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1. I n t r o d u c t i o n  

Let ~t~CC be a simply-connected domain. The Rodin-Sullivan Theorem states that  a 

sequence of disk packings in the unit disk U converges, in a well-defined sense, to a 

conformal map from f~ to U. Moreover, it is known that  the first and second derivatives 

converge as well. Here, it is proven that  for hexagonal disk packings the convergence 

is C~ This is done by studying Mhbius invariants of the disk packings that  are discrete 

analogs of the Schwarzian derivative. 

As a consequence, the first n derivatives of the conformal map can be approximated 

by quantities which depend on the positions of the centers of some n §  1 consecutive disks 

in the packing. 

Suppose that  P=(Pv:vEV)  is an indexed disk packing in the plane. The nerve (or 

tangency graph) of P is the graph G=(E,V)  on V, the indexing set of P ,  such tha t  

[v,u]CE if and only if Pv and Pu are tangent. The Disk Packing Theorem [10] says 

that  given a graph G which is the 1-skeleton of a topological triangulation of U={zCC: 

Izl~<l}, there is some disk packing in U with nerve G, such that  the boundary  disks 

(i.e., those disks corresponding to the boundary vertices) are all tangent to the unit 

circle OU. Moreover, the disk packing is unique up to (possibly orientation-reversing) 

Mhbius transformations of U (see, for example, [18, Chapter  13], [12], [3] or [4] for other 

proofs and extensions). 

For each s > 0 ,  let H ~ denote the hexagonal grid with mesh ~. The  vertices of H ~ 

form the hexagonal lattice: 

V E = {ne+mw~: (n, m) �9 Z • Z}, 
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Fig. 1.1. The packings R e and Pe, and the map fe. Several points have been marked to aid 
in grasping the correspondence. 

where w is the cube root of - 1 ,  

w---- exp �89 = �89 ( x / 3 i §  

and an edge connects any two vertices of H E at distance r 

Let f~ be a simply-connected domain in C with 12~C. Then there is a subgrid H~ 

of H e, equal to the 1-skeleton of a triangulation of a closed topological disk contained in 

that  approximates ~. Let V~ denote the set of vertices in H~. From the Disk Packing 
E .  E Theorem it follows that  there is a disk packing P =(P~ .vEV~) in 0 whose nerve is 

H~ and with the property that  boundary disks are tangent to OU. For each vEV~, 

let rE(v) denote the center of the disk P~ (see Figure 1.1). Then the Rodin-Sullivan 

Theorem [15] tells us that,  assuming that  the packings pE are suitably normalized (by a 

M6bius transformation, possibly orientation-reversing), the discrete functions fE: V~-* U 

converge "locally uniformly" in f~ to the (similarly normalized) Riemann map f :  ~--*U, 

when e-*0. 

There is a natural definition for the discrete partial derivatives of functions defined 

on the lattice V~. Given discrete functions gE:V~--*C, where e6(0,  1), we say that  

gE converge in C~176 to a smooth function g: f~-*C as e--*0, if g E converge locally 

uniformly in f~ to g, and the discrete partial derivatives of gE of any order converge 

locally uniformly to the corresponding partial derivatives of g. The precise definitions 

will be given in w 

For each v6V~, let rE(v) denote the radius of P~. Our main theorem is: 

C~176 THEOREM 1.1. The discrete functions dE: V~-~U converge in 

C ~  ( gt ) to the Riemann mapping f: 12---~ U. The discrete functions 2rE ( v ) / r converge in 

C ~ ( a )  to If'l- 
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As a consequence, the derivatives of the conformal map up to order n can be ap- 

proximated by quantities which depend on the positions of the centers of some n §  

consecutive disks in the packing. 

W. Thurston [19] constructed the packings pE, and conjectured that  f~ converges 

to the Riemann mapping. The locally uniform convergence (i.e., C~ was 

proved by Rodin and Sullivan [15], using a rigidity theorem for quasi-conformal deforma- 

tions of Schottky groups and a length-area argument. The Cl-convergence was proved 

in [6], using an area estimate; and C2-convergence in [5], using the same area estimate. 

The result of [5] says that  the "intersticial maps" converge in C 2 to f .  In [8] it is shown 

that  the method of [6] works well for general disk packings with bounded valence. 

Recently, the C2-convergence of the intersticial maps has been generalized in [9] 

to disk packings of arbitrary combinatorial pattern, even without the assumption of 

bounded valence. This is done using methods of discrete extremal length and fixed point 

index arguments. We intend to write a paper which further simplifies [9], avoids the 

discrete extremal length methods, and gives estimates for the convergence rates. 

Several other interesting results also appeared in [13], [14], [1] and [2]. These works 

may be combined together to yield an alternative proof of the Cl-convergence. We note 

that  K. Stephenson [17] has also given a proof of the C~ using Markov chains 

and electrical networks "with leaks"; and recently, L. Carleson has found a different proof 

based on Rodin's equation [13], namely, 

6 

k=l  R ( r k + r k + l + R )  ' 

where rk ,  k E Z 6 = Z / 6 Z ,  are the radii of six disks which surround a disk of radius R. 

Following is a brief description of our method. First some Mhbius invariants for 

finite hexagonal disk packings are defined and their elementary equations are derived. 

Similar invariants and equations were introduced [16] in the setting of circle patterns 

with the combinatorics of the square grid. We will then use the Mhbius invariants to 

define (discrete) Schwarzians (or Schwarzian derivatives). Roughly, the Schwarzians are 

some appropriately scaled measure of the deformation of pairs of neighboring interstices 

from their standard positions and, as the continuous Schwarzian, they are unchanged if 

the packing is replaced by a Mhbius image. For a regular hexagonal packing (in which 

all disks have identical size), the Schwarzians are tailored to be 0. The results of [6] 

will be used to show that the Schwarzians of the packings P~ are bounded. On the 

other hand, from the equations satisfied by the Mhbius invariants, we will show that  the 

(discrete) Laplacian of the Schwarzians is a polynomial function in ~ and the Schwarzians 

themselves. It is then a consequence of a regularity theorem of discrete elliptic equations 
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that  all discrete derivatives of the Schwarzians, of any given order, are locally bounded. 

The C~-convergence of f~ and 2r~/~ will then follow. 

It is also proved that  a linear combination of the discrete Schwarzians of Pe converges 

in C ~r to the Schwarzian derivative of the conformal mapping. Another interesting 

result is that  some natural "contact transformations" defined by the positions of triplets 

of mutually tangent disks converge in C ~ In fact, any reasonable, natural discrete 

function associated to P~ can be shown to be convergent in C~ 

It is possible to carry out our proof with an investigation of the radii in place of the 

Schwarzians, and with Rodin's equation (1.1) taking the place of the equation which the 

discrete Schwarzians satisfy. But perhaps some of the details become more complicated. 

