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1. Introduction

The study of non-commutative topological dynamical systems, in other words, automor-
phisms of C*-algebras, goes back a long way. Among the most important invariants
of such systems is entropy, first introduced in the operator algebra context by Connes
and Stgrmer in [13]. (See [40] for an extensive survey of this subject.) In this paper,
we deal with the non-commutative generalization of topological entropy, discovered by
Voiculescu [44] for nuclear C*-algebras and extended by Brown [7] to the exact case.
Although this entropy has been computed in many examples, we are very far from a
good understanding of its behavior. For example, to this day we do not know in full
generality the exact value of the topological entropy ht{a®g) of a tensor product of two
automorphisms. In general the inequality ht(a®8)<ht(a)+ht(F) is known. Equality is
only known to hold when both « and 8 satisfy a CNT variational principle.

In this paper, we address four general types of questions regarding topological en-
tropy.

The first question concerns the behavior of topological entropy under free products.
The precise question is the value of ht(a*(3) of the topological entropy of the (possibly
amalgamated) reduced free product automorphism a*8. The main theorem of this paper
states that ht(a*3)=max(ht(c), ht(3)), if the free product is with amalgamation over a
finite-dimensional C*-algebra. One surprising feature of this result is that the answer is
precise—this is to be contrasted with the situation for tensor products. Although the
free product of C*-algebras is more complex than the tensor product, it seems to behave
more like the direct sum for the purposes of entropy, which is, curiously, close to its

The first and third authors were partially supported by NSF postdoctoral fellowships. The second
author was partially supported by NSF Grant DMS 0070558. The first author was an MSRI Postdoctoral
Fellow.



2 N.P. BROWN, K. DYKEMA AND D. SHLYAKHTENKO

behavior for the purposes of K-theory. One direct consequence of our result is that the
free shift on an arbitrary reduced free product *;cz(A, ¢) has zero entropy.

Giving a bound on the topological entropy of a free product of two automorphisms
can be considered a refinement of the result [19] that the reduced amalgamated free
product of two exact C*-algebras is exact. Indeed, exactness of a C*-algebra B is the
statement that ht(id: B— B) <+00. The reader will find that our proof is related to the
argument given in [20] for the exactness of reduced amalgamated free products.

The second general question concerns the Connes—Narnhofer—Thirring (CNT) varia-
tional principle. The Connes—Narnhofer-Thirring (CNT) entropy [12] is a generalization
to non-commutative measure spaces of the classical Kolmogorov-Sinai entropy. An auto-
morphism « is said to satisfy the CNT variational principle if its topological entropy is
equal to the supremum of the CNT entropy computed with respect to all invariant states.
Although this principle fails for general non-commutative dynamical systems, we show
that if two automorphisms o€ Aut(A) and F€ Aut(B) satisfy the CNT variational prin-
ciple, then so does a*g.

The third general question concerns embeddings of dynamical systems. Kirchberg
has shown that any separable exact C*-algebra can be embedded into the Cuntz algebra
on two generators. We show that any nuclear C*-dynamical system can be covariantly
embedded into the Cuntz algebra O in an entropy-preserving way.

The last question concerns the possible values of entropy that can be attained by
automorphisms of a given C*-algebra A, i.e., the set TE(A)=ht(Aut(A)). This is clearly
an invariant of A. For instance, TE(A)={+00} if A is not exact; TE(A)={0} if A is
finite-dimensional. We show that TE(O, )=[0, +0o]. Thanks to Kirchberg’s absorption
results, this implies that any separable purely infinite nuclear simple C*-algebra A admits
an automorphism with any given value of entropy; i.e., TE(A)=[0, +0].

The main result of this paper, computing entropy of amalgamated free products
of automorphisms, applies only to the case that amalgamation takes place over a finite-
dimensional subalgebra. Our results are likely to extend to the case of amalgamation over
an arbitrary C*-subalgebra, if the following question can be answered in the affirmative:

Question 1.1. Let 01— E - B—0 be an exact sequence of C*algebras, which
is split (i.e., there exists a *-homomorphism 7: B—FE so that mon=idg). Let a be an
automorphism of E so that «(I)=I; denote the resulting automorphism of B by a.
Assume that nea@=aen. Is it true that ht{a)<max(ht(a), ht(a|r))?
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2. Preliminaries

2.1. A review of topological entropy. Let A be an exact C*-algebra and let wCA be a
finite subset. Fix a faithful representation 7: A— B(H). Define the set CPA(A) to be
the set of triples (®, ¥, X), where X is a finite-dimensional C*-algebra, and ®: A— X
U: X — B(H) are contractive completely-positive maps. For >0, define

rep(w, €) = inf{rank(X) : (®, ¥, X) € CPA(A) and ||Uo®(a)—7(a)| <e for all acw}.

(This quantity is independent of the choice of m, cf. [7].) If a€Aut(A) is an automor-
phism, then its topological entropy ht(«) is defined as

1
sup sup limsup — log rep(wU...Ua"™  (w), £).
wCA € mn-oco N
This definition, obtained in [7], gives the same quantity as Voiculescu’s original definition
of dynamical topological entropy [44] for nuclear C*-algebras A. We summarize below

some properties of ht{«), which we will need in this paper. The proofs can be found
in [7].

THEOREM. Let a€Aut(A) be as above. Then:

(1) ht is monotone: if BCA and a(B)CB, then ht{a|g)<ht(a).

(2) If A=UA,, with A, subalgebras, A,CAny1 and oAn)CAyn, then ht(a)=
lim,, ht{|4,).

(3) If BeAut(B), let a®@BcAut(ARuyinB) be the tensor product automorphism.
Then ht(a®8)<ht(a)+ht(8). If A contains an a-invariant projection, then ht(a®5) >
ht(53).

(4) If peAut(B), let adBecAut(A®B) be the direct sum automorphism. Then
ht{a®F)=max(ht(a), ht(G)).

(5) If e Aut(A) commutes with «, i.e., Boa=ao3, then a extends to the obvious
automorphism ac€Aut(AxgZ). Then ht(a)=ht(a).

2.2. Amalgamated free products. Let D be a unital C*-algebra. Recall that a D-
valued non-commutative probability space is a C*-algebra A, containing D as a unital
subalgebra, and endowed with a conditional expectation F: A—D.
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Let now A; and A, be two unital C*-algebras with a common unital subalgebra D
and with conditional expectations E;: A;— D, so that the GNS representation associated
to each E; is faithful. Then there exists a C*-algebra A, generated by A; and A; (in
such a way that the copies of D inside A;CA are identified), a conditional expectation
E:A— D, and such that A;CA are free with respect to E (see [45]), and E gives rise to
a faithful GNS representation of A. The C*-algebra A is the reduced amalgamated free
product over D of (Ay, E;) and (As, E»), and is denoted

(A, E) = (A1, E1}*p (A2, E2). (2.1)

When the conditional expectations E; are clear from context we may write A=A1*p As.
In the case that D=C1C A, A5, then F1, E3 and F are states and A is the reduced free
product of A; and A, denoted simply

(A, E)= (A1, E1)*(As, E3). (2.2)

Moreover, in the situation of a free product (2.1) or (2.2), one has conditional expectations
®;: A— A, and ®5: A— Aj such that E;jo®;=F.

Definition 2.2.1. Let (A, E: A—»D) be a D-valued non-commutative probability
space. We say that a€Aut(A) is an automorphism of this space, if (i) a(D)=D and
(il) acE=Eoq.

Notice that in the case that D=C, an automorphism of a D-probability space A is
simply an automorphism of A, fixing the state E: A—D=C.

Assume now that (A;, E: A;— D) and (A, Ex: A,— D) are D-probability spaces.
Assume further that o;€Aut(A;) are D-space automorphisms, and a;|p=as|p. Then
there is a unique automorphism a*as: A1*p As— A1*p Ag satisfying

(al*QQ)IAjCAl*DAz =aj, j=1,2.
We will need the following theorem of Blanchard and Dykema.

THEOREM [4]. Let D and D be unital C*-algebras, let (Ay, E1) and (Ay, Es) be D-
probability spaces, and let (A1, E1) and (1712,1732) be D-probability spaces. Assume that
the GNS representations associated to E; and E]- are faithful (j=1,2). Let

(A,E)=(A1, E1)*p (A2, Es),

(A, E) = (A1, E1)*5 (A, E»).
Suppose that Tp: D=Disa (not necessarily unital) injective x-homomorphism and that
there are injective *-homomorphisms m1: Ay — Ay and mp: Aa— Ay such that Tpol;=

Ejom;. Then there is an injective x-homomorphism m: A— A such that 7la,=m; (§=1,2)
and Eor=E.
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2.3. K-theory for reduced free products. Thanks to fundamental work of E. Germain
on K-theory of free products, one has the following six-term exact sequence for free
products of nuclear C*-algebras.

