
Acta Math., 185 (2000), 123-159 
(~) 2000 by Institut Mittag-Leffier. All rights reserved 

On equiresolution and a question of Zariski 

by 

ORLANDO VILLAMAYOR U. 

Universidad Au tonoma de Madrid 
Madrid, Spain 

A mi padre 

1. I n t r o d u c t i o n  

Fix x c Y c V C W  where x is a closed point, W is smooth over over the field C of complex 

numbers, V is a reduced hypersurface in W, and Y is an irreducible subvariety of V. 

Zariski proposes a notion of equisingularity intended to decide if the singularity at x C V 

is in some sense equivalent to that  at yEV, where y denotes the generic point of Y. 

In case the condition holds, we say that  xEV and yCV are equisingular, or that  V is 

equisingular along Y locally at x. 

Zariski's notion relies and is characterized by two elementary properties, say (A) 

and (B). 

(A) If  xCV and y c V  are equisingular, then x c V  is regular if and only if yEV is 

regular. 

Zariski formulates the second property in the algebroid context, namely at the com- 

pletion of the local ring Ow,~, say R=C[[Xl ,  ..., xn]], a ring of formal power series over C, 

and n = d i m  (9W, x. Assume for simplicity that  Y is analytically irreducible at x (e.g. that  

Y is regular at x), and let y denote again the generic point of Y at R. By the Weierstrass 

preparat ion theorem one can define a formally smooth morphism 

7r: U1 = Spec(C[[Xl, ..., Xn]]) --} U2 : Spec(C[[Xl, ..., Xn-1]]) 

so that  7r induces a finite morphism 7r: V-+U2. In such case let D~eC[[Xl ,  . . . ,Xn--1]] be 

the discriminant. Let E ~ = V ( D ~ ) C  U2 be the reduced hypersurface in U2 defined by D~ 

(reduced discriminant). Note now tha t  dim U2=dim V = n - 1 ,  and V is unramified over 

U2-ETr; so zr(y) EE~ if V is singular at y. 
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(B) If yEV is a singular point, then x and y are equisingular points in V if and only if, 

for all sufficiently general formally smooth morphisms ~r, 7r(x) and ~r(y) are equisingular 

as points of the reduced hypersurface ~ .  

Let us recall why these two naive properties characterize this notion of equisingular- 

ity. So set xEYcVcW,  and y as before. If d im(V) -d im(Y)=O,  then yCV is a regular 

point. In fact, recall that  V is a reduced hypersurface and note that  in this case y must 

be the generic point of an irreducible component of V. So in this case property (A) 

enables us to decide if x and y are equisingular points of V, namely if and only if x is a 

regular point of V. 

If d i m ( V ) - d i m ( Y ) > 0  we may choose ~r sufficiently general so that  

( d i m ( ~ )  - dim(~r(Y))) = (d im(V) -d im(Y) )  - 1, 

and now property (B) and induction on the codimension of YC V finally assert that  these 

two elementary properties characterize this notion of equisingularity. 

The notion of equisingularity of xEYCVCW (of V at Y locally at x) implies the 

smoothness of Y at x and equimultiplicity of V along Y at x. Passing from the algebroid 

to the algebraic context was possible by [H2]. The outcome is that  there is a parti t ion of 

the variety V in finitely many locally closed subvarieties {Yi}, such that  at each closed 

point xEV, if say xCYio: 

(1) V is equisingular along Yio locally at x; 

(2) Yi0 is smooth and V is equimultiple along Yi0 locally at x; 

(3) if xCYtcV, then V is equisingular along Y' locally at x, if and only if xCY'CYio 
(in particular, V is also equimultiple along Y~ locally at x). 

This partit ion is called the Zariski stratification of V, and each Yi is called a Zariski 

s t ra tum (see [Za5, pp. 643-647]). 

We are not mentioning here the development done in the study of the Zariski strat- 

ification in relation with other properties on stratifications that  arise from topological or 

differentiable classifications of singularities. 

With fixed x C Y c V c W  and Y regular, there are natural ways to define a notion of 

equiresolution of V along Y, locally at the point x. We focus here on the equisingular 

stratification from the point of view of equiresolution. The question we address here is: 

Question. If Y is the Zariski s t ra tum that contains x, is V equiresolvable along Y 

locally at x? 

In [Li2] Lipman proposed an inductive strategy which reduces the problem to finding 

an embedded resolution process for quasi-ordinary singularities which depends only on 

their characteristic monomials. 
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Characteristic monomials are data attached to quasi-ordinary singularities (see [Li3] 

and [Li4]). They are, together with properties of constructive desingularization presented 

in IV2], the main ingredients of this work. 

The concept of equiresolution is largely studied and clarified in IT1] within the 

context of non-embedded resolutions. As for the notion of embedded equiresolution, we 

follow here condition ER (of embedded equiresolution) proposed in [Li2]. This concept 

has been recently applied to the classification of embedded curves in [N]. In this paper 

we study the compatibility of condition ER with Zariski's properties (A) and (B). 

Any notion of equiresolution involves a retraction and an embedded resolution. We 

begin this paper by discussing this concept with an example. Set x c Y c V c W ,  with 

Y smooth at x. At a suitable 6tale neighborhood of x we fix a retraction of W on Y. 

Note that  the retraction defines smooth fibers Wx,, and that  V~,=VAW~, is a family 

of transversal sections. We require that  the fibers V~,cW~, define a family of reduced 

hypersurfaces (for each closed point x 'EY in a neighborhood of x). Now we require that  

there be an embedded resolution of VC W which induces naturally and simultaneously 

an embedded resolution of each Vx, C W~,. 

The pullback of V by an embedded resolution is a union of smooth hypersurfaces 

having only normal crossings. One can define a natural stratification of this pullback by 

taking intersections of these smooth hypersurfaees. Equiresolution along Y (locally at x) 

imposes that  each such stratum be evenly spread over Y for any x '~Y  in a neighborhood 

of x (see Definition 2.14 and particularly Remark 2.12). 

If V is regular, we may take Y = V ,  and the identity map of W will fulfill the 

requirement of equiresolution. 

If the smooth subscheme Y is of codimension 2 in W (i.e. of codimension 1 at V), 

then each Wx, is a smooth surface, V~, is a reduced curve, and equiresolution entails 

equivalence of x'CV~, CWx, as singularities of plane curves. In case that  an equisingular 

s tratum Y is of codimension 2 in W (i.e. in case d i m E ~ - d i m T r ( Y ) = 0 ) ,  Zariski proves 

that  V c W  is equiresolvable along Y (see also [A1]). 

The embedded resolution of V c W  that  Zariski uses in that  proof, is a sequence 

of monoidal transformations along regular equimultiple centers of the hypersurface. An 

example of Luengo shows that  if Y is an equisingular s tratum of codimension >2, then 

equiresolution along Y will not be achieved if we only take into consideration those em- 

bedded resolutions defined by successive blowing-ups along regular equimultiple centers 

(see [Lu2]). 

Our development goes in a different line: we shall achieve embedded resolution, 

but not as a sequence of monoidal transformations. Note first that  property (B) is 

formulated in terms of general, formally smooth morphisms of relative dimension t over 
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the completion of the local ring Ow,:~; we replace here completion by henselization. Set 

x c Y c V c W ,  and Y regular at x. After suitable restriction to an 6tale neighborhood of 

xCW,  we may define 7r: W--+W1 smooth, of relative dimension 1. By taking 7r sufficiently 

general, the restriction 7r:V-+W1 is finite, and hence dimY--dimzc(Y).  Note also that  

for 7r sufficiently general, ~(Y) is regular at 7r(x). 

Our question is formulated for V equisingular along Y locally at x; in particular, V 

is also equimultiple along Y. In general (dim Z~ - dim 7r (Y)) -- (dim V -  dim Y) - 1, and 

thus, by property (B) and induction we may assume that  Z~ is equiresolvable along 

7r(Y) locally at It(x). Now Theorem 3.2 answers our Question, at least at a suitable 6tale 

neighborhood of x E YC VC W. 

So our Theorem 3.2 proves that  a Zariski s t ratum Y, and moreover, any Y C V  

equisingular and regular containing a closed point x, is also equiresolvable, after suitable 

restriction of V c W  to an 6tale neighborhood of x. 

In Theorem 3.2 we assume that  E,r cW1 is equiresolvable along ~r(Y) locally at 7r(x). 

Induction provides a nice stratification defined by the embedded resolution of the dis- 

criminant, with each strata evenly spread over 7r(Y). The fiber product of this embedded 

resolution with 7r:W--+ W1 defines a stratification over the original hypersurface, but now 

each stratum is defined by quasi-ordinary singularities. The strategy that  we follow in 

our proof, clearly formulated in [Li2, w is to t ry  to carry on from there, by defining a 

procedure of embedded resolution of quasi-ordinary singularities which relies entirely on 

the characteristic monomials. 

Our proof also requires embedded desingularization in the form of constructive desin- 

gularization. In fact it relies on properties of compatibility of constructive desingulariza- 

tion with 6tale and smooth maps studied in IV2] and [EV1]. 

I profited from discussions with Encinas, Luengo and Nobile. 

2. On equireso lut ion  

2.1. M o t i v a t i o n  and def init ions  

Consider the (reduced) hypersurface VICC 3 defined by the polynomial x2+yz 2 (in 

C[x, y, z]). The projection on the y-axis defines a smooth morphism C3-+C,  and hence, 

for each point t E C the fiber is a smooth surface. By taking intersections of these fibers 

with V1 we obtain a family of plane curves. For t c C - 0  we get a family of reduced plane 

curves. 

Set Z = C - 0 ,  let W c C  3 be the pullback of Z, and set V = V I A W .  Now the projec- 

tion 7r: W--+Z defines a family of reduced curves. Let Y be the singular locus of V. Note 

that  we may view Y as the image of a section of 7r: W-+Z.  
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Let f :  WI-+W be the monoidal transformation with center Y. This is a very ele- 

mentary example in which we have resolved the full family of embedded curves. But let 

us draw attention to some facts in order to motivate our development: 

(1) Set H=f-I (Y)(CW1).  Then W 1 - H  is isomorphic to W - Y ,  and the Jacobian 

of f :  WI-+W vanishes along H.  

(2) Note that  7r maps Y smoothly to Z, and the composition ~r.f: W I -+Z  is smooth. 

(3) Fix a point tEZ. Then the natural map induced by f ,  from the smooth fiber 

(Tr.f)-l(t) to the fiber 7r-l(t),  is the blow-up of a smooth surface at a closed point. 

