dense in S I. This is certainly not 

true for the dynamics of f in OK since OEOK is a fixed point. But we can expect this 

to be true for the orbit of most points in OK. Does there exist a point in OK having a 

dense orbit in OK? We will give below a positive answer to this question and this will 

solve Dulac-Moussu's conjecture. First we give a proof in the case where we have some 

control on the topology of K. I have not succeeded in proving that in general we have 

this control. It is a difficult problem to understand the topology of the Siegel compacta 

when they are hedgehogs (see [Pe4] and [Peb]). In a second step we deal with the general 

case. I thank J.-Ch. Yoccoz who has indicated to me how to handle the general situation. 

We will consider the harmonic measure on K, combined with the ergodicity results for 

circle diffeomorphisms of M. Herman and A. Katok. 

IV.2 (a). Topological dynamics 

For general background on prime ends and the standard terminology we refer to [Po] 

and [CLo]. We have 
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PROPOSITION IV.2.1. The positive or negative orbit of an impression of a prime 

end of C - K  by f accumulates on a subcontinuum of every other impression of C - K .  

Proof. Let e and e ~ be two prime ends defined respectively by the sequences of cross- 

cuts (~/i)i~>o and (~)i~>o of C - K .  Let (Di)i>~o and (D~)i>~o be the decreasing sequences 

of domains defined by these crosscuts, and I(e) = Ni>~o Di and I(e') = Ni>>.o D~ be the im- 

pressions. For every i~>0 there exist ni ~0 and mi ~>0 such that  f '~ (I(e)) c f  TM (D,~) cD~. 

This is true since it holds for g because ~ ( g ) E R - Q  and g is topologically conjugate to an 

irrational rotation by Denjoy's theorem. Thus (fn' (I(e)))i~>0 must accumulate at some 

subcontinuum of ~ - - '  I(e )--~i>~o Di" [] 

The principal set II(e) of a prime end e is the subcontinuum in I(e) containing 

all the accumulation points of sequences of crosscuts (~/i) defining e. Observing that  
n~ n f f (%~)C i in the above proof we prove 

PROPOSITION IV.2.2. The positive or negative orbit of a principal point of a prime 

end of C - K  accumulates on a subcontinuum of every impression of a prime end of 
~ - K .  

We also have 

PROPOSITION IV.2.3. The positive or negative orbit of an accessible point of C - K  

accumulates on a subeontinuum of every impression of a prime end of C - K .  

And as a corollary we have 

THEOREM IV.2.1. Suppose that OEOK is exactly the impression of some prime end 

of C_,-K. Then the positive or negative orbit by f of every principal point accumulates 
at O. 

Since accessible points are dense in OK and every accessible point is a principal point, 

it follows that  many points have an orbit accumulating at 0 when 0 E OK (or equivalently 

when f is non-linearizable), In the non-linearizable situation, we have proven in [Pe4] 

that  the impression of every prime end of C - K  contains the fixed point 0. Thus the 

condition that  0 is the impression of a prime end is equivalent to the fact that  there 

exist prime ends with a degenerate impression (i.e. reduced to a single point). In other 

words, the assumption of the theorem fails exactly when there are no prime ends of 

- K  of the first kind. We have proved in [Pe4] that  this is also equivalent (assuming 

f non-linearizable) to the fact that  0 is not accessible from the exterior of K.  Thus we 

h a v e  

THEOREM IV.2.2. When f is non-linearizable the following three conditions are 
equivalent: 

(i) C - K  has a prime end with an impression reduced to a single point. 
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(ii) The point 0 is accessible from C - K .  

(iii) The point 0 is the impression of a prime end of C - K .  

If  one of these conditions holds, the positive or negative orbit of every principal point 

by f accumulates at O. 

I have not been able to rule out the possibility that  0 will not be the impression 

of some prime end. I conjecture in [Pe4] that  this never occurs. For other topological 

properties we refer to w and [Pe4]. 

Remark. We cannot improve Proposition IV.2.2 by proving that  the positive or 

negative orbit of a principal point accumulates on a subcontinuum of a principal set of 

any other prime end when 0 is accessible (take {0} as principal set!). 

IV .2  (b) .  T h e  g e n e r a l  case  

We consider the above situation for f non-linearizable, Q ( f ) E R - Q ,  K an invariant 

continuum attached to the fixed point 0, and we denote by PK the harmonic measure at 

cx~ of K in C. 

THEOREM IV.2.3. For #K-a.e. point z e K  we have OK=O(z)  = (fn(z)),~ez. In par- 

ticular, when f is not linearizable, for #g-a.e. zEK ,  OEO(z). 

We recall the definition and properties of harmonic measures (for details of proofs 

we refer to ITs], [Oh], [Ah2], [Ga]). The solution of the Dirichlet problem by the Perron 

method shows that  every continuous function ~ E C O (K, R)  can be continuously extended 

to a harmonic function ~ in C - K .  The linear functional ~-*~(c~)  is positive and by 

Riesz's representation theorem defines a Borel probability measure # g  on K,  which is 

called the harmonic measure at oc, such that  

- -  

The support of #K is OK. For example, when K = D  the measure #D is the linear 

Lebesgue measure on S 1. The harmonic measure is conformally invariant: if h: C - D - - ~  

C - K  is a conformal representation, h(cx~)---c~, then up to a set of zero capacity, h and 

h -1 extend radially to the boundaries of their domains of definition. We call this ex- 

tension h. ,  and if E c O K  is a Borel set we have A(h , I (E) )=#K(E) .  Now, the proof is 

based on 

LEMMA IV.2.1. The map f]K is #K-ergodic, i.e. if E c K  is a Borel set and 

f ( E ) = E  then # K ( E ) = 0  or # g ( E ) = l .  

