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1. In tro d u c t io n  

Gromov's polynomial growth theorem [Grl] states that  the property of having polynomial 

growth characterizes virtually nilpotent groups among all finitely generated groups. 

Gromov's theorem inspired the more general problem (see e.g. [GH]) of understand- 

ing to what extent the asymptotic geometry of a finitely generated solvable group deter- 

mines its algebraic s t ruc ture- - in  short, are solvable groups quasi-isometrically rigid? In 

general they are not: very recently A. Dioubina [D] has found a solvable group which is 

quasi-isometric to a group which is not virtually solvable; these groups are finitely gener- 

ated but not finitely presentable. In the opposite direction, the first steps in identifying 

quasi-isometricaily rigid solvable groups which are not virtually nilpotent were taken for 

a special class of examples, the solvable Baumslag-Solitar groups, in [FM1] and [FM2]. 

The goal of the present paper is to show that  a much broader class of solvable groups, 

the class of finitely presented, nonpolycyclic, abelian-by-cyclic groups, is characterized 

among all finitely generated groups by its quasi-isometry type. We also give a complete 

quasi-isometry classification of the groups in this class; such a classification for nilpotent 

groups remains a major open question. Motivated by these results, we offer a conjectural 

picture of quasi-isometric classification and rigidity for polycyclic abelian-by-cyclic groups 

in w 

The proofs of these results lead one naturally from a geometry-of-groups problem to 

the theory of dynamical systems via the asymptotic behavior of certain flows and their 

associated foliations. 

1.1. The  abel ian-by-cycl ic  group FM 

A group F is abelian-by-cyclic if there is an exact sequence 

1-~ A-+F--+ Z - +  1 

where A is an abelian group and Z is an infinite cyclic group. If F is finitely generated, 

then A is a finitely generated module over the group ring Z[Z], although A may not be 

finitely generated as a group. 
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By a result of Bieri and Strebel [BS1], the class of finitely presented, torsion-free, 

abelian-by-cyclic groups may be described in another way. Consider an (n • n)-matrix 

M with integral entries and det M ~ 0 .  Let FM be the ascending HNN extension of Z n 

given by the monomorphism CM with matrix M. Then FM has a finite presentation 

(t, al, ..., a~ I [ai, aj] = 1, ta i t - l  = r i , j  = 1, ..., n), 

where CM(a~) is the word a~l. . ,  an-~n, and the vector (ml, ..., ran) is the i th  column of 

the matrix M. Such groups FM are precisely the class of finitely presented, torsion- 

free, abelian-by-cyclic groups (see [BS1] for a proof involving a precursor of the Bieri- 

Neumann-Strebel invariant, or [FM2] for a proof using trees). The group FM is polycyclic 

if and only if Idet M I = I ;  this is easy to see directly, and also follows from [BS2]. 

1.2. S t a t e m e n t  o f  r e s u l t s  

The first main theorem in this paper gives a classification of all finitely presented, non- 

polycyclic, abelian-by-cyclic groups up to quasi-isometry. It is easy to see that  any such 

group has a torsion-free subgroup of finite index, and so is commensurable (hence quasi- 

isometric) to some FM. The classification of these groups is actually quite delicate--the 

standard quasi-isometry invariants (ends, growth, isoperimetric inequalities, etc.) do not 

distinguish any of these groups from each other, except that  the size of the matrix M 

can be detected by large-scale cohomological invariants of FM. 

Given M c G L ( n , R ) ,  the absolute Jordan form of M is the matrix obtained from 

the Jordan form for M over C by replacing each diagonal entry with its absolute value, 

and rearranging the Jordan blocks in some canonical order. 

THEOREM 1.1 (classification theorem). Let M1 and M2 be integral matrices with 

Ide tMi l> l  for i=1 ,2 .  Then FM~ is quasi-isometric to FM~ if and only if there are 

positive integers r], r2 such that M~ 1 and M~ 2 have the same absolute Jordan form. 

Remark. Theorem 1.1 generalizes the main result of [FM1], which is the case when 

M1, M2 are positive (1 • 1)-matrices; in that  case the result of [FM1] says even more, 

namely that  FM1 and FM2 are quasi-isometric if and only if they are commensurable. 

When n~>2, however, it is not hard to find (n x n)-matrices M1, M2 such that  FMI, FM2 

are quasi-isometric but not commensurable. Polycyclic examples are given in [BG], and 

the same ideas may be used to produce nonpolycyclic examples. 

The  following theorem shows that  the algebraic property of being a finitely presented, 

nonpolycyclic, abelian-by-cyclic group is in fact a large-scale geometric property. 
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THEOREM 1.2 (quasi-isometric rigidity). Let F : F  M be a finitely presented abelian- 

by-cyclic group, determined by an integer (nxn) -matr ix  M with Idet M I > I .  Let G be 

any finitely generated group quasi-isometric to F. Then there is a finite normal subgroup 

K C  G such that G / K  is abstractly commensurable to F N, for some integer (n x n)-matrix 

N with Ide tN]> l .  

Remark. Theorem 1.2 generalizes the main result of [FM2], which covers the case 

when M is a positive (1 x 1)-matrix. The latter result was given a new proof in [MSW], 

and in w we follow the methods of [MSW] in proving Theorem 1.2. 

Remark. The "finitely presented" hypothesis in Theorem 1.2 cannot be weakened to 

"finitely generated". Dioubina shows [D] that  the wreath product Z wr Z, an abelian-by- 

cyclic group of the form Z [Z]-by-Z, is quasi-isometric to the wreath product (Z O F ) w r  Z 

whenever F is a finite group. But (Z@F)wrZ  has no nontrivial finite normal subgroups, 

and when F is nonabelian it is not abstractly commensurable to an abelian-by-cyclic 

group. 

One of the key technical results used to prove Theorem 1.1 is the following theorem, 

which we believe is of independent interest. It describes a rigidity phenomenon for 1- 

parameter subgroups of GL(n, R) which generalizes work of Benardete [Be] (see also [W]). 

A 1-parameter subgroup M t of GL(n, R) determines a 1-parameter family of qua- 

dratic forms Q M ( t ) = ( M - t ) T ( M - t )  on R n, where the superscript T denotes transpose. 

Each QM(t) determines a norm ]]. I]M,t and a distance function dM, t o n  R n. 

THEOREM 5.11 (1-parameter subgroup rigidity). Let M t, N t be 1-parameter sub- 

groups of GL(n, R)  such that M = M  1 and N - - N  1 have no eigenvalues on the unit circle. 

I f  there exists a bijection f: R n - + R  n and constants K>~I, C>~O such that for each t E R  

and p, q E R n, 

C 1 
- -  +-~'dM, t(p, q) • dg, t ( f (p) ,  f (q))  <. K'dM, t(p, q)+C, 

then M and N have the same absolute Jordan form. 

The proof of Theorem 5.11 is given in w and shows that  in fact f is a homeomorphism 

with a reasonably high degree of regularity; see Proposition 6.3. 

Remark. The case of Theorem 5.11 when f is the identity map follows from a the- 

orem of D. Benardete [Be]. See also D. Witte [W]. Benardete's theorem determines 

precisely when two 1-parameter subgroups of GL(n, R) diverge, and it applies as well to 

matrices with eigenvalues on the unit circle. 
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1.3. Homogeneous  spaces 

Using coarse topological and geometrical methods, we reduce the study of quasi-iso- 

metries of FM to that  of a certain Lie group GM. 

After squaring M if necessary, we can assume that  det M > 0 and that  M lies on a 

1-parameter subgroup M t of GL(n, R).  The group FM is a cocompact subgroup of the 

solvable Lie group G M :  Rn>~ M R ,  where R acts on R n by the 1-parameter subgroup M t. 

The group FM is discrete in  GM if and only if det M =  1. See w for details. 

The groups GM, with their left-invariant metrics, give a rich and familiar collection 

of examples, including: all real hyperbolic spaces, when M is a constant times the iden- 

tity; many negatively curved homogeneous spaces, when M has all eigenvalues >1 in 

absolute value; and 3-dimensional SOLV-geometry, when M is a hyperbolic (2 • 2)-matrix 

of determinant 1. The negatively curved examples associated to a real diagonal ma- 

trix with all eigenvalues >1 were studied by Pansu [P1] (and later Gromov [Gr2]), who 

analyzed their quasi-isometric geometry using the idea of "conformal dimension". 

We should mention also the result of Heintze [He] that  the class of connected, neg- 

atively curved homogeneous spaces consists precisely of those spaces of the form N>~ R 

where N is a nilpotent Lie group, and the action of R on the Lie algebra has all eigen- 

values strictly outside the unit circle. 

1.4. O u t l i n e  o f  p roo f s  

After preliminary sections, w on linear algebra, and w on the solvable Lie group GM, the 

proof of Theorem 1.1 can be divided into three main parts: w167 5 and 6 on the dynamics 

of GM; w on quasi-isometries of FM via coarse topology; and w on finding the integers, 

where the pieces of the proof are put together. The proof of Theorem 1.2 is contained 

in w on quasi-isometric rigidity. Finally we pose some conjectures and problems in w 

w167 5 and 6. Dynamics of GM. In these two sections we classify the Lie groups GM 

up to horizontal-respecting quasi-isometry, that  is, up to quasi-isometries r GM-+GN 

which take each set of the form R m •  {t} to a set of the form R n •  {h(t)} for some 

function h called the induced time change. 

THEOREM 5.21 (horizontal-respecting quasi-isometries: special case). Let M , N  lie 

on l-parameter subgroups Mt,  N t of GL(n ,R) ,  and suppose that de tM,  d e t N > l .  I f  

there exists a horizontal-respecting quasi-isometry r GM--+G N, then there exist real num- 

bers r, s > 0  so that M r and N s have the same absolute Jordan form. 

Remark. In the special case where M, N are diagonalizable with all eigenvalues > 1, 

this can be extracted from work of Pansu [P1] without the assumption that  r is horizontal- 
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respecting. This special case was later reconsidered by Gromov (see [Gr2, w as an 

application of his "infSim"-invariant. Our statement and proof of Theorem 5.2 is inspired 

in part  by the ideas of exponential growth rates built into the inf(fim-invariant (see also 

comments after Proposition 5.8). 

In w we give a slightly more general version of this statement, Theorem 5.2. 

The proof of Theorem 5.2 uses a certain dynamical system on GM, the "vertical flow" 

which flows upward at unit speed along flow lines of the form ( p o i n t ) •  

When M has no eigenvalues on the unit circle this is a hyperbolic or Anosov flow, and 

in general it is a partially hyperbolic flow. We prove Theorem 5.2 in several steps, using 

stronger and stronger dynamical properties of flows in GM. 

Step 1 (foliations rigidity, Proposition 5.4). Using the shadowing lemma from hyper- 

bolic dynamics we show that  r coarsely respects three dynamically defined foliations of 

GM and GN: the weak stable, weak unstable, and center foliations. This, together with 

a result of Bridson-Gersten that  depends in turn on work of Pansu (see Corollary 5.6), 

allows reduction to the case where M, N have no eigenvalues on the unit circle. 

Step 2 (time rigidity, Proposition 5.8). We show that  the induced time change map 

of r is actually an aLfine map between the time parameters of GM and GN. After taking 

a real power of N and composing with a vertical translation, we can assume that  r 

preserves the time parameter, that  is, h(t)=t. 

Step 3 (1-parameter subgroup rigidity, Theorem 5.11). From Step 2, r induces a 

quasi-isometry between corresponding level sets of the time parameter on GM, GN, which 

reduces the proof to Theorem 5.11, 1-parameter subgroup rigidity. The latter theorem is 

proved in w by studying rigidity properties of certain flags of foliations of R n associated 

to the absolute Jordan form of ME GL(n, R).  

w Quasi-isometries of FM via coarse topology. Given an integer matrix ME 

GL(n, R)  with det M > I ,  we study the geometry of FM by constructing a contractible 

metric cell complex XM on which FM acts freely, properly discontinuously and cocom- 

pactly by isometries, so that  FM is quasi-isometric to XM. Topologically, XM is a 

product of R TM with the homogeneous directed tree TM with one edge entering and d 

edges leaving each vertex. Here d = d e t  M. Metrically, for every coherently oriented line 

l in TM, the metric on XM is such that  Rm •  l is isometric to GM. 

The main result of this section, Proposition 7.1, says that  a quasi-isometry f :  

XM-+XN induces a quasi-isometry r GM--~GN which respects horizontal foliations. 

This is proved using coarse geometric and topological methods. This is precisely where 

the condition det M, det N >  1 is essential for our proof, since it gives that  the trees 

TM, TN have nontrivial branching, and this branching allows us to show that  f "remem- 



ON THE ASYMPTOTIC GEOMETRY OF ABELIAN-BY-CYCLIC GROUPS 151 

bers" the branch points (see Step 2 of w 

While this proof is in the spirit of [FM1], further complications arise in this more 

general case (see w Also, for other applications (e.g. [FM3], [MSW]), we shall derive 

Proposition 7.1 from a still more general result, Theorem 7.7, which applies to many  

graphs of groups whose vertex and edge groups are fundamental  groups of aspherical 

manifolds of fixed dimension. 

w Finding the integers. Given integer matrices M, NC GL(n,  R)  with I det M I > 1 

and Idet N I > I  such that  FM and FN are quasi-isometric, a simple argument allows us 

to reduce to the case of positive determinant,  and then the results of w167 combine 

to show tha t  there are positive real numbers r, s so that  M ~ and N s have the same 

absolute Jordan form. We need to show that  integral r, s exist. This is done by showing 

tha t  a quasi-isometry XM--+XN induces a bi-Lipschitz homeomorphism between certain 

self-similar Cantor sets at tached to XM and XN. Applying a theorem of Cooper on 

bi-Lipschitz types of these Cantor sets allows us to conclude tha t  (det M ) P = ( d e t  N)q for 

some integers p, q~> 1, from which the desired conclusion follows. 

w Quasi-isometric rigidity. To prove Theorem 1.2, we use the coarse topology 

results from w to show that  a group quasi-isometric to some I~M admits  a quasi-action 

on a tree of n-dimensional Euclidean spaces. We then use the results of [MSW] to convert 

this quasi-action into a true action on a tree whose edge and vertex stabilizers are finitely 

generated groups quasi-isometric to Z n. The proof is completed by invoking well-known 

quasi-isometry invariants, combined with a brief s tudy of injective endomorphisms of 

virtually abelian groups. 

w Questions. We make some conjectures concerning possible extensions of this 

�9 work to the polycyclic case. Also, we state some problems on the quasi-isometry group 

of FM. 

Acknowledgements. We thank Kevin Whyte  and Amie Wilkinson for all their help. 

We are also grateful to the IHES, where much of this work was done. 

2. P r e l i m i n a r i e s  

This brief section reviews some basic material; see for example [GH]. 

Given K~> 1, C/P0, a (K, C)-quasi-isometry between metric spaces is a map  f :  X--~Y 
such that: 
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(1) For all x,x~EX we have 

1 .dz(x ,  x ' ) - C  <~ dy( f (x) ,  f(x '))  <. K .dx ( x ,  xt) + C; 
K 

(2) For all y E Y  we have dy(y , f (X))<.C.  

If f satisfies (1) but not necessarily (2) then it is called a (K, C)-quasi-isometric 

embedding. If f satisfies only the right-hand inequality of (1) then f is (K, C)-coarsely 

Lipschitz, and if in addition C = 0  then f is K-Lipschitz. 

A coarse inverse of a quasi-isometry f :  X--+ Y is a quasi-isometry g: Y--+X such that ,  

for some constant C '>0 ,  we have d(gof(x) ,x)<C'  and d(fog(y) ,y)<C' for all x E X  

and y c Y .  Every (K, C)-quasi-isometry f :  X--+Y has a (K, C')-coarse inverse g: Y-+X,  
where C' depends only on K,C: for each y E Y  define g(y) to be any point x C X  such 

that  d(f(x),  y) <<. C. 

A fundamental fact observed by Efremovich, by Milnor [Mi] and by Svarc, which we 

use repeatedly without mentioning, states that  if a group G acts properly discontinuously 

and cocompactly by isometries on a proper geodesic metric space X, then G is finitely 

generated, and X is quasi-isometric to G equipped with the word metric. 

Given a metric space X and A, B c X ,  we denote the Hausdorff distance by 

dn(A, B) = inf{r E [0, oc]]A C Nr(B) and B C Nr(A)}. 

The following lemma says that  an ambient quasi-isometry induces a quasi-isometry 

between subspaces of a certain type. A map a: S--+X between geodesic metric spaces 

is uniformly proper if there is a function 0: [0, oc)-+[0, c~) with limt~o~ 0 ( t )=+cc ,  and 

constants K~> 1, C~>0, such that  for all x, yES  we have 

o(ds(x, y) ) <~ dx(a(x),  a(y) ) <~ K.ds(x ,  y) + C. 

The function 0 and the constants K, C are called uniformity data for a. 