(4) f defines an embedded resolution of the surface V, and f together with the 

smooth morphism in (2) define an embedded resolution of the family of plane curves. 

(5) The strict transform of V together with H are regular hypersurfaces in W1 

having only normal crossings. One can naturally stratify the union of the two reduced 

hypersurfaces by multiplicity. 

(6) f - I ( y ) c W 1  is a union of strata in (5), and the birational morphism f maps 

each such stratum smoothly on Y. 

In general, we shall say that  V is equiresolvable along Y by considering the conditions 

in (4), (5) and (6). 

Note that  (6) requires smoothness. We will achieve this by "lifting" the smooth map 

W--+Z to a smooth morphism W1--+Z (as in (2)) which maps each stratum smoothly 

on Z. (6) is, however, a condition on the way that  each strata  maps on Y, but then we 

shall make use of the section of W--+Z with image Y. 

We shall stress on local conditions along points at the pullback of Y in order to 

characterize the conditions in (4), (5) and (6). 

2.1.1. Here k will denote an algebraically closed field of characteristic zero. Let 

W, W'  be two smooth schemes over k, both irreducible of finite type and of the same 

dimension. If f :  Wr-+W is a morphism over k, which is generically ~tale, we define a 

hypersurfaee of W',  say J(f, k), in terms of the principal sheaf of ideals, say j ( f ,  k), 
locally generated by the Jacobian. So J(f,  k) consists of the points of W'  where f is not 

6tale. 

2.1.2. If f :  W'-+W is a birational morphism of smooth schemes, then J(f, k) will 

be the set of points xC W' where f does not define a local isomorphism. A morphism 

f: W'-+W is said to be a modification of smooth schemes if it is birational and proper. 

In this case, J(f,  k) will be called the exceptional locus of f .  Here f will denote a 

modification, and we shall always assume that  J(f,  k) is a union of regular hypersurfaces 

{H1, ..., Hs} having only normal crossings (that  the invertible sheaf of ideal j ( f ,  k) is 

locally monomial). 
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Definition 2.1.3. Let V c W  be a reduced hypersurface. We shall say that  a modifica- 

tion f :  W'--+W defines an embedded resolution of Y if the hypersurface f - l (Y)(J J(f, k) 
has only normal crossings (is locally monomial).  We do not require that  the induced 

morphism VI--+V be an isomorphism over the open subset V - S i n g ( V ) .  Since V is a 

reduced hypersurface, however, it defines an isomorphism over a dense open subset of 

V - S i n g ( V ) .  

Fix a modification of smooth schemes, f :  W'-+W, such that  J(f, k) has normal 

crossings. Let E denote the set of hypersurfaces that  are irreducible components of the 

exceptional locus, say E={H1, ..., Hs}. Since each Hi is regular, E is sometimes said to 

have strict normal crossings (e.g. in the complex-analytic context). We shall use the fact 

that ,  under these conditions, an intersection, say Hi1N... N H ~ ,  is either empty  or regular 

of pure codimension r. 

Definition 2.1.4. Fix a smooth morphism of regular  schemes 7r: W-+Z of relative 

dimension m, and a modification f :  W'-+ W. We will say that  7r and f define a family 

of modifications if 

(a) the composition lr.f: W'--+Z is smooth of relative dimension m, and 

(b) for any subset {Hi1,..., Hi~}cE, setting 

F(il, ..., i t )  = H~ln.. .  nH~, ,  

either F(il, ..., it) is empty, or the induced morphism F(il, ..., ir)-+Z is also smooth of 

relative dimension m - r .  

Remark 2.1.5. Let f :  W'-+W and 7r: W-+Z define a family of modifications. Fix 

a closed point tEZ, and let W(t), W'(t)  be the fibers over t. Condition (a) says tha t  

W~(t) C W '  is smooth of dimension m. Condition (b) says tha t  W~(t) has normal crossings 

with the components of the exceptional locus, and that  W~(t) is not included in any 

component  Hi. In particular, there is a dense open set in W~(t) where the restriction, 

say f~: W'(t)-+W(t), defines a local isomorphism; hence W'(t) is the strict t ransform 

of W(t),  and f~ is a modification. 

Note also tha t  the exceptional hypersurface J(f~, k) is included in a hypersurface 

with normal crossings, namely J(f,k)nW~(t), so J(ft, k) also has normal crossings 

in W'(t). 

Remark 2.1.6. We now introduce a local criterion for (a) and (b). Fix a point qEW' 
and a regular system of parameters  {t l, ..., t~ } at the local ring at t =Trf (q)E Z, Oz, t. We 

require tha t  

(a') {tl , . . . , t~} can be extended to a regular system of parameters,  let us say 

{Yl, ..., ym,tl, ..., t~}, at the local ring Ow,,q, and 
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(b') the principal ideal j ( f ,  k) can be generated by a monomial involving only the 

variables {Yl, ..., Y,~}. 

Remark 2.1.7 (not used elsewhere). Let f :  W'-+W and 7r: W-+Z define a family of 

modifications such that  for any t c Z  there is a modification ft: W'(t)-+W(t). A local 

computation shows that  j(ft ,  k) is the restriction of j ( f ,  k) to the fiber WP(t). This shows 

that  relative and absolute Jacobians coincide (j(f ,  k)=j(f ,  Z)). In fact, if qEW'(t) maps 

to xEW(t), then {t~, ...,t~} extend to a regular system of parameters at both rings; it 

suffices now to define the square Jacobian matrix in terms of these two extended regular 

systems of parameters. This argument also shows that  if K f  is the dualizing sheaf of f ,  

it induces the family of dualizing sheaves over the fibers of 7r. 

2.2.  F a m i l i e s  o f  r e s o l u t i o n s  a n d  s t r a t i f i c a t i o n s  

Definition 2.2.1. We say that a reduced hypersurface V in W, and a smooth morphism 

7r: W--~ Z, define a family of embedded hypersurfaees if, for each tEZ, V(t)=VAW(t)  is 

a reduced hypersurface in W(t) (fiber over t). 

Definition 2.2.2. Suppose that  

(i) V c W  and 7r: W--+Z define a family of hypersurfaces, and 

(ii) f :  WP-+W defines an embedded resolution of V. 

We say that  7r and f define a family of embedded resolutions if they define a family 

of modifications, and for any tEZ the modification ft:W'(t)-+W(t) is an embedded 

resolution of the reduced hypersurface V(t) in W(t). 

Remark 2.2.3. Fix V c W ,  and let 7r and f be as above in (i) and (ii). We now 

introduce the following local criterion at points of W r in order to decide if they define a 

family of embedded resolutions. 

Fix a point qCW ~ and let {tl, ..., tr} be a regular system of parameters at the local 

ring at t=Trf(q)EZ (at Oz, t). Then 

(1) {tl, ..., tr} extends to a regular system of parameters {tl, ..., tr,  Yl, ..., Y,~} at 

OW',q; 
(2) j ( f ,  k) is generated by a monomial in {Yl, ..., Ys}; 

(3) the ideal of the pullback or total transform of V at W',  say I(V)Ow,, is generated 

by a monomial in the variables {91, ..., Ys} (at OW,,q). 
Recall that  we assume that  V(t) is a reduced hypersurface for each tEZ. Note 

that  conditions (2) and (3) say that  the modification ft defines an embedded resolution 

of v(t) 
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Fix now x E Y c V  where Y is regular and included in the hypersurface V in W. 

Whenever we say that  V is equiresolvable along Y,  we want to express tha t  there exists 

a resolution of V which is, in some sense, evenly spread along Y. This notion is made 

precise via some natural  stratification defined by a family of embedded resolutions (see 

[Li2, w or Remark 2.2.5 below). This will impose conditions on the pullback of Y in a 

desingularization of V. 

Suppose that  

(a) 7r: W-+Z and V C W  define a family of embedded hypersurfaces, and 

(b) locally at x E Y  the restriction ~r: Y - + Z  is ~tale. 

At a suitable 6tale neighborhood of 7c(x)CZ, we can define Y as the image of a 

section a of ~r; so for any tEZ,  the section defines a point a( t )=YNW( t ) cV( t ) .  

PROPOSITION 2.2.4. Fix x E Y c V  and 7r:W--~Z so that (a) and (b) hold. Sup- 

pose now that f: W ' -+W is a modification with exceptional hypersurfaces {H1, ..., 118}. 
Assume that 

(A) f ,  7r and V C W  define a family of embedded resolutions, and 

(e)  ( f - i  (Y))red - - - -  Hi U... UHr (r <. s) is the union of some of the exceptional hyper- 
surfaces. 

Then for any index 1 ~ i ~ s, 

Yc_f(H,) .  

Proof. Here Y is of codimension at least 2, and the requirement in (B) is that  f - 1  ( y )  

be of pure codimension 1 (a hypersurface). Note first that  f(Hi)C_Y for an index i<.r. 

Since f is proper, f (Hi)  is closed for any index i. After suitable restriction at x we may 

assume tha t  xEf (Hi)  for each index l<~i<~s, so that  

f - l ( x ) N H i  Ts 

Note that  f - l ( x ) C f - l ( Y ) = H i U . . . U H r .  Thus, for any index i, there is an index j ,  

l<.j<<.r, such that  

F(i , j )  = H i n H j  r  

and clearly f (F( i ,  j)) c f (Hj )  C Y. 

Since the induced morphism 7r f :  F(i, j))-+ Z is smooth (Definition 2.1.4), it follows 

that  7rf(F(i , j ) )=Z.  Finally, since Y is ~tale over Z, and f ( F ( i , j ) ) c Y ,  it follows that  

f (F( i , j ) )  =1I. 

In particular, Ycf (H~)  as was to be shown. 
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Remark 2.2.5 (on stratifications). Later in Definition 2.3.2 we shall formulate a defi- 

nition for V to be equiresolvable along Y. We shall, however, present there a formulation 

of equiresolution in terms of properties that  can be checked locally (properties charac- 

terized by local criteria). Our definition will be formulated so as to be suitable for our 

proof. 

Let us discuss here what equiresolution will mean in terms of stratifications. So fix 

x E Y c V  where Y is regular and included in the hypersurface V in W. We want to define 

a proper birational morphism W'-+W such that  

(i) f - l ( V )  is a union of smooth irreducible hypersurfaces, say E1 ={H1, ..., HN}, in 

W' having only normal crossings. 

Now set G(il, ..., il) as the open set in H~IA ... NHil of points that  belong to no other 

hypersurface of E.  

(ii) We require now that  f - l ( y )  be a union of s trata  G(il, ...,il), and that  f map 

each such s t ra tum in f - i  ( y )  smoothly onto Y. 

