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1. Introduction

The study of spectral properties of the Schrodinger operator on [2(Z¢)
H=-A+YV, (1.1)

where A is the discrete Laplacian on Z% and V a potential, plays a central role in quan-
tum mechanics. Starting with the seminal paper by P. Anderson [2], many works have
been devoted to the study of families of operators with some kind of random potential.
The best developed part of the theory deals with potentials given by identically dis-
tributed, independent random variables at different lattice sites. It is not our intention
to present the long and rich history of this area. Rather, we merely would like to mention
the fundamental work by Frohlich and Spencer [17], which lead to a proof of localiza-
tion in [16] in all dimensions for large disorder, see also Delyon-Lévy—Souillard [12] and
Simon-Taylor—-Wolff [24]. More recently, a simple proof of the Fréhlich—-Spencer theo-
rem was found by Aizenman and Molchanov (1], again for the case of i.i.d. potentials.
A central open problem in the random case is to show that localization occurs for any
disorder in two dimensions, whereas in three and higher dimensions it is believed that
there is a.c. spectrum for small disorders. Basic references in this field that cover the
history roughly up to 1991 are Figotin—Pastur [15] and Carmona-Lacroix [11]. Some
of the more recent literature is cited in [19]. Another case that has attracted consider-
able attention are quasi-periodic potentials. In the one-dimensional case Sinai [25] and
Frohlich-Spencer—Wittwer [18] have shown that one has pure point spectrum and expo-
nentially decaying eigenfunctions for large disorder provided the potential is cosine-like
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and the frequency is Diophantine. In this paper we show that for potentials V of the

form

V(ni1,n2) = Av(6 +nywi, b2 +npws), (1.2)

where v is a real-analytic function on T? which is nonconstant on any horizontal or
vertical line, and X is large, Anderson localization takes place for every (6;,8;)€T?
provided the frequency vector w is restricted suitably. More precisely, for every >0,
any A>MXo(e,v) and any §€T? there exists F.CT? depending on # and A so that
mes(T?\F.)<e and such that for any w€F. the operator with potential (1.2) has pure
point spectrum and exponentially decaying eigenfunctions, see Theorem 6.2 below. At
a lecture at the Institute for Advanced Study, H. Eliasson [14] has announced that this
result can be obtained by means of a perturbative technique similar to [13]. In this paper
we show that one can use basically nonperturbative methods similar in spirit to those in
Bourgain—Goldstein [7] and Bourgain—Goldstein—Schlag [8]. The requirement of large A
is needed to insure that a certain inductive assumption holds. As in the aforementioned
works, semi-algebraic sets also play a crucial role in this paper. In fact, we apply various
recent results from the theory of those sets which are collected in §7. Another aspect
of our work is the use of subharmonic functions. This basically replaces the Weierstrass
preparation theorem which usually appears in perturbative proofs.

Finally, we would like to mention Bourgain—Jitomirskaya [9], where the case of a
strip in Z? with quasi-periodic potentials on each horizontal line is treated. The methods
there, however, do not directly apply here.

We now proceed to give a brief overview of the proof. Suppose that there is a basis
{1,352, of I?-normalized, exponentially decaying eigenfunctions of H, () for some w.
More precisely, suppose that for all large squares ACZ? centered at the origin of side
length N there is a basis {9; ;V:I of eigenfunctions of H, (@) A with Dirichlet boundary
conditions on GA so that for every j there is n; so that

[1hi(n)| < Cexp(—vy|n—n;|) for all ne Z>.

Here v>0 is some fixed constant. Then the Green’s function

Gy (8, E)(n,m) := [(Hy(

9)—E)[A] "' (n,m) :}: %
; j

satisfies

|G’_3(_9, E)(n,m)| < Cexp(—3vIn—m|) for every n,m €A, [n—m|> 3N,
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provided ||G$(Q,E)”<6N * where b<1 and N large. This suggests the following termi-
nology: We call a Green’s function G;‘(Q, E) good if

IGA(8, B)|| < e,

|G2(8, E)(n,m)| < Cexp(—Lyln—m]|) for every n,meA, ln—m|> 3N,

and bad otherwise. §§2,3,4 below are devoted to establishing large deviation theorems
for the Green’s functions. This means that we show that for a fized energy F and suitably
restricted w a given Green’s function G’_u}( 0, E) satisfies

mes[f € T?: GA(6, E) is bad] < e~ (diamA)” (1.3)

for some constant o>0. This large deviation estimate is the first crucial ingredient in the
proof, the second being the method of energy elimination via semi-algebraic sets, which
is presented in §5. It is easy to see that for a fixed side length Ny of A the estimate (1.3)
holds provided A= A¢(Ng) (A is as in (1.2)). This is precisely the origin of our assumption
of large A, and nowhere else does one need large A in the proof. For larger scales N > Ny,
(1.3) is proved inductively. Thus assume that (1.3) is known for N and we want to prove
it for N;=N¢, where C is some large constant (it turns out that this is precisely the way
in which the scales increase). Partition a square A of side length N into smaller squares
{A;} of length N, and mark each such small square as either good or bad, depending on
whether or not G_gj (8, E) is good or bad. Since shifts by integer vectors (n1,n2) on Z?2
correspond to shifts by (njw;,naws) on T2 it follows that the number of bad cubes is
bounded by

#{(n1,n2) €[~N1, N1J*: (mw1,nawa) € Bn,u(E)}, (1.4)

where By, (E):={0€T?: G5 (9, E) is bad}, Ao being a square centered at zero of side
length N. The entire proof hinges on nontrivial estimates for the cardinality in (1.4).
More precisely, one needs to prove that there is some >0 so that (1.4) < N} =% for most w.
This is relevant for several reasons. One being that the usual “multi-scale analysis”, i.e.,
repeated applications of the resolvent identity, fails if there is a chain of bad squares
connecting two points in A. Clearly, such a chain might exist if (1.4) < N7. On the other
hand, the entire §2 is devoted to showing that a sublinear bound Nf_‘; is sufficient in
order to obtain the desired off-diagonal decay of the Green’s function on scale N; provided
the energy FE is separated from the spectra of all submatrices of intermediate sizes, see
Lemma 2.4 and in particular (2.8) for a precise statement. Another, perhaps more crucial
reason is of an analytical nature as can be seen from Lemma 4.4. That lemma is the
central analytical result in this paper. It shows how to use bounds for subharmonic
functions in order to treat the typical “resonance” problems that appear when one tries
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to invert large matrices. This is in contrast to the usual KAM-type approach that is
based on the Weierstrass preparation theorem. More precisely, one splits the N;-square
A into

A=A UAS,

where A,={J, A;, the union being over all bad squares. If (1.4) < N1, then |A,|<
N11_5N 2 <N11 —o/2 provided C was chosen large enough (recall N;=N¢). This relatively
small size of A, allows one to treat the “resonant sites” as a “black box”. In fact, it
translates into a sublinear bound (in Ny) for the Riesz mass of the subharmonic function
log |det A(8)| that controls the invertibility of (H,(8)—E)IA, see (4.19) and Lemma 4.8.
All of §3 is devoted to establishing a sublinear bound on (1.4). This section is
entirely arithmetic, being devoted to finding a large set of we€T? that have the desired
property. It turns out that this set can be characterized as being those w=(w;,ws) for

which the lattice
{(n1w1,nows) (mod Z?): |ny|, |na| < N1} (1.5)

does not contain too many small nontrivial triangles of too small area. This is carried
out in Lemma 3.1. Lemma 3.3 is the central result of §3. It states that the set of w
that was singled out in Lemma 3.1 has the property that no algebraic curve of relatively
small degree has more than N} ™% many points from (1.5) coming too close to it. It is
essential to realize that the set of w that needs to be excluded for this purpose does not
depend on the algebraic curve under consideration, but is defined a priori. The logic of
the proof of Lemma 3.3 is that too many points close to the curve would force that curve
to oscillate more than it can, given its small degree. The oscillations are due to the fact
that the curve would need to pass close to the vertices of triangles with comparatively
large areas.

Returning to the actual proof of localization, recall that by the Shnol-Simon the-
orem, [22] and (23], the spectrum of H,{0)=—A+Av(njwi,nows) is characterized as
those numbers E for which a nonzero, polynomially bounded solution exists, i.e., there

is a nonzero function £ on Z? satisfying
(H,(0)—E)¢=0 and |¢(z)|<1+]|z|% for all z€Z?,

where ¢p>0 is some constant. The goal is to show that £ decays exponentially. The
key to doing so is to show that “double resonances” occur with small probability. More
precisely, given two disjoint squares Ag and Ay of sizes Ny and Nj respectively, one says
that a “double resonance” occurs if both

IG5°(0,E)||>eNe  and G2 (0, E) is bad. (1.6)
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Here Ny will be much larger than N; (some power of it), and ¢ is a small constant. The
proof of localization easily reduces to showing that (this is the approach from [7]) such
double resonances do not occur for any such Ag centered at the origin and any A; that
is at a distance between N and 2N from Ay. Here N is very large compared to Np.
To achieve this property one needs to remove a certain bad set of weT? whose size is
ultimately seen to be very small as a result of the large deviation estimate (1.3). However,
this reduction to (1.3) is nontrivial, and requires the “elimination of the energy” which is
accomplished as a result of complexity bounds on semi-algebraic sets. The main result in
that direction is Proposition 5.1 in §5 whose meaning should become clear when compared
to the goal of preventing (1.6) (recall that shifts in Z? correspond to shifts on T?). The
set Fx is precisely the set of bad w that needs to be removed, whereas conditions (5.1)
are guaranteed by the large deviation estimates. The details of this reduction can be
found in §6. Finally, we would like to mention that results on semi-algebraic sets are
collected in §7.