LEMMA 2.1. Given geodesic metric spaces X, Y, S, T, a quasi-isometry f: X-+ Y and 

uniformly proper maps a: S-+ X and T: T-+Y,  suppose that d n ( f  a( S), T(T) )<cc .  Then 

S, T are quasi-isometric. To be explicit, any function g: S--+T such that dy( fa(x) ,  Tg(x)) 

is uniformly bounded is a quasi-isometry; the quasi-isometry constants for g depend only 

on those for f ,  the uniformity data for a and % and the bound for dy( fa(x) ,  gT(X)). 

Proof. Pick K>~ 1, C~>0 and 0: [0, oc) -+ [0, oc) such that  f is a (K, C)-quasi-isometry, 

dy (fa(x),  gT(x)) <~ C and 0, K, C are uniformity data for a, ~-. 

Consider x, yES  such that  ds (x , y )~ l .  We have dy( fa (x ) , fa (y ) )<~K2+KC+C,  

and so dy (Tg(x), Tg(y) ) ~ K 2 § K C  + 3C, from which it follows that  y( dT(g(x), g(y) ) ) <~ 



O N  T H E  A S Y M P T O T I C  G E O M E T R Y  O F  A B E L I A N - B Y - C Y C L I C  G R O U P S  153 

K2+KC+3C. Since t i m t _ ~  g( t )=oo we obtain a bound dT(g(x),g(y))~A depending 

only on K, C, Q. The usual "rubber-band" argument, using geodesics in S divided into 

subsegments of length 1 with a terminal subsegment of length ~< 1, suffices to prove that  

g is (K  ~, C)-coarsely  Lipschitz, with K ~, C t depending only on K, C, p. 

For any ~ E T  there is a point ~0(~)E S such that  dy(fcrg(~), T(~))<~C. For any ~, r tET 

with d((, r/) ~< 1 we have 

dy( f ag(~), f a~(rl) ) <<. dy(f a~(~), r(~) ) +dy(7(~), T(rl) ) +dy(fag(r~), r(rl) ) <~ K + 3 C ,  

and so Q(ds(~(~),~(rl)))~dx(a~(~),~r~(rl))<~K2+4KC. As above we obtain an upper 

bound for ds(O(~),~(r/)), and the rubber-band argument shows that ~ is coarsely Lip- 

schitz. 

For any xES, setting ~=g(x)ET, we have 

dy(f a(x), f a~(~) ) <<. dy(f  a(x), vg(x) ) + dy(v(~), f a~(~) ) <<. 2C. 

It follows that  dx(a(x), cr0(~))~<3KC, and so 

y( ds(x, ~g(x) ) ) = Q( ds(x, ~0(~))) ~< 3KC, 

yielding an upper bound for ds(x, gg(x)). Similarly, dy(~, g~(~)) is bounded for all ~ET. 

Knowing that  g: S-+T and ~:T--~S are coarse Lipschitz maps which are coarse 

inverses of each other, it easily follows that  g is a quasi-isometry, with quasi-isometry 

constants depending only on the coarse Lipschitz constants for g and g, and on the coarse 

inverse constants for g, ~0. [] 

3. Linear algebra 

In this section we collect some basic results about canonical forms of matrices, and growth 

of vectors under the action of a matrix. 

Let Ad(n ,F )  denote all (nxn)-matr ices  over a field F,  and let G L ( n , F )  be the 

group of invertible matrices. Let GL0(n, R)  be the identity component of GL(n, R),  

consisting of all matrices of positive determinant. 

3.1. J o r d a n  f o r m s  

A matrix JEA//(k, C) is a Jordan block if it has the form J=J(k,A)=)~.Id+N where 

AEC and Ni j= (~( i+ l , j ) ,  so that  N is the (k•  with l 's  on the superdiagonal 

and O's elsewhere. 
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A matrix M C A 4 ( n ,  C) is in Jordan form if it is in block diagonal form 

M =  

J1 0 ... 0 

0 J2 ... 0 
: : " . .  : 

o o ... J~ 

where each Ji is a Jordan block. Every matrix in .hi(n,  C) is conjugate, via an inver- 

tible complex matrix, to a matrix in Jordan form, unique up to permutation of the 

Jordan blocks. When all eigenvalues are real, say that  Ji has eigenvalue l~, we resolve 

the nonuniqueness by requiring 11 ~ 12 ~/... ~/Ii, and for each i=  1, ..., I - 1 ,  if li = I~+1 then 

rk(J i )~rk(J~+l) .  

A matrix J E . M ( k ,  R) is a real Jordan block if it has one of the following two forms. 

The first form is an ordinary Jordan block J(k ,  l) where IER. The second form, which 

requires k to be even, has a (2 • 2)-block decomposition of the form 

Q(a,b) Id ... 0 ~ ) 

0 Q(a, b) ... 0 

J = J (k ,  a, b) = : "'. : i 

0 ... Q(a, b) Id 

0 ... 0 Q(a, b) 

where Id is the identity, 0 is the 0-matrix, 

(; ?) 
and be0 .  

A matrix M C A 4 ( n ,  R) is in real Jordan form if it is in block diagonal form as above 

where each block J~ is a real Jordan block. Every matrix in A4(n, R) is conjugate, via 

an invertible real matrix, to a matrix in real Jordan form, unique up to permutation of 

blocks. 

The absolute Jordan form of M C M ( n ,  R) is the matrix obtained from the Jordan 

form of M by replacing each diagonal entry A by l=l)~ I, and permuting the blocks to 

resolve the nonuniqueness. If M is invertible then the absolute Jordan form of M can be 

written in block diagonal form 

o o) 
oo ~ 
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where the diagonal entries of J ~  are >1, of j o  are =1,  and of JM are <1. We call 

J ~  the expanding part of the absolute Jordan form, yO the unipotent part, and JM the 

contracting part. The block matrix 0) 
0 

is called the nonunipotent part. Of course, one or more of these parts might be empty�9 

Note that  the Jordan form of the real matrix J(k, a, b) is 

( J ( ~ k , o + b i )  0 
Y(�89 a-bi )  ) '  

and so the absolute Jordan form of J(k, a, b) is 

o j(�89 
Given ME.M(n, R), this process may be applied block by block to the real Jordan form 

of M, and the blocks then permuted, to obtain the absolute Jordan form of M. 

Let GLx(n, R) denote the set of all matrices in GL(n, R) lying on a l-parameter 

subgroup of GL(n, R),  so that  GLx (n, R ) C  GLo(n, R). It is well known and easy to see, 

given a matrix MEGL(n ,  R),  tha t  M c G L x  (n, R)  if and only if the negative-eigenvalue 

Jordan blocks of M may be paired up so that  the two blocks oecuring in each pair are 

identical to each other, and this occurs if and only if M has a square root in GL(n, R). 

Thus, if M does not already lie on a i-parameter subgroup then M 2 does. We are 

therefore free to replace a matrix by its square in order to land on a 1-parameter subgroup�9 

Given a 1-parameter subgroup 0(t) of GL(n, R), if M = 0 ( 1 )  then we will often abuse 

notation and write Q( t )=M t, despite the fact that  M may not lie on a unique 1-parameter 

subgroup�9 

Given AEAd(n, R) in Jordan fo rm--no  J(k, a, b)-blocks--we say that  o(t)=e At is a 

1-parameter Jordan subgroup. Notice that  the matrices e At are not themselves in Jordan 

form�9 For example when A=J(n ,  l)=l.Id + N  is a single (n x n)-Jordan block then e At is 

obtained by multiplying the scalar e u with the matrix 
t2 t n- 1 

1 t -- 
2! "" ( n - l ) ]  

tn-2 
1 t ... ( n - 2 ) !  

tn-3 
1 ... ( n - 3 ) !  

eN. t _~-~ 1 Ni . t  i 
- -  ~ .  = 

i=0 

t• 
n! 

tn--1 

( n - l ) !  

tn--2 

( n - 2 ) !  

t 

1 

(3.1) 
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Nevertheless, for any Jordan form matrix J = l . I d + N  with IER,  the Jordan form of e J 

is e L. Id +N.  

Given a general l-parameter subgroup e tLt in GL(n, R), choose A so that  A - I # A  

is in real Jordan form, and so A - I # A = 5 + ~ , + ~  where 5 is diagonal, v is superdiagonal, 

and rl is skew-symmetric. We then have 

et, t = (Ae(5+V)tA- 1 ) ( A e , t A -  1). 

Since 77 is skew-symmetric it follows that  e nt is in the orthogonal group O(n, R). We 

have therefore proved (see [W] for this particular formulation) 

PROPOSITION 3.1 (l-parameter real Jordan form). Let M t be a l -parameter  sub- 

group of  GL(n, R).  There exists a l -parameter  Jordan subgroup e Jr, a mat r i x  A C  

GL(n, R) and a bounded l -parameter  subgroup p t  conjugate into the orthogonal group 

O(n,R) ,  such that e J is the absolute Jordan f o r m  of  M ,  and letting M t = A - l e J t A  we 

have 
M t = ~ t g t  = p t ~ t .  

Remark .  In [W] the subgroup _~t is called the nonelliptic part of M t, and p t  is 

called the elliptic part. These two l-parameter subgroups, which commute with each 

other, are uniquely determined by M t. 

3 .2 .  G r o w t h  o f  v e c t o r s  u n d e r  a l i n e a r  t r a n s f o r m a t i o n  

Consider a 1-parameter subgroup M t of GL(n, R) with real Jordan form 

M t = ( A - l e J t A ) p t  = ~ t p t .  

Let 

0< AI'( . . .<A L 

be the eigenvalues of M. Let Vl ----ker((Al .Id -M) m) be the root space of the eigenvalue At, 

where m is the multiplicity of Al. Let nl he the index of nilpotency of M IV i, the smallest 

integer such that Vl--ker((Al.ld-J~r)~'). For i=O, . . . ,nl-i  let Vz#--ker((A,.Id-/~)i+1), 

so that Vt,0 is the eigenspace of Az and Vz,~,-i --Vz. We thus have the Jordan decomposition 
of M, which consists of the direct sum of root spaces 

Rn= V,| 

together with the Jordan filtrations 

V1,0 C ... C Vt,nt-1 = ~ ,  l = 1, ..., L. 

This decomposition is uniquely determined by M,  and hence by M. 
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PROPOSITION 3.2 (growth of vectors). With the above notation, there exist con- 

stants A, B>0 with the following properties. Given l= l ,  ..., L with )~1>~1, we have: 

Exponential lower bound. If  vEVz and t~O then 

l]Mtvll >1 AA~ltvtl. 

In fact, the same lower bound holds if vEVz|174 
Exponential-polynomial upper bound. Given i=0, ..., n l -  1, if  vEV~# and t>~ 1 then 

IIMtvll • B~x~t~llvll. 

In fact, the same upper bound holds if vC(Vl@.. .OVl_l)|  

Exponential-polynomial lower bound. Given i=0 , . . . , n l -1 ,  if vcVl,i~Vl,i-1 then 

there exists Cv > 0 such that if  t >11 then 

IIM%II/> c~Aft ~ 

Given l= 1, ..., L with )~z <~0, similar statements are true with negative values of t. 

Proof. We start with the case when Mr= e J t  is a 1-parameter Jordan subgroup, and 

the proposition follows by examining each Jordan block (3.1). 

The second case we consider is when M t has all positive real eigenvalues. By Propo- 

sition 3.1 we have M t = A - l e J t A ,  and Proposition 3.2 follows immediately from the first 

case applied to  e Jr ,  together with the fact that A takes the Jordan decomposition of M t 

to the Jordan decomposition of e Jr. 

In the general case, applying Proposition 3.1 we have M t = ( A - l e J t A ) p t = M t P  t. 

We can the apply the second case to M t = A - l e J t A .  Since pt  commutes with 2~ t it 

follows that pt  preserves the Jordan decomposition of ~ t .  Proposition 3.2 then follows 

from the boundedness of pt .  [] 

4. The solvable Lie g r o u p  GM 

Recall  that GL• (n, R) denotes those matrices in GL(n, R) which lie on a 1-parameter 

subgroup of GL(n, R). Also, each matrix in GL• (n, R) has positive determinant. 

Given a matrix MEGL• (n, R) lying on a 1-parameter subgroup M t of GL(n, R), we 

associate a solvable Lie group denoted GM. This is the semidirect product GM = R  n )~MR 

with multiplication defined by 

(x, t). (y, s) = ( x + M t y ,  t+s)  
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for all (x, t), (y, s ) E R  '~ x R. We will often identify G M = R  ~)~MR with the underlying 

set R "  x R. 

Remark. Although the Lie group GM depends on more than just the matrix M = M  1 

i tself-- i t  depends on the entire 1-parameter subgroup Mr--we suppress this dependence 

in our notation GMzRn>~MR. This is justified by the fact that  the quasi-isometry 

type of GM depends only on M, not on the 1-parameter subgroup containing M (see 

the remark after Proposition 4.1). Henceforth, when we say something like "given ME 

GL• (n, R)  ...", we will either implicitly or explicitly choose a 1-parameter subgroup 

Mr< GL(n, R) with M I = M ,  which in turn determines GM. 

If M has integer entries then there is a homomorphism FM-+G M taking the com- 

muting generators a 1,..., an to the standard basis of the integer lattice z n •  0 C R n •  0C 

R n x R ,  and taking the stable letter t to the generator (0, 1 ) E R  n x R .  The relator 

tait- l=r is checked by noting that  

(O, 1).(x,O).(O,-1)=(Mx, O), for all x E R  n. 

Cocompactness of the image of this homomorphism is obvious. To see that  PM embeds 

in GM one checks that  in the abelian-by-cyclic extension 1-+A--+FM--+ Z--+ 1, the group 

A is identified with the nested union Z ' ~ U M - I ( Z n ) O M - 2 ( z n ) u . . .  in R n. This also 

shows that  discreteness of FM in GM is equivalent to d e t M = l ,  which is equivalent to 
Z n_-M(Zn).  

For the next several sections we will investigate the geometry of the solvable Lie 

group GM. In this section we begin by showing that  G M and GN a r e  quasi-isometric 

if M, N have powers with the same absolute Jordan form. Later in w we will see that  

when M has integer entries, much of the geometry of FM is reflected in the geometry 

o f  G M .  

We endow GM with the left-invariant metric determined by taking the standard 

Euclidean metric at the identity of G M ~-~ R n x R - - R  n+l. At a point (x, t) C R n x R ~ GM, 

the tangent space is identified with R n x  R, and the Riemannian metric is given by the 

symmetric matrix 

where QM (t) ~- (M - t )TM-t .  For each t C R, the identification R n ~ R n x t C GM induces 

in R ~ the metric determined by the quadratic form QM(t). This metric has distance 

formula 

dM, t(x, y) =- IIM-t(x - y)I1" 
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Remarks. (1) When M is a (1 • 1)-matrix with entry a > l ,  the group GM is isomor- 

phic to Aft(R), the group of affine transformations of R, and as a Riemannian manifold 

GM is isometric to a scaled copy of the hyperbolic plane with constant sectional curvature 

depending on a. 

(2) The eigenvalues of M are greater than 1 in absolute value if and only if all 

sectional curvatures of GM are negative (see [He]). 

PROPOSITION 4.1 ( h o w  the metric on GM depends on choices). Given 1-parameter 

subgroups Mt,  N t in GL(n ,R) ,  suppose that there exist real numbers r , s > 0  such that 

M r and N s have the same absolute Jordan form. Then the metric spaces GM and GN 

are quasi-isometric. To be explicit there exists AEGL(n,  R)  and K >~I such that for each 

t c R ,  the map vF-~A(v) is a K-bi-Lipschitz homeomorphism from the metric dM, t to the 

metric dg,(s/r).t; it follows that the map from GM=Rn>~M R to G N ~ - R n ~ N R  given by 

8 

is a bi-Lipschitz homeomorphism from GM to GN, with bi-Lipschitz constant 

Remark. The absolute Jordan form of M r is uniquely determined by M and r: it 

is the r th  power of the absolute Jordan form of M. It follows in particular that  the 

quasi-isometry type of GM depends only on the matrix M = M  1, not on the choice of 

1-parameter subgroup M t. 

Proof of Proposition 4.1. We proceed in cases. 

Case 1. Assume that  N t = e  Jt is the unique 1-parameter Jordan subgroup such that  

N =  e J is conjugate to the absolute Jordan form of M. Applying Proposition 3.1 we have 

M t = (A-  1NtA) pt  

where AEGL(n,  R) and the l-parameter  subgroup pt  is bounded. 

Choose t E R  and v c R  n. We must show that  the two numbers 

HM-tvl[ = HP-t(A-1N-tA)vl l  and IIN-tAvll 

have ratio bounded away from 0 and c~, with bound independent of t, v. Setting u =  

N-tAv ,  it suffices to show that  HP-tA-luH and HuH have bounded ratio. But this is 

clearly true, with a bound of 

(supHPtH)'max{HAH'I~AH}t 
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since the 1-parameter subgroup pt  is bounded. 