We will come to these conditions as follows. We begin with x c Y c V c W  and 

a smooth morphism 7r: W-+Z, together with a section a: Z--+Y. If f :  W'--+W is de- 

fined so that  conditions (1), (2) and (3) in Remark 2.2.3 hold, then one can check that  

f - l ( Y ) U  g(f,  k) is a union of regular hypersurfaces, say E1 ={H1,  ..., gN},  having only 

normal crossings, and that,  setting G(i l ,  ..., iz) as before, 7r.f maps G(i l ,  ..., iz) smoothly 

on Z. We want to prove that  they map smoothly on Y. 

We claim now that  given the smooth morphism 7r: W ~ Z ,  together with a section 

a: Z--+Y, and if conditions (A) and (B) of Proposition 2.2.4 hold for f ,  then both (i) and 

(ii) will hold. 

Let E2={H1,...,HT} be as in Proposition 2.2.4(B). Clearly E2cE1; note that  

(f- l (Y))~ed is a union of those G(il, ...,iz) with at least one Hi~eE2. Now ( f - l (U) ) red  

can be naturally stratified by those G(i l ,  ..., iz), and any such s t ra tum is mapped smoothly 

to Z by 7r.f. 

Finally note that  aTr: W--+W is the identity map along points of Y, and hence 

f=a~rf when restricted to f - l ( y ) .  In particular, f :  G(il, ..., it)--+Y is smooth for those 

G(il,..., it) C ( f-1 (Y))red, and hence (ii) also holds. 

So our formulation of equiresolution along Y will be provided by a smooth morphism 

re: W--+Z, together with a section e: Z--+Y. We will also require that  there be a proper 

birational morphism f :  W ' ~ W  such that  conditions (A) and (B) of Proposition 2.2.4 

hold. Note here that  ~r and a define a retraction of W on Y. Our definition includes 

resolution on each transversal section. The intersection of Y with the section is a closed 

point, and the pullback of that  closed point in the resolution of the section can also be 

stratified. We will require that  the stratification of the resolution of each section relate 
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to the stratification in (ii): each such stratum arises as fibers of the smooth morphisms 

G(il,..., iz)--+ Z. We check this condition on the example discussed at the beginning of w 

There f - l (V )  is the union of H (exceptional hypersurface) and V1 (the strict transform 

of V). The stratification is defined by G(1)=H-V1, G ( 2 ) = V 1 - g  and G(1, 2 )=HnV1.  

Here 

/ - l ( y )  = G(1)kJG(1, 2). 

Let us note: 

(a) A fiber of the smooth map W--rZ over a point tEZ cuts the hypersurface in a 

curve Vt C Wt. Note also that  the section Z--+Y defines the singular point of the curve. 

(b) The blow-up at the singular point of the curve Vt C Wt in (a) is also defined by 

a fiber over t C Z of the smooth morphism W1 --+ Z. 

(c) The curve in (a) has been desingularized. The pullback of the singular point is 

of pure codimension 1 (the union of the exceptional curve with the strict transform of 

the singular curve), and, as a union of hypersurfaces with only normal crossings, it can 

be naturally stratified. 

(d) The stratification in (c) is defined as fibers of the smooth morphisms G(1)--~Z, 

G(2) -~Z and G(1, 2)--~Z. 

2.3. On equiresolution 

2.3.1. Consider inclusions of schemes, say YCV and VCW, where Y is regular and V is 

a reduced hypersurface in W. 

Definition 2.3.2. We say now that  condition ER(x, VcW, Y) holds at a given point 

x E Y  if, after W is replaced by a suitable neighborhood of x: 

(i) there is a smooth morphism 7r: W-+Z such that  7r and V c W  define a family of 

reduced hypersurfaces; 

(ii) there is an embedded resolution f :  W'--+W of V c W  such that  7r and f define a 

family of embedded resolutions; 

(iii) the restriction 7r: Y-+Z is @tale, and (f-l(Y))red=H1U...tJHr for some r<~s 

(i.e. ( f - l (Y) ) red  is a hypersurface in W' and a union of exceptional components, for s 

and r as in Proposition 2.2.4). 

Remark 2.3.3 (condition ER and the local criterion). In the setting of the proof of 

our main theorem, we will start  with a family of embedded hypersurfaces in Definition 

2.3.2 (i) and with suitable section. We will construct a modification f :  W'-->W defining 

an embedded resolution of the hypersurface. At that point we will make use of the local 
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conditions (1), (2) and (3) in Remark 2.2.3 in order to show that  f and ~r define a family 

of embedded resolutions (i.e. for (i) and (ii) in Definition 2.3.2 to hold). 

As for Definition 2.3.2 (iii), we note that  V is reduced, so if Y is an equimultiple 

center in the singular locus, then the codimension of Y in W is at least 2. In partic- 

ular, f - l ( y )  is of pure codimension 1 in W ~ if and only if it is a union of exceptional 

components. 

Once (ii) is proved, then the discussion in Remark 2.2.5 says that  a nice stratifica- 

tion of ( f - l ( y ) ) r e d  (mapping smoothly to Y) is guaranteed if we only require (iii) in 

Definition 2.3.2. So it suffices to prove that  f - l ( y )  is of pure codimension 1 in W ~, 

which is also a condition of local nature. In fact, we will check this condition locally, by 

showing that  given any closed point zEf-~(Y))redCW ', there is (locally) an invertible 

ideal supported on  ( f - l ( y ) ) r e  d. 

3. F o r m u l a t i o n  o f  t h e  t h e o r e m  

3.1. Fix again xEY, YCV and V c W  as before. The validity of condition ER(x, VCW, Y) 
depends on the existence of the morphisms f and 7r in Definition 2.3.2. 

Suppose now that  fi: W--+W1 is a smooth morphism of relative dimension 1. Set 

xl=fl(x)cW1, and let {Yl, ..., Yd} be a regular system of parameters at (gWl,Xl. We say 

that  /3 is transversal to V at x if there is a regular system of parameters {z, Yl, ...,Yd} 
at (gw,~ such that  at the completion (at the henselization) of this local regular ring, the 

ideal I(V) is defined by a polynomial equation on z, say 

z n  ~ - a l  Z n - 1  -F. . . -}-an , 

where n denotes here the multiplicity of the reduced hypersurface V at x. If we assume 

that  x C YC V, and V is equimultiple along the regular subvariety Y, we may also assume 

that  locally at x, 

(i) the induced morphism/3: Y - ~ ( Y )  is dtale (see Remark 3.5), and 

(ii) the restriction ~: V-+W1 is finite and transversal. 

Here E will denote the reduced discriminant of this branched covering. Recall that  

V is reduced, so that  E is a hypersurface in the regular scheme W1. We now state 

THEOREM 3.2. Set/3 and Y as above. If the reduced hypersurface V is equimultipte 
along Y, and condition 

ER(/3(x), E C W1, ~(Y)) 

holds, then also ER(x, VcW, Y) holds. 

Remark 3.3. We are mainly interested in applying the theorem for Y an equisingular 

stratum. Note that  the theorem makes use of a particular/3, whereas property (B) is a 
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condition on all sufficiently general projections. A weaker form of equisingularity, once 

considered, but ultimately abandoned, by Zariski, required that  property (B) hold just 

for one "transversal projection" /3 as in w 

Zariski also proves that  i f / 3 : V ~ W 1  is simply finite, and E is equimultiple along 

/3(Y) locally at /3(x), then conditions (i) and (ii) of w hold, and V is equimultiple 

along Y locally at xEY (see [Zah, p. 525] for a proof in the algebroid context). 

Remark 3.4. In the formulation of ER(/3(x), EcW1,/3(Y)) there is a smooth mor- 

phism, say ~1: W1 --+ Z, which defines together with E a family of embedded hypersurfaces. 

Note that  the composition of ~rl with/3, say ~ 1 / 3 ,  defines a family of embedded hyper- 

surfaces over V c W  (Definition 2.2.1). This follows from the smoothness of/3:W--+W1 

and the fact that  the restriction/3:V-~W1 is finite and ~tale over W 1 - E .  

Remark 3.5. The conditions of transversality and equimultiplicity lead to the fol- 

lowing observation. Let R denote, as before, the completion (the henselization) of the 

local ring Ow, x. We may modify z so that  the ideal I(V)R is defined by 

F(z) = zn+a2z'~-2+...+an 

(i.e. so that  a l=0) .  Here aiCS where S denotes the completion (the henselization) of 

the regular ring at /3(x)EW'. Let P c R  be the ideal of Y at R, and QcS the ideal 

of /3(Y)cW1. Note that  a~=0 implies that  zEP; in fact, O'~-l(F(z))=n!.z must be an 

element of the regular prime ideal P. The condition of equimultiplicity along Y also 

implies that  each ai has order at least i at the local regular ring SQ. 

Since the henselization of Ow,~ is a direct limit of ~tale neighborhoods, this already 

proves (i) in w at least in our context (for the hypersurface case). The result is more 

general and relates to the "generic non-splitting" (see Lemma (4.4) in [Lih]). 

3.6 (on the general strategy of the proof of Theorem 3.2). Suppose now that  

fl:W~--+W1 defines, together with ~I:W1--+Z, all the conditions required in Defini- 

tion 2.3.2, so that  ER(/3(x), ECW1,/3(Y)) holds. 

CA) Define ~r: W-+Z , setting ~=r l /3  (rl  and /3 as before). We will show that  

ER(x, VcW, Y) holds by using this particular morphism. Of course we must con- 

struct a morphism f as in Definition 2.3.2. But our construction of f will be such 

that  ER(x, VcW, Y) will hold with this particular ~. 

(n) Set again f l :  W~--~W1 a s  above (in terms of Ea(/3(x), EcW1,/3(Y)) (Definition 

2.3.2)). Let f ' :  W'--+W be the fiber product of f l :  W[-+W1 with/3: W--+W1, and finally 
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let F denote the fiber of ff  over the point xeY (F=( f ' ) - l (x )cW') .  Set 

W' ~ W; 

f' l ~ Ill 
W ~W~ 

(1) 

Note that  the morphism ~ :  W'-+W~ is smooth, of relative dimension 1, and that  J(f ' ,  k) 
is the pullback of J(fl,  k). 

Set 7r as in (A). It follows from the square diagram that  

~' = ~f ' :  w '  -+ z (2) 

is smooth, and defines, together with fP, a family of modifications (Definition 2.3.2). 

We set V~cW I as the pullback of V in W. Locally at any point qCF, the smooth 

morphism ~P: W~-+ W~ induces VI-+ W~ which is finite, with a reduced discriminant hav- 

ing normal crossings at ~(q) .  In these conditions the point qEV ~ is said to be a quasi- 
ordinary singularity (see [Li3], [Li4]). 