2. Exponential decay of the Green’s function via the resolvent identity

In this section, we consider a general operator
H=—-A+V oni%Z?%),

where V is an arbitrary potential indexed by lattice points (n;,ns)€Z?2. For any subset
ACZ? the restriction operator on A will be denoted throughout this paper by R, and

HA = RAHRA

is the restriction of H to A. If A is a square, for example, then Hy is the same as H
on A with Dirichlet boundary conditions. The main purpose of this section is to establish
exponential off-diagonal decay of the Green’s function

GA(E):=(Hy,—E)™*

for certain regions A that do not contain too many bad subregions of a smaller scale.
Here bad simply means that the Green’s function on the smaller region does not ex-
hibit exponential decay. The precise meaning of “too many” and “region” is given in
Definition 2.1 and Lemma 2.4 below.

Definition 2.1. The distance between the points £=(z1, z2)€Z? and y=(y1, yo) € Z2
is defined as

|z—y| =max(|z1 -y, |2 —y2]).
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Fig. 1. Some examples of exhaustions of elementary regions.
The M-square centered at the point z=(z1,z2)€Z? is the set

Qu(z)={yeZ® o1 -M <y1 <z1+M, 23— M < yp <z2+ M}

(2.1
={yeZ*:|z~yl<M}. )

An elementary region is defined to be a set A of the form
A:=R\(R+2),
where z€Z? is arbitrary and R is a rectangle
R= {g_/EZgle—Ml Sy L1+ My, 20— Mo < yp <22+ Mo}

The size of A, denoted by o(A), is simply its diameter. The set of all elementary regions
of size M will be denoted by ER(M). Elements of ER(M) are also referred to as M-

regions.

The class of elementary regions consists of rectangles, L-shaped regions, and hori-
zontal or vertical line segments. In what follows, we shall repeatedly apply the resolvent
identity to the Green’s functions (Ha,—E)~! and (Ha,—E)~1, where A; C A are elemen-
tary regions. In fact, in the proof of the following lemma we shall establish exponential
decay of the Green’s function in some large region Ay, given suitable bounds on the

Green’s functions on smaller scales. This will require surrounding a given point in Ag
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by a sequence of increasing regions inside Ag. More precisely, we consider ezhaustions
{S;(z)}s—0 of Ao of width 2M centered at z defined inductively as follows:

So(z) = Qum(z)N Ao,

Si@ = U Qemly)nAg for 1<s<l, (2.2)
yeS;—1(z) -

where [ is maximal such that S;(z)#Ao. Two examples of such exhaustions are given
in Figure 1. It is clear that the sets S; form an increasing sequence of elementary
regions. Of particular importance to us are the “annuli” A;(z)==5;(z)\S;—1(z), where
S_1:=@. With the possible exception of a single annulus, any A;(z) has the property that
Qum(y)NA;(z) is an elementary region for all y€ A;(z). We have indicated this by means
of the small dotted squares in Figure 1. Notice that in the left-hand region the square
marked by an arrow does not lead to an elementary region. Thus, the aforementioned
exceptional annulus is the one that contains the unique corner of Ay that lies in the
interior of the convex hull of Ag. See the annuli that are marked with arrows in Figure 1.
Finally, we shall also need the fact that squares Qa(y1) and Qar(y2) with centers in
nonadjacent annuli are disjoint {recall that the width of the annuli is 2M).
The following lemma is a standard fact that will be used repeatedly.

LEMMA 2.2. Suppose that ACZ? is an arbitrary set with the following property: for
every z€Z? there is a subset W(z)CA with z€W (z), diam(W(z))<N, and such that
the Green’s function Gy () (E) satisfies for certain t, N, A>0

1Gw (o) (B)]l <A, (2.3)
IGw (o) (E)(z,y)| <e™™  for all yed. W (). (2.4)

Here 0,W () is the interior boundary of W{(z) relative to A given by
O W (z) :={y €W (z): there exists z€ A\W (z) with |z2—y|=1}. (2.5)

Then
IGA(E)|| < 2N%A
provided 4N%e= "N 1.
Proof. Let €>0 be arbitrary. By the resolvent identity
Gr(E+ie)(z,y) = CGww)(E+ie)(@,y)+ Y. Gwp(E+ic)(z,z)Ga(E+ie)(Z,y).
zeW(z)

Z'eA\W (z)
|z—2"|=1
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Summing over y€A yields

sup ) _ |Ga(E+ie)(z,y)| <sup Y |G (g (E+ic)|

€8 yen gEAgew(z)
+sup Y |Gw(g)(E+ie)(z,2)| sup Y |Ga(E+ie)(w,y)l-
€A L ewl(a) weh yea
Z'€eA\W(z)
lz—2'|=1

In view of (2.3) and (2.4) one obtains

sup ¥ |GA(E+i0)(z,y)| < N?A+4N%e"N sup 3 |GA(E+i0)(w, y)I- (2.6)
gEAyeA - weAyeA -

By self-adjointness, the left-hand side of (2.6) is an upper bound on GA(E). Hence the
lemma follows from Schur’s lemma. O

The following lemma is the main result of this section. First we introduce some
useful notation.

Definition 2.3. For any positive numbers a,b the notation a<b means Ca<b for
some constant C'>0. By a<b we mean that the constant C is very large. If both a<b
and a2b, then we write axb. The various constants will be defined by the context in
which they arise. Finally, N*~ means N®~¢ with some small £>0 (the precise meaning
of “small” can again be derived from the context).

LEMMA 2.4. Suppose that M, N are positive integers such that for some 0<T<1
NT<M<2N". (2.7)

Let Ag€ER(N) be an elementary region of size N with the property that for all ACAg,
A€ER(L) with M<LKN, the Green’s function GA(E):=(Hx—E)™! of A at energy E
satisfies
b
IGA(B)|| < e (2.8)

for some fized 0<b<1. We say that A€ER(L), ACAq s good, if in addition to (2.8)
the Green’s function ezhibits the off-diagonal decay

IGA(B)(z,y)| <e27¥ for all z,y€eA, |z—y|> 1L, (2.9)

where v>0 is fired. Otherwise A is called bad. Assume that for any family F of pairwise
disjoint bad M'-regions in Ag with M+1< M’ <2M+1,

#F NP (2.10)



ANDERSON LOCALIZATION FOR SCHRODINGER OPERATORS ON Z2 49

Under these assumptions one has
Gao(B)z,y)| <e™27¥ for all z,y€ Ao, [z—y|> LN, (2.11)

where v’ =y—N~% and §=0(b,7)>0, provided N is sufficiently large, i.e., N> No(b, 7, 7).

Proof. Choose a constant ¢>1 so that both
cb<1l and c7<1. (2.12)

Define inductively scales M;1=[M7], My=M. Fix an elementary region A1CAg of
size My. For any €A, consider the exhaustion {S;(z)};—, of A1 of width 2M, see (2.2).
We say that the annulus A;=8;(z)\S;-1(z) is good, if for any y€ A; both the elementary
regions

Quy)N4; and Qu(y)NA: (2.13)

satisfy (2.9). Otherwise the annulus is called bad. Recall that there is at most one annulus
Aj, for which Qu(y)NAj, is not an elementary region. In that case A;, is counted
among the bad annuli. Moreover, it is clear that the size of Qa(y)NA; is between
M+1 and 2M+1. Fix some small sx=7"1N~2% which will be determined below. An
elementary region A;CAg of size M; is called bad provided for some z€A; the number

of bad annuli {A;} exceeds

M
Blzzzﬁl. (2.14)

M will be assumed large enough so that B;>10, say. Let 1 be an arbitrary family of
pairwise disjoint bad M;j-regions contained in Ag. If A;€F;, then by construction there
are at least %Bl many pairwise disjoint bad M-regions contained in A; (squares Qs
with centers in nonadjacent annuli are disjoint). Consequently, there are at least

sB1-#F
many pairwise disjoint bad M-regions in Ag. By assumption (2.10), this implies that
(2.15)

for any such family 7.

Suppose that A; CAy is a good M;-region and fix any pair z, y€A;1 with lz—y|> %Ml.
Consider the exhaustion {S;(z)} of A; of width 2M centered at z as in (2.2). By
assumption, there are no more than B; bad annuli in this exhaustion. Let A;(z), A;4+1(z),
.y Ajps(z) be adjacent good annuli and define

J+s
U= U Ai(z).

i=j
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bad

bad

good

good

good

good

bad

bad

good

good

good|good|good| bad

Fig. 2. Applying the resolvent identity to adjacent good annuli.

First, we estimate |Gy (E)||. Since U is in general not an elementary region, one
cannot invoke (2.8). Instead, one uses that for each yeU

W(y) :=QuynU (2.16)

satisfies (2.9). This follows from the definition of good annuli, see (2.13), since if y€ 4,
either

W(y)=Qu(y)NA4; or W(y)=Qum(y)NAi.

By Lemma 2.2 with N=2M +1, t=1ry, A=e(M+1)",
IGu(E)|| < 2(2M +1)2e@M+1)° (2.17)

for large M. Next we turn to exponential off-diagonal decay of Gy (E). More precisely,
choose two points y,€0,S5;_1(z) and y2€0,5;4s(z), see Figure 2. Here 0,5_1(z):={z}
and )

0.8;(z) :={y € S;(z) : there exists z€ A1\ S;(z) with [y—z|=1}
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Z
L]
v
S,
S w T Uit1
Sni+1
zZ
Fig. 3. Passing from Sn; to Sn, ;-

for 720. In Figure 3 the interior boundaries 0,.5; are given by the thin _-shaped curves
inside A;. By construction,

ly1 —ya| > 2M (s+1).