Case 2. Assume that  there exists a > 0  such that  M t = N  at for all t. Then the metrics 

dM, t and dN, at are identical. 

General case. Applying Case 2 we may assume tha t  det M = d e t  N. Applying Case 1 

twice we may go from GM to GeJ to GN, where e J is conjugate to the absolute Jordan 

form of M and of N.  [] 

5. D y n a m i c s  o f  GM, P a r t  I:  Horizontal -respect ing  quasi - isometries  

In this section we begin studying the asymptot ic  geometry of the solvable Lie groups 

GM associated to 1-parameter subgroups M t of GL(n, R).  As we saw in w the quasi- 

isometry type of GM depends only on M, not on the choice of 1-parameter subgroup 

M t passing through M; see the remark after Proposition 4.1. We therefore continue to 

suppress the choice of 1-parameter subgroup in our notation. Further, we do not restrict 

the determinant to be > 1: the results of this section hold even when det M =  1. 

5.1. Theorem 5.2 on horizontal -respect ing quasi - i sometries  

Let X, Y be metric spaces. Let 9 ~ be a decomposition of X,  tha t  is, a collection of 

disjoint subsets of X whose union is X.  Let ~ be a decomposition of Y. Motivated by 

a foliation of a manifold, the elements of these decompositions are called leaves and the 

decomposition itself is called the leaf space. A quasi-isometry r X--+Y is said to coarsely 

respect the decompositions ~', G if there exists a number A ~> 0 and a map of leaf spaces 

h: ~---+G such tha t  for each leaf L C ~  we have 

dn(r h(L)) <~ A. 

For example, consider the space GM. The coordinate function GM,~Rn• R - + R  

given by (x,t)~-~t is called the time function of GM. The level sets Pt~R'~•  form the 

horizontal foliation of GM, whose leaves are called horizontal leaves of GM, and whose 

leaf space is R.  Notice that  dn(P~,Pt)=ls-tl, and so the t ime function induces an 

isometry between the horizontal leaf space equipped with the Hausdorff metric and R.  

Consider another matr ix  N C G L •  and denote the horizontal leaves of GN 

by P[. 

Definition (horizontal-respecting). A quasi-isometry r  is said to be 

horizontal-respecting if it coarsely respects the horizontal foliations of GM, GN. That  

is, there exists a function h: R - + R  and A~>0 such that  dn(r P~ t )<~A for all t E R .  ()  



O N  T H E  A S Y M P T O T I C  G E O M E T R Y  O F  A B E L I A N - B Y - C Y C L I C  G R O U P S  161 

The function h: R--+R is called an induced time change for r with Hausdorff con- 

stant A. 

If h, h' are two induced time changes for r then supt Ih(t)-h'(t)l ~<A+A'<oe,  where 

A, A ~ are Hausdorff constants for h, h r respectively. Also, if h: R--+R is an induced time 

change for r with Hausdorff constant A, if A r ~>0 and if h~: R--+R is any function satisfying 

supte R ]h(t)-h'( t) l~A'  , then h' is also an induced time change for r with Hausdorff 

constant A+ Aq 

LEMMA 5.1. For each K , C , A  there exists C' such that if r is a hori- 

zontal-respecting (K, C)-quasi-isometry, and h: R--+R is an induced time change for r 

with Hausdorff constant A, then h is a (K, Ct)-quasi-isometry of R .  

Proof. We have Ih(t)-h(s)l<dn(Ph(t),Ph(s))+2A<.KIt-sl+C+2A. The reverse 

inequality is similar, and so h is a quasi-isometric embedding. Since r is coarsely onto, 

an easy argument shows that  h is coarsely onto. [] 

A (K, C')-quasi-isometry h: R--+R induces a bijection of the two-point set Ends(R) = 

{ - ~ ,  + ~ } :  given ~ l ,72eEnds (R) ,  we have h(71)=72 if and only if h takes every se- 

quence that  diverges to 71 to a sequence that  diverges to 72. The following two properties 

of h are equivalent: 

(1) h induces the identity on Ends(R);  

(2) h is coarsely increasing, that  is, there exists L > 0  such that  if t>s+L then 

h(t)>h(s). 

That  (2) implies (1) is obvious. The other direction is true with any L > 2 C K ,  for 

if there existed t>~s+L with h(t)<h(s), then since h induces the identity on Ends(R) 

there would exist t ' > t  such that  Ih(s)-h(t')l<~C', but also Ih(s)-h(t ')l>~Is-t ' l /K-C'>~ 

L / K -  C ~ > C p, a contradiction. 

If h: R - + R  is an induced time change of a horizontal-respecting quasi-isometry 

r GM-+GN, and if h satisfies the equivalent properties (1) and (2), then we say that  r 

coarsely respects the transverse orientation of the horizontal foliations. 

Terminology (time vs. height). In some contexts the vertical parameter which we 

have been calling "time" will also be called height, as sometimes this terminology is more 

suggestive, for example in discussing horizontal foliations. 

Here is the main result, whose proof will occupy the remainder of this section and 

the next section. 

THEOREM 5.2 (horizontal-respecting quasi-isometries). Let r GM--+GN be a quasi- 

isometry which coarsely respects the transversely oriented horizontal foliations of a M 
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and GN. Then there exist real numbers r, s > 0  so that M r and N s have the same 

absolute Jordan form. 

Our proof of Theorem 5.2 proceeds in steps, following the outline given in the in- 

troduction. 

5.2. S t e p  la :  H y p e r b o l i c  d y n a m i c s  a n d  the shadowing lemma 

The Lie group GM has a natural flow which fits into the theory of partially hyperbolic 

dynamical systems. From the dynamics we find that  the flow has several invariant foli- 

ations, the "weak stable, weak unstable and center" foliations. In w167 5.2, 5.3, by using 

the shadowing lemma [HPS, Lemma 7.A.2, p. 133], we prove that  a horizontal-respecting 

quasi-isometry GM---~GN also respects the dynamically defined foliations of GM, GN. 

From this result we obtain the first piece of our rigidity theorem by showing that  

expanding, contracting and unipotent parts of the absolute Jordan forms of M and N 

have the same ranks respectively, and that  the unipotent parts are identical. 

5.2.1. Dynamically definedfoliations. Let M t E G L ( n ,  R) be a 1-parameter subgroup 

with real Jordan form M t = ~ t p t .  Consider the Jordan decomposition of M, and group 

the root spaces according to whether the corresponding eigenvalue is <1,  =1 or >1 

(alternatively, a logarithm which is <0, =0  or >0), to obtain a decomposition R n =  

V - ( ~ V ~  +. 

Remark. It might happen that  one or two of the factors V- ,  V ~ V + is trivial, that  

is, 0-dimensional, for instance when all eigenvalues of M lie outside the unit circle. 

Now consider the Lie group G M = R n ) ~ M R  determined by a 1-parameter sub- 

group M t. Define the vertical flow �9 on GM to be 

ct(x ,  s) = (x, s+t) .  

The tangent bundle TGM has a (I)-invariant splitting 

TGM = ES@ECGE~ 

defined as follows. The tangent space at each point x E G M  is identified with R n O R ,  and 

we take 

E ~ = V - O 0 ,  E ~ = V ~  E ~ = V + O 0 .  

It is evident from the construction that  each of the distributions E ~ O E  c, E=@E c 

and E c is integrable, tangent to foIiations denoted W ~, W = and W c. We call these 
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foliations the (weak) stable, unstable and center foliations respectively. The stable and 

unstable foliations are transverse, and the intersection of any stable leaf with any unstable 

leaf is a center leaf. 

Applying the exponential lower bound from Proposition 3.2, there exist constants 

A>0,  ~>1  such that: 

(1) If y E S  u then for t~>0 we have IID~tvll >/A)~tllvll, and for t~<0 we have IID(~tvll 

( Z / A )  A Ilvll . 

(2) If v C E  ~ then for t~<0 we have IIDr >~AA-'IIvlI, and for t>~0 we have IIDr ~< 

(1/A) -*JJvJJ. 
Also, applying the exponential-polynomial upper bound from Proposition 3.2, there 

exists B > 0  and an integer n~>l such that: 

(3) I f v E E  ~ then for [tl~>l we have IID~tvll<BltlnHvll. 
When we want to emphasize the dependence of the V's and E 's  on the 1-parameter 

subgroup M s, we will append a subscript, e.g. V~, E~/, etc. 

5.2.2. Shadowing lemma. Consider a flow (I) on a metric space X. We write x . t  

as an abbreviation for Or(X). Given ~, T > 0 ,  an (e, T)-pseudo-orbit of (I) consists of a 

sequence of flow segments (xi. [0, ti]), where the index i runs over an interval in Z, such 

that  dx  (xi. ti, Xi+l) < E and ti > T for all i. 

LEMMA 5.3 (shadowing lemma). Consider a 1-parameter subgroup M t of GL(n, R) ,  

and let �9 be the vertical flow on GM. For every ~, T > 0 there exists 5, ~,  Tt>O such that 

every (s,T)-pseudo-orbit of �9 is 5-shadowed by an (s ~, Tt)-pseudo-orbit of �9 which is 

contained in some center leaf. That is, if  (xi" [0, ti]) is an (s, T)-pseudo-orbit, then there 

is an (~', T')-pseudo-orbit ( Yi" [0, ti]) contained in some center leaf so that d(xi.t ,  yi . t  ) < 5 

for all i and all tE[0, ti]. 

Proof. By construction, the foliations W ~ and W u are coordinate foliations in Rn+l;  

this shows that  the flow �9 has a "global product structure" in the language of hyperbolic 

dynamical systems. The lemma now follows the proof of the shadowing lemma in [HPS, 

Lemma 7.A.2, p. 133]. A direct proof is also easy to work out, and is left to the reader. [] 

5.3. Step lb: Foliations rigidity 

The shadowing lemma implies further rigidity properties of horizontal-respecting quasi- 

isometries: 

PROPOSITION 5.4 (foliations rigidity). Suppose that r GM-+GN is a quasi-isometry 

which coarsely respects the horizontal foliations and their transverse orientations. Then 
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r also coarsely respects the weak unstable foliations W~,  W~r the weak stable foliations 

W~,  W~r and the center foliations W~, W~. In particular, 

(1) dim(V~) = dim(Vt~); 

(2) dim(VM)=dim(V~); 
(3) dim(V~ )=dim(V~ 

Remarks. (1) In the case where neither M nor N has any eigenvalue on the unit 

circle, the center foliations of both GM and GN are simply the foliations by vertical 

flow lines, and Proposition 5.4 says that r respects these foliations. But in the general 

case, it is not true that  r always respects the foliations by vertical flow lines. For a sim- 

ple counterexample, consider the (1 x 1)-matrix M=N=(1) ,  which gives FM-~FN-~Z 2. 

There exist horizontal-respecting quasi-isometries of R 2 = R x R  which do not respect 

the vertical foliation. 

(2) If all eigenvalues of M and N are outside the unit circle, then both GM and GN 

are negatively curved, and the proposition follows from a standard fact: a quasi-geodesic 

in a negatively curved space X is Hausdorff-close to a geodesic (this was the approach 

taken in [FM1] in the case of a (1 x 1)-matrix M, where GM is isometric to a scaled copy of 

the hyperbolic plane). This "fact" is unavailable when X =  GM is not negatively curved, 

forcing us to study horizontal-respecting quasi-isometries via the shadowing lemma. 

Before proving Proposition 5.4, we use it to obtain some pieces of our classification 

theorem. Since rk(JM)=dim(VM) , etc., we immediately have 

COROLLARY 5.5. If there is a quasi-isometry from GM to GN which coarsely re- 

spects the transversely oriented horizontal foliations, then rk ( JM)=rk ( JN)  , r k ( J ~  

rk ( J  ~  and rk ( J~)=rk( J~v  ). 

We also have 

COROLLARY 5.6. The unipotent blocks of the absolute Jordan forms of M and N 
are identical. 

Proof. Let L be some center leaf of GM, of dimension k. From Proposition 5.4 it 

follows that  r  is Hausdorff-close to some center leaf L t of GN, also of dimension k. 

By composition with nearest point projection (which moves points a uniformly bounded 

amount) we get an induced map L-+L ~. By Lemma 2.1 this map is a quasi-isometry. By 

Proposition 4.1, L and L t are quasi-isometric to the nilpotent Lie groups R k- 1)4 j o  R and 

R k-1 )4jo R respectively. As Bridson and Gersten have shown [BG], Pansu's invariant 

[P2] may be used to prove that  J~ /=  j o .  [] 

Proof of Proposition 5.4. We begin with 
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CLAIM 5.7. For each vertical flow line ") '=Oa(x)  in GM, there exists a center leaf 
% in GN such that r is contained in the a-neighborhood of %, where the constant 

a > 0  does not depend on 7. 

Before proving the claim, we apply it to prove the proposition as follows. 

Consider any two vertical flow lines 71,72 in GM. By the claim we have tha t  r 

and r lie, respectively, in bounded neighborhoods of center leaves a l  and a2 of GN. 
Since h(t)-+• as t--+=kco, for each choice of sign § or - the following two s ta tements  

are equivalent, and the second s ta tement  implies the third: 

(1) The distance between the points 71NPt and ~/2APt in Pt stays bounded as 

t -+ :t=co. 

(2) The distance between the points r and r in Ph(t) stays 

bounded as t - + •  

(3) The Hausdorff distance between the sets alNPh(t) and a2C~Ph(t) in Ph(t) stays 

bounded as t -+ •  

Using - signs, the first s tatement  is equivalent to saying that  ~'1, V2 are contained in 

the same unstable leaf of GM, and the third s ta tement  is equivalent to saying tha t  a l ,  62 

are contained in the same unstable leaf of GN. It  follows tha t  r takes every unstable 

leaf of GM into a bounded neighborhood of an unstable leaf of GN. Applying the same 

argument  to a coarse inverse r of r gives the opposite inclusion. Since d ( r 1 6 2  

it follows that  the image under r of any unstable leaf of GM lies a bounded Hausdorff 

distance from an unstable leaf of GN, that  is, r coarsely preserves the unstable foliations. 

A similar argument using + signs shows tha t  r coarsely preserves stable foliations. By 

taking intersections of stable and unstable leaves it follows that  r coarsely preserves 

center foliations. 

The final s tatements  about  dimensions follow from the fact that  dimension is a 

quasi-isometry invariant for leaves of the foliations in question; see [Gel] or [BW]. 

It  remains to prove the claim. Applying Lemma 5.1, we have an induced t ime change 

h: R - + R  which is a (K, C~)-quasi-isometry with Hausdorff constant A, where C ~ depends 

only on K, C, A. Furthermore by Lemma 5.1 and the comments  following it, the map  h is 

coarsely increasing: there exists L=L(K, C, A)>0 such that  if t>~s+L then h(t)>h(s). 

We can furthermore increase L, depending only on K, C ~, A, so tha t  

t ' ~ t+L ,  xEPt,, yCPt, r  r  ~ s'>~s+l. (5.1) 

In fact, taking L > ( C + 2 A + I ) K  will do, for then we have 

t I - t _ C i L _ C/ h(t') ~ h ( t ) §  >~ h(t ) + ~  >~ h(t)+2A+l 
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and, since Ps' is A-Hausdorff-close to Ph(t') and P~ is A-Hausdorft-close to Ph(t), it follows 

that  #>~s+l. 

To prove the claim, we first show that  r is Hausdorft-close to some pseudo-orbit 

in GN, and then we apply the shadowing lemma to show that  the pseudo-orbit lies in a 

bounded neighborhood of some center leaf. 

To be more precise, fix a point x0 C ~ and consider the sequence xi = r (Xo) for i E Z. 

Let y~=r and let s~ be such that  yiEP~,. From (5.1) it follows that  S~+l~>S~+l. Let 

ti = s i + l - s i / >  1. 

We claim that  there exists r  depending ultimately only on K, C, so that  (y~. [0, t~]) 

is an (s, 1)-pseudo-orbit; in other words, d(yi. ti, Yi+l) is bounded. To see why, first note 

that 

d(y~.t~, y~) = ti = s~+l-s~ <. 2A+h(L . ( i+  l ) ) - h ( L . i )  ~ 2A+ K L + C '  

and then 

d(yi, Yi+l) ~ K.d(xi ,  x i+l)+C ~ K L + C ,  

so we may take e = 2 A + 2 K L + C + C .  

Applying the shadowing lemma, there exists ~ , # , T  ~ such that  (yi'[0, ti]) is /3- 

Hausdorff-close to an (e', T')-pseudo-orbit  (y~-[0, ti]) contained in some center leaf of GN. 

On the other hand, s inceevery point of ~ is within distance L of some xi, it follows that  

r is uniformly Hausdorff-close to (y~-[0, ti]), and so it is also uniformly close to the 

pseudo-orbit (y~-[0, t~]). [] 

5.4. Step 2: T ime  rigidity 

The main result of this subsection says that  a horizontal-respecting quasi-isometry has 

an induced time change function which is affine. 