In the proof we use the following theorem due to M. Herman ([Hel D and A. Katok 

([KH, p. 419, Theorem 12.7.2]): 
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THEOREM ([Hel], [KH]). Let g be a C2-circle diffeomorphism with irrational rota- 

tion number. Then g is Lebesgue ergodic. 

Proof of Lemma IV.2.1. Let E c K  be an invariant subset, f (E)=E.  Then E'= 

ENOK is also invariant and #K(E')=#K(E). Now F=h, I (E ' )CS  1 is invariant by g 

and A(F)=#K(E')=#K(E). The lemma follows from the previous theorem. [] 

Proof of Theorem IV.2.3. Let (U~),~>o be a countable base for the topology of OK. 

For n~>0, let 

E~= {zEOK:O(z)NUn ~O}. 

We have f(E )=En since O(f(z))=JV(z). Also, we have since 

and supp#g=OK. We have #g(En)=l because f is #K-ergodic of f .  So E--Nn~> 0 E~ 

is a set of full measure, #K(E)=I. This means exactly that  for #K-a.e. point zEK, 

O(z)=OK. Since OEOK:supp#g for ttK-a.e, zeK,  OEO(z). [] 

Note that  the result established here is in some sense weaker than the one in the 

previous section, since we do not characterize topologically the points which have a dense 

orbit. In general we can ask the question: 

Let zEK be an accessible point from the exterior of K and z~O. 

Is it true that the orbit of z is dense in OK? 

We can also propose the problem: 

Give a topological characterization of the points in K having a 

dense orbit in the boundary of K. 

Observe that  there are always many points in a Siegel compactum K having a non- 

dense orbit. In fact, applying Theorem 1 twice to two neighborhoods U1cU2, with U1 

relatively compact in U2, we obtain two maximal strictly distinct Siegel compacta with 

K1CK2. Then, the orbit of any point of K1 is not dense in /(2 since it is entirely 

contained inside K1, which is totally invariant. As a consequence of this, we obtain that  

#K2 (K1)=0,  i.e. K1 is hidden from the exterior of / (2 .  This is clear when f is linearizable 

and K1 a n d / ( 2  are compact pieces in the linearization domain. In w we will see that  

a Siegel compactum is graduated by smaller ones. This shows the complexity of this 

graduation in the non-linearizable case. 

Using the density of an orbit in K,  we can answer another question of R. Moussu: 

let 1 be a holomorphic function defined on a punctured neighborhood of 0 which is a 

"first integral" of f(z)=e2~i~z+O(z2), ~ = a ( I ) E R - Q .  That  means that  lof=l in a 

punctured neighborhood of 0. Does it follow that  1 is constant? 
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We observe that  this does not necessarily hold when a e Q because for f (z )=  z~ (1 + z) 

and l(z)=e -2~iz-1, we have lof=l.  The answer is clearly affirmative once we know the 

existence in this neighborhood of an orbit accumulating at a point distinct from 0. 

IV.3 .  Snai l  l e m m a  

In the study of rational dynamics D. Sullivan, A. Douady and others need to deal with 

Cremer points, i.e. indifferent irrational non-linearizable periodic points of a rational map. 

In particular, in the classification of Fatou components ([Mi], [Su]) or the exhibition of 

non-locally connected Julia sets (IDol]) these authors use the following lemma, called 

the snail lemma: 

SNAIL LEMMA. Let f be a rational function and Zo E C a Cremer point of f lying 

in the boundary of a Fatou component ~ of f .  Suppose that zo is accessible from ~ by 

an f-invariant arc 7- Then f ' (zo)=l .  

The name comes from the idea of the proof: If ff(z0)=fll then the invariance of 

forces 7 to spiral around z0, almost enclosing an f-invariant region. We prove here the 

following stronger result: 

THEOREM IV.2.4 (snail lemma). Let f be a holomorphic germ with an indifferent 

fixed point at O. Let K be a totally invariant continuum containing 0 and such that f is 

univalent on a neighborhood of K. Furthermore, suppose that there exists an arc 7 in 

C - K  landing at zoEK which is f-invariant. Then ~)(f)EZ, i.e. f ' ( 0 ) = l .  

We obtain the classical snail lemma taking K =  {0}. 

Proof. First, suppose K ~ { 0 } .  By the fundamental construction we obtain an asso- 

ciated circle diffeomorphism g. Now, h - l ( 'y)  is a landing arc in S 1 by Koebe's theorem 

(Figure IV.3). 
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The arc "y is f-invariant so h-1(7)  is g-invariant and the landing point in S 1 is a 

fixed point for g. From the general properties of circle homeomorphisms, it follows that  

Q(f) =~(g) �9 Z and f'(O) =e 27rib(f) ~- 1. 

Now we deal with the case K--{0}.  Since f has a finite number of fixed points in 

a neighborhood of 0, fl~ will be locally topologically repulsive or attractive in a small 

subarc q/ landing at 0. We can assume that  fl~' is repulsive considering f - 1  if necessary. 