We shall see now that  V' is singular; in particular, the family of modifications defined 

by ~ and ff  is not a family of embedded resolutions (Definition 2.2.2). The result we 

present says that  there is enough local information on quasi-ordinary singularities so as 

to define a proper birational morphism, say g: W"'-+W', such that  the compositions of 

both ~' and ff  with g define a family of embedded resolutions. Furthermore, g will be 

defined so that  the total pullback of Y is of pure codimension 1. 

(C) Set qEFcV '  as before. Following w in [Li2], we first note that  

j~'(q) �9 ( f m ) - 1 ( f l ( Y ) )  = HIU...UH~ C W~ (3) 

is a union of regular hypersurfaces in W~. Set d=dimW'=dimW, so that  d i m W l =  

dim W( = d - 1 ,  and a hypersurface in W~ is of dimension d - 2 .  

Since V is equimultiple along Y, we may assume that  Y is ~tale over /~(Y) (see 

Remark 3.5). Since f '  is defined as a fiber product, 

( ( f t ) - l ( y ) ) r e d  -'~ C1 m ... m e  r C W t (4) 

is a union of regular varieties of dimension d - 2  (of codimension 2), in one-to-one corre- 

spondence with the components Hi of ( f l ) - l ( /3(Y)) .  Actually, each Ci is ~tale over Hi, 

so ( ( f ' )  l (y))red is a union of regular components having normal crossings. 

By assumption, V is equimultiple along Y, say of multiplicity n. We claim now 

that  V'=(f ' ) - I (V)  is equimultiple with multiplicity n along each Ci. In fact, let 
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k{{Z, yl, ...,Yd-1}} be the completion of the local ring Ow, x, so that  k{{yl, . . . ,yd-1}} 

is the completion of Owl,~(x). Let, as in Remark 3.5, 

zn+a:zn-2 +...+an E k{ {z, Yl,..., Yd-1 }} 

be an equation defining I(V);  now 

I ( Y )  -.~ <z, yl , . . . ,  ys) e k{{z ,  yl , . . . ,  Yd-1}} 

and 

I ( ~ ( Y )  ) = (Yl,..., Ys) e k{{yl,-.-, Yd--1}}. 

Since V is equimultiple along Y, each ai has order at least i at the localization at 

(Yl, ..., Ys). Now locally at q E F = ( f ' ) - l ( x ) c V  ' we may extend {z} to a regular system 

of coordinates so that  

z'~+a2zn-2 +...+an E k{ {z, y~, ..., Yd-1 }} 

where (k{{yl,. . . ,Yd-1}}C)k{{ytl, . . . ,ytd_l}} is the completion of the local ring of 

Ow;,~,(q). It follows now that any such point q is an n-fold point of the hypersurface. 

On the other hand, if C1 in (4) is in correspondence with the component, say 

H1CW~, and yl is an equation defining H1 locally at/~'(q), it follows from Remark 3.5 

that  

c1 = V ( ( z ,  yl>) (5) 

is an n-fold subscheme of dimension d - 2 .  

(D) We will finally define an embedded resolution of V ' c W ' ,  as mentioned at the 

end of part (B). This will be done in two steps: 

(D1) The first step, developed in w is the construction of a proper birational 

morphism, defined entirely in terms of characteristic monomials as local data of quasi- 

ordinary singularities. We recall these concepts in w as developed in [Li3], stressing on 

local properties. In fact we first construct this morphism in a neighborhood of a point 

qEF (the fiber over x), and then we show that  these locally defined morphisms patch so 

as to define a morphism locally at F.  

More will be said on the general strategy of this first step in w 

(D2) A second step, developed in w will be required to prove Theorem 3.2. Note 

that  the first step (in (D1)) introduces singularities on the ambient space. Our study in 

w will also indicate how to overcome this difficulty, by showing that  these singularities 

will be provided with a toroidal structure. This will lead to a nice resolution of these 
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singularities, and we finally prove that  this resolution together with the smooth morphism 

7r: W--+Z mentioned in (A) will fulfill the conditions in Definition 2.3.2. 

We remark that  both steps (D1) and (D2) rely entirely on properties of quasi- 

ordinary singularities; in fact, both the construction of the morphism and also the toroidal 

structure of singularities introduced in (D1) are encoded in the characteristic monomials 

of the quasi-ordinary singularities in (C). In w we show that  there is a finite and smooth 

Galois extension where the pullback of the hypersurface with n-fold quasi-ordinary singu- 

larity becomes a union of n different smooth hypersurfaces. We then show that  the em- 

bedded desingularization of this hypersurface is totally determined by the characteristic 

monomials of the quasi-ordinary singularities. Furthermore, this embedded desingular- 

ization is equivariant with the action of the Galois group. Factoring out the group action 

at this embedded resolution we lose smoothness, but we end up with a toroidal structure 

totally determined by the characteristic monomials. This line of proof was suggested in 

5.1 of [Li2]. 

3.7. We end this section by introducing some concepts, or notation, which we shall 

use in w Let W be a smooth scheme over a field k. We consider data  

(W, (J, b), E )  

where JCOw is a sheaf of ideals in W, b is a positive integer, and E={H1,...,H~} 
denotes a set of smooth hypersurfaces in W having only normal crossings. We introduce 

a few definitions: 

(i) Let Sing(J,b)CW be the closed set of points x in W such that  J has order at 

least b at the local regular ring Og, x. 
(ii) (transformations) We denote by 

(W, ( J,b),E) e- (WI, ( JI,b),E1) 

a transformation of the data, where W1--+W is a monoidal transformation with center Y, 

YC Sing(J, b) is closed and regular in W, and has normal crossings with all hypersurfaces 

of E.  We set E1 as the hypersurfaces {HI, ..., H~', H~+I}, where H~ denotes the strict 

transform of Hi, and H~+I is the exceptional locus of WI-+W,  the monoidal transfor- 

mation with center Y. Finally, J1 is obtained from the total transform of J to W' where 

we factor out the ideal I(Hs+l) to the power b (i.e. JOw, z=I(Hs+l)b.J1). 
(iii) We def ine  a resolution of (W, (J, b), E )  to be a sequence of transformations (as 

in (ii)) 

(W, (J, b), E )  +-- (W1, (J1, b), El )  +- ... +-- (Ws, (J~, b), E~) 

such that  Sing(Js, b) is empty. 



138 o. VILLAMAYOa U. 

3.8. Let V be a hypersurface in W. 

(a) If Y is regular and J=I(Y) ,  then Sing(J, 1)=V. Furthermore, if 

(W, (J, 1), E)  +-- (W1, (gl, 1), El)  

is as in w (ii), then JI=I(V' )  where V' is the strict transform of V. In particular, 

V ' =  Sing(J1, 1). 

(b) Set: 

max-mult(V) = n  if n is the highest multiplicity of the hypersurface at its points; 

Max-muir(V) as the closed set of points where V has multiplicity n (with n =  

max-mult(Y)). 

Suppose now that  the reduced hypersurface V is a union of regular hypersurfaces Dj, 

say 

V=DIU.. .UDs. 

Then max-mult(V) is the biggest integer n such that there is a subset, say {D~I, ..., Din}, 

with non-empty intersection. 

(c) Fix n as in (b), so that  Max-mult(V)=Sing(I(Y), n), and let I (Di)COw be the 

sheaf of ideals defining D,. Then 

Sing(I(Y), n) = Sing((I(Dil), ..., I(D~)), 1) 

where 

(I(Di~), ..., I(Di,,)) = I(Di,)+...+ I(Di.) COw, x, 

and these equalities are stable by transformations defined in w (ii) (replacing V by its 

strict transform V', and each Di by its strict transform D~). In fact, if YC Sing(I(V), n) 

is closed and regular, then YCSing(I(Dij, 1) for each index ij above. So Y is included 

in each regular hypersurface Dij, and hence D~j is also regular (see (a)). 

(d) (maximal contact) With the setting as in (c), we have 

Sing((I(Di~), ..., I(Di~)), 1) C Oil C W 

and 

Sing((I(Dil), ..., I(Di.)), 1) = Sing((J(Di~), ..., J(Di,~)), 1) C Dil 

where now J(D~j)C OD,~,x denotes the trace of the sheaf of ideals I(D~j)C Ow on OD,1. 
These inclusions and equalities are stable by transformations as in w (ii). In 

particular, a resolution of (Di~, ((J(D,~), ..., J(Di,)), 1), E)  induces a sequence of trans- 

formations 

V c W + - V 1 c W l  e-... +--VscW~ 

where V~+I denotes the strict transform of V~, so that  

(1) n = max-mult (V) = max-mult(V1 ) . . . . .  max-mult (V~_ 1), and 

(2) max-mult(Vs) < n. 
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4. A c a n o n i c a l  p r o p e r  m o r p h i s m  o v e r  

e m b e d d e d  q u a s i - o r d i n a r y  s ingu la r i t i e s  

4.1. Fix notation as in w (A) and (B) where we defined, along points of F =  

(f')-l(x)CW', a smooth morphism /3': W'--+W~ of relative dimension 1. Recall, from 

diagram (1) in w that  f l :  W{--+ W1 was defined in terms of ER(/3(x), E C W1,/3(Y)), so 

that  J ( f l ,  k ) U f l l ( E )  is a union of hypersurfaces with normal crossings. In particular, 

the total transform of the discriminant is a union of smooth hypersurfaces having strict 

normal crossings at W~, and thus V ' =  ( f , ) - l ( v )  has only quasi-ordinary singularities. 

Now we fix, for once and for all, an order on these hypersurfaces. A proper birational 

morphism will be constructed, and this morphism will depend on this particular order. 

Since /3' is smooth, the pullbacks of the components of J(fl,k)Ufll(E) are regular 

hypersurfaces in W ~ having only normal crossings, say 

E =  { H 1 , . . . , H s } .  (6) 

Note that  the Jacobian of W'--+W is a union of some of these components (other com- 

ponents arise from the pullback of the strict transform of the discriminant). 

So locally at a closed point qcV'cW' we have 

(i) the smooth morphism/3': W'-+(W1)' ;  

(ii) an induced finite morphism/3': V'-+ W[, with discriminant with normal crossings; 

(iii) an order at the irreducible components of the discriminant locally at/3'(q) de- 

fined by the order given above in (6). 

At the completion of C0w,,q, the data  in (i) and (ii) will provide us with a new and 

main invariant at q, namely, 

(iv) the characteristic exponents. 