The rest of the paper is organized as follows. w introduces some discrete partial 

differential operators on the lattices V ~, and defines precisely the meaning of locally 

uniform convergence and C~ w gives the construction of the subgrid H~ 

and fixes a normalization for P~, and hence for f~ and f .  w introduces the Schwarzians, 

and derives the equations satisfied by them. These equations will be used in w to obtain 

the formula for the discrete Laplacian of the Schwarzians. A consequence of the formula 

is that if the Schwarzians are all bounded, then so are their Laplacians. In w we will 

prove that  the Schwarzians are uniformly bounded in any compact subset of f~. In w 

the Lipschitz norm of a discrete derivative of a function is estimated in terms of the L ~ 

norms of the function and its discrete Laplacian. At that  point, one can conclude that  

the Schwarzians are uniformly Lipschitz, and therefore convergent in C~ In w local 

uniform bounds on the partial derivatives of any order for the Schwarzians are obtained. 

In w the contact transformations of disk patterns are defined, and it is shown that they 

converge in C~ Then, in w the main theorem is obtained as a consequence of the 

C~-convergence of the contact transformations. Finally, disk patterns of more general 

combinatorics are discussed in w 

We thank the anonymous referee for valuable suggestions, which lead us to the 

current formulation of the main theorem. 

2. P r e l i m i n a r i e s  on  d i s c r e t e  d i f f e r en t i a l  o p e r a t o r s  

a n d  t h e  c o n t i n u o u s  l imi t  o f  d i s c r e t e  f u n c t i o n s  

We will need to introduce some discrete differential operators. For each e>0,  recall that  

the set V ~ is the set of vertices in the hexagonal grid H e, i.e., the points ne+mwe,  where 

w=exP(�89 and n , m  are integers. 

For any kEZ6, let L~: V e - - ~ V  ~ denote the translation 

L~kv = v + ~ w  k. (2.1) 



C ~ - C O N V E R G E N C E  OF DISK PACKINGS 223 

Let WC_V ~ be a subset. A vertex v C W  is called an interior vertex of W if for 

each k, kEZ6, the neighboring vertex L~v is contained in W. Let W ( ~  and for each 

integer/~>1, let W (0 denote the set of interior vertices of W (1-1). 

Given a function ~?: W - * R ,  the (discrete) directional derivative 0 ~ :  W O ) - ~ R  is 

defined by 

c3~w(v) = ~-1 (7]( L ~ v ) - v ( v )  ) = ~ -  l (?7(v_~_c~dk)_ T](v) ).  (2.2) 

Let L~cW denote the function which differs from 7? by the translation L~r 

L ~ ( v )  = ~(L~v) = y(v+~wk). (2.3) 

Then we have 

0~r = ~-1 [L~ - I],  

where I~--~?. 

The (discrete) Laplacian of a function 7?: W - * R  is a function in W O) defined by the 

formula 

A % ( v )  = 2 -2 5 ~ E (~ (L~v) -v (v ) )=  2 -2 
kEZ6 kCZ6 

In other words, 
A s _ 2  - 2  

(2.4) 

kEZ6 

Note that  the Laplacian of x 2 restricted to V ~ is 2. Tha t  is the reason for the factor 5~2 -2. 

Clearly, the operators I ,  L~, 0~ and A ~ commute with each other. 

For any function g defined on a subset WC_V ~, we will use ]]giiw to denote its 

L ~ ( W ) - n o r m :  

IIglIw = s u p  Ig(v)l .  
y E W  

For any differentiable function G: ~ - -~R and any kcZ6 ,  let OkG denote the direc- 

tional derivative 

c3kG(z) = lim G(z+twk)--  G(z) (2.5) 
t--*O t 

Definitions. Let f :  ~ - + C  d be some function defined in some domain ~ c C .  For each 

~>0,  let f f  be some function defined on some set of vertices V ~ c V  ~, with values in C d. 

Suppose that  for each z E 12 there are some 51,52 > 0 such that  {v E V ~: I v -  z I < 52 } C Vo ~ 

whenever EE (0, 51). 

If for every z E ~ and every a > 0 there are some 51, 52 > 0 such that  I f ( z ) -  f~ (v) I< a, 

for every ~E (0, 51) and every v EV  ~ with Iv-zI  <52, then we say tha t  f~ converges to f ,  

locally uniformly in ~. 
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Let n c N ,  and suppose that  f is C'~-smooth. If for every sequence kl, ..., kj E Z6 with 

j<~n we have O~O~j_l ... O~lf~-oOkjOkj_ ~ ... Oklf locally uniformly in f~, then we say that  

f~ converges to f in C'~(f~). If that  holds for all n E N ,  then the convergence is C ~ .  

The functions fe  are said to be uniformly bounded in Cn(f~) provided that  for every 

compact K c f ~  there is some constant C(K, n) such that  

whenever j ~<n, and e is sufficiently small. The functions f~ are uniformly bounded in 

C~( f t ) ,  if they are uniformly bounded in C'~(Vt) for every n EN .  

Following are some simple lemmas about C~-convergence of such functions. 

LEMMA 2.1. Let n be a positive integer. Suppose that the functions fc are uniformly 

bounded in cn(f~). Then for every sequence of e--*O there is a Cn-l(~2)-function f and 

a subsequence of e--*O such that fE___~f in cn-l( f~)  along that subsequence. 

Proof. Since f~ are uniformly bounded in C 1 ( ~ ) ,  the standard proof of the Arzela- 

Ascoli Theorem shows that  there is a continuous function f defined in ft and a sub- 

sequence of e--*0 such that  f~--*f locally uniformly along that  subsequence. 

We apply the same argument to the discrete derivatives of the functions fe  with 

order at most n - 1 ,  and conclude that  for some subsequence all the discrete derivatives 

of order at most n -  1 of the functions f~ will converge locally uniformly in fL It is then 

easy to verify that  f~---*f in C'~-1(~). The details are left to the reader. [] 

and 

LEMMA 2.2. Suppose that f~, g~, h ~ converge in C ~r (f~) to functions f,  g, h: f~-~(3, 

suppose that h~O in ~2. Then the following convergences are in C~(~)): 

(1) fr247 f +g, 

(2) f~g~--*fg, 
(3) 1/h~--~l/h, 

(4) if h~>0 then x/~--*x/~,  

(5) Ih~l--~lhl. 

Proof. The local uniform convergence is obvious in each of these cases. Hence, by 

Lemma 2.1, it is sufficient to show that  these discrete functions are uniformly bounded 

in C~(~2). Part  (1) is easy. Part  (2) follows from the identity 

Ok(f g ) = (  kJ )g ~ k J )  kg 
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and induction. Similarly, parts (3) and (4) follow from the identities, 

-O~h e 
O~(1/h e) = heL~kh ~ , 

O~ v / ~  = O~ he 

The details are left to the reader. The convergence of ]hel is C ~,  because I h e l = ~ .  [] 

3. T h e  s e t u p  

This section will describe the construction of the packings pc. The notations and as- 

sumptions introduced here will be adopted throughout the following. 