Applying the resolvent identity t=2(s+1) times therefore yields (with Gy (E)=Gyp for
simplicity)

Gulyr,y2) = Z Z Z Gw (y)(1,21)

21€EW (1)  z2eW(z}) 2t€EW (2¢—1)
HEUNW (32) h€U\W ()  Z1€U\W (z-1) (2.18)

X Gw(z) (21, 22) o Gwiz_y(2i-1,2t) Gu(2y, ¥2),

where it is understood that |z;—zj|=1. A possible chain of regions W{y1), W(z}),...
starting at y; is shown in Figure 2. Consequently, (2.18), (2.9) and (2.17) imply that

|Gu(E)(y1,y2)] < 22M+1)2(16M; )2+ DM 1) =1l -vs|

b (2.19)
< (40M7) 2 +D) @M +1) g ~vly1—p2],

Our next goal is to obtain exponential off-diagonal decay of G, (F) from (2.19).
Recall that there is the exhaustion

So(z) & Si1(z) & .. & Sk(z) & Ar-
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Here k is chosen so that y¢ Si(z), but y€Sk41(z). Let
ng=—1l<m<ni<my<ng<..<my<nyg<k

be such that all annuli between S,,, and S,, are good, whereas all annuli between S,

and S,,,,, are bad. Moreover, g is maximal with this property. If n, <k, we set mg 1 =k.
Define

Ui=8,\Sm, forl<i<yg.

Using the resolvent identity, we shall now inductively obtain estimates of the form
|Gs, (E)(z,2)| < B;e 272l for all z€0,5n,, (2.20)
with certain constants B;. Consider the case i=1. If m;=0, then S,,,=Uj, and thus
|G, (E) (2, 2)| < (40M; )2~ 1) g2M+1) g1z (2.21)

by (2.19). If m; >0, then by (2.8) and (2.19)

G5, (B)(z,2)| < D |Gs, (BE)z,w)||Gu,(B)(w', 2)] (2:22)
wESy \U1
w'els
lw-w'{=1
<16M; (4OM1)2(n1-m1+1)eMi’e(21\1+1)b+2'y(m1+1)Ale—'y|§~g| . (223)

In view of (2.21) and (2.22), the estimate stated in (2.20) for =1 therefore holds with
By = 16M; (407 ) 2(m =ma 1) g2M7+2y(m1 ~no) M (2.24)
To pass from S, to S,,,, one argues as follows. Fix any 2€0, S5,
G, (E)(z,2)]

< D Gs,,, (B)z w)|Gu.,, (B)W, 2)]

i+1°

WESn, , \Uit1
w'eUiq
< > > 1Gs. (B)z¥)|[Gs,,, (E)(v,w)| |Gy, (B)w',2)|
WESn,  \Uit1 yesni+1\sni
w'eUit v'€Sy,
< Y 3 Bie e IgMY o=vIw' ~2l (4o g, )2(nerr —misa+1) (2M +1)°
WESn, , \Uit1 ¥ESn,  \Sn, (2.25)
QIGU«L-H Q,ESni

< Bi(lﬁMl)Q(40M1)2("i+1—mi+1+1)€2Mf+2M’7(mi+1‘—ni)e—’ylz—zl, (2.26)
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where it is again understood that |w—w'|=|v—v'|=1. To pass from (2.25) to (2.26) one
uses that
lz—z| < |z—v'|+|w' — 2| +2M (M1 —n4),

see Figure 3. By means of (2.26) and (2.24) one obtains the following expression for By:

g—1
By := (16M;)%9~1(40M; )2 Zi (ni=mi+1) exp(QgM{’—{-ZMW Z(mi+1 —nl)) (2.27)
=0
By definition,
g—1 g M,
mip1—n;)<By and 2g< n;—m;+1) < —.
g( i+1-1:) < By g ;( )< 35
Recalling (2.14), this shows that (2.27) reduces to
log By SyseMy+ MM (2.28)

provided N (and thus M) is large. Inserting this into (2.26) one obtains
|Gs, (B)(z, 2)| <exp[—7|z—2z| (1-Cx—Cy~ M) (2.29)

for all 2€0,8,,(z). By maximality of g, one has |z—z|>|z—y|-2B1M for all such 2.
Hence a final application of the resolvent identity allows one to deduce the desired bound
for G, (FE) from (2.29), i.e.,

|Gy (B)(z,y)| < el (2.30)

where
11 =y(1=Cax—Cy M) (2.31)

with some absolute constant C'.

This process can be repeated to pass from scale M, to scale My, and so on. More
precisely, we call an Ms-region A;C Ay bad if there is some exhaustion of A; by annuli
of thickness 2M; for which the number of bad annuli exceeds

M,
Bo =3 —, 2.32
pimx g (232
with the same » as above. An annulus A is called bad if it contains some point y for
which one of the two M;-regions

QMl(y)nA and QM1(Z_/)mAl
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does not satisfy (2.30), cf. (2.13). For the same reason as before, any family J; of pairwise
disjoint bad Ms-regions satisfies

2V N
#7:< () (239

cf. (2.15). Moreover, if A;CAq is a good M,-region, then the same arguments involving
the resolvent identity that lead to (2.30) show that one has the off-diagonal decay

|GA, (2, y)| <exp(—72lz—yl) for any z,y€A,, |z—y| > 1 M2,

where
Yo i =Y(1=Co—Cy ' M* 1) (1= C—Cyy 7 M),

Continuing inductively, the lemma follows provided one reaches a scale M, <N for which
there are no bad M,-regions. In analogy to (2.33), (2.15), any family F, of pairwise
disjoint bad M;-regions satisfies

#F. < ZS_N_"_
*S\x) My /M’

Ignoring the difference between M, and M®" (which is justified for large N), one therefore
needs to ensure the existence of a positive integer s for which

2 ¥ Nb 8
(;>W<l and AIC<N

Since M < N7 and »#=7"'N~2% this can be done for any N> Ny(b, 7,~) provided

1
er<1 and c(b+2M6)<l.
log ¢

In view of (2.12) this holds for small §>0, as claimed. Thus (2.11) has been established
with

s—1

")’I =7 H(l—CJ{—C’Yj_lN_T(l—bC)),
j=0

where v9=7. Since »=y"'N~% and s<log(1/7)/loge, for sufficiently large N and
small 4>0 one has
7' 2y(1-N7%),

and the lemma follows. O
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3. An arithmetic condition on the frequency vector

This section deals exclusively with the two-dimensional dynamics given by the frequency
vector w=(wy,w2)€T?. The main result here is Lemma 3.3, which states that for an
algebraic curve I'CT? of degree B, the number of points (njwi, naws) (mod Z2) with
1<|n1], [n2| <N, falling into an n-neighborhood I' of T, is no larger than N'~%. This
requires a relation between the numbers 7, B, N, and, most importantly, a suitable condi-
tion on w. That condition turns out to be of the form w€Qy, where mes(T?\Qx)<N ¢,
€>0 a small positive constant. It is essential that the set Qy is determined by purely
arithmetic considerations that do not depend on the curve I', see Lemma 3.1 below. In
order to understand the conclusion of the following lemma, it might be helpful to recall
the following simple fact: Let n,m be positive integers, and suppose 1>4>0. Then

dged
mes[0€ T : [[9ml] < 5, 8] < 8] < 62+ 284
m+n
where || - || denotes the distance to the nearest integer. This implies that the fractional

parts of @m and 6n, considered as random variables, are strongly dependent if and only
if ged{m, n) is large relative to m-+n.

LEMMA 3.1. Let N be a positive integer. There exists a set 1y C[0,1]? so that
mes([0, 112\ Qn) < N°-

and such that any w=(w1,w2)EQN has the following property:
Let ¢q1,4},q2,9, be nonzero integers bounded in absolute value by N, and suppose

that the numbers
01=qw; (mod 1),

0] =qjw; (mod 1),
f2 =gews (mod 1),
0, =qghws (mod 1)

satisfy
6:l, 16 < N7 i=1,2, (3.3)
and
~3+4 61 6 —3434:
—N75%% < < N73%02 (3.4)
02 0'2 )

with 81,80 >0 sufficiently small. Then

ged(qr, qp) > N171on,
ged(ga, gp) > N1~
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Proof. Partition T? into squares I of size 1/N?2, and restrict w=(w1,w2) to one such

square I. From (3.3),
lgswi—m;| < N“'F% and  |qlw;—m)| < N7

for some m;, m;€Z. We may clearly assume (by suitable restriction of w;) that

g, gi] > N1 (36)

Thus ,
wi——% < N720-8)+  and wi—ﬁf < N721=0)+ (3.7)

i q;

Since w; is restricted to an interval of size 1/N?, the number of pairs (g, m) bounded by
N so that |w;—m/q| < N~2(1=00+ for some w; in that interval is at most N2%*. Fix then
i, q;,m;, m} and consider the relative measure of weI such that (3.4) holds, i.e.,

Q1w —my  qaWe—M2

—N732 ¢ < N3+ (3.8)

Qlur—mi  Gowz—my
Writing w;=w; g+ with |3]<1/N?, (3.8) is of the form
(9105~ 142) 1502+ a1 361 a0+ B < N 73402, (3.9)

Assume
|q195—q1gz| > N1 02100,
Then (3.9) defines a (31, 72)-set of measure at most

—3+3d2+
N 2 —4-106,+

|Q1qlz‘ql1CI2| A

The relative measure in I is therefore less than N~1%1+ and summing over all possible
choices of ¢;, m;,q.,m!, i=1,2, gives the bound N 191 N8+ < N=%1_ Tt thus remains to
consider the case where

lg1gh—qiqz] < N1 H02H10%, (3.12)

We need to estimate the measure of those w=(w;,w;)€T? for which there are g;,q\€
ZN[—N, N] such that ||gw;|| < N~1* ||giw;|| < N~1+% (3.12) holds and

min |ged(g:, ¢;)| < R- (3.13)

Write
ged(gi, q))=ri, q=rQ:i, ¢ =7Q; fori=12
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Fixing r1 and 72, (3.12) becomes

[1Q2—Q} Q2|<| 2|N1+52+1°51 (3-15)

Estimate the measure of w; so that

lgiwil| < N7 |lghws]| < N7H8

for given ¢;, ¢}, ged(gi, q,)=ri. From (3.7}, for some m;, m.€Z,
m; m’
& 4
Imid,—m)q;| < N2+, (3.17)

< N—20-80)+

|m;Q; —mQ;] < " ‘N261+
Since ged(Q;, Q})=1, the number of possible (m;,m}) in (3.17) is at most
(1+|1‘N261+)|7'z| lT‘i|+N251+.