A central part of this work is a canonical construction of a proper birational mor- 

phism W"~W', defined entirely in terms of these data, in a neighborhood of FcW'. 
This defines W"-+  W in a neighborhood of x E W. Here the scheme W "  is not necessarily 

smooth. 

We formulate now the strategy for this construction which is finally developed in w 

(I) We shall first construct a morphism 

w" w', (7) 

but only locally at q (EF) ,  and depending entirely on the formal data  at the point, 

particularly on the characteristic monomials. We want this morphism to globalize along 

points of F.  
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We will note that  our local construction of the morphism will have the following 

natural properties of compatibility with restriction to ~tale neighborhoods: 

Suppose that (U', q~)--+ (W ~, q) is an dtale neighborhood. Take V t c  U r as the pullback 

of V I c W  ~, and set ~': UI--+(W1) ~ by composition (see (i) above). The completion of local 

rings at q'E U' and q c W '  are naturally identified, and so are the local data  (i), (ii), (iii) 

and (iv) (replacing smoothness by formal smoothness in (i)). In fact, characteristic 

monomials will be defined at the completion of the local rings (see (18) in w 

Our local construction of (7) defines two morphisms W " - + W  ~ and U"-+U ~ locally 

at q and qq We shall show that  one can naturally define a square diagram 

U I!  y~. U ! 

,L l 
W "  > W I 

(8) 

where UI--~ W'  means (U I, q')--~ (W ~, q). We shall furthermore see that  

(a) U"--~W" induces a natural correspondence or bijection from points of the fiber 

over ql to points of the fiber over q, and 

(b) for two points in correspondence as above, there is a natural identification of the 

completions and also of the local data  at such points. 

Note that  (b) says that  the morphism U"-+W" is unramified over points at the fiber 

of q. 

(II) We show that  points in W"  mapping to q in (7) are provided with natural 

toroidal structure, and that  the completions of such local rings are quotient singularities. 

Toroidal singularities are normal; in particular, W "  is normal at such points. This 

asserts that  U~t-+W" is ~tale since unramified morphisms over normal rings are 6tale 

([M, Theorem 3.20, p. 29]). 

(III) We shall make use of the properties in (I) to show that the locally defined 

morphisms in (7) patch as q varies along points of F,  so that  W"--+W ~ is finally defined 

as a morphism in a neighborhood of F.  

4.2. In what follows, n will denote the order of V at x E V C W .  We fix notation 

as in w and a closed point q E F = ( f ' ) - l ( x ) .  There is an inclusion of local regular 

rings Owl,~,(q)C O W,,q. We now choose a regular element, say Yi 6 Owl,~'(q), defining the 

ideal of a component Hi of the discriminant (see (6)); recall that  some of those Hi are 

components of the Jacobian of if:  W I - ~ W .  

�9 Let A be the ring of an affine neighborhood of W t at q, and Aq the local ring OW, q. 

�9 Let A1 be the ring of an affine neighborhood of T/V~ at fl~(q) , and (A1)q the local 

ring Ow;,z,(q). 
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�9 Let R be the finite extension of A defined by the adjunction of the (n!) th roots of 

each Yi above, defining a component of the discriminant. Rq will denote a localization 

at a point. Rq is a local ring dominating and also finite over Aq. 

�9 Let R1 be the finite extension of A1 obtained by adjunction of the (n!) th roots of 

each Yi as before, and (R1)q the local ring dominating and finite over (A1)q. 

By taking a suitable choice of neighborhoods we may assume that  

(1) all rings A, A1, R and R1 are smooth over k; 

(2) there is a finite group G acting on R so that  A is the subring of G-invariants; 

(3) the group in (2) also acts in R~, and A1 is the subring of G-invariants; 

(4) the group acts on the local rings Rq and (R1)q (i.e. the corresponding maximal 

ideals are fixed by G). 

So now we have 
A c R 
u u 

A1 c R1. 

(9) 

Note that  R and Rz are of finite type over the field k. They are, however, constructed 

in terms of a particular choice of the equation Yi defining a hypersurface Hi. One can 

check that  for two different choices, the rings, say R and R', patch in the ~tale topology 

so as to define a natural identification of their completions; furthermore, the local data 

(i), (ii), (iii) and (iv) of w defined at the completion of such rings, are the same. 

Note that  Rq is the only local ring dominating Aq; in fact, it is the integral closure 

of Aq, and Aq is the subring of G-invariants of Rq. Note also that  the completion of Rq 

is a ring of formal power series. There is a natural action of G at such a completion, and 

the subring of G-invariants is the completion of Aq (see w 

In our setting, the group G acts faithfully by multiplication by roots of unity on a 

regular system of parameters at Re, so G is an abelian group. 

4.3. We will define a proper birational morphism over the regular ring R. So U ' =  

Spec(R) is smooth over the field k, and there is a group G acting on U', with quotient 

Spec(R)=U'--+Spec(A)cW'. 

The hypersurface V' (CW' )  defines by pullback a hypersurface in U', which we call 

V' again, and G also acts on the hypersurface V'. Finally set E={H1, ..., H~}, each Hi 

being the pullback at U' of Hi in (6). So E is a set of smooth hypersurfaces with only 

normal crossings, and the group G acts on each Hi. Now set 

U~=U' ,  V I = V ' ,  E I = E .  
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We will define 
Spec(n)  = U~ < U~ < ... ~ Us' 

Yl V2 Vs (10) 
Y1 Y2 Ys 

E1 E2 E~, 

a sequence of monoidal transformations on centers Y/, each Yi regular, included in the 

hypersurface Vi (actually the hypersurface will be equimultiple along Y/), where V~+I 

denotes the strict transform of V/. Here Ei is defined as the hypersurfaces which are 

strict transforms of those of Ei-1 together with the hypersurface in U~' defined by the 

pullback of Y/_ a (exceptional hypersurface). We shall require that 

(1) each Y/ have normal crossings with Ei; 
(2) each center Y/-I be G-invariant so that  G acts on Ui, on V~ and also on each 

hypersurface of Ei; 

(3) the sequence be an embedded desingularization of V1 (CU1). 

Note that  G acts on V/C Ui, so G also acts on the closed set Max-mult(V/) (w (b)). 

Recall that  G acts on any hypersurface in Ei. Now we require that 

(4) 
Yi = Max-mult(V~) NHi 

where i is the smallest index so that  the intersection has codimension 2 in U~. 

This last condition will play an important  role, and we discuss it below. 

4.4. Centers of monoidal transformations are closed and regular, and requirement 

(4) in w is saying that  such an intersection is regular, which will be easy to check 

locally. It is also defining Y~ as an intersection of two 6tale and G-invariant formulas. So 

(4) is intended for globalization, and it was in order to make this globalization possible 

that  we fixed an order on E={H1, ..., H~}. 
With these conditions fulfilled we will define, in terms of the characteristic mono- 

mials (see (18)), a proper birational morphism over a neighborhood, say W'(q), of q 

in W l, 

W'(q) = Spec(A) +- W",  (11) 

and we shall do this by taking the sheaves of G-invariant functions both on U~ and on 

Us' of (10). 

Note that  Vs defines naturally a subscheme, say V"CW", which is the strict trans- 

form of W. We shall see that ,  in general, both W "  and V" are not smooth over k. If 

ql~W" maps to qEW~(q), the completion of the local ring Ow,,,ql will be defined in 

terms of the completion of the local ring of U~ at a point mapping to ql- But U~ is 

regular, so the completion of Ow,,,ql is the subring of G'-invariants in a ring of formal 
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power series, where G I is the decomposition group of a point in U~ (a subgroup of G). 

The construction of (10) together with the description of decomposition groups will be 

t reated in w In w w Proposit ion 4.7 and Lemma 4.8 we study actions of our 

decomposition subgroups on a ring of formal power series. Let us first recall here some 

facts on decomposition groups. 

Note that  there is a finite morphism from the regular scheme U~ to W% Let K 

be the total  quotient field of W "  (and of A), and K '  tha t  of U~ (and of R). G is the 

Galois group of K I over K.  Fix a point in W "  mapping to q via (11). We will s tudy the 

completion of the local ring at such a point. 

Our development will show that  U~ can be covered by affine and G-invariant charts. 

So let S be a smooth k-algebra with total  quotient field K ~, and assume that  G acts on 

S and that  Spec(S)cU~.  Set B=SNK.  A theorem of Noether says tha t  S C c B c S  is a 

finite extension of finitely generated k-algebras. 

If we fix a maximal ideal MC B, then the group G acts on the finite maximal  ideals 

in S dominating M. We may assume tha t  B is a local ring, and that  S is semi-local and 

finite over B. 

Let 7 /denote  a localization of S at a maximal ideal. Let G ~ denote the decomposition 

group of 7/ (the subgroup of automorphisms that  fix 7/). Let B* and 7/* denote the 

completions of B and 7/, and let E,  E* denote their quotient fields. 

Let us check tha t  ECE* is Galois with group G ~. Since the group acts on the 

extension, it suffices to show that  the order of the group is the same as the order of the 

field extension. In fact, note that  [G]=[K',K] is the rank of the B-module S at the 

generic point. The ranks of finitely generated modules are defined by Fitt ing ideals, and 

are therefore stable by passing from B to B*. Let S* be the completion of S; then S* is 

a direct sum of complete regular local rings, 

S *  * * * 
= 7-/1 +7/2 + . . .+7/~  , 

where 

r = [ c  s, c ]  

is the number of localizations of S dominating B. This shows that  [G s] = [E*, E]. So G ~ 

is the Galois group of E*/E. 

This defines B* as the subring of G~-invariants in the local regular ring 7-/* (as a 

quotient singularity). In fact, by Abhyankar 's  development of ramification theory ([A3]) 

one can naturally identify the finite abelian group G ~ with a quotient of lattices E1C E2 

defining B*C 7-/* (and E C E*) as the subring of G~-invariants of the ring of formal power 

series 7/*. Furthermore, any normal ring B*C BIC7/* (any subextension E CEICE*) is 
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naturally identified with a lattice E r, E1C EIC E2, so that  BrC H* (E Ic  E*) is the subring 

(the subfield) of (Er/E1)-invariants (see [F, pp. 33-34] and [Gi, p. 58]). 