THEOREM [22], [21], [23]. Let A and B be unital nuclear C*-algebras and ¢€S(A),
weS(B) be states with faithful GNS representations. Let C=(A,$)x(B,v), and let
ta: A—C and 1g: B—C denote the canonical inclusions. Then there is an exact sequence

Z
I (ta)st(eB)« (l)

Kl(C) -~ Kl(A)@Kl(B)

1-[14]®—[15] K()(A)@K()(B) (ta)et+(tB)x KO(C)

Moreover, if both A and B satisfy the Universal Coefficient Theorem of Rosenberg and
Schochet (see e.g. [3]) then so does C.

2.4. Cuntz—Pimsner algebras. Let A be a C*-algebra, and H be a Hilbert bimodule
over A. Assume that H is full, i.e., (H, H) 4 is dense in A. Let

F(H)=A® @ H®",

nz1

and for £€ H, let

UE:F(H)— F(H),
1) €1®...08, =ERE1®...Q&n.

The Cuntz—Pimsner C*-algebra E(H) (cf. [33]) is then defined as C*(I(§):£€H). It is
not hard to see that

WO = (€ Oa,

and hence A=(H, H)C F(H), acting on the left of F(H). The projection from F(H)
onto AC F/(H) gives rise to a conditional expectation E: E(H)— A. We summarize some
of the properties of E(H) below; the proofs can be found in [33], [37] and [20].

THEOREM. Let H and A be as above. Then:

(1) If KCH is a Hilbert A-subbimodule which is full, then E(K) is canonically
isomorphic to C*(I(£): F(H)— F(H) such that £EeK)CE(H).

(2) Let H' be another full Hilbert A-bimodule, then E(H®H')=FE(H)xsE(H'),
where the reduced free product is taken with respect to the canonical conditional expecta-
tions from E(H) (resp., E(H')) onto A.
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(3) Assume that @: H—H is a linear map so that for some a€Aut(A),
&(a’l'g'a2) :a(al)'a(é)‘a(aa)? a17a2€A7 §€H, (23)
(@(&1),a(€2))a=a((&1,62)4), &, &€H. (2.4)
Then there is a unique automorphism E(a) of the A-probability space (E(H),E:

E(H)—A) so that E(a)|acemy=a and E(a)(l(§))=1(a()). The automorphism E(&)
1s called the Bogolyubov automorphism associated to &.

2.5. Some examples of Bogolyubov automorphisms. In the course of proving the main
theorem of the paper, we will encounter a particular class of Bogolyubov automorphisms
of E(H), which we will presently describe. Let D be a C*-algebra and (4, E: A—D) be
a D-probability space. Let

K°=A®A

(algebraic tensor product), and endow K° with the A-valued inner product given by
(a®b,a'®b' )4 =b*E(a*d' )b/, a,a’,b,b€A.

Denote by Kp the Hilbert A-bimodule obtained from K° after separation and comple-
tion. Another description of Kp is as the internal tensor product Kp=L?(4, F)®p A.
Notice that any automorphism « of the D-probability space A extends to a linear map
a: Kp— Kp satisfying equations (2.3) and (2.4).

THEOREM [35]. E(Kp)=(A,E)*p(D®T,id®vy), where T denotes the Toeplitz al-
gebra (the algebra generated by the unilateral shift on [>(N)), and ¢: T—C is the vacuum
state (corresponding to the vector 6,€1?(N)). Moreover, E(&) corresponds in this iso-
morphism to ax((a|p)®id).

Let (A, E: A— D) be a D-probability space, and let a be an automorphism of this
D-probability space. Assume that D is finite-dimensional. Let ¢ be an «|p-invariant
faithful trace on D. Consider the Hilbert (A, A)-bimodule

H=I%A,¢-E)QcA,
together with the vector £=1®1€ H and the inner product
(@1®a2,b1®b2) = (a1,b1) 12(4,poE) A3 b2.
We will henceforth also write ¢ to mean ¢oF. Let U: H— H be given by
U(r®a) =V (z)®ala),

where V:L%(A, ¢)—L?(A, ) is the unitary induced by a: A—A. Then UaU*=a(a)
where @ and a(a) act on the left of H.
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LEMMA 2.5.1. There exists a vector (€H, with the following properties:
(1) d¢=(d for all deD,

(2) U¢=¢,

(3) (¢,aly=E(a) for all acA.

Proof. Let U(D) denote the unitary group of D, endowed with Haar measure p. Let

¢'= wéu* dp(u).
uelU(D)

For each welU(D), we get

Y VRN § S N,
ueU(D) wwel(D)

so d¢'=('d for all de D. Furthermore,

¢ = U (usu”) du(u) = / a(u)- 1®a(u*) dp(u)
ueU(D) uwelU(D)

[ atu)éa(u’) dutu) ="
ueU(D)
Lastly, for a€ A, set

o(a) = (¢ a¢) = | (B8 )

:/ up(uav)v*du(u) dp(v)

s

:/ dvu*a)uv* du(u) du(v)
= / _ d(wa)w"dp(w) dp(v)
_ / (wa) w* du(w).

Assume now that E(a)=0, i.e., ¢(da)=0 for all de D. Then

<D(a)=/¢(wa)w*du(w):0.

Since whenever veU (D),

B(v) = /w (wv)w* du(w) = / $(uyvu” dp(u) = vB(1),

U=wv
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and any d€D is a linear combination of unitaries from U(D), we get that
&(d)=d®(1) forall deD.
Since for any a€ A, a=(a— E(a)}+ E(a) and E(a)€d, we get that
®(a) =P(a—E(a))+P(E(a)) = E(a)®(1).

We also have d®(1)=®(d)=(¢’,d¢")=(¢’,{'d)=®(1)d. Hence ®(1) is in the center
of D; moreover, B(1)=(¢’,¢")>0 and a(®(1))=a((¢',¢'))=(U¢,UC)=(¢',¢') =(1).
We claim that ®(1) is invertible. Writing D=@P M, as a direct sum of matrix algebras,
we find that

(1) = p(u)u* dp(u) = D r,
uweU(D)

where

Q)= a1, - Tr(u)u dp(u),
" u€U(ng)

and oy >0 is related to the value of ¢ on the minimal projection of D corresponding
to the kth matrix summand in the direct sum decomposition of D. To show that ®(1)
is invertible, it is sufficient to show that cx= ueU(k)’I‘r(u)u* du(u) is a strictly positive
scalar for all k>1. Repeating the argument above with D replaced by M}, we find that
¢ is in the center of My and is non-negative. Furthermore,
o) = [ o) T dute) = [ [T Pduu) >0
u€U(k) w€U(k)

since the subset of u€ M}, with Tr(u)#0 has non-zero measure.

Now let (=®(1)"1/2¢’. Then U¢=U®(1)~"1/2U*U¢'=®(1)~1/2¢'=(; for all deD,
d¢=d®(1)7Y/2¢'=&(1)~1/2d¢’' =®(1)~1/2¢'"d=(d; and for all a€ A,

(¢.a0) =(@(1)7V2¢", a®(1) 73"y = (¢, @(1) T *a®(1) V2
=o(2(1)"/2ad(1)"1/?)
=®(1)"/?E(a)®(1)"/2®(1)
= E(a),

as desired. O

COROLLARY 2.5.2. Let « be an automorphism of a D-probability space (A, E: A—D)
with dim(D)<oo. Assume that E: A— D gives rise to a faithful GNS representation. Let
¢ be an a-invariant trace on D. Consider the automorphism B=axid on B=(A, ¢ E)*T,
where T is the Toeplitz algebra with its vacuum state. Consider the automorphism
vy=ax*(a|p®id) on C=(A,E)*p(DQT ). Then there exists a covariant embedding of
(C,v) into (B, 3).
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Proof. Let H be as above. Consider the Cuntz—Pimsner C*-algebra E(H ), generated
by A and the operators [(h) for h€ H. Then

B=E(H)=C*(4,l(h): he H) = C*(4,1(€)).

The automorphism S is identified with the Bogolyubov automorphism E(U): indeed we
have f(a)=a(a), acA, and E(U)({(a®b))=I(U(a®b))=Il(a(a)@a(b))=a(a)l(§)a(b)=
B(al(€)b). Choose ¢ as in Lemma 2.5.1. Let L=I(¢). Then L*aL={((,a()=E(a). Let
K=ACACH. It follows that C*(A, L)=C*(aLb: a,bc A)=C*(I(h): he K)=E(K). It is
easily seen that the map a(b—a®b defines an isomorphism of K with the A-bimodule
Kp defined in §2.5. Hence by the results of that section, C*(A, L)=C. Moreover, since

E{U)a)=a(a), a€A,
EU)(L)=KU(Q)) =) =L,

we get that E(U)|c«a,0)="7- |

3. Topological entropy in certain extensions

The main result of this section gives an estimate of topological entropy in certain exten-
sions. We begin with a lemma which gives a way of estimating the é-rank of finite sets
in an extension.

Consider a short exact sequence 0—I— E-5B—0 where E is a unital exact C*-
algebra, and assume that there exists a unital completely positive splitting ¢: B—E (i.e.,
mop=idp).

LEMMA 3.1. Let I, E, B, m and ¢ be as above. Given £>0 there exists a 6 >0 with
the following property: if w={o(b1)+z1,...,0(bs)+xs} CE is a finite set containing the
unit of E and such that b,e B, z;€1 and ||b;|, |=i]|<1, 1<i<s, and if 0<e<]1E is an
element of I such that ||[e, o(b)}|, |zi—exill, |zi—zsef| <0 for 1<i<s, then

repp(w, 30¢) < rep; (e "wel /™, ) +repg (n(w), ©),

for any n>1/e.