PROPOSITION 5.8 (time rigidity). Consider the Lie groups GM, GN where M, N c  

GL• (n ,R)  each have an eigenvalue of absolute value greater than 1. Then there exists 

m c R +  with the following properties. For all K>~I, C, A~O there exists A ~ O  such that 

if r GM-+GN is a (K,C)-quasi-isometry which coarsely respects horizontal foliations 

and their transverse orientations, with an induced time change of Hausdorff constant A, 

then there exists b c R  such that h ( t )=mt+b is an induced time change with Hausdorff 

constant A ~. In fact, m can be computed as follows: Let a (resp. ~) be the least eigenvalue 

greater than 1 of the absolute Jordan form of M (resp. N);  the numbers a ,~  exist by 

the assumption on eigenvalues. Then m--- loga / log~ .  

Remarks. (1) In the case of self-quasi-isometries of Af t (R)= G(~I)=H 2 which coarse- 

ly respect the horizontal foliation, this result is part  of Proposition 5.3 of [FM1], where 
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the conclusion is that  the induced time change is a translation of R. 

(2) One of the delicate points in Gromov's development of the infSim invariant is the 

rescaling problem discussed at the beginning of w of [Gr2]: the rate of exponential 

growth changes when the parameter is rescaled. Time rigidity allows us to avoid the 

rescaling problem altogether, by showing that  the time parameter is "natural" with 

respect to quasi-isometries. 

Proof. This proof will define a sequence of constants which will depend on K, C, A 

and on the matrices M and N. We will indicate the dependence on K, C, A by writing, 

for example, CI=CI(K, C, A), but we will suppress the dependence on M, N. Although 

each constant in the sequence will depend on previous constants in the sequence, by 

induction it will ultimately depend only on K, C, A, M, N. 

CLAIM 5.9. For each fixed time to, and for each t<<.to, we have 

h(t) >>. re(t-to) +h(to)- C1 

for some CI=CI(K, C, A)>~O. 

Accepting this claim for the moment, we prove the proposition. The idea is simply 

that  the conclusion of the claim, applied to both h and its coarse inverse h, with t0--+ +oo, 

implies the proposition. 

Let s be a time parameter for GN. Let r GN--+GM be a coarse inverse for r also 

a quasi-isometry which coarsely respects the horizontal foliations and their transverse 

orientations, and with an induced time change h(s). The constants for r and h depend 

only on K, C, A. The claim therefore applies as well t o / t  and we obtain, for each fixed 

time So and each s ~< so, 

~(s)/> 1 (s-s0)+~(s0)-  c~ 

for some C2=C2(K, C, A)>~O. 
It is clear t h a t / t  is a coarse inverse for h, that  is, 

Ih(h(t))-tl ~ C3, Ih(h(s))-sl <~ C3 

for some C3 = C3 (K, C, A) >~ O. 
Also, by Lemma 5.1 and the comments after it, the map h is coarsely increasing: 

there exists L=L(K, C,A)~>0 such that  if t '>t+L then h(t')>h(t). 
We reverse the inequality in the claim as follows. Fix to. Let s0=t0.  Consider for 

the moment some t<<.to-L. Letting s=h(t) it follows that  s<<.So, and so we have 

~(h(t))/> ~- (h(t) - h(t0)) +h(h(t0))- C2. 
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But t+C3>~[t(h(t)) and [t(h(to))>~to-C3, and so we obtain 

1 
t >1 --  (h(t) - h(to)) +to - (2C3 + C2), 

m 

h(t) <~ re( t -  to) +h(to) +m(2C3 + C2). 

This has been derived only for t<.to - L ,  but for to -L<~t<.to we obtain a similar inequality 

with another constant in place of m(2C3+C2). Therefore, for all t<~to we obtain 

re(t-to) + h(to) - C4 <. h(t) <. re( t -  to) +h(to) + C4 

for some C4=C4(K, C, A). Note that  this is true for all to, with C4 independent of to. 

In particular, taking t0=0,  for all t~<0 we obtain 

mt +h(O)-C4 <~ h(t) <. mt +h(O)+C4. 

Now take any tl~>0, and since 0 ~ t l  we obtain 

m(O- t l )+h( t l ) -C4  <. h(O) <<. m(O-t])+h(t])+C4 

and so 

mtl +h(O)-C4 ~ h(t l )  ~ mtt +h(O)+C4. 

Taking b=h(0),  this proves that  mt+b is an induced time change for r with Hausdorff 

constant AI= C4 +A. 

Now we turn to the proof of Claim 5.9. 

Let M t = M t Q  t, N t = N t Q  It be the real Jordan forms. Let U (resp. U r) be the root 

space with eigenvalue 1 for _~ (resp. /V). Let W (resp. W I) be the direct sum of root 

spaces with eigenvalue/>1 for M (resp. N) .  Recall that  a is the smallest eigenvalue >1 

for M, and fl is the smallest eigenvalue > 1 for N. Let V be the direct sum of U and the 

eigenspace with eigenvalue a for M. We have U c V c W ;  let ~ (U) ,  $-(V), ~-(W) be the 

corresponding foliations of GM ~ R n x  R whose leaves are parallel to U x  R, V x  R, W x  R 

respectively. We also have U~cW~; let ~(U~),:F(W ~) be the corresponding foliations 

of G N. 

Here is the idea for proving Claim 5.9. Each leaf of 9v(V) is foliated by leaves 

of 9c(U). Because V is the direct sum of U with the a-eigenspace of M, it follows 

that  as t--+-oo distinct leaves of ~ (U )  in .T(V) diverge from each other exactly as a - t ,  

measured in the time-t horizontal plane of GM. This is a consequence of the exponential 

lower bound and the exponential-polynomial upper bound in Proposition 3.2; notice 

that  it is critical here that  V not be the direct sum of U with the a-root space, for then 
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the exponential-polynomial upper bound would be at best a -t times some polynomial, 

which would mess up the following calculations. Mapping over via the quasi-isometry 

r GM~GN, distinct leaves of 9c(U) in a single leaf of 9v(V) must (coarsely) map to 

distinct leaves of 9v(U ') in a single leaf of ~ ( W ' ) ,  which as s--+-oo diverge from each 

other at least as fast as 3-~, by the exponential lower bound. The time change map 

t~h( t )=s  therefore cannot grow slower than s=(loga/log~).t as t--+-oc. 

To make this precise, pick a leaf Lv of ~(V)  contained in some leaf Lw of ~ (W) .  

We use the symbol 3  ̀to denote a general leaf of Y(U), which we will typically take to 

be a subset of Lv. By Proposition 5.4, there exists a leaf Lw, of ~ ( W ' )  such that  

dn(f(Lw), Lw,) <. C5 = Cs(K, C, A), 

and for each leaf 3  ̀of 9v(U) there exists a leaf 3" of 9c(U ') such that  

~ (/(3`), 3`') ,< 05. 

Moreover, if 3  ̀C Lv then 3`'C Lw,, because Lv C Lw and so 3`' stays in a bounded neigh- 

borhood of Lw,, but any leaf of 9c(U ') which is not a subset of Lw, has points which 

are arbitrarily far from Lw,. 
Let Pt be the horizontal subset of GM at height t E R ,  and let dt denote Hausdorff 

distance in Pt between closed subsets of Pt. Let P~ be the horizontal subset of GN at 

height s ER, and let d~ denote Hausdorff distance in P~. 

Since the Hausdorff distance in GN between r and Pie(t) is at most A, the 
p t  . vertical projection from r to P '  induces a quasi-isometry between Pt and h(0' h(t) 

the multiplicative constant of this quasi-isometry is K,  and its additive constant depends 

only on K, C, A. It follows that  there exists a "coarseness constant" C~--Ca(K, C, A) so 

that  for any t, and for any x, yEPt with dt(x,y))C6, if x',y'CP~(t) are the vertical 

projections of r r then 

1 
2K dr(x, y) <<. dh(t)(x', y') <~ 2Kdt(x, y). (5.2) 

To prove Claim 5.9, fix a time to and let so=h(to). Let 71,3`2 be two leaves of 

5v(U) contained in Lv,  and let 3̀~ be the unique leaf of Jc(U') within bounded Hausdorff 

distance of r this bound depends only on K, C, A, as shown in Proposition 5.4. 

In GM, apply the exponential lower bound and the exponential-polynomial upper 

bound of Proposition 3.2, so that  for all t<.to we have 

A'a-t+t~ 3`2 NPto)  < dt(71APt, 3`2 N Pt )  < B'a-t+t~ 72NPto )  

where A, B depend only on GM-(note that  t=to gives A~< I~<B). 
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We want the distance between 3'1 and 3"2 in Pt to be greater than the coarseness 

constant Cs, for each t<.to, in order that  property (5.2) may be applied. We therefore 

impose a condition on 3'1 and 3'2, namely that  

which implies, for all t<.to, that  

and so 

c6 
dto(3"l n P ,  o, 3"2nP, o) >>. - ~  , 

dd3"lnP. 3"2nPt) >1 c6 

1 
2 K  " dt(3"l nP t ,  3"2APt) <<. dPh(t)(3"~ nP~(t), 7~nP~(t)) x ( 2K.dt(3"l nP t ,  3"2 n Pt), 

which implies 

A t-bto I ! I ! I ~-g a-  dto(3"lnP~o, 3"2nP~o) <. dh(O(3"lnP~(t), 3"2nP;,(O) 

<~ 2 B K a  - t+ t~  dto (3"1 n Pro, 3"2 rh Pro). 

Next, applying the exponential lower bound of Proposition 3.2 in GN, for each s ~ So 

we have 
, , , , , - s + s o  , , ' ' r i P ' '  ds(3"lnP~, 3"2nPj) >~ A.~ dso(3"lnPjo, 3"2 ~o)" 

Taking s=h(t), and using the fact that  so=h(to), this implies 

~--h(t)+h(to)rl! {~,l n r)' , , 2BK a_t+todto(3"lNPt ~ 3"2(qPto), ~h(to)~11' '" h(to), 3"2nPh(to)) ~ - - ~  

Therefore, 

~-h(t)+h(to) dto (3'1 n Pro, 3"2 N Pro ) < 4B--~ 2 a- t+t~ dto (3"1 n Pro, 3"2 n Pro ). 

Now divide both sides by dto(3"l n Pto, 3"2riP to), and take logarithms, obtaining 

(-h(t)+h(to))log(~) <~ l o g ( ~ f f ~ )  + ( - t  +to)log(a)  

and so 
log(a) log( 4BK2/A ) 

h(t) >1 ~ ( t - to )+h( to) -  log(/~) ' 

proving Claim 5.9 and therefore completing the proof of Proposition 5.8. [] 
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5.5. I n t e r l u d e :  T h e  i n d u c e d  b o u n d a r y  m a p  

The upper boundary OUGM is defined to be the leaf space of the weak stable foliation; 

this leaf space is identified with V +. The lower boundary OzGM is the leaf space of the 

weak unstable foliation, identified with V- .  The internal boundary 0intGM is defined as 

0in tGM = OIGM X OUGM = V -  x V + ,~ R~/V  ~ 

which is identified with the leaf space of the center foliation. 

As a consequence of Proposition 5.4, a quasi-isometry r GM-eGL which respects 

the transversely oriented horizontal foliations induces a bijection 

0intr  0 in tGM -'~ 0int GL 

which preserves the factors, that  is, 

X ~t  Ointr162 0 GL. 

Recall the 1-paxameter family of metrics dM, t on R n given by the quadratic form 

QM, t z ( M - t ) T M  -t.  The internal boundary OintGM is identified with R n / V  ~ and with 

V-  x V +, and we consider two l-paxameter families of metrics. 

First, regarding points of R n / V  ~ as affine subspaces parallel to V ~ there is a 1- 

parameter family of Hausdorff metrics induced from dM,t, which we denote dhM, t. Sec- 

ond, restrict the action of M t to the subspace V-  x V + to get a l-paxameter subgroup 

of G L ( V - x  V+), and by choosing a basis for V - x  V + we obtain a l-parameter subgroup 
A 

M t of GL(k, R),  where k is the dimension of V - x V  +. We obtain a l -parameter  family 

of metrics d~, t. There is a canonical identification V- x V + ~ R n / V  ~ and with respect to 

this identification the metrics d~, t and dhM, t axe bi-Lipschitz-equivalent, with a uniform 

bi-Lipschitz constant independent of t. 
A 

Note that  the absolute Jordan form of M is identical with the nonunipotent part of 

the absolute Jordan form of M, and similarly for N. 

LEMMA 5.10. Given two 1-parameter subgroups Mt, N t of GL(n ,R) ,  for all K ~  I, 

C,A>~O, there exist K~>I ,  C1>~0 with the following properties. If  r is a 

(K, C)-quasi-isometry which coarsely respects the transversely oriented horizontal fo- 

liations, with Hausdorff constant A, then for every t E R  the induced bijection 0intr 

OintGM-+OintGN is a (K  I, C)-quasi-isometry from the metric d~,  t to the metric d~,h(t). 

Proof. With what we know, the proof is mostly a mat ter  of chasing through defini- 

tions. 
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The quasi-isometry r is a bounded distance from a quasi-isometry ~):GM-~GN 
which takes the horizontal leaf Pt to the horizontal leaf Ph(t), and which simultaneously 

takes center leaves of GM to center leaves of GN. Now restrict the center foliations of 

GM, GN to P~, P~($), and denote the respective leaf spaces as Qt, Q' h(t)" 
In order to apply Lemma 2.1, consider each horizontal leaf Pt of GM as a geodesic 

metric space with respect to the Riemannian metric induced by restriction from GM. 

The inclusion map  Ptc---}GM is evidently (1,0)-coarsely Lipschitz, and it is uniformly 

proper, with a uniformity function s(r)=a r where a > l  is larger than  the maximum of 

the absolute values of all eigenvalues of M and their multiplicative inverses. Note in 

particular that  the coarse Lipschitz constants and the uniformity functions of the maps 

Pt~--+GM depend only on K, C, A and on the matr ix  M, but not on t. Similar remarks 

apply to the inclusion map P~(t)c--+GN. Applying Lemma 2.1, restricting r to Pt results 

in a map ~bt:Pt~+P~( 0 which is a quasi-isometry. There is in turn an induced map 
, ! ~t. QW+Qh(t) which is a quasi-isometry with respect to the associated Hausdorff metric. 

The quasi-isometry constants of the maps ~bt and Ot depend only on K, C, A. 

Now consider the coordinate identifications G M ~ R n x R ,  G N ~ R n x R .  By con- 

struction of the left-invariant metrics, for each t the space Pt is identified with R n x  t ~ R  n 

with metric dM t, and the space P '  is identified with R n with metric dN, h(t) , and so 
, h ( t )  

the maps Ct: R n - + R  n are uniform quasi-isometries from dM,t to dN, h(t) for all t. Also, 

Qt is identified with R ' V V  ~ with the associated Hausdorff metric dhM,t, and Qh(0 is 

identified with Rn/V ~ with the associated Hausdorff metric dhN, h(t) , and so the maps 

Or: Rn/v~176 are uniform quasi-isometries from dhM, t to dhg, h(t) for all t. This 

implies that  Or: V M xV~4--+V ~ xV~v is a quasi-isometry from d~, t to d~, t for all t. But 

for all t the map  0t is identical to 0intr OintGM "+0intGg, proving the lemma. [] 

5.6. S t e p  3: R e d u c t i o n  to  T h e o r e m  5.11 o n  1 - p a r a m e t e r  s u b g r o u p  r i g i d i t y  

Assume the hypotheses of Theorem 5.2, namely that  we have 1-parameter subgroups 

M t, N t, and a quasi-isometry r GM-+GN which coarsely respects the transversely ori- 

ented horizontal foliations. Applying Proposition 5.8, there is an induced t ime change 

of the form h(t)=mt+b with m > 0 .  Applying Proposition 4.1, there is a horizontal- 

respecting quasi-isometry GN--~GN,~ with an induced t ime change of the form s~+s/ra. 
By composition we obtain a horizontal-respecting quasi-isometry GM-+GNm with an 

induced t ime change of the form t~-~t+b ~. Changing the coordinates in GM by a transla- 

tion of the t ime coordinate t, we have a horizontal-respecting quasi-isometry GM-~GN m 
for which the identity map t~-~t is an induced t ime change. Applying Lemma 5.10, we 

obtain a bijection 0 i n t r  n which, for each t, is a (K~,C)-quas i - i sometry  from 
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d~, t to d~m,t. 
Now apply the following theorem (with N in place of Nm), which will be proved in 

the next section: 

THEOREM 5.11 (1-parameter subgroup rigidity). Let M s , N  t be 1-parameter sub- 

groups of GL(n, R)  such that M = M  1 and N = N  1 have no eigenvalues on the unit circle. 