4.5. Fix qEW r, Rq and (R1)q as in w Set t=~'(q)CZ and ~r as in (2). We call 

R* the completion of Rq, R~ the completion of (R1)q, and let T* denote the completion 

of T=Oz,t. Here R*, (R1)* and T* are rings of formal power series over k, say 

R*=k((z ,  vl, ...,vs,tl, ..., tr}} D (R1)* = k{{vl, ...,vs,tl, ..., tr}}, 
(12) 

T*=k{{tl ,  ..., t~}}, 

and we will assume that  

(1) z is a non-unit in Aq, and transversal to the fiber of ~ir (w 

(2) either v~ is an (n!)th root of y~, or v~=y~; and all y~E(A1)q are chosen as in w 

(3) {tl, ..., t~} are local coordinates at Oz, t. 
Note that  G acts both on R* and R~, that  G fixes the variable z, the variables ti 

and some of the variables vi, and that  G acts via multiplication by roots of the unit on 

those vi which are not fixed. Here the completion of Aq is the subring 

k { { z ,  y l ,  ..., ys ,  t l ,  ..., } }, 

which is the subring of G-invariants of R*. And the completion of (A1)q is 

k{{yl, ...,ys,tl, ...,tr}}, 

which is the subring of G-invariants of R~. 

Let us indicate now that  

(a) vi is an (n!) th  root of Yi if and only if Yi describes a component Hi of the dis- 

criminant (see w and 

(b) the discriminant is (locally) a monomial in the variables {Yl, ..-, Y~} (and hence 

G-invariant). 

At R* there is a monic polynomial of degree n, say 

P(z)=zn+alz~-l+.. .+a~, a~ER~, (13) 

which generates the ideal of the pullback of the hypersurface. 

Since (b) holds, the Abhyankar Jung theorem says that  

P(z) = (z-g~)(z-g2).. .(z-gn) (14) 

with gieR~ (see also [Lu2] and [Zu]). So at Spec(R*), Vl=V(P(z))=Dlt2...UDn is the 

union of n regular hypersurfaces, where 

Di = V(z-gi) .  (15) 
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The projection defined by the inclusion in (12) induces an isomorphism of D~ with 

Spee(R~). 

Here P(z) is a product of n regular elements of order one; in particular, it has order 

n at the local regular ring R*. Define now 

N(i, j) = gi-gj, (16) 

which is a factor of the discriminant; in particular, 

N(i,j) =M(i,j).U(i,j) (17) 

at R~, where M(i,j) is a monomial in the variables {Vl, ..., Vs}, and U(i,j) a unit in R~. 

From (16) it follows that  

N(i, j) +N(j, l) = N(i, l) 

for any three different indices i, j, l, and one can check that  in the set of three monomials, 

{M(i, j), M(j, l), M(i,/)}, at least two of them are equal, say to M, and that  the third 

monomial is divisible by M. In particular, if we fix an index i0, it turns out that  all 

monomials M(io,j) are totally ordered by division in R~. Set 

{M(io,j) :j=I,. . . ,n}={M1,M2,.. . ,M,} (characteristic monomials), (18) 

where the terms at the right are the different monomials ordered so that  Mi divides Mi+l 

(see [Li3, p. 166] or [ZaA, p. 538]). 

We define a filtration of the group G, say 

G D  G1 D G2 D ... D G e ,  (19) 

where Gi consists of elements of the group G that  fix M1, M2, ..., Mi+l, the first i+1  

monomials in (18). 

So we fix one index, say i0, and argue as in w Recall from (15) the natural 

identification of R*/I(Dio) with R~; the ideal J(Dj) (in w (d)) is the principal ideal 

defined by M(io,j). So ( J (D2) , . . . , J (Dn) )  is the ideal in RI generated by /1//1 in (18) 

since this monomial divides all other characteristic monomials. 

Note also that  

Sing(I(V') ,  n) = Sing((J(D2), ..., J(Dn)), 1) = Sing(M1,1) (20) 

as a closed subset of Dio (notation as in w (d)), where Sing(I(V') ,  n) is the set of n-fold 

points of V'. 
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4.6. We begin by studying the action of the group G on R* as defined before. 

Consider the development of g~o ((14)) at the ring of formal power series R~. Suppose 

that  M is a monomial arising in such an expression with non-zero coefficient, say a, 

and that  M is not divisible by M1 ((18)). Since G acts on R* and on the hypersurface 

V(P(z ) ) ,  such a monomial M must appear in the expression of any gi with the same 

coefficient a. In particular, a M  must be invariant (fixed) by the action of G. 

We may therefore replace z (by adding to z all those a M  as before) so that  

(1) z is G-invariant in R*; 

(2) gi0 is divisible by M1; 

(3) all gj are divisible by M1. 

After blowing up a suitable G-invariant center we will need a slightly more general 

form of this result, in which z is not necessarily fixed by the group: 

PROPOSITION 4.7. Fix an inclusion o] formal power series rings 

R * = k { { z ,  v l , . . . , v~ , t l , . . . , t r }}  D R~=k{{V l , . . . , v~ , t l , . . . , t r } }  (21) 

and a hypersurface V defined by I ( V ) = ( P ( z ) ) ,  

P(z )  = zn + a l z  '~-1 +.. .+an 

for all a~ER~. Assume that the discriminant, defined in terms of the inclusion (21), is 

a monomial in the variables {vl, . . . ,vs}. Set {M1,M2, . . . ,M~}  as in (18), so that M1 

denotes the first characteristic monomial. 

Let G be a group acting on both R* and R~, and assume that the group and coordi- 

nates are such that: 

(i) G acts on each coordinate by multiplication by roots of unity. 

(ii) G acts on V,  where I ( V ) = ( P ( z ) ) .  Here 

P(Z) = (z--gl)(z--g2). . .(Z--gn) 

for all g iER~=k{{v l ,  . . . ,vs, t l ,  ..., tr}}. 

(iii) The group G acts trivially on each coordinate ti. 

We claim now that by changing z by z ' = z - ( 1 / n ) a l  we may assume that (i), (ii) 

and (iii) still hold, and, in addition, that 

(iv) 
P ( z )  = 

i ~ ~ ~ ~ [ z ~ n ' b  [z t'~n-2~ - b  = (z  - g l ) ( z  - g ' )  = j j 

where now all g~ are divisible by M~ ( the first characteristic exponent); and that P ( z ) = z '  

/f  n = l .  
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Proof. Fix an index io. (ii) ensures tha t  for any hEG, 

h(z-gio)  = u ( z - g j )  

for some unit uER* and some index j .  

For each hcG,  the quotient h(z ) / z  is a root of unity, say 5. Since h(z)=hz,  we have 

h(z -g~o)=5(z -  fio) for f~o=h(g~o)/5. 

In particular, 

=u(z-gj), 

and therefore 5=u and fio=gj for some index j in (14) (see Lemma 4.8 below). Hence 

h(z-gio)  = 5 ( z - g j )  

for some index j ,  where gy =h(gio)/5 and 5=h(z) /z .  

So for any index i0, h(gio)=hgy for some index j .  It follows that  

h ( g l  ~-g2 -r . . .  ~-gn)  : 5(gl  "~g2 ~--. .-~gn) = 5 ( - - a  I ), 

and thus h(z ' )=hz '  for z ' = z - ( 1 / n ) a l .  

Assertion (iv) can be reformulated by saying that,  if al =0,  then any monomial M 

arising in the expression of any gi must be divisible by M1. In fact, if such a monomial M 

appears with non-zero coefficient, say aEk, in gio, then it must appear in the development 

of any gj with the same coefficient a; in contradiction with al=gl  +g2 +...+gn =0. 

LEMMA 4.8. Let k{{z, Yl, ..., Yn} } be a ring of formal power series. Fix g(Yl, ..., Yn), 
h(yl , . . . ,yn) in the subring k{{yl, ...,yn}}, and u(z, yl, . . . , yn)ek{{z ,  yl, ...,Yn}}, 80 that 

(1) h(0, ..., 0)=g(0,  ..., 0)=0,  and 

(2) u(z, Yl,..., Y,~) is a unit in k{{z,  Yl,..., yn}}. 

We claim that if z - g = u . ( z - h ) ,  then g=h and u = l .  

Proof. Express u=ao+alz+. . .+arzr+. . . ,  a iEk{{yl ,  ..., Yn}}. T h e n  

u ( z -  h) = u z -  uh 

= z (ao+alz+. . .+arz~+. . . ) - (hao+halz+. . .+harz~+. . . )  

= - h a o + ( a o - h a l ) z + ( a l - h a 2 ) z 2 +  .... 

The equality states that  

- h a o = - g ,  a o - h a l  = l, a l -ha2=O,  

a2-haa =O, ..., ar -har+t  =O, ... �9 
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Since the statement is clear if h=0,  we may assume that  h is not zero. Note that  if a,-+l 

is not zero, then al is not zero and it is divisible by h to the power r. Since al is in the 

unique factorization domain k{{yl, ...,Yn}}, and since h is not a unit, it follows that  u 

must be a polynomial in z. Finally, in this context, the lemma can be easily checked. 

4.9. We now proceed to define the embedded desingularization of the hypersurface 

V1CSpec(R) of (10). This desingularization of V1 will be achieved by a sequence of 

monoidal transformations, where one first reduces points of multiplicity n, then points 

of multiplicity n - 1  (if any), and so on. Eventually we reach a stage where all points of 

the final strict transform are of order 1. 

We fix notation and assumptions as in w for coordinates, for the group G and 

also for the hypersurface. 

As before, the completion of Rq is denoted by R*, which is a ring of formal power 

series. 

Recall that  at the formally smooth scheme Spec(R*) the hypersurface V1 has or- 

der n (at the closed point), and V1 is the union, say DIU. . .UDn,  where Di=V(z -g i ) .  
Furthermore, 

Sing(I(V1), n) = Sing(M1, 1) 

as closed subsets of D1 (or of any Di), where M1 is the first characteristic exponent 

((20)). 

This shows that  the closed set Sing(I(V'),n) is a union of smooth closed sets of 

codimension 2 in Spec(R*), and hence in a neighborhood of qE Spec(R). In fact, it is the 

union of the intersections of D1 with Hi, where this union is taken over all index j such 

that  vj divides the monomial M1. Recall here that  each H~ is defined by an equation vi 
(w and w (2)); so D1 is transversal with any Hi ((15)). Note also that  the exponent 

of vi at M1 drops by one if we blow up at any such regular center, according to our law 

of transformation in w 

Following w (4) take the center to be the G-invariant intersection 

Sing(I(V1), n) AHj = Dl nHj ,  

where now j is the smallest index such that  such an intersection is of codimension 1 

in 1/1. Note that the center is defined by 

P1 = ( z -g l , v j )  = <z, vj) 

since we may assume that  the first characteristic exponent divides all gi (Proposition 4.7). 

A resolution of 

(D1, ((J(D2),  ..., J(D,~)>, 1), E)  = ( n l ,  (M1,1), E )  
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would be achieved by this well-defined sequence of monoidal transformations at these 

G-invariant regular centers of codimension 1 in D1 (of codimension 2 in the smooth 

ambient space). 