Then applying Theorem i to a smaller neighborhood U of 0 we find a compactum K~C U 

such that  ~'NK~={O}. Then we are in the preceding situation. [] 

IV.4. Dynamics  and structure of  the boundary of  a Siegel disk 

The study of the topology of the boundary of Siegel singular domains appears to be a 

very difficult problem. For example, it is not known if there exists a Siegel domain of 

a holomorphic map f ,  relatively compact in C, f being holomorphic in a neighborhood 

of S ( f ) ,  which is not a Jordan domain. As our construction suggests, there are two dis- 

tinct natural classes of Siegel domains: those having a Jordan neighborhood U satisfying 

the hypothesis of Theorem 1, they are of the first kind, and the rest, which are of the 

second kind. In other words, Siegel domains of the first kind are those for which S(f)  is 

a Siegel compactum for f .  

It is probably much easier to analyze the situation for Siegel compacta of the first 

kind, and our construction gives some information concerning the dynamics on them. 

With respect to the topology, it is very likely that  Siegel domains of the first kind will 

always be Jordan domains as Theorem IV.4.3 suggests. For these Siegel domains, f leaves 

invariant the boundary of the fill of S(f).  Lemma IV.2.1 and Theorem IV.2.3 give the 

following result: 

THEOREM IV.4.1. Let f be a holomorphic map having a Siegel domain S ( f ) c C  of 

the first kind. Then f [ o ~  is #[~-ergodic and the full orbit for #[1~ -almost every 

point in OS(f) is dense in OS(f). 

We recall that  #Is- ~ is the harmonic measure of $ ( f ) ,  thet_.._fill of the closure of 

the Siegel domain. We will see in Theorem IV.4.3 that  we have S ( f ) = $ ( f )  for Siegel 

domains of the first kind. 

We observe that  if the Siegel domain is a Jordan domain then the linearization map 

extends to the boundary, and conjugates topologically the dynamics on the boundary to 

an irrational rotation. There are no periodic orbits on the boundary. It is natural to 

conjecture that  there cannot exist periodic points on the boundary of a Siegel domain. 
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This question can be found in [Bie]. We prove this for Siegel domains of the first kind. 

A similar result has been proved independently by J. Rogers ([Ro]). 

THEOREM IV.4.2. Let f(z)=e2~i~z+O(z2), h e R - Q ,  be a holomorphic lineariz- 

able germ such that 8 ( f )  is of the first kind. Then OS(f) contains no periodic orbits. 

Proof. The proof is similar to the one for Theorem II.3.1. We consider an exhaustion 

of $ ( f )  by invariant closed disks (K,~)n~>0, and we apply the fundamental construction 

to them (Theorem 2). There exist two annuli, AI=Az~I and A2=AA2, such that  for 

n~0 ,  gn is defined on A1 and gn(~tl)C.42. By contradiction we assume the existence 

of a periodic orbit {Zl, ..., Zq} in OS(f). Let Cn=h~l({z l ,  ..., zq}). For n large enough, 

we have CnC-41. When n--*+oc, we can extract a convergent subsequence of (h,~) 

( converging uniformly on compact subset s of C - D) and of (Cn) n/> 0 C/C (.~ 1 ). Let C C S 1 

be the limit of this subsequence of compact sets. Then the sequence of circle diffeo- 

morphisms (gn) converges uniformly on S 1 by the continuity property (Lemma II.l.1). 

Using Lemma III.1.2 with X = A 1  and Y=A2,  we obtain g(C)=C, where g is the uni- 

form limit of the sequence (gn). The map g is also a circle diffeomorphism obtained by 

the fundamental construction from K = S ( f ) .  Being a Hausdorff limit of a sequence 

of finite sets with cardinal uniformly bounded (by q), C is necessarily a finite set. 

We conclude that  g has a periodic orbit and y(g)EQ. On the other side we have 

p(g) = limn-.+o~ p(g,~) = ~(f)  = a e R -  Q. Contradiction. [] 

THEOREM IV.4.3. The closure of a Siegel disk of the first kind is full, i.e. 

s(f) =s(f). 

The proof of this result uses 

LEMMA IV.4.1. There is no wandering component of the complement of the closure 

of a Siegel disk of the first kind. 

We do not prove this lemma in full generality here since it relies on some deep 

tools developed in [Pe6]. The general proof follows from the non-trivial property that  

the iterates of f accumulate at the identity in the fill of the closure of the Siegel disk 

in the uniform topology. Here we just show that  this result holds when f is a rational 

map. First, for a Siegel disk of the first kind, the component containing oc is never 

wandering (its intersection with the domain of definition of f is mapped inside this 

exterior component). If we have a wandering component fl, then the iterates of f in 

would be bounded, and fl would be a component of the Fatou set of f (since Of~C 

OS(f) C J(f)) .  This would contradict Sullivan's non-wandering theorem, and the lemma 

is proved when f is a rational map. 
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Proof of Theorem IV.4.3. Let ~ be a bounded component of the complementary 

of S(f). By Lemma IV.4.1, there is an integer m~>l and some iterate q~>l such that  

fq(fm(~))__fm(~). From general results in holomorphic dynamics, it follows that  f '~ (~)  

contains a periodic point z0 in its closure. Now, pick a sequence (K,~) as in the proof 

of Theorem IV.4.2. By the same argument in this proof, with Cn=h~l(zo), we obtain 

a pre-periodic point of g on the unit circle. Then this point is periodic and p(g)EQ, 

contradicting that  ~(g)=limn--++~ ~(gn)=O(f)=(~eR-Q. [] 

Remark. (1) This result shows that  there cannot exist three Siegel domains, one of 

them of the first kind, the other two bounded, forming Wada lakes. I am grateful to 

J. Rogers for pointing out this possibility which was overlooked in the preprint version 

of this article. 

(2) In view of the proof, the hypothesis S(f) of the first kind seems too strong. 