Proof. Fix >0. By the lemma in [1, p. 332] we can find a >0 such that for every
pair of elements f, ¢ in the unit ball of E such that f>0 we have the implication

If.alll <8 = |l[fY2% g)ll <e.
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Let (5:min(5, 1€7).

So assume that w={g(b1)+x1,...,0(bs)+z,}CE is a finite set such that b;€B,
z; €l and [|b;], [|lz;]| <1, 1<i<s, and 0<e<1g is an element of I such that ||[e, o(b;)]]],
lz: —ex;ll, |lzi—xiel| <6 for 1<i<s. By our choice of § we then have ||[e'/2, o(b;)]||,
(1 —e)'/2, o(bi)]ll <e for all 1<i<s.

We also claim that ||[e}/2, 2;]|| <e for all 1<i<s. To see this we first note that since
e<e!/? we have that 1z —e>1g—e!/2. Thus

le'2z—a||? =|lz*(1—€"/* 2] < le* (15 —e!/?)z| < =" (1~ ) 2] < o —ex]|
for all zeI with ||z||<1. Similarly, |Jze!/2—z||<||z—ze|| and hence
162, walll < M2 =l + e )| < N2+ e~ 2 < e

Since 0<e<1g some routine functional calculus shows that ||e!/2+1/" —el/2||<2/n
and |2/ —¢||<2/n. Combining these inequalities, the inequalities in the previous
paragraphs and a standard interpolation argument we get

lI[e/2F1/™, o(b:)]|| < 4/n+e,
I[e!/2F/™ 2| < 4/n+e,
lo(bi)e' /™ — o(b;)el < 2/n,

|zt —zie] < 2/n.

These four inequalities will be needed at the end of the proof.

Assume that ECB(H) and BCB(K). By Arveson’s extension theorem we may
assume that o: B—+ECB(H) is defined on all of B(K) (and takes values in B(H)).
Now choose (¢y, ¢, D1)€ CPA(B) such that @20 by (b;)—bi] <€, 1<i<s, and rank(D; )=
rcpg(m(w),€). Using the techniques in the proof of Proposition 1.4 in [7] we may re-
place the (not necessarily unital) maps #1 and ¢, with unital maps ¢1: B—D; and
¢2: D1 — B(K) such that ||¢oo¢1(b;)—b;||<14e. (Here we use the facts that 1gpem(w)
and b <1, 1<i<s.)

Similarly, choose (11,12, D2)€ CPA(I) such that

||¢2°¢1(61/"(bi+xi)el/")—el/"(bi+zi)el/"|| <e,

1<i<s, and rank(D;)=rcp, (e!/"wel/" ). By Arveson’s extension theorem we may as-
sume that 1, is defined on all of B{(H).
Define x;: E—Dy® D> by

X1(y) = ¢1(m(y)) D (e "ye'/™)
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for all ye E, and x2: D1®D3;— B(H) by
X2(SBT) = (Lp—e)"20(¢2(8)(1z—e)/*+ '/ y(T)e/?

for all Se Dy, T'€D;. Since we have arranged that ¢. is unital (and g is unital by assump-
tion) we see that x2(1p,®1p,)=1g—e+e'/?1y(1p,)e'2=1g—(e/?(1p—2(1p,))e'/?).
Since v, is a contractive completely positive map, this shows that x2(1p,®1p,) is a pos-
itive operator of norm less than or equal to one. Since it is clear that x» is a completely
positive map this, in turn, implies that x2 is also a contractive map (see [31, Proposi-
tion 3.5]).

Hence (x1,x2, D19 D2)€ CPA(E) and
rank(D1® Dy) = repy (el "wel/™, e)+rep g ({n(w)}, ).

Thus we only have to check that |x2ox1(0(bi)+a;)—0(b;)—i]| <31le for 1<i<s. But,
letting y=p(b;)+x; we have

2o x1 (%) =yll = (1 — €)' 0($2(¢1(5:))) (L —€) /2
+e o (e (o(bs) +ai) e/ ™) /2 — o(b;) — il
<N (1e—e)2o(d2(d1(b:)(1p—€) />~ (1p—€)/0(b:) (1 —e)/?|
+le! 2ot (e (o(bi) +ai) et/ M) e /2
—e! (e (o(bi) +:) el /™) e
+(1e—e)20(b:) (1 —e) /24" +2/2% (o(b;) +3;) e F2/2n
—o(b;) — 4|
<15e+([(1s—€)'/2, 0(b)][|+ 11"+, o(be)] ||+ | [ /27, & ]|
+o(b:)(1m—e)+(o(bi)+z:)e /™ — p(bs) — |
<18e+8/n+||o(b;) e T2/ ™ —o(b;)e|| + |z e} 2" — ;€|
<18e+12/n.

Hence for any n>>1/¢ we have the desired inequality. O

Remark 3.2. The previous lemma is easily generalized to arbitrary extensions,
though a precise formulation is somewhat awkward (and does not appear to be use-
ful for entropy calculations). The idea is that if E is a unital exact C*-algebra then the
quotient map w: E—B is always locally liftable (cf. [25, Proposition 7.2]). Hence the
d-rank of any finite subset of E can be estimated in terms of finite subsets of I and B.

Though it will not be needed in what follows, it seems appropriate to point out the
following application.



12 N.P. BROWN, K. DYKEMA AND D. SHLYAKHTENKO

PROPOSITION 3.3. With I, E, B, © and o as above, let a€ Aut(E) be an automor-
phism such that a(I)=I, and let @€ Aut(B) be the induced automorphism. Assume that
goa=arop and there exists an approzimate unit {ex}C1I such that a(ex)=ex for all X
(which happens, for example, if there exists a strictly positive element h€l such that
a(h)=h). Then

ht(a) = max(ht(a|r), ht(&)).

Proof. By {7, Proposition 2.10] it suffices to show the inequality
ht(a) < max(ht(a|7), ht(&)).

Let >0 be given and w={o(h))+x1,..., 0(bs)+xs} C E be any finite set containing
the unit of E and such that [[b;], [[z:]| <1, 1<i<s. Let {ex}C I be an approximate unit
such that a(ey)=e, for all A. Since we can manufacture a quasicentral approximate unit
out of the convex hull of {e,} [1], we may further assume that {e,} is quasicentral in £
(and still fixed by «).

Choose §>0 according to the previous lemma and take A large enough so that
Illex, o0l llzi —eazill, ||z —ziex|| <6 for 1<i<s. Since af(ey)=ey for all jEN it is
clear that ||[ex, @/ (e(b:)]|l, | (z:) —exa?(z;)], [|@? (zi) —ad(z:)exl| <6 for 1<i<s and all
F€N. Hence letting w;ze}\/ k
rep(wU...Ua™(w), 30¢) is bounded above by

wei/ kI for some k>1 /€, the previous lemma implies that

rep(wrU...Ua™ Y (wy), €) +repg(m(w)U...ua@™ (r(w)), €),
which is bounded above by
2 max(repy(wrU...Ua" Hwy), €), repg (r(w)U...ua™ H(r(w)), €)).

This inequality implies the result. O
The next lemma is inspired by §5 in [43].

LEMMA 3.4. Let FCB(H) be a finite set of self-adjoint contractive operators on
a Hilbert space H. Let P be a projection in B(H), of rank l<oo. Then for any 6>0,
there exists a positive finite-rank contraction X€ B(H) so that

(1) XP=PX=P,

(2) 11X, T)I<$ for all TEF,

(3) the rank of X is no bigger than I-(|F|+1)%/°+1.

Proof. Denote by K1C H the range of P. Define recursively

K, =span{K,_1U | TKn_1}.
TEF
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Let g=|F| be the cardinality of F. Then K, has dimension at most ¢+1 times the
dimension of K,,_1, so that dim K,, <I-(¢+1)".

Let P, be the orthogonal projection onto K,; then P, are clearly an increasing
sequence, and P, P=PP;=P=P, for all i. Let

1
Xn:E(P1+...+Pn).

Then X,P=PX,=(PP;+..+PP,)/n=P for all n. Note that the rank of X,, is the
same as that of P,, which is bounded by !-(g+1)™.

Set Q,=P,—P,_1, @Q1=P;. Since TK,,C K1 and thus TP,=F, .1 TP,, if m—n>2
then we have Q. TQ,=QnTP,Qn=QmPri1TP,Qn=0 for all TEF. Since T is self-
adjoint, also @,7Q,,=0 if m—n>2. Hence Q,TQ,,=0 if [n—m|>2. Let Z be the
orthocomplement of D?n in H. Then in the decomposition H=P Q, HDZ, each Te F
has the form

TQr TQ: 0
Q2TQ; Q2TQ2 Q2TQ3 0
0 Q3TQ2 Q3TQ3 Q3TQ4

?