Let ~ be a simply-connected domain in C with ~ t r  Fix two arbitrary distinct 

points z0, z~ in ~. We now describe a standard construction of a triangulation of a 

simply-connected subregion of ~ that  approximates 12. For every small ~>0, consider 

the subset of vertices of VeA{zEC:Iz l  ~1/~} such that  their distance to C - ~  is bigger 

than E; and let V~ be the set of vertices which are either an interior vertex of this subset, 

or shares an edge with an interior vertex. Let V~ be the connected component of V~ 

which contains some vertex with distance at most ~ to z0, and let H~ be the subgraph of 

H e spanned by the vertices in V~. Then for small s, H~ is equal to the 1-skeleton of a 

geometric triangulation (with equilateral triangles of side length E) of a closed topological 

disk contained in gt that  approximates ~. 

As we stated in the introduction, it follows from the Disk Packing Theorem that  

there is a disk packing P~=(P~:vEV~) in U whose nerve is H~ and with the property 

that  boundary disks are tangent to OU. We normalize pe  by a (possibly orientation- 

reversing) MSbius transformation, so that  (1) for a vertex v0 E V~ that  is closest to z0 the 

center of the disk P~ is 0, (2) for a vertex v~EV~ that  is closest to z~ the center of the V0 

disk P~  is on the positive real ray, and (3) the six disks P ~ ,  k=O, 1, ..., 5, surround P~ 

in positive circular order. Let re: V~---*U be the function that  maps every vEV~ to the 

center of the disk P~. Then the Rodin-Sullivan Theorem [15] tells us that  f~ converges 

locally uniformly in ~ to the Riemann map f :  ~t-~U satisfying f ( z 0 ) = 0  and f(z~))>0. 

Let R ~ denote the regular hexagonal disk packing whose disks are centered at the 

vertices in the hexagonal grid H e. The disks of R ~ all have radius �89 Let R~ be the 

subpacking corresponding to the subset of vertices V~. 

For any triplet of mutually tangent disks P1, P2, P3 in pe  or R e, there is a disk D 

whose boundary cOD passes through the intersection points P1AP2, P2AP3 and P3NP1. 
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The disk D is called a dual disk of the packing. Note that  OD is orthogonal to each of 

the circles OPj, j= 1, 2, 3. 

4. T h e  d i scre te  S c h w a r z i a n s  

Let f be a complex analytic function defined on a domain in the plane C, such that  f'(z) 
never vanishes. The Schwarzian derivative of f is defined by 

i',,iz) 31i"lz))' (4.1) 
\ i f ( z )  ] 2 \ i f ( z )  ] f'(z) 2(f ' (z) )  2 

The Schwarzian derivative of f is itself a complex analytic function. It is elementary 

to check that  for a Mhbius transformation T(z)=(az+b)/(cz+d) we have 8(Tof)(z)= 
Sf(z). Moreover, Sf=O if and only if f is equal to the restriction of a Mhbius transfor- 

mation. These and some further properties of the Schwarzian can be found in [11, w 

for example. 

In the same spirit, we will define the Mhbius invariants of hexagonal disk packings, 

and derive their immediate equations. Analogous invariants and equations were worked 

out in [16] in a similar way for circle patterns based on the square grid, where applications 

were found to the study of global properties of immersed patterns in C. Here, we will 

use M6bius invariants as an intermediate means in the study of the convergence problem; 

and the Schwarzians will be defined as some suitably scaled measure of deformation of 

the M6bius invariants from their regular values. As an important  step, we will derive a 

formula for the Laplacian of the Schwarzians in the next section. 

Our method will yield the same result if Rodin's equation (1.1), which the radii 

satisfy, is used instead. Thus, the use of Mhbius invariants is not essential. We have 

chosen to work with the Mhbius invariants as they yield relatively easier equations. 

For any edge e=  Iv, u] in H~, we let Pc denote the point of tangency of the two disks 

P~, P~. Let e--Iv, u] be some edge in H~, let wl, w2 be the two vertices of V ~ that  neigh- 

bor with both v and u, and suppose that  wl, w2 E V~. Let T be a Mhbius transformation 

that  sends the tangency point Pc to infinity. Then the two circles OPv, OP,, are mapped 

to lines. It follows that  the four points T(p[v,,~l]),T(p[v,~2j),T(p[~,,~,]),T(p[~,,w2] ) are at 

the corners of a rectangle, see Figure 4.1. 

Since T is well-determined up to post-composing by a similarity, the aspect ratio of 

the rectangle, 

IT(P[~,wI])-T(P[v,~,~])I 
IT(P[~,~I])-T(P[~,,~,])t ' 
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TPw~ 

TP~ TP~ 

TP~I 

Fig. 4.1. The configuration after applying T. 

is independent of the choice of T. It also does not change if we modify P~ by a M5bius 

transformation. Set s~ to be this aspect ratio divided by x/~, 

and let 

s(e)  = IT(pc ,   ' 
(4.2) 

h(e) = ~-2 (s(e) - 1) (4.3) 

be called the (discrete) Schwarzian derivative, or Schwarzian of Pe at e. The factor 1 / v ~  

in (4.2) is justified by the fact that  when the disks P~, Pv, Pw~, Pw2 are all the same size, 

we get s ( e )= l  and h(e)=0. The factor E -2 is reasonable, because of the behavior of the 

Schwarzian derivative under rescaling, namely, (Sg)(z) =~2(Sf)(ez) when g(z) = f(ez). 

(This is also justified by the estimate of w 

For a vertex v in Y ~, denote ek (v)= [v, L~:(v)]. See Figure 4.2. Let Sk, hk: (V~) (1) - ~ R  

be defined by sk(v)=s(ek(v)) and hk(v)=h(ek(v)). Clearly, Sk(V)=Sk+3(Lkv) and 

hk(v)=hk+3(LkV). 

LEMMA 4.1. Let v be an interior vertex in V~. Then, 

8k(V)+Sk+2(V)+Sk+ (V)=38k(V)Sk+l(V)Sk+2(V) (4.4) 

is valid for any k E Z6. 

Although we will not prove it here, the equations (4.4) are sufficient to guarantee 

that  a positive function s on the edges of H e corresponds to an (immersed) hexagonal 

circle pattern (cf. [16]). 



228 Z.-X. HE AND O. SCHRAMM 

L2v Llv 
\ / 

e2(v)  e l ( v )  

\ /  
L a v - -  ea(v) - - v - -  eo(v) - -  Lov 

/ \  
~(v) e~(v) 

/ \ 
L4v Lsv 

Fig. 4.2. The edg~  around a vertex. 

ql /: 

q2 _ P 2 -  Pl J q0 ,,/ ', / \ ~ \\ 

i\ P3 P0 ', 

~'~Pa P5 q5 
/ \ 

q4 
\\\ 

Fig. 4.3. The special points of a flower. 

Proof. For any kEZ~, let Pk be the point of tangency P~NP~%v, and let qk be the 

point in P~%vnP~%+l v. See Figure 4.3. There is no loss of generality, because the packing 

P~ may be reflected about a line. 

Let mk=mk(v) be the orientation-preserving MSbius t ransformation that  takes 

Pk,Pk-1, qk-1 to (x), 0, 1, respectively. Then, by the definition of the sk's, 

mk(v)(pk+l)=--V~ski, 
mk(v)(qk)=l--v~ski, 
mk(~)(pk)=~. 