When f is a polynomial and f is univalent in a neighborhood of 0 s  then S(f) is a 

Siegel domain of the first kind. I do not know if this still holds for an arbitrary rational 

map f .  

IV .5 .  C e n t r a l i z e r s  

There has been some recent work on the symmetries of non-linearizable holomorphic 

dynamics. The linearizable situation can be characterized as the one having the maximal 

group of symmetries. A symmetry of a holomorphic germ is an element of the centralizer, 
Cent( f )  of f in Diff(C, 0), i.e. the subgroup of germs of holomorphic diffeomorphisms 

commuting with f .  For an analytic circle diffeomorphism g, Cent(g) is the centralizer 

in the group of analytic circle diffeomorphisms. The study of centralizers generalizes the 

problem of linearization. The case of rational rotation numbers is completely understood 

([Ec], [Vo], [Yol]). In the case of irrational rotation numbers, 0 ( f ) e R - Q ,  the rotation 

number map 0: Cent(f)--+T is an injective morphism of groups. In this way, we can 

identify Cent( f )  with a subgroup G(f) of W. The map f is linearizable if and only if 

G(f)--T (this is easy, see [Be2]). J. Moser has proved ([Mo]) that  the rotation numbers 

of n non-linearizable commuting germs f l ,  ..., fn,  with o( f i )=aicR-Q and (hi ,  ..., an) 

rationally independent, must have good simultaneous rational approximations: for every 

7, ~->0, there exists a rational p/qEQ, such that,  

max ai  - p  ~< 7--. 
l~i~n q q~" 

He proves the same result for analytic (or smooth) circle diffeomorphisms close to a 

rotation. On the other hand, the author has proven that  these commuting germs really 

do exist ([Pe2]). 
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We can expect to link the two problems for holomorphic germs and analytic circle 

diffeomorphisms. Some technical points remain unsolved before we can get the full picture 

(see below). First we give a taste of how the machinery of Theorem 2 can be used to 

construct non-linearizable circle diffeomorphisms with an irrational rotation number and 

with uncountable centralizer, from the same object for holomorphic germs. We have 

already used this device in [Pe2], where we proved [Pe2]: 

THEOREM. There exists a holomorphic germ fEDif f (C,  0), Q ( f ) e R - Q ,  having an 

uncountable centralizer. More precisely, there exists a Cantor set C C T ,  and a commut- 

ing family ( f t ) t ec ,  y ( f t ) = t ,  with f t  defined and univalent in D, and a common Siegel 

compactum K for all the holomo~phic maps ft ,  tEC.  

Using this common Siegel compactum and the fundamental construction, we obtain 

a commuting family of analytic circle diffeomorphisms parameterized by its rotation 

numbers. 

The main point in the construction is to prove the existence of a common Siegel 

compactum for the family of commuting germs. We believe that  this holds in general:(2) 

CONJECTURE. Let ( f t ) tcc  be a family of commuting holomorphic germs defined and 

univalent in a fixed neighborhood of the origin. Then there exists an arbitrarily small 

common Siegel compactum K for all the elements of this family. 

The difficult point consists in proving this conjecture in the irrational non-lineari- 

zable situation. We would like to proceed as in the proof of Theorem 1, but  we need 

to find a dense class of commuting families of holomorphic germs, and this is a difficult 

problem. 

Assuming this conjecture we can link both problems using the fundamental con- 

struction. For instance, then it is straightforward to prove Moser's result for holomorphic 

germs from his local result for analytic circle diffeomorphisms. 

V. Miscellanea 

V.1.  Siegel compacta, Herman compacta and hedgehogs 

Theorem 1 provides the existence of Siegel compacta associated to an indifferent fixed 

point. For analytic circle diffeomorphisms we can do a local study in a neighborhood of 

the circle for rational or irrational rotation numbers satisfying a diophantine condition. 

With a similar proof we obtain the existence of Herman compazta associated to an 

(2) This conjecture has now been proved ([Pe6]). 



281 

Fig. V.1 

FIXED POINTS AND CIRCLE MAPS 

analytic circle diffeomorphism. We choose this terminology because we like to think of 

them as degenerate Herman rings. 

THEOREM V. 1.1 (Herman compacta). Let g be an analytic diffeomorphism of the 

circle S 1 such that g and g-1 are univalent in the closure of a Jordan annular neighbor- 

hood U of the circle. Then there exists a set K such that (Figure V.1) 

(i) K is compact, connected and annular ( C - K  has two connected components), 

(ii) S I c K c U ,  

(iii) KAOUr  

(iv) g ( K ) = K ,  g - l ( K ) = g .  

Moreover, if g is not of finite order then g is linearizable if and only if S i c K .  

We can prove the same result when g is holomorphic and leaves invariant a separating 

continuum in the complex plane with g univalent in a neighborhood of this continuum, 

and g inducing an action in the boundary of one component of the complement. To see 

this, we conjugate the map by a conformal representation from one component of the 

exterior of the continuum into C - D ,  as in the fundamental construction (w With 

this construction we reduce the problem to the case of an analytic invariant circle. 

We can formulate Theorem 1 and Theorem V.I.1 in a common statement as follows: 

THEOREM V. 1.2 (generalized compacta).  Let f and f - 1  be defined and univalent 

in a neighborhood of the closure of a Jordan annulus U in an open annulus A with values 

in A, U being a neighborhood of one of its ends, which is invariant by f ( f (U) is a 

neighborhood of this end). Let ft be the prime-end compactification of A. The map f 

has a continuous extension ] from U C ~t with values in f~. Then there exists a set K C f~ 

such that 

(i) K is compact, connected and . ~ - K  has one connected component, 

(ii) C c K c  U, where C is the compact set in A corresponding to the end invariant 

by f ,  
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(iii) K N ( O U - C ) # Z ,  

(iv) f ( K ) = K ,  f - I ( K ) = K .  