Since |w; —m;/q;| < N~2(~8)+ the w;-measure estimate is

(Iri|+N251+)N—2+251 éN_2+461+|Ti|. (3.18)

Distinguish the cases
fT1T2l<N1+52+1061, (3.19)
l’f‘ﬂ"g[ 2N1+62+1061. (320)

Assume |r1|2|rz|. Observe that

Nl —81 -
Sl Il
by (3.6). If (3.19) holds, then the number of Q;, Q] satisfying (3.15) is at most

<1Qil, 1Q; l<

2
< N ) N1+(52+1061 St Irll N3+62+1251

[ril)  Irara Ira] — (rir2)? (3:22)

In view of (3.18) and (3.22) the corresponding w-contribution is of measure less than

>

2
71,72 (7"11"2)
|r1r2|<N1+52+1061

N3+(52+1251 5 5
N—4+861[r17‘2] <N——1+ 2420 1t
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For the contribution of (3.20) we obtain (recalling (3.13))

2
Z (ﬂ) N51+ {L1_=N-4+861|T1r2| <N‘2+1051 Z 1 <RN—1+1061. (324)
T1,72 Tl T2 T1.72

|T1|/\|T2\§|7‘2|<R |T2|<R

Taking R=N1"11%1 the measure contribution by (3.24) is less than N~%1. Thus, under
previous restrictions of w, necessarily (g;,q!)>N'"1!%, proving Lemma 3.1. O

Remark 3.2. Tt is clear that the set Qp is basically stable under perturbations of
order N~%. More precisely, one can replace Qy with the set

Ovi= U Qs (3.25)
QNQANED

where the union runs over a partition of T? of cubes of side length N~%. This point is
not an essential one, but will be useful in §6 below.

Throughout this paper semi-algebraic sets play a crucial role. We refer the reader
to §7 for the definitions as well as some basic properties of semi-algebraic sets.

The idea behind Lemma 3.3 is as follows: If too many points (nijwy, naws) fall very
close to an algebraic curve I', then there would have to be many small triangles with
vertices close to I'. Here “small” means both small sides and small area. This, however,
is excluded by Lemma 3.1.

LEMMA 3.3. Let AC[0,1]2 be a semi-algebraic set of degree at most B, see Defini-
tion 7.1. Assume further that

mes(Ag,) <7, mes(Ag,) <7, for all (61,6)€T?, (3.26)
where Ay, denotes a section of A. Let
1

log B < log N <« log p (3.27)
Then, for weQln introduced in Lemma 3.1 with

mes([0, 112\ 2y) < N°,
one has that

#{(nl, 77,2) S Z2 : |n1|V|n2| < N, (nlwl, ’I‘LQUJQ) €A (mod Zz)} < NI‘(SO

with some absolute constant §y>0.
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Proof. In view of Definition 7.1 there are polynomials {P;}?_, with deg(FP;)<d so
that

OAC Q{[o, 1]%: P, =0}.

Let T;={[0,1]?: P,=0}. Unless the algebraic curve T; contains the vertical segment
f1=const, it can intersect it in at most deg(P;)<d many points. Therefore, the sec-
tions Ag,, Ag, are unions of at most sd=B many intervals of total measure less than 7,
see (3.26). By (3.27) we may assume that each of these intervals contains at most one
element nw; (mod 1). Hence

sup #{mi €Z: |n1| <N, njwi € Ag, (mod 1)} < B, (3.29)
02

sup #{na€Z: [na| < N, nawy € Ag, (mod 1)} < B. (3.30)
01

Since mes(A)<7, one has dist((6:,02),8.4)<n/? for each (61,6;)€.A. Fix one of the
I'=T'; from above and assume that

#{(n1wy1,naws) € A" (mod Z2) tn1| <N, [n2| <N} > Nl-e, (3.31)

where
A= An{E€[0,1)%: dist(&,T) < p'/2}.

Since P; has at most B irreducible factors, for at least one of them (3.31) remains
true (with A’ being defined in terms of the respective factor, and with N9~ instead
of N'~). In what follows we can therefore assume that P; is irreducible. Thus, by

Bezout’s theorem,
#(P, =0, 95, ;| =19, P,|] < 2B’

(if 0, Pi£0g, P; vanishes identically, then I is a line). One can therefore restrict A4’ to
a piece of I where |9p, P;| <|8p, P;|, say, so that (3.31) remains true (again with N17¢7).
Observe that we have reduced ourselves to the case where A’ is a /7-strip around the
graph of an analytic function

6 =0(6,) satisfying |©'| < L. (3.33)

Moreover, the function © is defined over an interval of size greater than N7¢~. Now
let e1:= N1+ with some g, >p to be specified. Clearly, A’ is covered by <e7! many
g1-disks D,. Furthermore, for any disk D, one has

#{(n1w1,n2w2) € A'ND,, (mod Z?): [n;| <N, |ng| < N} < Ney SNet,
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Fig. 4. The triangle §07§17§11-

Thus there are at least (1 N")~! many disks D, so that

Ni-e-
#{(n1w1,nowz) € A'ND, (mod Z2): [ni] < N, |na| < N} 2

> Nei—e~. (3.35)

—1 ~

1

Finally, we claim that the majority of the disks D, have the property that for any choice
of distinct points £o,£1,£) in {(niw1, nawz)€A'ND, (mod Z2): [ni|<N, |ng|<N}, one
has

angle([£o, £1], [€0,£3)) S B%e1 N, (3-36)

see Figure 4. Suppose that this fails. Then there are at least M Ze;lN ~2 many disks
D which contain triples £g,£1,£] as above so that (3.36) is violated. It is not hard to see
that on any such disk D, the unit vector VP;/|VP;| covers an interval on S* of size at
least @< B%e N¢, cf. [7, §13]. Consequently, there exists some (€S" so that VP, /|V P,
attains ¢ at least My many times. Equivalently,

#{P,=0,("-VP, =0} > [ Mep].

By Bezout's theorem, the left-hand side is no larger than B2, and the claim follows
(¢t VP, cannot vanish identically, as then VP;/|V P;| would be constant). Alternatively,
one can use Theorem 7.4 to write [' as the graph of no more than B€ many piecewise
analytic functions with a second derivative bound of the form B¢N2¢, which immediately
leads to (3.36) with a bound BCe, N2e.
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Now choose any D,, such that (3.35) and (3.36) hold. By means of (3.29) (or (3.30)),
one may fix

§0,§1€ {(mlwl,mng)eA’ﬂDa (mod ZQ) my| < N, [me| < N}

such that

Be
l€o—&11 S -

S oo (3.37)

and §o—¢&1 is not parallel to either one of the coordinate axes. Let

& e {(nmwr,newz) € A'ND, (mod Z2): [ny| < N, |na| < N}

so that {o—& is also not parallel to a coordinate axis. This can be rewritten in the form

&1—E0=(01,02) =(qrw1, gowa) (mod 1),
£ —&o=(01,03) = (q1w1, gw2) (mod 1),
with, see (3.37),
|61]+]62] < Nﬁi)_ < N7'Fer and  |0]]+165] <e1 =N"1ter, (3.38)
Moreover, in view of (3.36),
6, 6

Areatriangle(£y,£1,£]) < abs ey N71+er B2e N < N—3+2er+2et

0, ¢,

Apply Lemma 3.1 with d;=pg;, d2=2p;+20. By construction, g;,¢;=2Z\{0}. Since
wey, it follows that

ged(qr,g)) > N1t and  ged(qo,qh) > N1 e

Write
n=rQ, ¢,=r\Q, with @>N'"11e ged(ry,ry)=1. (3.39)
1=71 1

Hence, |r1|+|ri|<N'e Take ki, k| €Z, |ki|,|k]| <Nt so that rik;+r{ki=1. Hence
lQuall < [kl @i ll+1ki | llggwn | < 2Nt N—HFer = 2N~ iHi2en,
and therefore, by (3.38),

N7Her > 01| = g || = [r] | Quall,

—1+o+

jQuill < 2 otter, (3.40)

|71]

Q>N
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Fixing £g, 1 as above and considering a variable point
&€ {(mwi,naws) € ANDy (mod Z2): [na| < N, [ng| < N},

(3.39), (3.40) imply that ¢{=7]Q, where @>N'~¢" is a divisor of ¢;. Since ¢; has at
most N°* divisors and |r{|<Ne*, this limits the number of ¢}’s to Ne*. Therefore,
recalling (3.35),

NO~¢ < £l (nywy, ngws) € A'N Dy (mod Z2): |ny| < N, |na| < N} < N2et,
Letting 01=4p, ¢ small enough, a contradiction follows. This finally leads to the bounds

#{(nwi,nowz) € A : |ny| < N, ng] < N} SNe
#{(nlwl,ngwg)eA: |n1| <N, |n2| < N} SBCNI_Q,

for some p>0, and the lemma follows. O

Remark 3.4. It is natural to ask to what extent the previous lemma depends on the
fact that A is semi-algebraic. Does it hold, for example, if A is the diffeomorphic image of
a semi-algebraic set? It is easy to see that the answer is affirmative for diffeomorphisms
that act in each variable separately, i.e., ®(61,802)=(f1(61), f2(62)) so that C~1<|f!|<C
and |f/'|<C. Indeed, the only properties that directly depend on I' are (3.29), (3.30),
(3.33) and (3.36), which are preserved under such diffeomorphisms. In the applications
below one deals with sets A defined by trigonometric polynomials on T2 rather than
polynomials. Covering the torus T2 by coordinate charts, one obtains diffeomorphisms
of the form ®(6;, 62)=(sin 61, sin 63), say, with 8y, 6> small. Hence Lemma 3.3 still applies
to this case.