Consequently, setting Mk=mk+lOmk 1, we get 

Mk (-- Vf3 Ski) = OC, 

Mk(1--V~Ski)~-l,  

Mk(oC) =0. 
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Therefore, (0 i ) 
Mk = --X/~Sk ' 

where the usual matrix notation for MSbius transformations is used. Note that  the com- 

position M5oM4oM3oM2oMloMo is the identity. Hence, M5oMaoM3=MoloM~loM~ 1, 
which evaluates to 

( V/~84 3i8384--i ) = I V~(80~-82-3808182) i--3i8081~ (4.6) 

3is4s5--i V~(s3+s5--3s3s4s5) \ i-3isls2 V~Sl ]" 
This is an equality of MSbius transformations, and is therefore valid up to a scalar factor. 

However, both sides have determinant 1, because the matrix in (4.5) has determinant 1, 

and therefore (4.6) is valid up to sign. From the upper left entries, we get 

+s4 = So +s2-3SoSlS2. (4.7) 

Because s4 is never zero, and since the set of configurations of 6 disks in a 'flower' around 

a given disk is connected, the sign in (4.7) does not depend on the configuration. When 

all circles have the same radius, s k = l ,  so the correct sign is minus. This proves (4.4) for 

k=O. The equations for the other values of k are valid by symmetry. [] 

5. The Laplacian of  the discrete Schwarzians 

In this section, we will use the equations of the sk's of w to obtain the equations 

for the hk's, and these will be used to show that  A~hk(v) is equal to a polynomial in 

~, hjo(v),Lj~hjl(v); jo,jl,j2EZ6. We consider only c in the range (0, 1), and therefore, 

if all hk's are uniformly bounded in a vertex subset W, then so are the A~hk'S i~ the 

set W (1). 

We substitute Sk(V)=l+z2hk(v) in equation (4.4), simplify, and get 

hk (v) + hk+2 (v) +hk+a (v) = 3hk (v) +3hk+l(V) +3hk+2 (v) 

Set 

+3r (5.1) 

+ 3~ ahk(v) hk+l(v) hk+2(v). 

qYk+l(v) = --(hk(v) hk+l(v) +hk+l(v) hk+2(v) +hk+2 (v) hk(v) ) 

_~2hk(v) hk+l(v) hk+2(v). 
(5.2) 

Then equation (5.1) becomes 

2hk(V)+3hk+l(v)+2hk+2(v)--hk+a(v) = 3~2~k+l(V). (5.3) 

Replace k by k+2,  multiply by 2, add to (5.3), and get 

3hk+l(V)+6hk+2(v)T6hk+3(v)-+-3hk+4(v) = 3e2qJk+l(V)T6C2q2k+3(V). (5.4) 
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1 w 1 

2 2 

/ \ 
2 2 

v0 3 - -  3 Vz 
2 2 

\ / 
2 2 

1 u 1 

Fig. 5.1. The numbers mark the coefficients of the h-values in the identities (5.5) through (5.8). 

LEMMA 5 .1 .  AChk(v) is equal to a polynomial in the variables ~, hjo(V), L~l hj~(v); 

Jo, j l ,  j2 E Z6. More specifically, 

2 ~ a e 2 ~ a ~ 2L~kOk+3_2kOk" A~hk = ~Lk+l kOk+3+~Lk+ l kbk+5+~Lk+5~k +~Lk+5~k+2-- 

It is quite fortunate that  A~hk(v) is a polynomial in r hjo(V), L~ hj2(v); jo,jl,j2EZ6, 31 
since that  simplifies many of the arguments that  follow. However, the proof could be 

made to work if Aehk(V) was only a Ca-funct ion of these variables. This might be 

important for generalizing the methods of this work to other settings. See w for further 

discussion. 

Proof. We work on the case k=O. Fix some voC(V~)(2). Let vl=Lovo, u=Lsvo 
and W=LlVo. To understand the following computation, the reader is advised to consult 

Figure 5.1. 

Apply equation (5.4) with v replaced by u and k replaced by 5, then use the relations 

hk(v)=hk+3(Lkv), to get (after division by 3) 

ho (u) + 2 ha (Vl) + 2 h5 (vo) + ho (L4vo) = r kO 0 (u) + 2 E 2 kO 2 (u). (5.5) 

Similarly, apply equation (5.4) with v replaced by w and k replaced by 2, and obtain 

h0 (L2v0) + 2 hi (vo) + 2h2 (Vl) +h0 (w) -- ~2~3 (w) +2~2k05 (w). (5.6) 

The substitution v0 for v and 5 for k in (5.3) gives 

2h5(vo)+3ho(vo)+2hz(vo)-ho(L3vo) = 3~2kO0(v0). (5.7) 

Similarly, the substitution vl for v and 2 for k in (5.3) gives 

2h2(vl ) + 3ho(vo) + 2h4(vl ) -ho(vl ) = 3E2~3(vl). (5.8) 
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Now subtract the sum of equations (5.7) and (5.8) from the sum of equations (5.5) and 

(5.6), and get 

3c~A~ho(vo)  : e2kO3(w) ~- 2E2~5(w) + e2k~o(u) + 2~2~2(u) -- a~2v~3( Vl )-- 3c2~o(vo ). 

This proves the lemma for the case k--0. For other values of k the lemma is also valid, 

by symmetry. [] 

6. T h e  d i s c r e t e  S c h w a r z i a n s  are  b o u n d e d  

In this section, we will recall the result of [6] which essentially says that the discrete 

Schwarzian derivative is uniformly bounded in any compact subset of the domain ~. 

The bound is independent of e. Precisely, we have the following lemma. 

LEMMA 6.1. Let vo be a vertex of V~, and suppose that the distance 5 from vo to 

{zEC: Iz l>l /~}- l}  is greater than 2E. Then 

Ihk(vo)l =~-21Sk(V0)--I I ~<C, keZ6 ,  (6.1) 

for some constant C=C(5), which depends only on 5. 

The proof is quite similar to the proof of Lemma 1.5 in [5]. The boundedness of 

the Schwarzians is equivalent to the boundedness of the third order derivatives of ft .  

It is an open problem whether the above lemma can be proved directly using Rodin's 

equation (1.1) for the radii, or from the formula for the Laplacian of the Schwarzians. 

Proof. By [6], there is a homeomorphism g~ from the carrier of R~ onto the carrier 

of P~ with the following properties: 

(1) For each vEV~, the image of the disk R~ under gC is the corresponding disk P~. 

(2) The restriction of g~ to a dual disk of the packing R~ is equal to a MSbius 

transformation. 

(3) There is a universal constant C1>1 such that for each ve(Vg) (2), the map g~ 

restricted to R~ is Cl-quasiconformal. 

(4) For each v e (V~)(2), there is a constant C2--C2 (5(v))>0, which depends only on 

the distance 5(v) from v to {zEC: ]z]>l/~}-12, such that the area of the subset of R~ 

where g~ fails to be conformal is bounded by C2E 4. (Note that the area of R~ is �88 

Consider the restriction of g~ to R~o. Let/~k be the dual disk bounded by the circle 

which passes through the tangency points of pairs of the disks Revo, RL~voE and R~k+l vo . 