I f  there exists a bijection f: Rn--~R n and constants K >~ 1, C>~O such that for each t E R  

and p, q E R  ~ we have 

- C +  K dM, t (p, q) < dN,t ( f(p) ,  f(q)) <. gdM, t  (p, q) + C 

then M and N have the same absolute Jordan form. 

Returning to the previous discussion, this theorem allows us to conclude that  M and 

/~m have the same absolute Jordan form, and so the nonunipotent parts of the absolute 

Jordan forms of M, N m are identical. We have already proved in Corollary 5.6 that  the 

unipotent parts are identical, and so M and N m have the same absolute Jordan forms, 

finishing the proof of Theoreln 5.2. [] 

6. D y n a m i c s  o f  GM,  P a r t  II :  1 - p a r a m e t e r  s u b g r o u p  r ig id i ty  

In this section we give a proof of Theorem 5.11. 

Let M t, N t be 1-parameter subgroups of GL(n, R)  with no eigenvalues on the unit 

circle. Let M t = M t P  ~, N t = N t Q  t be the real Jordan forms, so t h a t / ~  and N have all 

positive eigenvalues, none equal to 1. Let f :  R ~ - + R  n be a bijection which satisfies 

-C+-~1 riM, t(P, q) <. dN, t( f(P),  f(q)) <~ Kdu , t (p ,  q )+C (6.1) 

for all tER ,  p, q E R  n. 

The bijection f :  R n - + R  n must in fact be a homeomorphism. To see why, for each 

p E R  n, R>0 ,  T > 0  let 

Fp,R(T) -= {q E R ~ I dM, t(P, q) < R for all t E ( - T ,  T)}. 

In other words, Fp,R(T) is the intersection of open balls of radius R about p in each of 

the metrics dM,t, for tE ( - T ,  T). Since the eigenvalues of M are all positive real numbers, 

none equal to 1, it follows from Proposition 3.2 that  for each p E R  u and each R > 0  the 

collection of sets Fp,R(T) as T ranges in (0, c~) is a neighborhood basis for p, in the 

standard topology on R n. We define a similar neighborhood basis using matrix N, de- 

noted Gp,R(T). Since f (Fp,R(T))C Gf(p),KR+c(T ) for each p E R  u, R>0,  T>O, it follows 

that  f is continuous. The same argument applies to f - 1  and so f is a homeomorphism. 
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The idea of the proof of Theorem 5.11 is to show that  f respects certain "flags of 

foliations" which are closely related to the Jordan decompositions of R n with respect 

to M t and N t. We begin by setting up the notation needed to define and s tudy these 

foliations. 

Definition (flags offoliations). If V is a vector subspace of R n, define a foliation 

bY(V) of R n whose leaves are the affine subspaces of R n parallel to V. Given a flag of 

subspaces VIC. . .cVr,  it follows tha t  if l<~i<j<.r then each leaf of U(V~) is contained in 

some leaf of ~-(Vj); we denote this relation by saying that  .~(V1)-<...-< U(Vr) is a flag of 

foliations of R n. 

Recall the root space decompositions of R n with respect to M and N.  We denote 

the eigenvalues of M and N by 

0 < # ~  <. . .  < # i  < 1 < # ~  <. . .  <#~+ 

and 
+ 

0 < u  n < . . .  <u{- < 1 <u~- < . . .  < u  s 

respectively. The  corresponding root space decompositions are denoted 

v g  e . . . e W  e v ?  e . . . e v #  

and 

As in w we set 

w ~  e . . . ~ w s  |  e . . . e w ; .  

v -  = v,  a e .. . (~ v s  , v + = v;~ , ... e v ,  + , 

w - = w # e . . . e w s  w + = w ( e . . . e w  +. 

Define the root space flags 

W = v~- e . . .ev{,  

u ;  = v ~  ~ . . . e  v ; ,  

Y (  = w #  e . . . e w f  , 

V = w : e . . . e W ,  

i = 1, ..., ra, 

j = 1, ..., r, 

i = l ,  . . . ,  n ,  

j = 1, ..., s, 

and by convention we take Uo, U~, Yo, Y0 + each to be the trivial subspace. Associated 

to the root space flags we have root space foliation flags 

~:(UI)  -~ ...-~ 7 ( U ~ ) =  ~-(V-) ,  

~ ( W )  ~ ...-~ J:(u~ +) = 7 ( v + ) ,  

9v(Y1 - )  -~ ...-~ .T'(Y~-) = .T ' (W- ) ,  

~(Ys ~ ...-< ~(Y~+)= 7(w+). 
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Step 1: f respects contracting and expanding foliations. First we show that 

f ( J z (V- ) )= .T(W-)  and f( .T(V+))=Jz(w+). 

Given p, q E R  n we have the following chain of equivalences: 

(1) p, q are in the same leaf of U(V+); 

(2) dM, t(p, q)=llM-t(p-q)ll-+O as t -++co;  

(3) dM, t(p, q) is bounded for tE [0, +co); 

(4) dy, t(f(p), f(q)) is bounded for tE [0, +co); 

(5) dN, t ( f  (p), f(q) ) = l l N - t ( f ( p ) -  f(q) )ll--+o as t -++co;  

(6) f (p) ,  f(q) are in the same leaf of ~'(W+). 

The equivalence of (1) (3) follows from Proposition 3.2, and similarly for (4)-(6). The 

equivalence of (3) and (4) follows from (6.1). This shows f(.~(V+))=U(W+). A similar 

argument with t E ( - c o ,  0] shows f (Je(V-))=J:(W-) .  

Step 2: f respects root space foliation flags. Next we show 

CLAIM 6.1. f:  Rn--+R n respects the root space foliation flags, and corresponding 
root spaces have the same eigenvalues. More precisely we have: 

(1) r=s; 
(2) #~----u} for j = l , . . . , r ;  

(3) f ( g v ( U f ) ) = ~ ( Y / )  for j = l , . . . , r ;  

(4) m = n ;  

(5) #? = u; for i= 1,..., m; 
(6) f(Y=(U())=Jr(Yi- ) for i = l , . . . , m .  

It follows that M, N have the same eigenvalues with the same multiplicities. 

We give the proof of (1), (2), (3); the proof of (4), (5), (6) is similar. 

We know by Step 1 that  f(U(Y+))=he(W+). Consider points p, q in the same leaf 

of ~-(V+), so that f (p) ,  f(q) are in the same leaf of ~'(W+). From Proposition 3.2 it fol- 

lows that as t --+-co both of the quantities dM, t(p, q) and dN, t(f(p), f(q)) approach +co. 

It follows that for sufficiently large t, in the inequality (6.1) we can absorb the additive 

constant C, yielding 

1 
K + I  dM, t(p, q) <<. dN, t ( f  (p), f (q) ) <<. ( K + l )dM, t(p, q). (6.2) 

Define displacement vectors v = p - q ,  w = f(p) - f (q ) .  Taking natural logarithms, dividing 

by t, and taking limsup, we have 

lim sup log(dM,t (p, q)) = lim sup 
t - + - - o o  t t - - + - o o  

lira sup log [[M tv II _ lim sup 
t - - + + ~  t t---~+oo 

log(dN, t(f(p), f(q) ) ) 
t 

(6.3) 
log ItNtwll 
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To evaluate these limits, let I(p, q)=I(v)  be the unique integer such that  

v ~ U~(v)- U;(v)- i 

or, equivalently, the unique integer such that  p, q are in the same leaf of Y-(U~(p,q)) but 

not in the same leaf of Y-(U[(p,q)_I ) (recall the convention that  U~- =0,  and so I(p, q)=0 

if and only if p=q). Define J( f (p ) ,  f (q ) )=g(w)  similarly by 

Applying Proposition 3.2 we have 

l imsup log IIMtvll + l imsup log IINtwll _ + 
t-~+o~ t - tit(')' t-~+o~ t - uj(~), 

and so by (6.3) we have 

+ _ _  + ~ l / +  - -  V +  #I(p,q) -- #l(v) J(w) -- J(f(p),/(q))" 

Since f is a bijection from each leaf of Y-(V +) to some leaf of Y-(W+), items (1) and (2) 

of Claim 6.1 now follow, and it also follows that  

I ( p , q ) = J ( f ( p ) , f ( q ) )  

for all p, q contained in the same leaf of Y-(V+). 

We now prove item (3) of Claim 6.1 by induction on j .  If p, q are in the same leaf 

of Y-(U~) then I ( p , q ) = l  and so J(p, q )=l ,  which implies that  f (p) ,  f (q)  are in the same 

leaf of Y-(Y1+). A similar argument with f - 1  proves that  f(Y-(U~))=Y-(Y1+), proving the 

base step of the induction. Now assume that  f(Y-(U~))=Y-(Yj+), and suppose that  p, q 

are in the same leaf of Y-(U}+1). There are two cases to consider. If p, q lie in the same 

leaf of Y-(U~) then by the induction hypothesis f (p) ,  f (q)  lie in the same leaf of Y-(YS)' 

in particular they lie in the same leaf of Y-(Yj~-I)" If p, q do not lie in the same leaf of 

Y-(Uj +) then I(p, q ) = j + l  and so J( f (p ) ,  f ( q ) ) = j + l ,  and thus f (p ) ,  f (q)  lie on the same 

leaf of 9v(Yj~_I). A similar argument with f - 1  shows that  f(hr(Uj++l)) =Yj~_I, completing 

the induction. 

As mentioned earlier, (4)-(6) are proved similarly, completing the proof of Claim 6.1. 

Step 3: f respects Jordan foliation flags. From Step 2, for each fixed j - - l ,  ..., r the 

matrices M, N have #~--root spaces Vj +, W + respectively. As part of their root space flags 

we have 

u ; = u f _ , |  
Y/  = V_ l e W/. 
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Let cj be the index of nilpotency of # j . I - M ,  and let dj be the index of nilpotency of 

# j . I - N .  Then we have Jordan filtrations 

% c...c vL~ =v/, 
W;o c . . .  c w;,d~ = w ; ,  

and we set Uf, k =Uj~I  | Vj,+k and Yj+k = Yj+-I (9 Wj+k, yielding subspace flags 

U~_I c Uf, o C... c U~,c~_I =U~, 

Yj+_ 1C Yj,--0 C ... C Yj+dj _ 1 : Yj + . 

Corresponding to these subspace flags are foliation flags, 

J : ( u / _ l )  ~ 7 ( u ; , o )  ~ ... ~ J r (u ; , c ,_ l )  = 7 ( g /  ), 

Jr(5+- l ) ~ ~:(~+,o) ~ ... ~ 7(~+,d~-1)  = ~ ( ~ +  ), 

called the expanding Jordan foliation flags associated to the corresponding root space 

foliations 9~(Uf), 5v(Yj +) respectively. The contracting Jordan foliation flags associated 

to each root space foliation Y(U( ) ,  J r (Y()  are similarly defined. 

CLAIM 6.2. f :  Rn--+R n respects the Jordan foliation flags associated to correspond- 

ing root space foliations. More precisely, for each j = l ,  ...,r we have 

(1) cj--dy, 

(2) f(Y:(U;k))=Jr(YS, k) for k = 0 , . . . , c j - 1 ,  

and similarly for the contracting Jordan foliation flags. 

From this claim, for each j = l ,  ..., r it immediately follows that  M, N have the same 

Jordan blocks with eigenvalue p+, and so the expanding parts of the Jordan forms for 

M, N are identical; similarly for the contracting parts. Since M, N have no eigenvalues on 

the unit circle, it now follows that  M, N have the same absolute Jordan forms, completing 

the proof of Theorem 5.11. 

Proof of Claim 6.2. Consider p, qER n in the same leaf of Jr(U+) but not in the same 

leaf of Jr(U+ 1), so that  f (p ) ,  f(q) are in the same leaf of U ( Y / )  but not in the same leaf 

of 5v(Y/_l). Define displacement vectors v = p - q ,  w = f ( p ) - f ( q ) ,  so that  v e U f - U f _  1 

and wEYj+-Yj+_I . We know that  

l imsup log IIMtvll log IINtwll _ + 
t - - + + o o  t - -  t # J  " 
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We also know that  (6.2) is true for t sufficiently close to -co ,  and so for t sufficiently 

close to +oc we have 

1 
K + I  IIM%II < tlN%II < (K+t)fIMtvII" (6.4) 

By induction on k=0,  1, ..., we shall prove that  vEU~, k if and only if wEYj+,k, or 

equivalently that  f (.~(U~,k) )=.~(YS, k). 
For the basis step k=0,  divide the inequality (6.4) by #t to obtain, for all t sufficiently 

close to +co, 
1 IIMtvll Hgtwll <~ (g+ l ) I IMtv l l  (6.5) 

K + 1 #-------7~ <- # ~  #----Y-- 

By the exponential lower bound and the exponential-polynomial upper bound of Propo- 

sition 3.2, the quantity IlMtvll/ t~ t is bounded for t>~0 if and only if vEU~,o; and the 

quantity IlNtwll/# t is bounded on t ) 0  if and only if wEYj+0 . By (6.5), however, the 

boundedness of these two quantities on t ) 0  are equivalent. 

For the induction step, assume that  I(.T'(U~,k_I))=.T(YS, k_I) , that  is, veU~,k_ 1 if 

and only if wEYS, k_ 1. We must prove that  vEU~,k-U~,k_ 1 if and only if wCYS, k--Yf, k_ 1. 
From (6.4), for t sufficiently close to +oc we have 

1 IlMtvll IlNtwll <~ (K+I)IlMtvll (6.6) 
K + I  #tt--------T- <~ I~tt ~ # t t ~  

and 

1 IIMtvll IINtwll <. (K+I)IIMevll  (6.7) 
K + I  #ttk-1 ~ pttk----"---~ #ttk--l" 

By the exponential-polynomial upper and lower bounds of Proposition 3.2, the following 

two statements are equivalent: 

(1) veU~,k-U~,k_ 1. 
(2) For t~>0, the quantity IlMtvll/#tt k is bounded, but the quantity IIMtvll/#tt k-1 

is not bounded. 

Similarly, the following two statements are equivalent: 

(3) weS: -5 k_ 1 
(4) For t~>0, the quantity IINtwH/#tt k is bounded, but the quantity IINtwll/#tt k-1 

is not bounded. 

But by inequalities (6.6) and (6.7), statements (2) and (4) are equivalent, and so 

statements (1) and (3) are equivalent, completing the inductive proof of item (2) of 

Claim 6.2 for all k>~0. 
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The foliation flag Jz(U+o)-~...-~Jz(UT, k)-~.., must terminate at ~(U~) for the same 

value of k for which the flag ~'(Y/o) -~ "'"-~5v(Yj,+k) -< "'- terminates at 9v(Yj+), proving that 

cj =dj,  and completing the proof of Claim 6.2. [] 

Our proof of Theorem 5.11 actually provides for some regularity of f .  We record 

the statement here, although it is not used at all in this paper. 

PROPOSITION 6.3 (regularity). With the assumptions as in Theorem 5.11, f is a 

homeomorphism which respects the contracting and expanding root space foliation flags 

of M, N,  and for each corresponding pair of root space foliations, f also respects the 

associated Jordan foliation flags. 

Remark. Even stronger regularity properties should hold. For instance, f should 

satisfy Lipschitz conditions in directions parallel to a root space, by arguments similar to 

the results of [FM1]. Understanding what happens transverse to root spaces will require 

new ideas. 

7. Quasi-isometries of  FM via coarse topology 

Recall the notation for abelian-by-cyclic Lie groups: given MC GL • (m, R), a 1-parameter 

subgroup M t c  GL(m, R) with M I = M  determines a Lie group denoted G M = R  m ~MR. 

This entire section will be devoted to a proof of 

PROPOSITION 7.1 (induced quasi-isometrics of GM). Consider integral matrices 

M e  GL• (m,R), N e  GL• (n, R), 

and suppose that detM, d e t N > l .  If  there exists a quasi-isometry f:FM--+FN then 

m = n  and there exists a quasi-isometry r GM--+GN which coarsely respects horizontal 

foliations and their transverse orientations. Furthermore, all associated constants for r 

depend only on those for f .  

7.1. A geometric  model  for FM 

Let MEGL• be an integral matrix lying on a 1-parameter subgroup M t of 

GL(m, R) with M I = M  and with associated Lie group GM. We assume that det M >  1 

and we denote d=det  M. 

We start by constructing a contractible, (m+l)-dimensional metric complex XM 

on which FM acts properly discontinuously and cocompactly by isometrics, and so the 

group FM will be quasi-isometric to the geodesic metric space XM. 
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The description of FM as an ascending HNN extension shows that FM is the funda- 

mental group of the mapping torus of an injective endomorphism of the m-dimensional 

torus. Let XM be the universal cover of this mapping torus. Topologically, there is a 

fibration 

XM 

TM 

where TM is the homogeneous directed tree with one edge coming into each vertex and 

d = d e t  M edges going out of each vertex. Hence XM is a topological product XM~ 
R n - 1  X TM. 

The action of FM on XM by deck transformations induces an action of FM on TM. 
This action is equivalent to the usual action of the HNN extension FM on its Bass-Serre 

tree TM. 