4. A large deviation theorem for the Green’s functions

In this section we consider Hamiltonians of the form
H(0) = —A+AV(6), (4.1)

where V(8)(ny,no)=v(61+n1wy,02+nsw2) and Ax1 is a large parameter. In order to
emphasize the dependence of H on w, we sometimes write H,,. The real-analytic function
v: T2 R is assumed to be nondegenerate in the sense that

91*——)’0(01,92) and 92 r—)v(91,92) (42)
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are nonconstant functions for any choice of the other variable. It is a well-known fact
that this implies that for all >0

sup mes[01€T: [v(61,6:)—E| <] < Cd°,
0;€T, E

sup mes[@2€T: |v(6,0:)—E| <] < Co,
6,€T,E

(4.3)

where C,a>0 are constants depending only on v. See, for example, the last section
of [19]. For any y>0 and 0<b<1 let

Gr(A, B):= {0 T |Ga(6, E)j < A™'e”™', [Ga(8, B) (z,y) < e77=7Y!

(1.9
for all z,y €A, |z—y|> ;0(A)},
BY*(A, E):=T*\G"*(A, E), (4.5)

A being an elementary region. The main purpose of this section is to show that the
measure of BY*(A, E) is sub-exponentially small in o(A), provided we(, where

Q:= liminf Qp, (4.6)
N dyadic

Qv being the set from the previous section. Notice that mes(T?\)=0. This will be
done inductively, with the first step being given by the following lemma.

LEMMA 4.1. Let v be as above and fix any 0<b<1. Then with y=3%log A,

sup mes(Bgi’b(A, E)) < Cexp(—ca(A)®)  fori=1,2,
0;,E

for any A€ER(N) provided A=Xo(N,b,v), N>=No(b,v). Here ¢,C are constants de-
pending only on v, and Ay grows sub-exponentially in N.

Proof. By definition (4.1),
(Hy—E) '=(AWWVa—E—-Ap) "t =(I-(AVaA—-E) 'Ap) Y (AVA—E) L. (4.7)
It suffices to consider the case where 6, is the fixed variable. Since
l(Va=E/N) 7} Zglgg(l”("l +z1wy, O+ Tows) —E/N 7,
it follows that outside the set

{01€T:mei}\l|v(91+9:1w1,92+x2w2)—E//\|<(5} (4.8)
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one has the bounds

(HA()—E) Mz, p)l < D (A1)l (1—aa~167 )@=t

1>]z—y|
I(HA(9)~E) <267 1A 1

The factor 4' arises as upper bound on the number of nearest neighbor walks joining z
to y. Since the measure of the set in (4.8) is controlled by (4.3), the lemma follows by
choosing §=2exp(—c(A)®) and A>5-4. g

For the meaning of semi-algebraic in the following lemma, see Definition 7.1.

LEMMA 4.2. Let ”(01,92)2231:—0 ak 1e(kBy+102) be o real-valued trigonometric
polynomial of degree D on T?. There is some absolute constant Cqy so that for any
choice of ACZ? the set BV (A, E)C[0,1)? is semi-algebraic of degree no more than B=
CoDo(A)S.

Proof. The conditions in the definition of the sets (4.4) and (4.5) can be rewritten
in terms of determinants by means of Cramer’s rule as in [7]. This shows that there exist
polynomials Pj(z1,y1,%2,y2), 1<j<s=0(A)*, so that

GT*(A E)= m {8€'T?: P;(sin 6, cos 61,sin 62, cos ) > 0} (4.9)

j=1
and such that max; deg(P;)< Da(A)?. By Definition 7.1, BY?(A, E)=T?\G"*A,E) is
a closed semi-algebraic set of degree at most < Da(A)®. One now views T? as a subset
of R* given by
224+4?=1 and zi+ys=1

In order to pass to the square [0, 1], one covers T? by finitely many coordinate charts
(16 suffice). More precisely, suppose that y;>1/v/2 and ~1/v/2 <z, <1/+/2. Then one
can write y; =+/1—z2 . Inserting this into an inequality of the form P(z1,y1,Z2,y2)>0
one obtains that

1 1
T1, T, Y2)+/1—22 Qa(21,T2,942) 20 and ——=<13<—=,
Q1(x1, T2, y2) 1Q2(21, 72, 2) 705

where ()1 and ()3 are polynomials. Denote this set by S. Suppressing s, y» for simplicity,
one has

S= {Q1(331) 20, Q2(z1) 20,

<ri<

1 L}
V2 V2
{Q1(111)<0 Qg(x1)>0 (1 $1)Q2(I1)>Q1($1) \/__<.’E1< \}_}

m{wxl) >0, Qafen) <0, (1)) Qo) € Qa0 — 5 << J%}
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Repeating this procedure in the variables x,ys one clearly obtains semi-algebraic sets
in z; and z2, say, and the degree has increased at most by some fixed factor. EI

Remark 4.3. (1) Observe that in the previous proof B"'*(A, E) was shown to be semi-
algebraic in the variables sin#; and sin s, say. In view of Remark 3.4 this distinction is
irrelevant for our purposes.

(2) Since we choose v to be a real-analytic function, Lemma 4.2 does not apply di-
rectly. This, however, can be circumvented systematically by truncation. More precisely,
given M, there is a trigonometric polynomial Pps=Pp(8) of degree <M so that

v~ Parlloe <e™.

This follows from the fact that the Fourier coefficients of v decay exponentially. Hence,
if
(—A+AV(0) - E)R} < A™teM’,
as in the definition of (4.4), then also
(~A+APy ()~ E)FY <22~ 1M’

provided M =c(A) is large enough. A similar statement holds for the exponential decay.
Strictly speaking, one should therefore replace v by Py in the definitions (4.4) and (4.5)
with o(A)=M. In view of Lemma 4.2 these new sets are semi-algebraic of degree at
most Coo(A)7. For the sake of simplicity, however, we do not distinguish between v
and PM.

In this section, it is convenient for us to work with squares
Qu(z):={yeZ?: 21 -M <y1 <21+ M, 22—~ M < y2 <2+ M} (4.10)

rather than those defined in (2.1). This is relevant in connection with Figure 6, as will
be explained in the following proof.

LEMMA 4.4. Let 9>>0 be as in Lemma 3.3 and suppose that b, 9, are fized positive
numbers so that
0<bo<l and b+dy>14+30. (4.11)

Let No< Ny be positive integers satisfying
No(7,b, 0) < 100Ny < Nf

with some large constant Ny depending only on v, b and p. Assume that for any Np<
M< Ny and any AcER(M),

sup mes(Bgi’b(A, E)) <exp(—o(A)®) fori=1,2. (4.12)
0:;,E
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L

Fig. 5. Examples of partitions of Ay and regions W(z).

Assume moreover that

weE n QN;
NS NgNES
N dyadic

where Q is as in Lemma 3.1 and C1(b, 0)>>1/0 is a large constant depending only on b
and o. Then for all AeER(N),

sup mes[f2 €T : |Ga(8, E)|| > '] <e™™*,
6., FE

provided NOC '<N gN{’Cl, and similarly with 6, and 0y interchanged.

Proof. Choose My with Ny < My< N1, and let N be given by My=[N*®°] where £4>0
is a small number that will be specified below (C; will be chosen to be e5). Partition
Z? into squares {Q,} where each Q, is of the form Qs (z) and z belongs to the sub-
lattice 2M,Z2. Let

Ao=JA,, whereeach A,=Q.NAg,

be the resulting partition of Ag. The union here runs only over all nonempty A,. For
each such «, with the possible exception of at most five values of «, one has that A, €
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Fig. 6. Two good regions Ay and Ag meeting at one point.

ER(M') where Mqg<M’'<2M,. These exceptional « are given by the corners of Ag, see
Figure 5 where they are marked with arrows (observe that there A, might have very
small diameter). Let

A= U U B"AE).
Mo<M<2My A€ER(M)
AC[-M,M)?

By Lemma 4.2, A is the semi-algebraic sets of degree at most Co Mg* (see Remark 4.3),
and by hypothesis (4.12),

max sup mes(.Ag, ) < MJ exp(—Mg). (4.13)

1=1,2 0;
Fix some §€T?. By Lemma 3.3, and our choice of w,
#{(’I’Ll, ng) S [—N, N]2 : (91 +niwy, 02+TLQWQ) cA (mod Zz)} < N1-%0, (4.14)

Here ¢y needs to be chosen small enough, and then Ny large enough, such that condi-
tion (3.27) is fulfilled with B=M{* and 7 equal to the right-hand side of (4.13). We say
that A, is good if

(61+7’L1(JJ1,92+7’LQUJ2) ¢.A (mod Zz) for all (nl,ng)EAa.