Moreover, if f is not of finite order, then f is linearizable if and only if CC[4. 

As we have already noted, the structure and the topology of Siegel compacta depend 

crucially on the rotation number. Figure V.2 shows the different kinds of Siegel compacta 

that  we obtain for different rotation numbers. 

Hedgehogs. The most difficult situation arises when Q ( f ) E R - Q ,  f is not lineariz- 

able or has a "small" linearization domain. We will call them hedgehogs because of 

its complicate topological structure. We formulate the precise definition using Theo- 

rem V.1.2. In this respect, note that  it is obvious how to define the notions of rotation 

number, linearizability and linearization domain for holomorphic maps f satisfying the 

conditions in Theorem V.1.2. 

Definition (hedgehog). A hedgehog for a holomorphic map f satisfying the hypothe- 

sis of Theorem V.1.2 is an invariant compactum K for ] obtained by Theorem V.1.2 when 

p(f) E R - Q  and f is non-linearizable or has a linearization domain relatively compact 

in U. 

Hedgehogs having a linearization domain are called linearizable hedgehogs. Using 

the fundamental construction it is straightforward to prove that  a hedgehog cannot be 

locally connected. We have studied the topology of these objects in [Pe4]. We have 

proven the following pathological properties (the statements are for a non-linearizable 

hedgehog in the complex plane): 

THEOREM ([Pe4, Theorem 5]). Let K be a hedgehog obtained from a non-linearizable 

holomorphic germ f with irrational rotation number using Theorem 1. We have: 

(i) K is compact, connected and full, 

(ii) OeK and { o } ~ g ,  

(iii) K is not locally connected at any point distinct from O, 

(iv) the impression of every prime end of C - K  contains O, 
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(v) for each crosscut ~/ of C - K ,  the bounded domain defined by ~/ accumulates 

at O, 

(vi) except for a set of capacity zero, all the prime ends are of the second kind, 

(vii) K-{o} has an uncountable number of constituents, 

(viii) the only possible biaccessible point in K is O. 

We have a topological model for K which fits nicely with a large class of hedgehogs 

for a certain type of holomorphic germs (holomorphic germs of quadratic type, [Pe5]), 

but many questions remain open for the general hedgehog. The most important  one is: 

CONJECTURE. For a hedgehog given by Theorem V.1.2, C is always accessible from 

the outside of K. 

Graduation of hedgehogs. In Theorem V.1.2 we can consider a monotone and con- 

tinuous graduation (Ur)0<~<l by open neighborhoods of the end of A fixed by f ,  which 

forms a basis of neighborhoods of this end. Applying Theorem V.1.2 to each open set 

U~ and denoting by Kr  the maximal compact set given by this theorem for this neigh- 

borhood, we obtain a monotone sequence of continua (K~)0<~<l. In this way we obtain 

a graduation of the compact s e t / (1  by a monotone sequence of compacta. As we have 

observed in w (b), for r < l ,  K~ is of zero measure in the harmonic measure of K1. 

This hints at the complexity of the hedgehog situation.(3) 

V.2. Generalized Ghys construction 

The fundamental construction (Theorem 2) associates an analytic circle diffeomorphism 

to a given Siegel compactum of a holomorphic germ. We would like to reverse this 

construction, and recover a holomorphic germ and a Siegel compactum from a given 

circle diffeomorphism. 

It is easy to achieve this when g is analytically linearizable: let h: sl---~S 1 be the 

analytic linearization map, h-logoh=R~, and paste D (where R~ acts) to C - D  (where 

g acts) by h. In this way we obtain a Riemann surface $ which is a topological sphere. 

Thus by the Poincar~-Koebe uniformization theorem, it is biholomorphic to the Riemann 

sphere C. Choose a uniformization k: C--*S, k(O)=O. The initial dynamic induces a 

dynamic on $, which gives by conjugation by k a holomorphic germ f .  The pasted disk 

becomes an invariant closed disk in the Siegel domain, i.e. a Siegel compactum of f .  

E. Ghys has observed [Gh] that  using the Morrey-Ahlfors-Bers rectification theorem 

it is possible to extend this construction to the case where the circle diffeomorphism is 

(3) Recent results have been obtained in [Pe6] on this graduation: It is continuous in the Hausdorff 
topology and unique up to a parametrization! 



284 R. PI~REZ-MARCO 

only quasi-symmetrically linearizable. We recall that by Denjoy's theorem g is always 

topologically linearizable on the circle. Let h: S l ~ S  1 be the linearization map, which 

is assumed to be quasi-symmetric. Then, by Beurling-Ahlfors ([Ahl]), h has a quasi- 

conformal extension H: D - * D  which is a homeomorphism with H(O)=O. We consider 

the Beltrami form on the Riemann sphere which vanishes on C - D  and is equal to the 

Beltrami form of H in D. We consider the dynamics F=g on C - D  and F=HoR~oH -1 
on D. By construction, F preserves this Beltrami form, and using the Morrey-Ahlfors- 

Bers rectification theorem (the Beltrami form has modulus bounded away from 1 almost 

everywhere), we find a quasi-conformal homeomorphism k: C ~ C which conjugates F to 

a holomorphic map f .  The holomorphic germ f has a Siegel domain which corresponds 

to the pasted disk. 