Before constructing a metric on XM, let us describe the essential properties of such 

a metric. These are best described by giving the isometry types of natural subcomplexes 

of XM. 

Definition (doubled horoballs). We define a doubled GM-horobaU, denoted by HM, 
to be the metric space obtained by identifying two copies of {(x,t)CGMIt~O} along 

{(x, 0)CGM}, endowed with the path metric. 

Definition (hyperplanes in XM). Let PZ=~MI(I), where l is a bi-infinite line in the 

directed tree TM. We call Pl a hyperplane in XM. There are two cases to consider: 

(1) l is coherently oriented in TM. In this case Pz is isometric to GM, and we call 

Pt a coherent hyperplane in XM. 
(2) l is not coherently oriented in TM, and thus switches orientation precisely once. 

In this case Pl is isometric to HM, and we call Pt an incoherent hyperplane in XM. 

This definition nearly determines a metric on XM. To specify a metric on XM, one 

proceeds as follows. Fix a path metric on TM so that  each edge has length 1. Fix a 

base vertex on TM. These choices determine a unique height function TM--~R taking 

the base vertex to the origin and taking each edge to a segment of length 1 via an 

orientation preserving isometry. We have also defined a height function GM-+R. Note 

that the height function on GM was previously called the "time function"; we will use 

both terms. 

The complex XM is the fiber product of the two height functions TM-+R, GM-+R, 
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as shown in the diagram 

XM 

Y 
GM TM 

R 

There are induced projections gM:XM "-+GM and 7cM: XM-'-~TM, and an induced height 

function XM---~R. There is a unique path metric on XM so that each continuous cross 

section GM--+XM of gM is a path-isometric embedding; and hence each coherent hyper- 

plane in XM is an isometrically embedded copy of GM. 

Definition (horizontal leaf). A horizontal leaf L in XM is a subset of the form 

L-----~M 1 (v) where v ETM. 

Note that  the collection of horizontal leaves on XM, equipped with the Haus- 

dorff metric, forms a metric space which is isometric to TM via the projection map 

7rM: XM --+TM. 

Note that  each hyperplane in XM comes equipped with a foliation by horizontal 

leaves. For coherent hyperplanes P in XM, which are isometric to GM, the notion of 

horizontal leaf in P coincides with that  of a horizontal leaf in GM, given in w 

7.2. P r o o f  o f  P r o p o s i t i o n  7.1 o n  i n d u c e d  q u a s i - i s o m e t r i e s  o f  GM 

Let M, N be as in the statement of the proposition. 

We begin by showing that  M and N have the same size. Suppose that  MC GL(m, R) 

and N E G L ( n , R ) .  In w we constructed finite classifying spaces for rM and FN of 

dimensions m + l , n + l  respectively, and by Lemma 5.2 of [FM2] these numbers are the 

virtual cohomological dimensions of FM, FN. By a result of Block Weinberger [BW] and 

Gersten [Gel], virtual cohomological dimension is a quasMsometry invariant for groups 

with finite classifying spaces. It follows that  m-=n. 

Now FM acts properly discontinuously, freely and cocompactly on XM. This action 

is by isometries, because FM acts on GM, on TM and on R by isometries, and the fiber 

product diagram is equivariant with respect to these actions. It follows that  FM in any 

word metric is quasi-isometric to XM. Henceforth we will freely interchange FM and XM 

when discussing quasi-isometry type. The same discussion applies to FN and XN, and 

so the quasi-isometry f :  FM-+FN gives a quasi-isometry (perhaps with bigger constants) 

f: XM -+ XN. 
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Proposition 7.1 generalizes the case when M and N are (1 • 1)-matrices, done in w 

and w of [FM1]. The proof here is more difficult, and the steps must be proved in different 

order. In Steps 1 and 2 we prove (in a more general context; see Theorem 7.7) that  a 

q u a s i - i s o m e t r y  X M - ~ X  y coarsely respects hyperplanes and horizontal sets. We must, 

however, still distinguish between coherent and incoherent hyperplanes. This is easy in 

the (1• 1)-case handled in [FM1], where GM and GN are (scaled versions of) H 2, and 

a doubled H2-horoball is evidently not quasi-isometric to H 2. In general we are unable 

to distinguish the quasi-isometry types of coherent and incoherent hyperplanes. To get 

around this, in Step 3, Proposition 7.11, we prove that  there is no horizontal-respecting 

quasi-isometry between a coherent and an incoherent hyperplane. 

Step 1: Quasi-isometrically embedded hyperplanes are close to hyperplanes. Given 

integral matrices M, NEGL• if P=GM or HM, then for all K>~I, C~>0 there 

exists A~>0 such that  if r P - + X  N is a (K, C)-quasi-isometric embedding then there is 

a unique hyperplane Qc XN with dn(r Q) <~A. 

This was proved for (1 • 1)-matrices in [FM1]. Our proof of Step 1, while following 

the same outline as in the (1 • 1)-case, will actually apply in a much broader setting. 

The generalized versions of Steps 1 and 2, given in Theorem 7.3 and Theorem 7.7, are 

used for example in [FM3] to s tudy surface-by-free groups, and also in [MSW] to prove 

quasi-isometric rigidity theorems for various "homogeneous" graphs of groups (see the 

remark after Theorem 7.7). 

The generalization of Step 1 given in Theorem 7.3 will require moving from the cat- 

egory of quasi-isometric embeddings into the category of uniformly proper embeddings. 

After a fair amount of work to establish the new setting, we then quote some theorems 

of coarse algebraic topology and follow the proof of [FM1]. 

Consider a finite graph F of finitely generated groups; each edge e is oriented, with 

initial and final vertices i(e), f(e). We say that  F is geometrically homogeneous if each 

edge-to-vertex injection is a quasi-isometry with respect to the word metric, or equiv- 

alently, has finite index image. Ideally we would like to have a version of Step 1 for 

any geometrically homogeneous graph of groups in which each vertex and edge group 

is the fundamental group of a closed, aspherical n-manifold, or even more generally, an 

n-dimensional Poincar~ duality group. This should come from a more careful reading of 

results in coarse algebraic topology such as [KK], but meanwhile we will use Theorems 7.5 

and 7.6, which require us to impose additional assumptions on F. 

Suppose that  we have a category C of aspherical, closed, smooth manifolds such that  

C is closed under finite coverings and satisfies smooth rigidity, meaning that  any homotopy 

equivalence between manifolds in C is homotopic to a diffeomorphism. Such categories in- 

clude: the n-torus, n~> 1; hyperbolic surfaces; all other irreducible, nonpositively curved, 
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locally symmetric spaces, by Mostow's rigidity theorem [Mo2]; solvmanifotds, by earlier 

work of Mostow [Moll; nilmanifolds, by still earlier work of Matcev [Ma]; and various 

generalizations due to Farrell and Jones [F J1], [F J2]. 

We shall assume that  F is a geometrically homogeneous graph of groups where 

each vertex group Fv is the fundamental group of a manifold M~ in the category C. 

Construct a graph of aspherical manifolds Mr,  with fundamental group ~IF, as follows. 

For each edge e, the two injections Fe-+Fi(~), Fe--+Ft(e) determine two finite covering 

spaces of My each of whose fundamental group is identified with Fe, and so we obtain a 

diffeomorphism between the two covering spaces; identify these covering spaces and let 

Me be the resulting smooth manifold. We have smooth, finite covering maps Me--~M~(~), 
M~-+Mt(e) inducing the corresponding edge-to-vertex group injections. Form Mr  from 

the disjoint union 

U Mv  U U M e x e  ) 
by gluing Me x i(e) to Mi(e) and Me x f(e) to M/(e) via the finite covering maps Me-+Mi(~) 
and M~-4M/(e). From the construction of Mr  we obtain a map Mr--+F such that  each 

fiber Ms, xEF,  is a manifold in the category C. 

Let Xr  be the universal cover of Mr.  There is a F-equivariant fiber bundle X r  ~ T r  

over the Bass-Serre tree Tr  of F whose fiber is a contractible n-manifold. Any geodesic 

metric on Mr  lifts to a 7hF-equivariant geodesic metric on XF. Smoothness allows us to 

impose additional geometric structure on X r  which we now describe. 

A geodesic metric space is proper if closed balls are compact. A bounded-geometry, 
metric simplicial complex is a simplicial complex E equipped with a proper, geodesic 

metric such that  for some constants 0<C1<C2  each positive-dimensional simplex has 

diameter between C1 and C2, and for some constant C > 0  the link of each simplex has 

~<C simplices. A subset S of E is rectifiable if for any p, qCS there exists a path in S 

between p and q which is rectifiable in E, and which has the shortest E-length among all 

paths in S between p and q. The length of such a path defines a geodesic metric on S. 

A D-homotopy in E is a homotopy whose tracks all have diameter ~<D. The space E 

is uniformly contractible if there exists a function (~: [0, oc)-+ [0, oo) such that  for every 

bounded subset ScE, the inclusion map Sr is 6(diam(S))-homotopic to a constant 

map. More precisely we say that  E is &uniformly contractible. 
Let T be a bounded-geometry, metric simplicial tree, let X be a proper, geodesic 

metric space, and let ~r: X--+T be a surjective map. Denote XA=Tr-I(A) for each ACT. 
The map 7r is called a metric fibration if: 

(1) X is a uniformly contractible, bounded-geometry, metric simplicial complex; 

(2) For each subtree TrET, the subset XT, is a subcomplex of X and is rectifiable 

in X.  
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(3) For each tCT the subspace Xt is uniformly contractible and is a bounded- 

geometry, metric simplicial complex, with bounded geometry constants and uniform 

contractibility data  independent of t; 

(4) The map r :  X-+T is distance-nonincreasing; 

(5) There is a homeomorphism O: X - + F  x T such that  

(5a) for all tET, O ( X t ) = F x t ,  

(5b) for all xEF,  the map 

T - + x x T  ~  

is a locally isometric embedding, 

(5c) there exists K~>I such that  for all edges e of T and tee,  the retraction r: e-+t 

induces a projection 
O-1 

X ~ ~  F x e  Id• F x t  ) Xt 

which is K-Lipschitz. 

Each fiber Xt, t E T, is called a horizontal leaf in X. If L is a bi-infinite line in T 

then XL is called a hyperplane in X. Items (4) and (5b) combine to show that  the map 

of item (5b) is an isometric embedding; the image O - l ( x •  is called a vertical leaf 

in X. For each subtree T'CT,  the closest point retraction r: T-+T' induces a map 

X O F x T  Idx r )  F x T  ~ O-1) XT, 

called vertical projection of X to XT,. 

Remark. Suppose that  F is a graph of groups taken from a category C as above. Let 

Mr  and X r - ~ T r  be as constructed above starting from F. Then elementary constructions 

produce a metric and a simplicial structure on Mr which lifts to a F-equivariant metric 

and simplicial structure on X such that  X-~Tr  is a metric fibration. I tem (1) follows by 

compactness of Mr.  

Remark. The definition has some redundancy: item (1) is a formal consequence of 

item (3), as can be seen by elementary but mildly tedious arguments. But by the previous 

remark we may dispense with these arguments for the examples at hand. 

The following lemma, applied to a bi-infinite line in T, gives good geometric prop- 

erties for hyperplanes: 

LEMMA 7.2. If 7r: X--~ T is a metric fibration then there exist functions 5P: [0, c~)--+ 

[0, co) and L): [0, oc)--+[0, oc) with limt--,~ Lo(t)=oo, such that for any subtree T' C T we 

have: 

(1) The embedding XT,-+ X is g-uniformly proper; 

(2) The geodesic metric space XT, is 5~-uniformly contractible. 
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Proof. To prove (1), consider x, yCXT,, let D=dx(x ,y ) ,  and let V: [0, D]--+X be a 

geodesic connecting x and y. Let ND(T ~) be the D-neighborhood of T '  in T so that  

"~CXND(T, ). Applying item (5) iteratively, projecting inward starting from the edges of 

ND(T ~) furthest from T ~, it follows that  vertical projection XND(T,)-"+XT, distorts any 

distance r by at worst KDr, and so dxT,(x, y )~KDD.  

To prove (2), suppose that  ACXT,  and diamxT,(A)<<.R, so that  A is R'-homotopic 

to a constant in X where R'  depends on R but not on A. This homotopy may then be 

mapped back to XT, by vertical projection, distorting diameters of homotopy tracks by 

an amount bounded in terms of R ~ as we saw above. The result is an R"-homotopy of A 

to a constant in T ~, with R" depending only on R and not on A. [] 

Here is our generalization of Step 1. It applies to any metric fibration of the form 

Xr-+Tr, where F is a finite, geometrically homogeneous graph of fundamental groups of 

manifolds in any of the categories g described earlier. 

THEOREM 7.3. Let 7r:X--+T be a metric fibration whose fibers are contractible n- 

manifolds for some n. Let P be a contractible (n+ l)-manifold which is a uniformly con- 

tractible, bounded-geometry, metric simplicial complex. Then for any uniformly proper 

embedding r P--+ X,  there exists a unique hyperplane Q c X  such that r  and Q have 

finite Hausdorff distance in X .  The bound on Hausdorff distance depends only on the 

metric fibration data for ~r, the uniform contractibility data and bounded geometry data 

for P, and the uniform properness data for r 

Proof. Uniqueness of Q follows obviously from the fact that  distinct hyperplanes in 

X have infinite Hausdorff distance. 

For existence of Q we follow closely the proof of Proposition 4.1 of [FM1], concen- 

trating on details needed to explicate the difference between the "quasi-isometric" setting 

of [FM1] and the present "uniformly proper" setting. 

Using the bounded geometry of P,  uniform contractibility of X,  and uniform proper- 

ness of r we may replace r by a continuous, uniformly proper map, moving values of r 

a bounded distance. Henceforth we shall assume that  r is continuous. 

Pick a topologically proper embedding of T in an open disc D. For each compo- 

nent U of D - T ,  the frontier of U in D is a bi-infinite line L(U) in T. There is a 

homeomorphism of pairs (0 ,  L(U))~ (L(U) • [0, c~), L(U) • 0). 

Consider the topologically proper embedding 

X-9+ F• F•  

Note that  F •  is a contractible (n§ For each component U of D - T  we 
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have a homeomorphism 

F x U ~ F x (L(U) x [0, co)) - ~  (F  x L(U)) • [0, co) ~ > XL(U) x [0, oc). 
Oxld  

The frontier of this set in F x D is F x L(U) ~XL(u).  Put  a product  metric and a product  

simplicial structure on XL(U)x [0, co) and glue to F x L(U). Doing this for each U, we 

impose a proper, geodesic metric on F x D  for which the inclusion Xc---~FxD is an 

isometric embedding. 

The simplicial s tructure on F x D evidently has bounded geometry. Also, the metric 

space F x D  is uniformly contractible. To see this, let A C F x D  have diameter  ~<r. If 

A N X r  then homotoping along product  lines of XL(U) X [0, (X3) for each U we obtain an 

r -homotopy of A into F x T . ~ X ,  and then we use uniform contractibility of X.  Whereas 

if A Q X = O ,  then A c F x U ~ X L ( u ) x ( O ,  oo) for some component  U of D - T ;  there is 

an r -homotopy of A into some XL(U)xx,  and the latter is uniformly contractible by 

Lemma 7.2. 

We now plug this setup into the coarse separation and packing methods of Farb-  

Schwartz [FS] and Schwartz IS]. We will use a generalization of the coarse separation 

theorem with more easily applied hypotheses, due to Kapovich-Kleiner  [KK]. We denote 

the r-ball about  a subset A of a metric space M by Br(A; M). In a metric space Z, 

a subset UCZ is deep in Z if for each r > 0  there exists x c U  such tha t  B~(x; Z ) c U .  

A subset A C Z  coarsely separates Z if for some D > 0  there are at least two components of 

Z - N D ( A ;  Z) which are deep in Z; the constant D is called a coarse separation constant 

for A. Note tha t  if subsets A and B of Z have bounded Hausdorff distance from each 

other, then A coarsely separates Z if and only if B does. 

Here is an elementary consequence of the definitions: 

LEMMA 7.4. Let f : X - + Y  be a quasi-isometry between geodesic metric spaces. If  

A c X  coarsely separates X then f (A)  coarsely separates Y,  with separation constant 

depending only on the quasi-isometry constants of f and the separation constant for A. 

Here is the version of the coarse separation theorem that  we will use. 

THEOREM 7.5 ([KK]). Let P be a contractible (n+l)-manifold, Z a contractible 

(n+2)-manifold, and suppose that P, Z are uniformly contractible, bounded-geometry, 

metric simplicial complexes. Let q~: P - ~ Z  be a uniformly proper map. Then ~(P)  

coarsely separates Z, with coarse separation constant D depending only on the uniform 

contractibility and bounded geometry data for P and Z and the uniform properness data 

for 4~. Moreover, if �9 is continuous then we may take D=O, that is, Z - O ( P )  has at 

least two components which are deep in Z. 
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Remark. In fact there are exactly two components of Z--ND(O(P); Z) which are 

deep in Z (see [KK]). 