0
0
i.e., it is a “block tri-diagonal” matrix. Hence using the convention Qo=0 we have the
identities
QuT= Y QuTQnijs TQn= Y Qni;TQn
j=-1,0,1 j=-1,0,1
Now

1 1 n—i+1
Xn=Q1+(1—E)Q2+~-+EQn Z Qza

i=1

so that for any T'eF,

X, T= Z lor= ¥ YOm0

j=-1,0,11i=1
Similarly,

rX,=Y 0= Y Y e

=1 7=-1,0,1:i=1

Z Zn +1 jQZTQZ+]

j=-1,0,14=1
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Hence
n . . .
n—i+1l)—(n—i+1-
X T-Tx|=| Y 3ol ) 0.1Qus,
j=—1,0.1 i=1
n .
_ J
=l > > cQiTQiy;
. L
7=-1,0,1i=1
< Z %HZQ:‘TQHJ‘
j=-1,0,1 i
gl _ 2
cx -2
o

The last inequality is due to the fact that for a fixed j, the operator Y Q;T'Q;4; is a block-
diagonal operator, with the blocks having orthogonal ranges, so that || > Q;TQit+;||<

max{[|Q;TQi+;|I}<1.
Choose the smallest integer n with n>>2/§, and set X =X,,. Then ||[X,T]||<2/n<d;
by construction, X P=PX = P and the rank of X is bounded by [(¢g+1)"<l(g+1)?/°+1. O

We finally come to the main result of this section.

THEOREM 3.5. Let A, BCB(H) be unital ezact C*-algebras such that
BNK(H)={0} and C=B®l1+K(H)®ACB(H®H).

For any two unitaries V,We B(H) such that AdV(B)=B and AdW(A)=A, the unitary
U=V®W has the property that AdU(C)=C and

ht(Ad U|c) < max(ht(Ad V|5), ht(Ad W|4)).

Proof. We have a short exact sequence
0->K(H)®A—-C 5L B—0 (3.1)

with splitting g: B—C given by p(b)=b®1.

Let kq,....,kn€K(H), a1, ...,an€A and by, ...,bny€B be self-adjoint elements, each
of norm at most 1, so that each k; has finite rank. Let L be the sum of the ranks of
ki,....,kn. Let

w={k;®Ra;+b;®1:1<i< N}

Fixing £>0 and a positive integer n, let

w(n) =wU(AdU)(w)U...u(AdU)" " (w)
={1}W{V"k,VT7QWTa,W"+V"h;V "®1:1<i< N, 0<r<n—1}.
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Then the sum of the ranks of
koo ks, VI VT v e

is at most n.L, so there exists a projection P of rank nL so that PV"k; V™ "=V"k;V"P=
VTk; V=" for all j=1,...,N and r=0,...,n—1.
Consider the collection

F={by,... by }U..u{V" o, V=70 v lpy v (nm by

of at most nN self-adjoint operators on B(H). Let § be as in Lemma 3.1 for the given
value of € and the short exact sequence (3.1). By applying Lemma 3.4 with these choices
of §, P, F, and I=nL, we find a positive, finite-rank Xe K (H) so that

(1) XP=PX=P, and hence XV"k;V "=XPV"k;V "=PV"k;V "=V"k;V "=
VTE; V77X for all 1<j<N and 0<r<n—1,

(2) |IIX,V7b;V7]||<6 for all 1<5<N and 0<r<n—1,

(3) the rank of X is at most nL-(nN+1)2/%+1,

Let e=X®1. Then e satisfies the hypotheses of Lemma 3.1. Indeed,

e, Vo, VT 1] = [[X, V"V <46, 1<i<N,0<r<n-1,
and
eVEVTTOW T a, W T-VTEVTTQW e, W™ = (XV VT VTV T )oWTa,W™" =0

1

if 1<i< N and 0<r<n—1, etc. Hence by Lemma 3.1, as long as m>¢~" we have

repe(w(n), 30) <repymypale’ ™w(n)e'/™, €)+rep g(m(w(n)), €).
Note that

et/mu(n)et/™ = { XY™} U{XY "V VT XY™ oW Ta,W T
+ XYYV TTXY™®1:1<i< N, 0<r <n—1}.

Hence setting

wa(n)={1}U{W a,W " 1<i<N,0<r<n—1},
we(n) ={1}U{Vb,V " 1<i <N, 0<r <n—1}

we have

rcp,C(H)®A(el/”w(n)el/", g) <repy(wa(n), 3¢)-rank(X).
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On the other hand,
repg(m(w(n)),e) =1cpp(wa(n), €).

Since the rank of X is at most nL(nN+1)%2+1 it follows that

rep(w(n), 30€) <repa (wa(n), 26)nL(nN +1)2/°* +repg(wp(n), €)
<2(nL+1)(nN+1)*/%* ' max(rcpy (wa(n), €), repg(wa(n), €)),

so that
. 1
limsup — log rep{w(n), 30¢)
n—oo T

1 . 1
< max (lim sup — log rep(wa(n), 3¢), limsup — log rep(wp(n), 5))
n—ooo N n-soo N

< max(ht(Ad W1,), ht(Ad V|5)).

Since C' can be written as the closure of the linear span of elements of the form appearing
in w, the statement of the theorem follows. O

We shall record the following corollary, which will be the basis for entropy compu-
tations in this paper.

COROLLARY 3.6. Let A be a C*-algebra, a€Aut(A), m: A—>B(H) be a faithful
representation of A, and let UcU(H) be such that m(a(a))=Un(a)U*. Assume that
7(A)NK(H)={0}. Let Ag=A, ap=a, mo=7, Hy=H and Uy=U. Recursively construct
C*-algebras A, a,€ Aut(A,), mn: An— B(Hy,) and U,€U(H,) by setting

H,=H, ®H,

Apn=K(H,. 1)®@7(A)+7,_1(An_1)®Idg,
Ty, = obutous representation on Hy,
Up=U,_1®U,

a, =AdU,.

View A,_1CA, as An~1§7l'n_1(An41)®IdH. Let

AooanJAn, aoo:li_r>nan.

Then:

(i) ht{aw)=ht(a).

(ii) If v is an injective endomorphism of A S0 that yoa..=awo, denote by &
the obvious extension of oo t0 Acox4N. Then ht{a)=ht(c).
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Proof. Statement (ii) follows from statement (i) and the results of [20]. Hence
it is sufficient to prove (i); for that one only needs to prove that ht(c,)<ht(e), in
view of the behavior of entropy with respect to inductive limits. We now proceed by
induction on n. Since ag=«, the statement is true for n=0. Applying Theorem 3.5 to
Ap=K(H,_1)@7m(A)+7mp-1(An_1)®Idy gives ht(ay,)<max(ht(a,_1),ht(a)), which is
equal to ht(e) by the induction hypothesis. O

4. Free products with the Toeplitz algebra

The main technical result of this section (which will be used to prove the more general
result about entropy of amalgamated free products of automorphisms) is the following
theorem.

THEOREM 4.1. Let « be an automorphism of a D-probability space (A, E: D— A).
Assume that D is finite-dimensional. Assume that the GNS representation associated
to E is faithful. Let TCB(I?) be the Toeplitz algebra generated by the unilateral shift
1(6r)=06n+1 (n21), and ¢ be the vector state on T associated to 61€12. Consider on the
algebra (A, E)+p(DQT,idp®vy) the automorphism ax(a|p®id). Then

ht(ax*(a|p®id)) = ht(a).

Because of Corollary 2.5.2 and monotonicity of ht, it is sufficient to prove Theo-
rem 4.1 in the particular case that D=C. For convenience, we shall restate this particular
case as

PROPOSITION 4.2. Let A be a unital C*-algebra and ¢: A—C a state with a faithful
GNS representation. Let a€Aut(A) be an automorphism so that ¢oa=¢. Consider the
algebra (A, $)*(T,¢). Then hi{axid)=ht(a).

Proof. Let H=L?%(A, ¢) be the GNS Hilbert space associated to A, and let 1€ H
be the cyclic vector associated to ¢. Let O, be the Cuntz algebra on two genera-
tors [14]. Without loss of generality, by replacing A with ARO, and o with a®id
we may assume that the GNS representation m: A— B(H ) satisfies m(A)NK(H)={0}.
Let U: H— H be the unitary induced on H=_L?(A4, ¢) by a. We shall covariantly identify
((A, @)*(T, %), axid) as the crossed product by a certain endomorphism v of the algebra
Ao described in Corollary 3.6, taken with the automorphism &. By Corollary 3.6, we
then have ht(a)=ht(a), which, in view of our identification, is the same as ht(axid),
hence proving the proposition. The remainder of the proof is essentially a special case of
the techniques used in [20], where more general Cuntz-Pimsner algebras were shown to
have a crossed product structure.
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Consider now the Hilbert space

F=L(4,0) @ L*(4,)°"
nz2
and the representation g: A— B(H ) given by 0=73(,,5, 7®1). Consider the isometry
I: F— F defined by

(&) =1®¢,

where 1 denotes the image of the unit of 4 in L2(A, ¢), and £€ F. Denote by U: L?(A, ¢)—
L?*(A,¢) the unitary implementing a. Denote by V the unitary U@, U®™ acting on
the Hilbert space F. One sees that Ady ({)=1 and Ady{e{a))=p(c(a)).