See Figure 6.1. 

Let zl, z2, z3, z4 be a quadruple of points on the circle OR~o which are: (1) sufficiently 

spaced out, say, izjl_zj21>~ 7~6e , 1  for any j ~ j 2 ;  (2) away from the points of tangency 
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Fig. 6.1. The six dual disks. 

{Wk } : Ri o N ReLkvo, say, I zj -- wkl ~> 1_ff5 E,1 �9 and (3) cyclicly ordered in the counter-clockwise 

direction. We claim that  for any such quadruple, 

liB (zl), g (z3), (z4)]-  [Zl, z2; z3, z4]l 2, (6.2) 

where [ . , .  ; . ,-] denotes the cross ratio, and C3 depends only on 6. 

In fact, there are positive numbers m and m* such that  the quadrilaterals 

(R~o ;Zl, z2, z3, z4) and (g~(R~o); ge(zl), g~ (z2), g~(z3), g~ (z4)) are conformally homeomor- 

phic to the standard rectangles 

(Qm = [0, m] x [0,1]; (0, 0), (m, 0), (m, 1), (0,1)) 

and 

(Qm* = [0, m*] x [0, 1]; (0, 0), (m*, 0), (m*, 1), (0, 1)), 

respectively. The map ge will then be translated to a Cl-quasiconformal map F e between 

the standard rectangles 

(Qm; (0, 0), (m, 0), (m, 1), (0, 1)) and (Qm. ; (0, 0), (m*, 0), (m*, 1), (0,1)). 

The relations I zjl -zj2 I>~ ~ ~, j l  r imply that m and m*C [m/C1, mC1] are bounded 

from above and below by some universal positive constants. On the other hand, since 

iz j_wkl> ~ TffSe , 1  by property (2) above we deduce that g~ is conformal in the 2~0 e- 

neighborhood of the points zj, l~j~<4. Outside the 2~o~-neighborhoods of the zj's, 

the conformal homeomorphism from R e onto Qm is clearly Lipschitz, with Lipschitz con- 

stant bounded by C4~ -1, where C4 is a universal constant. Thus, using property (4), 

it follows that F ~ is conformal except on a subset of area bounded by C24C2~ 2. It then 



C~ OF DISK PACKINGS 233 

follows by a standard Grhtsch argument (compare [6, w that  Im*/m- 11<~ Ca e 2, where 

C5 depends on C1 and C2. Then (6.2) follows as m and m* are related to the cross 

ratios [zl, z2; z3, Za] and [g~(zl), g~(z2); ge(z3), g~(z4)], respectively, by the same smooth 

function. 

Let Tk be the Mhbius transformation which agrees with gC on Dk- Since a Mhbius 

transformation is uniquely determined by its values at three points, it follows from (6.2) 

that  for any k �9 Z6, 

I~-lTEloTk_l(Z)-~-lzl ~ C6~ 2, Vz �9 R~vo , (6.3) 

where C6 depends only on C3, and consequently, on 5. 

It is then elementary to check that  (6.3) implies that  [Sk(Vo)--ll<~e2CT, with C7 

depending only on 5, which gives (6.1). [] 

7. Regularity of solutions of discrete elliptic equations 

REGULARITY LEMMA 7.1. Let W be a subset of V c, let voEW (1), and let 5 be the 

Euclidean distance from Vo to V e - W .  Let ~: W--*R be any function. Then 

510~n(v0)l <7Lt~llw+ 1 2 II/   llw(l  (7.1) 

holds for any keZ6. 

This lemma is known in the continuous setting, and may certainly also be known in 

the discrete setting. The estimate is not sharp. For lack of a good reference, we include 

a proof. 

Proof. Note that  both sides of (7.1) are scale invariant; i.e., if we define ~: a-IW--*R 

by ~(v)=~?(av), where a>0,  then (7.1) for ~? is equivalent to (7.1) for 7) at a-lvo. Hence, 

we assume with no loss of generality that  5= 1. Also assume for convenience, k=3, Vo =~. 

Again, there is no loss of generality. 

Let R ( x + i y ) = ( e - x ) + i y  be the reflection in the line x =  �89 and set 

g(v)  = 

As L~vo=vo+(-1)s=O=Rvo, what we need to prove is that  

Ig(v0)l = Ig(~)l < ~(711~lIw+ �89 II A~llw(1)). (7.2) 

This is obvious if 2~<7~, so assume 7e<2. Also assume, with no loss of generality, that  

g(e)>O. 
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Let 

wl  = { x + i y  �9 Wo: =/> �89 

Since Wo=R(Wo) is contained in W, the function g=~?-~ioR is well-defined in Wo. 

Denote ~ = x -  �89 Consider the "comparison" function ~: Wo--*R defined by 

[7(x+iy)=~(~+�89 =(7(22+y2)+la(~.-s , (7.3) 

and note that ~>0 on W1. 

At any interior vertex of W0, we have A~(g-t))~>0 , because 

A~a(v) = a ~ ( v ) -  a~(Rv)  1> -2Ha'vl lw(, ,  

and A~(v) =-2[[Ae~l][w(1 ) . 

In particular, A6(g--~)~0 at any interior vertex of W1. Then it is elementary to see 

(from (2.4)) that the maximum of g - ~  on W1 is attained at some boundary vertex, say 

v,=x,+iy,,  of W1 (the maximum principle). We claim that 

(9-~)(v . )  ~< �88 ~ ~ ~ I1~ ,711w(,~. (7.4) 

Clearly, the set of boundary vertices of W1 is contained in the union of the subsets 

Bl= {x+iyEWl :x= �89 

B2 = {x +iyE W1 : x =e}, 

B 3 = { x + i y E W ' : ~ ( x - ! e ' 2 * " 2 ~ l - ~ e }  , - ~  

If v,=�89149 then Rv,=v,, g(v,)----0, and g(v,)=O<.~(v,), hence (g-~)(v,)~<0. 

If v,�9 then 

~(~,) ~> 7((~. -  1~)2 + y,~)I1,11~ ~> 7 0 -  ~)~ II,II ~ 

~> 7(1-~)~ll~llw/> 211~llw/> Ig(v.)l, 

and therefore again (g-~)(v.)~0.  

Now let v.=e+iy. �9 In this case, E+iy. is an interior vertex of W0. Since 

A~(g-~)(v.)~>0, and (g-~)(r is the maximum of g - ~  in W1, and iy. is the only 

neighbor of v.=E+iy, outside of W1, it follows that 

(g-~)(iu.) >/(g-~)(~+iy.). 
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As g(iy.)=g(R(e+iy.))=-g(~+iy.) ,  we deduce that  8(e+iy.)-8(iy.)>~2g(r and 

then 

(g-8)(e+iy,)  <~ -�89162 <~ ~7 ~ 11,711w + 1~ ~ I1~ ~llw(~). 

This proves estimate (7.4). 