Define the bad set A.CAg as

A= | Ae (4.15)
o bad
In view of (4.14),
#A, SMENT%, (4.16)

In addition, the at most six regions intersecting the corners are counted among the bad
set. An example of a possible bad set is given in the lower region in Figure 5 (the shaded
regions are supposed to be the good ones). Now consider the good set A¢:=Ag\A.
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and fix any z€A,CA¢. It will follow from Lemma 2.2 that the norm of the Green’s
function G¢(E) is not too large. In order to define the regions W(z) appearing in
that lemma, one needs to distinguish several cases. Evidently, Qs (z) intersects no
more than three other Ag, 8#ca. In case these regions are as in Figure 6, one lets
W (z):=Qun,(z)NA,. Otherwise, set W(z):=Qn,(z)NAS. A selection of such W(zx)
is shown in the right-hand region of Figure 5. It is easy to see that each W(z) is an
elementary region with Mo<o(W (z))<2M, satisfying dist(z, 0. W(z))>Mo—1 (here 0,
stands for the interior boundary relative to AS, cf. (2.5)). We want to call the reader’s
attention to an important detail in connection with the situation shown in Figure 6. Since
we are working with squares defined by (4.10), the point zo at which the two regions
A, and Ag meet belongs to at most one of them (in the left-hand situation of Figure 6
this point does not belong to either, in the right-hand situation it belongs to the upper
shaded square). Moreover, if it belongs to Ay, then it has no immediate neighbors in Ag.
For this reason the interior boundary of W (zg) belongs entirely to A,. Hence Lemma 2.2
with N=2M,, A=)"1e(2M0)’ and t=1v yields

IG (0, E)| S A~ MEelM)", (4.17)

if MZe~7Mo/2« 1. This bound is basically preserved inside a polydisk B(8,e~*°)CC2.
Indeed, by the standard Neumann series argument and (4.17),

IGas (8, E)| < IIlT-A(Va~Ve)Gac(8, E) 7' 1Gac (6, E)I<2M1Gac (6, B)Il,  (4.18)

provided |§’' —8|<e Mo, Define a matrix-valued analytic function A(8') on B(8, e Mo)
as
A(8')=Ra.H(8')Ra.~ R H(8')Ra: G (¢, E)Rac H(E')Ra..  (4.19)

In view of (4.18),
log |det A(8")| < Mo#A, < MEN1—%. (4.20)

Furthermore, Lemma 4.8 and (4.18) imply that
14(8") I S Gao (€', E)Il S €M A8) 1. (4.21)

Fix the variable #;=6, and let |, —8}|<e~Mo. Introduce a new scale M; so that M{=
[10My]. For each z€Ay define an elementary region W(z):=Qar(z)NAo. Applying
(4.12) at scale M; yields a set ©CT of measure

mes(@) < N2e~Mf < g=Mi/2 (4.22)
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and so that for any y€T\© the Green’s function Gﬁ;(r)(ﬁl, y, E) satisfies the conditions

of Lemma 2.2 for all zEAy. Lemma 2.2 with N=2M;, A=e(2M)" and t=1~ therefore
implies that
IGA, (81, 0|l S e™ for all yeT\O. (4.23)

By our choice of M; there is some yp for which (4.23) holds and so that |yo—082| < 55¢ .
In view of (4.21) this implies that

||A(917 yO)-l || 5 eMl,
|det A(61,0)| Z e M1 (4.24)
log |det A(61,y0)| = —M;|AL| > —M{ MZN1~%,

see (4.15). Recalling (4.20), there is the universal upper bound
log |det A(f1, 2)| S MENT™%  for all |z—yo| < 2e™Mo. (4.25)
Define the function
F(w):=det A(f1,yo+1e Mw) where |w|<2. (4.26)
Since A is analytic, log |F| is a subharmonic function on the disk Dg:= [|w|<2] satisfying
log |F(w)| < MEN'%,  log|F(0)| > —M; MZN'~%.

For any 0<r <2 the submean value property of log |F| implies that
1 27 )
ar | loBIF(re®)|ds 2 ~MMEN'
27 Jo
which in turn leads to the L'-bounds

/ [log |F(re'®)|| d¢ =2 / log™ |F(re®)| dop — / log |F(re®)|d¢ < My MEN'=% (4.27)

/[ ] llog |F(re'®)||r dr d¢ < My MZN1—%. (4.28)
r<2

As a subharmonic function, log |F'| has a unique Riesz representation on D=[|w|<1], see
Levin [21, §7.2):

log |F(w) =/Dlog|w—w'|du(w’)+h(w). (4.29)

u=(1/2w)Alog |F|>0 is a measure on D of mass bounded by, see (4.28),

2mu(D) = [ Alog]|F| < | / log|F|Ac| < 10g [P lp1(osy S MiMEN'—,  (4.30)
D
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where (>0 is a smooth bump function, supp(¢)C D2, (=1 on D. Furthermore, the
harmonic function A on D is given by

: 1 [ 1—72 ;
h(re?) = — 1 F“"do—/l 1—w@'| dp(w').
%) =5 | Tgresmrrgry e (10— [ tog 11— i du(w)
In particular,
sup |h(w)| < / llog |F(e9)|| df + u(D) < My MZN1~%, (4.31)
lw|<1/2

Combining the bounds on u and ~ with (4.29) yields

Ilog |F(t)] llsmof—1/2,1/2) S MiMEN' %,

NT (4.32)
MM

mes[te[—1,1]:|log |F(t)|—(log|F|)| > N*7%+7] < exp(~c

for any 7>0, where (log|F|) denotes the mean on [—%,1]. The constant c is an ab-
solute one provided by the John-Nirenberg inequality. Estimates (4.30), (4.31) and the
representation (4.29) imply

[(log |F1)| S My MEN'5.

Recalling the definition (4.26) of F', (4.32) therefore implies the bound

NT
mes[y € I :log|det A(6:,y)| S —MyMZN ~%+7] < e Moexp( —c s 1
MM

where I=(0,— e~ Mo, §,+ 1e~0) (this estimate could also have been obtained via Car-
tan’s theorem, see (21, §11.2]). If y is not in the set on the left-hand side, then

- 2 p1=6p+7
”A(glay) 1” SeclA*|ecM1M0N o .

Combining this with (4.21) and covering T by intervals I of size e~ yields
|G o6, 2, )| S e2Mo M MEN' =0+ (4.33)
for all y€T\ Sy, where
NT
mes(Sy, ) S exp (—c YA ) . (4.34)
q

Since Mo N¢ and M;x<N¢°/¢ this proves the lemma. provided

b 1-8p43 3 -3
Nb > Ni-botdeofetr 3o < N7-3c0/e,
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Choosing T=39+3¢¢/0+, there exists 4 >0 so small that
6
b> 1—60+3g+%,

see (4.11). Letting Cy=¢; !, this finishes the proof. 0

The following corollary combines the previous lemma with Lemma 2.4 in order to
obtain exponential off-diagonal decay.

COROLLARY 4.5. Suppose that oll the assumptions of Lemma 4.4 are valid. Further-
more, let Ny=|NE*| where Cy is the constant from Lemma 4.4. Then for all A€cER(N),

sup mes(Bgz_/’b(A, E)) <exp(—N¢)
0., E

for any Ny < NNZ, where v'=y—N~° §=6(b,v)>0.

Proof. Recall that C;>>1/p, so that it is possible to satisfy 100Ny< N{ gNé’Cl, as
required. Fix some N€[N1, N?] and Ag€ ER(N). Let My=N§ and define

A= U U B (A E).
Mo+1<LE2Mo+1 A €ER(L)
By Lemma 4.2 and Remark 4.3, A is semi-algebraic of degree at most CoM3*=N}*.
Choose ¢ small enough so that conditions (3.27) hold with Bx M}%. On the other hand,
we also require that My Np so that (4.12) is satisfied at scale Mp. This can be done
provided C is chosen large enough (in fact, inspection of the proof of Lemma 4.4 shows
that there £g=C]! was chosen sufficiently small to verify (3.27), so that one may set

£=¢p). Hence, for Ny large, we may apply Lemma 3.3 to conclude that for any choice of
9cT?

#{(n1,n2) €[N, N1%: (8 +n1w1, 02 +nows) € A (mod Z2)} < N1-%, (4.35)

Now suppose that A;€ER(M’) has the following property, where N1 +1< M’ <2N;+1:
for every z€A; the Green’s function Gy () (6, E) of the elementary region W(z):=
Qur,(z)NA; satisfies

IGw (2)(8, E)(z,y)] < e~ "2=4l for every yed W(z). (4.36)

Here the interior boundary 0, is defined relative to Aj, see (2.5). A standard application
of the resolvent identity then shows that

G, (8, E)(z,y)| < e M= ¥HOMo for every z,y€ Ay, lz—y| > 1M
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On the other hand, suppose that F; is a family of pairwise disjoint elementary regions A; €
ER(M') with M’ as above, so that for each A; there is at least one z€A; violating (4.36).
In view of (4.35), this implies that

#F < N17%, (4.37)

Now fix 8;. By Lemma 4.4, the f3-set where some A;C Ag with A;€ER(L), N1 <LK NZ,
violates

IG, (61,62, E)|| < (4.38)

is no larger than N8e~Ni’<e=N°. For 8, off this set Lemma 2.4 with M =Ny, >3,
implies that, see (4.37) and (4.38),

|Gao(8, E)(z,v)| < e~ Vle=¥l for every r,y€ Ay, |z—y|> iN,

with 7' =vy—N"9, as claimed. O

The following proposition is the main result of this section. It follows from Lemma 4.1
and Corollary 4.5 by means of induction.

PROPOSITION 4.6. Let v be a real-analytic function satisfying (4.2). Let we(Q,
see (4.6). Then for sufficiently large A>Xo(v,w) and all N> No(v,w) there is the esti-

mate

sup mes(Bgi’b(A, E))<exp(—oc(A)?) fori=1,2, (4.39)
01',E

for any A€ ER(N) with y=31log A and some constants 0<b, p<1.

Proof. Fix positive numbers b, g satisfying (4.11). Choose Ny sufficiently large so
that both Lemma 4.1 holds and we() N>No Qpn. Let C; be the constant from Lemma 4.4
and let Ag be so large that Lemma, 4.1 holds in the whole range [Ny, Ng ] with y=~¢:=
tlogA. In view of Lemma 4.4 and Corollary 4.5, the bound (4.39) holds for all N¢
[N1, N?] with y=7;:=7—N;°. One can now continue inductively applying Lemma 4.4
and Corollary 4.5 to cover the interval [N, N2] where Np=NZ and y=~y:=v; — N;°
etc. It is evident that always v> %*yo if Ny is large enough. a

Remark 4.7. Tt is clear that for (4.39) to hold up to scale N and A>Xo(No) where
Ao is some sufficiently large number, it suffices to assume that

we n Qar.
No<KMN
N dyadic
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Furthermore, for any >0 one can choose Ny such that

mes(Tz\ N QM) <e.
No<M
M dyadic

These properties will be relevant for the proof of localization in §6.