The first construction and the Ghys construction are conceptually different. We 

want now to make a construction which works for an arbitrary circle diffeomorphism g. 

The method is inspired by the first elementary approach and is based on a perturbation 

method. Fix a A>0 such that g is defined and univalent in the annulus AA={zEC: 
1 < [z[ <e27ra}. We pick a sequence of analytic circle diffeomorphisms gn: S1--*S 1 defined 

and univalent in Az~, converging uniformly to g, and having good rotation numbers, 

for example P(gn) = an E D.C. (we can take gn = e 2~i~ g with On--* 0 conveniently chosen). 

The diffeomorphisms gn are analytically linearizable by the global linearization theorem. 

Let hn: Sl--~S 1 be the analytic linearization map. Paste D to C - D  using hn. We obtain 

a Riemann surface Sn with an induced univalent holomorphic dynamic Fn defined on the 

domain Un corresponding to D [.JhAA. The map Fn is defined by Ra~ on the piece cor- 

responding to D, and by gn on the piece An corresponding to A~. The Riemann surface 

Sn is biholomorphic to the Riemann sphere. Using the Poincar~-Koebe uniformization 

theorem, we find k,~: C--*,Sn such that kn(O)=O, kn(oC)=oc; and composing on the left 

by a linear automorphism of C, we can normalize kn such that k~I(U~)DD and D is 

not contained in k~ 1 (Un). 

Conjugating Fn by kn we obtain a linearizable holomorphic germ 

A ( z )  = e~i~"z+O(z 2) 

univalent in the unit disk with values in C. The pasted closed disk D gives an invariant 

closed disk Kn in the linearization domain of fn. By compactness, we can choose a 

subsequence such that f,~ converges to a holomorphic map f(z)=e2~iaz+O(z 2) and 

K~ k to a continuum K'  in C. 

We have d-=diamK,~e -2~A (diameter for the Euclidean distance in C). ~Since if 

K~CDr then D-D~Ck~I(An), so 

m o d ( D - D r )  = ~1 log r-l<.modk~l(A,~)=modAn=A, 
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V~ Vn+l 

Fig. V.3 

and finally d>~r>~e -2~A. This shows that Krr The component of the complement 

of the annulus k~l(A,O in C containing cc contains a point on the unit circle by the 

normalization of kn that we have chosen. The compact set Kn is the other component 

and has a spherical diameter bounded below. Since the modulus of the anmllus A~ 

is equal to A>0, we obtain that the spherical distance between the two components is 

larger than some fixed value s>0 depending only on A by [LV, Lemma 6.2, p. 34] (we can 

compute s=min(5,2arctan(e-~2Atan(15))) with 5=min(�88 arctan(e2~A))). 

Let K = K '  be the fill of K '  (c~tK') .  We see that f is univalent in the ~-neighbor- 

hood of K for the spherical metric, and K is a Siegel compactum for f .  Also the sequence 

of conformal representations conjugating fnk to gn~ converges in the Carath@odory sense 

in an annulus surrounding K to a univalent map conjugating the dynamics of f on the 

exterior of K to the dynamics of g. Note that by the limiting process K can have empty 

interior (Figure V.3). Indeed, when f is non-linearizable we have OEOK. We do not 

have any information on the topology of K in the limit as opposed to Ghys's approach. 

Certainly this construction poses more questions than it solves. It is not our purpose to 

discuss these questions here, it is postponed to future work. Finally we can summarize 

the construction with 

THEOREM V.2.1 (generalized Ghys construction). Let g be an analytic circle diffeo- 

morphism. There exists a holomorphic germ f and a Siegel compactum K associated 

to f (Theorem 1) such that when we apply the fundamental construction (Theorem 2) 

to f and K,  we obtain an analytic circle diffeomorphism analytically conjugate to g. 

In terms of w (a), every analytic circle diffeomorphism is in the external class of 

some holomorphic germ. 
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V.3. Intrinsic correspondence 

V.3 (a). External equivalence 

We consider the space of germs of holomorphic diffeomorphisms of (C, 0), denoted by 

Diff(C, 0). From a dynamical point of view, we focus our interest on the space of analytic 

conjugacy classes in Diff(C, 0). Two germs fl  and f2 are in the same class if there exists 

heDiff(C, 0) such that h- lo f loh=f2 .  Note that in such case 0(fl)=Q(f2). So the fibers 

of Q, Q-~ (c~)=Diff~ (C, 0), are compatible with this equivalence relation. 

For our purposes, we need to consider an apparently different notion of equivalence 

that we call external equivalence. 

Definition (external equivalence). Two holomorphic germs fl  and f2 are externally 

equivalent, fl.-~ef2, if there exist two Siegel compacta K1 and/(2,  given by Theorem 1 

for f l  and f2 respectively, such that when we apply the fundamental construction to 

(fl, K1) and (f2, K2), we obtain two analytic circle diffeomorphisms, gl and g2 respec- 

tively, analytically conjugate on the circle. 

We say that the circle diffeomorphism gl is in the external class of fl .  

This naturally suggests the definition of the external class of an analytic circle dif- 

feomorphism gl of 81, as the set of all analytic circle diffeomorphisms g2 which are 

analytically conjugate on the circle to g~ which can be obtained from the fundamental 

construction (w applied to gl and a Herman compactum for gl. 

It is clear that the external relation in Diff(C, 0) is reflexive and symmetric. The 

next lemma proves the transitivity. This shows that it is an equivalence relation. 