Since (g-8)(v.)  is the maximum of g - g  in W1 and since eEW1, we have (g-8)(v.)>~ 
(g-8)(~) ,  and then by (7.4), 

Ig(~) I = g(~) = 9(~) + (g-8)(~)  ~ 9(~) + (g -9) (v . )  
^ 7 2 1 2 r < g ( ~ ) + ~  I1~{@+~ tl/~,lIW(~ = 14(�89189 

which implies (7.2), and proves the lemma. [] 

8. T h e  discrete Schwarzians c o n v e r g e  

In this section, we show that  for some sequence of E--+0, the Schwarzians hk converge 

in C a .  In a later section, the limit will be identified, and it will follow that  the limit 

exists even without restricting to a subsequence. 

We shall sometimes write h~ for hk, to stress the dependence on E. From Lemma 6.1 

we know that  the functions h~r are bounded on compact subsets of ~, with a bound 

independent of c. Lemma 5.1 then shows that  the functions Aeh~ are also uniformly 

bounded on compact subsets of ft. Applying Lemma 7.1, we see that  also cq~h~ have 

such a bound. It then follows, by Lemma 2.1, that  for some sequence of s tending to 0 

the continuous limits 

7-/k = ~im h~ (8.1) 

exist, and are locally Lipschitz functions on ~2. 

Note for future use that  

~k+3 = 7-/k, (8.2) 

because h~k(v)=h~+3(L~v). Using this together with (5.4) gives 

7-/0+?-/1 +7"/2 = 0. (8.3) 

For each 5>0  let V[ denote the set of vertices of V ~ whose Euclidean distance to 

{ z 6 C :  I z l > l / ~ } - ~ t  is at least 5. 

LEMMA 8.1. Let 5>0,  and let n be an integer. Then there are constants C=C(n, 5), 
a=a(n,5)>O such that 

~ 0~ h E II0ko0ko_l... k, ko v~ < c  (8.4) 
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holds whenever s<a, and k0, kl, . . . ,knEZ6. In other words, the functions h~k are uni- 
formly bounded in C~(~t). 

Proof. The proof will be inductive. The case n = 0  is handled by Lemma 6.1. So 

assume that  n > 0 ,  and that  the lemma holds for 0, 1, 2, ..., n - 1 .  Set 

Then, 

0~ ,~E h E g = k,~_~ ""'- 'kl k0" 

A~- A~0~ ~ h ~ - 0 ~  ~ A~h~ Y ~  k,~_l""C'kl ko- -  k n - l ' " V k l  ko" 

From Lemma 5.1 it now follows that  A~g is a linear combination of functions of the form 

0~._1 ... 0~  A~j~, 

with A=L~2 or A=I,  the identity operator.  Recall, from (5.2), that  ~ j  is a polynomial 

in e and the hk's. Also note the rule for discrete differentiation of a product,  

which is easy to verify. From this rule, it follows that  0~2~jl is a polynomial in e and 

the Ahj 's ,  where A ranges over the operators I ,  ~ ,  Lj2. By induction, it follows that  

is a polynomial in ~ and expressions of the form 

L ~ L ~ 9 e 0 ~ (8.5) j . ~ " "  j~+iv j~  "'" j l h j o ,  

where m<.n-1.  If vEV~/2, m<~n, and 4nE<6, then v ' - L  j. ... n~j +~(v) is in veV[/4. 
Therefore, the inductive hypothesis with ' -  ~ ~ , 1 v-Ljm.. .Lj.+~(v),  n'=s, 6 = ~ 5  applies, and 

provides a bound for (8.5) at v. Since A~g is a polynomial in c and the expressions of the 

form (8.5) with m<~n, s<.n-1, it follows that  there is a constant CI=C~(5)  such tha t  

< 

Because ]g] is also bounded on V[/2, the Regularity Lemma 7.1 provides a bound for 

IO~.gl, on V~, which completes the induction step and the proof. [] 
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COROLLARY 8.2. h ~ T l k  in C~(~2) as ~-~0. 

Proof. It  follows from Lemma 8.1 and Lemma 2.1 that  this is true for some sequence 

of c--+0. The general s ta tement  will follow later, when (8.1) is proved in full generality. [] 

Remark 8.3. It  can be shown that  the rate of convergence in Corollary 8.2 depends 

only on n and 5; i.e., there is a function A(n, 5, E) such that  

0~ h ~ IlOk~ "'" k l  k--~k~"'Okl~-Lknv[<A(n, 5, ~) and A(n, 5, E)~O ass~O.  

The following proposition will not be used below, but  is interesting in itself, and 

would probably prove useful for studying the rate of convergence in Corollary 8.2. 

PROPOSITION 8.4. Let 5>0, let kEZ6, and suppose that 2e<5.  Then 

where C*=C*(5) depends only on 5. 

We will need the following notation. Write 

a ~ b  

when a-b  is a polynomial in s, and in the functions hk and their discrete derivatives 

of arbi t rary order, which is divisible by e n. We also use a similar notat ion for discrete 

operators. For example, the relations L~k_IL~+I=L~ and L~=I+e5~ give 

$2 
Proof. We will prove that  Aehk = O. This actually proves more than the proposition; 

it shows that  the discrete derivatives of Aehk are also O(E2). 

Use Lemma 5.1 and the identities L~=I+~O~ to write 

3A~ h ~ ~ ~ ~ k = Lk+~q~k+3+2Lk+~k~k+5+Lk+5~k+2Lk+5~k+2--3Lkq~k+3--3~k 

= q 2 k + 3 + 2 q 2 k + 5 - ~ q 2 k + 2 q 2 k + 2 -  3 q 2 k + 3 - - 3 k ~  k 

+e(O~+lq2k+3+20~+l~Pk+5+O~+5~k+20~+5+k+2--30~k+3) (8.7) 

= - -2~k + 2~k+2 -- 2~k+3 + 2~k+5 

0 ~ k~ e ~ E + ( k+l k+3+20k+l~k+5+Ok+5k~k+20k+5q2k+2--30~k+3) �9 

Recall that  (5.3) gives ~Pj=�89 + 2 h j + ~ - h j + 3 ) .  This relation implies that  

--k~k + ~ k + 2 - -  k~k+3+ ~k+5 =0.  Therefore, (8.7) reduces to 

3 e ~ h~ =~(O~+~q2k+3+20~+1~+5+O~+5~P~+20~+5~k+2--30~qYk+3). (8.8) 



238 Z . - X .  H E  A N D  O .  S C H R A M M  

The relation hk+2=L~+2hk_l=hk_l+~O~+2hk_l, and the definition (5.2) of @ give 

II]k+l ~2 -hkhk+l - hk+lhk+2 -- hk+2hk 

= -hkhk+l-hk+l(hk_l+EO~+2hk_l)--(hk_l+~O~+2hk_l)h k (8.9) 

~-- - h k h k + l - h k + l h k - l - h k - l h k  ~ ~k. 

This means that  

~ j ~ k ,  for e a c h j ,  k EZ6 ,  

which also implies that  0 ~ j  ~ o~m~k , for m, j ,  k E Z6. So (8.8) further reduces to 

~2 
3 E _ e ~2r hk -- e(30~+1 + 3 0 1 + 5 -  301)~k. (8.10) 

2 

Now the relation (8.6) shows that  ~A~hk~O, and the proof is complete. [] 

Remark 8.5. Another interesting identity is 

= hj +hi+2 +hi+4. 