The following lemma is a standard fact that was used above. The simple proof is
included for the reader’s convenience.

LEMMA 4.8. Let M be the matriz

M_[B U]
lut ¢’

where B is an invertible (n xn)-matriz, U is an (nx k)-matriz, and C is a (k x k)-matriz.
Let A=C—U*B~'U. Then M is invertible if and only if A is invertible, and

AT S M S A+ IBTH2A+1A7HD,

where the constants only depend on ||U||.

Proof. This follows from the identity

I 01[B U][B! 0] [I U -
~UtB~! 1| |Ut C o I| {0 Cc-UB U]’

5. The elimination of the energy and semi-algebraic sets in T*

The final step to get localization is to establish the following key result on semi-algebraic
sets needed in the energy elimination argument. The significance of Proposition 5.1 in
connection with the elimination of the energy will become clear in the proof of localization
given in the following section.

PROPOSITION 5.1. Let ACT? be a semi-algebraic set of elements
(w,8) = (w1, w2, 01,62)

so that
deg A< B

and

mest(Au, ws,6,) <7, mesT( A wy0,)<n  for all sections. (5.1)
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Let
1
log B <« log K < log e (5.2)

Then there exists a set Fx of measure
mes Fx < K ~1/100 (5.3)
and such that for any w=(w1,w2)¢Fx CT? we may ensure that
{(w, niwy, nows) (mod Z*) : |ny|V|ne| < K}NA=2. (5.4)

The one-dimensional version of this result, which is given in the following lemma,
was established by Bourgain and Goldstein [7].

LEMMA 5.2. Let A;CT? be semi-algebraic, deg A, <B, mes A;<n so that (5.2)
holds. Then
B&: c
/ Z XA {w,nw)dw < —+ K*?mes A;. (5.5)
Tp.cy pn= . K
b nxK
Here Tp.c., refers to those points satisfying a Diophantine condition with parameter b.
The constant Cy depends on b.

For the detailed proof we refer the reader to [7], see Lemma 6.1. The origin of the
two terms on the right-hand side of (5.5) is easy to explain. In fact, observe that any
horizontal line can intersect A4, in at most B¢ many intervals. This follows from the
fact that any such section Ay, is again semi-algebraic of degree at most B, and therefore
consists of no more than B¢ intervals, see Definition 7.1. The first term in (5.5) arises if
the set A; consists of very thin neighborhoods of lines of slope =< K. Since no horizontal
line can intersect .4, in more than B¢ many intervals, there can be no more than B¢
of these neighborhoods. Since each of them projects onto the w-axis as an interval of
size <1/K, one obtains a contribution of the form B¢/K. This is sketched in Figure 7
by means of the steep lines on the left-hand side. On the other hand, if A; contains a
horizontal strip of width n (see Figure 7), then the contribution to the sum in (5.5) is
equal to K7. Observe that the first term in (5.5), which is usually the larger one since
mes A; is very small, derives from the “almost vertical” pieces of A4;. This intuition
also applies to the two-dimensional version stated in Proposition 5.1. More precisely,
let us suppose that A is contained in a small neighborhood of a zero-set [P=0] where
P(wy,wse,61,63) is a polynomial of degree B. Then we need to control the number of
times the hypersurface [P=0] is close to being vertical, i.e., where |VgP|<6|V,P| on
[P=0] with some small §>0. Lemma 5.3 is the required tool for this purpose.
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Fig. 7. The geometry of Lemma 5.2.
LEMMA 5.3. Let P(wi,ws,61,602) be a polynomial of degree B and §>0. Define
0:={(w,0)eT*: max |G, P| <6 max |0, PI}N[P=0].
i=1, i=1,

Then
mesz(Proj,, (%)) < BCS.

Proof. Let B=2U,UYV> where
0, = {(w,0) € T max |05, P| <60, PI} [P =0]
(this set is still semi-algebraic of degree <B). Take j=1 and consider the section

V1,4, CT3. Fix wy and write
ml,wz = U Ty

1,we
a<BC
with Uf , connected. We need to estimate the measure of the intervals
Ia = [a‘a? bOt] = Projwl(miwz) - T
There is a piecewise analytic curve v(s)=(wi(s),61(s),02(s)), s€[0, 1], such that
7(3) € m?,UJz’

wi1(0)=a,, wi(l)=by,
[4(s)| < BC. (5.6)
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The existence of such a curve with a power-like bound (5.6) in the degree follows from
Yomdin’s quantitative triangulation Theorem 7.4 in §7. Since

P(wi(s),ws,01(s),02(s)) =0
it follows that

By P(v(5))-w1(8) + B9, P-61(5)+ O, P-02(s) =0,

, 0. P|+106,P| ), 5
1(9)] < { g 2 T () < 55

from (5.6) and the definition of ;. Thus

1
[Ia] =ba—a0=w1(1)—w1(0) é/ |n| < BYS.
0

Hence
mesy[Proj,, (V1..,)] < BYS,
mestz(Proj,, (V1)) ZAmesT[Projwl(‘BLw)] dw, < B,
and the lemma follows. a

Proof of Proposition 5.1. Lemma 5.2 allows us to control the contribution to (5.4)
by those pairs (n;,ny)€Z? satisfying min(n;,n2) <K1/2. In fact,

_5_ xA(w1, w2, nyw, nows) dwy dws
O<7’L1<K1/2
na =<K

by (5.5) B¢
<Y /dwl [7+KC/XA(W1,W2,H1W1,92) dws db>

0<n < K1/2

< BCK~YV2L KCHY2 sup (mes. Ay, w,.0,)

w1,wsz,01

P eV pog-12y gor 1y < 1S,

We may therefore assume that min{n;,ng)>K 1/2 " Since mes.A<7 and since log B

1/2

log K, it suffices to consider the case where A is contained in an n'/“-neighborhood of a

zero-set [P=0], P(w1,ws,#,,0:) being a polynomial of degree less than BC. Take

§=K~10 (5.7)
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Let 9 be as in Lemma 5.3. Thus %'=Proj,, (D) is a semi-algebraic set in T? of degree
bounded by B¢, see Theorem 7.2. Since mes®’'< BC§, U’ lies within a §;=BC§1/2-
neighborhood of 9%’ and may therefore be covered by B¢47! disks of radius d;. The
total measure in w-space of the union of those d;-disks is thus at most

B96, < B¢K~1/%, (5.8)

Restrict next w to a d;-disk Q outside 2. Fix K'/2<ny,ny <K. We estimate (everything
being understood mod Z?)

mes|{w € Q : (w1, wa, nwi, News) € A < mes[w € Q : dist((w, wa, n1wi, nows), [P =0]) < 7).

Since QNY' =3,
max |Og, P| > 6 max |0, P (5.9)
in each point of [P=0]N(Q xT?). Let
[P=0]N(QXT?)=6,U6,,
G, =[P =0]N(QxT?)N[|8y, P| > |0s, P|], (5.10)
&y =[P =0]N(QxT*)N(|8y, P| < |4, P|].

It suffices to estimate
mes|w e Q : dist((w, nyw1, nawa), G1) < n'/?], (5.11)

where n;w; is understood mod 1. Restrict w; to an interval of size 1/n;, say [0,1/n1]
(by translation). Consider the segment

S = [(w1, w20, Mw1,020) : w1 €[0,1/n41]] C T, (5.12)

and denote by I" the intersection of &; with a ,/7-tube around S, see Figure 8. Then
one has
[=6.N[dist((w,8),S)<n?|= U TCa,

a< B¢

where I', are the connected components. Thus

rnes[w1€ [0, l/nl] : dist((wl, w2,0, M1W1, 9270), 61) < 7]1/2]
=mes[w; €[0,1/n] : dist((w1, w20, n1w1,020),T) < 771/2]

< Zmes[wle [0,1/n1] : dist((wr, w20, n1w1,02,0), Ta) < 171/2] (5.13)

< [IProj,, (Ta)|+27"/2].
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Fig. 8. The components of I' in a /7 -neighborhood of S.

Fix o and denote
I=Proj, (Ta), (5.14)

which is an interval. Let I’ be an 7'/2-neighborhood of I. Thus if (w,8)€l,, then
dist((w, 8), SN[wr € I']) <n*/?
and, from the definition of S,
Lo CI' X [|wa—wa o] <02} xny I’ x[|02— 02 0] < n*/?]. (5.15)

Denote
o=|I'|>n"2. (5.16)

The right-hand side of (5.15) is a (ox7'/2xn10xn'/?)-box that may be rescaled to
the unit cube by a (1/ox1/91/2x1/n;px1/5'/?)-dilation. Since T',, is semi-algebraic of
degree less than B, for given points Py, P €Ty, we may again by means of Theorem 7.4
obtain a curve y(s)=(w1(s), wa(s),61(s),82(s)) in T'y such that

' ; 6 |6
¥(0)=F, ~(1)=P, %WL—'M +M+|—2| < B€.

Since y(s)€&;C[P=0],

By P((8)) 61 (8)+ 8oy P+ oy + 89, P- 01+ 8p, P-62 = 0. (5.17)
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From (5.9) and (5.10),
(09, P)(v(s))| > 6[|0.s, P|+10w, P|]V |08, P, (5.18)
and hence from (5.17) and (5.18),
) |0y Pl 4100, P| /. . |05, P| c c c
) < ——5——"— (Jw1|+|w 2()<+B+ B<B
nh < PR Pl o)+ T ol < 5 (o4 V) B+
6:1(1)=6:(0)] S < BC
It follows that
. . 0B
diam(Projg (I's)) < —— (5.19)

é

Denote by J an n'/?-neighborhood of Proj, (I's). From (5.19), |J|<0B%/é. Clearly, if
(w1, ws, 61,02)ET,, then w; is at distance less than n'/2 from J/n;. Indeed, there is an

element (w},ws g,n1w],w20)€S at distance less than 5'/2 from (w,§). Thus

J
10y —niwi| <nt? = nied = w’len—
1

and |wy —w)|<n'/2. Therefore,
: |J| 1 QBC :
Proj,, (Ta)| <S4 47112 < 82 /2
[Proj,, (Ta)l TS
and, recalling (5.14), (5.16), (5.7),

e;
oB +5??1/2<BC 1/2

1
o< 510 K1/2-1/10 o+5m

which implies that p<6n/2. In conclusion,

|Proj,,, (Ta)| < cn*/?
(5.13) < B®p*/2,
(5.11) < KB®n'/2.