Following [FS] we have a corollary: 

THEOREM 7.6 (packing theorem). Let Q, P be contractible (n+ l)-manifolds which 

are uniformly contractible, bounded-geometry, metric simplicial complexes. Let r Q-+ P 

be a uniformly proper map. Then there exists R>0 such that NR(r  The 

constant R depends only on the uniform contractibility data and bounded geometry data 

for Q, P and the uniform properness data for r 

Proof. If no such R exists then the image of the map 

Q ~-~ P~-+ PxR 

does not coarsely separate P x R, violating Theorem 7.5. [] 

Continuing with the proof of Theorem 7.3, compose the continuous, uniformly 

proper map r P--+X with the isometric embedding X--+F• to obtain a continuous, 

uniformly proper map O : P - + F •  By the coarse separation theorem it follows that 

(F •  has at least two components which are deep in F x D. 

Now take the argument of [FM1, Step 1, pp. 426-427] and apply it verbatim, to 

produce a hyperplane Q c X  such that QcO(P). Next take the argument of [FM1, 

Step 2, pp. 42~428] and apply it verbatim, replacing "quasi-isometric embeddings" with 

"uniformly proper maps" and using the packing theorem above, to show the existence 

of R' such that r X), where R' depends only on the metric fibration data 

for ~r, the uniform contractibility and bounded geometry data for P, and the uniform 

properness data for r 

This finishes the proof of Theorem 7.3 and of Step 1. [] 

Step 2: A quasi-isometry takes hyperplanes and horizontal leaves in XM to hyper- 

planes and horizontal leaves in XN. Consider integral matrices M, NE GL• (n, R) with 

det M, det N > I ,  and let f: X M - + X  N be a quasi-isometric embedding. Then there is a 

constant A~>0, depending only on XM, XN and the quasi-isometry constants of f ,  such 

that: 

(1) For each hyperplane PCXM there exists a unique hyperplane QCXN such that 

d~ (f(P), Q) <~A; 

(2) For each horizontal leaf L of XM there exists a horizontal leaf L ~ of XN such 

that dn(f(n), n') •A. 

The proof of this step is the first place in our arguments where the assumption that 

det M, det N > I  is crucial. Again we will investigate this step in the general setting of 

metric fibrations over trees. 
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Consider a metric fibration 7r: X--+T. The tree T is bushy if there exists a constant 

such that  each point of T is within distance fl of some vertex v such tha t  T - v  has at 

least 3 unbounded components.  Note tha t  if M is an integer matr ix  in GLx (n, R) ,  and if 

XM--+TM is the associated metric fibration over the Bass-Serre tree TM of the group FM, 

then TM is bushy if and only if det M > I .  In fact, for any graph of finitely generated 

groups, the Bass-Serre tree is either bounded, quasi-isometric to a line or bushy, and the 

question of which alternative holds is easily decided by inspection of the graph of groups. 

Here is our generalization of Step 2: 

THEOREM 7.7. Let ~r: X-+T,  ~r~ : X'-+ T' be metric fibrations over fl-bushy trees T, T ~ 

such that the fibers of ~r and ~r' are contractible n-manifolds for some n. Let f: X--+ X '  be 

a quasi-isometry. Then there exists a constant A, depending only on the metric fibration 

data of 7r, ~r ~, the quasi-isometry data for f ,  and the constant fl, such that: 

(1) For each hyperplane P c X  there exists a unique hyperplane Q c  X '  such that 

dn ( f (P) ,  Q) <. A; 

(2) For each horizontal leaf L C X  there is a horizontal leaf L ' c X '  such that 

dn( f (L) ,L ' )<.m.  

Remark. This result is used in [MSW] to prove quasi-isometric rigidity for funda- 

mental  groups of geometrically homogeneous graphs of groups whose vertex groups are 

fundamental  groups of manifolds in a category C as above, as long as tha t  class of groups is 

itself quasi-isometrically rigid. For example, quasi-isometric rigidity is proved for graphs 

of Z's,  Zn's,  surface groups, lattices in semisimple Lie groups, nilpotent groups, etc. 

Proof. To prove (1), by Lemma 7.2 the inclusion map  P~-+X is uniformly proper and 

P is uniformly contractible, and clearly P is a contractible ( n +  1)-manifold. Composing 

with f we obtain a uniformly proper map  P--+Xq Now apply Theorem 7.3. 

The idea of the proof of (2) is tha t  bushiness of the tree allows one to gain quasi- 

isometric control over horizontal leaves by considering them as "coarse intersections" of 

hyperplanes. 

Definition (coarse intersection). A subset W of a metric space X is a coarse inter- 

section of subsets U, V C X ,  denoted W = U N c V ,  if there exists K0 such tha t  for every 

K>~Ko there exists K'>~0 so tha t  

dn(NbhdK(U)NNbhdK(V) ,  W )  <. K' .  

Note tha t  although such a set W may not exist, when it does exist then any two such 

sets are a bounded Hausdorff distance from each other. 

The  following fact is an elementary consequence of the definitions. 
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(a) 

\Y.., 

(c) 

(b) 

(d) 

Fig. 1. Possible  coarse in tersect ions  of d is t inc t  hype rp lanes  in X ,  pro jec ted  to  T.  In  (a), 

PiAcP2=PiNP2 is a half-plane.  In (b ) - (d ) ,  PiNcP2 is a hor izontal  leaf; P I N P 2  can  be: 

(b) empty ,  (c) a hor izonta l  leaf or (d) a finite s t r ip  of hor izonta l  leaves. 

LEMMA 7.8. For any quasi-isometry f : X - - + Y  of metric spaces, and U, V c X ,  if 

U A c V  exists then f ( U n c Y )  is a coarse intersection of f ( U ) ,  f ( Y ) ,  with constants de- 

pending only on the quasi-isometry constants for f and the coarse intersection constants 

for U and V. 

Consider  now a metr ic  f ibrat ion ~: X - + T .  A subset  of  X of  the  form X~=Tr  - i  (a) ,  

where  a is an infinite ray in T,  will be  called a half-plane in X .  T h e  next  l e m m a  is an 

easy o b s e r v a t i o n - - s e e  Figure  1. 

LEMMA 7.9. Let 7r: X--+T be a metric fibration over a tree T. Let Pi and P2 be 

distinct hyperplanes in X .  Then P1NcP2 exists and is a bounded Hausdorff distance 

from either a half-plane or a horizontal leaf in X .  Moreover, Pi NcP2 is a bounded 

Hausdorff distance from a half-plane if  and only if  P1 N P2 is a half-plane. 

We remark  t h a t  Pi  NcP2 can be an arb i t ra r i ly  large finite Hausdorf f  d is tance f rom 

a horizontal  leaf; see Figure  1 (b), (d). 

LEMMA 7.10. Let 7r:X--+T, 7r':X'-+T' be metric fibrations. Let f : X - - > X '  be a 

quasi-isometry. Suppose that P1 and P2 are distinct hyperplanes in X which intersect in 

a half-plane. Then f ( P i )  and f (P2 )  are a uniformly bounded Hausdorff distance from 

distinct hyperplanes Qi, Q2 in x '  which intersect in a half-plane in X ' .  

Proof. By T h e o r e m  7.3, there  exists a cons tant  A so t ha t  f (P i )  is wi thin  Hausdorf f  



190 B. FAR.B A N D  L. M O S H E R  
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Fig. 2. Any point xET is a bounded distance f~ from a vertex vCT that separates T into at 
least three unbounded components. The vertex v is the (coarse) intersection of three proper 
lines 11,12,13 such that the pairwise intersections llNl2, 12Nl3, 13All are rays in T, any two 
of which have infinite Hausdorff distance. Moreover, d(x, 11 n 12 N 13) <~ ~. 

distance A of a unique hyperplane Q~ in X p. Since P1, P2 are distinct they  have infinite 

Hausdorff  distance, so Q1 and Q2 have infinite Hausdorff  distance, and hence Q1 r Q2. 

By L e m m a  7.9, it is enough to prove tha t  Q1NcQ2 is not  a bounded  Hausdorff  

distance from a horizontal  leaf in X ~. If  Q1NcQ2 is a bounded  Hausdorff  distance from 

a horizontal  leaf, then since any horizontal  leaf in Q1 coarsely separates Q1 it mus t  be 

tha t  Q1NcQ2 coarsely separates Q1. But  P1NcP2 does not  coarsely separate P1. This 

contradicts  L e m m a  7.4. [] 

We now prove Theorem 7.7. Consider the quasi- isometry f :  X-+X' .  Since T is 

bushy, any horizontal  leaf L in X can be realized as a coarse intersection of three hyper-  

planes P1, P2,/~ such tha t  the pairwise intersections P1NP2, P2AP3, P3NP1 form three 

half-planes, any two of which have infinite Hausdorff  distance. Moreover, 

dn( L, PI AP2NP3) < j3 

where/~ is a bushiness constant  for T (see Figure 2). 

Consider the  unique hyperplane  Q~ which lies a Hausdorff  distance of at  most  A from 

f (P i ) ,  i = 1 , 2 , 3 .  By  L e m m a  7.10, the pairwise intersections Q1NQ2, Q2NQ3, Q3NQ1 

are all half-planes, any two of which have infinite Hausdorff  distance. The  following 

elementary fact about  trees, applied to T', now shows tha t  Q1NQ2NQ3 is a horizontal  

leaf L I in XP: 

Fact about trees. Let I1,12,13 be bi-infinite lines in a simplicial tree T ~, such tha t  

the pairwise intersections llnl2,/2N/3, 13nll are all infinite rays in T ~, any two of which 

have infinite Hausdorff  distance. Then  llnl2nl3 is a vertex of T ~. 
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Since LcN~(Pi) it follows that  

f(L) c NK~+c(f(Pi)) C NKZ+C+A(Qi), i = 1, 2, 3. 

3 
But clearly we have r ] i = l  NK~+C+A(Qi)=NKz+C+A(L')" 

To summarize, given a horizontal leaf L of X, we have found a horizontal leaf L I 

of X ~ such that  LCNA,(L ~) where X = K ~ + C + A .  A similar argument using a coarse 

inverse for f provides the desired bound for dn(f(L), L'). This completes the proofs of 

Theorem 7.7 and of Step 2. [] 

Step 3: A quasi-isometry takes coherent hyperplanes in XM to coherent hyperplanes 

in XN. Let M, N be as in the statement of Proposition 7.1, and fix a quasi-isometry 

f: XM --~ XN. 

Let P be any coherent hyperplane in XM. By Step 2 it follows that  f (P) is within 

a Hausdorff distance A from a unique hyperplane Q in XN. By composing f IP with 

vertical projection XN-+Q we obtain a map r P-+Q. The inclusion maps P~--~XM 
and Qc--~XN are coarsely Lipschitz and uniformly proper; indeed they are isometric 

embeddings with respect to the induced path metrics on P, Q. By Lemma 2.1, r is a 

quasi-isometry, with quasi-isometry constants depending only on those for f .  By Step 2, 

f coarsely respects the horizontal foliations of XM and XN; vertical projection XN-+Q 
takes horizontal leaves to horizontal leaves, and so r coarsely respects the horizontal 

foliations of P and Q, with a coarseness constant depending only on the quasi-isometry 

constants of f .  

Since P is a coherent hyperplane it is isometric to GM. Since Q is a hyperplane it 

is isometric to either GN or HN, and we now show that  the second possibility cannot 

occur. 

PROPOSITION 7.11. Given matrices M, NE GL• (n, R)  with det M, det N >  1, there 

is no quasi-isometry r GM--+ HN which coarsely respects horizontal foliations. 

Proof. The idea of the proof is to compare the growth types of the filling area 

functions for "quasi-vertical bigons" in GM and in HN. In GM this growth type will be 

quadratic, while in HN it will be exponential. 

Let H=GM, HM, GN or HN. There is a quotient map H--+R whose point pre- 

images give the horizontal foliation of H,  and such that  the Hausdorff distance between 

two horizontal leaves equals the distance between the corresponding points in R. A path 

7 in H is said to be (K, C)-quasi-vertical if its projection to R is a (K, C)-quasi-geodesic. 

Define a (K, C)-quasi-vertical bigon in H to be a pair of (K, C)-quasi-vertical paths 7, 7' 

which begin and end at the same point. 



192 B. FARB AND L. M O S H E R  

If K, C are fixed, we define a filling area function A(L) for (K, C)-quasi-vertical 

bigons in H.  Given a (K, C)-quasi-vertical bigon %~/', its filling area is the infimal area 

of a Lipschitz map D2--+H whose boundary is a reparameterization of the closed curve 

V -1 , ' / ' ;  such a map D2-+H is called a filling disc for ~/-1 . ~ .  For each L>~0 define A(L) 
to be the supremal filling area over all (K, C)-quasi-vertical bigons 7, ~t in H such that  

Length(v) + Length (~/') ~< L. 

Suppose that  there is a quasi-isometry r GM--+HN which coarsely respects hori- 

zontal foliations. Let r HN--+GM be a coarse inverse for r also coarsely respecting 

horizontal foliations. Clearly r takes any (K, C)-quasi-vertical bigon in HN to a (K', C')- 

quasi-vertical bigon in GM, distorting lengths by at worst an affine function; this affine 

function and the constants K', C ~ depend only on K, C, the quasi-isometry constants 

for r and the Hausdorff constant for the induced height function. Fill the resulting 

bigon in GM as efficiently as possible, and map back to HN via r distorting area by 

at worst an affine function which again has the same dependencies. We thereby ob- 

tain a filling of the original bigon in HN.  If ,41(L) denotes the filling area function for 

(K', CP)-quasi-vertical bigons in GM, and if A2(L) denotes the filling area function for 

(K, C)-quasi-vertical bigons in HN, it follows that  the growth type of A2(L) is dominated 

by the growth type of .AI(L), that  is, 

A2(L) ~< c~ .AI(~L+5)+~ 

for some positive constants a,  ~, 5, ~ independent of L. 

We shall, however, now show that  AI(L)  has a quadratic upper bound while A2(L) 

has an exponential lower bound, contradicting the above inequality. 

Consider a (K~,CP)-quasi-vertical bigon V,V ~ in GM. Applying the argument of 

Claim 5.7, there are center leaves T, T p in GM and quasi-vertical paths QC'r, ~CT ~ which 

stay uniformly close to V, ~ respectively. The initial points of t~, Q' are at a uniformly 

bounded distance, as are the terminal points, and it follows that  t~ ~ stays uniformly close 

to a quasi-vertical path Q"CT. Connecting initial and terminal endpoints with short paths 

~?, ~' we thus obtain a closed curve t~-l*~?*t~'*~ ~, contained in a center leaf of GM, which 

stays uniformly close to ~-I*v~. Since center leaves of GM are isometric to Euclidean 

space, in which the filling function is quadratic, it follows that  ,41(L) has a quadratic 

upper bound. 

To show that  ~42(L) has an exponential lower bound, we now construct quasi-vertical 

bigons in H N which can be filled only by discs of exponential area. In the case where 

N is a (1 x 1)-matrix such loops are given explicitly in [E, Chapter 7.4]; examples for 

general N are simple modifications of this example. To be explicit, choose an eigenvalue 

of N of absolute value a > l ;  such an eigenvalue exists because d e t N > l .  Choose an 
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affine subspace A C R n parallel to the a-eigenspace of N. Consider the subspace A • R C 

R n x R ~ G N .  

For each fixed L~>0, choose two vertical segments 9,9 r in A•  [0, c~) whose upper 

endpoints are in A • L and whose lower endpoints are in A • 0, and so that  the distance 

in A • L between the upper endpoints, measured using the Riemannian metric on GN, is 

equal to 1; it follows tha t  the distance in A •  between the lower endpoints, measured 

using the Riemannian metric on GN, is within a constant multiple of a L. 

Now double this picture, in the doubled GN-horoball HN, to get a closed loop in HN, 

that  is: in one horoball go up 9, across 1 unit, and down 9 r, and then in the other horoball 

go up 9 ~, across 1 unit, and down 9; let Q be the resulting closed curve in HN. We have 

L e n g t h ( # ) = 4 L + 2 .  To see tha t  the filling area of ~ is exponential in L, note that  any 

filling disc for Q must contain a pa th  in A x 0  connecting the lower endpoints of 9,9 ~, 

because A • 0 separates the two halves of g in HN. This pa th  has length exponential 

in L; and a neighborhood of this path  in the filling disc has area exponential in L. [] 

Step 4: A horizontal-respeetin9 quasi-isometry preserves transverse orientation. Let 

M , N  and f :  FM--+FN be as in the s ta tement  of Proposit ion 7.1. By Step 3 there is 

a quasi-isometry r and by Step 2 r coarsely respects the horizontal folia- 

tions of GM and GN- Suppose tha t  r reverses the transverse orientation. There is a 

quasi-isometry GN-~GN-a which coarsely respects horizontal foliations, reversin9 trans- 

verse orientations. Precomposing with r GM-+ GN and applying Steps 1-3, we obtain a 

quasi-isometry GM-+GN-1 which coarsely respects the transversely oriented horizontal 

foliations. Applying Theorem 5.2, it follows tha t  M and N -1 have positive real powers 

with the same absolute Jordan form, and so these powers also have the same determi- 

nant. But each positive power of M has determinant  > 1, whereas every positive power 

of N -1 has determinant  < 1, a contradiction showing that  r must preserve the transverse 

orientation. 