LEMMA V.3.1. The relation M e in Diff(C,0) is transitive. 

Proof. Let fl ,  f2 and f3 in Diff(C,0) be such that f l ~ f 2  and f 2 ~ f 3 .  We denote 

by gl, g2, g~ and g~ the analytically conjugated circle diffeomorphisms obtained from the 

fundamental construction applied to (fl, g l ) ,  (f2,/(2), (f2, K~) and (f3, K~) respectively. 

We consider K~', the filling of/(2 U K~, which is a Siegel compactum for f2. Since K~' D/(2, 

there corresponds to K~ ~, transporting by the conformal representations, a larger Siegel 

compactum K~'DK1 for fl ,  as well as K~'DK3 for f3. With obvious notation, we have 

that g~' is in the external class of 92 and g~, and g~l (or g~) is in the external class of gl 

(or g3). The analytic conjugacy between g~ and g~ induces an analytic conjugacy between 

g~ and g~'. The same happens for g~ and g~'. Thus finally, g~ and g~' are analytically 

conjugate, showing that f l ~ f 3 .  [] 

It is obvious from the definition that analytic equivalence implies external equiva- 

lence. It is not hard to see that the two notions coincide in Diff,(C, 0) when a E Q  and 
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a E B  (in this last situation there is only one equivalence class for both relations). This 

motivates the following 

C O N J E C T U R E .  For any (~ER the analytic equivalence coincides with the external 

equivalence in Diffa(C, 0). 

Note that  this is a strong, dynamical, removability conjecture for dynamical ob- 

jects. We can define the notion of external equivalence in the space of analytic circle 

diffeomorphisms, Diff'(S1). Two circle diffeomorphisms gl, g2 E Diff~(S 1) are externally 

equivalent, gl~eg2, if their external classes (as defined previously) have a non-empty 

intersection. As above, we prove in a similar way that  ~ is an equivalence relation 

in Diff'(S1). It is straightforward to show that  two analytically equivalent circle diffeo- 

morphisms are indeed externally equivalent. But the converse is false. For rotation 

numbers a E B-7- / there  exist two externally equivalent circle diffeomorphisms gl and g2, 

with gl linearizable and g2 non-linearizable. Thus external equivalence for analytic circle 

diffeomorphisms is a strictly larger equivalence relation. 

V.3 (b). The correspondence 

The purpose of this section is to distill the exact content of our fundamental construction. 

We are interested in the quotient spaces Diff(C, 0 ) / ~  (conjecturally the same as 

Diff(C, 0)/,,~) and Diff~(S1)/,-~. We endow Diff(C, 0) and Diff~(S 1) with the inductive 

topology associated to an exhaustion by subspaces of elements defined and univalent in 

neighborhoods forming a basis of neighborhoods of 0 and S 1 respectively. Each subspace 

is endowed with the topology of uniform convergence on compact sets. 

From the results in [Yo3], we know that  the quotient spaces are wild topological 

spaces when a~B,  a E R - Q ,  because of the high variety of non-linearizable analytic 

classes accumulated by the linearizable class. The essence of our fundamental construc- 

tion is to identify these spaces: 

THEOREM V.3.1. The spaces Diff (C,0) /~e  and Diff~(Sl) /~e are isomorphic. 

Note that  the quotient made at the level of analytic circle diffeomorphisms is in some 

sense bigger since the external equivalence classes are larger than the analytic ones. This 

explains why the Siegel center problem may appear as a singular case of the circle map 

case .  

Proof. Consider a representative f of a class of Diff(C, 0) modulo external equi- 

valence. By the fundamental construction we obtain an element gEDiff~(S1). If we 

choose another representative we obtain another circle diffeomorphism which is exter- 

nally equivalent to g. In this way we obtain a well-defined map (I) from Diff(C, 0 ) / ~  
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to Diff~(S1)/~.  By definition of the external equivalence, this map is injective. By the 

generalized Ghys construction (Theorem V.2.1), this map is surjective. The continuity of 

is straightforward from the continuity in the fundamental construction, and the conti- 

nuity of the inverse follows from the continuity of the generalized Ghys construction. [] 

V.4. Other applications of  the generalized Ghys construction 

An admissible Jordan domain U for f is a Jordan domain such that f and U satisfy the 

hypothesis of Theorem 1. 

THEOREM V.4.1. If ~ t  then there exists a holomorphic germ f ( z )=Az+O(z2) ,  

0( f )=a ,  such that f ~s i.e. such that f is non-linearizable or f has a Siegel disk S ( f )  

whose closure S ( f )  has an admissible Jordan neighborhood U. 

Proof. Take gES(c~, 0) to be non-linearizable, and apply the generalized Ghys con- 

struction to g. Clearly, from the existence of an admissible Jordan annulus V for g (in 

the sense of Theorem V.I.1), we derive the existence of an admissible Jordan domain U 

for the limit map f.  [] 

THEOREM V.4.2. / f  c~7"/' then there exists a holomorphic germ f(z)=)~z+O(z2),  

Q(f)=c~, such that f has no periodic orbit than O, and f 6 s  i.e. such that f is non- 

linearizable or f has a Siegel disk S ( f )  whose closure $ ( f )  has an admissible Jordan 

neighborhood U. 