Summing over K'/?<ny,ng<K and the d;-disks disjoint from &’ gives the measure

estimate
51_2K2KBC771/2 <BCK4T]1/2.

From (5.8), (5.20), the resulting bound on the bad w-set is
BC(K—1/20+K47]1/2) <K—1/2l

from assumption (5.2). This proves Proposition 5.1.

(5.20)
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6. The proof of localization

In this section we prove Theorem 6.2 below. The scheme of the proof is very similar to
that in [7], and we refer the reader to {7] for further motivation and some details. See
also [10] and [8], where related arguments are used. We first prove a lemma that shows
that double resonances occur only with small probability. Throughout this section we
let BY?(A, E) be as in Proposition 4.6. Observe that this set depends on the frequency
vector w, although we do not explicitly indicate this in the notation. In this section we
shall make use of the sets 1y introduced in Remark 3.2, see (3.25). Observe that those
sets are semi-algebraic of degree at most 4 N® (each small square is described by 4 lines,
and there are at most N® squares in total).

LEMMA 6.1. For any pair of positive integers N, N define the set

D(N,N):={(w,8) €T*: for some E€R, ||(Hy(0)Iqy—E) !>,

(6.1)
and € B"*(A, E) for some A€ER(N)}.

Then for any constant Cy>21, all sufficiently large integers Ny and N, and A2 o(No),
the set

Avi= U DV,N)N N (QuxT?)

NxNC2 No<M<NC2
M dyadic

satisfies the requirements of Proposition 5.1 with K <exp((log N)?), log Bx<log N and
log(1/n)=< Ne.
Proof. Suppose (w,8)€ An. Then for some choice of N < N2, and some eigenvalue
B, of Hy(0)lgy,
9€B"*(AE;) for some A€ ER(N). (6.2)

More precisely, with E as in (6.1), E; was chosen such that |[E—E;|<e™V *. This is
possible because

(Hy (0)qq —E) ™' (| =dist(E, sp(Hy(0)qy))

by self-adjointness. Since the e~ 2-perturbation basically preserves the conditions in
the definition of the bad set, see (4.5), one arrives at (6.2). By the restriction on w the
measure of the set in (6.2) is at most exp(—N?), cf. Remark 4.7. Summing over the
possible choices of E; and A, one derives that

mes Ay < NC2NSe=N=:p,
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so that log K< log(1/n) for large N, as claimed. To verify the semi-algebraic condition in
Proposition 5.1, we apply the projection Theorem 7.2 below to the sets Ay =Projps(An),
An CRS, where

Avi= U DWW, N)n N (QuxT*xR),
NxNC2 No<M<NC2
M dyadic
D(N,N)i={(w,8, E)e T* xR | (Ho(0)Igy —B) '] > ™"

and € BY*(A, E) for some A€ ER(N)}.

It therefore suffices to show that Ay is semi-algebraic of degree at most N°. Since Qu is
semi-algebraic of degree at most 4 N8, this will follow if ’E)(N , N)CRS is semi-algebraic of
degree N. As in [7], this is done by expressing the Green’s function appearing in (6.3)
and (4.5) in terms of determinants via Cramer’s rule, and using the Hilbert—Schmidt
norm instead of the operator norm. This requires approximating the analytic function v
by polynomials, see Remark 4.3. O

THEOREM 6.2. Let v be a real-analytic potential satisfying (4.2). Given 0€T?, any
e>0 and any A=Xo(e,v) there is a set F.=F.(8,\)CT? so that

mes(T?\ F.) <e

and such that for any w€F. the operator (4.1) displays Anderson localization, i.e., the
spectrum is pure point and the eigenfunctions decay exponentially.

Proof. Without loss of generality, we shall let §=0. Given £>0, choose Ny large
enough so that
mes(T2\ N QN) < e
No<N
N dyadic

Applying Proposition 5.1 with dyadic N> Ny, Ax as in Lemma 6.1, and K=K (N)=
exp((log N)?), one obtains a set Fx. We shall prove the theorem for all

we N ON\Trw)-
No<N
N dyadic
For Ny large this will remove only ¢ in measure. Now fix such an w. By the Shnol-Simon
theorem [22], [23] it suffices to prove that generalized eigenfunctions decay exponentially.

More precisely, let 1) be a nonzero function on Z? satisfying

(H,(0)—E)yp=0 and |¢(z)| <1+]z|® for all z€Z?, (6.4)
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4K

A

Fig. 9. The squares and annuli in the proof of localization.

where E is arbitrary and ¢ >0 is some constant. Pick a large integer N and set N=N¢2,
Cy as in Lemma 6.1. First we claim that there is some square Qar(0) centered at zero
so that

1(Ho(0) g, —E) " | > eV for some M =< N. (6.5)

This follows from the fact that there is an annulus A at distance <M around the origin
of thickness 2N? (see the dashed squares in Figure 9), so that for every z€ A one has

(z1w1, Taws) € GV (QN2(0), E) (mod Z?).

The existence of this annulus is proved by means of Proposition 4.6 and the same semi-
algebraic considerations as above. More precisely, the number of z in a square Q(0) for
which the Green’s function of a square of size N2 centered at z is bad, is at most N'~% by
Lemma 3.3 and Proposition 4.6. Since N/N2>N!'=% for large Cs, there has to be some
annulus of thickness N2 which is free of bad points, as desired. In Figure 9 we have indi-
cated this good annulus by means of a solid line surrounded by dashed annuli. It follows
from (6.4) that for any cube Q

(Hu(0)lg -E)y =¢, (6.6)
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where £(y)=1(y) if y€Z*\Q and there is z€Q with |y—z|=1. Otherwise £=0. Hence
for any z€Z?,

Y@= D Gouw0,B)zy)v().
YEQ n2(z)
Y'EZ3\Q N2 (2)
ly—y'|=1

In particular, if z€ A where A is this good annulus, then

(z) Se ™,

which implies (6.5), see (6.6) (we are assuming here, as we may, that v>>1). By our
choice of w, see (6.1), therefore

(z1w1, Tawa) ¢ BYP(A,E) (mod Z?)

for every z such that |z1|V|z2|< K and any A€ ER(N). One now checks from Lemma, 2.2
and the resolvent identity that the Green’s function of the set U:=Qsx (0)\Qx (0) ex-
hibits off-diagonal decay, i.e.,

Gu (0, E)(z,y)| < exp(~lz—y|+O(N?)) if z,y€U. (6.7)
In view of (6.4) one has again
(Hy(0)[y —E)y =€,

where §~ is supported on points in Z2\U at distance one from OU. Let z€U such that
dist(z,0U)=< K. By the polynomial growth of ¢ and (6.7) one finally obtains that

pa)] <ele)?

provided N and thus K are large. ]

7. Semi-algebraic sets

The purpose of this section, which should be regarded as an appendix, is to introduce
semi-algebraic sets and to present those results from the literature that are used in this
paper.

Definition 7.1. A set SCR™ is called semi-algebraic if it is a finite union of sets

defined by a finite number of polynomial equalities and inequalities. More precisely, let
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P={P,..., P;}CR[Xy, ..., X,,] be a family of real polynomials whose degrees are bounded
by d. A (closed) semi-algebraic set S is given by an expression
S=U N {R": Ps;i0}, (7.1)
7 leﬁj
where £;C{1,...,s} and sj;€{>,<,=} are arbitrary. We say that S has degree at most

sd and its degree is the infimum of sd over all representations as in (7.1).

The projection of a semi-algebraic set of R¥*! onto RF is semi-algebraic. This is
known as the Tarski—Seidenberg principle, see Bochnak, Coste and Roy [6]. The currently
best quantitative version of this principle is due to Basu, Pollak and Roy [5], [4]. For the
history of such effective Tarski-Seidenberg results we refer the reader to those papers.

THEOREM 7.2. Let SCR™ be semi-algebraic defined in terms of s polynomials of
degree at most d as in (7.1). Then there exists a semi-algebraic description of its pro-
jection onto R™! by a formula involving at most s**d°"™ polynomials of degree at

most d°™ . In particular, if 8 has degree B, then any projection of S has degree at
most BC, C=C(n).

Proof. This is a special case of the main theorem in [5]. O

Another fundamental result on semi-algebraic sets is the following bound on the sum
of the Betti numbers by Milnor, Oleinik and Petrovsky, and Thom. Strictly speaking,
their result only applies to basic semi-algebraic sets, which are given purely by inter-

sections without unions. The general case as in Definition 7.1 above was settled by
Basu [3].

THEOREM 7.3. Let SCR™ be as in (7.1). Then the sum of all Betti numbers of S
is bounded by s™(O(d))". In particular, the number of connected components of S does
not exceed s™(O(d))".

Proof. This is a special case of Theorem 1 in [3]. O

Another result that we shall need is the following triangulation theorem of Yomdin
[26], later refined by Yomdin and Gromov [20]. We basically reproduce the statement of
that result from [20], see p. 239.

THEOREM 7.4. For any positive integers r,n there ezists a constant C=C(n,r)
with the following property: Any semi-algebraic set SC[0,1]*CR"™ can be triangulated
into N<(deg S+1)C simplices, where for every closed k-simplex ACS there exists a
homeomorphism ha of the reqular simplex A*CRF with unit edge length onto A such
that ha is real analytic in the interior of each face of A. Furthermore, ||D,ha||<1 for
all A.
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