This completes the proof of Proposition 7.1. [] 

Remark. Note in the proof of Proposition 7.1 tha t  different choices of coherent hyper- 

planes in XM yield different quasi-isometrics r In some cases r is well defined up to 

some constant A, tha t  is, for any two choices of coherent hyperplane in XM, the induced 

maps r •2: GM---~GN satisfy sup x d(r r  This is true, for example, in the 

"centerless" case where M, N have no eigenvalues on the unit circle. In the general case, 

the best that  can be said is that  the map  induced by r from the center leaf space of 

GM to the center leaf space of GN is well defined up to a constant, with respect to the 

Hausdorff metrics on the center leaf spaces. 
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8. F inding  th e  integers 

In this section we prove Theorem 1.1. Let M , N  be integral (nxn)-matr ices  with 

IdetMI, I d e t N l > l .  We must prove that  I'M is quasi-isometric to FN if and only if 

there exist positive integers a, b such that  M ~ and N b have the same absolute Jordan 

form. 

First we show that  the groups FM~ and FM are quasi-isometric for any positive 

integer a, by showing that FM~ is a subgroup of finite index in FM, specifically of index a. 

To see why, consider the presentations 

FM = (Zn, t l t - l x t = M ( x ) ,  xEZn),  

FM: = (Z n, s I s - l x s  = Ma(x), x E Zn). 

Define a homomorphism FM~--~Z/aZ by zn~-~0, t~-~l. This homomorphism is onto, and 

its kernel is generated by Z n, t% This kernel is isomorphic to FM~ under the injection 

FMac--~FM given by x~-+x, s~-+t ~. 

Similarly, I'/vb is quasi-isometric to FN for any positive integer b. 

By squaring M, N if necessary, we may therefore assume that  det M, det N > 1, and 

that  M and N lie on 1-parameter subgroups; we continue with this assumption up 

through the end of the proof in w Choose 1-parameter subgroups M t, N t of GL(n, R)  

with M = M  1, N = N  1, let GM, GN be the associated Lie groups constructed in w and 

let XM, XN be the associated geodesic metric spaces constructed in w The group FM 

is quasi-isometric to XM, and FN is quasi-isometric to XN. 

8.1. The  first half  of  the  classif ication 

Assuming that  M a and N b have the same absolute Jordan form, where a, b are positive 

integers, we must prove that  FM and IYN are quasi-isometric. We have shown above that  

F~o and FM are quasi-isometric, and that  I?Nb and ['N are quasi-isometric. Replacing M 

by M a and N by N b, we may therefore assume that  M, N have the same absolute Jordan 

form. We shall prove that  FM,FN are quasi-isometric by constructing a bi-Lipschitz 

homeomorphism between XM and XN. 

Since the absolute Jordan forms of M, N are equal, it follows that  det M = d e t  N; let 

d be the common value. Applying Proposition 4.1, there is a bi-Lipschitz homeomorphism 

from G M = R n x M R  to GN=RnNIM a of the form (x,t)~+(Ax, t) for some A e G L ( n , R ) .  

In the fiber product description of XM, XN, the trees TM and TN may both be identified 

with the homogeneous, oriented tree Td with one incoming and d outgoing edges at each 

vertex. The bi-Lipschitz homeomorphism GM--+GN and the identity homeomorphism 
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Td-+Td both respect the height functions, and so these two homeomorphisms combine 

to give the desired bi-Lipschitz homeomorphism XM---~X N. 

8 .2 .  Q u a s i - i s o m e t r i c  i m p l i e s  t h a t  i n t e g r a l  p o w e r s  h a v e  t h e  s a m e  a b s o l u t e  

J o r d a n  f o r m s  

Assuming that  FM, FN are quasi-isometric, there is a quasi-isometry f :  XM-+XN. Com- 

bining Proposition 7.1 and Theorem 5.2 gives r E R +  such that  M r and N have the same 

absolute Jordan form. We must show that  there exist a, bEZ+ so that  M a and N b have 

the same absolute Jordan form. 

Since M r and N have the same absolute Jordan form, listing the absolute values of 

the eigenvalues of M and N in increasing order we obtain 

#--a ~ ... ~ #0 ~ 1 < #1 =:  aM ~ ... ~ #b, 

~--a ~< ... ~<YO ~< 1 <~'1 = : O l N  ~ ... ~ / ] b ,  

with #[=u~, -a<<.i<.b. From this it follows that  

log aN log det N 

log C~M log det M" 

Let QM denote the set of coherent hyperplanes in XM, and let hM denote the height 

function on M. We define a metric on QM as follows: Given coherent hyperplanes/91, P2, 

let L denote the horizontal leaf L=O(P1AP2). Then we set 

dQM(P1, P2) = (det M) -hM(L). 

It is easy to check that  this defines a metric on QM, and since the tree TM branches 

m = d e t  M times as hM increases by 1, the metric space (QM, dQM) is isometric to the 

m-adic rational numbers in their usual metric of Hausdorff dimension 1. Similarly, at- 

tached to XN is a metric space (QN, dQN) isometric to the n-adic rational numbers, with 

n = d e t  N. 

From Step 3 in the proof of Proposition 7.1 (see w the quasi-isometry f:  XM--+XN 
takes each coherent hyperplane in XM to within a uniform Hausdorff distance of a unique 

coherent hyperplane in XN, and hence induces a bijection r QM--+ QN. For each 1C QM, 

setting l' = r  there is an induced horizontal-respecting quasi-isometry Pt-+P[,, and by 

time rigidity (Proposition 5.8) this quasi-isometry has an induced time change of the 

form t~-~rnt+b where 
log C~M 1 

log aN r 
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and where b depends ostensibly on I. For another 11, however, Pl and Ph coincide below 

some value of t, and so t ~  mt + b is an induced time change for both Pz ~ P[, and Ph ~-~ P[i' 
possibly with a larger coarseness constant (this argument is taken from Claim 6.3 on 

p. 436 of [FM1]). Therefore, there is a uniform induced time change t~-~mt+b with b 

independent of l, and with a uniform Hausdorff constant A. 

We now claim that  r is a bi-Lipschitz homeomorphism. To this end, let P1, P2 CQM 

be given. Let L=O(P1NP2) and L'=O(r162 Then 

hN(L')~m.hM(L)+b-A, 

and so 

dQN(r r  (det N) -hN(n') (det N) -mhM(L)-b+A 
= ~< 

d q ,  (P1, P2) (det M) -h-(L) (det  M) -hM(L) 

((det N) l~ det M~ log det N) --hM (L) (det N) -b+A = (det N) -b+A, 
(det M)--hM(L) 

which is a constant not depending on P1 or P2. Hence r is Lipschitz. The same argument 

applied to ~b -1 shows that  r is bi-Lipschitz. 

Applying Cooper's theorem [FM1, Appendix, Corollary 10.11] on bi-Lipschitz homeo- 

morphisms of Cantor sets, we obtain that  there exist integers a, b>0 such that  (det M )  a = 

(det N) b. Since M r and N have the same absolute Jordan form, we have 

b log det M 

a log det N 

and so (Mr)a=M b and N a have the same absolute Jordan form. 

9. Q u a s i - i s o m e t r i c  r i g id i ty  

In this section we prove Theorem 1.2 in a series of steps. Recall the hypotheses: M is an 

integer matrix in GL(n, R)  with Idet M I > I  , and G is a finitely generated group quasi- 

isometric to FM. By squaring M if necessary we may assume that  MEGL•  (n, R)  and 

det M >  1, and therefore FM is quasi-isometric to XM. It follows that  G is quasi-isometric 

to XM. 

Step 1. The action of G on itself by left multiplication can be conjugated by the 

quasi-isometry G-+XM to give a proper, cobounded quasi-action of G on XM (see [FM2, 

Proposition 2.1]). Since det M >  1 we may apply Theorem 7.7, concluding that  the quasi- 

action of G on XM coarsely respects the fibers of the uniform metric fibration X M - + T M .  
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Step 2. Now we use the following result of [MSW]. Suppose tha t  re: X-+T is a 

uniform metric fibration over a bushy tree T. If  G is a finitely presented group with a 

cobounded, proper quasi-action on X,  and if the quasi-action coarsely respects the fibers, 

then G is the fundamental  group of a graph of groups whose vertex and edge groups are 

quasi-isometric to a fiber Xt=rc -l(t). 

By Step 1, this result applies to the quasi-action of G on XM, because G is quasi- 

isometric to the finitely presented group FM, and so G is finitely presented. The fibers of 

the map  XM--+TM a r e  isometric to R n, and it follows that  G is the fundamental  group 

of a graph of groups with each vertex and edge group quasi-isometric to R n. 

Step 3. Any finitely generated group quasi-isometric to R '~ is virtually Z n (see 

[Ge2]), and so G is the fundamental  group of a graph of groups whose vertex and edge 

groups are virtually Z n. 

Step 4. Applying the argument in w of [FM2] to G gives tha t  either G contains a 

noncyclic free group or G is an ascending HNN extension of the form 

G = Ar = (A, t I tat-1 = r Va E A}, 

where A is virtually Z n and r A-+A is an injective endomorphism. Since I~M is amenable, 

and since G is quasi-isometric to I~M, then G is amenable, and so G cannot contain a 

noncyclic free group. The second possibility must therefore occur: G=Ar as above. 

Step 5. Now we turn to an analysis of injective endomorphisms of virtually abelian 

groups. Suppose tha t  A is a finitely generated, virtually abelian group. Any injective 

endomorphism of A has finite index image. 

A subgroup B c A  is characteristic for endomorphisms if, for any injective endomor- 

phism r A-+A, we have r  

Given a group A and gcA, the centralizer of g in A is denoted CA(g). The virtual 

center of A, denoted V(A), is the set of all gEA such tha t  [A: CA(g)] <oo. This is a sub- 

group, because if g, heV(A) then the subgroup CA(gh), which contains CA(g)NCA(h), 
has finite index. 

LEMMA 9.1 (some characteristic subgroups). Let A be a finitely generated, virtually 

abelian group. Then the virtual center V(A), its center ZV(A), and its torsion subgroup 

TZV(A),  are all characteristic for endomorphisms of A. Moreover, V(A) and ZV(A) 

both have finite index in A, whereas TZV(A) is finite. 

Lemma 9.1 is proved below. 

Step 6. Consider the HNN extension G=Ar above. Let V(A), ZV(A), TZV(A) 
be as in Lemma 9.1, so tha t  all these subgroups are taken into themselves by r Since 
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TZV(A) is finite we in fact have r and so K=TZV(A) is a finite, 

normal subgroup of G. 

Replacing G by G/K, we may assume that  TZV(A) is trivial, and it follows that  

ZV(A) is torsion-free, abelian, and so is isomorphic to Z ~. Since r 
the action of r on ZV(A) is given by some (n • n)-matr ix  of integers N.  Thus, G/K has 

a finite-index subgroup isomorphic to FN, finishing the proof of Theorem 1.2. 

Proof of Lemma 9.1. To see [A:V(A)] < c~, note that  if B is any finite-index abelian 

subgroup of A then obviously B C V(A). 
Consider an endomorphism r We now show tha t  r Con- 

sider geV(A), so that  [A:CA(g)]<oc. It  follows that  [r162162 and so 

[A:Cr162 But Cr162162 and so r 
Next we claim tha t  V(V(A))=V(A). To see why, note tha t  if geV(A) then we have 

[A:CG(g)]<~, and so [V(A):CG(g)~V(A)]<oc. But CG(g)NV(A)CCv(A)(g), and so 

[V(A):Cv(A)(g)]<c~, i.e. geY(Y(A)). 
Next we claim that  [V(A):ZV(A)] <c~. In fact, if V is any finitely generated group 

which is its own virtual center, then [V:ZV]<c~ (the converse is also true, trivially). 

To see why, let gl, ..., gk be a generating set for V. Since V(V) =V, each of the groups 

Cy(gl), ..., Cy(gk) has finite index in V. It  follows that  their intersection has finite index 

in V; but their intersection is precisely ZV. 
Now we claim tha t  ZV(A) is characteristic for endomorphisms of V(A) (and so is also 

characteristic for endomorphisms of A). In fact, if V is any finitely generated group whose 

center ZV has finite index, then ZV is characteristic for any injective endomorphism 

r Y-+Y whose image has finite index. To see why, note tha t  Z(r162 and so 

[r  z(r  = [r  r  = [w: zy]  < ~.  

Clearly r162 and so 

[r  z ( r  ~< [r  r  

The quotient group V/ZV is finite, and the quotient homomorphism V--+V/ZV, when 

restricted to the subgroup r  has kernel r It  follows that  

[r  r  < Iv/zvl  = IV: zv]  = [r  z ( r  

All of the above inequalities are therefore equalities, and so 

r  = Z( r  = r 

which implies r  C ZV. 
Finally, it is clear that  for any finitely generated abelian group, the torsion subgroup 

is characteristic for injective endomorphisms. 
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10. Quest ions  

10.1. R e m a r k s  on the  polycycl ic  case 

Given an integer matrix MEGL(n,R) ,  the group FM is polycyclic if and only if 

lde tMl=l ,  and if MEGL•  this occurs if and only if FM is a cocompact dis- 

crete subgroup of GM. In this case it follows that FM is quasi-isometric to GM, and the 

notion of horizontal-respecting quasi-isometry clearly transfers to FM. The techniques 

of this paper do not provide a quasi-isometric classification in this case, but they do 

however yield the following partial result: 

THEOREM 10.1. If M, N E  SL(n, Z) lie on 1-parameter subgroups of GL(n, R),  then 

there is a horizontal-respecting quasi-isometry F M-+ F N if  and only if there is a hori- 

zontal-respecting quasi-isometry GM--+GN, and this occurs if  and only if  there are real 

numbers a, br such that M a, N b have the same absolute Jordan form. 

This raises the question: Is every quasi-isometry FM--~FN horizontal-respecting? 

Equivalently, is every quasi-isometry GM-+GN horizontal-respecting? The answer is 

obviously no, for example when M, N are identity matrices and GM, GN are Euclidean 

spaces. We conjecture, however: 

CONJECTURE 10.2. I f  M,  N E S L ( n , Z )  lie on 1-parameter subgroups of GL(n,R),  

and if  M,  N have no eigenvalues on the unit circle, then any quasi-isometry GM-+GN 

is horizontal-respecting. 

Moreover, Theorem 10.1 and Conjecture 10.2 together would imply the following 

(see [FM4]) 

CONJECTURE 10.3. Suppose that M E  SL(n, Z) has no eigenvalues on the unit circle. 

I f  G is any finitely generated group quasi-isometric to F M, then there is a finite normal 

subgroup F of G so that G / F  is abstractly commensurable to FN, for some NG SL(n, Z) 

with no eigenvalues on the unit circle. 

10.2. The  quas i - i sometry  group of  FM 

Given a finitely generated group G, the set of quasi-isometrics from G to itself, modulo the 

identification of quasi-isometries which differ by a bounded amount, forms a group called 

the quasi-isometry group of G, denoted QI(G). Given a ( l •  M = ( m )  with 

m~> 2, the quasi-isometry group of the solvable Baumslag-Solitar group rM ~ BS(1, m) 

was computed in [FM1]: 

QI(BS(1, m)) ~ Bilip(R) • Bilip(Qm) 
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where Q,~ is the metric space of m-adic rational numbers, and Bilip(X) denotes the 

group of bi-Lipschitz self maps of a metric space X. 

PROBLEM 10.4. Compute the quasi-isometry group of FM in general. 

The strongest result we have on this problem so far is Proposition 6.3, but see the 

remarks after that  proposition. 

In [FM2] the computation of QI(BS(1,m)) was applied to prove quasi-isometric 

rigidity of BS(1, m), using techniques of Hinkkanen [Hi] and Tukia [T]. While quasi- 

isometric rigidity of BS(1, m) now has a completely different proof [MSW], which we 

have here generalized to FM, one might still pursue: 

PROBLEM 10.5. Give a proof of quasi-isometric rigidity of FM, generalizing the 

results of [FM2]. 

This should lead to a deeper understanding of the geometry of FM. For example, 

Tukia [T] characterizes subgroups of the quasi-conformal group of a sphere which are 

conjugate into the M6bius group. We have analogous results for lattices in 3-dimensional 

SOLv-geometry, and there should be generalizations to solvable Baumslag-Sotitar groups 

and to FM. 
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