The following assertions can be checked: 

(1) The blow-up at PI can be covered by two affine G-invariant charts, R[vj/z] and 

R[z/vj]. The fiber over q is isomorphic to the projective line p i ,  and G acts on this line. 

(2) The strict transform of I11 is totally included in the chart R[z/vj], and this chart 

is smooth over R1. 

(3) Both charts mentioned in (1) are smooth over Z via composition with 7r': W' -+  Z 

( ee (2)). 
It suffices to note that  at points along the fiber of qESpec(R) one may choose 

coordinates 

{z/vj-/3, vl,v2,...,vr, tl,...,ts} in R[z/vj], 

{vffz-13, vl,v2,...,vr,tl,...,ts} in R[vj/z], 

for some/3ck.  Here {vl, ..., v~, tl ,  ..., t~} is a regular system of parameters at (R1)q (w 

and {tl , . . . ,  t~} a regular system of parameters at Oz, t. 
Assume here that  at R* the ideal I(V1) is generated by 

zn ~-a2 zn-2-]-. . . -]-an ~ 

and let j be the smallest index such that  vj divides the first characteristic exponent M1. 

Note that  if M{=M1/vj is not a unit, then 

(i) the strict transform of 1/'1, say 1/2, has a unique point over q; 

(ii) such a point is an n-fold point of 1/2; 

(iii) such a point has coordinates {z/vj,vl, v~, ..., v~,tl, ...,ts} and hence is a fixed 

point by the action of the group G. 

(iv) Let now R' denote such a local ring, and (R')* the completion, so that  R~C 

R*c (R ' )* .  Then the setting of w holds at R~C(R')* (with the same R~!), where now 

each gi is replaced by g~/vj, and with characteristic monomials 

{MI,M~, ..., M~}, 

setting M~=Mi/vj ((14)). 

In this way we define a sequence of monoidal transformations at centers of codimen- 

sion 2 which are n-fold for the hypersurface, say 

Spec(Rq) =U1 < U2 < ... < Ur 

1/1 v2 vr 
Y1 ]I2 Yr 
E1 E2 E~, 

(23) 
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by setting 

Yi = Sing(I(Vi), n)NHj 

where j is the smallest index for which the intersection has codimension 2 in Ui. 

Finally, for some index r, 

Sing(I(V~), n) = ~,  

and hence 

(24) 

max-mult (V1) = max-mult (V2) . . . . .  max-mult (V~_ 1) = n > n'= max-mult (Vr). 

The final strict transform of V1, namely V~, lies in the affine chart defined by 

Rq[z/M1], 

which is smooth over (R1)q and over T=Oz, t (see (12)). Furthermore, in all previous 

steps in (23), the strict transform of V1 lies in an affine chart defined by R[z/N], and 

contains the point with coordinates {z/N, Vl, ..., v~, tl ,  ..., tT} where N is a monomial in 

(R1)q which divides M1. Note that  such a point is globally fixed by the full group G, 

and that  the multiplicity of the strict transform of 1/1 at such a point is n. 

All affine charts introduced in (23) are G-invariant, and they are also smooth over Z. 

Hence, the elements {tl, ..., t~} can be extended to a regular system of coordinates at any 

point in (23) mapping to q. 

If n is strictly bigger than 1, then at level r, in (23), there are several closed points 

of V~ mapping to qE Spec(Rq). At any such point the multiplicity of VT is strictly smaller 

than n. Now we want to continue from the level r on, replacing n by n', so that  ultimately 

the final strict transform of the embedded hypersurface V] is regular. 

A point q2cV~ ((23)) is defined by a maximal ideal in the chart Rq[z/M1]. Let n 

denote the local ring at q2. Assume furthermore that  q2 maps to q, and that  the strict 

transform of the regular hypersurface Dio contains q2 ((14)). So Rq is dominated by L, 

and both are regular local rings. 

Recall that  Dio was defined in R* by the equation z-gio, and Proposition 4.7 asserts 

that  we may assume that  M1 divides all monomials in the development of gio. Let now 

#Ek  denote the coefficient of M] in the development of gio, and note that: 

(a) z / M l - #  is a non-unit in L, and furthermore {z/M1 -# ,  v],..., v~, tl, ..., t~} is a 

regular system of parameters at L. 

This follows from the description of gio given in Proposition 4.7, and the assumption 

that  the strict transform of Di0 contains q2. 

(b) (On the decomposition group of the point.) 
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(bl)  The decomposition subgroup of q2, say G'  (elements of G tha t  fix L), is de- 

scribed in terms of the element z /Ml-# .  Note that  G'=G if # = 0 .  

(b2) We claim now tha t  G'=G1 in (19) if i tS0 .  In fact, we look at all other regular 

hypersurfaces Dj  at Spec(R*), with a strict transform containing the point q2. 

Recall that  in the development of gj, only monomials divisible by M1 can occur. 

Now the strict t ransform of Dj  contains q2 if and only if M1 appears  in the development 

of gj, and also with coefficient # (the same as for gio). In other words, if and only if 

gio -gj  = N(io, j) = M(io, j). U(io, j) 

and now 

M(io,j) e{M2,M3,...,M~} in (18). 

In particular, all those M(io,j) are divisible by M2. Assume, for simplicity, that  M2 is 

the smallest monomial  with this property. 

Set z2=z/Ml-#,  so tha t  the completion of L, say L*, is 

L* = k{{z2, Vl, ..., vs, tl ,  ..., tr}}, 

on which an action is defined now by G'.  Now check tha t  all hypotheses of Proposition 4.7 

hold for G', for the regular system of coordinates {z2 ,v l , . . . , vs , t l , . . . , t r} ,  for M2/M1, 
M3/M1, ..., M~/M1, and for 

P 2 ( z )  = ) 

where the product is taken only over those indices for which the regular hypersurface 

contains q2. Note also tha t  L*=R~[[z2]], and hence is formally smooth over R~ and 

over T* (the same R~ and T* as in (12)!). 

After a suitable change of z2 we may assume that  

r J  n I --2 P2(z)=z2 +b2z2 +...+bn, 

(i.e. that  gjl+...+gj~,=O). 
Let us also point out tha t  the action of G ~ on L* is as in Proposition 4.7 (replacing 

R* by L*). 

Here we have studied the decomposition group at a point containing the strict trans- 

form of the reduced hypersurface 1/1. If we now consider any closed point mapping to 

qC Spec(Rq), then the decomposition group is defined as a subgroup of G fixing an ele- 

ment of the form z /N- l t ,  where N is a monomial  and # is an element in the field. So for 
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any point mapping to q, the decomposition group at the completion of such a point will 

act according to Proposition 4.7. 

In this way we define the embedded desingularization (10) keeping track of decom- 

position groups. 

Remark 4.10. Note that  the construction of the embedded desingularization (10), 

defined above, is done entirely in terms of three local data  at Rq, namely, 

(a) the multiplicity n of the hypersurface V1 at Rq; 
(b) the order on the coordinates in (R1)q that  divide the discriminant; 

(c) the characteristic monomials of the hypersurface. 

Define two different rings, both in the conditions of R in (9), say 

(i) R p by adjunction of (n!) th roots of y~, and 

(ii) R" by adjunction of (n!) th roots of y~, 

where both Yi and y~ are elements at Aq defining the same component Hi of the discrim- 

inant as in w Let G p and G" be the corresponding Galois groups, and note that  

(1) the completion of R~ and R~ are naturally isomorphic, and 

(2) the subring of GP-invariants in the completion of Rrq, and the subring of G'- 
invariants in the completion of Rq, can be identified in the sense of (1). 

In fact, yi=y~.u where u is a unit in the ring Aq. Note that u has an (n!) th root 

at the completion Aq and, since k is algebraically closed, it has all (n!)th roots at Aq. 

Hence any such root is both G p- and G'-invariant.  Note finally that  vi=v~.uP P where u p 

is an (n!) th root of u. 

Now check that  all the conditions (I), (II) and (III) in w hold. 

5. P r o o f  o f  T h e o r e m  3.2 

Remark 5.1. The last Remark 4.10 says that  the conditions in w hold; in particular, 

the locally defined morphisms W'-~W'(q)=Spec(A) in (11) patch, so as to define a 

morphism, say 

h: W" ~ W', (25) 

in a neighborhood of F=(f ' ) - l (x )  (f ' :  W'-+W as in w (B)). 

Since W"  is defined by patching sheaves of G-invariant functions on the regular 

scheme U~, points are provided with a structure of formal quotient singularities. 

Define now 

f " :  W 'p --~ W (26) 

in a neighborhood of xCVCW, setting f '=fPh. 
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Since W H has singularities, it is clear that  we need a desingularization W~--~Wr~, 

and then we will consider the composition 

WIll ~ W. 

Not every desingularization, however, will fulfill the conditions in Definition 2.3.2. Re- 

call tha t  we had a smooth morphism 7r: W - ~ Z  which must lift as a smooth morphism 

W IH-+Z. This is already a condition on the desingularization. We also require in Defi- 

nition 2.3.2 tha t  the total  pullback of Y in W It~ be of pure codimension 1. 

Let us indicate how we organize our proof: 

(al)  We show that  the pullback of Y at W r' is of pure codimension 1 in the singular 

scheme W '~. 

(a2) We show tha t  locally at any point of the normal scheme W ~ there is an element 

having as associated primes exactly those height-1 prime ideals defining the reduced 

pullback of Y. 

Note tha t  (a2) asserts that  for any desingularization W'r--+W ~, the total  pullback 

of Y (by the induced morphism W~--+W ~) is of pure codimension 1. We must also 

require that  it be a union of regular hypersurfaces with only normal crossings in W ' q  

(b) We must show tha t  (i) and (ii) in Definition 2.3.2 hold for W'"--+Z. 

(bl)  We will use general properties of constructive desingularization developed in 

IV2]: compatibil i ty of constructive desingularization with ~tale topology and with pull- 

backs by smooth morphisms. So ult imately we will define WH~-+W~r as a constructive 

desingularization. 

(b2) We use the local conditions in Remark  2.2.3: if a point p E W  ~" maps to tEZ,  

then we require that  a regular system of parameters  {tl, ..., tr} at Oz, t can be extended 

so as to fulfill (1), (2) and (3) in Remark  2.2.3. 