This follows from (5.3) with k = j + 2 .  

9. T h e  c o n t a c t  t r a n s f o r m a t i o n s  

Let v cV~ be some interior vertex, and let k C Z6. Define the contact transformation 

Z~ =Z~(v) to be the MSbius transformation that  takes each of the three points ~, ~w 2, Ew a 

to the three points in P~AP~v,  P~vNP~+I  and P ~ N P ~ + ,  respectively. 

We now derive expressions for the discrete derivatives of Z~(v) with respect to v. 

These will enable us to show that  the MSbius transformation Z~ converge C ~ as s--~0. 

Let R be the rotation R(z)=w2z.  It is clear that 

Z~+2(L~k v) = Z~(v).R. (9.1) 

Let A = A  ~ be the MSbius transformation taking e, ew 2, sw 4 to 0, 1, oc, respectively. Using 

the MSbius transformations mk (v) from w we may write 

Z~(v)=mk+l(v ) - l .A .  

With the notation Mk =mk+l" m -1 k , we then have 

Z~_ 1 = m~ 1.A = mk~I .A .A-1 .Mk .A  = Z~.A -1.Mk.A. 
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Set 

Qk = A-I"Mk'A. (9.2) 

Then the above relation can be abbreviated 

Z~_I=Z~.Qk. (9.3) 

Equations (9.1) and (9.3) will allow us to write the expression for Z~(L~k v) in terms of 

Z~(v) and the transition matrices Qk, R: 

e e e Lk Zk - Lk  (Zk+2" Qk+2" Qk+l)  -= re  ~e  re ~ L e ~k~k+2"~k~k+2" k ~ k + l  
(9.4) 

= Z~.R.L~Qk+2.L~Qk+I. 

Matrix representations of R and A are 

(o 0) R =  A =  
~d -1 ' 1 EW ' 

and the expression (4.5) for Mk can be written 

Mk = --V~Sk = --V~ ( l+e2hk)  " 
(9.5) 

This gives the following expression for Qk: 

(iw(l+c2hk) iw2~(2+C2hk) ) 
Qk = ~iwhk iw2(l +~2hk) " 

Observe that  Qk is polynomial in ~ and hk. A direct computation gives the leading terms 

D L ~ , ~  L ~ , ~  for ~ .  k%~k+2" k ~ k + l  as 

Le.  ( 0 (96) 
�9 k~dk+2" k~k+l =I+e 5 e 4 e W Lkhk+l+W Lkhk+2 0 

where I is the identity matrix, and O(1) denotes some matrix that  is polynomial in 

e,L~khk+l,L~khk+2. The equations (9.4) and (9.6) give an expression for the discrete 

derivative O~Z~ as 

( 0 2iv'3 )+eZ~'O(1). (9.7) 
O~Z~=Z~. w5L~khk+l+W4L~khk+ 2 0 

An entirely similar computation gives 

( 0 3-oV~i)+~Z~.O(1)" (9.8) 
O ~ - 2 Z ~ = Z ~ "  w h k - l + h k  
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(Of course, the O(1)-matrix here is not necessarily the same as in (9.7).) Because of the 

relations 0~+ 3 =-0~L~+ 3 and 0~k_l=0~ +c9~_2L~, the expressions for all the derivatives 

O~Z~, j e Z s ,  can be obtained from (9.7) and (9.8). 

Recall that Zo denotes an arbitrary but fixed point in ft. For each small e>0 let 

vo=v~ be some vertex in V~ which is closest to z0. Let 

2~(V) = Z~(vo)-lZ~(v). 

Then we have from (9.7) and (9.8) and the similar expressions for the other O~Z~, 

L;2  = 2 .(I ). 

Since the absolute values of the entries in (I+~O(1)) n are bounded by e Cn, for some 

constant C, and since Z~(v0)=I, it follows that the matrices Z~ are bounded in compact 

subsets of ~2, independently of e. From the similar relations for Z~, we have for each 

jEZ6, 
(9.9) 

Note that the O(1)-term is bounded in C~(ft) .  Therefore, repeated differentiation of 

(9.9) shows that Z~ is bounded in C~(ft)  uniformly in ~. By Lemma 2.1, it follows that 

for some sequence of E--*0, the limit 

exists, and the convergence is C~(ft) .  

Multiply equation (9.7) on the left by Z~(vo) -1, and take a limit as e---*0, to obtain 

0 
0k2 k = Zk" ( 5 tk+ 1 +w4 k+2 

Applying a similar procedure to (9.8) gives 

( 0 

2ivY0 ) .  (9.10) 

3 - v ~ i ) 0  " (9.11) 

The identities (9.10), (9.11), (8.2) and (8.3) now imply 

which shows that Zk(z) is a (matrix-valued) analytic function of z. 

Observe that the equations (9.10) and (9.11) show that the determinant of Zk(z) is 

constant in ft. At z0 this determinant is 1. Therefore, Zk(z) is a MSbius transformation 

for every z E ~. 
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The next step is to show that  there is also convergence of a subsequence of Z~ 

as E-+0. For this, all that  is needed is to show that  the transformations Z~(vo) are 

bounded independently of ~. Let Zk(z)(w) denote the image of w under the Mhbius 

transfromation Zk(z). Since Zk(zo)=I, we find from (9.10), 

o 20(z)(0) =2iv  #0. 
0Z z=0 

It follows that  for a sufficiently small a > 0 ,  the three points wo=Zo(z0)(0), w l =  

Z0(z0-a)(0) ,  w2--Zo(zo+a)(0) are all distinct. Set z l = z o - a  and z2=z0+a .  

From the Rodin-Sullivan Theorem and the definition of Z~, it follows that  

lim Z~(z)(e) = f(z),  
'~-'-*0 

where f is the Riemann map f :  ~---*U. For each e>0,  let vl, v2 be vertices of V ~ closest 

to zl, z2, respectively. The Mhbius transformation Z~ (Vo) takes each of the three points 

Z~(vo)(e), Z~(vl)(e), Z~(v2)(e) to a point close to f(zo), f (z l) ,  f(z2), respectively. The 

former triplet of points are close to Wo, wl, w2, respectively. Consequently, l i m ~ o  Z~)(vo) 
exists, and is the Mhbius transformation that  takes wo, wl, w2 to f(zo), f (zl) ,  f(z2), re- 

spectively. It is easy to see that  the same must hold for the other transformations Z~(vo). 
Consequently, there is C~-convergence, 

Zk = lim Z~, 
~--+0 

along some subsequence of e--~O. 

THEOREM 9.1. Let f be the Riemann map from ~ to the unit disk U. Then 

S( f )  = 4(7-/0 +waT-/1 +w27-/2). (9.12) 

Using (8.3), this also gives 

67-lk = Re(w2kS(f) ), 

for kEZ6. The theorem then implies that  Corollary 8.2 and (8.1) are valid for every 

sequence of z-*0, not just for one particular sequence. 