CLam 4.3. (C*(o(A), 1), Ady)=((A, ¢)*(T, ), axid).

Proof. This actually follows from §2.5, since C*(g(A), 1) is isomorphic to the Cuntz-
Pimsner algebra associated to the (A, A)-bimodule L?(A, ¢)® A. For the reader’s conve-
nience, we give a proof.

Let 6 be the vector state on B(F') associated to the vector 1€ L?(A, $)®0CF. Then
1*1=0, and one can easily verify that (i) 8(aol ... lagl*ant1 ... *anym) =0 for all a; € p(A),
n,m=0, n+m>0; and (ii) I*o(a)l=¢(a) for all ac A. It follows from [35] that A and
C*(1) are free in (B(F),0). Since C*(l) is (obviously) isomorphic to T, 8|c+yy=1, and
since g is injective and 6, 4)=¢, the claim is proved. |

From now on, write C=C*(A4,1).

Denote by C,, the closed linear span
Cp =58pan{agla; ... lapl*am1l™... a2 : m <0, ag, ..., a2m € 0(A4) }

(each monomial above has exactly m terms equal to [ and the same number of terms equal
to I*). Note that because of the relation [*g(a)l=¢(a), a€ A, each C,, is a C*-subalgebra
of C. The action of w=agla; ... la,l*an411*... a2n € Ck, on a vector £=£1®...0&. € H can
be described as

0 ifn>r,
'U)g: n . .
(00®a1®...®(an €nt1)®...®& ) [ 1721 (&5 a3, j41) otherwise

(here we identify a;€p(A) with a;-1€ L%(A4,¢)CH).

Denote by C the C*-algebra m. Then IC,l1*CCpy1, and hence y=I-1*
determines an endomorphism of Cy,. It can be easily seen that C is isomorphic to the
crossed product of Co, by this endomorphism (cf. the discussion after Proposition 1.2
in [20] for the definition). Moreover, Ady leaves C invariant and commutes with the
endomorphism [-1* ([20, Proposition 1.5]).
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It remains to show that (C,, Adv|c,) = (A, ®,), where A,, and «,, are as in Corol-
lary 3.6.

We proceed by induction. In the case that n=0, Co=A4, Ady|c, =0
Let

F,=L*(A,¢) %IH(A, ®)®*C F.
k=2

Then F,, is invariant under the action of C,, on F. Consider the isomorphism W,

W:L*(A,¢)® @ L*(A, ¢)®*

E>2

- (LQ(A, gb)@%le(A, (zs)@k) ® (ces @ L2(A, ¢)®m("+1>) - F,0K,.
k=2

m21

For each acC,,, W*aW: F,® K, —F,Q K, has the form a|r, ®Idg,_. It follows that the
representation of C,, on F,, is faithful.
Denote by B, CC,, the ideal

B =span{apla; ... lap*ap 11" ... azn : agy ..., a2, € 0(A)}.

Write »
- Fn = L2(A7 ¢)$ @ Lz(Ay ¢)®k = Fn—l@L2(Aa ¢)®(n+1).
k=2

Then B,-F,_;=0; hence the representation of B, obtained by restricting its action to
the space L*(A,¢)® 1) is faithful. The action of aglay...lan*an41l*... agn€ By ou
6®...Q&n 1€ L%(A, )2 1) can be explicitly written as

aplay ... lanl*an+1l*... a2n-§1®...®§n®£n+1

=(£1,83,) - (€n, 0711) @0®... ® 18 (Ans1-Ent1)-
Denote by 6(ag, ..., @n—1,@nt1, -, a2 ) € B(L?(A, $)®™) the compact operator given by
0(a0, -y Q15 Ong1y ey G20)610... Q& = (€1, 05,) - (€ny Q1) G0® ... ®Ap_1.

Then the map

aglay...lapl"ant " .. agy — 0ag, -, 65,1, Qng1, ey Q2 ) Ry

€K(L*(A,¢)*")®AC B(L*(4,¢)*"®L*(A,¢))

is a C*-algebra isomorphism of B, with K(L?(A,$)®")®A.
For all m<n+1, the subspaces L?(A, $)®™C F,, are invariant under the action of C,,.
Denote by p,, the representation of C,, obtained by restricting its action on H to the
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space L*(A, $)®(*1). The image g,(An_1) lies inside B(L*(4, $)? " )@ A®Idr2(4,¢)-
By our assumption, m(A)NK(L?(A, ¢))={0}. This implies that

Qn(cn)ngn(Bn) = Qn(Cn)nK(L2(Aa ¢)®n)®A = {O}

We claim that g, is faithful. Indeed, assume that it is not, and that some 0#£a€C,
is annihilated by p. Write a=a,_;+b, where a,_1€C,_1 and beB. Since pg,(a)=
0n(an-1)+0r(b)=0 and ¢,,(B,)Non(Cr-1)={0}, it then follows that g,(an—1)=0 and
0n(b)=0. But for ap,_1€Cr_1, 0(an-1)=0n—1(@n-1)®Id12(4,¢). Proceeding inductively,
we see that g, is faithful.

We have therefore proved that
Cr = 0n-1(An-1)®1d (4 4) + K(L*(A, ¢)* V)@ 7(4),

which means that Cp, = A,,. Since Ad V,|c, is given by Adyem-1gu, it follows that the
dynamical system (C,,, Ad V¢, )= (An, an). 0

COROLLARY 4.4. Let a be an automorphism of a non-commutative probability space
(A, E: A= D), and assume that D is finite-dimensional. Assume that the GNS repre-
sentation with respect to E is faithful. Let & be the Bogolyubov automorphism of the
Cuntz—Pimsner C*-algebra described in §2.5. Then ht(a@)=ht(q).

It would be interesting to find a formula for the entropy of more general Bogolyubov
automorphisms of Cuntz—Pimsner algebras. For example, we believe that the corollary
above should hold for more general D.

5. Entropy for free products of automorphisms

We have now almost arrived at the main result of the paper (Theorem 5.7), calculating
entropy of the free product of two automorphisms. First, we shall prove several technical
lemmas which reduce the general case to the case of a free product with the Toeplitz
algebra as in Theorem 4.1.

LEMMA 5.1. Let DC BCB be C*-subalgebras, and let U€B be a unitary. Let E be
a conditional expectation from B onto D. Assume that

(i) C*(D,U) and B are free with respect to E,

(ii) [U,D]=0 and E(U)=E(U*)=0.
Then the algebras B and UBU* are free with respect to E. If in addition E(U*)=0 for
all k#0, then the algebras {U*BU %}z are free with respect to E.
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Proof. Since U is free from B and commutes with D, we see that for all be B,
E(UbU*)=E(U(b—-Eb)U*)+EUE(b)U*)=0+E(E(b)UU*)=E(b). Now let b;€B be
such that E(b;)=0. Then

EboUbiU*bUbgU™...) =0

because U and B are free with respect to E. But then B and UBU™* are free with respect
to E, since for all j, Uby; 1 1U*eUBUNker E, and any element in UBU*Nker E has the
form UbU™ for some b€ BNker E.

The proof that {U*BU %}, are free with respect to E proceeds along similar lines. []

The following lemma is included for completeness. We will use the implications
(i) = (ii) = (iii) in the sequel.

LEMMA 5.2. Let DCBCA be unital inclusions of unital C*-algebras, and suppose
that there are conditional expectations Ef: A—B and EB:B—D. Let EA=EB-E4:
A—D. Consider the following statements:

(i) The GNS representations associated to Ef and EB are faithful.

(i) The GNS representation associated to E4 is faithful.

(iii) The GNS representation associated to E4 is faithful.

Then we have (i) = (ii) = (iii). None of the reverse implications hold in general.

Proof. We will denote by a—a the defining map from A onto a dense subspace of
L%(A,E4), and similarly for the other L2?-spaces. We will also need the isomorphism
m L2(A, Ef)—L*(A, Ef)®p L?(B, EE) given by n(a)=a®1.

(i) = (ii): Let a€ A. Choose a1€ A so that aa;€ L?(A, E4)\{0}, i.e.,

Ef(aja*aa;) #0.
There exists an element b;€ B such that
(E5(aja’aar))/?b € L*(B, EB)\{0},
ie.,
0# EB (b} EA(ata’aa;)by) = EfA(biata*aayb,).

Thus aaby€ L2(A, EA\{0}.

(ii) = (iii): Given a€ A take a;€ A so that E#(ala*aa;)#0. Hence E4(aja*aa;)#0.

A counterexample to (ii) = (i) is provided by taking D=C, B=C&®C, A=M;(C),
Ef((cij)iinj<z) =cr1®ean and EB(21@20)=2.