We star ted with V c W  and a smooth morphism W--+Z. We fixed a point x E V  and 

defined a proper birational morphism Wr--+W. We then defined WH--+W ~, and we shall 

now define W~r~-+W% 

Fix a point y E W  ~', assume tha t  y maps to p E W  ~, to qEW ~ and to xEW.  Note 

that  (2) in Remark  2.2.3 is a condition on the Jacobian of WHt-+W. Since W'" will be 

smooth, the Jacobian will define a closed set of points in W ~t~ where W~r-+W is not a 

loca] isomorphism. 

We studied the toroidal structure at pEW% This toroidal structure was described 

in terms of a choice of a regular system of coordinates locally at qEWI: 

In w we introduced the ring of an open affine neighborhood of qEW ~, called A, 

together with a choice of some coordinates yiEAq so tha t  some of them defined the 

components of the Jacobian of Wt--+W locally at q. The ring R had (n!) th  roots of 
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those y,. The toroidal structure at pEW" grows from the choice of the regular system 

of coordinates {z, v],..., v~, tl,  ..., t~} at R* in (12), together with Proposition 4.7. The 

Jacobian of Wr-+ W is locally described by a monomial on some variables Yi E Aq, and 

y i : ( V i )  n! at R*. So this monomial is invariant by the group acting on R* (see (a) and 

(b) in w 

5.2. For a better understanding of the further development let us recall that  

((f ')-l(Y))red=C~U...UC~CW' is a union of components of codimension 2 in W' 

(see (4)). ( ( f") - l (Y)):edCW" will, however, be of pure eodimension 1. In fact, re- 

call here that  each component C~ of ( ( f , ) - i  (Y))~ed C W' was defined, locally at q, by the 

ideal (z, yl)CAq (see (5)). The element Yl has an (n!)th root vl at Rq in w Therefore 

(z, yl)CAq lies under (z,v;)CRq, and this is an n-fold component of the hypersurface 

V1 in Spec(R). This component has codimension 2 in U~=Spec(R) ((10)). Recall also 

that  (10) is a sequence of monoidal transformations, defined by blowing up these equi- 

multiple centers of the hypersurface, all of codimension 2 in the regular ambient space. 

In particular, the total transform of ( ( f t ) - I ( y ) ) r e d = C ~ U . . . U C t  r (CW')  to U~ via (10) is 

of pure codimension 1 in U~, and hence it is a union of exceptional hypersurfaces. So let 

H~, HI, ..., H~ (C U:) (27) 

be the exceptional hypersurfaces of U~--+ Spec(R), and let 

c;', ..., c "  (c  w")  (28) 

be the image of each H~ via the finite map U~--+ W". Each H~ is a regular hypersurface, 

and thus each C~' is of pure codimension 1 in W". It also follows that  there is a subset 

C~' 1 , C~'2, ..., C~' such that  

((f")-1(y))re d--cf'tJ(TfftJ IICf' V $ 1 - - v ~ 2  ..... Zr, 
(29) 

which is hence of pure codimension 1 in W". 

Since W"-+ W' is birational and V '=  ( f ' ) -1  (V)c  W', let V"C W" be the strict trans- 

form of W. 

Since f': W'---~ W is birational and smooth, let J~c W ~ be the Jacobian hypersurface, 

and let J"c  W" be the reduced pullback at W". Finally set 

H =C'I'UC~'u...UC~UV"UJ" (C W").  (30) 

Note that  I I c W "  is reduced of pure codimension 1. We claim that  
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(i) ( ( / ' / ) - -1  (V))red C II;  

(ii) ( ( f " ) - l ( y ) ) redCI I  ((29)); 

(iii) the morphism W'~-+ W defines a local isomorphism at any point in W " - I I .  

The hypersurface Y ' =  ( f ' ) - l ( Y )  c W'  was lifted to a hypersurface 171C Spec(R), and 

the reduced total transform, or reduced pullback, of this hypersurface in U~ is, say, 

Hv =H~UH~U...UH~UVs (C U~). (31) 

On the other hand, following (29), the reduced pullback of ( ( f t ) - l ( y ) ) r e  d to  U;, is a 

hypersurface, say 

IIy =H; UH; U...UHL (C U'). (32) 

Both IIv and IIy are defined as reduced hypersurfaces in U~; so II contains the image of 

IIv via U~--~W", and ( f " ) - l (Y) ) re  d is the image of IIy.  

As for (iii) note that  W"--+W ~ is a local isomorphism at points of 

In particular, W"--+W is a local isomorphism at points in W " - I I .  

5.3. Let p be a point in W ~', and p~C U~ a point mapping to p via the finite morphism 

U~-+W". We want to study the corresponding local rings. We fix the setting as in 

Proposition 4.7. To simplify notation fix 

�9 T~*=k{{z, vz, . . . ,vs,t l ,  ...,tr}} as the completion of the local ring of U~ at p', and 

�9 G as the decomposition group at p~. 

We may assume that  

(A) elements of G act on each coordinate {z, vl, ..., Vs,tl, ...,tr} by multiplication 

by (n!)th roots of unity, and trivially on coordinates {tl, ..., tr}; 

(B) if p'EVs C U~, then I(V~)=(z} at T~* (see w (iv) for the case n= l ) ;  

(C) each exceptional hypersurface arising in the sequence (10) is defined (locally) 

by a monomial in the coordinates {z, vl, ..., %} (see (22)). 

We now focus on the subring of G-invariants of k{{z,  Vl, ..., v~, tz, ..., t~}}, which is 

also the completion of the local ring Ow,,,p. 

Since G acts trivially on the coordinates {tl, ...,tr}, assumption (A) asserts that  

we may just consider the action of G on the subring k{{Z, Vl,.. . ,v~}} (recall that  k 

is algebraically closed of characteristic zero). The subring of G-invariants is a formal 

toroidal singularity, say 

k{{N1, . . . ,Nm}} C k{{z,  vz, ..., vs}}. 
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By general properties of toroidal singularities, the Nj  can and will be chosen as monomials 

in the variables {z, Vl, ..., %}. Clearly (T4*)G=k{{N1, ..., Nm, tl ,  ..., t~}}. Now define 

(D) M~ as a monomial in {z, v~, ..., vs} defining the reduced hypersurface Hv tocally 

at ~* (see (B), (C) and (31)); 

(E) M2 as a monomial in {z, Vl, ..., vs} defining the reduced hypersurface IIy locally 

at ~* (see (C) and (32)); 

(F) N{ as the (n!)th power of M1 (so that  N~ is G-invariant in 7~*); 

(G) N~ as the (n!)th power of M2 (so that  N~ is G-invariant in ~*); 

(H) N~ as a G-invariant monomial defining J "  locally at the point (see the last lines 

in Remark 5.1). 

Now take, within the ring of formal power series k{{z ,v~ ,  ...,v~,t~, ..., t~}}, the k- 

subalgebras k[z, v~, ..., %, t l ,  ..., t~]. This is a polynomial ring. Now (A) asserts that  G 

acts on this polynomial ring, on the ring k[z, vl,  ..., v~], and trivially on k[tl, ..., t~]. 

So the subring of G-invariants of k[z, Vl,...,  v,] is kiN1,. . . ,  N,~] (the same monomials 

Nj as before), which is the ring of an affine toric scheme. The subring of G-invariants of 

k[z, v~, ..., vs, t~, ..., tr] is k[N~,...,  Nm, t~,..., t~]. 

Recall that  the equations yi were chosen in the ring A (w so each Yi is G-invariant 

and y ick[N1,  ..., Nm]. Finally note that  

N~ , N~, N~ ~ k[N~, ..., Nml. 

It can be checked that  the hypersurface H c W "  ((30)) is defined, at the completion of 

the local ring Ow,,,p, by the height-1 prime ideals containing the product of all Nf; and 

that  ( (f")-- l (y))re  d is defined by the height-1 prime ideals containing N~. We proceed 

now in two steps by defining 

(a) a constructive desingularization of W",  say 

j l :  W~" -+ W", 

and finally, 

(b) an embedded desingularization of the hypersurface ( J l  1 (H))red, say 

j2: W m --~ W; ~. 

Let Pl be the closed point at P=Spec(k[N~,  ..., Nm, t l , . . . ,  tr]) corresponding to the 

maximal ideal (N1, ..., Nm, tl ,  ..., tr), so that  p C W "  is ~tale locally isomorphic to p l E P .  

By a general property of constructive desingularization (compatibility with 6tale restric- 

tions, see [V2, Theorem 7.6.1, p. 6681) , both steps (a) and (b) above are determined, 

locally at p, by 
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(a') a constructive desingularization of P locally at Pl, followed by 

(b') an embedded desingularization of the reduced hypersurface defined by the total 

transform of N~. N~. N~. 

Let P2 be the closed point in Spec(k[N1, ..., Nm]) corresponding to the maximal ideal 

(N1, ..., Nm). There is a natural smooth map 

P -- Spec(k[N1, ..., Nm, tl,  ..., tr]) -+ Spec(k[N1, ..., Nm]). (33) 

By the restriction properties of constructive desingularization (compatibility with pull- 

back by smooth morphisms, see [V2, 4.1 (b), p. 647]), both (a') and (b') follow, locally 

at Pl, from, say, 

(a") a constructive desingularization of Spec(k[N1, ..., Nm]) locally at P2, followed 

by 

(b") an embedded desingularization of the reduced hypersurface defined by the total 

transform of N~. N~. N~. 

The total transform of If, say II"'CW'", is a hypersurface with normal crossings. 

Set 

f = f"jlj2: W'"--+ W. 

By construction, f defines an isomorphism over points in W"'-II'", so J(f, k)red C II I11. 

In particular, J(f, k) is a union of hypersurfaces having only normal crossings. Note that  

( f -1  (Y))red = ((j l j2) -1 ( ( f , , ) - i  (Y)))red C H'" is (locally) the support of a principal ideal 

(see (G)), so ( f - l (y ) ) red  is of pure codimension 1 and has normal crossings in W'". 
It is clear from (30) that  f also defines an embedded resolution of VcW.  Let us 

check now that  all three conditions (i), (ii) and (iii) of Definition 2.3.2 are fulfilled: 

(i) Set 7r as in w (A). Apply Remark 3.4 to show that  7c and V c W  define a family 

of embedded hypersurfaces (Definition 2.2.1). 

(ii) To show that  7r and f define a family of embedded resolutions we check that  the 

local conditions (1), (2) and (3) in Remark 2.10 hold. But this is straightforward from 

(33) and the fact that  the constructive desingularization of P is the pullback of that  

of Spec(k[N1, ...,Nm]) (the pullback defined by multiplication with the affine scheme 

Spec(k[tl, ..., tr])). 

(iii) As mentioned above, this condition is now clear since ( f - l (y ) ) red  is (locally) 

the support of a principal divisor. 

This proves Theorem 3.2. 
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