Proof. We do the same proof as for the preceding theorem. We start from dES(a, 0) 

without periodic orbits. We need only to check that f has no periodic orbits except 0. The 

map f is the limit of univalent maps fn without periodic orbits. Considering ~an(z)-- 

( f ~ ( z ) - z ) / z ,  we see that ~a~ has no zeros. Moreover, ~an--*~a~id, ~ ( z ) = ( f ( z ) - z ) / z ,  

it follows that ~ has no zeros in the domain of definition of f .  [] 

Appendix 1. Local hypothesis 

In classical linearization theorems for analytic circle diffeomorphisms, the local hypoth- 

esis is formulated as follows: Let B ~ = { z E C : - 6 < I m z < 6 ) ,  C be some arithmetic con- 

dition, R~ be the translation by c~, and let G denote a lift to R of an analytic circle 

diffeomorphism. Denote by Q(G)ER the mean translation of G. 

(LH1) Let c~Eg and 6>0 be given. There exists e=e(a, 6)>0 such that if p(G)=a, 

G is holomorphic in B~ and [[G-R~[[co(s~)<e then .... 

Here the ellipsis means the result implied by the local hypothesis. 
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The way we state the local hypothesis in this paper is different and was first intro- 

duced by J.-Ch. Yoccoz in [Yo4]. It is more geometric and bet ter  adapted to geometric 

techniques. 

(LH2) Let a e g .  There exists A = A ( a ) > 0  such that  if Q(G)=a  and G is defined 

and univalent in BA then .... 

These two statements are apparently different, but are in fact equivalent as Yoccoz 

indicates ([Yo4]). For completeness, we provide the proof of this equivalence below. 

Proof of (LH1) ~ (LH2). Fix 5>0.  Let (A~)n~>0 be an increasing sequence of 

strictly positive numbers tending to + ~ ,  and G~ a sequence of lifts of circle diffeomor- 

phisms with Q(G~)=a which are univalent in B ~ .  By classical arguments the sequence 

of univalent maps  (Gn)n>~no forms a normal family on each annulus B~ where no is 

large enough so that  A~ o > A. The only possible limit point of this sequence is a MSbius 

transformation on the Riemann sphere fixing oc and leaving invariant R with mean 

translation c~. This shows that  the sequence (Gn) will converge uniformly on each B~ to 

the translation R~: z~-*z+a. This shows that  (LH2) implies (LH1). 

Proof of (LH2) ~ (LH1). We need to use a return-map construction. We can do 

the construction at the level of the real line R. Pick a point x o E R  and consider the 

closest returns of its iterates (on the circle) (Gq~(xo)-pn)~. Fix some n~> 1 and consider 

the fundamental segment I,~ between x0 and Gq~(xo). We look at the return map on the 

corresponding fundamental region in the circle for the dynamics of g. More precisely, 

considering a vertical transversal l to S 1 crossing at x0 and its image Gq~(l)-p~, we can 

define a return map in a rectangle containing the arc In. The rotation number a being 

fixed (so also the sequence (qn)), if G is close enough to the translation of angle R~ in 

B~ then the height of the fundamental rectangle can be chosen to be of the order of 5. 

Pasting the boundaries l and Gq~(l) -Pn of this fundamental rectangle with height of the 

order of 5 and base of length Gq~(xo)-pn, we obtain an annulus of large modulus (as 

large as we want, choosing n large enough at the beginning and r small enough depending 

on n). The segment In becomes an analytic circle on the annulus, the return map an 

analytic diffeomorphism on this circle and it is defined and univalent in an annulus of 

large modulus. When we lift the whole to R, we obtain a lifting of a circle diffeomorphism 

satisfying (LH2). 

Moreover, we should note that  in all the applications the dynamical properties of the 

return map induce the same dynamical properties for the initial map, and this finishes 

the proof. 
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A p p e n d i x  2. Quantitative aspects of the theorem correspondence 

Linearization theorems such as the ones overviewed in w167 1.2 and 1.3 usually come with 

precise geometric estimates, usually on the size of the linearization domain. For these 

estimates, we need to introduce some arithmetic functions. 

Let a E R - Q  and let (c~i)i~>0 be the sequence obtained by the continued-fraction 

algorithm (w Let (~i)i~--1 be the sequence defined by f l _ l = l  and ~ = a 0  ... ai .  We 

define, over the irrationals, the following two functions with values in R:  

-bog 
r = E ~j-1 log O~j-1, 

j=0 
+og 

~(a )  = E / 3 j - 1  log + log a~-l. 
j=O 

Now, for f E S ( a ) ,  we define R(f)>~O as the radius of convergence of the linearizing 

map (which is equal to 0 when f is not linearizable), and 

R(c~)= inf R(f), 
feS(oe) 

R r ( a ) =  inf R(f). 
yes'(~) 

Then according to [Yo3], a precise version of the two propositions B.1 (i) and B.1 (ii) 

(Siegel-Brjuno-Yoccoz) is that  there exists a universal constant C > 0  such that  

I r  R(~) - I  I ~< C. 

In the same way, for B.2 (i) and B.2 (ii), we have, according to [Pel, p. 604], that  

there exists a universal constant C > 0  such that  

I~(a)- log R'(a)- i  I ~< C. 

Also, the value of A(a) appearing in A.1 (i) is determined in [Yo4]. We can take 

A(a)=(1/27r)O(a)+C (C is a universal constant which can be taken to be 3.15). Simi- 

larly for A.2 (i), we can take the value A(a)=(1/2~r)qJ(a)+C. 
Knowing this value in the circle-diffeomorphism situation, and making a quantita- 

rive version of the fundamental construction, as is done in w we can clearly obtain 

the optimal minoration for the radius R(a) and Rr(a) shown above. This kind of op- 

timal quantitative estimates hold also in the other situations where the fundamental 

construction applies. 
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