A counterexample to (iii) = (ii) is provided by taking D, B and E5 as in the above
example, A=My(C)® M>{C) and Eé((cij)lnggg@(dij)lgi’jgz)zcll@du. (N
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LEMMA 5.3. Let E;: A;— D, i=1,2, be D-probability spaces, with automorphisms .
Assume that the GNS representations associated to E; are foithful, and that ai|p=o2|p.
Let E1® FEy: Ai®As—+D® D be the obvious conditional expectation. Consider the algebra
Ma(D) of (2x2)-matrices over D, and view D®DCMa(D) as diagonal matrices. Let
F:My(D)—=D@® D be the conditional expectation

F(a ") = awd
=add.
c d
Then there exists an isomorphism
¢ (A]EBAQ, El@Eg)*D@D (]\/IQ(D), F) = ((Al, El)*D (AQ, EQ))®M2(C)
s0 that ¢ intertwines the automorphisms (1@ az)*(id®a;|p) and (a1*a2)®id.

Proof. Consider in Ma2(D)C(A1® Az, E1® Es)*pgp (Ma(D), F') the unitary
(0 1)
w= .
1 0

1 ={a®0:a€ A},
b ={w(0®a)w*:a€ Azx}.

Consider the subalgebras

Since w is free from A;® A, with amalgamation over D@D, it is easily seen from the
definition of freeness and Lemma 5.1 that the algebras A} and A5 are also free with
amalgamation over D&®0. Furthermore, the restriction of (E @ Eq)+F to A] is E;, and
hence the GNS representation associated to each E; is faithful. It follows from the
embedding result {see §2.2) that A} and A’ together generate the reduced free product
A1xp As. Tt is easily seen that the algebra (A1 A2)*pgp (M2(D)) is generated by A1, A5
and C*(1p®1p,w) = M>(C), and is isomorphic to (A;*p Az)® Mz (C) via the map

0
¢: A1 20190 (Lg 0)6A1®MQ(C), a1 €A,
az O
¢ A3 w(0Paz)w* v ( 02 O)EAQ@]WQ(C), as € A,
01
o) (] 5)-
It is clear that ¢ intertwines the automorphisms {0 @ ag)*id and (a1xa)R1. O

In the following lemma, O, will be the Cuntz algebra [14] generated by isometries
Sy and Sy such that S157+5255=1, and o will denote the state on Oy satisfying
277 if p=q and 1= 71, -y ip=jp,
(8. S S*"S;)z{ e

i, - .
? 0 otherwise.

Note that o is faithful.
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LEMMA 5.4. Let o be the state on Oy as above. Let C be a commutative C*-
algebra having a faithful state o and a unitary w€C such that o(u)=0. Consider the
algebra B=((C@®C)R03,0®0)*(C, 0), where §(adb)=3%(a+b). Then B is simple and
purely infinite. Moreover, denoting by E:EgJeac)@Oz the conditional expectation from
B onto (CeC)YROs arising from the free product construction, there exists a subalgebra
MCB so that

(i) M2M5(C) in such a way that the element (a®b)R1 corresponds to the diagonal

matriz
( )
0 b ’

Proof. Since Oy has trivial K-theory, it follows from Germain’s exact sequence for

(i) E(M)C(CaC)®1.

free products (see §2.3) that Ko(B) is zero. Once B is known to be simple and purely
infinite, it will follow from Cuntz’s fundamental results [15] that there exists a partial
isometry w€B so that ww*=(1G0)®1 and w*w=(091)®1. Set M=C*(w). Then
M= M>(C), in such a way that w corresponds to the partial isometry

0 1
(0 o).

and therefore (i) is satisfied. To see that (ii) is satisfied, note that M is the linear
span of w, w* ww*, w*w; hence it is sufficient to check that E(w), E(w*w), EF(ww*) and
E(w*)=E(w)* all lie in (C®&C)®1. This is clearly true of F(w*w) and E(ww*), since
ww* and w*w lie in (C®C)®1. Furthermore, since (ww*) E(w)=E(ww*w)=E(w)w*w),
and the projections ww* and w*w are orthogonal, it follows that ww*E(w)ww* and
w*wE(w)w*w are both zero. Since ww* and w*w lie in the center of (CHC)® O, and
ww*+w*w=1, it follows that E(w)=0, and hence E(w*)=0, so that (ii) is satisfied as
well.

Note that B(O,®03,0")*(C, 0), where ¢'=2(c+0). We shall now apply Theo-
rem 3.1 of {18] to show that B is simple and purely infinite; the following five observations
show that the hypotheses of this theorem are satisfied:

(1) o’ and p are faithful states.

(2) Let v=253525F®0€ Oz O; then v is a partial isometry belonging to the spectral
subspace of the state o’xg corresponding to 2, i.e., F(zv)=2F(vz) for all z€B.

(3) Let gy=v*v and ga=vv™*; then q;.L g2 and we have F(ql):%, F(qg)-—-%.

(4) Consider

B1=C"(q1,92,u)C B,
By =C*(uquu™, q2) C B;.
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By Lemma 5.1, ugiu* and ¢y are free with respect to F', so we may write Bs as the
free product of two copies of CoC,
uqiu” qz2
B,=(Co C )+(Cal),
3/4 1/4 7/8 1/8

one containing minimal projection ug,u* which has trace i, and the other containing

minimal projection ¢ which has trace %. It is then well known (cf. Proposition 2.7
of [16]) that

By = CaC([0,1], Ma(C))®C

with
a1l ! O)EBO
uqiu* ~ ,
qi1 0 0
t Vi(l—t)
g2~0® @0
t1—t) 1-t

Therefore, ¢ is equivalent in B, to a subprojection of ¢1, and g2 B1¢2 contains the diffuse
Abelian subalgebra go Bago.

(5) The centralizer of ¢’ contains a diffuse Abelian subalgebra; hence by Proposi-
tion 3.2 of [16], B is simple, and thus ¢q;+qo is full in B.

The above facts allow us to apply Theorem 3.1 of [18], and we conclude that B is
simple and purely infinite. O

LEMMA 5.5. Let W be a unital C*-algebra and let ES: X W and EY,: Y —W be
W -probability spaces, with automorphisms ax and ay, respectively, which agree on W.
Assume that WC ZCX is an ax-invariant subalgebra, and let Eﬁ, be the restriction of
E{¥ to Z. Assume that there exists an E{ -preserving ax -invariant conditional ezpecta-
tion E%: X —Z, and assume that the GNS representations associated to E;, BEE,, EX
and EY, are faithful. Then there exists an isomorphism of the reduced free products

Xz (Z+wY )= X*xwY
which intertwines the automorphisms ax*(ax|z*ay) and ax*ay.

Proof. Consider the free product conditional expectation Ez: X*z(Z*xwY)—Z.
The GNS representation associated to Ez is faithful, by definition. Let EW:EVZVoEZ.
By Lemma 5.2, Ey also gives rise to a faithful GNS representation. By Lemma 2.6
in [36], X and Y are free with respect to Ew. It follows from the assumptions and
the embedding result (see §2.2) that the C*-algebra generated by X and Y in the GNS
representation of X *; (Z*wY') associated to Ey is isomorphic to X *w Z. The desired
isomorphism follows. O
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LEMMA 5.6. Let E;: A;— D, i=1,2, be D-probability spaces, with automorphisms «;.
Assume that the GNS representations associated to E; are faithful, and that oq|p=o2|p.
Let F: A1® Ay~ D={d®d:de D}C A9 Az be given by

E(a1®az) = 3([Er(a1)+Ea(a2)|®[E1(a1) + Ez2(a2))).

Let 0: 03— C be as in Lemma 5.4. Let C be any C*-algebra with a state p, giving rise
to a faithful GNS representation, and containing a unitary u, such that 0=9|c»(w) 15
faithful and o(u)=0.

Then there exists an embedding

Ai (A1, Eq)*p(Ag, E3) > B=((A18A2)®02, EQ0)xp (C®min D, §®id)

50 that A intertwines (ay*ag) and ((a1®as)®id)*(id®ai|p).

Proof. Using the embedding result (see §2.2), we can reduce to the case C=C*(u)
and g=p, by replacing B with the algebra generated by (A19A43)® 02 and C*(u)@DC
C®minD.

We have the following sequence of covariant inclusions, justified below:
Arxp As = Mo®(Ay*p Az)
& Ma®D#*pgp(A1DAz)  (by Lemma 5.3)
& ([C902)+C)8 D)scr0,00 (1B 42) 8 O]
= ((C*®02®D)*p(C®D))*c200,00 (418 42) @ 02

(b)
= C®D*D [(A]@AQ)@OQ]

Inclusion (a) is implied by Lemma 5.4, together with the embedding result (see §2.2).
Isomorphism (b) is implied by Lemma 5.5. O

THEOREM 5.7. Let D be a finite-dimensional C*-algebra, and let o be an automor-
phism of a D-probability space (A;, E;: Aj—D) (j€J, J a finite or countably infinite
set). Assume that the GNS representations associated to E; (j€J) are faithful. Assume
that ajlp=cy|p for all i,jeJ. Let (A, E)=+p((4;, E;),j€J) and let x;a; denote the
free product automorphism of A. Then

ht(x; ;) = S,lelg(ht(aj))' (5.1)

Proof. Because of the embedding result (see §2.2) and the behavior of entropy with
respect to inductive limits, it suffices to prove the statement when J={1, 2} is a set with
two elements.
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By monotonicity of ht, the inequality > in (5.1) is clear. Let T be the Toeplitz
algebra generated by the unilateral shift [, and denote by ¢ the vacuum expectation on 7.
Voiculescu [42] showed that I*+1 is a semicircular element with its spectrum an interval.
Hence by functional calculus C=C*(I*+1) contains a unitary u such that p(u¥)=0 for
all k#0. It is not difficult to see that C contains no non-zero compact operator, and
thus p=p|¢ is faithful. By Lemma 5.6 and Lemma 5.3, the amalgamated free product
dynamical system (A;xp Az, ar*ag) can be covariantly embedded into (B, 3), where

(B, F) = ((A19A2)® 02, E®a)*p (T®D, §®idp)

and where

B=((1®Daz)®idp,)*(idr @(a1|p)).