Proof. Write 
(a(z)  b(z) ) Zo(z) 
\ c(z) d(z) ] " 

It follows from f(z)=Zo(z)(O) that  f(z)=b(z)/d(z).  Equation (9.10) is also valid for the 

matrix Zk, and therefore b(z) and d(z) both satisfy the differential equation 

w"= 2iv/-3 (whTll+w4Tl2)w. (9.13) 
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Consequently, we have (b'd-bd')'=O, and therefore b'd-bd ~ is a constant,  say c~. Hence, 

(b/d)'=a/d 2. Using the fact that  d satisfies (9.13), the definition (4.1) of 8 ( f ) ,  and the 

identity (8.3), it is easy now to verify that  S(f)=S(b/d) is the same as the right-hand 

side of (9.12). [] 

10. Cr of disk packings 

Let the situation be as described in w For each vEV~, let ge(v) be the contact point 

of P~ with P~hv. We recall that  fe(v) denotes the center of the disk P~, and re(v) the 

radius of P~. Clearly, Theorem 1.1 follows from the following theorem. 

THEOREM 10.1. In the setting of w fe and ge converge to the conformal map 
f: ~---~V in C~(~), and 2re/e converges in CCr to ]f ' l .  

Proof. Let us s tar t  with ge. We have g~(v)=Z~(v)(e). Write Zg(v) as a matrix,  

ce(v ) de(v)]. 

Similarly, let the entries of Zo(z) be a(z), b(z), c(z),d(z). Then r e converges C ~ 

to d and eae+b ~ converges C ~ to b. Note that  d is nonzero in ~, because b(z)/d(z)= 
Zo(z)(O)=f(z), and the determinant  of Zo(z) is nonzero. Consequently, by (2) and (3) 

of Lemma 2.2, it follows tha t  (r in C ~ .  But tha t  is the same as 
g~-- .f .  

Let Cl be the circle that  contains the three points e, ew 2, r 4. Because Zg(v) maps 

the three points r 2, ew 4 to P~AP~gv, Pf~..AP%_I~ Lo ~, FgNP~,, respectively, it maps cl 

onto the dual circle of the tr iangular interstice. Consequently, Z~)(v) maps the circle c2 

passing through ~ and ew 4 which is orthogonal to cl onto OPt. Let r be the center, 

and Ee2 be the radius of c2. Then P2 and 02 are constants. 

How can we find a formula for re(v), the center of P~, in terms of Z~(v)? The 

inversion of f~(v) in OP~ is oc, obviously. The preimage of tha t  inversion under Z~(v) 
is the pole of Z~(v). Let q be the inversion in c2 of the pole of Z~(v). Note that  when 

a point z2 is the image of a point zl under an inversion in a circle c, then any Mhbius 

transformtion m will take z2 to the inversion of m(zl) in the circle m(c). Consequently, 

Z~(v)(q)=f~(v). The pole of Z~(v) is just the point -d~(v)/ce(v). This gives 

q = ~P2 ~ - -  - -  ~P2 -4 
- ~ - d e ( v ) / c C ( v )  -Ec~(v)p2-de(v) 

It  is therefore clear from Lemma 2.2 tha t  fe(v)=Z~(v)(q) converges C ~ to f .  
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Note that  

r e (w) +r e (L~kw) = If ~ (w) - fe (L~w) l = ~ IO~ f6 (v)l" 

The three instances of this relation, (w=v, k=0),  (w=v, k = l )  and (w=L~v, k=2),  give 

re(v) = �89 (v) l+ IO~ f f  (v)l-IO~ff  (nov)I). (10.1) 

Because O~ff converges C ~ to f l  it follows from Lemma 2.2 that  loaf] converges C ~ 

to I f ' l .  Similarly, 10~fl--*lf'l. Consequently, 2re/~ converges C ~ to I f ' l .  [] 

11. R e m a r k s :  M o r e  general combinatorics a n d  d i sk  patterns 

Consider a locally finite disk packing R in the plane, which is invariant under two linearly 

independent translations, and assume that  all the interstices are triangular. It is well 

known that  one may use the rescaled packings R~=~R={~D: D c R } ,  ~>0, to construct 

approximations to conformal mappings, and that  the derivatives up to the second order 

converge (see, e.g., [8] or [9]). We now discuss the definition and convergence of the 

Schwarzian in this general case. 

We will use G e to denote the embedded graph of the packing sR, and denote by 

~ the domain which approximates ~; R~ the subpacking of ~R contained in ~t; G~ the 

graph of R~; and V~ the vertex set of G~. Let pe be the disk packing in U whose graph 

is equivalent to G~, such that  the "boundary" disks are all tangent to the unit circle OU. 
We may then define f f  to be the map which maps the centers of disks in R~ to the 

centers of the corresponding disks in P~. The problem is, does f f  converge in C ~ ?  The 

meaning of the convergence is that  the restriction of f f  to the intersection of V~ with 

any lattice converges. 

For each interior edge e in the graph G~, we may define two M5bius invariants 

#(e) and s"(e), corresponding to the packings R~ and P~, respectively. (The invariant 

#(e) is obtained by comparing the configuration of the four circles in R~ related to e 

to a configuration of four circles related to an edge in the hexagonal combinatorics, and 

similarly for slt(e).) Then the Schwarzian derivative on the edge may be defined by 

h(e)=~-2(# '(e)-s ' (e)) .  The equations of #(e) and s"(e) can be derived similarly. 

The proof of the uniform boundedness of h(e) (Lemma 6.1) is almost identical in 

this case. In fact, the proof of [6] works even better in the general abstract setting (see [8] 

for the necessary modifications). However, except for a few nice cases, it seems difficult 

to derive the equation for the "Laplacian" of the Schwarzians from the equations of the 

MSbius invariants. 

One may consider disk patterns instead of disk packings. In this case, C~ 

follows by a compactness argument using the rigidity theorem of [7] and the topological 
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lemma of [9]. In the special case of the square grid pat tern  (or in short SG pattern) ,  

the Mhbius invariants and their equations have been worked out in [16], as we remarked 

earlier. One may define the discrete Schwarzians and find a similar formula for their 

Laplacians as in w of the present paper. On the other hand, because the angles of inter- 

section between pairs of disks in a square grid pat tern  are either 0 or 1~, the inversions 

on the circles generate a Kleinian group. Thus the method of [6] can be extended, al- 

though some nontrivial modifications are needed. This implies the boundedness of the 

Schwarzians. So the technique of this paper  does generalize to SG patterns.  The general 

case is still open. 

There is an alternative method, which has been successful in proving the rigidity of 

locally finite disk pat terns  in the plane (see [7]). Using a refinement of tha t  argument,  

it is possible to s tudy the logarithm of the ratio of radii of a pair of disk patterns,  and 

show that  they converge to the harmonic function log If ' (z)[ ,  where f ( z )  denotes the 

conformal mapping from ~ to U. We conjecture that  the convergence is C ~162 If true, 

it would then be an elementary mat ter  to deduce the C~-convergence of the discrete 

function which maps the center of a disk to the center of the corresponding disk. 
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