So by monotonicity again, ht(a*as)<ht(3). Using Theorem 4.1 we have

ht(8) =ht((c1D a2)®idp,) = ht(a;®a2) = max(ht(a1), ht(az)). O

Remark 5.8. (1) The only reason that the hypotheses of Theorem 5.7 require finite
dimensionality of D is because the proof appeals to Theorem 4.1. If one could prove a
version of Theorem 4.1 for more general types of D, then Theorem 5.7 would be valid
for those more general algebras D, with the same proof.

(2) Theorem 5.7 also holds for amalgamated free products of injective endomor-
phisms of non-commutative probability spaces. This can be seen by realizing an injective
endomorphism as the restriction of an automorphism (see e.g. [20]), and then utilizing
our result for automorphisms.

(3) One can actually prove a partial version of Theorem 5.7 with amalgamation tak-
ing place over an AF algebra. Assume that Ey: A; =D and F;: Ay,— D are D-probability
spaces, with automorphisms «;, as, which restrict to the same automorphism on D. As-
sume that D:LTW, with D¢ DG+ finite-dimensional. Assume further that

- (1) (@) (i+1)
A=UAD. AP Al
and that Ej(Agi)):D(i) and D(i)cAy), j=1,2. Let aj*oay denote the free product

automorphism on Aj*pAs. Then ht{a;*az)=max(ht(a1), ht(es)). This is due to the
fact that under these assumptions, A;*p A, is the direct limit of A(f)* D& A(Qi).
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6. Applications

6.1. Shifts on infinite free products and twisted free permutations. Let A be a unital
C*-algebra, D a finite-dimensional unital subalgebra, and let E: A— D be a conditional
expectation with a faithful GNS representation. Let I be a non-empty set, and for every
i€l let (A;, E;) be a copy of (A, F). Let

(B, F)=(*p)icr(Ai, Ei)

be the reduced amalgamated free product. Let o: I—1I be a bijection. The free permuta-
tion arising from o is the automorphism § of B that permutes the copies of A inside B
by sending A; to Ay(;).- (The free shift is the free permutation arising from the shift on
I=7Z.) The following theorem is a generalization of results of Stgrmer [38], Brown and
Choda [8] and Dykema [17], and a partial generalization of other results of Stgrmer [39)].
It answers affirmatively in the case of amalgamation over a finite-dimensional C*-algebra
Question 11 of [17):

THEOREM 6.1.1. If A is an exact unital C*-algebra and D is finite-dimensional
then for every free permutation 8 of B=(*p)icr A one has ht(3)=0.

Proof. Consider the reduced group C*-algebra C;(F|;) of the non-Abelian free
group on |I| generators, where || is the cardinality of I. Let (u;);c; be the unitary gen-
erators of CJ(F|) corresponding to the free generators of F|;. Let o.€ Aut(C}(F\)))
be the automorphism such that o.(u;)=1u,(;). Then from (8] and {17], ht(s,)=0. Let

(57 ﬁ) = (C:(F|I|)®D’ T®idD)*D (A7 E)a
where 7 is the canonical tracial state on C;(F|;), and let
B=(0,®idp)*ids € Aut(B).

Then by Theorem 5.7, ht(3)=ht(c.)=0. Let B'=C*({,c; u;Au})C B. Then F(u;auf)=
E(a) for all a€ A and i€, and, by Lemma 5.1, the family (u; Au});cr is free with respect
to F. It is not difficult to see, though somewhat tedious to write down in detail, that the
inclusion representation of B’ on Lz(E, F ) is a multiple of the GNS representation, g, of
B’ on L*(B', F|p/). Indeed, one chooses vectors &€ L2(B, F) such that {J; B'¢; spans a
dense subset of L2(§ , ﬁ) and so that the representation of B’ on B’¢; is equivalent to g
for all 4. Hence there is an isomorphism 7: B— B’ sending the copy of A; in B to u; Au;.
We see that the automorphisms 3 and 3 |g are conjugate via 7. Hence, by monotonicity
of ht we have ht(3) <ht(3)=0. O
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Remark 6.1.2. Just as in Remark 5.8 (3), it is possible to weaken the hypothesis
of the preceding theorem by requiring that (A4, D, E: A— D) is an inductive limit of
(A, DO E;), with D finite-dimensional.

Definition 6.1.3. Let D be a unital C*-algebra, let I be a set, and for every i€ let
(A, E;) be a D-probability space such that the GNS representation associated to E; is
faithful. Let

(A, E)=(*p)ic1(Ai, E;)

be the reduced amalgamated free product. Let o:I—1I be a bijection such that for
every i€ [ there is an isomorphism a;: A;— A,(;) such that ;(D)=D and E,uoa;=E;.
Assume that «;|p is the same for all 7. Then there is an automorphism «a of A sending
the copy of A; in A onto the copy of A,(;) in A via ;. An automorphism « arising in
this way is called a twisted free permutation of A.

The next theorem generalizes Theorem 6.1.1 and also some results of [17].

THEOREM 6.1.4. Suppose that D is finite-dimensional and a€Aut(A) is a twisted
free permutation as described above. If the permutation o of I has no cycles then
ht(a)=0. Otherwise, whenever c is a cycle of o let l(c) be the length of the cycle,
let i€ I be one of the elements moved by the cycle, and let B.€ Aut(A;) be the restriction
of a*(9) to the copy of A; in A. (Note that 3. depends on i only up to conjugation.) Then

ht(8e)
ie)

ht(a) =sup (6.1)

where the supremum is over all cycles ¢ of o.

Proof. If o has no cycles then « is (conjugate to) a free permutation, so ht(a)=0 by
Theorem 6.1.1. In general, by making a cycle decomposition of ¢ and using Theorem 5.7,
we see that in order to prove (6.1) we may without loss of generality assume that ¢ itself
is a cyclic permutation, c=c, of a finite set /. However, then a!(®)=x;c;~;, where each
v;€Aut(A;) is conjugate to B.. Hence again applying Theorem 5.7 we have ht(a)=
bt(al!1)/|1|=he(62)/1(c). O

6.2. The CNT wvariational principle. In classical ergodic theory an important result
connecting topological and measurable entropy is the variational principle.

Definition 6.2.1. Let (A, a) be a unital exact C*-dynamical system. We say that
(A, o) satisfies a CNT variational principle if

ht(a) =sup hy(a),
¢
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where the supremum is taken over all a-invariant states on A, and hg(e) denotes the
CNT entropy of a with respect to ¢ (cf. [12]).

By [17, Proposition 9] we always have the inequality

ht{a) 2 sup hg(c).
@

Not every C*-dynamical system satisfies a CNT variational principle. In [29] an ex-
ample of a highly non-asymptotically Abelian system was given for which ht(a)> % log 2
while hg(a)=0 for the unique o-invariant (tracial) state. But, since ht(-) agrees with
classical topological entropy and hg(-) agrees with classical Kolmogorov-Sinai entropy
when A is Abelian, the classical variational principle says that if A is unital and Abelian
then (A, «) always satisfies a CNT variational principle. The list of examples of non-
commutative dynamical systems which satisfy a CNT variational principle is also rapidly
growing (cf. [44, 4.7}, [10, 4.6, 4.7}, [7, 3.6, 3.7], [5], [34], {30]). Moreover, the class of
C*-dynamical systems which satisfy a CNT variational principle is closed under taking
{(minimal) tensor products (cf. [41, Lemma 3.4]) and crossed products by Z (cf. [7, The-
orem 3.5]). Unfortunately it is not closed under taking quotients or subalgebras (even
those with a conditional expectation onto them—simply take a direct sum of something
Abelian with large entropy and the example from [29]) and it is not yet known what
happens in extensions. However, we now show that it is also closed under taking re-
duced free products. The next theorem also gives lots of examples of non-asymptotically
Abelian dynamical systems for which the CNT variational principle holds.

THEOREM 6.2.2. Let E;: A;—D, j=1,2, be non-commutative probability spaces
with automorphisms ay and as. Assume that D is finite-dimensional, that a1|p=a2|p,
and that E; give rise to faithful GNS representations. If both (A1,c1) and (A2, az)
satisfy the CNT variational principle, then so does (A1*p Az, a1xas).

Proof. Assume without loss of generality that ht(a;)>ht(6;). Given €>0 we can
find an a;-invariant state y€S(A1) such that ht(ai)<h, (a1)+e.

Let E: A;xA3— Ay be the canonical conditional expectation and define a state 7=
voE€S(A1xpAs). Then one checks that Jo(ayxas)=% and ¥oE=%. But under these
conditions, CNT entropy is also monotone (cf. [12, IIL.6]), and so ht(ay*ag)=ht(a)<
hy(ar)+e<hy(or*xaz)+e. Since € was arbitrary, we are done. i

A particularly interesting class of dynamical systems for which one would like to have
a CNT variational principle is those arising from automorphisms of discrete groups. For
any discrete group G let C}(G) be the reduced group C*-algebra and 7 the canonical
trace on C;(G). G is called exact if C}(G) is exact. If yv: G—G is a group automorphism
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then there is an induced automorphism ¥€Aut(C;(G)) such that rgoy=71¢. If G is
Abelian then a classical theorem of Berg [2] implies that ht(¥)=h,,(%).

THEOREM 6.2.3. Let H be a finite group and let G, and G be discrete ezact groups
having H as a common subgroup. Suppose that ;€ Aut(G;) (i=1,2) are automorphisms
preserving H such that y1|g="2|n. Let yi%¥2 denote the resulting automorphism of the
free product Gyxg Go with amalgamation over H. If ht(%)=hmi(§i) (i=1,2), then

ht(Y1%72) = hrg, oy 0, (T1¥72)-

COROLLARY 6.2.4. If G1,Go are discrete ezact groups with automorphisms ;€
Aut(Gl) (221,2), and ’Lf ht(ﬁl)=thl(ﬁl) (221,2), then ht(:?l*a2)=h‘rcl*c2(:y\1*;y\2)

It would be interesting to know whether or not the above theorem or its corollary

can be extended to the dual entropy defined in [9] as well.

6.3. Entropy-preserving embeddings. Kirchberg first proved that every separable ex-
act C*-algebra is isomorphic to a subalgebra of the Cuntz algebra on two generators
(cf. [27]). In [7, Remark 2.3] it was asked whether or not one can always find a uni-
tal embedding ¢: Ax,Z<>Os such that hto,(Ad o(u))=ht(a), where uc Ax,Z is the
implementing unitary. We now solve this problem affirmatively in the case that A is
nuclear and there exists an a-invariant state ¢€S(A) with faithful GNS representation.
We also show that if (A4,¢) is any nuclear C*-dynamical system then there always exists
an entropy-preserving covariant embedding into the Cuntz algebra on infinitely many
generators. Since many C*-algebras are stable under tensor products with Oy, we thus
get entropy-preserving embeddings into a very large class of C*-algebras. It follows that
the topological entropy invariant of all such algebras is [0, co].

We begin with a simple proposition.

PROPOSITION 6.3.1. Assume that A is a unital ezact C*-algebra, a€ Aut(A) and
there exists an a-invariant state ¢€S(A) with faithful GNS representation. Let B be
unital and exact, let Y€ S(B) have faithful GNS representation, let E: AxaZ—A be
the canonical conditional expectation and let u€ Ax,Z be the implementing unitary.
Regarding u as a unitary in (Ax,Z,¢poE)*(B,v) we have ht(Ad u)=ht(a).

Proof. Since E: Ax,Z— A is faithful, by Lemma 5.2 the GNS representation of ¢oF
is faithful.

Consider the C*-algebra (A, ¢)*(xz(B,¥)) Xaxs Z, where S:*z(B,¢)—xz(B, ) is
the free shift, and let v€(A, ¢)*(*z(B,v)) NaxsZ be the implementing unitary. It is
fairly easy to see (cf. the proof of [11, Claims 2 and 4]) that there exists a *-isomorphism

o: (Axazy(boE)*(B’ ¢) - (A7¢)*((*Z(B7 d))) >qom«SZ)
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such that g(u)=v. Hence ht(Adu)=ht(Adv). But [7, Theorem 3.5], Theorem 6.1.1
above and our main result imply that ht(Ad v)=ht(a*S)=ht(c). O

THEOREM 6.3.2. Let A be a unital, separable, nuclear C*-algebra and o€ Aut(A)
be an automorphism such that there exists an a-invariant state ¢€S(A) with faithful
GNS representation. If Os denotes the Cuntz algebra on two generators then there exists
a unital embedding 0: AxaZ— Oy such that hto,(Ad o(u))=ht(a), where u€Ax,7Z is
the tmplementing unitary.

Proof. Replacing (A, ) with (A®C(T),a®id¢(t)), if necessary, we may assume
that there exists a Haar unitary in the centralizer of ¢. In this setting, [16, Propo-
sition 3.2] ensures that (Ax,Z,¢eE)*(T,v) is a simple C*-algebra, where T is the
Toeplitz algebra and v is the vacuum state. Moreover, this free product is nuclear since
it is isomorphic to a Cuntz—Pimsner algebra over Ax,Z. Thus Kirchberg’s absorption
theorem for O (i.e., BQRO,2 O, for any simple, separable, unital, nuclear C*-algebra B,
cf. [27]) together with the previous proposition implies the result. d

We now turn to covariant entropy-preserving embeddings into Q..

THEOREM 6.3.3. Let A be any separable, nuclear C*-algebra and a€ Aut(A) be an
automorphism. If O denotes the Cuntz algebra on infinitely many generators then there

exists an automorphism f€ Aut(Oy) and a non-unital x-monomorphism m: A— Oy, such
that fer=moa and ht(8)=ht(x).

Proof. By adding a unit to A and replacing A by its crossed product by a, we
may assume that A is unital and « is inner. We may also assume that there exists an
a-invariant state ¢ € S(A) with faithful GNS representation. Indeed, it follows from The-
orem 3.5 that the covariant embedding (4, a)—(AA+K(H®H),Ad(u®14)), where
we regard ACB(H), and u€ A is a unitary which implements «, is entropy-preserving.
Now any vector state arising from the second copy of H will be Ad(u@14)-invariant and
have faithful GNS representation since it is a cyclic vector.

So, we assume that A is unital, « is inner and ¢€ S(A) is a-invariant with faithful
GNS representation. Consider the free product

B=((A8C[0,1]@0;0C0, 1],))*(T, ).

Here n is the average of Lebesgue measure on the second copy of C]0,1] and the
tensor product of ¢, Lebesgue measure and an arbitrary faithful state on O, and
v is the vacuum state on the Toeplitz algebra 7. Since there is a Haar unitary in
the centralizer of # (coming from the copies of C[0,1]), [16, Proposition 3.2] implies
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that B is simple. Moreover, B is nuclear being isomorphic to a Cuntz-Pimsner alge-
bra over A®CI0,1]@0:&C[0,1] (cf. [20], [24]). Since O is KK-equivalent to zero,
ARC[0,1]@0:®C[0, 1] satisfies the Universal Coefficient Theorem. Since 7 is Type I
it also satisfies the UCT, and hence, by a result of Germain [23] so does B. More-
over, it follows from Germain’s six-term exact sequence for K-theory (see §2.3) that B
has the K-theory of O,,. Hence BRO, is a simple, unital, purely infinite, nuclear
C*-algebra which satisfies the UCT and has the K-theory of Q... So, by the classifi-
cation results of Kirchberg [26] and Phillips [32], BROuw=0«. By our main result we
have that the automorphism y=(a®idc,11®ido,®id¢o,1)) *id7 € Aut(B) has the same
entropy as «. Hence defining 3=7®idp_€Aut(BROs)=Aut(O) we get the desired
entropy-preserving covariant embedding. O

Subquestion 6.3.4. Let u€ A be a unitary and regard Adu as an automorphism of
(A, ¢)*(B,v). As in Proposition 6.3.1, is it true that ht 4. g(Ad u)=ht(Ad u|4)? Clearly,
an affirmative answer to this question would imply that the automorphism in Theo-
rem 6.3.3 can be taken to be inner.

6.4. Possible values of entropy of all automorphisms of a C*-algebra.
Definition 6.4.1. If A is an exact C*-algebra then put
TE(A)={t€[0,00] : there exists o€ Aut{A) such that ht{a)=t}.
For A unital, we can also consider the set

TEmn(A) = {t€[0,00] : there exists a unitary u€ A such that ht(Adu)=1t}.

The results of §6.3 imply, in particular, that TE(O)=[0,00] and TEm,(O2)=
[0, 0], since there are automorphisms of nuclear (in fact, Abelian) algebras with any
prescribed entropy. (See [6] for some nice examples.) Clearly, if B contains a projection,
then TE(B®A)DTE(A). If A and B are both unital, we have

TE]nn(A®B) D TEInn(A) UTEInn(B).

If B is any nuclear simple separable purely infinite C*-algebra then Kirchberg has
shown that BROu 2 B (see [27]). Recently Kirchberg and Rgrdam introduced a class of
non-simple purely infinite C*-algebras (cf. [28]). Though it is not yet known whether all
of their nuclear purely infinite C*-algebras will absorb O,, many examples are known.

THEOREM 6.4.2. Let B be any exact C*-algebra which contains a projection. Then
TE(B®0Ou)=[0,00|. If B is unital then TE1n,(B&O2)=[0, 0]

In particular, if B is nuclear, simple, separable and purely infinite then TE(B)=
[0, 00).
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